U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Korean J Anesthesiol
  • v.70(3); 2017 Jun

Statistical data presentation

1 Department of Anesthesiology and Pain Medicine, Dongguk University Ilsan Hospital, Goyang, Korea.

Sangseok Lee

2 Department of Anesthesiology and Pain Medicine, Sanggye Paik Hospital, Inje University College of Medicine, Seoul, Korea.

Data are usually collected in a raw format and thus the inherent information is difficult to understand. Therefore, raw data need to be summarized, processed, and analyzed. However, no matter how well manipulated, the information derived from the raw data should be presented in an effective format, otherwise, it would be a great loss for both authors and readers. In this article, the techniques of data and information presentation in textual, tabular, and graphical forms are introduced. Text is the principal method for explaining findings, outlining trends, and providing contextual information. A table is best suited for representing individual information and represents both quantitative and qualitative information. A graph is a very effective visual tool as it displays data at a glance, facilitates comparison, and can reveal trends and relationships within the data such as changes over time, frequency distribution, and correlation or relative share of a whole. Text, tables, and graphs for data and information presentation are very powerful communication tools. They can make an article easy to understand, attract and sustain the interest of readers, and efficiently present large amounts of complex information. Moreover, as journal editors and reviewers glance at these presentations before reading the whole article, their importance cannot be ignored.

Introduction

Data are a set of facts, and provide a partial picture of reality. Whether data are being collected with a certain purpose or collected data are being utilized, questions regarding what information the data are conveying, how the data can be used, and what must be done to include more useful information must constantly be kept in mind.

Since most data are available to researchers in a raw format, they must be summarized, organized, and analyzed to usefully derive information from them. Furthermore, each data set needs to be presented in a certain way depending on what it is used for. Planning how the data will be presented is essential before appropriately processing raw data.

First, a question for which an answer is desired must be clearly defined. The more detailed the question is, the more detailed and clearer the results are. A broad question results in vague answers and results that are hard to interpret. In other words, a well-defined question is crucial for the data to be well-understood later. Once a detailed question is ready, the raw data must be prepared before processing. These days, data are often summarized, organized, and analyzed with statistical packages or graphics software. Data must be prepared in such a way they are properly recognized by the program being used. The present study does not discuss this data preparation process, which involves creating a data frame, creating/changing rows and columns, changing the level of a factor, categorical variable, coding, dummy variables, variable transformation, data transformation, missing value, outlier treatment, and noise removal.

We describe the roles and appropriate use of text, tables, and graphs (graphs, plots, or charts), all of which are commonly used in reports, articles, posters, and presentations. Furthermore, we discuss the issues that must be addressed when presenting various kinds of information, and effective methods of presenting data, which are the end products of research, and of emphasizing specific information.

Data Presentation

Data can be presented in one of the three ways:

–as text;

–in tabular form; or

–in graphical form.

Methods of presentation must be determined according to the data format, the method of analysis to be used, and the information to be emphasized. Inappropriately presented data fail to clearly convey information to readers and reviewers. Even when the same information is being conveyed, different methods of presentation must be employed depending on what specific information is going to be emphasized. A method of presentation must be chosen after carefully weighing the advantages and disadvantages of different methods of presentation. For easy comparison of different methods of presentation, let us look at a table ( Table 1 ) and a line graph ( Fig. 1 ) that present the same information [ 1 ]. If one wishes to compare or introduce two values at a certain time point, it is appropriate to use text or the written language. However, a table is the most appropriate when all information requires equal attention, and it allows readers to selectively look at information of their own interest. Graphs allow readers to understand the overall trend in data, and intuitively understand the comparison results between two groups. One thing to always bear in mind regardless of what method is used, however, is the simplicity of presentation.

An external file that holds a picture, illustration, etc.
Object name is kjae-70-267-g001.jpg

Values are expressed as mean ± SD. Group C: normal saline, Group D: dexmedetomidine. SBP: systolic blood pressure, DBP: diastolic blood pressure, MBP: mean blood pressure, HR: heart rate. * P < 0.05 indicates a significant increase in each group, compared with the baseline values. † P < 0.05 indicates a significant decrease noted in Group D, compared with the baseline values. ‡ P < 0.05 indicates a significant difference between the groups.

Text presentation

Text is the main method of conveying information as it is used to explain results and trends, and provide contextual information. Data are fundamentally presented in paragraphs or sentences. Text can be used to provide interpretation or emphasize certain data. If quantitative information to be conveyed consists of one or two numbers, it is more appropriate to use written language than tables or graphs. For instance, information about the incidence rates of delirium following anesthesia in 2016–2017 can be presented with the use of a few numbers: “The incidence rate of delirium following anesthesia was 11% in 2016 and 15% in 2017; no significant difference of incidence rates was found between the two years.” If this information were to be presented in a graph or a table, it would occupy an unnecessarily large space on the page, without enhancing the readers' understanding of the data. If more data are to be presented, or other information such as that regarding data trends are to be conveyed, a table or a graph would be more appropriate. By nature, data take longer to read when presented as texts and when the main text includes a long list of information, readers and reviewers may have difficulties in understanding the information.

Table presentation

Tables, which convey information that has been converted into words or numbers in rows and columns, have been used for nearly 2,000 years. Anyone with a sufficient level of literacy can easily understand the information presented in a table. Tables are the most appropriate for presenting individual information, and can present both quantitative and qualitative information. Examples of qualitative information are the level of sedation [ 2 ], statistical methods/functions [ 3 , 4 ], and intubation conditions [ 5 ].

The strength of tables is that they can accurately present information that cannot be presented with a graph. A number such as “132.145852” can be accurately expressed in a table. Another strength is that information with different units can be presented together. For instance, blood pressure, heart rate, number of drugs administered, and anesthesia time can be presented together in one table. Finally, tables are useful for summarizing and comparing quantitative information of different variables. However, the interpretation of information takes longer in tables than in graphs, and tables are not appropriate for studying data trends. Furthermore, since all data are of equal importance in a table, it is not easy to identify and selectively choose the information required.

