• Trending Now
  • Foundational Courses
  • Data Science
  • Practice Problem
  • Machine Learning
  • System Design
  • DevOps Tutorial

Assignment Operators in Programming

  • Operator Associativity in Programming
  • C++ Assignment Operator Overloading
  • What are Operators in Programming?
  • Assignment Operators In C++
  • Types of Operators in Programming
  • Solidity - Assignment Operators
  • Augmented Assignment Operators in Python
  • JavaScript Assignment Operators
  • How to Create Custom Assignment Operator in C++?
  • Assignment Operators in Python
  • Assignment Operators in C
  • Compound assignment operators in Java
  • Java Assignment Operators with Examples
  • When should we write our own assignment operator in C++?
  • Parallel Assignment in Ruby
  • Self assignment check in assignment operator
  • Different Forms of Assignment Statements in Python
  • What is the difference between = (Assignment) and == (Equal to) operators
  • Rules for operator overloading
  • Program to print ASCII Value of a character
  • Introduction of Programming Paradigms
  • Program for Hexadecimal to Decimal
  • Program for Decimal to Octal Conversion
  • A Freshers Guide To Programming
  • ASCII Vs UNICODE
  • How to learn Pattern printing easily?
  • Loop Unrolling
  • How to Learn Programming?
  • Program to Print the Trapezium Pattern

Assignment operators in programming are symbols used to assign values to variables. They offer shorthand notations for performing arithmetic operations and updating variable values in a single step. These operators are fundamental in most programming languages and help streamline code while improving readability.

Table of Content

What are Assignment Operators?

  • Types of Assignment Operators
  • Assignment Operators in C++
  • Assignment Operators in Java
  • Assignment Operators in C#
  • Assignment Operators in Javascript
  • Application of Assignment Operators

Assignment operators are used in programming to  assign values  to variables. We use an assignment operator to store and update data within a program. They enable programmers to store data in variables and manipulate that data. The most common assignment operator is the equals sign ( = ), which assigns the value on the right side of the operator to the variable on the left side.

Types of Assignment Operators:

  • Simple Assignment Operator ( = )
  • Addition Assignment Operator ( += )
  • Subtraction Assignment Operator ( -= )
  • Multiplication Assignment Operator ( *= )
  • Division Assignment Operator ( /= )
  • Modulus Assignment Operator ( %= )

Below is a table summarizing common assignment operators along with their symbols, description, and examples:

Assignment Operators in C:

Here are the implementation of Assignment Operator in C language:

Assignment Operators in C++:

Here are the implementation of Assignment Operator in C++ language:

Assignment Operators in Java:

Here are the implementation of Assignment Operator in java language:

Assignment Operators in Python:

Here are the implementation of Assignment Operator in python language:

Assignment Operators in C#:

Here are the implementation of Assignment Operator in C# language:

Assignment Operators in Javascript:

Here are the implementation of Assignment Operator in javascript language:

Application of Assignment Operators:

  • Variable Initialization : Setting initial values to variables during declaration.
  • Mathematical Operations : Combining arithmetic operations with assignment to update variable values.
  • Loop Control : Updating loop variables to control loop iterations.
  • Conditional Statements : Assigning different values based on conditions in conditional statements.
  • Function Return Values : Storing the return values of functions in variables.
  • Data Manipulation : Assigning values received from user input or retrieved from databases to variables.

Conclusion:

In conclusion, assignment operators in programming are essential tools for assigning values to variables and performing operations in a concise and efficient manner. They allow programmers to manipulate data and control the flow of their programs effectively. Understanding and using assignment operators correctly is fundamental to writing clear, efficient, and maintainable code in various programming languages.

Please Login to comment...

Similar reads.

  • Programming

advertisewithusBannerImg

Improve your Coding Skills with Practice

 alt=

What kind of Experience do you want to share?

cppreference.com

Assignment operators.

Assignment and compound assignment operators are binary operators that modify the variable to their left using the value to their right.

[ edit ] Simple assignment

The simple assignment operator expressions have the form

Assignment performs implicit conversion from the value of rhs to the type of lhs and then replaces the value in the object designated by lhs with the converted value of rhs .

Assignment also returns the same value as what was stored in lhs (so that expressions such as a = b = c are possible). The value category of the assignment operator is non-lvalue (so that expressions such as ( a = b ) = c are invalid).

rhs and lhs must satisfy one of the following:

  • both lhs and rhs have compatible struct or union type, or..
  • rhs must be implicitly convertible to lhs , which implies
  • both lhs and rhs have arithmetic types , in which case lhs may be volatile -qualified or atomic (since C11)
  • both lhs and rhs have pointer to compatible (ignoring qualifiers) types, or one of the pointers is a pointer to void, and the conversion would not add qualifiers to the pointed-to type. lhs may be volatile or restrict (since C99) -qualified or atomic (since C11) .
  • lhs is a (possibly qualified or atomic (since C11) ) pointer and rhs is a null pointer constant such as NULL or a nullptr_t value (since C23)

[ edit ] Notes

If rhs and lhs overlap in memory (e.g. they are members of the same union), the behavior is undefined unless the overlap is exact and the types are compatible .

Although arrays are not assignable, an array wrapped in a struct is assignable to another object of the same (or compatible) struct type.

The side effect of updating lhs is sequenced after the value computations, but not the side effects of lhs and rhs themselves and the evaluations of the operands are, as usual, unsequenced relative to each other (so the expressions such as i = ++ i ; are undefined)

Assignment strips extra range and precision from floating-point expressions (see FLT_EVAL_METHOD ).

In C++, assignment operators are lvalue expressions, not so in C.

[ edit ] Compound assignment

The compound assignment operator expressions have the form

The expression lhs @= rhs is exactly the same as lhs = lhs @ ( rhs ) , except that lhs is evaluated only once.

[ edit ] References

  • C17 standard (ISO/IEC 9899:2018):
  • 6.5.16 Assignment operators (p: 72-73)
  • C11 standard (ISO/IEC 9899:2011):
  • 6.5.16 Assignment operators (p: 101-104)
  • C99 standard (ISO/IEC 9899:1999):
  • 6.5.16 Assignment operators (p: 91-93)
  • C89/C90 standard (ISO/IEC 9899:1990):
  • 3.3.16 Assignment operators

[ edit ] See Also

Operator precedence

[ edit ] See also

  • Recent changes
  • Offline version
  • What links here
  • Related changes
  • Upload file
  • Special pages
  • Printable version
  • Permanent link
  • Page information
  • In other languages
  • This page was last modified on 19 August 2022, at 08:36.
  • This page has been accessed 54,567 times.
  • Privacy policy
  • About cppreference.com
  • Disclaimers

Powered by MediaWiki

  • Skip to main content
  • Select language
  • Skip to search
  • Assignment operators

An assignment operator assigns a value to its left operand based on the value of its right operand.

