The Peak Performance Center

The Peak Performance Center

The pursuit of performance excellence, critical thinking.

Critical Thinking header

Critical thinking refers to the process of actively analyzing, assessing, synthesizing, evaluating and reflecting on information gathered from observation, experience, or communication. It is thinking in a clear, logical, reasoned, and reflective manner to solve problems or make decisions. Basically, critical thinking is taking a hard look at something to understand what it really means.

Critical Thinkers

Critical thinkers do not simply accept all ideas, theories, and conclusions as facts. They have a mindset of questioning ideas and conclusions. They make reasoned judgments that are logical and well thought out by assessing the evidence that supports a specific theory or conclusion.

When presented with a new piece of new information, critical thinkers may ask questions such as;

“What information supports that?”

“How was this information obtained?”

“Who obtained the information?”

“How do we know the information is valid?”

“Why is it that way?”

“What makes it do that?”

“How do we know that?”

“Are there other possibilities?”

Critical Thinking

Combination of Analytical and Creative Thinking

Many people perceive critical thinking just as analytical thinking. However, critical thinking incorporates both analytical thinking and creative thinking. Critical thinking does involve breaking down information into parts and analyzing the parts in a logical, step-by-step manner. However, it also involves challenging consensus to formulate new creative ideas and generate innovative solutions. It is critical thinking that helps to evaluate and improve your creative ideas.

Critical Thinking Skills

Elements of Critical Thinking

Critical thinking involves:

  • Gathering relevant information
  • Evaluating information
  • Asking questions
  • Assessing bias or unsubstantiated assumptions
  • Making inferences from the information and filling in gaps
  • Using abstract ideas to interpret information
  • Formulating ideas
  • Weighing opinions
  • Reaching well-reasoned conclusions
  • Considering alternative possibilities
  • Testing conclusions
  • Verifying if evidence/argument support the conclusions

Developing Critical Thinking Skills

Critical thinking is considered a higher order thinking skills, such as analysis, synthesis, deduction, inference, reason, and evaluation. In order to demonstrate critical thinking, you would need to develop skills in;

Interpreting : understanding the significance or meaning of information

Analyzing : breaking information down into its parts

Connecting : making connections between related items or pieces of information.

Integrating : connecting and combining information to better understand the relationship between the information.

Evaluating : judging the value, credibility, or strength of something

Reasoning : creating an argument through logical steps

Deducing : forming a logical opinion about something based on the information or evidence that is available

Inferring : figuring something out through reasoning based on assumptions and ideas

Generating : producing new information, ideas, products, or ways of viewing things.

Blooms Taxonomy

Bloom’s Taxonomy Revised

Mind Mapping

Chunking Information

Brainstorming

evaluating meaning in critical thinking

Copyright © 2024 | WordPress Theme by MH Themes

web analytics

Critical Thinking and Evaluating Information

  • Introduction
  • Words Of Wisdom

What Is Critical Thinking?

Five simple strategies to sharpen your critical thinking, were critical thinking skills used in this video.

  • Critical Thinking and Reflective Judgement
  • Problem Solving Skills
  • Critical Reading
  • Critical Writing
  • Use the CRAAP Test
  • Evaluating Fake News
  • Explore Different Viewpoints
  • The Peer-Review Process
  • Critical ThinkingTutorials
  • Books on Critical Thinking
  • Explore More With These Links

Live Chat with a Librarian 24/7

Text a Librarian at 912-600-2782

If there was one life skill everyone on the planet needed, it was the ability to think with critical objectivity Henry David Throreau

Critical thinking is a complex process of deliberation that involves a wide range of skills and attitudes. It includes:

  • identifying other people's positions,  arguments and conclusions 
  • evaluating the evidence  for alternative points of view
  • weighing up the opposing arguments  and evidence fairly
  • being able to read between the lines,  seeing behind surfaces and identifying false or unfair assumptions
  • recognizing techniques  used to make certain positions more appealing than others, such as false logic and persuasive devices
  • reflecting on issues  in a structured way, bringing logic and insight to bear
  • drawing conclusions  about whether arguments are valid and justifiable, based on good evidence and sensible assumptions
  • presenting a point of view  in a structured, clear, well-reasoned way that convinces others

(Contrell, 2011)

Check Out More From This Source: 

Cover Art

A well-cultivated critical thinker:

  • raises vital questions and problems, formulating them clearly and precisely;
  • gathers and assesses relevant information, using abstract ideas to interpret it effectively  come to well-reasoned conclusions and solutions, testing them against relevant criteria and standards;
  • thinks openmindedly within alternative systems of thought, recognizing and assessing, as need be, their assumptions, implications, and practical consequences; and
  • communicates effectively with others in figuring out solutions to complex problems.

Critical thinking is, in short, self-directed, self-disciplined, self-monitored, and self-corrective thinking. It presupposes assent to rigorous standards of excellence and mindful command of their use. It entails effective communication and problem solving abilities and a commitment to overcome our native egocentrism and sociocentrism.  

(Taken from Richard Paul and Linda Elder,  The Miniature Guide to Critical Thinking Concepts and Tools,  Foundation for Critical Thinking Press, 2008)

Source: criticalthinking.org

Is the sky really blue? That might seem obvious. But sometimes things are more nuanced and complicated than you think. Here are five strategies to boost your critical thinking skills. Animated by Ana Stefaniak. Made in partnership with The Open University.

Video Source: BBC Ideas

Video Source: Dr. Bachyrycz

  • << Previous: Introduction
  • Next: Critical Thinking and Reflective Judgement >>
  • Last Updated: Mar 25, 2024 8:18 AM
  • URL: https://libguides.coastalpines.edu/thinkcritically

loading

How it works

For Business

Join Mind Tools

Article • 8 min read

Critical Thinking

Developing the right mindset and skills.

By the Mind Tools Content Team

We make hundreds of decisions every day and, whether we realize it or not, we're all critical thinkers.

We use critical thinking each time we weigh up our options, prioritize our responsibilities, or think about the likely effects of our actions. It's a crucial skill that helps us to cut out misinformation and make wise decisions. The trouble is, we're not always very good at it!

In this article, we'll explore the key skills that you need to develop your critical thinking skills, and how to adopt a critical thinking mindset, so that you can make well-informed decisions.

What Is Critical Thinking?

Critical thinking is the discipline of rigorously and skillfully using information, experience, observation, and reasoning to guide your decisions, actions, and beliefs. You'll need to actively question every step of your thinking process to do it well.

Collecting, analyzing and evaluating information is an important skill in life, and a highly valued asset in the workplace. People who score highly in critical thinking assessments are also rated by their managers as having good problem-solving skills, creativity, strong decision-making skills, and good overall performance. [1]

Key Critical Thinking Skills

Critical thinkers possess a set of key characteristics which help them to question information and their own thinking. Focus on the following areas to develop your critical thinking skills:

Being willing and able to explore alternative approaches and experimental ideas is crucial. Can you think through "what if" scenarios, create plausible options, and test out your theories? If not, you'll tend to write off ideas and options too soon, so you may miss the best answer to your situation.

To nurture your curiosity, stay up to date with facts and trends. You'll overlook important information if you allow yourself to become "blinkered," so always be open to new information.

But don't stop there! Look for opposing views or evidence to challenge your information, and seek clarification when things are unclear. This will help you to reassess your beliefs and make a well-informed decision later. Read our article, Opening Closed Minds , for more ways to stay receptive.

Logical Thinking

You must be skilled at reasoning and extending logic to come up with plausible options or outcomes.

It's also important to emphasize logic over emotion. Emotion can be motivating but it can also lead you to take hasty and unwise action, so control your emotions and be cautious in your judgments. Know when a conclusion is "fact" and when it is not. "Could-be-true" conclusions are based on assumptions and must be tested further. Read our article, Logical Fallacies , for help with this.

Use creative problem solving to balance cold logic. By thinking outside of the box you can identify new possible outcomes by using pieces of information that you already have.

Self-Awareness

Many of the decisions we make in life are subtly informed by our values and beliefs. These influences are called cognitive biases and it can be difficult to identify them in ourselves because they're often subconscious.

Practicing self-awareness will allow you to reflect on the beliefs you have and the choices you make. You'll then be better equipped to challenge your own thinking and make improved, unbiased decisions.

One particularly useful tool for critical thinking is the Ladder of Inference . It allows you to test and validate your thinking process, rather than jumping to poorly supported conclusions.

Developing a Critical Thinking Mindset

Combine the above skills with the right mindset so that you can make better decisions and adopt more effective courses of action. You can develop your critical thinking mindset by following this process:

Gather Information

First, collect data, opinions and facts on the issue that you need to solve. Draw on what you already know, and turn to new sources of information to help inform your understanding. Consider what gaps there are in your knowledge and seek to fill them. And look for information that challenges your assumptions and beliefs.

Be sure to verify the authority and authenticity of your sources. Not everything you read is true! Use this checklist to ensure that your information is valid:

  • Are your information sources trustworthy ? (For example, well-respected authors, trusted colleagues or peers, recognized industry publications, websites, blogs, etc.)
  • Is the information you have gathered up to date ?
  • Has the information received any direct criticism ?
  • Does the information have any errors or inaccuracies ?
  • Is there any evidence to support or corroborate the information you have gathered?
  • Is the information you have gathered subjective or biased in any way? (For example, is it based on opinion, rather than fact? Is any of the information you have gathered designed to promote a particular service or organization?)

If any information appears to be irrelevant or invalid, don't include it in your decision making. But don't omit information just because you disagree with it, or your final decision will be flawed and bias.

Now observe the information you have gathered, and interpret it. What are the key findings and main takeaways? What does the evidence point to? Start to build one or two possible arguments based on what you have found.

You'll need to look for the details within the mass of information, so use your powers of observation to identify any patterns or similarities. You can then analyze and extend these trends to make sensible predictions about the future.

To help you to sift through the multiple ideas and theories, it can be useful to group and order items according to their characteristics. From here, you can compare and contrast the different items. And once you've determined how similar or different things are from one another, Paired Comparison Analysis can help you to analyze them.

The final step involves challenging the information and rationalizing its arguments.

Apply the laws of reason (induction, deduction, analogy) to judge an argument and determine its merits. To do this, it's essential that you can determine the significance and validity of an argument to put it in the correct perspective. Take a look at our article, Rational Thinking , for more information about how to do this.

Once you have considered all of the arguments and options rationally, you can finally make an informed decision.

Afterward, take time to reflect on what you have learned and what you found challenging. Step back from the detail of your decision or problem, and look at the bigger picture. Record what you've learned from your observations and experience.

Critical thinking involves rigorously and skilfully using information, experience, observation, and reasoning to guide your decisions, actions and beliefs. It's a useful skill in the workplace and in life.

You'll need to be curious and creative to explore alternative possibilities, but rational to apply logic, and self-aware to identify when your beliefs could affect your decisions or actions.

You can demonstrate a high level of critical thinking by validating your information, analyzing its meaning, and finally evaluating the argument.

Critical Thinking Infographic

See Critical Thinking represented in our infographic: An Elementary Guide to Critical Thinking .

evaluating meaning in critical thinking

You've accessed 1 of your 2 free resources.

Get unlimited access

Discover more content

Visualization.

Imagining – and Achieving – Your Goals

How to Guides

How to Build Lasting Relationships

How to Build Relationships to Help You with your Networking skills

Add comment

Comments (1)

priyanka ghogare

evaluating meaning in critical thinking

Get 30% off your first year of Mind Tools

Great teams begin with empowered leaders. Our tools and resources offer the support to let you flourish into leadership. Join today!

Sign-up to our newsletter

Subscribing to the Mind Tools newsletter will keep you up-to-date with our latest updates and newest resources.

Subscribe now

Business Skills

Personal Development

Leadership and Management

Member Extras

Most Popular

Newest Releases

Article at2o1co

What Is Stakeholder Management?

Article a1lzwol

GE-McKinsey Matrix

Mind Tools Store

About Mind Tools Content

Discover something new today

Business reports.

Using the Right Format for Sharing Information

Making the Right Career Move

Choosing the Role That's Best for You

How Emotionally Intelligent Are You?

Boosting Your People Skills

Self-Assessment

What's Your Leadership Style?

Learn About the Strengths and Weaknesses of the Way You Like to Lead

Recommended for you

Behavioral economics.

Discover Key Ideas From Leading Thinkers in the Field of Business Behavioral Economics

Business Operations and Process Management

Strategy Tools

Customer Service

Business Ethics and Values

Handling Information and Data

Project Management

Knowledge Management

Self-Development and Goal Setting

Time Management

Presentation Skills

Learning Skills

Career Skills

Communication Skills

Negotiation, Persuasion and Influence

Working With Others

Difficult Conversations

Creativity Tools

Self-Management

Work-Life Balance

Stress Management and Wellbeing

Coaching and Mentoring

Change Management

Team Management

Managing Conflict

Delegation and Empowerment

Performance Management

Leadership Skills

Developing Your Team

Talent Management

Problem Solving

Decision Making

Member Podcast

Critical Thinking Definition, Skills, and Examples

  • Homework Help
  • Private School
  • College Admissions
  • College Life
  • Graduate School
  • Business School
  • Distance Learning

evaluating meaning in critical thinking

  • Indiana University, Bloomington
  • State University of New York at Oneonta

Critical thinking refers to the ability to analyze information objectively and make a reasoned judgment. It involves the evaluation of sources, such as data, facts, observable phenomena, and research findings.

Good critical thinkers can draw reasonable conclusions from a set of information, and discriminate between useful and less useful details to solve problems or make decisions. Employers prioritize the ability to think critically—find out why, plus see how you can demonstrate that you have this ability throughout the job application process. 

Why Do Employers Value Critical Thinking Skills?

Employers want job candidates who can evaluate a situation using logical thought and offer the best solution.

 Someone with critical thinking skills can be trusted to make decisions independently, and will not need constant handholding.

Hiring a critical thinker means that micromanaging won't be required. Critical thinking abilities are among the most sought-after skills in almost every industry and workplace. You can demonstrate critical thinking by using related keywords in your resume and cover letter, and during your interview.

Examples of Critical Thinking

The circumstances that demand critical thinking vary from industry to industry. Some examples include:

  • A triage nurse analyzes the cases at hand and decides the order by which the patients should be treated.
  • A plumber evaluates the materials that would best suit a particular job.
  • An attorney reviews evidence and devises a strategy to win a case or to decide whether to settle out of court.
  • A manager analyzes customer feedback forms and uses this information to develop a customer service training session for employees.

Promote Your Skills in Your Job Search

If critical thinking is a key phrase in the job listings you are applying for, be sure to emphasize your critical thinking skills throughout your job search.

Add Keywords to Your Resume

You can use critical thinking keywords (analytical, problem solving, creativity, etc.) in your resume. When describing your  work history , include top critical thinking skills that accurately describe you. You can also include them in your  resume summary , if you have one.

For example, your summary might read, “Marketing Associate with five years of experience in project management. Skilled in conducting thorough market research and competitor analysis to assess market trends and client needs, and to develop appropriate acquisition tactics.”

Mention Skills in Your Cover Letter

Include these critical thinking skills in your cover letter. In the body of your letter, mention one or two of these skills, and give specific examples of times when you have demonstrated them at work. Think about times when you had to analyze or evaluate materials to solve a problem.

Show the Interviewer Your Skills

You can use these skill words in an interview. Discuss a time when you were faced with a particular problem or challenge at work and explain how you applied critical thinking to solve it.

Some interviewers will give you a hypothetical scenario or problem, and ask you to use critical thinking skills to solve it. In this case, explain your thought process thoroughly to the interviewer. He or she is typically more focused on how you arrive at your solution rather than the solution itself. The interviewer wants to see you analyze and evaluate (key parts of critical thinking) the given scenario or problem.

Of course, each job will require different skills and experiences, so make sure you read the job description carefully and focus on the skills listed by the employer.

Top Critical Thinking Skills

Keep these in-demand critical thinking skills in mind as you update your resume and write your cover letter. As you've seen, you can also emphasize them at other points throughout the application process, such as your interview. 

Part of critical thinking is the ability to carefully examine something, whether it is a problem, a set of data, or a text. People with  analytical skills  can examine information, understand what it means, and properly explain to others the implications of that information.

  • Asking Thoughtful Questions
  • Data Analysis
  • Interpretation
  • Questioning Evidence
  • Recognizing Patterns

Communication

Often, you will need to share your conclusions with your employers or with a group of colleagues. You need to be able to  communicate with others  to share your ideas effectively. You might also need to engage in critical thinking in a group. In this case, you will need to work with others and communicate effectively to figure out solutions to complex problems.

  • Active Listening
  • Collaboration
  • Explanation
  • Interpersonal
  • Presentation
  • Verbal Communication
  • Written Communication

Critical thinking often involves creativity and innovation. You might need to spot patterns in the information you are looking at or come up with a solution that no one else has thought of before. All of this involves a creative eye that can take a different approach from all other approaches.

  • Flexibility
  • Conceptualization
  • Imagination
  • Drawing Connections
  • Synthesizing

Open-Mindedness

To think critically, you need to be able to put aside any assumptions or judgments and merely analyze the information you receive. You need to be objective, evaluating ideas without bias.

  • Objectivity
  • Observation

Problem Solving

Problem-solving is another critical thinking skill that involves analyzing a problem, generating and implementing a solution, and assessing the success of the plan. Employers don’t simply want employees who can think about information critically. They also need to be able to come up with practical solutions.

  • Attention to Detail
  • Clarification
  • Decision Making
  • Groundedness
  • Identifying Patterns

More Critical Thinking Skills

  • Inductive Reasoning
  • Deductive Reasoning
  • Noticing Outliers
  • Adaptability
  • Emotional Intelligence
  • Brainstorming
  • Optimization
  • Restructuring
  • Integration
  • Strategic Planning
  • Project Management
  • Ongoing Improvement
  • Causal Relationships
  • Case Analysis
  • Diagnostics
  • SWOT Analysis
  • Business Intelligence
  • Quantitative Data Management
  • Qualitative Data Management
  • Risk Management
  • Scientific Method
  • Consumer Behavior

Key Takeaways

  • Demonstrate that you have critical thinking skills by adding relevant keywords to your resume.
  • Mention pertinent critical thinking skills in your cover letter, too, and include an example of a time when you demonstrated them at work.
  • Finally, highlight critical thinking skills during your interview. For instance, you might discuss a time when you were faced with a challenge at work and explain how you applied critical thinking skills to solve it.

University of Louisville. " What is Critical Thinking ."

American Management Association. " AMA Critical Skills Survey: Workers Need Higher Level Skills to Succeed in the 21st Century ."

  • Critical Thinking in Reading and Composition
  • Bloom's Taxonomy in the Classroom
  • Introduction to Critical Thinking
  • How To Become an Effective Problem Solver
  • Creativity & Creative Thinking
  • Higher-Order Thinking Skills (HOTS) in Education
  • 2020-21 Common Application Essay Option 4—Solving a Problem
  • 6 Skills Students Need to Succeed in Social Studies Classes
  • College Interview Tips: "Tell Me About a Challenge You Overcame"
  • Types of Medical School Interviews and What to Expect
  • The Horse Problem: A Math Challenge
  • What to Do When the Technology Fails in Class
  • What Are Your Strengths and Weaknesses? Interview Tips for Teachers
  • A Guide to Business Letters Types
  • How to Practice Critical Thinking in 4 Steps
  • Landing Your First Teaching Job

Argumentation, Evidence Evaluation and Critical Thinking

  • First Online: 23 November 2011
  • pp 1001–1015

Cite this chapter

evaluating meaning in critical thinking

  • María Pilar Jiménez-Aleixandre 4 &
  • Blanca Puig 4  

Part of the book series: Springer International Handbooks of Education ((SIHE,volume 24))

12k Accesses

31 Citations

This chapter addresses the relationships between argumentation and critical thinking. The underlying questions are how argumentation supports the capacity to discriminate between claims justified by evidence and mere opinion, and how argumentation can contribute to two types of objectives related to learning science and to citizenship. First, various meanings for critical thinking in different communities are reviewed. Then, we propose our characterisation of critical thinking, which assumes that evidence evaluation is an essential component, but that there are other components related to the capacities of reflecting on the world around us and of participating in it (e.g. developing an independent opinion, including challenging the ideas of one’s own community). This characterisation draws both from the notion of commitment to evidence and from critical theorists. Using this frame, the chapter examines the contributions of argumentation in science education to the components of critical thinking, and also discusses the evaluation of evidence and the different factors influencing or even hampering it. The chapter concludes with consideration of the development of critical thinking in the science classroom.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
  • Available as EPUB and PDF
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
  • Durable hardcover edition

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Aikenhead, G. S. (1985). Collective decision making in the social context of science. Science Education , 69 , 453–475.

Article   Google Scholar  

Anderson, T., Howe, C., Soden, R., Halliday, J., & Low, J. (2001). Peer interaction and the learning of critical thinking skills in further education students. Instructional Science , 29 , 1–32.

Google Scholar  

Bourdieu, P., & Passeron, J.-C. (1970). La reproduction: Eléments pour une théorie du système d’enseignement . Paris: Les Éditions de Minuit (Translated as: Reproduction in education, society and culture. London: Sage, 1977).

Cooper, K., & White, R. (2007). The practical critical educator . Dordrecht, the Netherlands: Springer.

Desmond, A., & Moore, J. (1992). Darwin . London: Penguin.

Duschl, R. A., & Grandy, R. E. (2008). Reconsidering the character and role of inquiry in school science: Framing the debates. In R. A. Duschl & R. E. Grandy (Eds.), Teaching scientific inquiry: Recommendations for research and implementation (pp. 1–37). Rotterdam: Sense Publishers.

Eichinger, D. C., Anderson, C. W., Palincsar, A. S., & David, Y. M. (1991, April). An illustration of the roles of content knowledge, scientific argument, and social norms in collaborative problem solving . Paper presented at the Annual Meeting of the American Educational Research Association, Chicago.

Eirexas, F., & Jiménez-Aleixandre, M. P. (2007, August). What does sustainability mean? Critical thinking and environmental concepts in arguments about energy by 12th grade students . Paper presented at the European Science Education Research Association Conference, Malmo.