For a general guideline for creating tables, refer to the journal submission requirements 1) .

Heat maps for better visualization of information than tables

Heat maps help to further visualize the information presented in a table by applying colors to the background of cells. By adjusting the colors or color saturation, information is conveyed in a more visible manner, and readers can quickly identify the information of interest ( Table 2 ). Software such as Excel (in Microsoft Office, Microsoft, WA, USA) have features that enable easy creation of heat maps through the options available on the “conditional formatting” menu.

All numbers were created by the author. SBP: systolic blood pressure, DBP: diastolic blood pressure, MBP: mean blood pressure, HR: heart rate.

Graph presentation

Whereas tables can be used for presenting all the information, graphs simplify complex information by using images and emphasizing data patterns or trends, and are useful for summarizing, explaining, or exploring quantitative data. While graphs are effective for presenting large amounts of data, they can be used in place of tables to present small sets of data. A graph format that best presents information must be chosen so that readers and reviewers can easily understand the information. In the following, we describe frequently used graph formats and the types of data that are appropriately presented with each format with examples.

Scatter plot

Scatter plots present data on the x - and y -axes and are used to investigate an association between two variables. A point represents each individual or object, and an association between two variables can be studied by analyzing patterns across multiple points. A regression line is added to a graph to determine whether the association between two variables can be explained or not. Fig. 2 illustrates correlations between pain scoring systems that are currently used (PSQ, Pain Sensitivity Questionnaire; PASS, Pain Anxiety Symptoms Scale; PCS, Pain Catastrophizing Scale) and Geop-Pain Questionnaire (GPQ) with the correlation coefficient, R, and regression line indicated on the scatter plot [ 6 ]. If multiple points exist at an identical location as in this example ( Fig. 2 ), the correlation level may not be clear. In this case, a correlation coefficient or regression line can be added to further elucidate the correlation.

An external file that holds a picture, illustration, etc.
Object name is kjae-70-267-g002.jpg

Bar graph and histogram

A bar graph is used to indicate and compare values in a discrete category or group, and the frequency or other measurement parameters (i.e. mean). Depending on the number of categories, and the size or complexity of each category, bars may be created vertically or horizontally. The height (or length) of a bar represents the amount of information in a category. Bar graphs are flexible, and can be used in a grouped or subdivided bar format in cases of two or more data sets in each category. Fig. 3 is a representative example of a vertical bar graph, with the x -axis representing the length of recovery room stay and drug-treated group, and the y -axis representing the visual analog scale (VAS) score. The mean and standard deviation of the VAS scores are expressed as whiskers on the bars ( Fig. 3 ) [ 7 ].

An external file that holds a picture, illustration, etc.
Object name is kjae-70-267-g003.jpg

By comparing the endpoints of bars, one can identify the largest and the smallest categories, and understand gradual differences between each category. It is advised to start the x - and y -axes from 0. Illustration of comparison results in the x - and y -axes that do not start from 0 can deceive readers' eyes and lead to overrepresentation of the results.

One form of vertical bar graph is the stacked vertical bar graph. A stack vertical bar graph is used to compare the sum of each category, and analyze parts of a category. While stacked vertical bar graphs are excellent from the aspect of visualization, they do not have a reference line, making comparison of parts of various categories challenging ( Fig. 4 ) [ 8 ].

An external file that holds a picture, illustration, etc.
Object name is kjae-70-267-g004.jpg

A pie chart, which is used to represent nominal data (in other words, data classified in different categories), visually represents a distribution of categories. It is generally the most appropriate format for representing information grouped into a small number of categories. It is also used for data that have no other way of being represented aside from a table (i.e. frequency table). Fig. 5 illustrates the distribution of regular waste from operation rooms by their weight [ 8 ]. A pie chart is also commonly used to illustrate the number of votes each candidate won in an election.

An external file that holds a picture, illustration, etc.
Object name is kjae-70-267-g005.jpg

Line plot with whiskers

A line plot is useful for representing time-series data such as monthly precipitation and yearly unemployment rates; in other words, it is used to study variables that are observed over time. Line graphs are especially useful for studying patterns and trends across data that include climatic influence, large changes or turning points, and are also appropriate for representing not only time-series data, but also data measured over the progression of a continuous variable such as distance. As can be seen in Fig. 1 , mean and standard deviation of systolic blood pressure are indicated for each time point, which enables readers to easily understand changes of systolic pressure over time [ 1 ]. If data are collected at a regular interval, values in between the measurements can be estimated. In a line graph, the x-axis represents the continuous variable, while the y-axis represents the scale and measurement values. It is also useful to represent multiple data sets on a single line graph to compare and analyze patterns across different data sets.

Box and whisker chart

A box and whisker chart does not make any assumptions about the underlying statistical distribution, and represents variations in samples of a population; therefore, it is appropriate for representing nonparametric data. AA box and whisker chart consists of boxes that represent interquartile range (one to three), the median and the mean of the data, and whiskers presented as lines outside of the boxes. Whiskers can be used to present the largest and smallest values in a set of data or only a part of the data (i.e. 95% of all the data). Data that are excluded from the data set are presented as individual points and are called outliers. The spacing at both ends of the box indicates dispersion in the data. The relative location of the median demonstrated within the box indicates skewness ( Fig. 6 ). The box and whisker chart provided as an example represents calculated volumes of an anesthetic, desflurane, consumed over the course of the observation period ( Fig. 7 ) [ 9 ].

An external file that holds a picture, illustration, etc.
Object name is kjae-70-267-g006.jpg

Three-dimensional effects

Most of the recently introduced statistical packages and graphics software have the three-dimensional (3D) effect feature. The 3D effects can add depth and perspective to a graph. However, since they may make reading and interpreting data more difficult, they must only be used after careful consideration. The application of 3D effects on a pie chart makes distinguishing the size of each slice difficult. Even if slices are of similar sizes, slices farther from the front of the pie chart may appear smaller than the slices closer to the front ( Fig. 8 ).