The basic assignment operator is equal ( = ), which assigns the value of its right operand to its left operand. That is, x = y assigns the value of y to x . The other assignment operators are usually shorthand for standard operations, as shown in the following definitions and examples.

Simple assignment operator which assigns a value to a variable. The assignment operation evaluates to the assigned value. Chaining the assignment operator is possible in order to assign a single value to multiple variables. See the example.

Addition assignment

The addition assignment operator adds the value of the right operand to a variable and assigns the result to the variable. The types of the two operands determine the behavior of the addition assignment operator. Addition or concatenation is possible. See the addition operator for more details.

Subtraction assignment

The subtraction assignment operator subtracts the value of the right operand from a variable and assigns the result to the variable. See the subtraction operator for more details.

Multiplication assignment

The multiplication assignment operator multiplies a variable by the value of the right operand and assigns the result to the variable. See the multiplication operator for more details.

Division assignment

The division assignment operator divides a variable by the value of the right operand and assigns the result to the variable. See the division operator for more details.

Remainder assignment

The remainder assignment operator divides a variable by the value of the right operand and assigns the remainder to the variable. See the remainder operator for more details.

Exponentiation assignment

This is an experimental technology, part of the ECMAScript 2016 (ES7) proposal. Because this technology's specification has not stabilized, check the compatibility table for usage in various browsers. Also note that the syntax and behavior of an experimental technology is subject to change in future version of browsers as the spec changes.

The exponentiation assignment operator evaluates to the result of raising first operand to the power second operand. See the exponentiation operator for more details.

Left shift assignment

The left shift assignment operator moves the specified amount of bits to the left and assigns the result to the variable. See the left shift operator for more details.

Right shift assignment

The right shift assignment operator moves the specified amount of bits to the right and assigns the result to the variable. See the right shift operator for more details.

Unsigned right shift assignment

The unsigned right shift assignment operator moves the specified amount of bits to the right and assigns the result to the variable. See the unsigned right shift operator for more details.

Bitwise AND assignment

The bitwise AND assignment operator uses the binary representation of both operands, does a bitwise AND operation on them and assigns the result to the variable. See the bitwise AND operator for more details.

Bitwise XOR assignment

The bitwise XOR assignment operator uses the binary representation of both operands, does a bitwise XOR operation on them and assigns the result to the variable. See the bitwise XOR operator for more details.

Bitwise OR assignment

The bitwise OR assignment operator uses the binary representation of both operands, does a bitwise OR operation on them and assigns the result to the variable. See the bitwise OR operator for more details.

Left operand with another assignment operator

In unusual situations, the assignment operator (e.g. x += y ) is not identical to the meaning expression (here x = x + y ). When the left operand of an assignment operator itself contains an assignment operator, the left operand is evaluated only once. For example:

Specifications

Browser compatibility.

  • Arithmetic operators

Document Tags and Contributors

  • JavaScript basics
  • JavaScript first steps
  • JavaScript building blocks
  • Introducing JavaScript objects
  • Introduction
  • Grammar and types
  • Control flow and error handling
  • Loops and iteration
  • Expressions and operators
  • Numbers and dates
  • Text formatting
  • Regular expressions
  • Indexed collections
  • Keyed collections
  • Working with objects
  • Details of the object model
  • Iterators and generators
  • Meta programming
  • A re-introduction to JavaScript
  • JavaScript data structures
  • Equality comparisons and sameness
  • Inheritance and the prototype chain
  • Strict mode
  • JavaScript typed arrays
  • Memory Management
  • Concurrency model and Event Loop
  • References:
  • ArrayBuffer
  • AsyncFunction
  • Float32Array
  • Float64Array
  • GeneratorFunction
  • InternalError
  • Intl.Collator
  • Intl.DateTimeFormat
  • Intl.NumberFormat
  • ParallelArray
  • ReferenceError
  • SIMD.Bool16x8
  • SIMD.Bool32x4
  • SIMD.Bool64x2
  • SIMD.Bool8x16
  • SIMD.Float32x4
  • SIMD.Float64x2
  • SIMD.Int16x8
  • SIMD.Int32x4
  • SIMD.Int8x16
  • SIMD.Uint16x8
  • SIMD.Uint32x4
  • SIMD.Uint8x16
  • SharedArrayBuffer
  • StopIteration
  • SyntaxError
  • Uint16Array
  • Uint32Array
  • Uint8ClampedArray
  • WebAssembly
  • decodeURI()
  • decodeURIComponent()
  • encodeURI()
  • encodeURIComponent()
  • parseFloat()
  • Array comprehensions
  • Bitwise operators
  • Comma operator
  • Comparison operators
  • Conditional (ternary) Operator
  • Destructuring assignment
  • Expression closures
  • Generator comprehensions
  • Grouping operator
  • Legacy generator function expression
  • Logical Operators
  • Object initializer
  • Operator precedence
  • Property accessors
  • Spread syntax
  • async function expression
  • class expression
  • delete operator
  • function expression
  • function* expression
  • in operator
  • new operator
  • void operator
  • Legacy generator function
  • async function
  • for each...in
  • function declaration
  • try...catch
  • Arguments object
  • Arrow functions
  • Default parameters
  • Method definitions
  • Rest parameters
  • constructor
  • element loaded from a different domain for which you violated the same-origin policy.">Error: Permission denied to access property "x"
  • InternalError: too much recursion
  • RangeError: argument is not a valid code point
  • RangeError: invalid array length
  • RangeError: invalid date
  • RangeError: precision is out of range
  • RangeError: radix must be an integer
  • RangeError: repeat count must be less than infinity
  • RangeError: repeat count must be non-negative
  • ReferenceError: "x" is not defined
  • ReferenceError: assignment to undeclared variable "x"
  • ReferenceError: deprecated caller or arguments usage
  • ReferenceError: invalid assignment left-hand side
  • ReferenceError: reference to undefined property "x"
  • SyntaxError: "0"-prefixed octal literals and octal escape seq. are deprecated
  • SyntaxError: "use strict" not allowed in function with non-simple parameters
  • SyntaxError: "x" is a reserved identifier
  • SyntaxError: JSON.parse: bad parsing
  • SyntaxError: Malformed formal parameter
  • SyntaxError: Unexpected token
  • SyntaxError: Using //@ to indicate sourceURL pragmas is deprecated. Use //# instead
  • SyntaxError: a declaration in the head of a for-of loop can't have an initializer
  • SyntaxError: applying the 'delete' operator to an unqualified name is deprecated
  • SyntaxError: for-in loop head declarations may not have initializers
  • SyntaxError: function statement requires a name
  • SyntaxError: identifier starts immediately after numeric literal
  • SyntaxError: illegal character
  • SyntaxError: invalid regular expression flag "x"
  • SyntaxError: missing ) after argument list
  • SyntaxError: missing ) after condition
  • SyntaxError: missing : after property id
  • SyntaxError: missing ; before statement
  • SyntaxError: missing = in const declaration
  • SyntaxError: missing ] after element list
  • SyntaxError: missing formal parameter
  • SyntaxError: missing name after . operator
  • SyntaxError: missing variable name
  • SyntaxError: missing } after function body
  • SyntaxError: missing } after property list
  • SyntaxError: redeclaration of formal parameter "x"
  • SyntaxError: return not in function
  • SyntaxError: test for equality (==) mistyped as assignment (=)?
  • SyntaxError: unterminated string literal
  • TypeError: "x" has no properties
  • TypeError: "x" is (not) "y"
  • TypeError: "x" is not a constructor
  • TypeError: "x" is not a function
  • TypeError: "x" is not a non-null object
  • TypeError: "x" is read-only
  • TypeError: More arguments needed
  • TypeError: can't access dead object
  • TypeError: can't define property "x": "obj" is not extensible
  • TypeError: can't redefine non-configurable property "x"
  • TypeError: cyclic object value
  • TypeError: invalid 'in' operand "x"
  • TypeError: invalid Array.prototype.sort argument
  • TypeError: invalid arguments
  • TypeError: invalid assignment to const "x"
  • TypeError: property "x" is non-configurable and can't be deleted
  • TypeError: setting getter-only property "x"
  • TypeError: variable "x" redeclares argument
  • URIError: malformed URI sequence
  • Warning: -file- is being assigned a //# sourceMappingURL, but already has one
  • Warning: 08/09 is not a legal ECMA-262 octal constant
  • Warning: Date.prototype.toLocaleFormat is deprecated
  • Warning: JavaScript 1.6's for-each-in loops are deprecated
  • Warning: String.x is deprecated; use String.prototype.x instead
  • Warning: expression closures are deprecated
  • Warning: unreachable code after return statement
  • JavaScript technologies overview
  • Lexical grammar
  • Enumerability and ownership of properties
  • Iteration protocols
  • Transitioning to strict mode
  • Template literals
  • Deprecated features
  • ECMAScript 2015 support in Mozilla
  • ECMAScript 5 support in Mozilla
  • ECMAScript Next support in Mozilla
  • Firefox JavaScript changelog
  • New in JavaScript 1.1
  • New in JavaScript 1.2
  • New in JavaScript 1.3
  • New in JavaScript 1.4
  • New in JavaScript 1.5
  • New in JavaScript 1.6
  • New in JavaScript 1.7
  • New in JavaScript 1.8
  • New in JavaScript 1.8.1
  • New in JavaScript 1.8.5
  • Documentation:
  • All pages index
  • Methods index
  • Properties index
  • Pages tagged "JavaScript"
  • JavaScript doc status
  • The MDN project