Ennis, R. H. (1987). A taxonomy of critical thinking abilities and dispositions. In J. B. Baron & R. J. Sternberg (Eds.), Teaching thinking skills: Theory and practice (pp. 9–26). New York: W. H. Freeman.

Ennis, R. H. (1992). Critical thinking: What is it? In H. A. Alexander (Ed.), Philosophy of Education 1992: Proceedings of the Forty-Eighth Annual Meeting of the Philosophy of Education Society (pp. 76–80). Urbana, IL: Philosophy of Education Society.

Erduran, S., & Jiménez-Aleixandre, M. P. (Eds.). (2008). Argumentation in science education: Perspectives from classroom-based research . Dordrecht: Springer.

Fairclough, N. (1995). Critical discourse analysis. The critical study of language . Harlow: Longman.

Freinet, C. (1969). Pour l’école du peuple . Paris: Maspero.

Freire, P. (1970). Pedagogia do oprimido . Rio de Janeiro: Paz e Terra. (Translated as Pedagogy of the oppressed , Harmondsworth: Penguin, 1972).

Gruber, H. (1981). Darwin on man: A psychological study of scientific creativity . Chicago: The University of Chicago Press.

Habermas, J. (1981–1984). The theory of communicative action . Boston: Beacon Press.

Jiménez-Aleixandre, M. P. (2008). Designing argumentation learning environments. In S. Erduran & M. P. Jiménez-Aleixandre (Eds.), Argumentation in science education: perspectives from classroom-based research (pp. 91–115). Dordrecht, the Netherlands: Springer.

Jiménez-Aleixandre, M. P., Agraso, M. F., & Eirexas, F. (2004, April). Scientific authority and empirical data in argument warrants about the Prestige oil spill . Paper presented at the Annual Meeting of the National Association for Research in Science Teaching. Vancouver.

Jiménez-Aleixandre, M. P., Bugallo Rodríguez, A., & Duschl, R. A. (2000). “Doing the lesson” or “doing science”: Argument in high school genetics. Science Education, 84 , 757–792.

Jiménez-Aleixandre, M. P., & Erduran, S. (2008). Argumentation in science education: An overview. In S. Erduran & M. P. Jiménez-Aleixandre (Eds.), Argumentation in science education: Perspectives from classroom-based research (pp. 3–27). Dordrecht, the Netherlands: Springer.

Jiménez-Aleixandre, M. P., & Federico-Agraso, M. (2009). Justification and persuasion about cloning: Arguments in Hwang’s paper and journalistic reported versions . Research in Science Education , 39, 331–347. doi 10.1007/s11165-008-9113-x.

Kelly, G. J., Druker S., & Chen, C. (1998). Students’ reasoning about electricity: Combining performance assessment with argumentation analysis. International Journal of Science Education , 20 , 849–871.

Kolstø, S. D., & Ratcliffe, M. (2008). Social aspects of argumentation. In S. Erduran & M. P. Jiménez-Aleixandre (Eds.), Argumentation in science education: Perspectives from classroom-based research (pp. 117–136). Dordrecht, the Netherlands: Springer.

Kolstø, S. D., Bungum, B., Arnesen, E., Isnes, A., Kristensen, T., Mathiassen, K., Mestad, et al. (2006). Science students’ critical examination of scientific information related to socio-scientific issues. Science Education , 90 , 632–655.

Kuhn, D. (1991). The skills of argument . Cambridge, MA: Cambridge University Press.

Book   Google Scholar  

Kuhn, D. (2005). Education for thinking . Cambridge, MA: Harvard University Press.

López-Facal, R., & Jiménez-Aleixandre, M. P. (2009). Identities, social representations and critical thinking. Cultural Studies of Science Education , 4, 689–695. doi 10.1007/s11422-008-9134-9.

Maloney, J. (2007). Children’s roles and use of evidence in science: An analysis of decision-making in small groups. British Educational Research Journal , 33 , 371–401.

Márquez, C., Prats, A., & Marbá, A. (2007, August). A critical reading of press advertisement in the science class . Paper presented at the European Science Education Research Association Conference, Malmo.

McCarthy, C. (1992). Why be critical? (Or rational or moral?) On the justification of critical thinking. In H. A. Alexander (Ed.), Philosophy of Education 1992: Proceedings of the Forty-Eighth Annual Meeting of the Philosophy of Education Society (pp. 60–68). Urbana, IL: Philosophy of Education Society.

Moscovici (1961–1976). La psychanalyse, son image et son public (2nd ed. revised). Paris: Presses Universitaires de France.

Norris, S. P. (1992). Bachelors, buckyballs and ganders: Seeking analogues for definitions of “critical thinker”. In H. A. Alexander (Ed.), Philosophy of Education 1992: Proceedings of the Forty-Eighth Annual Meeting of the Philosophy of Education Society (pp. 69–71). Urbana, IL: Philosophy of Education Society.

Norris, S. P. (1995). Learning to live with scientific expertise: Toward a theory of intellectual communalism for guiding science teaching. Science Education , 79 , 201–217.

Norris, S. P., & Korpan, C. A. (2000). Science, views about science, and pluralistic science education. In R. Millar, J. Leach, & J. Osborne (Eds.), Improving science education: The contribution of research (pp. 227–244). Buckingham, UK: Open University Press.

Osborne, J., Erduran, S., & Simon, S. (2004). Ideas, evidence and argument in science . London: King’s College London.

Perry, W. G. (1981). Cognitive and ethical growth: The making of meaning. In A. W. Chickering & Associates (Eds.), The modern American college (pp. 76–116). San Francisco: Jossey-Bass.

Puig, B., & Jiménez-Aleixandre, M. P. (2009). What do 9th grade students consider as evidence for or against claims about genetic differences in intelligence between black and white “races”? In M. Hammann, A. J. Waarlo & K. Boersma (Eds.), The nature of research in biological education: Old and new perspectives on theoretical and methodological issues (pp. 137–151). Utrecht: Utrecht University CD-ß Press.

Sadler, T. D., & Zeidler, D. L. (2005). Patterns of informal reasoning in the context of socio scientific decision-making. Journal of Research in Science Teaching , 42 , 112–138.

Siegel, H. (1988). Educating reason: Rationality, critical thinking and education . New York: Routledge.

Siegel, H. (1989). The rationality of science, critical thinking and science education. Synthese , 80 , 9–41.

Simonneaux, L., & Simonneaux, J. (2009). Students’ socio-scientific reasoning on controversies from the viewpoint of education for sustainable development. Cultural Studies of Science Education . doi 10.1007/s11422-008-9141-x.

Sóñora, F., García-Rodeja, I., & Brañas, M. (2001). Discourse analysis: Pupils’ discussions of soil science. In I. García-Rodeja, J. Díaz, U. Harms, & M. P. Jiménez-Aleixandre (Eds.), Proceedings of the 3rd ERIDOB Conference (pp. 313–326). Santiago de Compostela: University of Santiago de Compostela.

Stanisstreet, M., Spofforth N., & Williams, T. (1993). Attitudes of children to the uses of animals. International Journal of Science Education , 15 , 411–425.

Toulmin, S. (2001). Return to reason . Cambridge, MA: Harvard University Press.

Tytler, R., Duggan, S., & Gott, R. (2000). Dimensions of evidence, the public understanding of science and science education. International Journal of Science Education, 2 , 815–832.

Zeidler, D. L., & Sadler, T. D. (2008). The role of moral reasoning on argumentation: Conscience, character and care. In S. Erduran & M. P. Jiménez-Aleixandre (Eds.), Argumentation in science education: Perspectives from classroom-based research (pp. 201–216). Dordrecht, the Netherlands: Springer.

Zohar, A., Weinberger, Y., & Tamir, P. (1994). The effect of the biology critical thinking project on the development of critical thinking. Journal of Research in Science Teaching , 31 , 183–196.

Download references

Acknowledgements

This work was supported by the Spanish Ministerio de Educación y Ciencia (MEC), partly funded by the European Regional Development Fund (ERDF), code SEJ2006-15589-C02-01/EDUC. The authors are grateful to Glen Aikenhead for his valuable feedback on the first draft.

Author information

Authors and affiliations.

Didactica das Ciencias Experimentais, University of Santiago de Compostela, Santiago de Compostela, Spain

María Pilar Jiménez-Aleixandre & Blanca Puig

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to María Pilar Jiménez-Aleixandre .

Editor information

Editors and affiliations.

Science & Mathematics Education Centre, Curtin University of Technology, Perth, West Australia, Australia

Barry J. Fraser

The Graduate Centre, City University of New York, New York, 10016-4309, New York, USA

Kenneth Tobin

Ctr. Mathematics & Science Education, Queensland University of Technology, Victoria Park Rd., Kelvin Grove, 4059, Queensland, Australia

Campbell J. McRobbie

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Jiménez-Aleixandre, M.P., Puig, B. (2012). Argumentation, Evidence Evaluation and Critical Thinking. In: Fraser, B., Tobin, K., McRobbie, C. (eds) Second International Handbook of Science Education. Springer International Handbooks of Education, vol 24. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9041-7_66

Download citation

DOI : https://doi.org/10.1007/978-1-4020-9041-7_66

Published : 23 November 2011

Publisher Name : Springer, Dordrecht

Print ISBN : 978-1-4020-9040-0

Online ISBN : 978-1-4020-9041-7

eBook Packages : Humanities, Social Sciences and Law Education (R0)

Share this chapter

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research

Bookmark this page

  • International Center for the Assessment of Higher Order Thinking
  • Our Team of Presenters
  • Fellows of the Foundation
  • Dr. Richard Paul
  • Dr. Linda Elder
  • Dr. Gerald Nosich
  • Permission to Use Our Work
  • Create a CriticalThinking.Org Account
  • Contributions to the Foundation for Critical Thinking
  • Contact Us - Office Information
  • Testimonials
  • Center for Critical Thinking
  • The National Council for Excellence in Critical Thinking
  • Library of Critical Thinking Resources
  • Professional Development
  • The Center for Critical Thinking Community Online
  • Customized Webinars and Online Courses for Faculty
  • Certification in the Paul-Elder Approach to Critical Thinking
  • Consulting for Leaders and Key Personnel at Your Organization
  • K-12 Instruction
  • Higher Education
  • Business & Professional Groups
  • Build a Local Critical Thinking Town Hall
  • Critical Thinking Training for Law Enforcement
  • Online Courses for Instructors
  • Critical Thinking Therapy
  • Bring Critical Thinking Into Your Website's Discussion
  • The State of Critical Thinking Today
  • Professional Development Model for K-12
  • Professional Development Model - College and University
  • Workshop Descriptions
  • Mentor Program
  • Inservice Information Request Form
  • Institutions Using Our Approach to Critical Thinking
  • Conferences & Events
  • Upcoming Events in Critical Thinking
  • 44th Annual International Conference on Critical Thinking
  • Focal Session Descriptions
  • Daily Schedule
  • Call for Proposals
  • Presuppositions of the 44th Annual International Conference on Critical Thinking
  • Recommended Reading
  • 2024 Fall Academy on Critical Thinking
  • Academy Presuppositions
  • Conference Archives
  • 43rd Annual International Conference on Critical Thinking
  • Guest Presentation Program
  • Register as an Ambassador
  • Testimonials from Past Attendees
  • Thank You to Our Donors
  • Presuppositions of the Conference
  • 42nd Annual International Conference on Critical Thinking
  • Overview of Sessions (Flyer)
  • Presuppositions of the Annual International Conference
  • Testimonials from Past Conferences
  • 41st Annual International Conference on Critical Thinking
  • Recommended Publications
  • Dedication to Our Donors
  • 40th Annual International Conference on Critical Thinking
  • Session Descriptions
  • Testimonials from Prior Conferences
  • International Critical Thinking Manifesto
  • Scholarships Available
  • 39th Annual International Conference on Critical Thinking
  • Travel and Lodging Info
  • FAQ & General Announcements
  • Focal and Plenary Session Descriptions
  • Program and Proceedings of the 39th Annual International Conference on Critical Thinking
  • The Venue: KU Leuven
  • Call for Critical Thinking Ambassadors
  • Conference Background Information
  • 38th Annual International Conference on Critical Thinking
  • Call for Ambassadors for Critical Thinking
  • Conference Focal Session Descriptions
  • Conference Concurrent Session Descriptions
  • Conference Roundtable Discussions
  • Conference Announcements and FAQ
  • Conference Program and Proceedings
  • Conference Daily Schedule
  • Conference Hotel Information
  • Conference Academic Credit
  • Conference Presuppositions
  • What Participants Have Said About the Conference
  • 37th Annual International Conference on Critical Thinking
  • Registration & Fees
  • FAQ and Announcements
  • Conference Presenters
  • 37th Conference Flyer
  • Program and Proceedings of the 37th Conference
  • 36th International Conference
  • Conference Sessions
  • Conference Flyer
  • Program and Proceedings
  • Academic Credit
  • 35th International Conference
  • Conference Session Descriptions
  • Available Online Sessions
  • Bertrand Russell Distinguished Scholar - Daniel Ellsberg
  • 35th International Conference Program
  • Concurrent Sessions
  • Posthumous Bertrand Russell Scholar
  • Hotel Information
  • Conference FAQs
  • Visiting UC Berkeley
  • 34th INTERNATIONAL CONFERENCE
  • Bertrand Russell Distinguished Scholar - Ralph Nader
  • Conference Concurrent Presenters
  • Conference Program
  • Conference Theme
  • Roundtable Discussions
  • Flyer for Bulletin Boards
  • 33rd INTERNATIONAL CONFERENCE
  • 33rd International Conference Program
  • 33rd International Conference Sessions
  • 33rd International Conference Presenters
  • The Bertrand Russell Distinguished Scholars Critical Thinking Conversations
  • 33rd International Conference - Fees & Registration
  • 33rd International Conference Concurrent Presenters
  • 33rd International Conference - Hotel Information
  • 33rd International Conference Flyer
  • 32nd INTERNATIONAL CONFERENCE
  • 32nd Annual Conference Sessions
  • 32nd Annual Conference Presenter Information
  • 32nd Conference Program
  • The Bertrand Russell Distinguished Scholars Critical Thinking Lecture Series
  • 32nd Annual Conference Concurrent Presenters
  • 32nd Annual Conference Academic Credit
  • 31st INTERNATIONAL CONFERENCE
  • 31st Conference Sessions
  • Comments about previous conferences
  • Conference Hotel (2011)
  • 31st Concurrent Presenters
  • Registration Fees
  • 31st International Conference
  • 30th INTERNATIONAL CONFERENCE ON CRITICAL THINKING
  • 30th International Conference Theme
  • 30th Conference Sessions
  • PreConference Sessions
  • 30th Concurrent Presenters
  • 30th Conference Presuppositions
  • Hilton Garden Inn
  • 29th International Conference
  • 29th Conference Theme
  • 29th Conference Sessions
  • 29th Preconference Sessions
  • 29th Conference Concurrent Sessions
  • 2008 International Conference on Critical Thinking
  • 2008 Preconference Sessions (28th Intl. Conference)
  • 2007 Conference on Critical Thinking (Main Page)
  • 2007 Conference Theme and sessions
  • 2007 Pre-Conference Workshops
  • 2006 Annual International Conference (archived)
  • 2006 International Conference Theme
  • 2005 International Conference (archived)
  • Prior Conference Programs (Pre 2000)
  • Workshop Archives
  • Spring 2022 Online Workshops
  • 2021 Online Workshops for Winter & Spring
  • 2019 Seminar for Military and Intelligence Trainers and Instructors
  • Transportation, Lodging, and Recreation
  • Seminar Flyer
  • 2013 Spring Workshops
  • Our Presenters
  • 2013 Spring Workshops - Hotel Information
  • 2013 Spring Workshops Flyer
  • 2013 Spring Workshops - Schedule
  • Spring Workshop 2012
  • 2012 Spring Workshop Strands
  • 2012 Spring Workshop Flier
  • 2011 Spring Workshop
  • Spring 2010 Workshop Strands
  • 2009 Spring Workshops on Critical Thinking
  • 2008 SPRING Workshops and Seminars on Critical Thinking
  • 2008 Ethical Reasoning Workshop
  • 2008 - On Richard Paul's Teaching Design
  • 2008 Engineering Reasoning Workshop
  • 2008 Academia sobre Formulando Preguntas Esenciales
  • Fellows Academy Archives
  • 2017 Fall International Fellows Academy
  • 4th International Fellows Academy - 2016
  • 3rd International Fellows Academy
  • 2nd International Fellows Academy
  • 1st International Fellows Academy
  • Academy Archives
  • October 2019 Critical Thinking Academy for Educators and Administrators
  • Transportation, Lodging, and Leisure
  • Advanced Seminar: Oxford Tutorial
  • Recreational Group Activities
  • Limited Scholarships Available
  • September 2019 Critical Thinking Educators and Administrators Academy
  • 2019 Critical Thinking Training for Trainers and Advanced Academy
  • Academy Flyer
  • Seattle, WA 2017 Spring Academy
  • San Diego, CA 2017 Spring Academy
  • 2016 Spring Academy -- Washington D.C.
  • 2016 Spring Academy -- Houston, TX
  • The 2nd International Academy on Critical Thinking (Oxford 2008)
  • 2007 National Academy on Critical Thinking Testing and Assessment
  • 2006 Cambridge Academy (archived)
  • 2006 Cambridge Academy Theme
  • 2006 Cambridge Academy Sessions
  • Accommodations at St. John's College
  • Assessment & Testing
  • A Model for the National Assessment of Higher Order Thinking
  • International Critical Thinking Essay Test
  • Online Critical Thinking Basic Concepts Test
  • Online Critical Thinking Basic Concepts Sample Test
  • Consequential Validity: Using Assessment to Drive Instruction
  • News & Announcements
  • Newest Pages Added to CriticalThinking.Org
  • Online Learning
  • Critical Thinking Online Courses
  • Critical Thinking Blog
  • 2019 Blog Entries
  • 2020 Blog Entries
  • 2021 Blog Entries
  • 2022 Blog Entries
  • 2023 Blog Entries
  • Online Courses for Your Students
  • 2023 Webinar Archives
  • 2022 Webinar Archives
  • 2021 Webinar Archive
  • 2020 Webinar Archive
  • Guided Study Groups
  • Critical Thinking Channel on YouTube
  • CT800: Spring 2024

Translate this page from English...

*Machine translated pages not guaranteed for accuracy. Click Here for our professional translations.

evaluating meaning in critical thinking

Critical Thinking: Where to Begin

evaluating meaning in critical thinking

  • For College and University Faculty
  • For College and University Students
  • For High School Teachers
  • For Jr. High School Teachers
  • For Elementary Teachers (Grades 4-6)
  • For Elementary Teachers (Kindergarten - 3rd Grade)
  • For Science and Engineering Instruction
  • For Business and Professional Development
  • For Nursing and Health Care
  • For Home Schooling and Home Study

If you are new to critical thinking or wish to deepen your conception of it, we recommend you review the content below and bookmark this page for future reference.

Our Conception of Critical Thinking...

getting started with critical thinking

"Critical thinking is the intellectually disciplined process of actively and skillfully conceptualizing, applying, analyzing, synthesizing, and/or evaluating information gathered from, or generated by, observation, experience, reflection, reasoning, or communication, as a guide to belief and action. In its exemplary form, it is based on universal intellectual values that transcend subject matter divisions: clarity, accuracy, precision, consistency, relevance, sound evidence, good reasons, depth, breadth, and fairness..."

"Critical thinking is self-guided, self-disciplined thinking which attempts to reason at the highest level of quality in a fairminded way. People who think critically attempt, with consistent and conscious effort, to live rationally, reasonably, and empathically. They are keenly aware of the inherently flawed nature of human thinking when left unchecked. They strive to diminish the power of their egocentric and sociocentric tendencies. They use the intellectual tools that critical thinking offers – concepts and principles that enable them to analyze, assess, and improve thinking. They work diligently to develop the intellectual virtues of intellectual integrity, intellectual humility, intellectual civility, intellectual empathy, intellectual sense of justice and confidence in reason. They realize that no matter how skilled they are as thinkers, they can always improve their reasoning abilities and they will at times fall prey to mistakes in reasoning, human irrationality, prejudices, biases, distortions, uncritically accepted social rules and taboos, self-interest, and vested interest.

They strive to improve the world in whatever ways they can and contribute to a more rational, civilized society. At the same time, they recognize the complexities often inherent in doing so. They strive never to think simplistically about complicated issues and always to consider the rights and needs of relevant others. They recognize the complexities in developing as thinkers, and commit themselves to life-long practice toward self-improvement. They embody the Socratic principle: The unexamined life is not worth living , because they realize that many unexamined lives together result in an uncritical, unjust, dangerous world."

Why Critical Thinking?

evaluating meaning in critical thinking

The Problem:

Everyone thinks; it is our nature to do so. But much of our thinking, left to itself, is biased, distorted, partial, uninformed, or down-right prejudiced. Yet the quality of our lives and that of what we produce, make, or build depends precisely on the quality of our thought. Shoddy thinking is costly, both in money and in quality of life. Excellence in thought, however, must be systematically cultivated.

A Brief Definition:

Critical thinking is the art of analyzing and evaluating thinking with a view to improving it. The Result: 

  A well-cultivated critical thinker:

  • raises vital questions and problems, formulating them clearly and precisely;
  • gathers and assesses relevant information, using abstract ideas to interpret it effectively;
  • comes to well-reasoned conclusions and solutions, testing them against relevant criteria and standards;
  • thinks openmindedly within alternative systems of thought, recognizing and assessing, as need be, their assumptions, implications, and practical consequences; and
  • communicates effectively with others in figuring out solutions to complex problems.

Critical thinking is, in short, self-directed, self-disciplined, self-monitored, and self-corrective thinking. It requires rigorous standards of excellence and mindful command of their use. It entails effective communication and problem-solving abilities, and a commitment to overcoming our native egocentrism and sociocentrism. Read more about our concept of critical thinking .