An external file that holds a picture, illustration, etc.
Object name is kjae-70-267-g008.jpg

Drawing a graph: example

Finally, we explain how to create a graph by using a line graph as an example ( Fig. 9 ). In Fig. 9 , the mean values of arterial pressure were randomly produced and assumed to have been measured on an hourly basis. In many graphs, the x- and y-axes meet at the zero point ( Fig. 9A ). In this case, information regarding the mean and standard deviation of mean arterial pressure measurements corresponding to t = 0 cannot be conveyed as the values overlap with the y-axis. The data can be clearly exposed by separating the zero point ( Fig. 9B ). In Fig. 9B , the mean and standard deviation of different groups overlap and cannot be clearly distinguished from each other. Separating the data sets and presenting standard deviations in a single direction prevents overlapping and, therefore, reduces the visual inconvenience. Doing so also reduces the excessive number of ticks on the y-axis, increasing the legibility of the graph ( Fig. 9C ). In the last graph, different shapes were used for the lines connecting different time points to further allow the data to be distinguished, and the y-axis was shortened to get rid of the unnecessary empty space present in the previous graphs ( Fig. 9D ). A graph can be made easier to interpret by assigning each group to a different color, changing the shape of a point, or including graphs of different formats [ 10 ]. The use of random settings for the scale in a graph may lead to inappropriate presentation or presentation of data that can deceive readers' eyes ( Fig. 10 ).

An external file that holds a picture, illustration, etc.
Object name is kjae-70-267-g009.jpg

Owing to the lack of space, we could not discuss all types of graphs, but have focused on describing graphs that are frequently used in scholarly articles. We have summarized the commonly used types of graphs according to the method of data analysis in Table 3 . For general guidelines on graph designs, please refer to the journal submission requirements 2) .

Conclusions

Text, tables, and graphs are effective communication media that present and convey data and information. They aid readers in understanding the content of research, sustain their interest, and effectively present large quantities of complex information. As journal editors and reviewers will scan through these presentations before reading the entire text, their importance cannot be disregarded. For this reason, authors must pay as close attention to selecting appropriate methods of data presentation as when they were collecting data of good quality and analyzing them. In addition, having a well-established understanding of different methods of data presentation and their appropriate use will enable one to develop the ability to recognize and interpret inappropriately presented data or data presented in such a way that it deceives readers' eyes [ 11 ].

<Appendix>

Output for presentation.

Discovery and communication are the two objectives of data visualization. In the discovery phase, various types of graphs must be tried to understand the rough and overall information the data are conveying. The communication phase is focused on presenting the discovered information in a summarized form. During this phase, it is necessary to polish images including graphs, pictures, and videos, and consider the fact that the images may look different when printed than how appear on a computer screen. In this appendix, we discuss important concepts that one must be familiar with to print graphs appropriately.

The KJA asks that pictures and images meet the following requirement before submission 3)

“Figures and photographs should be submitted as ‘TIFF’ files. Submit files of figures and photographs separately from the text of the paper. Width of figure should be 84 mm (one column). Contrast of photos or graphs should be at least 600 dpi. Contrast of line drawings should be at least 1,200 dpi. The Powerpoint file (ppt, pptx) is also acceptable.”

Unfortunately, without sufficient knowledge of computer graphics, it is not easy to understand the submission requirement above. Therefore, it is necessary to develop an understanding of image resolution, image format (bitmap and vector images), and the corresponding file specifications.

Resolution is often mentioned to describe the quality of images containing graphs or CT/MRI scans, and video files. The higher the resolution, the clearer and closer to reality the image is, while the opposite is true for low resolutions. The most representative unit used to describe a resolution is “dpi” (dots per inch): this literally translates to the number of dots required to constitute 1 inch. The greater the number of dots, the higher the resolution. The KJA submission requirements recommend 600 dpi for images, and 1,200 dpi 4) for graphs. In other words, resolutions in which 600 or 1,200 dots constitute one inch are required for submission.

There are requirements for the horizontal length of an image in addition to the resolution requirements. While there are no requirements for the vertical length of an image, it must not exceed the vertical length of a page. The width of a column on one side of a printed page is 84 mm, or 3.3 inches (84/25.4 mm ≒ 3.3 inches). Therefore, a graph must have a resolution in which 1,200 dots constitute 1 inch, and have a width of 3.3 inches.

Bitmap and Vector

Methods of image construction are important. Bitmap images can be considered as images drawn on section paper. Enlarging the image will enlarge the picture along with the grid, resulting in a lower resolution; in other words, aliasing occurs. On the other hand, reducing the size of the image will reduce the size of the picture, while increasing the resolution. In other words, resolution and the size of an image are inversely proportionate to one another in bitmap images, and it is a drawback of bitmap images that resolution must be considered when adjusting the size of an image. To enlarge an image while maintaining the same resolution, the size and resolution of the image must be determined before saving the image. An image that has already been created cannot avoid changes to its resolution according to changes in size. Enlarging an image while maintaining the same resolution will increase the number of horizontal and vertical dots, ultimately increasing the number of pixels 5) of the image, and the file size. In other words, the file size of a bitmap image is affected by the size and resolution of the image (file extensions include JPG [JPEG] 6) , PNG 7) , GIF 8) , and TIF [TIFF] 9) . To avoid this complexity, the width of an image can be set to 4 inches and its resolution to 900 dpi to satisfy the submission requirements of most journals [ 12 ].

Vector images overcome the shortcomings of bitmap images. Vector images are created based on mathematical operations of line segments and areas between different points, and are not affected by aliasing or pixelation. Furthermore, they result in a smaller file size that is not affected by the size of the image. They are commonly used for drawings and illustrations (file extensions include EPS 10) , CGM 11) , and SVG 12) ).