CProgramming Tutorial

  • C Programming Tutorial
  • C - Overview
  • C - Features
  • C - History
  • C - Environment Setup
  • C - Program Structure
  • C - Hello World
  • C - Compilation Process
  • C - Comments
  • C - Keywords
  • C - Identifiers
  • C - User Input
  • C - Basic Syntax
  • C - Data Types
  • C - Variables
  • C - Integer Promotions
  • C - Type Conversion
  • C - Constants
  • C - Literals
  • C - Escape sequences
  • C - Format Specifiers
  • C - Storage Classes
  • C - Operators
  • C - Decision Making
  • C - if statement
  • C - if...else statement
  • C - nested if statements
  • C - switch statement
  • C - nested switch statements
  • C - While loop
  • C - For loop
  • C - Do...while loop
  • C - Nested loop
  • C - Infinite loop
  • C - Break Statement
  • C - Continue Statement
  • C - goto Statement
  • C - Functions
  • C - Main Functions
  • C - Return Statement
  • C - Recursion
  • C - Scope Rules
  • C - Properties of Array
  • C - Multi-Dimensional Arrays
  • C - Passing Arrays to Function
  • C - Return Array from Function
  • C - Variable Length Arrays
  • C - Pointers
  • C - Pointer Arithmetics
  • C - Passing Pointers to Functions
  • C - Strings
  • C - Array of Strings
  • C - Structures
  • C - Structures and Functions
  • C - Arrays of Structures
  • C - Pointers to Structures
  • C - Self-Referential Structures
  • C - Nested Structures
  • C - Bit Fields
  • C - Typedef
  • C - Input & Output
  • C - File I/O
  • C - Preprocessors
  • C - Header Files
  • C - Type Casting
  • C - Error Handling
  • C - Variable Arguments
  • C - Memory Management
  • C - Command Line Arguments
  • C Programming Resources
  • C - Questions & Answers
  • C - Quick Guide
  • C - Useful Resources
  • C - Discussion
  • Selected Reading
  • UPSC IAS Exams Notes
  • Developer's Best Practices
  • Questions and Answers
  • Effective Resume Writing
  • HR Interview Questions
  • Computer Glossary

Assignment Operators in C

In C, the assignment operator stores a certain value in an already declared variable. A variable in C can be assigned the value in the form of a literal, another variable or an expression. The value to be assigned forms the right hand operand, whereas the variable to be assigned should be the operand to the left of = symbol, which is defined as a simple assignment operator in C. In addition, C has several augmented assignment operators.

The following table lists the assignment operators supported by the C language −

Simple assignment operator (=)

The = operator is the most frequently used operator in C. As per ANSI C standard, all the variables must be declared in the beginning. Variable declaration after the first processing statement is not allowed. You can declare a variable to be assigned a value later in the code, or you can initialize it at the time of declaration.

You can use a literal, another variable or an expression in the assignment statement.

Once a variable of a certain type is declared, it cannot be assigned a value of any other type. In such a case the C compiler reports a type mismatch error.

In C, the expressions that refer to a memory location are called "lvalue" expressions. A lvalue may appear as either the left-hand or right-hand side of an assignment.

On the other hand, the term rvalue refers to a data value that is stored at some address in memory. A rvalue is an expression that cannot have a value assigned to it which means an rvalue may appear on the right-hand side but not on the left-hand side of an assignment.