The Essential Dimensions of Critical Thinking

evaluating meaning in critical thinking

Our conception of critical thinking is based on the substantive approach developed by Dr. Richard Paul and his colleagues at the Center and Foundation for Critical Thinking over multiple decades. It is relevant to every subject, discipline, and profession, and to reasoning through the problems of everyday life. It entails five essential dimensions of critical thinking:

At the left is an overview of the first three dimensions. In sum, the elements or structures of thought enable us to "take our thinking apart" and analyze it. The intellectual standards are used to assess and evaluate the elements. The intellectual traits are dispositions of mind embodied by the fairminded critical thinker. To cultivate the mind, we need command of these essential dimensions, and we need to consistently apply them as we think through the many problems and issues in our lives.

The Elements of Reasoning and Intellectual Standards

evaluating meaning in critical thinking

To learn more about the elements of thought and how to apply the intellectual standards, check out our interactive model. Simply click on the link below, scroll to the bottom of the page, and explore the model with your mouse.

Why the Analysis of Thinking Is Important If you want to think well, you must understand at least the rudiments of thought, the most basic structures out of which all thinking is made. You must learn how to take thinking apart. Analyzing the Logic of a Subject When we understand the elements of reasoning, we realize that all subjects, all disciplines, have a fundamental logic defined by the structures of thought embedded within them. Therefore, to lay bare a subject’s most fundamental logic, we should begin with these questions:

evaluating meaning in critical thinking

Going Deeper...

evaluating meaning in critical thinking

The Critical Thinking Bookstore  

Our online bookstore houses numerous books and teacher's manuals , Thinker's Guides , videos , and other educational materials .  

Learn From Our Fellows and Scholars

Watch our Event Calendar , which provides an overview of all upcoming conferences and academies hosted by the Foundation for Critical Thinking. Clicking an entry on the Event Calendar will bring up that event's details, and the option to register. For those interested in online learning, the Foundation offers accredited online courses in critical thinking for both educators and the general public, as well as an online test for evaluating basic comprehension of critical thinking concepts . We are in the process of developing more online learning tools and tests to offer the community.  

Utilizing this Website

This website contains large amounts research and an online library of articles , both of which are freely available to the public. We also invite you to become a member of the Critical Thinking Community , where you will gain access to more tools and materials.  If you cannot locate a resource on a specific topic or concept, try searching for it using our Search Tool . The Search Tool is at the upper-right of every page on the website.

GCFGlobal Logo

  • Get started with computers
  • Learn Microsoft Office
  • Apply for a job
  • Improve my work skills
  • Design nice-looking docs
  • Getting Started
  • Smartphones & Tablets
  • Typing Tutorial
  • Online Learning
  • Basic Internet Skills
  • Online Safety
  • Social Media
  • Zoom Basics
  • Google Docs
  • Google Sheets
  • Career Planning
  • Resume Writing
  • Cover Letters
  • Job Search and Networking
  • Business Communication
  • Entrepreneurship 101
  • Careers without College
  • Job Hunt for Today
  • 3D Printing
  • Freelancing 101
  • Personal Finance
  • Sharing Economy
  • Decision-Making
  • Graphic Design
  • Photography
  • Image Editing
  • Learning WordPress
  • Language Learning
  • Critical Thinking
  • For Educators
  • Translations
  • Staff Picks
  • English expand_more expand_less

Critical Thinking and Decision-Making  - What is Critical Thinking?

Critical thinking and decision-making  -, what is critical thinking, critical thinking and decision-making what is critical thinking.

GCFLearnFree Logo

Critical Thinking and Decision-Making: What is Critical Thinking?

Lesson 1: what is critical thinking, what is critical thinking.

Critical thinking is a term that gets thrown around a lot. You've probably heard it used often throughout the years whether it was in school, at work, or in everyday conversation. But when you stop to think about it, what exactly is critical thinking and how do you do it ?

Watch the video below to learn more about critical thinking.

Simply put, critical thinking is the act of deliberately analyzing information so that you can make better judgements and decisions . It involves using things like logic, reasoning, and creativity, to draw conclusions and generally understand things better.

illustration of the terms logic, reasoning, and creativity

This may sound like a pretty broad definition, and that's because critical thinking is a broad skill that can be applied to so many different situations. You can use it to prepare for a job interview, manage your time better, make decisions about purchasing things, and so much more.

The process

illustration of "thoughts" inside a human brain, with several being connected and "analyzed"

As humans, we are constantly thinking . It's something we can't turn off. But not all of it is critical thinking. No one thinks critically 100% of the time... that would be pretty exhausting! Instead, it's an intentional process , something that we consciously use when we're presented with difficult problems or important decisions.

Improving your critical thinking

illustration of the questions "What do I currently know?" and "How do I know this?"

In order to become a better critical thinker, it's important to ask questions when you're presented with a problem or decision, before jumping to any conclusions. You can start with simple ones like What do I currently know? and How do I know this? These can help to give you a better idea of what you're working with and, in some cases, simplify more complex issues.  

Real-world applications

illustration of a hand holding a smartphone displaying an article that reads, "Study: Cats are better than dogs"

Let's take a look at how we can use critical thinking to evaluate online information . Say a friend of yours posts a news article on social media and you're drawn to its headline. If you were to use your everyday automatic thinking, you might accept it as fact and move on. But if you were thinking critically, you would first analyze the available information and ask some questions :

  • What's the source of this article?
  • Is the headline potentially misleading?
  • What are my friend's general beliefs?
  • Do their beliefs inform why they might have shared this?

illustration of "Super Cat Blog" and "According to survery of cat owners" being highlighted from an article on a smartphone

After analyzing all of this information, you can draw a conclusion about whether or not you think the article is trustworthy.

Critical thinking has a wide range of real-world applications . It can help you to make better decisions, become more hireable, and generally better understand the world around you.

illustration of a lightbulb, a briefcase, and the world

/en/problem-solving-and-decision-making/why-is-it-so-hard-to-make-decisions/content/

  • An Overview of Metacognitive Strategies
  • State Science Standards and Benchmarks
  • Physical Science Lesson Plans for 9-12 Learners
  • Exploring Self-Reflection and Metacognition
  • Classroom Management
  • Behavior management techniques
  • Classroom rules
  • Classroom routines
  • Classroom organization
  • Assessment Strategies
  • Summative assessment techniques
  • Formative assessment techniques
  • Portfolio assessment
  • Performance-based assessment
  • Teaching Strategies
  • Active learning
  • Inquiry-based learning
  • Differentiated instruction
  • Project-based learning
  • o2c-library/governance/arc-organisation-reports/final%20report.pdf
  • Learning Theories
  • Behaviorism
  • Social Learning Theory
  • Cognitivism
  • Constructivism
  • Critical Thinking Skills
  • Analysis skills
  • Creative thinking skills
  • Problem-solving skills
  • Evaluation skills
  • Metacognition
  • Metacognitive strategies
  • Self-reflection and metacognition
  • Goal setting and metacognition
  • Teaching Methods and Techniques
  • Direct instruction methods
  • Indirect instruction methods
  • Lesson Planning Strategies
  • Lesson sequencing strategies
  • Unit planning strategies
  • Differentiated Instruction Strategies
  • Differentiated instruction for English language learners
  • Differentiated instruction for gifted students
  • Standards and Benchmarks
  • State science standards and benchmarks
  • National science standards and benchmarks
  • Curriculum Design
  • Course design and alignment
  • Backward design principles
  • Curriculum mapping
  • Instructional Materials
  • Textbooks and digital resources
  • Instructional software and apps
  • Engaging Activities and Games
  • Hands-on activities and experiments
  • Cooperative learning games
  • Learning Environment Design
  • Classroom technology integration
  • Classroom layout and design
  • Instructional Strategies
  • Collaborative learning strategies
  • Problem-based learning strategies
  • 9-12 Science Lesson Plans
  • Life science lesson plans for 9-12 learners
  • Earth science lesson plans for 9-12 learners
  • Physical science lesson plans for 9-12 learners
  • K-5 Science Lesson Plans
  • Earth science lesson plans for K-5 learners
  • Life science lesson plans for K-5 learners
  • Physical science lesson plans for K-5 learners
  • 6-8 Science Lesson Plans
  • Earth science lesson plans for 6-8 learners
  • Life science lesson plans for 6-8 learners
  • Physical science lesson plans for 6-8 learners
  • Science Learning
  • Evaluation Skills: A Comprehensive Overview

This article provides an overview of evaluation skills, including what they are, why they are important, and how to develop them. It is written for anyone interested in improving their science learning and critical thinking skills.

Evaluation Skills: A Comprehensive Overview

Evaluation skills are a vital part of any student's education and are essential for success in the modern world. From determining the quality of evidence to assessing the validity of an argument, evaluation skills are essential for critical thinking and problem-solving. In this comprehensive overview, we'll explore the importance of evaluation skills and how they can be developed and applied in all areas of life. From formulating hypotheses to understanding the different types of evidence and the criteria used to assess them, this article will provide an in-depth look at the evaluation process. We'll discuss why evaluation skills are so important, explore how they can be developed, and provide examples of how they can be used in everyday life.

For those looking for more guidance, Spires online BMAT tutors can provide expert advice on developing and applying evaluation skills. By the end of this article, readers will have a better understanding of the importance of evaluation skills, as well as a clear picture of how to develop and apply them in everyday life. Evaluation skills consist of a set of abilities that enable us to analyze information accurately and come to sound conclusions. These skills include critical thinking , problem-solving, data interpretation, and logical reasoning. They are important for science learning and critical thinking because they allow us to evaluate the validity of scientific theories and hypotheses. Developing evaluation skills requires practice and dedication.

It involves developing the ability to ask the right questions, observe carefully, think objectively, and draw accurate conclusions. To develop these skills, it is important to practice analyzing information from different sources and coming to sound conclusions. It is also important to practice questioning assumptions and challenging accepted beliefs. Additionally, it is helpful to read books and articles on science and critical thinking to better understand how to evaluate information accurately. Another important part of developing evaluation skills is understanding the importance of data accuracy and precision.

Data accuracy refers to how closely a measurement or estimate reflects the true value of a phenomenon, while data precision refers to how precise the measurement is. Understanding these concepts helps us evaluate data more accurately. Finally, developing evaluation skills requires honing our communication skills. Being able to effectively communicate our thoughts and opinions helps us share our ideas with others and develop our understanding of the material. Communicating clearly also helps us evaluate information more accurately by making sure that everyone is on the same page when discussing complex topics. In conclusion, evaluation skills are essential for effective learning in any subject.

How Can We Develop Evaluation Skills?

The importance of communication.

Communication allows us to share our ideas with others, which can then be discussed, debated, and further developed. Communication also allows us to develop a deeper understanding of the material by being able to ask questions and get feedback from peers or experts. In order to develop our communication skills, we need to learn how to express ourselves clearly and concisely. We must also learn how to actively listen to others and truly understand their perspectives. This will allow us to better engage in dialogue and form meaningful connections with our peers.

Why Are Evaluation Skills Important?

Understanding data accuracy & precision.

For example, if a measurement is off by 10% from the true value, then it has an accuracy of 90%. On the other hand, data precision is determined by the number of significant figures in a measurement. The more significant figures a measurement has, the more precise it is. In order to evaluate data accurately, it is important to understand how these two concepts interact. For example, if a measurement has high accuracy but low precision, then it may still be inaccurate because of the amount of error in the measurement.

Similarly, a measurement with high precision but low accuracy can still be inaccurate if the true value is significantly different from the measurement. By understanding the importance of both accuracy and precision in data evaluation, we can make more informed decisions about the validity of our conclusions. This is especially important when making decisions based on scientific evidence, as inaccurate or imprecise data can lead to incorrect conclusions and inaccurate results. In conclusion, evaluation skills are an essential part of science learning and critical thinking. Developing these skills requires practice and dedication, as well as an understanding of data accuracy and precision. Finally, effective communication is a key component of mastering these skills, as it allows us to share our ideas with others.

Shahid Lakha

Shahid Lakha

Shahid Lakha is a seasoned educational consultant with a rich history in the independent education sector and EdTech. With a solid background in Physics, Shahid has cultivated a career that spans tutoring, consulting, and entrepreneurship. As an Educational Consultant at Spires Online Tutoring since October 2016, he has been instrumental in fostering educational excellence in the online tutoring space. Shahid is also the founder and director of Specialist Science Tutors, a tutoring agency based in West London, where he has successfully managed various facets of the business, including marketing, web design, and client relationships. His dedication to education is further evidenced by his role as a self-employed tutor, where he has been teaching Maths, Physics, and Engineering to students up to university level since September 2011. Shahid holds a Master of Science in Photon Science from the University of Manchester and a Bachelor of Science in Physics from the University of Bath.

New Articles

Earth Science Lesson Plans for 9-12 Learners

  • Earth Science Lesson Plans for 9-12 Learners

This article provides an overview of Earth Science lesson plans for 9-12 learners, and includes tips for making the lessons engaging and informative.

Behaviorism: A Comprehensive Overview

  • Behaviorism: A Comprehensive Overview

Learn about behaviorism, a powerful learning theory that can help you better understand how people learn and develop. This comprehensive overview covers the history, principles, and applications of behaviorism.

Exploring Self-Reflection and Metacognition

This article explores the meaning of self-reflection and metacognition, and how they are related to learning.

Physical Science Lesson Plans for K-5 Learners

  • Physical Science Lesson Plans for K-5 Learners

Discover physical science lesson plans for K-5 learners, including activities, experiments and topics to explore.

Leave Reply

Your email address will not be published. Required fields are marked *

I agree that spam comments wont´t be published

  • Behavior Management Techniques
  • Social Learning Theory Explained
  • Summative Assessment Techniques: An Overview
  • Formative Assessment Techniques

Active Learning: A Comprehensive Overview

Inquiry-based learning: an introduction to teaching strategies.

  • Understanding Cognitivism: A Learning Theory
  • Analysis Skills: Understanding Critical Thinking and Science Learning
  • Creative Thinking Skills
  • Constructivism: Exploring the Theory of Learning
  • Problem-solving Skills: A Comprehensive Overview
  • Classroom Rules - A Comprehensive Overview
  • Exploring Portfolio Assessment: An Introduction
  • Differentiated Instruction: A Comprehensive Overview
  • Classroom Routines: A Comprehensive Overview
  • Effective Classroom Organization Strategies for Science Teaching
  • Project-Based Learning: An In-Depth Look
  • Performance-Based Assessment: A Comprehensive Overview
  • Understanding Direct Instruction Methods
  • Course Design and Alignment
  • The Advantages of Textbooks and Digital Resources
  • Engaging Hands-on Activities and Experiments
  • Backward Design Principles: Understanding Curriculum Design
  • Engaging Cooperative Learning Games
  • Integrating Technology into the Classroom
  • Understanding Classroom Layout and Design

Lesson Sequencing Strategies: A Comprehensive Overview

  • Instructional Software and Apps: A Comprehensive Overview
  • Understanding Curriculum Mapping
  • Collaborative Learning Strategies
  • Indirect Instruction Methods: A Comprehensive Overview
  • Understanding National Science Standards and Benchmarks
  • Exploring Problem-Based Learning Strategies
  • Unit Planning Strategies
  • Exploring Goal Setting and Metacognition
  • Life Science Lesson Plans for 9-12 Learners
  • Earth Science Lesson Plans for K-5 Learners
  • Differentiated Instruction for English Language Learners
  • Life Science Lesson Plans for K-5 Learners
  • Earth Science Lesson Plans for 6-8 Learners
  • Life Science Lesson Plans for 6-8 Learners
  • Physical Science Lesson Plans for 6-8 Learners
  • Differentiated Instruction Strategies for Gifted Students

Recent Posts

Inquiry-Based Learning: An Introduction to Teaching Strategies

Which cookies do you want to accept?

Library homepage

  • school Campus Bookshelves
  • menu_book Bookshelves
  • perm_media Learning Objects
  • login Login
  • how_to_reg Request Instructor Account
  • hub Instructor Commons
  • Download Page (PDF)
  • Download Full Book (PDF)
  • Periodic Table
  • Physics Constants
  • Scientific Calculator
  • Reference & Cite
  • Tools expand_more
  • Readability

selected template will load here

This action is not available.

Social Sci LibreTexts

7.4: Critical Thinking

  • Last updated
  • Save as PDF
  • Page ID 66140

Questions to consider:

  • How can determining the situation help you think critically?
  • How do you present informed, unbiased thinking?
  • What is the difference between factual arguments and opinions?

Critical thinking has become a buzz phrase in education and corporate environments in recent years. The definitions vary slightly, but most agree that thinking critically includes some form of judgement that thinkers generate after careful analysis of the perspectives, opinions, or experimental results present for a particular problem or situation. Before you wonder if you’re even capable of critical thinking, consider that you think critically every day. When you grab an unwashed T-shirt off the top of the pile on the floor of your bedroom to wear into class but then suddenly remember that you may see the person of your dreams on that route, you may change into something a bit less disheveled. That’s thinking critically—you used data (the memory that your potential soul mate walks the same route you use on that day on campus) to change a sartorial decision (dirty shirt for clean shirt), and you will validate your thinking if and when you do have a successful encounter with said soul mate.

Likewise, when you decide to make your lunch rather than just grabbing a bag of chips, you’re thinking critically. You have to plan ahead, buy the food, possibly prepare it, arrange to and carry the lunch with you, and you may have various reasons for doing that—making healthier eating choices, saving money for an upcoming trip, or wanting more quiet time to unwind instead of waiting in a crowded lunch line. You are constantly weighing options, consulting data, gathering opinions, making choices, and then evaluating those decisions, which is a general definition of critical thinking.

Consider the following situations and how each one demands your thinking attention. Which do you find most demanding of critical thinking? Why?

  • Participating in competitive athletic events
  • Watching competitive athletic events
  • Reading a novel for pleasure
  • Reading a textbook passage in science

Critical thinking forces you to determine the actual situation under question and to determine your thoughts and actions around that situation.

Determining the Problem

One component to keep in mind to guide your critical thinking is to determine the situation. What problem are you solving? When problems become complex and multifaceted, it is easy to be distracted by the simple parts that may not need as much thinking to resolve but also may not contribute as much to the ultimate problem resolution. What aspect of the situation truly needs your attention and your critical thinking?

Imagine you’re planning a fantasy vacation as a group assignment in a class you’re taking where each person is allowed only $200. The group doles out specific preliminary tasks to each member to decide where to go, what sort of trip to take, and how to keep costs low, all in the name of a fun fantasy vacation. In this scenario, whose plan demonstrates the most effective critical thinking?

  • DeRhonda creates an elaborate invitation for a dinner party she’ll coordinate at an exclusive mountain cabin.
  • Patrick researches cruises, cabin rentals, and staycation options, considering costs for various trip lengths.
  • Rodrigio puts down a deposit for a private dining room for 25 at an expensive local restaurant for a date six weeks from the end of the semester.

Write out what each person’s thinking reflects about their expectations for this trip and why their actions may or may not help the group at this stage of the planning.

Critical thinking differs according to the subject you’re thinking about, and as such it can be difficult to pin down any sort of formula to make sure you are doing a good job of thinking critically in all situations. While you may need to adapt this list of critical thinking components, you can get started if you do the following:

  • Question everything
  • Conduct legitimate research
  • Limit your assumptions
  • Recognize your own biases
  • Gather and weigh all options

Additionally, you must recognize that changes will occur and may alter your conclusions now and in the future. You may eventually have to revisit an issue you effectively resolved previously and adapt to changing conditions. Knowing when to do that is another example of critical thinking. Informed flexibility, or knowing that parts of the plan may need to change and how those changes can work into the overall goal, is also a recognized element of thinking critically.

For example, early in the 20th century, many people considered cigarette smoking a relaxing social pastime that didn’t have many negative consequences. Some people may still consider smoking a way to relax; however, years of medical research have proven with mounting evidence that smoking causes cancer and exacerbates numerous other medical conditions. Researchers asked questions about the impact of smoking on people’s overall health, conducted regulated experiments, tracked smokers’ reactions, and concluded that smoking did impact health. Over time, attitudes, evidence, and opinions change, and as a critical thinker, you must continue to research, synthesize newly discovered evidence, and adapt to that new information.

fig-ch01_patchfile_01.jpg

Defending against Bias

Once you have all your information gathered and you have checked your sources for currency and validity, you need to direct your attention to how you’re going to present your now well-informed analysis. Be careful on this step to recognize your own possible biases. Facts are verifiable; opinions are beliefs without supporting evidence. Stating an opinion is just that. You could say “Blue is the best color,” and that’s your opinion. If you were to conduct research and find evidence to support this claim, you could say, “Researchers at Oxford University recognize that the use of blue paint in mental hospitals reduces heart rates by 25% and contributes to fewer angry outbursts from patients.” This would be an informed analysis with credible evidence to support the claim.

Not everyone will accept your analysis, which can be frustrating. Most people resist change and have firm beliefs on both important issues and less significant preferences. With all the competing information surfacing online, on the news, and in general conversation, you can understand how confusing it can be to make any decisions. Look at all the reliable, valid sources that claim different approaches to be the best diet for healthy living: ketogenic, low-carb, vegan, vegetarian, high fat, raw foods, paleo, Mediterranean, etc. All you can do in this sort of situation is conduct your own serious research, check your sources, and write clearly and concisely to provide your analysis of the information for consideration. You cannot force others to accept your stance, but you can show your evidence in support of your thinking, being as persuasive as possible without lapsing into your own personal biases. Then the rest is up to the person reading or viewing your analysis.

Factual Arguments vs. Opinions

Thinking and constructing analyses based on your thinking will bring you in contact with a great deal of information. Some of that information will be factual, and some will not be. You need to be able to distinguish between facts and opinions so you know how to support your arguments. Begin with basic definitions:

  • Fact: a statement that is true and backed up with evidence; facts can be verified through observation or research
  • Opinion: a statement someone holds to be true without supporting evidence; opinions express beliefs, assumptions, perceptions, or judgements

Of course, the tricky part is that most people do not label statements as fact and opinion, so you need to be aware and recognize the difference as you go about honing your critical thinking skills.