Finally, the PDF 13) is a file format developed by Adobe Systems (Adobe Systems, CA, USA) for electronic documents, and can contain general documents, text, drawings, images, and fonts. They can also contain bitmap and vector images. While vector images are used by researchers when working in Powerpoint, they are saved as 960 × 720 dots when saved in TIFF format in Powerpoint. This results in a resolution that is inappropriate for printing on a paper medium. To save high-resolution bitmap images, the image must be saved as a PDF file instead of a TIFF, and the saved PDF file must be imported into an imaging processing program such as Photoshop™(Adobe Systems, CA, USA) to be saved in TIFF format [ 12 ].

1) Instructions to authors in KJA; section 5-(9) Table; https://ekja.org/index.php?body=instruction

2) Instructions to Authors in KJA; section 6-1)-(10) Figures and illustrations in Manuscript preparation; https://ekja.org/index.php?body=instruction

3) Instructions to Authors in KJA; section 6-1)-(10) Figures and illustrations in Manuscript preparation; https://ekja.org/index.php?body=instruction

4) Resolution; in KJA, it is represented by “contrast.”

5) Pixel is a minimum unit of an image and contains information of a dot and color. It is derived by multiplying the number of vertical and horizontal dots regardless of image size. For example, Full High Definition (FHD) monitor has 1920 × 1080 dots ≒ 2.07 million pixel.

6) Joint Photographic Experts Group.

7) Portable Network Graphics.

8) Graphics Interchange Format

9) Tagged Image File Format; TIFF

10) Encapsulated PostScript.

11) Computer Graphics Metafile.

12) Scalable Vector Graphics.

13) Portable Document Format.

Academia.edu no longer supports Internet Explorer.

To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to  upgrade your browser .

Enter the email address you signed up with and we'll email you a reset link.

  • We're Hiring!
  • Help Center

paper cover thumbnail

Data presentation

Profile image of Jerry Mclarty

2009, Annals of Allergy, Asthma & Immunology

Related Papers

definition of data presentation pdf

fekad alemachew

Debela Kumasaa

mohamed abdirahman

Biftu Endale

Kwaku Owusu-Bediako

Miressa Beyene

Christian A Hesse

The purpose of this book is to acquaint the reader with the increasing number of applications of statistics in engineering and the social sciences. It can be used as a textbook for a first course in statistical methods in Universities and Polytechnics. The book can also be used by decision makers and researchers to either gain basic understanding or to extend their knowledge of some of the most commonly used statistical methods.

RELATED PAPERS

Abebe T Kassaye

Petrut Herta-Gheorghies

cut aja chairuna

desalegn nega

siddha joshi

paulyanick bekolo

Ivan Javier Peñaloza

Patricia Garrido

magendira mani vinayagam

Ricardo Alexandre Balbo

Diksha Taneja

Alex Guetta

Efthymia Nikita

Joel Schwartz

Noleine Fitzallen

Christopher Halter

Ronald Fortenberry

Sanha Hemvanich

Computational Statistics & Data Analysis

Michael Friendly

Arjo Hospital

Mike Baxter

Md. Mazharul Islam Jony

Musfiqur Rahman

Bambang Husni Nugroho

INTRODUCTION TO STATISTICS USING R

Eriika Echelon

Journel Ann Supremo

Thành Huy Vũ

Vijaya Lakshmi

wlilson steven Mora rivera

quality management

Naveen Chadha

RELATED TOPICS

  •   We're Hiring!
  •   Help Center
  • Find new research papers in:
  • Health Sciences
  • Earth Sciences
  • Cognitive Science
  • Mathematics
  • Computer Science
  • Academia ©2024

Data Presentation

Josée Dupuis, PhD, Professor of Biostatistics, Boston University School of Public Health

Wayne LaMorte, MD, PhD, MPH, Professor of Epidemiology, Boston University School of Public Health

Introduction

While graphical summaries of data can certainly be powerful ways of communicating results clearly and unambiguously in a way that facilitates our ability to think about the information, poorly designed graphical displays can be ambiguous, confusing, and downright misleading. The keys to excellence in graphical design and communication are much like the keys to good writing. Adhere to fundamental principles of style and communicate as logically, accurately, and clearly as possible. Excellence in writing is generally achieved by avoiding unnecessary words and paragraphs; it is efficient. In a similar fashion, excellence in graphical presentation is generally achieved by efficient designs that avoid unnecessary ink.

Excellence in graphical presentation depends on:

  • Choosing the best medium for presenting the information
  • Designing the components of the graph in a way that communicates the information as clearly and accurately as possible.

Table or Graph?

  • Tables are generally best if you want to be able to look up specific information or if the values must be reported precisely.
  • Graphics are best for illustrating trends and making comparisons

The side by side illustrations below show the same information, first in table form and then in graphical form. While the information in the table is precise, the real goal is to compare a series of clinical outcomes in subjects taking either a drug or a placebo. The graphical presentation on the right makes it possible to quickly see that for each of the outcomes evaluated, the drug produced relief in a great proportion of subjects. Moreover, the viewer gets a clear sense of the magnitude of improvement, and the error bars provided a sense of the uncertainty in the data.

Principles for Table Display

  • Sort table rows in a meaningful way
  • Avoid alphabetical listing!
  • Use rates, proportions or ratios in addition (or instead of) totals
  • Show more than two time points if available
  • Multiple time points may be better presented in a Figure
  • Similar data should go down columns
  • Highlight important comparisons
  • Show the source of the data

Consider the data in the table below from http://www.cancer.gov/cancertopics/types/commoncancers

Our ability to quickly understand the relative frequency of these cancers is hampered by presenting them in alphabetical order. It is much easier for the reader to grasp the relative frequency by listing them from most frequent to least frequent as in the next table.

However, the same information might be presented more effectively with a dot plot, as shown below.

definition of data presentation pdf

Data from http://www.cancer.gov/cancertopics/types/commoncancers

Principles of Graphical Excellence from E.R. Tufte

Pattern perception.