Variables are lvalues and so they may appear on the left-hand side of an assignment. Numeric literals are rvalues and so they may not be assigned and cannot appear on the left-hand side. Take a look at the following valid and invalid statements −

Augmented assignment operators

In addition to the = operator, C allows you to combine arithmetic and bitwise operators with the = symbol to form augmented or compound assignment operator. The augmented operators offer a convenient shortcut for combining arithmetic or bitwise operation with assignment.

For example, the expression a+=b has the same effect of performing a+b first and then assigning the result back to the variable a.

Similarly, the expression a<<=b has the same effect of performing a<<b first and then assigning the result back to the variable a.

Here is a C program that demonstrates the use of assignment operators in C:

When you compile and execute the above program, it produces the following result −

Java Tutorial

Java methods, java classes, java file handling, java how to, java reference, java examples, java operators.

Operators are used to perform operations on variables and values.

In the example below, we use the + operator to add together two values:

Try it Yourself »

Although the + operator is often used to add together two values, like in the example above, it can also be used to add together a variable and a value, or a variable and another variable:

Java divides the operators into the following groups:

  • Arithmetic operators
  • Assignment operators
  • Comparison operators
  • Logical operators
  • Bitwise operators

Arithmetic Operators

Arithmetic operators are used to perform common mathematical operations.

Advertisement

Java Assignment Operators

Assignment operators are used to assign values to variables.

In the example below, we use the assignment operator ( = ) to assign the value 10 to a variable called x :

The addition assignment operator ( += ) adds a value to a variable:

A list of all assignment operators:

Java Comparison Operators

Comparison operators are used to compare two values (or variables). This is important in programming, because it helps us to find answers and make decisions.

The return value of a comparison is either true or false . These values are known as Boolean values , and you will learn more about them in the Booleans and If..Else chapter.

In the following example, we use the greater than operator ( > ) to find out if 5 is greater than 3:

Java Logical Operators

You can also test for true or false values with logical operators.

Logical operators are used to determine the logic between variables or values:

Java Bitwise Operators

Bitwise operators are used to perform binary logic with the bits of an integer or long integer.

Note: The Bitwise examples above use 4-bit unsigned examples, but Java uses 32-bit signed integers and 64-bit signed long integers. Because of this, in Java, ~5 will not return 10. It will return -6. ~00000000000000000000000000000101 will return 11111111111111111111111111111010

In Java, 9 >> 1 will not return 12. It will return 4. 00000000000000000000000000001001 >> 1 will return 00000000000000000000000000000100

Test Yourself With Exercises

Multiply 10 with 5 , and print the result.

Start the Exercise

Get Certified

COLOR PICKER

colorpicker

Contact Sales

If you want to use W3Schools services as an educational institution, team or enterprise, send us an e-mail: [email protected]

Report Error

If you want to report an error, or if you want to make a suggestion, send us an e-mail: [email protected]

Top Tutorials

Top references, top examples, get certified.

Learn Java practically and Get Certified .

Popular Tutorials

Popular examples, reference materials, learn java interactively, java introduction.

  • Get Started With Java
  • Your First Java Program
  • Java Comments

Java Fundamentals

  • Java Variables and Literals
  • Java Data Types (Primitive)

Java Operators

  • Java Basic Input and Output
  • Java Expressions, Statements and Blocks

Java Flow Control

  • Java if...else Statement

Java Ternary Operator

  • Java for Loop
  • Java for-each Loop
  • Java while and do...while Loop
  • Java break Statement
  • Java continue Statement
  • Java switch Statement
  • Java Arrays
  • Java Multidimensional Arrays
  • Java Copy Arrays

Java OOP(I)

  • Java Class and Objects
  • Java Methods
  • Java Method Overloading
  • Java Constructors
  • Java Static Keyword
  • Java Strings
  • Java Access Modifiers
  • Java this Keyword
  • Java final keyword
  • Java Recursion

Java instanceof Operator

Java OOP(II)

  • Java Inheritance
  • Java Method Overriding
  • Java Abstract Class and Abstract Methods
  • Java Interface
  • Java Polymorphism
  • Java Encapsulation

Java OOP(III)

  • Java Nested and Inner Class
  • Java Nested Static Class
  • Java Anonymous Class
  • Java Singleton Class
  • Java enum Constructor
  • Java enum Strings
  • Java Reflection
  • Java Package
  • Java Exception Handling
  • Java Exceptions
  • Java try...catch
  • Java throw and throws
  • Java catch Multiple Exceptions
  • Java try-with-resources
  • Java Annotations
  • Java Annotation Types
  • Java Logging
  • Java Assertions
  • Java Collections Framework
  • Java Collection Interface
  • Java ArrayList
  • Java Vector
  • Java Stack Class
  • Java Queue Interface
  • Java PriorityQueue
  • Java Deque Interface
  • Java LinkedList
  • Java ArrayDeque
  • Java BlockingQueue
  • Java ArrayBlockingQueue
  • Java LinkedBlockingQueue
  • Java Map Interface
  • Java HashMap
  • Java LinkedHashMap
  • Java WeakHashMap
  • Java EnumMap
  • Java SortedMap Interface
  • Java NavigableMap Interface
  • Java TreeMap
  • Java ConcurrentMap Interface
  • Java ConcurrentHashMap
  • Java Set Interface
  • Java HashSet Class
  • Java EnumSet
  • Java LinkedHashSet
  • Java SortedSet Interface
  • Java NavigableSet Interface
  • Java TreeSet
  • Java Algorithms
  • Java Iterator Interface
  • Java ListIterator Interface

Java I/o Streams

  • Java I/O Streams
  • Java InputStream Class
  • Java OutputStream Class
  • Java FileInputStream Class
  • Java FileOutputStream Class
  • Java ByteArrayInputStream Class
  • Java ByteArrayOutputStream Class
  • Java ObjectInputStream Class
  • Java ObjectOutputStream Class
  • Java BufferedInputStream Class
  • Java BufferedOutputStream Class
  • Java PrintStream Class

Java Reader/Writer

  • Java File Class
  • Java Reader Class
  • Java Writer Class
  • Java InputStreamReader Class
  • Java OutputStreamWriter Class
  • Java FileReader Class
  • Java FileWriter Class
  • Java BufferedReader
  • Java BufferedWriter Class
  • Java StringReader Class
  • Java StringWriter Class
  • Java PrintWriter Class

Additional Topics

  • Java Keywords and Identifiers

Java Operator Precedence

Java Bitwise and Shift Operators

  • Java Scanner Class
  • Java Type Casting
  • Java Wrapper Class
  • Java autoboxing and unboxing
  • Java Lambda Expressions
  • Java Generics
  • Nested Loop in Java
  • Java Command-Line Arguments

Java Tutorials

  • Java Math IEEEremainder()

Operators are symbols that perform operations on variables and values. For example, + is an operator used for addition, while * is also an operator used for multiplication.