You probably have heard the old saying “Everyone is entitled to their own opinions,” which may be true, but conversely, not everyone is entitled to their own facts. Facts are true for everyone, not just those who want to believe in them. For example, mice are animals is a fact; mice make the best pets is an opinion.

Determine if the following statements are facts or opinions based on just the information provided here, referring to the basic definitions above. Some people consider scientific findings to be opinions even when they are convincingly backed by reputable evidence and experimentation. However, remember the definition of fact —verifiable by research or observation. Think about what other research you may have to conduct to make an informed decision.

  • Oregon is a state in the United States. (How would this be proven?)
  • Beef is made from cattle. (See current legislation concerning vegetarian “burgers.”)
  • Increased street lighting decreases criminal behavior. (What information would you need to validate this claim?)
  • In 1952, Elizabeth became Queen of England. (What documents could validate this?)
  • Oatmeal tastes plain. (What factors might play into this claim?)
  • Acne is an embarrassing skin condition. (Who might verify this claim?)
  • Kindergarten decreases student dropout rates. (Think of different interest groups that may take sides on this issue.)
  • Carbohydrates promote weight gain. (Can you determine if this is a valid statement?)
  • Cell phones cause brain tumors. (What research considers this claim?)
  • Immigration is good for the US economy. (What research would help you make an informed decision on this topic?)

Many people become very attached to their opinions, even stating them as facts despite the lack of verifiable evidence. Think about political campaigns, sporting rivalries, musical preferences, and religious or philosophical beliefs. When you are reading, writing, and thinking critically, you must be on the lookout for sophisticated opinions others may present as factual information. While it’s possible to be polite when questioning another person's opinions when engaging in intellectual debate, thinking critically requires that you do conduct this questioning.

For instance, someone may say or write that a particular political party should move its offices to different cities every year—that’s an opinion regardless of whether you side with one party or the other. If, on the other hand, the same person said that one political party is headquartered in a specific city, that is a fact you can verify. You could find sources that can validate or discredit the statement. Even if the city the person lists as the party headquarters is incorrect, the statement itself is still a fact—just an erroneous one. If you use biased and opinionated information or even incorrect facts as your evidence to support your factual arguments, then you have not validated your sources or checked your facts well enough. At this point, you would need to keep researching.

  • Skip to content
  • Skip to search
  • Staff portal (Inside the department)
  • Student portal
  • Key links for students

Other users

  • Forgot password

Notifications

{{item.title}}, my essentials, ask for help, contact edconnect, directory a to z, how to guides, evaluation resource hub, evaluative thinking.

Evaluative thinking is a disciplined approach to inquiry and reflective practice that helps us make sound judgements using good evidence, as a matter of habit.

The following video discusses evaluative thinking. It runs for 3:34 minutes.

Evaluation Capacity Building - Evaluative Thinking

Video transcript

A form of critical thinking

Evaluation is a form of critical thinking that involves examining evidence to make a judgement.

Evaluative claims have two parts: a conclusion and an explanation.

For example:

  • xyz was great, because?
  • xyz is disappointing, because?
  • xyz is a good way to go in this situation, because?

Drawing conclusions based on intuition is not evaluation. Neither is personal opinion, speculation or conjecture.

Each of us makes evaluative judgements every day. Sometimes these are quick assessments that don't matter much, like what to order for lunch. At other times we need to slow down our thought processes, weighing up all the factors carefully and making our deliberation transparent to others.

A disciplined approach

Evaluating a strategic direction or project in a school draws on similar thinking processes and mental disciplines as assessing student performance or recruiting a new staff member.

When we engage in evaluative thinking, we seek to:

  • suspend judgement , considering alternative explanations and allowing new evidence to change our mind
  • question assumptions , particularly about the pathway of cause and effect
  • select and develop solutions that are informed by a strong evidence base and are responsive to our context and priorities
  • value the lessons we can learn from all our experiences ? disappointments as well as triumphs
  • wrestle with questions of impact and effectiveness, not just activity and implementation
  • maximise the value of existing data sources already available to us, mindful of their limitations
  • work to improve the strength of our evidence base as we go.

Cognitive bias

Evaluative thinking helps us navigate the cognitive biases that cloud our judgement.

Cognitive bias occurs when our analysis of a situation is compromised by 'mental shortcuts' or patterns of thinking that place undue emphasis on a particular perspective.

Confirmation bias is one type of cognitive bias can easily compromise an evaluation. This is where the evaluator is already leaning towards a particular conclusion before they see the data. Without realising it, they then pay more attention to data that supports this position.

Although we may not be able to free ourselves from our cognitive biases, being aware of them is a good first step. The mental disciplines of evaluative thinking can help manage these biases, and to keep our reasoning sharp and convincing.

Read more about cognitive bias.

Develop evaluative thinking

Working openly with colleagues helps to develop evaluative thinking in ourselves and others. Evaluative thinking sometimes comes naturally, but at other times it can feel a bit challenging - even threatening. If we want to develop evaluative thinking in others, we first need to model it ourselves.

A good way to strengthen evaluative practice in schools is to engage in evaluative thinking as a group: deliberately, transparently and in a supportive context. In this way people have the time and space to reflect on their thinking. This is particularly important if we are to identify or 'unlearn' bad habits that we may have fallen into.

For example, the simple act of being asked 'What makes you think that?' prompts us to explain how we formed our judgements, including the evidence we have considered as part of this.

The importance of modelling and collaborative practice in evaluation is highlighted in the Australian Institute for Teaching and School Leadership's (AITSL ) profile relating to leading improvement, innovation and change . This profile encourages school leaders to develop 'a culture of continuous improvement' and 'a culture of trust and collaboration, where change and innovation based on research and evidence can flourish'.

As part of doing this, the Leadership Profile highlights the value of 'evaluating outcomes and refining actions as change is implemented? taking account of the impact of change on others, providing opportunities for regular feedback'.

Keep reading

  • Disciplines of evaluative thinking
  • Professional learning
  • Teaching and learning
  • Building capacity

Business Unit:

  • Centre for Education Statistics and Evaluation

Have a thesis expert improve your writing

Check your thesis for plagiarism in 10 minutes, generate your apa citations for free.

  • Knowledge Base
  • Working with sources
  • What Is Critical Thinking? | Definition & Examples

What Is Critical Thinking? | Definition & Examples

Published on 25 September 2022 by Eoghan Ryan .

Critical thinking is the ability to effectively analyse information and form a judgement.

To think critically, you must be aware of your own biases and assumptions when encountering information, and apply consistent standards when evaluating sources .

Critical thinking skills help you to:

  • Identify credible sources
  • Evaluate and respond to arguments
  • Assess alternative viewpoints
  • Test hypotheses against relevant criteria

Instantly correct all language mistakes in your text

Be assured that you'll submit flawless writing. Upload your document to correct all your mistakes.

upload-your-document-ai-proofreader

Table of contents

Why is critical thinking important, critical thinking examples, how to think critically, frequently asked questions.

Critical thinking is important for making judgements about sources of information and forming your own arguments. It emphasises a rational, objective, and self-aware approach that can help you to identify credible sources and strengthen your conclusions.

Critical thinking is important in all disciplines and throughout all stages of the research process . The types of evidence used in the sciences and in the humanities may differ, but critical thinking skills are relevant to both.

In an academic context, critical thinking can help you to determine whether a source:

  • Is free from research bias
  • Provides evidence to support its findings
  • Considers alternative viewpoints

Outside of academia, critical thinking goes hand in hand with information literacy to help you form opinions rationally and engage independently and critically with popular media.

The only proofreading tool specialized in correcting academic writing

The academic proofreading tool has been trained on 1000s of academic texts and by native English editors. Making it the most accurate and reliable proofreading tool for students.

evaluating meaning in critical thinking

Correct my document today

Critical thinking can help you to identify reliable sources of information that you can cite in your research paper . It can also guide your own research methods and inform your own arguments.

Outside of academia, critical thinking can help you to be aware of both your own and others’ biases and assumptions.

Academic examples

However, when you compare the findings of the study with other current research, you determine that the results seem improbable. You analyse the paper again, consulting the sources it cites.

You notice that the research was funded by the pharmaceutical company that created the treatment. Because of this, you view its results skeptically and determine that more independent research is necessary to confirm or refute them. Example: Poor critical thinking in an academic context You’re researching a paper on the impact wireless technology has had on developing countries that previously did not have large-scale communications infrastructure. You read an article that seems to confirm your hypothesis: the impact is mainly positive. Rather than evaluating the research methodology, you accept the findings uncritically.

Nonacademic examples

However, you decide to compare this review article with consumer reviews on a different site. You find that these reviews are not as positive. Some customers have had problems installing the alarm, and some have noted that it activates for no apparent reason.

You revisit the original review article. You notice that the words ‘sponsored content’ appear in small print under the article title. Based on this, you conclude that the review is advertising and is therefore not an unbiased source. Example: Poor critical thinking in a nonacademic context You support a candidate in an upcoming election. You visit an online news site affiliated with their political party and read an article that criticizes their opponent. The article claims that the opponent is inexperienced in politics. You accept this without evidence, because it fits your preconceptions about the opponent.

There is no single way to think critically. How you engage with information will depend on the type of source you’re using and the information you need.

However, you can engage with sources in a systematic and critical way by asking certain questions when you encounter information. Like the CRAAP test , these questions focus on the currency , relevance , authority , accuracy , and purpose of a source of information.

When encountering information, ask:

  • Who is the author? Are they an expert in their field?
  • What do they say? Is their argument clear? Can you summarise it?
  • When did they say this? Is the source current?
  • Where is the information published? Is it an academic article? Is it a blog? A newspaper article?
  • Why did the author publish it? What is their motivation?
  • How do they make their argument? Is it backed up by evidence? Does it rely on opinion, speculation, or appeals to emotion ? Do they address alternative arguments?

Critical thinking also involves being aware of your own biases, not only those of others. When you make an argument or draw your own conclusions, you can ask similar questions about your own writing:

  • Am I only considering evidence that supports my preconceptions?
  • Is my argument expressed clearly and backed up with credible sources?
  • Would I be convinced by this argument coming from someone else?

Critical thinking refers to the ability to evaluate information and to be aware of biases or assumptions, including your own.

Like information literacy , it involves evaluating arguments, identifying and solving problems in an objective and systematic way, and clearly communicating your ideas.

Critical thinking skills include the ability to:

You can assess information and arguments critically by asking certain questions about the source. You can use the CRAAP test , focusing on the currency , relevance , authority , accuracy , and purpose of a source of information.

Ask questions such as:

  • Who is the author? Are they an expert?
  • How do they make their argument? Is it backed up by evidence?

A credible source should pass the CRAAP test  and follow these guidelines:

  • The information should be up to date and current.
  • The author and publication should be a trusted authority on the subject you are researching.
  • The sources the author cited should be easy to find, clear, and unbiased.
  • For a web source, the URL and layout should signify that it is trustworthy.

Information literacy refers to a broad range of skills, including the ability to find, evaluate, and use sources of information effectively.

Being information literate means that you:

  • Know how to find credible sources
  • Use relevant sources to inform your research
  • Understand what constitutes plagiarism
  • Know how to cite your sources correctly

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the ‘Cite this Scribbr article’ button to automatically add the citation to our free Reference Generator.

Ryan, E. (2022, September 25). What Is Critical Thinking? | Definition & Examples. Scribbr. Retrieved 29 April 2024, from https://www.scribbr.co.uk/working-sources/critical-thinking-meaning/

Is this article helpful?

Eoghan Ryan

Eoghan Ryan

Other students also liked, how to paraphrase | step-by-step guide & examples, tertiary sources explained | quick guide & examples, how to quote | citing quotes in harvard & apa.

Evaluating a Text

Introduction: critical thinking.

evaluating meaning in critical thinking

That’s where critical thinking comes in. The “critical” in critical thinking does not mean that you’re finding fault with a text.  On the other hand, it does mean that you evaluate a text to see how well it works, in order to decide the worthiness or quality of the author’s ideas.  Evaluation is based on objective (not subjective or emotional) criteria: the text’s main idea, the relevance and quality of the evidence supporting that main idea, and how the author presents that main idea. Since so many different things can be defined as text—an email, a television commercial, a blog post, an election campaign platform—in addition to a written article, the ability to evaluate a text is an important transferable skill.

The video below discusses critical thinking within the context of reading.

Critical thinking depends on analysis. According to The American Heritage Dictionary , analysis is “the separation of an intellectual or material whole into its constituents parts for individual study.”  [2]   Analytical reading starts with finding and understanding a main idea, but then considers the validity of that main idea by studying its parts, to see how logically they fit together. The parts of a text fall into those two main categories, content and language, and include things such as the author’s main idea, supporting ideas/evidence, purpose, assumptions, point of view, and tone—the devices or tools that authors use. You’ll ask and answer many questions based on the parts of a text, such as the following:

  • Is the text’s main idea or assertion reasonable and logical?
  • Are there underlying assumptions or perspectives that affect the text’s content and language?
  • How does the language influence the way a reader understands the text?
  • and more…

For example, if you examine the text of an ad for clothing detergent, you may find that the author an author manipulates language and content to persuade you to accept a certain point of view that may not be fully supported or logically valid. The ad may provide an opinion from a “real” parent, speaking emotionally in a sincere tone, that Brand X gets his kids’ clothes cleaner than other brands. The ad may provide statistics to back up its claim: “four out of five parents prefer Brand X.” Yet how valid and valuable is this content?  How believable is the text’s claim?  Analyzing the parts of the ad’s text will help you determine its value.

It’s even more important to think critically and analytically to evaluate a text when an author manipulates the parts of a text in a less obvious way, in a magazine article, a political speech, a source for a research paper, or an appeal for funds. As a critical reader, you need to be able to identify the author’s techniques so you can decide whether to accept or question the message in the text. Understanding critically and analytically how a text works will help you determine its value.

[1] Wording of the evaluation question quoted from Duncan, Jennifer, modified by Michael O’Connor. Reading Critically handout. The Writing Centre, University of Toronto Scarborough. https://www.stetson.edu/other/writing-program/media/CRITICAL%20READING.pdf

[2] The American Heritage Dictionary. https://ahdictionary.com/word/search.html?q=analysis

  • Introduction: Critical Thinking. Authored by : Susan Oaks. Project : Introduction to College Reading & Writing. License : CC BY-NC: Attribution-NonCommercial
  • image of a woman with question marks superimposed. Authored by : Gerd Altmann. Provided by : Pixabay. Located at : https://pixabay.com/photos/question-mark-question-student-girl-4009695/ . License : CC0: No Rights Reserved
  • video Critical Thinking and Reading. Authored by : Marc Franco. Provided by : Snap Language. Located at : https://www.youtube.com/watch?v=iOGvwPmKOqQ&t=36s . License : Other . License Terms : YouTube video

Footer Logo Lumen Candela

Privacy Policy

This website may not work correctly because your browser is out of date. Please update your browser .

  • Evaluative thinking

Resource link

This set of webpages and video from the Department of Education in New South Wales, Australia, provides background information on evaluative thinking and its use.

Evaluative thinking is a disciplined approach to inquiry and reflective practice that helps us make  sound  judgements using  good  evidence, as a matter of habit.

The short video is a good place to start, and while it focuses on using evaluative thinking in educational contexts, it is easy to understand and adapt to other situations. Evaluative thinking is introduced as a form of critical thinking, and the resource then goes on to describe several key considerations in applying the technique.

Further detail is supplied on these web pages regarding the values that underpin evaluative thinking:

And the disciplines that can help us to activate evaluative thinking

  • Suspending judgement
  • Asking important questions
  • Using existing evidence well
  • Strengthening our evidence base

Department of Education. (2023). Evaluative thinking . New South Wales Government. https://education.nsw.gov.au/teaching-and-learning/professional-learning/pl-resources/evaluation-resource-hub/evaluative-thinking

Back to top

© 2022 BetterEvaluation. All right reserved.

SEP logo

  • Table of Contents
  • New in this Archive
  • Chronological
  • Editorial Information
  • About the SEP
  • Editorial Board
  • How to Cite the SEP
  • Special Characters
  • Support the SEP
  • PDFs for SEP Friends
  • Make a Donation
  • SEPIA for Libraries
  • Entry Contents

Bibliography

Academic tools.

  • Friends PDF Preview
  • Author and Citation Info
  • Back to Top

Critical Thinking

Critical thinking is a widely accepted educational goal. Its definition is contested, but the competing definitions can be understood as differing conceptions of the same basic concept: careful thinking directed to a goal. Conceptions differ with respect to the scope of such thinking, the type of goal, the criteria and norms for thinking carefully, and the thinking components on which they focus. Its adoption as an educational goal has been recommended on the basis of respect for students’ autonomy and preparing students for success in life and for democratic citizenship. “Critical thinkers” have the dispositions and abilities that lead them to think critically when appropriate. The abilities can be identified directly; the dispositions indirectly, by considering what factors contribute to or impede exercise of the abilities. Standardized tests have been developed to assess the degree to which a person possesses such dispositions and abilities. Educational intervention has been shown experimentally to improve them, particularly when it includes dialogue, anchored instruction, and mentoring. Controversies have arisen over the generalizability of critical thinking across domains, over alleged bias in critical thinking theories and instruction, and over the relationship of critical thinking to other types of thinking.

2.1 Dewey’s Three Main Examples

2.2 dewey’s other examples, 2.3 further examples, 2.4 non-examples, 3. the definition of critical thinking, 4. its value, 5. the process of thinking critically, 6. components of the process, 7. contributory dispositions and abilities, 8.1 initiating dispositions, 8.2 internal dispositions, 9. critical thinking abilities, 10. required knowledge, 11. educational methods, 12.1 the generalizability of critical thinking, 12.2 bias in critical thinking theory and pedagogy, 12.3 relationship of critical thinking to other types of thinking, other internet resources, related entries.

Use of the term ‘critical thinking’ to describe an educational goal goes back to the American philosopher John Dewey (1910), who more commonly called it ‘reflective thinking’. He defined it as

active, persistent and careful consideration of any belief or supposed form of knowledge in the light of the grounds that support it, and the further conclusions to which it tends. (Dewey 1910: 6; 1933: 9)

and identified a habit of such consideration with a scientific attitude of mind. His lengthy quotations of Francis Bacon, John Locke, and John Stuart Mill indicate that he was not the first person to propose development of a scientific attitude of mind as an educational goal.

In the 1930s, many of the schools that participated in the Eight-Year Study of the Progressive Education Association (Aikin 1942) adopted critical thinking as an educational goal, for whose achievement the study’s Evaluation Staff developed tests (Smith, Tyler, & Evaluation Staff 1942). Glaser (1941) showed experimentally that it was possible to improve the critical thinking of high school students. Bloom’s influential taxonomy of cognitive educational objectives (Bloom et al. 1956) incorporated critical thinking abilities. Ennis (1962) proposed 12 aspects of critical thinking as a basis for research on the teaching and evaluation of critical thinking ability.

Since 1980, an annual international conference in California on critical thinking and educational reform has attracted tens of thousands of educators from all levels of education and from many parts of the world. Also since 1980, the state university system in California has required all undergraduate students to take a critical thinking course. Since 1983, the Association for Informal Logic and Critical Thinking has sponsored sessions in conjunction with the divisional meetings of the American Philosophical Association (APA). In 1987, the APA’s Committee on Pre-College Philosophy commissioned a consensus statement on critical thinking for purposes of educational assessment and instruction (Facione 1990a). Researchers have developed standardized tests of critical thinking abilities and dispositions; for details, see the Supplement on Assessment . Educational jurisdictions around the world now include critical thinking in guidelines for curriculum and assessment. Political and business leaders endorse its importance.

For details on this history, see the Supplement on History .

2. Examples and Non-Examples

Before considering the definition of critical thinking, it will be helpful to have in mind some examples of critical thinking, as well as some examples of kinds of thinking that would apparently not count as critical thinking.

Dewey (1910: 68–71; 1933: 91–94) takes as paradigms of reflective thinking three class papers of students in which they describe their thinking. The examples range from the everyday to the scientific.

Transit : “The other day, when I was down town on 16th Street, a clock caught my eye. I saw that the hands pointed to 12:20. This suggested that I had an engagement at 124th Street, at one o'clock. I reasoned that as it had taken me an hour to come down on a surface car, I should probably be twenty minutes late if I returned the same way. I might save twenty minutes by a subway express. But was there a station near? If not, I might lose more than twenty minutes in looking for one. Then I thought of the elevated, and I saw there was such a line within two blocks. But where was the station? If it were several blocks above or below the street I was on, I should lose time instead of gaining it. My mind went back to the subway express as quicker than the elevated; furthermore, I remembered that it went nearer than the elevated to the part of 124th Street I wished to reach, so that time would be saved at the end of the journey. I concluded in favor of the subway, and reached my destination by one o’clock.” (Dewey 1910: 68-69; 1933: 91-92)

Ferryboat : “Projecting nearly horizontally from the upper deck of the ferryboat on which I daily cross the river is a long white pole, having a gilded ball at its tip. It suggested a flagpole when I first saw it; its color, shape, and gilded ball agreed with this idea, and these reasons seemed to justify me in this belief. But soon difficulties presented themselves. The pole was nearly horizontal, an unusual position for a flagpole; in the next place, there was no pulley, ring, or cord by which to attach a flag; finally, there were elsewhere on the boat two vertical staffs from which flags were occasionally flown. It seemed probable that the pole was not there for flag-flying.

“I then tried to imagine all possible purposes of the pole, and to consider for which of these it was best suited: (a) Possibly it was an ornament. But as all the ferryboats and even the tugboats carried poles, this hypothesis was rejected. (b) Possibly it was the terminal of a wireless telegraph. But the same considerations made this improbable. Besides, the more natural place for such a terminal would be the highest part of the boat, on top of the pilot house. (c) Its purpose might be to point out the direction in which the boat is moving.