Pattern perception is done by

  • Detection: recognition of geometry encoding physical values
  • Assembly: grouping of detected symbol elements; discerning overall patterns in data
  • Estimation: assessment of relative magnitudes of two physical values

Geographic Variation in Cancer

As an example, Tufte offers a series of maps that summarize the age-adjusted mortality rates for various types of cancer in the 3,056 counties in the United States. The maps showing the geographic variation in stomach cancer are shown below.

These maps summarize an enormous amount of information and present it efficiently, coherently, and effectively.in a way that invites the viewer to make comparisons and to think about the substance of the findings. Consider, for example, that the region to the west of the Great Lakes was settled largely by immigrants from Germany and Scand anavia, where traditional methods of preserving food included pickling and curing of fish by smoking. Could these methods be associated with an increased risk of stomach cancer?

John Snow's Spot Map of Cholera Cases

Consider also the spot map that John Snow presented after the cholera outbreak in the Broad Street section of London in September 1854. Snow ascertained the place of residence or work of the victims and represented them on a map of the area using a small black disk to represent each victim and stacking them when more than one occurred at a particular location. Snow reasoned that cholera was probably caused by something that was ingested, because of the intense diarrhea and vomiting of the victims, and he noted that the vast majority of cholera deaths occurred in people who lived or worked in the immediate vicinity of the broad street pump (shown with a red dot that we added for clarity). He further ascertained that most of the victims drank water from the Broad Street pump, and it was this evidence that persuaded the authorities to remove the handle from the pump in order to prevent more deaths.

Map of the Broad Street area of London showing stacks of black disks to represent the number of cholera cases that occurred at various locations. The cases seem to be clustered around the Broad Street water pump.

Humans can readily perceive differences like this when presented effectively as in the two previous examples. However, humans are not good at estimating differences without directly seeing them (especially for steep curves), and we are particularly bad at perceiving relative angles (the principal perception task used in a pie chart).

The use of pie charts is generally discouraged. Consider the pie chart on the left below. It is difficult to accurately assess the relative size of the components in the pie chart, because the human eye has difficulty judging angles. The dot plot on the right shows the same data, but it is much easier to quickly assess the relative size of the components and how they changed from Fiscal Year 2000 to Fiscal Year 2007.

Consider the information in the two pie charts below (showing the same information).The 3-dimensional pie chart on the left distorts the relative proportions. In contrast the 2-dimensional pie chart on the right makes it much easier to compare the relative size of the varies components..

More Principles of Graphical Excellence

Exclude unneeded dimensions.

These 3-dimensional techniques distort the data and actually interfere with our ability to make accurate comparisons. The distortion caused by 3-dimensional elements can be particularly severe when the graphic is slanted at an angle or when the viewer tends to compare ends up unwittingly comparing the areas of the ink rather than the heights of the bars.

It is much easier to make comparisons with a chart like the one below.

definition of data presentation pdf

Source: Huang, C, Guo C, Nichols C, Chen S, Martorell R. Elevated levels of protein in urine in adulthood after exposure to

the Chinese famine of 1959–61 during gestation and the early postnatal period. Int. J. Epidemiol. (2014) 43 (6): 1806-1814 .

Omit "Chart Junk"

Consider these two examples.

Here is a simple enumeration of the number of pets in a neighborhood. There is absolutely no reason to connect these counts with lines. This is, in fact, confusing and inappropriate and nothing more than "chart junk."

definition of data presentation pdf

Source: http://www.go-education.com/free-graph-maker.html

Moiré Vibration

Moiré effects are sometimes used in modern art to produce the appearance of vibration and movement. However, when these effects are applied to statistical presentations, they are distracting and add clutter because the visual noise interferes with the interpretation of the data.

Tufte presents the example shown below from Instituto de Expansao Commercial, Brasil, Graphicos Estatisticas (Rio de Janeiro, 1929, p. 15).

 While the intention is to present quantitative information about the textile industry, the moiré effects do not add anything, and they are distracting, if not visually annoying.

Present Data to Facilitate Comparisons

Here is an attempt to compare catches of cod fish and crab across regions and to relate the variation to changes in water temperature. The problem here is that the Y-axes are vastly different, making it hard to sort out what's really going on. Even the Y-axes for temperature are vastly different.

definition of data presentation pdf

http://seananderson.ca/courses/11-multipanel/multipanel.pdf1

The ability to make comparisons is greatly facilitated by using the same scales for axes, as illustrated below.

definition of data presentation pdf

Data source: Dawber TR, Meadors GF, Moore FE Jr. Epidemiological approaches to heart disease:

the Framingham Study. Am J Public Health Nations Health. 1951;41(3):279-81. PMID: 14819398

It is also important to avoid distorting the X-axis. Note in the example below that the space between 0.05 to 0.1 is the same as space between 0.1 and 0.2.

definition of data presentation pdf

Source: Park JH, Gail MH, Weinberg CR, et al. Distribution of allele frequencies and effect sizes and

their interrelationships for common genetic susceptibility variants. Proc Natl Acad Sci U S A. 2011; 108:18026-31.

Consider the range of the Y-axis. In the examples below there is no relevant information below $40,000, so it is not necessary to begin the Y-axis at 0. The graph on the right makes more sense.

Also, consider using a log scale. this can be particularly useful when presenting ratios as in the example below.

definition of data presentation pdf

Source: Broman KW, Murray JC, Sheffield VC, White RL, Weber JL (1998) Comprehensive human genetic maps:

Individual and sex-specific variation in recombination. American Journal of Human Genetics 63:861-869, Figure 1

We noted earlier that pie charts make it difficult to see differences within a single pie chart, but this is particularly difficult when data is presented with multiple pie charts, as in the example below.

definition of data presentation pdf

Source: Bell ML, et al. (2007) Spatial and temporal variation in PM2.5 chemical composition in the United States

for health effects studies. Environmental Health Perspectives 115:989-995, Figure 3

When multiple comparisons are being made, it is essential to use colors and symbols in a consistent way, as in this example.

definition of data presentation pdf

Source: Manning AK, LaValley M, Liu CT, et al.  Meta-Analysis of Gene-Environment Interaction:

Joint Estimation of SNP and SNP x Environment Regression Coefficients.  Genet Epidemiol 2011, 35(1):11-8.