Operators in Java can be classified into 5 types:

  • Arithmetic Operators
  • Assignment Operators
  • Relational Operators
  • Logical Operators
  • Unary Operators
  • Bitwise Operators

1. Java Arithmetic Operators

Arithmetic operators are used to perform arithmetic operations on variables and data. For example,

Here, the + operator is used to add two variables a and b . Similarly, there are various other arithmetic operators in Java.

Example 1: Arithmetic Operators

In the above example, we have used + , - , and * operators to compute addition, subtraction, and multiplication operations.

/ Division Operator

Note the operation, a / b in our program. The / operator is the division operator.

If we use the division operator with two integers, then the resulting quotient will also be an integer. And, if one of the operands is a floating-point number, we will get the result will also be in floating-point.

% Modulo Operator

The modulo operator % computes the remainder. When a = 7 is divided by b = 4 , the remainder is 3 .

Note : The % operator is mainly used with integers.

2. Java Assignment Operators

Assignment operators are used in Java to assign values to variables. For example,

Here, = is the assignment operator. It assigns the value on its right to the variable on its left. That is, 5 is assigned to the variable age .

Let's see some more assignment operators available in Java.

Example 2: Assignment Operators

3. java relational operators.

Relational operators are used to check the relationship between two operands. For example,

Here, < operator is the relational operator. It checks if a is less than b or not.

It returns either true or false .

Example 3: Relational Operators

Note : Relational operators are used in decision making and loops.

4. Java Logical Operators

Logical operators are used to check whether an expression is true or false . They are used in decision making.

Example 4: Logical Operators

Working of Program

  • (5 > 3) && (8 > 5) returns true because both (5 > 3) and (8 > 5) are true .
  • (5 > 3) && (8 < 5) returns false because the expression (8 < 5) is false .
  • (5 < 3) || (8 > 5) returns true because the expression (8 > 5) is true .
  • (5 > 3) || (8 < 5) returns true because the expression (5 > 3) is true .
  • (5 < 3) || (8 < 5) returns false because both (5 < 3) and (8 < 5) are false .
  • !(5 == 3) returns true because 5 == 3 is false .
  • !(5 > 3) returns false because 5 > 3 is true .

5. Java Unary Operators

Unary operators are used with only one operand. For example, ++ is a unary operator that increases the value of a variable by 1 . That is, ++5 will return 6 .

Different types of unary operators are:

  • Increment and Decrement Operators

Java also provides increment and decrement operators: ++ and -- respectively. ++ increases the value of the operand by 1 , while -- decrease it by 1 . For example,

Here, the value of num gets increased to 6 from its initial value of 5 .

Example 5: Increment and Decrement Operators

In the above program, we have used the ++ and -- operator as prefixes (++a, --b) . We can also use these operators as postfix (a++, b++) .

There is a slight difference when these operators are used as prefix versus when they are used as a postfix.

To learn more about these operators, visit increment and decrement operators .

6. Java Bitwise Operators

Bitwise operators in Java are used to perform operations on individual bits. For example,

Here, ~ is a bitwise operator. It inverts the value of each bit ( 0 to 1 and 1 to 0 ).

The various bitwise operators present in Java are:

These operators are not generally used in Java. To learn more, visit Java Bitwise and Bit Shift Operators .

Other operators

Besides these operators, there are other additional operators in Java.

The instanceof operator checks whether an object is an instanceof a particular class. For example,

Here, str is an instance of the String class. Hence, the instanceof operator returns true . To learn more, visit Java instanceof .

The ternary operator (conditional operator) is shorthand for the if-then-else statement. For example,

Here's how it works.

  • If the Expression is true , expression1 is assigned to the variable .
  • If the Expression is false , expression2 is assigned to the variable .

Let's see an example of a ternary operator.

In the above example, we have used the ternary operator to check if the year is a leap year or not. To learn more, visit the Java ternary operator .

Now that you know about Java operators, it's time to know about the order in which operators are evaluated. To learn more, visit Java Operator Precedence .

Table of Contents

  • Introduction
  • Java Arithmetic Operators
  • Java Assignment Operators
  • Java Relational Operators
  • Java Logical Operators
  • Java Unary Operators
  • Java Bitwise Operators

Sorry about that.

Related Tutorials

Java Tutorial

This browser is no longer supported.

Upgrade to Microsoft Edge to take advantage of the latest features, security updates, and technical support.

Assignment operators (C# reference)

  • 11 contributors

The assignment operator = assigns the value of its right-hand operand to a variable, a property , or an indexer element given by its left-hand operand. The result of an assignment expression is the value assigned to the left-hand operand. The type of the right-hand operand must be the same as the type of the left-hand operand or implicitly convertible to it.

The assignment operator = is right-associative, that is, an expression of the form

is evaluated as

The following example demonstrates the usage of the assignment operator with a local variable, a property, and an indexer element as its left-hand operand:

The left-hand operand of an assignment receives the value of the right-hand operand. When the operands are of value types , assignment copies the contents of the right-hand operand. When the operands are of reference types , assignment copies the reference to the object.

This is called value assignment : the value is assigned.

ref assignment

Ref assignment = ref makes its left-hand operand an alias to the right-hand operand, as the following example demonstrates:

In the preceding example, the local reference variable arrayElement is initialized as an alias to the first array element. Then, it's ref reassigned to refer to the last array element. As it's an alias, when you update its value with an ordinary assignment operator = , the corresponding array element is also updated.

The left-hand operand of ref assignment can be a local reference variable , a ref field , and a ref , out , or in method parameter. Both operands must be of the same type.

Compound assignment

For a binary operator op , a compound assignment expression of the form

is equivalent to

except that x is only evaluated once.

Compound assignment is supported by arithmetic , Boolean logical , and bitwise logical and shift operators.

Null-coalescing assignment

You can use the null-coalescing assignment operator ??= to assign the value of its right-hand operand to its left-hand operand only if the left-hand operand evaluates to null . For more information, see the ?? and ??= operators article.

Operator overloadability

A user-defined type can't overload the assignment operator. However, a user-defined type can define an implicit conversion to another type. That way, the value of a user-defined type can be assigned to a variable, a property, or an indexer element of another type. For more information, see User-defined conversion operators .

A user-defined type can't explicitly overload a compound assignment operator. However, if a user-defined type overloads a binary operator op , the op= operator, if it exists, is also implicitly overloaded.