“In support of this conclusion, I discovered that the pole was lower than the pilot house, so that the steersman could easily see it. Moreover, the tip was enough higher than the base, so that, from the pilot's position, it must appear to project far out in front of the boat. Morevoer, the pilot being near the front of the boat, he would need some such guide as to its direction. Tugboats would also need poles for such a purpose. This hypothesis was so much more probable than the others that I accepted it. I formed the conclusion that the pole was set up for the purpose of showing the pilot the direction in which the boat pointed, to enable him to steer correctly.” (Dewey 1910: 69-70; 1933: 92-93)

Bubbles : “In washing tumblers in hot soapsuds and placing them mouth downward on a plate, bubbles appeared on the outside of the mouth of the tumblers and then went inside. Why? The presence of bubbles suggests air, which I note must come from inside the tumbler. I see that the soapy water on the plate prevents escape of the air save as it may be caught in bubbles. But why should air leave the tumbler? There was no substance entering to force it out. It must have expanded. It expands by increase of heat, or by decrease of pressure, or both. Could the air have become heated after the tumbler was taken from the hot suds? Clearly not the air that was already entangled in the water. If heated air was the cause, cold air must have entered in transferring the tumblers from the suds to the plate. I test to see if this supposition is true by taking several more tumblers out. Some I shake so as to make sure of entrapping cold air in them. Some I take out holding mouth downward in order to prevent cold air from entering. Bubbles appear on the outside of every one of the former and on none of the latter. I must be right in my inference. Air from the outside must have been expanded by the heat of the tumbler, which explains the appearance of the bubbles on the outside. But why do they then go inside? Cold contracts. The tumbler cooled and also the air inside it. Tension was removed, and hence bubbles appeared inside. To be sure of this, I test by placing a cup of ice on the tumbler while the bubbles are still forming outside. They soon reverse” (Dewey 1910: 70–71; 1933: 93–94).

Dewey (1910, 1933) sprinkles his book with other examples of critical thinking. We will refer to the following.

Weather : A man on a walk notices that it has suddenly become cool, thinks that it is probably going to rain, looks up and sees a dark cloud obscuring the sun, and quickens his steps (1910: 6–10; 1933: 9–13).

Disorder : A man finds his rooms on his return to them in disorder with his belongings thrown about, thinks at first of burglary as an explanation, then thinks of mischievous children as being an alternative explanation, then looks to see whether valuables are missing, and discovers that they are (1910: 82–83; 1933: 166–168).

Typhoid : A physician diagnosing a patient whose conspicuous symptoms suggest typhoid avoids drawing a conclusion until more data are gathered by questioning the patient and by making tests (1910: 85–86; 1933: 170).

Blur : A moving blur catches our eye in the distance, we ask ourselves whether it is a cloud of whirling dust or a tree moving its branches or a man signaling to us, we think of other traits that should be found on each of those possibilities, and we look and see if those traits are found (1910: 102, 108; 1933: 121, 133).

Suction pump : In thinking about the suction pump, the scientist first notes that it will draw water only to a maximum height of 33 feet at sea level and to a lesser maximum height at higher elevations, selects for attention the differing atmospheric pressure at these elevations, sets up experiments in which the air is removed from a vessel containing water (when suction no longer works) and in which the weight of air at various levels is calculated, compares the results of reasoning about the height to which a given weight of air will allow a suction pump to raise water with the observed maximum height at different elevations, and finally assimilates the suction pump to such apparently different phenomena as the siphon and the rising of a balloon (1910: 150–153; 1933: 195–198).

Diamond : A passenger in a car driving in a diamond lane reserved for vehicles with at least one passenger notices that the diamond marks on the pavement are far apart in some places and close together in others. Why? The driver suggests that the reason may be that the diamond marks are not needed where there is a solid double line separating the diamond line from the adjoining lane, but are needed when there is a dotted single line permitting crossing into the diamond lane. Further observation confirms that the diamonds are close together when a dotted line separates the diamond lane from its neighbour, but otherwise far apart.

Rash : A woman suddenly develops a very itchy red rash on her throat and upper chest. She recently noticed a mark on the back of her right hand, but was not sure whether the mark was a rash or a scrape. She lies down in bed and thinks about what might be causing the rash and what to do about it. About two weeks before, she began taking blood pressure medication that contained a sulfa drug, and the pharmacist had warned her, in view of a previous allergic reaction to a medication containing a sulfa drug, to be on the alert for an allergic reaction; however, she had been taking the medication for two weeks with no such effect. The day before, she began using a new cream on her neck and upper chest; against the new cream as the cause was mark on the back of her hand, which had not been exposed to the cream. She began taking probiotics about a month before. She also recently started new eye drops, but she supposed that manufacturers of eye drops would be careful not to include allergy-causing components in the medication. The rash might be a heat rash, since she recently was sweating profusely from her upper body. Since she is about to go away on a short vacation, where she would not have access to her usual physician, she decides to keep taking the probiotics and using the new eye drops but to discontinue the blood pressure medication and to switch back to the old cream for her neck and upper chest. She forms a plan to consult her regular physician on her return about the blood pressure medication.

Candidate : Although Dewey included no examples of thinking directed at appraising the arguments of others, such thinking has come to be considered a kind of critical thinking. We find an example of such thinking in the performance task on the Collegiate Learning Assessment (CLA+), which its sponsoring organization describes as

a performance-based assessment that provides a measure of an institution’s contribution to the development of critical-thinking and written communication skills of its students. (Council for Aid to Education 2017)

A sample task posted on its website requires the test-taker to write a report for public distribution evaluating a fictional candidate’s policy proposals and their supporting arguments, using supplied background documents, with a recommendation on whether to endorse the candidate.

Immediate acceptance of an idea that suggests itself as a solution to a problem (e.g., a possible explanation of an event or phenomenon, an action that seems likely to produce a desired result) is “uncritical thinking, the minimum of reflection” (Dewey 1910: 13). On-going suspension of judgment in the light of doubt about a possible solution is not critical thinking (Dewey 1910: 108). Critique driven by a dogmatically held political or religious ideology is not critical thinking; thus Paulo Freire (1968 [1970]) is using the term (e.g., at 1970: 71, 81, 100, 146) in a more politically freighted sense that includes not only reflection but also revolutionary action against oppression. Derivation of a conclusion from given data using an algorithm is not critical thinking.

What is critical thinking? There are many definitions. Ennis (2016) lists 14 philosophically oriented scholarly definitions and three dictionary definitions. Following Rawls (1971), who distinguished his conception of justice from a utilitarian conception but regarded them as rival conceptions of the same concept, Ennis maintains that the 17 definitions are different conceptions of the same concept. Rawls articulated the shared concept of justice as

a characteristic set of principles for assigning basic rights and duties and for determining… the proper distribution of the benefits and burdens of social cooperation. (Rawls 1971: 5)

Bailin et al. (1999b) claim that, if one considers what sorts of thinking an educator would take not to be critical thinking and what sorts to be critical thinking, one can conclude that educators typically understand critical thinking to have at least three features.

  • It is done for the purpose of making up one’s mind about what to believe or do.
  • The person engaging in the thinking is trying to fulfill standards of adequacy and accuracy appropriate to the thinking.
  • The thinking fulfills the relevant standards to some threshold level.

One could sum up the core concept that involves these three features by saying that critical thinking is careful goal-directed thinking. This core concept seems to apply to all the examples of critical thinking described in the previous section. As for the non-examples, their exclusion depends on construing careful thinking as excluding jumping immediately to conclusions, suspending judgment no matter how strong the evidence, reasoning from an unquestioned ideological or religious perspective, and routinely using an algorithm to answer a question.

If the core of critical thinking is careful goal-directed thinking, conceptions of it can vary according to its presumed scope, its presumed goal, one’s criteria and threshold for being careful, and the thinking component on which one focuses As to its scope, some conceptions (e.g., Dewey 1910, 1933) restrict it to constructive thinking on the basis of one’s own observations and experiments, others (e.g., Ennis 1962; Fisher & Scriven 1997; Johnson 1992) to appraisal of the products of such thinking. Ennis (1991) and Bailin et al. (1999b) take it to cover both construction and appraisal. As to its goal, some conceptions restrict it to forming a judgment (Dewey 1910, 1933; Lipman 1987; Facione 1990a). Others allow for actions as well as beliefs as the end point of a process of critical thinking (Ennis 1991; Bailin et al. 1999b). As to the criteria and threshold for being careful, definitions vary in the term used to indicate that critical thinking satisfies certain norms: “intellectually disciplined” (Scriven & Paul 1987), “reasonable” (Ennis 1991), “skillful” (Lipman 1987), “skilled” (Fisher & Scriven 1997), “careful” (Bailin & Battersby 2009). Some definitions specify these norms, referring variously to “consideration of any belief or supposed form of knowledge in the light of the grounds that support it and the further conclusions to which it tends” (Dewey 1910, 1933); “the methods of logical inquiry and reasoning” (Glaser 1941); “conceptualizing, applying, analyzing, synthesizing, and/or evaluating information gathered from, or generated by, observation, experience, reflection, reasoning, or communication” (Scriven & Paul 1987); the requirement that “it is sensitive to context, relies on criteria, and is self-correcting” (Lipman 1987); “evidential, conceptual, methodological, criteriological, or contextual considerations” (Facione 1990a); and “plus-minus considerations of the product in terms of appropriate standards (or criteria)” (Johnson 1992). Stanovich and Stanovich (2010) propose to ground the concept of critical thinking in the concept of rationality, which they understand as combining epistemic rationality (fitting one’s beliefs to the world) and instrumental rationality (optimizing goal fulfillment); a critical thinker, in their view, is someone with “a propensity to override suboptimal responses from the autonomous mind” (2010: 227). These variant specifications of norms for critical thinking are not necessarily incompatible with one another, and in any case presuppose the core notion of thinking carefully. As to the thinking component singled out, some definitions focus on suspension of judgment during the thinking (Dewey 1910; McPeck 1981), others on inquiry while judgment is suspended (Bailin & Battersby 2009), others on the resulting judgment (Facione 1990a), and still others on the subsequent emotive response (Siegel 1988).

In educational contexts, a definition of critical thinking is a “programmatic definition” (Scheffler 1960: 19). It expresses a practical program for achieving an educational goal. For this purpose, a one-sentence formulaic definition is much less useful than articulation of a critical thinking process, with criteria and standards for the kinds of thinking that the process may involve. The real educational goal is recognition, adoption and implementation by students of those criteria and standards. That adoption and implementation in turn consists in acquiring the knowledge, abilities and dispositions of a critical thinker.

Conceptions of critical thinking generally do not include moral integrity as part of the concept. Dewey, for example, took critical thinking to be the ultimate intellectual goal of education, but distinguished it from the development of social cooperation among school children, which he took to be the central moral goal. Ennis (1996, 2011) added to his previous list of critical thinking dispositions a group of dispositions to care about the dignity and worth of every person, which he described as a “correlative” (1996) disposition without which critical thinking would be less valuable and perhaps harmful. An educational program that aimed at developing critical thinking but not the correlative disposition to care about the dignity and worth of every person, he asserted, “would be deficient and perhaps dangerous” (Ennis 1996: 172).

Dewey thought that education for reflective thinking would be of value to both the individual and society; recognition in educational practice of the kinship to the scientific attitude of children’s native curiosity, fertile imagination and love of experimental inquiry “would make for individual happiness and the reduction of social waste” (Dewey 1910: iii). Schools participating in the Eight-Year Study took development of the habit of reflective thinking and skill in solving problems as a means to leading young people to understand, appreciate and live the democratic way of life characteristic of the United States (Aikin 1942: 17–18, 81). Harvey Siegel (1988: 55–61) has offered four considerations in support of adopting critical thinking as an educational ideal. (1) Respect for persons requires that schools and teachers honour students’ demands for reasons and explanations, deal with students honestly, and recognize the need to confront students’ independent judgment; these requirements concern the manner in which teachers treat students. (2) Education has the task of preparing children to be successful adults, a task that requires development of their self-sufficiency. (3) Education should initiate children into the rational traditions in such fields as history, science and mathematics. (4) Education should prepare children to become democratic citizens, which requires reasoned procedures and critical talents and attitudes. To supplement these considerations, Siegel (1988: 62–90) responds to two objections: the ideology objection that adoption of any educational ideal requires a prior ideological commitment and the indoctrination objection that cultivation of critical thinking cannot escape being a form of indoctrination.

Despite the diversity of our 11 examples, one can recognize a common pattern. Dewey analyzed it as consisting of five phases:

  • suggestions , in which the mind leaps forward to a possible solution;
  • an intellectualization of the difficulty or perplexity into a problem to be solved, a question for which the answer must be sought;
  • the use of one suggestion after another as a leading idea, or hypothesis , to initiate and guide observation and other operations in collection of factual material;
  • the mental elaboration of the idea or supposition as an idea or supposition ( reasoning , in the sense on which reasoning is a part, not the whole, of inference); and
  • testing the hypothesis by overt or imaginative action. (Dewey 1933: 106–107; italics in original)

The process of reflective thinking consisting of these phases would be preceded by a perplexed, troubled or confused situation and followed by a cleared-up, unified, resolved situation (Dewey 1933: 106). The term ‘phases’ replaced the term ‘steps’ (Dewey 1910: 72), thus removing the earlier suggestion of an invariant sequence. Variants of the above analysis appeared in (Dewey 1916: 177) and (Dewey 1938: 101–119).

The variant formulations indicate the difficulty of giving a single logical analysis of such a varied process. The process of critical thinking may have a spiral pattern, with the problem being redefined in the light of obstacles to solving it as originally formulated. For example, the person in Transit might have concluded that getting to the appointment at the scheduled time was impossible and have reformulated the problem as that of rescheduling the appointment for a mutually convenient time. Further, defining a problem does not always follow after or lead immediately to an idea of a suggested solution. Nor should it do so, as Dewey himself recognized in describing the physician in Typhoid as avoiding any strong preference for this or that conclusion before getting further information (Dewey 1910: 85; 1933: 170). People with a hypothesis in mind, even one to which they have a very weak commitment, have a so-called “confirmation bias” (Nickerson 1998): they are likely to pay attention to evidence that confirms the hypothesis and to ignore evidence that counts against it or for some competing hypothesis. Detectives, intelligence agencies, and investigators of airplane accidents are well advised to gather relevant evidence systematically and to postpone even tentative adoption of an explanatory hypothesis until the collected evidence rules out with the appropriate degree of certainty all but one explanation. Dewey’s analysis of the critical thinking process can be faulted as well for requiring acceptance or rejection of a possible solution to a defined problem, with no allowance for deciding in the light of the available evidence to suspend judgment. Further, given the great variety of kinds of problems for which reflection is appropriate, there is likely to be variation in its component events. Perhaps the best way to conceptualize the critical thinking process is as a checklist whose component events can occur in a variety of orders, selectively, and more than once. These component events might include (1) noticing a difficulty, (2) defining the problem, (3) dividing the problem into manageable sub-problems, (4) formulating a variety of possible solutions to the problem or sub-problem, (5) determining what evidence is relevant to deciding among possible solutions to the problem or sub-problem, (6) devising a plan of systematic observation or experiment that will uncover the relevant evidence, (7) carrying out the plan of systematic observation or experimentation, (8) noting the results of the systematic observation or experiment, (9) gathering relevant testimony and information from others, (10) judging the credibility of testimony and information gathered from others, (11) drawing conclusions from gathered evidence and accepted testimony, and (12) accepting a solution that the evidence adequately supports (cf. Hitchcock 2017: 485).

Checklist conceptions of the process of critical thinking are open to the objection that they are too mechanical and procedural to fit the multi-dimensional and emotionally charged issues for which critical thinking is urgently needed (Paul 1984). For such issues, a more dialectical process is advocated, in which competing relevant world views are identified, their implications explored, and some sort of creative synthesis attempted.

If one considers the critical thinking process illustrated by the 11 examples, one can identify distinct kinds of mental acts and mental states that form part of it. To distinguish, label and briefly characterize these components is a useful preliminary to identifying abilities, skills, dispositions, attitudes, habits and the like that contribute causally to thinking critically. Identifying such abilities and habits is in turn a useful preliminary to setting educational goals. Setting the goals is in its turn a useful preliminary to designing strategies for helping learners to achieve the goals and to designing ways of measuring the extent to which learners have done so. Such measures provide both feedback to learners on their achievement and a basis for experimental research on the effectiveness of various strategies for educating people to think critically. Let us begin, then, by distinguishing the kinds of mental acts and mental events that can occur in a critical thinking process.

  • Observing : One notices something in one’s immediate environment (sudden cooling of temperature in Weather , bubbles forming outside a glass and then going inside in Bubbles , a moving blur in the distance in Blur , a rash in Rash ). Or one notes the results of an experiment or systematic observation (valuables missing in Disorder , no suction without air pressure in Suction pump )
  • Feeling : One feels puzzled or uncertain about something (how to get to an appointment on time in Transit , why the diamonds vary in frequency in Diamond ). One wants to resolve this perplexity. One feels satisfaction once one has worked out an answer (to take the subway express in Transit , diamonds closer when needed as a warning in Diamond ).
  • Wondering : One formulates a question to be addressed (why bubbles form outside a tumbler taken from hot water in Bubbles , how suction pumps work in Suction pump , what caused the rash in Rash ).
  • Imagining : One thinks of possible answers (bus or subway or elevated in Transit , flagpole or ornament or wireless communication aid or direction indicator in Ferryboat , allergic reaction or heat rash in Rash ).
  • Inferring : One works out what would be the case if a possible answer were assumed (valuables missing if there has been a burglary in Disorder , earlier start to the rash if it is an allergic reaction to a sulfa drug in Rash ). Or one draws a conclusion once sufficient relevant evidence is gathered (take the subway in Transit , burglary in Disorder , discontinue blood pressure medication and new cream in Rash ).
  • Knowledge : One uses stored knowledge of the subject-matter to generate possible answers or to infer what would be expected on the assumption of a particular answer (knowledge of a city’s public transit system in Transit , of the requirements for a flagpole in Ferryboat , of Boyle’s law in Bubbles , of allergic reactions in Rash ).
  • Experimenting : One designs and carries out an experiment or a systematic observation to find out whether the results deduced from a possible answer will occur (looking at the location of the flagpole in relation to the pilot’s position in Ferryboat , putting an ice cube on top of a tumbler taken from hot water in Bubbles , measuring the height to which a suction pump will draw water at different elevations in Suction pump , noticing the frequency of diamonds when movement to or from a diamond lane is allowed in Diamond ).
  • Consulting : One finds a source of information, gets the information from the source, and makes a judgment on whether to accept it. None of our 11 examples include searching for sources of information. In this respect they are unrepresentative, since most people nowadays have almost instant access to information relevant to answering any question, including many of those illustrated by the examples. However, Candidate includes the activities of extracting information from sources and evaluating its credibility.
  • Identifying and analyzing arguments : One notices an argument and works out its structure and content as a preliminary to evaluating its strength. This activity is central to Candidate . It is an important part of a critical thinking process in which one surveys arguments for various positions on an issue.
  • Judging : One makes a judgment on the basis of accumulated evidence and reasoning, such as the judgment in Ferryboat that the purpose of the pole is to provide direction to the pilot.
  • Deciding : One makes a decision on what to do or on what policy to adopt, as in the decision in Transit to take the subway.

By definition, a person who does something voluntarily is both willing and able to do that thing at that time. Both the willingness and the ability contribute causally to the person’s action, in the sense that the voluntary action would not occur if either (or both) of these were lacking. For example, suppose that one is standing with one’s arms at one’s sides and one voluntarily lifts one’s right arm to an extended horizontal position. One would not do so if one were unable to lift one’s arm, if for example one’s right side was paralyzed as the result of a stroke. Nor would one do so if one were unwilling to lift one’s arm, if for example one were participating in a street demonstration at which a white supremacist was urging the crowd to lift their right arm in a Nazi salute and one were unwilling to express support in this way for the racist Nazi ideology. The same analysis applies to a voluntary mental process of thinking critically. It requires both willingness and ability to think critically, including willingness and ability to perform each of the mental acts that compose the process and to coordinate those acts in a sequence that is directed at resolving the initiating perplexity.

Consider willingness first. We can identify causal contributors to willingness to think critically by considering factors that would cause a person who was able to think critically about an issue nevertheless not to do so (Hamby 2014). For each factor, the opposite condition thus contributes causally to willingness to think critically on a particular occasion. For example, people who habitually jump to conclusions without considering alternatives will not think critically about issues that arise, even if they have the required abilities. The contrary condition of willingness to suspend judgment is thus a causal contributor to thinking critically.

Now consider ability. In contrast to the ability to move one’s arm, which can be completely absent because a stroke has left the arm paralyzed, the ability to think critically is a developed ability, whose absence is not a complete absence of ability to think but absence of ability to think well. We can identify the ability to think well directly, in terms of the norms and standards for good thinking. In general, to be able do well the thinking activities that can be components of a critical thinking process, one needs to know the concepts and principles that characterize their good performance, to recognize in particular cases that the concepts and principles apply, and to apply them. The knowledge, recognition and application may be procedural rather than declarative. It may be domain-specific rather than widely applicable, and in either case may need subject-matter knowledge, sometimes of a deep kind.

Reflections of the sort illustrated by the previous two paragraphs have led scholars to identify the knowledge, abilities and dispositions of a “critical thinker”, i.e., someone who thinks critically whenever it is appropriate to do so. We turn now to these three types of causal contributors to thinking critically. We start with dispositions, since arguably these are the most powerful contributors to being a critical thinker, can be fostered at an early stage of a child’s development, and are susceptible to general improvement (Glaser 1941: 175)

8. Critical Thinking Dispositions

Educational researchers use the term ‘dispositions’ broadly for the habits of mind and attitudes that contribute causally to being a critical thinker. Some writers (e.g., Paul & Elder 2006; Hamby 2014; Bailin & Battersby 2016) propose to use the term ‘virtues’ for this dimension of a critical thinker. The virtues in question, although they are virtues of character, concern the person’s ways of thinking rather than the person’s ways of behaving towards others. They are not moral virtues but intellectual virtues, of the sort articulated by Zagzebski (1996) and discussed by Turri, Alfano, and Greco (2017).