Avoid putting too many lines on the same chart. In the example below, the only thing that is readily apparent is that 1980 was a very hot summer.

definition of data presentation pdf

Data from National Weather Service Weather Forecast Office at

http://www.srh.noaa.gov/tsa/?n=climo_tulyeartemp

Make Efficient Use of Space

Reduce the ratio of ink to information.

This isn't efficient, because this graphic is totally uninformative.

definition of data presentation pdf

Source: Mykland P, Tierney L, Yu B (1995) Regeneration in Markov chain samplers.  Journal of the American Statistical Association 90:233-241, Figure 1

Bar graphs add ink without conveying any additional information, and they are distracting. The graph below on the left inappropriately uses bars which clutter the graph without adding anything. The graph on the right displays the same data, by does so more clearly and with less clutter.

Multiple Types of Information on the Same Figure

Choosing the best graph type, bar charts, error bars and dot plots.

As noted previously, bar charts can be problematic. Here is another one presenting means and error bars, but the error bars are misleading because they only extend in one direction. A better alternative would have been to to use full error bars with a scatter plot, as illustrated previously (right).

Consider the four graphs below presenting the incidence of cancer by type. The upper left graph unnecessary uses bars, which take up a lot of ink. This layout also ends up making the fonts for the types of cancer too small. Small font is also a problem for the dot plot at the upper right, and this one also has unnecessary grid lines across the entire width.

The graph at the lower left has more readable labels and uses a simple dot plot, but the rank order is difficult to figure out.

The graph at the lower right is clearly the best, since the labels are readable, the magnitude of incidence is shown clearly by the dot plots, and the cancers are sorted by frequency.

Single Continuous Numeric Variable

In this situation a cumulative distribution function conveys the most information and requires no grouping of the variable. A box plot will show selected quantiles effectively, and box plots are especially useful when stratifying by multiple categories of another variable.

Histograms are also possible. Consider the examples below.

Two Variables

 The two graphs below summarize BMI (Body Mass Index) measurements in four categories, i.e., younger and older men and women. The graph on the left shows the means and 95% confidence interval for the mean in each of the four groups. This is easy to interpret, but the viewer cannot see that the data is actually quite skewed. The graph on the right shows the same information presented as a box plot. With this presentation method one gets a better understanding of the skewed distribution and how the groups compare.

The next example is a scatter plot with a superimposed smoothed line of prediction. The shaded region embracing the blue line is a representation of the 95% confidence limits for the estimated prediction. This was created using "ggplot" in the R programming language.

definition of data presentation pdf

Source: Frank E. Harrell Jr. on graphics:  http://biostat.mc.vanderbilt.edu/twiki/pub/Main/StatGraphCourse/graphscourse.pdf (page 121)

Multivariate Data

The example below shows the use of multiple panels.

definition of data presentation pdf

Source: Cleveland S. The Elements of Graphing Data. Hobart Press, Summit, NJ, 1994.

Displaying Uncertainty

  • Error bars showing confidence limits
  • Confidence bands drawn using two lines
  • Shaded confidence bands
  • Bayesian credible intervals
  • Bayesian posterior densities

Confidence Limits

Shaded Confidence Bands

definition of data presentation pdf

Source: Frank E. Harrell Jr. on graphics:  http://biostat.mc.vanderbilt.edu/twiki/pub/Main/StatGraphCourse/graphscourse.pdf

definition of data presentation pdf

Source: Tweedie RL and Mengersen KL. (1992) Br. J. Cancer 66: 700-705

Forest Plot

This is a Forest plot summarizing 26 studies of cigarette smoke exposure on risk of lung cancer. The sizes of the black boxes indicating the estimated odds ratio are proportional to the sample size in each study.

definition of data presentation pdf

Data from Tweedie RL and Mengersen KL. (1992) Br. J. Cancer 66: 700-705

Summary Recommendations

  • In general, avoid bar plots
  • Avoid chart junk and the use of too much ink relative to the information you are displaying. Keep it simple and clear.
  • Avoid pie charts, because humans have difficulty perceiving relative angles.
  • Pay attention to scale, and make scales consistent.
  • Explore several ways to display the data!

12 Tips on How to Display Data Badly

Adapted from Wainer H.  How to Display Data Badly.  The American Statistician 1984; 38: 137-147. 

  • Show as few data as possible
  • Hide what data you do show; minimize the data-ink ratio
  • Ignore the visual metaphor altogether
  • Only order matters
  • Graph data out of context
  • Change scales in mid-axis
  • Emphasize the trivial;  ignore the important
  • Jiggle the baseline
  • Alphabetize everything.
  • Make your labels illegible, incomplete, incorrect, and ambiguous.
  • More is murkier: use a lot of decimal places and make your graphs three dimensional whenever possible.
  • If it has been done well in the past, think of another way to do it

Additional Resources

  • Stephen Few: Designing Effective Tables and Graphs. http://www.perceptualedge.com/images/Effective_Chart_Design.pdf
  • Gary Klaas: Presenting Data: Tabular and graphic display of social indicators. Illinois State University, 2002. http://lilt.ilstu.edu/gmklass/pos138/datadisplay/sections/goodcharts.htm (Note: The web site will be discontinued to be replaced by the Just Plain Data Analysis site).