C# language specification

For more information, see the Assignment operators section of the C# language specification .

  • C# operators and expressions
  • ref keyword
  • Use compound assignment (style rules IDE0054 and IDE0074)

Coming soon: Throughout 2024 we will be phasing out GitHub Issues as the feedback mechanism for content and replacing it with a new feedback system. For more information see: https://aka.ms/ContentUserFeedback .

Submit and view feedback for

Additional resources

Javatpoint Logo

Java Tutorial

Control statements, java object class, java inheritance, java polymorphism, java abstraction, java encapsulation, java oops misc.

JavaTpoint

  • Send your Feedback to [email protected]

Help Others, Please Share

facebook

Learn Latest Tutorials

Splunk tutorial

Transact-SQL

Tumblr tutorial

Reinforcement Learning

R Programming tutorial

R Programming

RxJS tutorial

React Native

Python Design Patterns

Python Design Patterns

Python Pillow tutorial

Python Pillow

Python Turtle tutorial

Python Turtle

Keras tutorial

Preparation

Aptitude

Verbal Ability

Interview Questions

Interview Questions

Company Interview Questions

Company Questions

Trending Technologies

Artificial Intelligence

Artificial Intelligence

AWS Tutorial

Cloud Computing

Hadoop tutorial

Data Science

Angular 7 Tutorial

Machine Learning

DevOps Tutorial

B.Tech / MCA

DBMS tutorial

Data Structures

DAA tutorial

Operating System

Computer Network tutorial

Computer Network

Compiler Design tutorial

Compiler Design

Computer Organization and Architecture

Computer Organization

Discrete Mathematics Tutorial

Discrete Mathematics

Ethical Hacking

Ethical Hacking

Computer Graphics Tutorial

Computer Graphics

Software Engineering

Software Engineering

html tutorial

Web Technology

Cyber Security tutorial

Cyber Security

Automata Tutorial

C Programming

C++ tutorial

Control System

Data Mining Tutorial

Data Mining

Data Warehouse Tutorial

Data Warehouse

RSS Feed

USFWS firefighters discuss operations while on a suppression assignment

Four firefighters stand next to a helicopter talking. The background is smoky with large trees.

  • Thumbnail (130 x 130) 19.5K
  • Medium (650 x 434) 217.5K
  • Large (1300 x 869) 697.3K
  • Extra Large (2600 x 1738) 2.3M
  • Original (2992 x 2000) 3.3M

USFWS/USFWS

You are exiting the U.S. Fish and Wildlife Service website

You are being directed to

We do not guarantee that the websites we link to comply with Section 508 (Accessibility Requirements) of the Rehabilitation Act. Links also do not constitute endorsement, recommendation, or favoring by the U.S. Fish and Wildlife Service.

Column generation based solution for bi-objective gate assignment problems

  • Original Article
  • Published: 29 April 2024

Cite this article

assignment of operators

  • Gülesin Sena Daş 1 , 2 &
  • Fatma Gzara 3  

In this paper, we present a column generation-based algorithm for the bi-objective gate assignment problem (GAP) to generate gate schedules that minimize squared slack time at the gates while satisfying passenger expectations by minimizing their walking distance. While most of the literature focuses on heuristic or metaheuristic solutions for the bi-objective GAP, we propose flow-based and column-based models that lead to exact or near optimal solution approaches. The developed algorithm calculates a set of solutions to approximate the Pareto front. The algorithm is applied to the over-constrained GAP where gates are a limited resource and it is not possible to serve every flight using a gate. Our test cases are based on real data from an international airport and include various instances with flight-to-gate ratios between 23.9 and 34.7. Numerical results reveal that a set of solutions representing a compromise between the passenger-oriented and robustness-oriented objectives may be obtained with a tight optimality gap and within reasonable computational time even for these difficult problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Russian Federation)

Instant access to the full article PDF.

Rent this article via DeepDyve

Institutional subscriptions

assignment of operators

Barnhart C, Boland NL, Clarke LW, Johnson EL, Nemhauser GL, Shenoi RG (1998) Flight string models for aircraft fleeting and routing. Transp Sci 32(3):208–220

Article   Google Scholar  

Benlic U, Burke EK, Woodward JR (2017) Breakout local search for the multi-objective gate allocation problem. Comput Oper Res 78:80–93

Article   MathSciNet   Google Scholar  

Bihr RA (1990) A conceptual solution to the aircraft gate assignment problem using 0, 1 linear programming. Comput Ind Eng 19(1):280–284

Braaksma JP, Shortreed JH (1971) Improving airport gate usage with critical path. Transp Eng J ASCE 97(2):187–203

Cai X, Sun W, Misir M, Tan KC, Li X, Xu T, Fan Z (2019) A bi-objective constrained robust gate assignment problem: formulation, instances and algorithm. IEEE Trans Cybern 51(9):4488–4500

Cecen RK (2021) Multi-objective optimization model for airport gate assignment problem. Aircraft Eng Aerosp Technol 93:311

Cheng Y (1997) A knowledge-based airport gate assignment system integrated with mathematical programming. Comput Ind Eng 32(4):837–852

Daş GS (2017) New multi objective models for the gate assignment problem. Comput Ind Eng 109:347–356

Daş GS, Gzara F, Stützle T (2020) A review on airport gate assignment problems: single versus multi objective approaches. Omega 92:102146

Dell’Orco M, Marinelli M, Altieri MG (2017) Solving the gate assignment problem through the fuzzy bee colony optimization. Transp Res Part C Emerg Technol 80:424–438

Deng W, Zhao H, Yang X, Xiong J, Sun M, Li B (2017) Study on an improved adaptive PSO algorithm for solving multi-objective gate assignment. Appl Soft Comput 59:288–302

Diepen G, Van Den Akker JM, Hoogeveen JA, Smeltink JW (2012) Finding a robust assignment of flights to gates at Amsterdam airport Schiphol. J Sched 15(6):703–715

Ding H, Lim A, Rodrigues B, Zhu Y (2005) The over-constrained airport gate assignment problem. Comput Oper Res 32(7):1867–1880

Dorndorf U, Jaehn F, Pesch E (2008) Modelling robust flight-gate scheduling as a clique partitioning problem. Transp Sci 42(3):292–301

Drexl A, Nikulin Y (2008) Multicriteria airport gate assignment and pareto simulated annealing. IIE Trans 40(4):385–397

Ehrgott M (2005) Multicriteria optimization, vol 491. Springer, New York

Google Scholar  

Ehrgott M, Gandibleux X, Przybylski A (2016) Exact methods for multi-objective combinatorial optimisation. In: Figueira J, Greco S, Ehrgott M (eds) Multiple criteria decision analysis, vol 233. Springer, New York, pp 817–850