On a realistic conception, thinking dispositions or intellectual virtues are real properties of thinkers. They are general tendencies, propensities, or inclinations to think in particular ways in particular circumstances, and can be genuinely explanatory (Siegel 1999). Sceptics argue that there is no evidence for a specific mental basis for the habits of mind that contribute to thinking critically, and that it is pedagogically misleading to posit such a basis (Bailin et al. 1999a). Whatever their status, critical thinking dispositions need motivation for their initial formation in a child—motivation that may be external or internal. As children develop, the force of habit will gradually become important in sustaining the disposition (Nieto & Valenzuela 2012). Mere force of habit, however, is unlikely to sustain critical thinking dispositions. Critical thinkers must value and enjoy using their knowledge and abilities to think things through for themselves. They must be committed to, and lovers of, inquiry.

A person may have a critical thinking disposition with respect to only some kinds of issues. For example, one could be open-minded about scientific issues but not about religious issues. Similarly, one could be confident in one’s ability to reason about the theological implications of the existence of evil in the world but not in one’s ability to reason about the best design for a guided ballistic missile.

Critical thinking dispositions can usefully be divided into initiating dispositions (those that contribute causally to starting to think critically about an issue) and internal dispositions (those that contribute causally to doing a good job of thinking critically once one has started) (Facione 1990a: 25). The two categories are not mutually exclusive. For example, open-mindedness, in the sense of willingness to consider alternative points of view to one’s own, is both an initiating and an internal disposition.

Using the strategy of considering factors that would block people with the ability to think critically from doing so, we can identify as initiating dispositions for thinking critically attentiveness, a habit of inquiry, self-confidence, courage, open-mindedness, willingness to suspend judgment, trust in reason, wanting evidence for one’s beliefs, and seeking the truth. We consider briefly what each of these dispositions amounts to, in each case citing sources that acknowledge them.

  • Attentiveness : One will not think critically if one fails to recognize an issue that needs to be thought through. For example, the pedestrian in Weather would not have looked up if he had not noticed that the air was suddenly cooler. To be a critical thinker, then, one needs to be habitually attentive to one’s surroundings, noticing not only what one senses but also sources of perplexity in messages received and in one’s own beliefs and attitudes (Facione 1990a: 25; Facione, Facione, & Giancarlo 2001).
  • Habit of inquiry : Inquiry is effortful, and one needs an internal push to engage in it. For example, the student in Bubbles could easily have stopped at idle wondering about the cause of the bubbles rather than reasoning to a hypothesis, then designing and executing an experiment to test it. Thus willingness to think critically needs mental energy and initiative. What can supply that energy? Love of inquiry, or perhaps just a habit of inquiry. Hamby (2015) has argued that willingness to inquire is the central critical thinking virtue, one that encompasses all the others. It is recognized as a critical thinking disposition by Dewey (1910: 29; 1933: 35), Glaser (1941: 5), Ennis (1987: 12; 1991: 8), Facione (1990a: 25), Bailin et al. (1999b: 294), Halpern (1998: 452), and Facione, Facione, & Giancarlo (2001).
  • Self-confidence : Lack of confidence in one’s abilities can block critical thinking. For example, if the woman in Rash lacked confidence in her ability to figure things out for herself, she might just have assumed that the rash on her chest was the allergic reaction to her medication against which the pharmacist had warned her. Thus willingness to think critically requires confidence in one’s ability to inquire (Facione 1990a: 25; Facione, Facione, & Giancarlo 2001).
  • Courage : Fear of thinking for oneself can stop one from doing it. Thus willingness to think critically requires intellectual courage (Paul & Elder 2006: 16).
  • Open-mindedness : A dogmatic attitude will impede thinking critically. For example, a person who adheres rigidly to a “pro-choice” position on the issue of the legal status of induced abortion is likely to be unwilling to consider seriously the issue of when in its development an unborn child acquires a moral right to life. Thus willingness to think critically requires open-mindedness, in the sense of a willingness to examine questions to which one already accepts an answer but which further evidence or reasoning might cause one to answer differently (Dewey 1933; Facione 1990a; Ennis 1991; Bailin et al. 1999b; Halpern 1998, Facione, Facione, & Giancarlo 2001). Paul (1981) emphasizes open-mindedness about alternative world-views, and recommends a dialectical approach to integrating such views as central to what he calls “strong sense” critical thinking.
  • Willingness to suspend judgment : Premature closure on an initial solution will block critical thinking. Thus willingness to think critically requires a willingness to suspend judgment while alternatives are explored (Facione 1990a; Ennis 1991; Halpern 1998).
  • Trust in reason : Since distrust in the processes of reasoned inquiry will dissuade one from engaging in it, trust in them is an initiating critical thinking disposition (Facione 1990a, 25; Bailin et al. 1999b: 294; Facione, Facione, & Giancarlo 2001; Paul & Elder 2006). In reaction to an allegedly exclusive emphasis on reason in critical thinking theory and pedagogy, Thayer-Bacon (2000) argues that intuition, imagination, and emotion have important roles to play in an adequate conception of critical thinking that she calls “constructive thinking”. From her point of view, critical thinking requires trust not only in reason but also in intuition, imagination, and emotion.
  • Seeking the truth : If one does not care about the truth but is content to stick with one’s initial bias on an issue, then one will not think critically about it. Seeking the truth is thus an initiating critical thinking disposition (Bailin et al. 1999b: 294; Facione, Facione, & Giancarlo 2001). A disposition to seek the truth is implicit in more specific critical thinking dispositions, such as trying to be well-informed, considering seriously points of view other than one’s own, looking for alternatives, suspending judgment when the evidence is insufficient, and adopting a position when the evidence supporting it is sufficient.

Some of the initiating dispositions, such as open-mindedness and willingness to suspend judgment, are also internal critical thinking dispositions, in the sense of mental habits or attitudes that contribute causally to doing a good job of critical thinking once one starts the process. But there are many other internal critical thinking dispositions. Some of them are parasitic on one’s conception of good thinking. For example, it is constitutive of good thinking about an issue to formulate the issue clearly and to maintain focus on it. For this purpose, one needs not only the corresponding ability but also the corresponding disposition. Ennis (1991: 8) describes it as the disposition “to determine and maintain focus on the conclusion or question”, Facione (1990a: 25) as “clarity in stating the question or concern”. Other internal dispositions are motivators to continue or adjust the critical thinking process, such as willingness to persist in a complex task and willingness to abandon nonproductive strategies in an attempt to self-correct (Halpern 1998: 452). For a list of identified internal critical thinking dispositions, see the Supplement on Internal Critical Thinking Dispositions .

Some theorists postulate skills, i.e., acquired abilities, as operative in critical thinking. It is not obvious, however, that a good mental act is the exercise of a generic acquired skill. Inferring an expected time of arrival, as in Transit , has some generic components but also uses non-generic subject-matter knowledge. Bailin et al. (1999a) argue against viewing critical thinking skills as generic and discrete, on the ground that skilled performance at a critical thinking task cannot be separated from knowledge of concepts and from domain-specific principles of good thinking. Talk of skills, they concede, is unproblematic if it means merely that a person with critical thinking skills is capable of intelligent performance.

Despite such scepticism, theorists of critical thinking have listed as general contributors to critical thinking what they variously call abilities (Glaser 1941; Ennis 1962, 1991), skills (Facione 1990a; Halpern 1998) or competencies (Fisher & Scriven 1997). Amalgamating these lists would produce a confusing and chaotic cornucopia of more than 50 possible educational objectives, with only partial overlap among them. It makes sense instead to try to understand the reasons for the multiplicity and diversity, and to make a selection according to one’s own reasons for singling out abilities to be developed in a critical thinking curriculum. Two reasons for diversity among lists of critical thinking abilities are the underlying conception of critical thinking and the envisaged educational level. Appraisal-only conceptions, for example, involve a different suite of abilities than constructive-only conceptions. Some lists, such as those in (Glaser 1941), are put forward as educational objectives for secondary school students, whereas others are proposed as objectives for college students (e.g., Facione 1990a).

The abilities described in the remaining paragraphs of this section emerge from reflection on the general abilities needed to do well the thinking activities identified in section 6 as components of the critical thinking process described in section 5 . The derivation of each collection of abilities is accompanied by citation of sources that list such abilities and of standardized tests that claim to test them.

Observational abilities : Careful and accurate observation sometimes requires specialist expertise and practice, as in the case of observing birds and observing accident scenes. However, there are general abilities of noticing what one’s senses are picking up from one’s environment and of being able to articulate clearly and accurately to oneself and others what one has observed. It helps in exercising them to be able to recognize and take into account factors that make one’s observation less trustworthy, such as prior framing of the situation, inadequate time, deficient senses, poor observation conditions, and the like. It helps as well to be skilled at taking steps to make one’s observation more trustworthy, such as moving closer to get a better look, measuring something three times and taking the average, and checking what one thinks one is observing with someone else who is in a good position to observe it. It also helps to be skilled at recognizing respects in which one’s report of one’s observation involves inference rather than direct observation, so that one can then consider whether the inference is justified. These abilities come into play as well when one thinks about whether and with what degree of confidence to accept an observation report, for example in the study of history or in a criminal investigation or in assessing news reports. Observational abilities show up in some lists of critical thinking abilities (Ennis 1962: 90; Facione 1990a: 16; Ennis 1991: 9). There are items testing a person’s ability to judge the credibility of observation reports in the Cornell Critical Thinking Tests, Levels X and Z (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005). Norris and King (1983, 1985, 1990a, 1990b) is a test of ability to appraise observation reports.

Emotional abilities : The emotions that drive a critical thinking process are perplexity or puzzlement, a wish to resolve it, and satisfaction at achieving the desired resolution. Children experience these emotions at an early age, without being trained to do so. Education that takes critical thinking as a goal needs only to channel these emotions and to make sure not to stifle them. Collaborative critical thinking benefits from ability to recognize one’s own and others’ emotional commitments and reactions.

Questioning abilities : A critical thinking process needs transformation of an inchoate sense of perplexity into a clear question. Formulating a question well requires not building in questionable assumptions, not prejudging the issue, and using language that in context is unambiguous and precise enough (Ennis 1962: 97; 1991: 9).

Imaginative abilities : Thinking directed at finding the correct causal explanation of a general phenomenon or particular event requires an ability to imagine possible explanations. Thinking about what policy or plan of action to adopt requires generation of options and consideration of possible consequences of each option. Domain knowledge is required for such creative activity, but a general ability to imagine alternatives is helpful and can be nurtured so as to become easier, quicker, more extensive, and deeper (Dewey 1910: 34–39; 1933: 40–47). Facione (1990a) and Halpern (1998) include the ability to imagine alternatives as a critical thinking ability.

Inferential abilities : The ability to draw conclusions from given information, and to recognize with what degree of certainty one’s own or others’ conclusions follow, is universally recognized as a general critical thinking ability. All 11 examples in section 2 of this article include inferences, some from hypotheses or options (as in Transit , Ferryboat and Disorder ), others from something observed (as in Weather and Rash ). None of these inferences is formally valid. Rather, they are licensed by general, sometimes qualified substantive rules of inference (Toulmin 1958) that rest on domain knowledge—that a bus trip takes about the same time in each direction, that the terminal of a wireless telegraph would be located on the highest possible place, that sudden cooling is often followed by rain, that an allergic reaction to a sulfa drug generally shows up soon after one starts taking it. It is a matter of controversy to what extent the specialized ability to deduce conclusions from premisses using formal rules of inference is needed for critical thinking. Dewey (1933) locates logical forms in setting out the products of reflection rather than in the process of reflection. Ennis (1981a), on the other hand, maintains that a liberally-educated person should have the following abilities: to translate natural-language statements into statements using the standard logical operators, to use appropriately the language of necessary and sufficient conditions, to deal with argument forms and arguments containing symbols, to determine whether in virtue of an argument’s form its conclusion follows necessarily from its premisses, to reason with logically complex propositions, and to apply the rules and procedures of deductive logic. Inferential abilities are recognized as critical thinking abilities by Glaser (1941: 6), Facione (1990a: 9), Ennis (1991: 9), Fisher & Scriven (1997: 99, 111), and Halpern (1998: 452). Items testing inferential abilities constitute two of the five subtests of the Watson Glaser Critical Thinking Appraisal (Watson & Glaser 1980a, 1980b, 1994), two of the four sections in the Cornell Critical Thinking Test Level X (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005), three of the seven sections in the Cornell Critical Thinking Test Level Z (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005), 11 of the 34 items on Forms A and B of the California Critical Thinking Skills Test (Facione 1990b, 1992), and a high but variable proportion of the 25 selected-response questions in the Collegiate Learning Assessment (Council for Aid to Education 2017).

Experimenting abilities : Knowing how to design and execute an experiment is important not just in scientific research but also in everyday life, as in Rash . Dewey devoted a whole chapter of his How We Think (1910: 145–156; 1933: 190–202) to the superiority of experimentation over observation in advancing knowledge. Experimenting abilities come into play at one remove in appraising reports of scientific studies. Skill in designing and executing experiments includes the acknowledged abilities to appraise evidence (Glaser 1941: 6), to carry out experiments and to apply appropriate statistical inference techniques (Facione 1990a: 9), to judge inductions to an explanatory hypothesis (Ennis 1991: 9), and to recognize the need for an adequately large sample size (Halpern 1998). The Cornell Critical Thinking Test Level Z (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005) includes four items (out of 52) on experimental design. The Collegiate Learning Assessment (Council for Aid to Education 2017) makes room for appraisal of study design in both its performance task and its selected-response questions.

Consulting abilities : Skill at consulting sources of information comes into play when one seeks information to help resolve a problem, as in Candidate . Ability to find and appraise information includes ability to gather and marshal pertinent information (Glaser 1941: 6), to judge whether a statement made by an alleged authority is acceptable (Ennis 1962: 84), to plan a search for desired information (Facione 1990a: 9), and to judge the credibility of a source (Ennis 1991: 9). Ability to judge the credibility of statements is tested by 24 items (out of 76) in the Cornell Critical Thinking Test Level X (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005) and by four items (out of 52) in the Cornell Critical Thinking Test Level Z (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005). The College Learning Assessment’s performance task requires evaluation of whether information in documents is credible or unreliable (Council for Aid to Education 2017).

Argument analysis abilities : The ability to identify and analyze arguments contributes to the process of surveying arguments on an issue in order to form one’s own reasoned judgment, as in Candidate . The ability to detect and analyze arguments is recognized as a critical thinking skill by Facione (1990a: 7–8), Ennis (1991: 9) and Halpern (1998). Five items (out of 34) on the California Critical Thinking Skills Test (Facione 1990b, 1992) test skill at argument analysis. The College Learning Assessment (Council for Aid to Education 2017) incorporates argument analysis in its selected-response tests of critical reading and evaluation and of critiquing an argument.

Judging skills and deciding skills : Skill at judging and deciding is skill at recognizing what judgment or decision the available evidence and argument supports, and with what degree of confidence. It is thus a component of the inferential skills already discussed.

Lists and tests of critical thinking abilities often include two more abilities: identifying assumptions and constructing and evaluating definitions.

In addition to dispositions and abilities, critical thinking needs knowledge: of critical thinking concepts, of critical thinking principles, and of the subject-matter of the thinking.

We can derive a short list of concepts whose understanding contributes to critical thinking from the critical thinking abilities described in the preceding section. Observational abilities require an understanding of the difference between observation and inference. Questioning abilities require an understanding of the concepts of ambiguity and vagueness. Inferential abilities require an understanding of the difference between conclusive and defeasible inference (traditionally, between deduction and induction), as well as of the difference between necessary and sufficient conditions. Experimenting abilities require an understanding of the concepts of hypothesis, null hypothesis, assumption and prediction, as well as of the concept of statistical significance and of its difference from importance. They also require an understanding of the difference between an experiment and an observational study, and in particular of the difference between a randomized controlled trial, a prospective correlational study and a retrospective (case-control) study. Argument analysis abilities require an understanding of the concepts of argument, premiss, assumption, conclusion and counter-consideration. Additional critical thinking concepts are proposed by Bailin et al. (1999b: 293), Fisher & Scriven (1997: 105–106), and Black (2012).

According to Glaser (1941: 25), ability to think critically requires knowledge of the methods of logical inquiry and reasoning. If we review the list of abilities in the preceding section, however, we can see that some of them can be acquired and exercised merely through practice, possibly guided in an educational setting, followed by feedback. Searching intelligently for a causal explanation of some phenomenon or event requires that one consider a full range of possible causal contributors, but it seems more important that one implements this principle in one’s practice than that one is able to articulate it. What is important is “operational knowledge” of the standards and principles of good thinking (Bailin et al. 1999b: 291–293). But the development of such critical thinking abilities as designing an experiment or constructing an operational definition can benefit from learning their underlying theory. Further, explicit knowledge of quirks of human thinking seems useful as a cautionary guide. Human memory is not just fallible about details, as people learn from their own experiences of misremembering, but is so malleable that a detailed, clear and vivid recollection of an event can be a total fabrication (Loftus 2017). People seek or interpret evidence in ways that are partial to their existing beliefs and expectations, often unconscious of their “confirmation bias” (Nickerson 1998). Not only are people subject to this and other cognitive biases (Kahneman 2011), of which they are typically unaware, but it may be counter-productive for one to make oneself aware of them and try consciously to counteract them or to counteract social biases such as racial or sexual stereotypes (Kenyon & Beaulac 2014). It is helpful to be aware of these facts and of the superior effectiveness of blocking the operation of biases—for example, by making an immediate record of one’s observations, refraining from forming a preliminary explanatory hypothesis, blind refereeing, double-blind randomized trials, and blind grading of students’ work.

Critical thinking about an issue requires substantive knowledge of the domain to which the issue belongs. Critical thinking abilities are not a magic elixir that can be applied to any issue whatever by somebody who has no knowledge of the facts relevant to exploring that issue. For example, the student in Bubbles needed to know that gases do not penetrate solid objects like a glass, that air expands when heated, that the volume of an enclosed gas varies directly with its temperature and inversely with its pressure, and that hot objects will spontaneously cool down to the ambient temperature of their surroundings unless kept hot by insulation or a source of heat. Critical thinkers thus need a rich fund of subject-matter knowledge relevant to the variety of situations they encounter. This fact is recognized in the inclusion among critical thinking dispositions of a concern to become and remain generally well informed.

Experimental educational interventions, with control groups, have shown that education can improve critical thinking skills and dispositions, as measured by standardized tests. For information about these tests, see the Supplement on Assessment .

What educational methods are most effective at developing the dispositions, abilities and knowledge of a critical thinker? Abrami et al. (2015) found that in the experimental and quasi-experimental studies that they analyzed dialogue, anchored instruction, and mentoring each increased the effectiveness of the educational intervention, and that they were most effective when combined. They also found that in these studies a combination of separate instruction in critical thinking with subject-matter instruction in which students are encouraged to think critically was more effective than either by itself. However, the difference was not statistically significant; that is, it might have arisen by chance.

Most of these studies lack the longitudinal follow-up required to determine whether the observed differential improvements in critical thinking abilities or dispositions continue over time, for example until high school or college graduation. For details on studies of methods of developing critical thinking skills and dispositions, see the Supplement on Educational Methods .

12. Controversies

Scholars have denied the generalizability of critical thinking abilities across subject domains, have alleged bias in critical thinking theory and pedagogy, and have investigated the relationship of critical thinking to other kinds of thinking.

McPeck (1981) attacked the thinking skills movement of the 1970s, including the critical thinking movement. He argued that there are no general thinking skills, since thinking is always thinking about some subject-matter. It is futile, he claimed, for schools and colleges to teach thinking as if it were a separate subject. Rather, teachers should lead their pupils to become autonomous thinkers by teaching school subjects in a way that brings out their cognitive structure and that encourages and rewards discussion and argument. As some of his critics (e.g., Paul 1985; Siegel 1985) pointed out, McPeck’s central argument needs elaboration, since it has obvious counter-examples in writing and speaking, for which (up to a certain level of complexity) there are teachable general abilities even though they are always about some subject-matter. To make his argument convincing, McPeck needs to explain how thinking differs from writing and speaking in a way that does not permit useful abstraction of its components from the subject-matters with which it deals. He has not done so. Nevertheless, his position that the dispositions and abilities of a critical thinker are best developed in the context of subject-matter instruction is shared by many theorists of critical thinking, including Dewey (1910, 1933), Glaser (1941), Passmore (1980), Weinstein (1990), and Bailin et al. (1999b).

McPeck’s challenge prompted reflection on the extent to which critical thinking is subject-specific. McPeck argued for a strong subject-specificity thesis, according to which it is a conceptual truth that all critical thinking abilities are specific to a subject. (He did not however extend his subject-specificity thesis to critical thinking dispositions. In particular, he took the disposition to suspend judgment in situations of cognitive dissonance to be a general disposition.) Conceptual subject-specificity is subject to obvious counter-examples, such as the general ability to recognize confusion of necessary and sufficient conditions. A more modest thesis, also endorsed by McPeck, is epistemological subject-specificity, according to which the norms of good thinking vary from one field to another. Epistemological subject-specificity clearly holds to a certain extent; for example, the principles in accordance with which one solves a differential equation are quite different from the principles in accordance with which one determines whether a painting is a genuine Picasso. But the thesis suffers, as Ennis (1989) points out, from vagueness of the concept of a field or subject and from the obvious existence of inter-field principles, however broadly the concept of a field is construed. For example, the principles of hypothetico-deductive reasoning hold for all the varied fields in which such reasoning occurs. A third kind of subject-specificity is empirical subject-specificity, according to which as a matter of empirically observable fact a person with the abilities and dispositions of a critical thinker in one area of investigation will not necessarily have them in another area of investigation.