Data Collection, Presentation and Analysis

  • First Online: 25 May 2023

Cite this chapter

definition of data presentation pdf

  • Uche M. Mbanaso 4 ,
  • Lucienne Abrahams 5 &
  • Kennedy Chinedu Okafor 6  

511 Accesses

This chapter covers the topics of data collection, data presentation and data analysis. It gives attention to data collection for studies based on experiments, on data derived from existing published or unpublished data sets, on observation, on simulation and digital twins, on surveys, on interviews and on focus group discussions. One of the interesting features of this chapter is the section dealing with using measurement scales in quantitative research, including nominal scales, ordinal scales, interval scales and ratio scales. It explains key facets of qualitative research including ethical clearance requirements. The chapter discusses the importance of data visualization as key to effective presentation of data, including tabular forms, graphical forms and visual charts such as those generated by Atlas.ti analytical software.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
  • Available as EPUB and PDF
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

Abdullah, M. F., & Ahmad, K. (2013). The mapping process of unstructured data to structured data. Proceedings of the 2013 International Conference on Research and Innovation in Information Systems (ICRIIS) , Malaysia , 151–155. https://doi.org/10.1109/ICRIIS.2013.6716700

Adnan, K., & Akbar, R. (2019). An analytical study of information extraction from unstructured and multidimensional big data. Journal of Big Data, 6 , 91. https://doi.org/10.1186/s40537-019-0254-8

Article   Google Scholar  

Alsheref, F. K., & Fattoh, I. E. (2020). Medical text annotation tool based on IBM Watson Platform. Proceedings of the 2020 6th international conference on advanced computing and communication systems (ICACCS) , India , 1312–1316. https://doi.org/10.1109/ICACCS48705.2020.9074309

Cinque, M., Cotroneo, D., Della Corte, R., & Pecchia, A. (2014). What logs should you look at when an application fails? Insights from an industrial case study. Proceedings of the 2014 44th Annual IEEE/IFIP International Conference on Dependable Systems and Networks , USA , 690–695. https://doi.org/10.1109/DSN.2014.69

Gideon, L. (Ed.). (2012). Handbook of survey methodology for the social sciences . Springer.

Google Scholar  

Leedy, P., & Ormrod, J. (2015). Practical research planning and design (12th ed.). Pearson Education.

Madaan, A., Wang, X., Hall, W., & Tiropanis, T. (2018). Observing data in IoT worlds: What and how to observe? In Living in the Internet of Things: Cybersecurity of the IoT – 2018 (pp. 1–7). https://doi.org/10.1049/cp.2018.0032

Chapter   Google Scholar  

Mahajan, P., & Naik, C. (2019). Development of integrated IoT and machine learning based data collection and analysis system for the effective prediction of agricultural residue/biomass availability to regenerate clean energy. Proceedings of the 2019 9th International Conference on Emerging Trends in Engineering and Technology – Signal and Information Processing (ICETET-SIP-19) , India , 1–5. https://doi.org/10.1109/ICETET-SIP-1946815.2019.9092156 .

Mahmud, M. S., Huang, J. Z., Salloum, S., Emara, T. Z., & Sadatdiynov, K. (2020). A survey of data partitioning and sampling methods to support big data analysis. Big Data Mining and Analytics, 3 (2), 85–101. https://doi.org/10.26599/BDMA.2019.9020015

Miswar, S., & Kurniawan, N. B. (2018). A systematic literature review on survey data collection system. Proceedings of the 2018 International Conference on Information Technology Systems and Innovation (ICITSI) , Indonesia , 177–181. https://doi.org/10.1109/ICITSI.2018.8696036

Mosina, C. (2020). Understanding the diffusion of the internet: Redesigning the global diffusion of the internet framework (Research report, Master of Arts in ICT Policy and Regulation). LINK Centre, University of the Witwatersrand. https://hdl.handle.net/10539/30723

Nkamisa, S. (2021). Investigating the integration of drone management systems to create an enabling remote piloted aircraft regulatory environment in South Africa (Research report, Master of Arts in ICT Policy and Regulation). LINK Centre, University of the Witwatersrand. https://hdl.handle.net/10539/33883

QuestionPro. (2020). Survey research: Definition, examples and methods . https://www.questionpro.com/article/survey-research.html

Rajanikanth, J. & Kanth, T. V. R. (2017). An explorative data analysis on Bangalore City Weather with hybrid data mining techniques using R. Proceedings of the 2017 International Conference on Current Trends in Computer, Electrical, Electronics and Communication (CTCEEC) , India , 1121-1125. https://doi/10.1109/CTCEEC.2017.8455008

Rao, R. (2003). From unstructured data to actionable intelligence. IT Professional, 5 , 29–35. https://www.researchgate.net/publication/3426648_From_Unstructured_Data_to_Actionable_Intelligence

Schulze, P. (2009). Design of the research instrument. In P. Schulze (Ed.), Balancing exploitation and exploration: Organizational antecedents and performance effects of innovation strategies (pp. 116–141). Gabler. https://doi.org/10.1007/978-3-8349-8397-8_6

Usanov, A. (2015). Assessing cybersecurity: A meta-analysis of threats, trends and responses to cyber attacks . The Hague Centre for Strategic Studies. https://www.researchgate.net/publication/319677972_Assessing_Cyber_Security_A_Meta-analysis_of_Threats_Trends_and_Responses_to_Cyber_Attacks

Van de Kaa, G., De Vries, H. J., van Heck, E., & van den Ende, J. (2007). The emergence of standards: A meta-analysis. Proceedings of the 2007 40th Annual Hawaii International Conference on Systems Science (HICSS’07) , USA , 173a–173a. https://doi.org/10.1109/HICSS.2007.529

Download references

Author information

Authors and affiliations.