Chapter   Google Scholar  

Emmerich MT, Deutz AH (2018) A tutorial on multiobjective optimization: fundamentals and evolutionary methods. Nat Comput 17:585–609

Glize E, Jozefowiez N, Ngueveu SU (2018) An exact column generation-based algorithm for bi-objective vehicle routing problems. In: Mahjoub A, Lee J, Rinaldi G (eds) Combinatorial optimization. ISCO 2018, vol 10856. LNCS. Springer, Cham, pp 208–218

Grönkvist M (2006) Accelerating column generation for aircraft scheduling using constraint propagation. Comput Oper Res 33(10):2918–2934

Haghani A, Chen M-C (1998) Optimizing gate assignments at airport terminals. Transp Res Part A Policy Pract 32(6):437–454

Hu XB, Di Paolo E (2009) An efficient genetic algorithm with uniform crossover for the multi-objective airport gate assignment problem. Stud Comput Intell 171:71–89

Kaliszewski I, Miroforidis J, Stańczak JT (2017) Multiobjective optimization in the airport gate assignment problem, exact versus evolutionary multiobjective optimization. Comput Sci 18(1):41

Kaliszewski I, Miroforidis J (2019) Lower and upper bounds for the general multiobjective optimization problem. In: AIP conference proceedings, vol 2070. AIP Publishing LLC, p 020038

Karsu Ö, Azizoğlu M, Alanlı K (2021) Exact and heuristic solution approaches for the airport gate assignment problem. Omega 103:102422

Kim SH, Feron E, Clarke JP (2013) Gate assignment to minimize passenger transit time and aircraft taxi time. J Guid Control Dyn 36(2):467–475

Kim SH, Feron E, Clarke JP, Marzuoli A, Delahaye D (2017) Airport gate scheduling for passengers, aircraft, and operation. J Air Transp 25:1–6

Li Y, Clarke JP, Dey SS (2021) Using submodularity within column generation to solve the flight-to-gate assignment problem. Transp Res Part C Emerg Technol 129:103217

Lim A, Wang F (2005) Robust airport gate assignment. In: 17th IEEE international conference on tools with artificial intelligence, 2005. ICTA I . IEEE, pp 74–81

Lin KM, Ehrgott M, Raith A (2017) Integrating column generation in a method to compute a discrete representation of the nondominated set of multi-objective linear programmes. 4OR 15(4):331–357

Liu S, Chen WH, Liu J (2016) Robust assignment of airport gates with operational safety constraints. Int J Autom Comput 13(1):31–41

Maharjan B, Matis TI (2012) Multi-commodity flow network model of the flight gate assignment problem. Comput Ind Eng 63(4):1135–1144

Mangoubi RS, Mathaisel DFX (1985) Optimizing gate assignments at airport terminals. Transp Sci 19(2):173–188

Mavrotas G, Florios K (2013) An improved version of the augmented ε constraint method (AUGMECON2) for finding the exact pareto set in multi-objective integer programming problems. Appl Math Comput 219(18):9652–9669

MathSciNet   Google Scholar  

Mokhtarimousavi S, Talebi D, Asgari H (2018) A nondominated sorting genetic algorithm approach for optimization of multi-objective airport gate assignment problem. Transp Res Rec 2672:1–12

Moradi S, Raith A, Ehrgott M (2015) A bi-objective column generation algorithm for the multi-commodity minimum cost flow problem. Eur J Oper Res 244(2):369–378

Neuman UM, Atkin JA (2013) Airport gate assignment considering ground movement. In: International conference on computational logistics, pp 184–198

Nikulin Y, Drexl A (2010) Theoretical aspects of multicriteria flight gate scheduling: deterministic and fuzzy models. J Sched 13(3):261–280

Nourmohammadzadeh A, Voß S (2021) Robust multi-objective gate scheduling at hub airports considering flight delays: a hybrid metaheuristic approach. In: International conference on computational logistics. Springer, pp 594–610

Pintea C-M, Pop PC, Chira C, Dumitrescu D (2008) A hybrid ant-based system for gate assignment problem. In: Hybrid artificial intelligence systems, pp 273–280

Prem Kumar V, Bierlaire M (2014) Multi-objective airport gate assignment problem in planning and operations. J Adv Transp 48(7):902–926

Ruzika S, Wiecek MM (2005) Approximation methods in multiobjective programming. J Optim Theory Appl 126(3):473–501

Şeker M, Noyan N (2012) Stochastic optimization models for the airport gate assignment problem. Transp Res Part E Logist Transp Rev 48(2):438–459

Tang C-H, Wang W-C (2013) Airport gate assignments for airlinespecific gates. J Air Transp Manag 30:10–16

Xu J, Bailey G (2001) The airport gate assignment problem: mathematical model and a tabu search algorithm. In: Proceedings o f the 34th annual hawaii international conference on system sciences. IEEE

Yan S, Chang CM (1998) A network model for gate assignment. J Adv Transp 32(2):176–189

Yan S, Huo CM (2001) Optimization of multiple objective gate assignments. Transp Res Part A Policy Pract 35(5):413–432

Yildiz BC, Gzara F, Elhedhli S (2017) Airline crew pairing with fatigue: modeling and analysis. Transp Res Part C Emerg Technol 74:99–112

Yu C, Zhang D, Lau HYK (2016) MIP-based heuristics for solving robust gate assignment problems. Comput Ind Eng 93:171–191

Yu C, Zhang D, Lau HYK (2017) An adaptive large neighborhood search heuristic for solving a robust gate assignment problem. Expert Syst Appl 84:143–154

Yuan Y, Yan P, Zhao L (2020) Continuous time formulation and Lagrangian relaxation algorithm for the gate assignment problem. Math Probl Eng 2020:1–11

Download references

The first author is supported by Scientific and Technological Research Council of Turkey (TUBITAK) (Grant No. 1059B191700275) 2219 Post Doctoral Research Fellowship Program during her research at WAnOpt Lab, University of Waterloo.

Author information

Authors and affiliations.

Department of Industrial Engineering, Kırıkkale University, Kırıkkale, Turkey

Gülesin Sena Daş

Leicester Castle Business School, De Montfort University, Leicester, UK

Department of Management Science and Engineering, University of Waterloo, Waterloo, ON, Canada

Fatma Gzara

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Gülesin Sena Daş .