The thesis of empirical subject-specificity raises the general problem of transfer. If critical thinking abilities and dispositions have to be developed independently in each school subject, how are they of any use in dealing with the problems of everyday life and the political and social issues of contemporary society, most of which do not fit into the framework of a traditional school subject? Proponents of empirical subject-specificity tend to argue that transfer is more likely to occur if there is critical thinking instruction in a variety of domains, with explicit attention to dispositions and abilities that cut across domains. But evidence for this claim is scanty. There is a need for well-designed empirical studies that investigate the conditions that make transfer more likely.

It is common ground in debates about the generality or subject-specificity of critical thinking dispositions and abilities that critical thinking about any topic requires background knowledge about the topic. For example, the most sophisticated understanding of the principles of hypothetico-deductive reasoning is of no help unless accompanied by some knowledge of what might be plausible explanations of some phenomenon under investigation.

Critics have objected to bias in the theory, pedagogy and practice of critical thinking. Commentators (e.g., Alston 1995; Ennis 1998) have noted that anyone who takes a position has a bias in the neutral sense of being inclined in one direction rather than others. The critics, however, are objecting to bias in the pejorative sense of an unjustified favoring of certain ways of knowing over others, frequently alleging that the unjustly favoured ways are those of a dominant sex or culture (Bailin 1995). These ways favour:

  • reinforcement of egocentric and sociocentric biases over dialectical engagement with opposing world-views (Paul 1981, 1984; Warren 1998)
  • distancing from the object of inquiry over closeness to it (Martin 1992; Thayer-Bacon 1992)
  • indifference to the situation of others over care for them (Martin 1992)
  • orientation to thought over orientation to action (Martin 1992)
  • being reasonable over caring to understand people’s ideas (Thayer-Bacon 1993)
  • being neutral and objective over being embodied and situated (Thayer-Bacon 1995a)
  • doubting over believing (Thayer-Bacon 1995b)
  • reason over emotion, imagination and intuition (Thayer-Bacon 2000)
  • solitary thinking over collaborative thinking (Thayer-Bacon 2000)
  • written and spoken assignments over other forms of expression (Alston 2001)
  • attention to written and spoken communications over attention to human problems (Alston 2001)
  • winning debates in the public sphere over making and understanding meaning (Alston 2001)

A common thread in this smorgasbord of accusations is dissatisfaction with focusing on the logical analysis and evaluation of reasoning and arguments. While these authors acknowledge that such analysis and evaluation is part of critical thinking and should be part of its conceptualization and pedagogy, they insist that it is only a part. Paul (1981), for example, bemoans the tendency of atomistic teaching of methods of analyzing and evaluating arguments to turn students into more able sophists, adept at finding fault with positions and arguments with which they disagree but even more entrenched in the egocentric and sociocentric biases with which they began. Martin (1992) and Thayer-Bacon (1992) cite with approval the self-reported intimacy with their subject-matter of leading researchers in biology and medicine, an intimacy that conflicts with the distancing allegedly recommended in standard conceptions and pedagogy of critical thinking. Thayer-Bacon (2000) contrasts the embodied and socially embedded learning of her elementary school students in a Montessori school, who used their imagination, intuition and emotions as well as their reason, with conceptions of critical thinking as

thinking that is used to critique arguments, offer justifications, and make judgments about what are the good reasons, or the right answers. (Thayer-Bacon 2000: 127–128)

Alston (2001) reports that her students in a women’s studies class were able to see the flaws in the Cinderella myth that pervades much romantic fiction but in their own romantic relationships still acted as if all failures were the woman’s fault and still accepted the notions of love at first sight and living happily ever after. Students, she writes, should

be able to connect their intellectual critique to a more affective, somatic, and ethical account of making risky choices that have sexist, racist, classist, familial, sexual, or other consequences for themselves and those both near and far… critical thinking that reads arguments, texts, or practices merely on the surface without connections to feeling/desiring/doing or action lacks an ethical depth that should infuse the difference between mere cognitive activity and something we want to call critical thinking. (Alston 2001: 34)

Some critics portray such biases as unfair to women. Thayer-Bacon (1992), for example, has charged modern critical thinking theory with being sexist, on the ground that it separates the self from the object and causes one to lose touch with one’s inner voice, and thus stigmatizes women, who (she asserts) link self to object and listen to their inner voice. Her charge does not imply that women as a group are on average less able than men to analyze and evaluate arguments. Facione (1990c) found no difference by sex in performance on his California Critical Thinking Skills Test. Kuhn (1991: 280–281) found no difference by sex in either the disposition or the competence to engage in argumentative thinking.

The critics propose a variety of remedies for the biases that they allege. In general, they do not propose to eliminate or downplay critical thinking as an educational goal. Rather, they propose to conceptualize critical thinking differently and to change its pedagogy accordingly. Their pedagogical proposals arise logically from their objections. They can be summarized as follows:

  • Focus on argument networks with dialectical exchanges reflecting contesting points of view rather than on atomic arguments, so as to develop “strong sense” critical thinking that transcends egocentric and sociocentric biases (Paul 1981, 1984).
  • Foster closeness to the subject-matter and feeling connected to others in order to inform a humane democracy (Martin 1992).
  • Develop “constructive thinking” as a social activity in a community of physically embodied and socially embedded inquirers with personal voices who value not only reason but also imagination, intuition and emotion (Thayer-Bacon 2000).
  • In developing critical thinking in school subjects, treat as important neither skills nor dispositions but opening worlds of meaning (Alston 2001).
  • Attend to the development of critical thinking dispositions as well as skills, and adopt the “critical pedagogy” practised and advocated by Freire (1968 [1970]) and hooks (1994) (Dalgleish, Girard, & Davies 2017).

A common thread in these proposals is treatment of critical thinking as a social, interactive, personally engaged activity like that of a quilting bee or a barn-raising (Thayer-Bacon 2000) rather than as an individual, solitary, distanced activity symbolized by Rodin’s The Thinker . One can get a vivid description of education with the former type of goal from the writings of bell hooks (1994, 2010). Critical thinking for her is open-minded dialectical exchange across opposing standpoints and from multiple perspectives, a conception similar to Paul’s “strong sense” critical thinking (Paul 1981). She abandons the structure of domination in the traditional classroom. In an introductory course on black women writers, for example, she assigns students to write an autobiographical paragraph about an early racial memory, then to read it aloud as the others listen, thus affirming the uniqueness and value of each voice and creating a communal awareness of the diversity of the group’s experiences (hooks 1994: 84). Her “engaged pedagogy” is thus similar to the “freedom under guidance” implemented in John Dewey’s Laboratory School of Chicago in the late 1890s and early 1900s. It incorporates the dialogue, anchored instruction, and mentoring that Abrami (2015) found to be most effective in improving critical thinking skills and dispositions.

What is the relationship of critical thinking to problem solving, decision-making, higher-order thinking, creative thinking, and other recognized types of thinking? One’s answer to this question obviously depends on how one defines the terms used in the question. If critical thinking is conceived broadly to cover any careful thinking about any topic for any purpose, then problem solving and decision making will be kinds of critical thinking, if they are done carefully. Historically, ‘critical thinking’ and ‘problem solving’ were two names for the same thing. If critical thinking is conceived more narrowly as consisting solely of appraisal of intellectual products, then it will be disjoint with problem solving and decision making, which are constructive.

Bloom’s taxonomy of educational objectives used the phrase “intellectual abilities and skills” for what had been labeled “critical thinking” by some, “reflective thinking” by Dewey and others, and “problem solving” by still others (Bloom et al. 1956: 38). Thus, the so-called “higher-order thinking skills” at the taxonomy’s top levels of analysis, synthesis and evaluation are just critical thinking skills, although they do not come with general criteria for their assessment (Ennis 1981b). The revised version of Bloom’s taxonomy (Anderson et al. 2001) likewise treats critical thinking as cutting across those types of cognitive process that involve more than remembering (Anderson et al. 2001: 269–270). For details, see the Supplement on History .

As to creative thinking, it overlaps with critical thinking (Bailin 1987, 1988). Thinking about the explanation of some phenomenon or event, as in Ferryboat , requires creative imagination in constructing plausible explanatory hypotheses. Likewise, thinking about a policy question, as in Candidate , requires creativity in coming up with options. Conversely, creativity in any field needs to be balanced by critical appraisal of the draft painting or novel or mathematical theory.

  • Abrami, Philip C., Robert M. Bernard, Eugene Borokhovski, David I. Waddington, C. Anne Wade, and Tonje Person, 2015, “Strategies for Teaching Students to Think Critically: A Meta-analysis”, Review of Educational Research , 85(2): 275–314. doi:10.3102/0034654314551063
  • Aikin, Wilford M., 1942, The Story of the Eight-year Study, with Conclusions and Recommendations , Volume I of Adventure in American Education , New York and London: Harper & Brothers. [ Aikin 1942 available online ]
  • Alston, Kal, 1995, “Begging the Question: Is Critical Thinking Biased?”, Educational Theory , 45(2): 225–233. doi:10.1111/j.1741-5446.1995.00225.x
  • –––, 2001, “Re/Thinking Critical Thinking: The Seductions of Everyday Life”, Studies in Philosophy and Education , 20(1): 27–40. doi:10.1023/A:1005247128053
  • American Educational Research Association, 2014, Standards for Educational and Psychological Testing / American Educational Research Association, American Psychological Association, National Council on Measurement in Education , Washington, DC: American Educational Research Association.
  • Anderson, Lorin W., David R. Krathwohl, Peter W. Airiasian, Kathleen A. Cruikshank, Richard E. Mayer, Paul R. Pintrich, James Raths, and Merlin C. Wittrock, 2001, A Taxonomy for Learning, Teaching and Assessing: A Revision of Bloom’s Taxonomy of Educational Objectives , New York: Longman, complete edition.
  • Bailin, Sharon, 1987, “Critical and Creative Thinking”, Informal Logic , 9(1): 23–30. [ Bailin 1987 available online ]
  • –––, 1988, Achieving Extraordinary Ends: An Essay on Creativity , Dordrecht: Kluwer. doi:10.1007/978-94-009-2780-3
  • –––, 1995, “Is Critical Thinking Biased? Clarifications and Implications”, Educational Theory , 45(2): 191–197. doi:10.1111/j.1741-5446.1995.00191.x
  • Bailin, Sharon and Mark Battersby, 2009, “Inquiry: A Dialectical Approach to Teaching Critical Thinking”, in Juho Ritola (ed.), Argument Cultures: Proceedings of OSSA 09 , CD-ROM (pp. 1–10), Windsor, ON: OSSA. [ Bailin & Battersby 2009 available online ]
  • –––, 2016, “Fostering the Virtues of Inquiry”, Topoi , 35(2): 367–374. doi:10.1007/s11245-015-9307-6
  • Bailin, Sharon, Roland Case, Jerrold R. Coombs, and Leroi B. Daniels, 1999a, “Common Misconceptions of Critical Thinking”, Journal of Curriculum Studies , 31(3): 269–283. doi:10.1080/002202799183124
  • –––, 1999b, “Conceptualizing Critical Thinking”, Journal of Curriculum Studies , 31(3): 285–302. doi:10.1080/002202799183133
  • Berman, Alan M., Seth J. Schwartz, William M. Kurtines, and Steven L. Berman, 2001, “The Process of Exploration in Identity Formation: The Role of Style and Competence”, Journal of Adolescence , 24(4): 513–528. doi:10.1006/jado.2001.0386
  • Black, Beth (ed.), 2012, An A to Z of Critical Thinking , London: Continuum International Publishing Group.
  • Bloom, Benjamin Samuel, Max D. Engelhart, Edward J. Furst, Walter H. Hill, and David R. Krathwohl, 1956, Taxonomy of Educational Objectives. Handbook I: Cognitive Domain , New York: David McKay.
  • Casserly, Megan, 2012, “The 10 Skills That Will Get You Hired in 2013”, Forbes , Dec. 10, 2012. Available at https://www.forbes.com/sites/meghancasserly/2012/12/10/the-10-skills-that-will-get-you-a-job-in-2013/#79e7ff4e633d ; accessed 2017 11 06.
  • Center for Assessment & Improvement of Learning, 2017, Critical Thinking Assessment Test , Cookeville, TN: Tennessee Technological University.
  • Cohen, Jacob, 1988, Statistical Power Analysis for the Behavioral Sciences , Hillsdale, NJ: Lawrence Erlbaum Associates, 2nd edition.
  • College Board, 1983, Academic Preparation for College. What Students Need to Know and Be Able to Do , New York: College Entrance Examination Board, ERIC document ED232517.
  • Commission on the Relation of School and College of the Progressive Education Association, 1943, Thirty Schools Tell Their Story , Volume V of Adventure in American Education , New York and London: Harper & Brothers.
  • Council for Aid to Education, 2017, CLA+ Student Guide . Available at http://cae.org/images/uploads/pdf/CLA_Student_Guide_Institution.pdf ; accessed 2017 09 26.
  • Dalgleish, Adam, Patrick Girard, and Maree Davies, 2017, “Critical Thinking, Bias and Feminist Philosophy: Building a Better Framework through Collaboration”, Informal Logic , 37(4): 351–369. [ Dalgleish et al. available online ]
  • Dewey, John, 1910, How We Think , Boston: D.C. Heath. [ Dewey 1910 available online ]
  • –––, 1916, Democracy and Education: An Introduction to the Philosophy of Education , New York: Macmillan.
  • –––, 1933, How We Think: A Restatement of the Relation of Reflective Thinking to the Educative Process , Lexington, MA: D.C. Heath.
  • –––, 1936, “The Theory of the Chicago Experiment”, Appendix II of Mayhew & Edwards 1936: 463–477.
  • –––, 1938, Logic: The Theory of Inquiry , New York: Henry Holt and Company.
  • Dominguez, Caroline (coord.), 2018a, A European Collection of the Critical Thinking Skills and Dispositions Needed in Different Professional Fields for the 21st Century , Vila Real, Portugal: UTAD. Available at http://bit.ly/CRITHINKEDUO1 ; accessed 2018 04 09.
  • ––– (coord.), 2018b, A European Review on Critical Thinking Educational Practices in Higher Education Institutions , Vila Real: UTAD. Available at http://bit.ly/CRITHINKEDUO2 ; accessed 2018 04 14.
  • Dumke, Glenn S., 1980, Chancellor’s Executive Order 338 , Long Beach, CA: California State University, Chancellor’s Office. Available at https://www.calstate.edu/eo/EO-338.pdf ; accessed 2017 11 16.
  • Ennis, Robert H., 1958, “An Appraisal of the Watson-Glaser Critical Thinking Appraisal”, The Journal of Educational Research , 52(4): 155–158. doi:10.1080/00220671.1958.10882558
  • –––, 1962, “A Concept of Critical Thinking: A Proposed Basis for Research on the Teaching and Evaluation of Critical Thinking Ability”, Harvard Educational Review , 32(1): 81–111.
  • –––, 1981a, “A Conception of Deductive Logical Competence”, Teaching Philosophy , 4(3/4): 337–385. doi:10.5840/teachphil198143/429
  • –––, 1981b, “Eight Fallacies in Bloom’s Taxonomy”, in C. J. B. Macmillan (ed.), Philosophy of Education 1980: Proceedings of the Thirty-seventh Annual Meeting of the Philosophy of Education Society , Bloomington, IL: Philosophy of Education Society, pp. 269–273.
  • –––, 1984, “Problems in Testing Informal Logic, Critical Thinking, Reasoning Ability”. Informal Logic , 6(1): 3–9. [ Ennis 1984 available online ]
  • –––, 1987, “A Taxonomy of Critical Thinking Dispositions and Abilities”, in Joan Boykoff Baron and Robert J. Sternberg (eds.), Teaching Thinking Skills: Theory and Practice , New York: W. H. Freeman, pp. 9–26.
  • –––, 1989, “Critical Thinking and Subject Specificity: Clarification and Needed Research”, Educational Researcher , 18(3): 4–10. doi:10.3102/0013189X018003004
  • –––, 1991, “Critical Thinking: A Streamlined Conception”, Teaching Philosophy , 14(1): 5–24. doi:10.5840/teachphil19911412
  • –––, 1996, “Critical Thinking Dispositions: Their Nature and Assessability”, Informal Logic , 18(2–3): 165–182. [ Ennis 1996 available online ]
  • –––, 1998, “Is Critical Thinking Culturally Biased?”, Teaching Philosophy , 21(1): 15–33. doi:10.5840/teachphil19982113
  • –––, 2011, “Critical Thinking: Reflection and Perspective Part I”, Inquiry: Critical Thinking across the Disciplines , 26(1): 4–18. doi:10.5840/inquiryctnews20112613
  • –––, 2013, “Critical Thinking across the Curriculum: The Wisdom CTAC Program”, Inquiry: Critical Thinking across the Disciplines , 28(2): 25–45. doi:10.5840/inquiryct20132828
  • –––, 2016, “Definition: A Three-Dimensional Analysis with Bearing on Key Concepts”, in Patrick Bondy and Laura Benacquista (eds.), Argumentation, Objectivity, and Bias: Proceedings of the 11th International Conference of the Ontario Society for the Study of Argumentation (OSSA), 18–21 May 2016 , Windsor, ON: OSSA, pp. 1–19. Available at http://scholar.uwindsor.ca/ossaarchive/OSSA11/papersandcommentaries/105 ; accessed 2017 12 02.
  • –––, 2018, “Critical Thinking Across the Curriculum: A Vision”, Topoi , 37(1): 165–184. doi:10.1007/s11245-016-9401-4
  • Ennis, Robert H., and Jason Millman, 1971, Manual for Cornell Critical Thinking Test, Level X, and Cornell Critical Thinking Test, Level Z , Urbana, IL: Critical Thinking Project, University of Illinois.
  • Ennis, Robert H., Jason Millman, and Thomas Norbert Tomko, 1985, Cornell Critical Thinking Tests Level X & Level Z: Manual , Pacific Grove, CA: Midwest Publication, 3rd edition.
  • –––, 2005, Cornell Critical Thinking Tests Level X & Level Z: Manual , Seaside, CA: Critical Thinking Company, 5th edition.
  • Ennis, Robert H. and Eric Weir, 1985, The Ennis-Weir Critical Thinking Essay Test: Test, Manual, Criteria, Scoring Sheet: An Instrument for Teaching and Testing , Pacific Grove, CA: Midwest Publications.
  • Facione, Peter A., 1990a, Critical Thinking: A Statement of Expert Consensus for Purposes of Educational Assessment and Instruction , Research Findings and Recommendations Prepared for the Committee on Pre-College Philosophy of the American Philosophical Association, ERIC Document ED315423.
  • –––, 1990b, California Critical Thinking Skills Test, CCTST – Form A , Millbrae, CA: The California Academic Press.
  • –––, 1990c, The California Critical Thinking Skills Test--College Level. Technical Report #3. Gender, Ethnicity, Major, CT Self-Esteem, and the CCTST , ERIC Document ED326584.
  • –––, 1992, California Critical Thinking Skills Test: CCTST – Form B, Millbrae, CA: The California Academic Press.
  • –––, 2000, “The Disposition Toward Critical Thinking: Its Character, Measurement, and Relationship to Critical Thinking Skill”, Informal Logic , 20(1): 61–84. [ Facione 2000 available online ]
  • Facione, Peter A. and Noreen C. Facione, 1992, CCTDI: A Disposition Inventory , Millbrae, CA: The California Academic Press.
  • Facione, Peter A., Noreen C. Facione, and Carol Ann F. Giancarlo, 2001, California Critical Thinking Disposition Inventory: CCTDI: Inventory Manual , Millbrae, CA: The California Academic Press.
  • Facione, Peter A., Carol A. Sánchez, and Noreen C. Facione, 1994, Are College Students Disposed to Think? , Millbrae, CA: The California Academic Press. ERIC Document ED368311.
  • Fisher, Alec, and Michael Scriven, 1997, Critical Thinking: Its Definition and Assessment , Norwich: Centre for Research in Critical Thinking, University of East Anglia.
  • Freire, Paulo, 1968 [1970], Pedagogia do Oprimido . Translated as Pedagogy of the Oppressed , Myra Bergman Ramos (trans.), New York: Continuum, 1970.
  • Glaser, Edward Maynard, 1941, An Experiment in the Development of Critical Thinking , New York: Bureau of Publications, Teachers College, Columbia University.
  • Halpern, Diane F., 1998, “Teaching Critical Thinking for Transfer Across Domains: Disposition, Skills, Structure Training, and Metacognitive Monitoring”, American Psychologist , 53(4): 449–455. doi:10.1037/0003-066X.53.4.449
  • –––, 2016, Manual: Halpern Critical Thinking Assessment , Mödling, Austria: Schuhfried. Available at https://drive.google.com/file/d/0BzUoP_pmwy1gdEpCR05PeW9qUzA/view ; accessed 2017 12 01.
  • Hamby, Benjamin, 2014, The Virtues of Critical Thinkers , Doctoral dissertation, Philosophy, McMaster University. [ Hamby 2014 available online ]
  • –––, 2015, “Willingness to Inquire: The Cardinal Critical Thinking Virtue”, in Martin Davies and Ronald Barnett (eds.), The Palgrave Handbook of Critical Thinking in Higher Education , New York: Palgrave Macmillan, pp. 77–87.
  • Haynes, Ada, Elizabeth Lisic, Kevin Harris, Katie Leming, Kyle Shanks, and Barry Stein, 2015, “Using the Critical Thinking Assessment Test (CAT) as a Model for Designing Within-Course Assessments: Changing How Faculty Assess Student Learning”, Inquiry: Critical Thinking Across the Disciplines , 30(3): 38–48. doi:10.5840/inquiryct201530316
  • Hitchcock, David, 2017, “Critical Thinking as an Educational Ideal”, in his On Reasoning and Argument: Essays in Informal Logic and on Critical Thinking , Dordrecht: Springer, pp. 477–497. doi:10.1007/978-3-319-53562-3_30
  • hooks, bell, 1994, Teaching to Transgress: Education as the Practice of Freedom , New York and London: Routledge.
  • –––, 2010, Teaching Critical Thinking: Practical Wisdom , New York and London: Routledge.
  • Johnson, Ralph H., 1992, “The Problem of Defining Critical Thinking”, in Stephen P, Norris (ed.), The Generalizability of Critical Thinking , New York: Teachers College Press, pp. 38–53.
  • Kahane, Howard, 1971, Logic and Contemporary Rhetoric: The Use of Reason in Everyday Life , Belmont, CA: Wadsworth.
  • Kahneman, Daniel, 2011, Thinking, Fast and Slow , New York: Farrar, Straus and Giroux.
  • Kenyon, Tim, and Guillaume Beaulac, 2014, “Critical Thinking Education and Debasing”, Informal Logic , 34(4): 341–363. [ Kenyon & Beaulac 2014 available online ]
  • Krathwohl, David R., Benjamin S. Bloom, and Bertram B. Masia, 1964, Taxonomy of Educational Objectives, Handbook II: Affective Domain , New York: David McKay.
  • Kuhn, Deanna, 1991, The Skills of Argument , New York: Cambridge University Press. doi:10.1017/CBO9780511571350
  • Lipman, Matthew, 1987, “Critical Thinking–What Can It Be?”, Analytic Teaching , 8(1): 5–12. [ Lipman 1987 available online ]
  • Loftus, Elizabeth F., 2017, “Eavesdropping on Memory”, Annual Review of Psychology , 68: 1–18. doi:10.1146/annurev-psych-010416-044138
  • Martin, Jane Roland, 1992, “Critical Thinking for a Humane World”, in Stephen P. Norris (ed.), The Generalizability of Critical Thinking , New York: Teachers College Press, pp. 163–180.
  • Mayhew, Katherine Camp, and Anna Camp Edwards, 1936, The Dewey School: The Laboratory School of the University of Chicago, 1896–1903 , New York: Appleton-Century. [ Mayhew & Edwards 1936 available online ]
  • McPeck, John E., 1981, Critical Thinking and Education , New York: St. Martin’s Press.
  • Nickerson, Raymond S., 1998, “Confirmation Bias: A Ubiquitous Phenomenon in Many Guises”, Review of General Psychology , 2(2): 175–220. doi:10.1037/1089-2680.2.2.175
  • Nieto, Ana Maria, and Jorge Valenzuela, 2012, “A Study of the Internal Structure of Critical Thinking Dispositions”, Inquiry: Critical Thinking across the Disciplines , 27(1): 31–38. doi:10.5840/inquiryct20122713
  • Norris, Stephen P., 1985, “Controlling for Background Beliefs When Developing Multiple-choice Critical Thinking Tests”, Educational Measurement: Issues and Practice , 7(3): 5–11. doi:10.1111/j.1745-3992.1988.tb00437.x
  • Norris, Stephen P. and Robert H. Ennis, 1989, Evaluating Critical Thinking (The Practitioners’ Guide to Teaching Thinking Series), Pacific Grove, CA: Midwest Publications.
  • Norris, Stephen P. and Ruth Elizabeth King, 1983, Test on Appraising Observations , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland.
  • –––, 1984, The Design of a Critical Thinking Test on Appraising Observations , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland. ERIC Document ED260083.
  • –––, 1985, Test on Appraising Observations: Manual , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland.
  • –––, 1990a, Test on Appraising Observations , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland, 2nd edition.
  • –––, 1990b, Test on Appraising Observations: Manual , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland, 2nd edition.
  • Obama, Barack, 2014, State of the Union Address , January 28, 2014. [ Obama 2014 available online ]
  • OCR [Oxford, Cambridge and RSA Examinations], 2011, AS/A Level GCE: Critical Thinking – H052, H452 , Cambridge: OCR. Information available at http://www.ocr.org.uk/qualifications/as-a-level-gce-critical-thinking-h052-h452/ ; accessed 2017 10 12.
  • OECD [Organization for Economic Cooperation and Development] Centre for Educational Research and Innovation, 2018, Fostering and Assessing Students’ Creative and Critical Thinking Skills in Higher Education , Paris: OECD. Available at http://www.oecd.org/education/ceri/Fostering-and-assessing-students-creative-and-critical-thinking-skills-in-higher-education.pdf ; accessed 2018 04 22.
  • Ontario Ministry of Education, 2013, The Ontario Curriculum Grades 9 to 12: Social Sciences and Humanities . Available at http://www.edu.gov.on.ca/eng/curriculum/secondary/ssciences9to122013.pdf ; accessed 2017 11 16.
  • Passmore, John Arthur, 1980, The Philosophy of Teaching , London: Duckworth.
  • Paul, Richard W., 1981, “Teaching Critical Thinking in the ‘Strong’ Sense: A Focus on Self-Deception, World Views, and a Dialectical Mode of Analysis”, Informal Logic , 4(2): 2–7. [ Paul 1981 available online ]
  • –––, 1984, “Critical Thinking: Fundamental to Education for a Free Society”, Educational Leadership , 42(1): 4–14.
  • –––, 1985, “McPeck’s Mistakes”, Informal Logic , 7(1): 35–43. [ Paul 1985 available online ]
  • Paul, Richard W. and Linda Elder, 2006, The Miniature Guide to Critical Thinking: Concepts and Tools , Dillon Beach, CA: Foundation for Critical Thinking, 4th edition.
  • Payette, Patricia, and Edna Ross, 2016, “Making a Campus-Wide Commitment to Critical Thinking: Insights and Promising Practices Utilizing the Paul-Elder Approach at the University of Louisville”, Inquiry: Critical Thinking Across the Disciplines , 31(1): 98–110. doi:10.5840/inquiryct20163118
  • Possin, Kevin, 2008, “A Field Guide to Critical-Thinking Assessment”, Teaching Philosophy , 31(3): 201–228. doi:10.5840/teachphil200831324
  • –––, 2013a, “Some Problems with the Halpern Critical Thinking Assessment (HCTA) Test”, Inquiry: Critical Thinking across the Disciplines , 28(3): 4–12. doi:10.5840/inquiryct201328313
  • –––, 2013b, “A Serious Flaw in the Collegiate Learning Assessment (CLA) Test”, Informal Logic , 33(3): 390–405. [ Possin 2013b available online ]
  • –––, 2014, “Critique of the Watson-Glaser Critical Thinking Appraisal Test: The More You Know, the Lower Your Score”, Informal Logic , 34(4): 393–416. [ Possin 2014 available online ]
  • Rawls, John, 1971, A Theory of Justice , Cambridge, MA: Harvard University Press.
  • Rousseau, Jean-Jacques, 1762, Émile , Amsterdam: Jean Néaulme.
  • Scheffler, Israel, 1960, The Language of Education , Springfield, IL: Charles C. Thomas.
  • Scriven, Michael, and Richard W. Paul, 1987, Defining Critical Thinking , Draft statement written for the National Council for Excellence in Critical Thinking Instruction. Available at http://www.criticalthinking.org/pages/defining-critical-thinking/766 ; accessed 2017 11 29.
  • Sheffield, Clarence Burton Jr., 2018, “Promoting Critical Thinking in Higher Education: My Experiences as the Inaugural Eugene H. Fram Chair in Applied Critical Thinking at Rochester Institute of Technology”, Topoi , 37(1): 155–163. doi:10.1007/s11245-016-9392-1
  • Siegel, Harvey, 1985, “McPeck, Informal Logic and the Nature of Critical Thinking”, in David Nyberg (ed.), Philosophy of Education 1985: Proceedings of the Forty-First Annual Meeting of the Philosophy of Education Society , Normal, IL: Philosophy of Education Society, pp. 61–72.
  • –––, 1988, Educating Reason: Rationality, Critical Thinking, and Education , New York: Routledge.
  • –––, 1999, “What (Good) Are Thinking Dispositions?”, Educational Theory , 49(2): 207–221. doi:10.1111/j.1741-5446.1999.00207.x
  • Simpson, Elizabeth, 1966–67, “The Classification of Educational Objectives: Psychomotor Domain”, Illinois Teacher of Home Economics , 10(4): 110–144, ERIC document ED0103613. [ Simpson 1966–67 available online ]
  • Skolverket, 2011, Curriculum for the Compulsory School, Preschool Class and the Recreation Centre , Stockholm: Ordförrådet AB. Available at http://malmo.se/download/18.29c3b78a132728ecb52800034181/pdf2687.pdf ; accessed 2017 11 16.
  • Smith, B. Othanel, 1953, “The Improvement of Critical Thinking”, Progressive Education , 30(5): 129–134.
  • Smith, Eugene Randolph, Ralph Winfred Tyler, and the Evaluation Staff, 1942, Appraising and Recording Student Progress , Volume III of Adventure in American Education , New York and London: Harper & Brothers.
  • Splitter, Laurance J., 1987, “Educational Reform through Philosophy for Children”, Thinking: The Journal of Philosophy for Children , 7(2): 32–39. doi:10.5840/thinking1987729
  • Stanovich Keith E., and Paula J. Stanovich, 2010, “A Framework for Critical Thinking, Rational Thinking, and Intelligence”, in David D. Preiss and Robert J. Sternberg (eds), Innovations in Educational Psychology: Perspectives on Learning, Teaching and Human Development , New York: Springer Publishing, pp 195–237.
  • Stanovich Keith E., Richard F. West, and Maggie E. Toplak, 2011, “Intelligence and Rationality”, in Robert J. Sternberg and Scott Barry Kaufman (eds.), Cambridge Handbook of Intelligence , Cambridge: Cambridge University Press, 3rd edition, pp. 784–826. doi:10.1017/CBO9780511977244.040
  • Tankersley, Karen, 2005, Literacy Strategies for Grades 4–12: Reinforcing the Threads of Reading , Alexandria, VA: Association for Supervision and Curriculum Development.
  • Thayer-Bacon, Barbara J., 1992, “Is Modern Critical Thinking Theory Sexist?”, Inquiry: Critical Thinking Across the Disciplines , 10(1): 3–7. doi:10.5840/inquiryctnews199210123
  • –––, 1993, “Caring and Its Relationship to Critical Thinking”, Educational Theory , 43(3): 323–340. doi:10.1111/j.1741-5446.1993.00323.x
  • –––, 1995a, “Constructive Thinking: Personal Voice”, Journal of Thought , 30(1): 55–70.
  • –––, 1995b, “Doubting and Believing: Both are Important for Critical Thinking”, Inquiry: Critical Thinking across the Disciplines , 15(2): 59–66. doi:10.5840/inquiryctnews199515226
  • –––, 2000, Transforming Critical Thinking: Thinking Constructively , New York: Teachers College Press.
  • Toulmin, Stephen Edelston, 1958, The Uses of Argument , Cambridge: Cambridge University Press.
  • Turri, John, Mark Alfano, and John Greco, 2017, “Virtue Epistemology”, in Edward N. Zalta (ed.), The Stanford Encyclopedia of Philosophy (Winter 2017 Edition). URL = < https://plato.stanford.edu/archives/win2017/entries/epistemology-virtue/ >
  • Warren, Karen J. 1988. “Critical Thinking and Feminism”, Informal Logic , 10(1): 31–44. [ Warren 1988 available online ]
  • Watson, Goodwin, and Edward M. Glaser, 1980a, Watson-Glaser Critical Thinking Appraisal, Form A , San Antonio, TX: Psychological Corporation.
  • –––, 1980b, Watson-Glaser Critical Thinking Appraisal: Forms A and B; Manual , San Antonio, TX: Psychological Corporation,
  • –––, 1994, Watson-Glaser Critical Thinking Appraisal, Form B , San Antonio, TX: Psychological Corporation.
  • Weinstein, Mark, 1990, “Towards a Research Agenda for Informal Logic and Critical Thinking”, Informal Logic , 12(3): 121–143. [ Weinstein 1990 available online ]
  • –––, 2013, Logic, Truth and Inquiry , London: College Publications.
  • Zagzebski, Linda Trinkaus, 1996, Virtues of the Mind: An Inquiry into the Nature of Virtue and the Ethical Foundations of Knowledge , Cambridge: Cambridge University Press. doi:10.1017/CBO9781139174763
How to cite this entry . Preview the PDF version of this entry at the Friends of the SEP Society . Look up this entry topic at the Internet Philosophy Ontology Project (InPhO). Enhanced bibliography for this entry at PhilPapers , with links to its database.
  • Association for Informal Logic and Critical Thinking (AILACT)
  • Center for Teaching Thinking (CTT)
  • Critical Thinking Across the European Higher Education Curricula (CRITHINKEDU)
  • Critical Thinking Definition, Instruction, and Assessment: A Rigorous Approach (criticalTHINKING.net)
  • Critical Thinking Research (RAIL)
  • Foundation for Critical Thinking
  • Insight Assessment
  • Partnership for 21st Century Learning (P21)
  • The Critical Thinking Consortium
  • The Nature of Critical Thinking: An Outline of Critical Thinking Dispositions and Abilities , by Robert H. Ennis