Additional information

Publisher's note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Daş, G.S., Gzara, F. Column generation based solution for bi-objective gate assignment problems. Math Meth Oper Res (2024). https://doi.org/10.1007/s00186-024-00856-1

Download citation

Received : 26 June 2022

Revised : 22 February 2024

Accepted : 03 March 2024

Published : 29 April 2024

DOI : https://doi.org/10.1007/s00186-024-00856-1

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Gate assignment problem
  • Multi-objective optimization
  • Column generation
  • Epsilon-constraint method
  • Find a journal
  • Publish with us
  • Track your research

IMAGES

  1. What are Operators in Java and its Types?

    assignment of operators

  2. PPT

    assignment of operators

  3. Assignment Operators in C

    assignment of operators

  4. PPT

    assignment of operators

  5. Operators and Types of Operators

    assignment of operators

  6. Operators In C Logicmojo

    assignment of operators

VIDEO

  1. ASSIGNMENT OPERATORS

  2. Assignment Operators in Typescript

  3. U 1 Assignment Operators, Relational Operators,Increment and Decrement Operators

  4. #11 Part 2 (Control statements, Looping statements, Popup boxes)

  5. Chapter 2

  6. Core

COMMENTS

  1. Assignment Operators in Programming

    Assignment operators are used in programming to assign values to variables. We use an assignment operator to store and update data within a program. They enable programmers to store data in variables and manipulate that data. The most common assignment operator is the equals sign (=), which assigns the value on the right side of the operator to ...

  2. Assignment operators

    for assignments to class type objects, the right operand could be an initializer list only when the assignment is defined by a user-defined assignment operator. removed user-defined assignment constraint. CWG 1538. C++11. E1 ={E2} was equivalent to E1 = T(E2) ( T is the type of E1 ), this introduced a C-style cast. it is equivalent to E1 = T{E2}

  3. Assignment operators

    The built-in assignment operators return the value of the object specified by the left operand after the assignment (and the arithmetic/logical operation in the case of compound assignment operators). The resultant type is the type of the left operand. The result of an assignment expression is always an l-value.

  4. Expressions and operators

    This chapter describes JavaScript's expressions and operators, including assignment, comparison, arithmetic, bitwise, logical, string, ternary and more. At a high level, an expression is a valid unit of code that resolves to a value. There are two types of expressions: those that have side effects (such as assigning values) and those that ...

  5. Assignment operators

    Assignment performs implicit conversion from the value of rhs to the type of lhs and then replaces the value in the object designated by lhs with the converted value of rhs . Assignment also returns the same value as what was stored in lhs (so that expressions such as a = b = c are possible). The value category of the assignment operator is non ...

  6. JavaScript Assignment

    The Bitwise AND Assignment Operator does a bitwise AND operation on two operands and assigns the result to the the variable. Bitwise AND Assignment Example. let x = 10; x &= 5;

  7. Assignment operator (C++)

    Assignment operator (C++) In the C++ programming language, the assignment operator, =, is the operator used for assignment. Like most other operators in C++, it can be overloaded . The copy assignment operator, often just called the "assignment operator", is a special case of assignment operator where the source (right-hand side) and ...

  8. Assignment operators

    An assignment operator assigns a value to its left operand based on the value of its right operand.. Overview. The basic assignment operator is equal (=), which assigns the value of its right operand to its left operand.That is, x = y assigns the value of y to x.The other assignment operators are usually shorthand for standard operations, as shown in the following definitions and examples.

  9. Assignment (=)

    The assignment operator is completely different from the equals (=) sign used as syntactic separators in other locations, which include:Initializers of var, let, and const declarations; Default values of destructuring; Default parameters; Initializers of class fields; All these places accept an assignment expression on the right-hand side of the =, so if you have multiple equals signs chained ...

  10. C++ Assignment Operators

    Assignment Operators. Assignment operators are used to assign values to variables. In the example below, we use the assignment operator ( =) to assign the value 10 to a variable called x:

  11. Python's Assignment Operator: Write Robust Assignments

    The central component of an assignment statement is the assignment operator. This operator is represented by the = symbol, which separates two operands: A variable ; A value or an expression that evaluates to a concrete value; Operators are special symbols that perform mathematical, logical, and bitwise operations in a programming language.

  12. Operators in C

    An operator is a symbol that operates on a value or a variable. For example: + is an operator to perform addition. In this tutorial, you will learn about different C operators such as arithmetic, increment, assignment, relational, logical, etc. with the help of examples.

  13. Operator precedence

    This is because the assignment operator returns the value that is assigned. First, b is set to 5. Then the a is also set to 5 — the return value of b = 5, a.k.a. right operand of the assignment. As another example, the unique exponentiation operator has right-associativity, whereas other arithmetic operators have left-associativity.

  14. Assignment Operators in C

    Assignment Operators in C - In C, the assignment operator stores a certain value in an already declared variable. A variable in C can be assigned the value in the form of a literal, another variable or an expression. The value to be assigned forms the right hand operand, whereas the variable to be assigned should be the operan

  15. Java Operators

    Java Comparison Operators. Comparison operators are used to compare two values (or variables). This is important in programming, because it helps us to find answers and make decisions. The return value of a comparison is either true or false. These values are known as Boolean values, and you will learn more about them in the Booleans and If ...

  16. Java Operators: Arithmetic, Relational, Logical and more

    For example, + is an operator used for addition, while * is also an operator used for multiplication. Operators in Java can be classified into 5 types: Arithmetic Operators. Assignment Operators. Relational Operators. Logical Operators. Unary Operators. Bitwise Operators. 1.

  17. Assignment operators

    The assignment operator = is right-associative, that is, an expression of the form. a = b = c is evaluated as. a = (b = c) The following example demonstrates the usage of the assignment operator with a local variable, a property, and an indexer element as its left-hand operand:

  18. Types of Assignment Operators in Java

    Simple Assignment Operator (=) To assign a value to a variable, use the basic assignment operator (=). It is the most fundamental assignment operator in Java. It assigns the value on the right side of the operator to the variable on the left side. In the above example, the variable x is assigned the value 10.

  19. USFWS firefighters discuss operations while on a suppression assignment

    U.S. Fish and Wildlife Service firefighters discuss operations while on a wildfire suppression assignment. Subject tags. Fire management. Working with others to conserve, protect and enhance fish, wildlife, plants and their habitats for the continuing benefit of the American people.

  20. Column generation based solution for bi-objective gate assignment

    In this paper, we present a column generation-based algorithm for the bi-objective gate assignment problem (GAP) to generate gate schedules that minimize squared slack time at the gates while satisfying passenger expectations by minimizing their walking distance. While most of the literature focuses on heuristic or metaheuristic solutions for the bi-objective GAP, we propose flow-based and ...