abilities | bias, implicit | children, philosophy for | civic education | decision-making capacity | Dewey, John | dispositions | education, philosophy of | epistemology: virtue | logic: informal

Copyright © 2018 by David Hitchcock < hitchckd @ mcmaster . ca >

Support SEP

Mirror sites.

View this site from another server:

  • Info about mirror sites

Stanford Center for the Study of Language and Information

The Stanford Encyclopedia of Philosophy is copyright © 2016 by The Metaphysics Research Lab , Center for the Study of Language and Information (CSLI), Stanford University

Library of Congress Catalog Data: ISSN 1095-5054

IMAGES

  1. How to promote Critical Thinking Skills

    evaluating meaning in critical thinking

  2. Critical Thinking Definition, Skills, and Examples

    evaluating meaning in critical thinking

  3. Diagram of Critical Thinking Skills with Keywords. EPS 10 Stock Vector

    evaluating meaning in critical thinking

  4. How To Improve Critical Thinking Skills at Work in 6 Steps

    evaluating meaning in critical thinking

  5. Critical Thinking Skills

    evaluating meaning in critical thinking

  6. why is Importance of Critical Thinking Skills in Education

    evaluating meaning in critical thinking

VIDEO

  1. Critical Thinking and Problem Solving| 6th Oct

  2. Mastering the Art of Critical Thinking: Strategies for Problem-Solving #short #criticalthinking #yt

  3. DEVELOPING CRITICAL THINKING

  4. 8. Improving Critical Thinking

  5. Evaluating the Strength of Arguments: A Deep Dive

  6. What does critical thinking involve? #literacy #criticalthinking

COMMENTS

  1. What Is Critical Thinking?

    Critical thinking is the ability to effectively analyze information and form a judgment. To think critically, you must be aware of your own biases and assumptions when encountering information, and apply consistent standards when evaluating sources. Critical thinking skills help you to: Identify credible sources. Evaluate and respond to arguments.

  2. Critical Thinking

    Critical thinking refers to the process of actively analyzing, assessing, synthesizing, evaluating and reflecting on information gathered from observation, experience, or communication. It is thinking in a clear, logical, reasoned, and reflective manner to solve problems or make decisions. Basically, critical thinking is taking a hard look at ...

  3. What Is Critical Thinking?

    Critical thinking is a complex process of deliberation that involves a wide range of skills and attitudes. It includes: identifying other people's positions, arguments and conclusions evaluating the evidence for alternative points of view; weighing up the opposing arguments and evidence fairly; being able to read between the lines, seeing behind surfaces and identifying false or unfair assumptions

  4. Critical Thinking

    Critical Thinking. Critical thinking is a widely accepted educational goal. Its definition is contested, but the competing definitions can be understood as differing conceptions of the same basic concept: careful thinking directed to a goal. Conceptions differ with respect to the scope of such thinking, the type of goal, the criteria and norms ...

  5. What Are Critical Thinking Skills and Why Are They Important?

    It makes you a well-rounded individual, one who has looked at all of their options and possible solutions before making a choice. According to the University of the People in California, having critical thinking skills is important because they are [ 1 ]: Universal. Crucial for the economy. Essential for improving language and presentation skills.

  6. Defining Critical Thinking

    Critical thinking is, in short, self-directed, self-disciplined, self-monitored, and self-corrective thinking. It presupposes assent to rigorous standards of excellence and mindful command of their use. It entails effective communication and problem solving abilities and a commitment to overcome our native egocentrism and sociocentrism.

  7. Critical Thinking

    Critical thinking is the discipline of rigorously and skillfully using information, experience, observation, and reasoning to guide your decisions, actions, and beliefs. You'll need to actively question every step of your thinking process to do it well. Collecting, analyzing and evaluating information is an important skill in life, and a highly ...

  8. Critical Thinking

    Critical Thinking is the process of using and assessing reasons to evaluate statements, assumptions, and arguments in ordinary situations. The goal of this process is to help us have good beliefs, where "good" means that our beliefs meet certain goals of thought, such as truth, usefulness, or rationality. Critical thinking is widely ...

  9. Critical Thinking Definition, Skills, and Examples

    Critical thinking refers to the ability to analyze information objectively and make a reasoned judgment. It involves the evaluation of sources, such as data, facts, observable phenomena, and research findings. Good critical thinkers can draw reasonable conclusions from a set of information, and discriminate between useful and less useful ...

  10. Argumentation, Evidence Evaluation and Critical Thinking

    Using this frame, the chapter examines the contributions of argumentation in science education to the components of critical thinking, and also discusses the evaluation of evidence and the different factors influencing or even hampering it. The chapter concludes with consideration of the development of critical thinking in the science classroom.

  11. Critical thinking

    Critical thinking is the analysis of available facts, evidence, observations, and arguments in order to form a judgement by the application of rational, skeptical, and unbiased analyses and evaluation. The application of critical thinking includes self-directed, self-disciplined, self-monitored, and self-corrective habits of the mind, thus a critical thinker is a person who practices the ...

  12. Critical Thinking: Where to Begin

    A Brief Definition: Critical thinking is the art of analyzing and evaluating thinking with a view to improving it. A well-cultivated critical thinker: communicates effectively with others in figuring out solutions to complex problems. Critical thinking is, in short, self-directed, self-disciplined, self-monitored, and self-corrective thinking.

  13. Defining and Teaching Evaluative Thinking:

    To that end, we propose that ET is essentially critical thinking applied to contexts of evaluation. We argue that ECB, and the field of evaluation more generally, would benefit from an explicit and transparent appropriation of well-established concepts and teaching strategies derived from the long history of work on critical thinking.

  14. What is critical thinking?

    Critical thinking is a kind of thinking in which you question, analyse, interpret , evaluate and make a judgement about what you read, hear, say, or write. The term critical comes from the Greek word kritikos meaning "able to judge or discern". Good critical thinking is about making reliable judgements based on reliable information.

  15. Critical Thinking and Decision-Making

    Definition. Simply put, critical thinking is the act of deliberately analyzing information so that you can make better judgements and decisions. It involves using things like logic, reasoning, and creativity, to draw conclusions and generally understand things better. This may sound like a pretty broad definition, and that's because critical ...

  16. Evaluation Skills: A Comprehensive Overview

    Evaluation skills are a vital part of any student's education and are essential for success in the modern world. From determining the quality of evidence to assessing the validity of an argument, evaluation skills are essential for critical thinking and problem-solving. In this comprehensive overview, we'll explore the importance of evaluation ...

  17. 7.4: Critical Thinking

    Over time, attitudes, evidence, and opinions change, and as a critical thinker, you must continue to research, synthesize newly discovered evidence, and adapt to that new information. Figure 7.4.11 7.4. 11: Information, attitudes, laws, and acceptance of smoking changed dramatically over time. More recently, vaping and related practices have ...

  18. Evaluative thinking

    A disciplined approach. Evaluative thinking is a disciplined approach to inquiry and reflective practice that helps us make sound judgements using good evidence, as a matter of habit. Evaluating a strategic direction or project in a school draws on similar thinking processes and mental disciplines as assessing student performance or recruiting ...

  19. Using Critical Thinking in Essays and other Assignments

    Critical thinking, as described by Oxford Languages, is the objective analysis and evaluation of an issue in order to form a judgement. Active and skillful approach, evaluation, assessment, synthesis, and/or evaluation of information obtained from, or made by, observation, knowledge, reflection, acumen or conversation, as a guide to belief and ...

  20. What Is Critical Thinking?

    Critical thinking is the ability to effectively analyse information and form a judgement. To think critically, you must be aware of your own biases and assumptions when encountering information, and apply consistent standards when evaluating sources. Critical thinking skills help you to: Identify credible sources.

  21. Introduction: Critical Thinking

    The "critical" in critical thinking does not mean that you're finding fault with a text. On the other hand, it does mean that you evaluate a text to see how well it works, in order to decide the worthiness or quality of the author's ideas. Evaluation is based on objective (not subjective or emotional) criteria: the text's main idea ...

  22. Evaluative thinking

    Evaluative thinking is a disciplined approach to inquiry and reflective practice that helps us make sound judgements using good evidence, as a matter of habit. The short video is a good place to start, and while it focuses on using evaluative thinking in educational contexts, it is easy to understand and adapt to other situations.

  23. Evaluating the use of HEIghten critical thinking assessment to monitor

    1 INTRODUCTION. The basic definition for critical thinking is the ability to give reasons for what one says and does. The American Dental Education Association expanded that definition to "intellectually engaged, skillful and responsible thinking that facilitates good judgement because it requires the application of assumptions, knowledge, competence and the ability to challenge one's own ...

  24. Evaluating video-based PBL approach on performance and critical

    Literature review. Critical thinking, a foundational skill in education and problem-solving (Gumisirizah et al., Citation 2024b), encompasses the capacity to rigorously analyze, evaluate, and synthesize information and ideas, fostering thoughtful, logical, and systematic decision-making processes.The critical thinking literature spans diverse topics, including its application in education ...

  25. Critical Thinking

    Critical thinking is a widely accepted educational goal. Its definition is contested, but the competing definitions can be understood as differing conceptions of the same basic concept: careful thinking directed to a goal. Conceptions differ with respect to the scope of such thinking, the type of goal, the criteria and norms for thinking ...

  26. Evaluating MCMC samplers

    I've been thinking a lot about how to evaluate MCMC samplers. A common way to do this is to run one or more iterations of your contender against a baseline of something simple, something well understood, or more rarely, the current champion (which seems to remain NUTS, though we're open to suggestions for alternatives).