Centre for Cybersecurity Studies, Nasarawa State University, Keffi, Nigeria

Uche M. Mbanaso

LINK Centre, University of the Witwatersrand, Johannesburg, South Africa

Lucienne Abrahams

Department of Mechatronics Engineering, Federal University of Technology, Owerri, Nigeria

Kennedy Chinedu Okafor

You can also search for this author in PubMed   Google Scholar

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Mbanaso, U.M., Abrahams, L., Okafor, K.C. (2023). Data Collection, Presentation and Analysis. In: Research Techniques for Computer Science, Information Systems and Cybersecurity. Springer, Cham. https://doi.org/10.1007/978-3-031-30031-8_7

Download citation

DOI : https://doi.org/10.1007/978-3-031-30031-8_7

Published : 25 May 2023

Publisher Name : Springer, Cham

Print ISBN : 978-3-031-30030-1

Online ISBN : 978-3-031-30031-8

eBook Packages : Engineering Engineering (R0)

Share this chapter

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research

IMAGES

  1. Presentation of data

    definition of data presentation pdf

  2. Types of Data PowerPoint Presentation Slides

    definition of data presentation pdf

  3. (PDF) Chapter 1 Data Presentation

    definition of data presentation pdf

  4. 5 Steps of the Data Analysis Process

    definition of data presentation pdf

  5. What is Data Visualization? Definition, Examples, Best Practices

    definition of data presentation pdf

  6. What is data? Definition and examples

    definition of data presentation pdf

VIDEO

  1. Presentation of Data |Chapter 2 |Statistics

  2. What is a Data Catalog? #datacatalog #datagovernance

  3. Data Structure Definition #shorts #datastructures

  4. Document format conversion; Text recognition tools; Document management tools

  5. Definition of Presentation Of Data

  6. Definition of Presentation Of Data

COMMENTS

  1. (PDF) Statistical data presentation

    Data Presentation. Data can be presented in one of the three wa ys: - as text; - in tabular form; or. - in graphical form. Methods of presenta tion must be determined according. to the data ...

  2. (PDF) CHAPTER FOUR DATA PRESENTATION, ANALYSIS AND ...

    DATA PRESENTATION, ANALYSIS AND INTERPRETATION. 4.0 Introduction. This chapter is concerned with data pres entation, of the findings obtained through the study. The. findings are presented in ...

  3. PDF Data Presentation

    Data Presentation The purpose of putting results of experiments into graphs, charts and tables is two-fold. First, it is a visual way to look at the data and see what happened and make interpretations. Second, it is usually the best way to show the data to others. Reading lots of numbers in the text puts people to sleep and does little to convey

  4. Data Presentation

    Dispositio (Layout) This stage allows the previously identified topics to be arranged in a logical order, appropriate to the presented topics and the obtained results. The presentation sequence can follow one of the basic criteria illustrated in Table 3. Data Presentation, Table 3 Criteria for presentation's sequence.

  5. PDF Chapter 2 Data and Data Presentation

    data into groups in order to reduce the data quantity to manageable categories. Data analysis explores and describes the distribution patterns within a category and the relationships between the categories to generate information. Finally, the presentation process applies various forms of media and formats to inform the

  6. PDF 7 Data Presentation

    step forward for summarizing data, but graphs went even further by presenting data in visual form. Too often data are presented in an awkward or confusing format. By following certain simple rules described in section 7.2 for tables and in section 7.3 for graphs, it should be possible to present the data with maximum effectiveness.

  7. Statistical data presentation

    In this article, the techniques of data and information presentation in textual, tabular, and graphical forms are introduced. Text is the principal method for explaining findings, outlining trends, and providing contextual information. A table is best suited for representing individual information and represents both quantitative and ...

  8. (PDF) Data presentation

    Download Free PDF. Data presentation Sami L. Bahna, MD, DrPH,* and Jerry W. McLarty, PhD† INTRODUCTION Organization and summarization of data are prerequisites for appropriate analysis, presentation, and interpretation. Effective data presentation can be used not only to summarize and communicate findings but also to aid in quality control ...

  9. Data presentation

    Data visualization and presentation are an integral part of the process to disseminate our work. •. Text, tables, and figures should be carefully planned and organized to present our work truthfully and efficiently. •. Raw data, redundancy, data misrepresentation, and excessive information must be avoided for successful data presentation.

  10. PDF Chapter 2 Data Collection and Presentation

    2.3 Data Presentation: Tables All data tables have four elements: a caption, column labels, row labels, and cells. The caption describes the information that is contained in the table. The column labels identify the information in the columns, such as the gross national product, the inflation rate, or the Dow Jones Industrial Average.

  11. Data Presentation

    Encourage the eye to compare different pieces of data. Reveal the data at several levels of detail, from a broad overview to the fine structure. Serve a clear purpose: description, exploration, tabulation, or decoration. Be closely integrated with the statistical and verbal descriptions of the data set. From E. R. Tufte.

  12. PDF A Hands-On Introduction to Data Science

    2.3.3 Multimodal Data 41 2.3.4 Data Storage and Presentation 42 2.4 Data Pre-processing 47 2.4.1 Data Cleaning 48 2.4.2 Data Integration 50 2.4.3 Data Transformation 51 2.4.4 Data Reduction 51 2.4.5 Data Discretization 52 Summary 59 Key Terms 60 Conceptual Questions 60 Hands-On Problems 61 Further Reading and Resources 65 3 Techniques 66 3.1 ...

  13. PDF CHAPTER 4 Data analysis and presentation

    4.1 INTRODUCTION. This chapter presents themes and categories that emerged from the data, including the defining attributes, antecedents and consequences of the concept, and the different cases that illuminate the concept critical thinking. The data are presented from the most general (themes) to the most specific (data units/chunks).

  14. (PDF) DATA PRESENTATION AND ANALYSINGf

    Data is the basis of information, reasoning, or calcul ation, it is analysed to obtain. information. Data analysis is a process of inspecting, cleansing, transforming, and data. modeling with the ...

  15. PDF Introduction to Data Analysis Handbook

    presentation of the "guiding principles" we use in presenting information, as well as the articulation of specific learning objectives. n Section i ii, we present an introduction to ... The 1973 Webster's new Collegiate Dictionary defines data as "factual information (as measurements or statistics) used as a basis for reasoning ...

  16. PDF Tabular and Graphical Presentation of Data

    Oral Presentations. • Only include important results. • One report table might need to be broken down into as many as 8‐10 slides. • Don't paste huge tables onto slides and then say "sorry you can't read this"!! • Use large fonts and clear formatting. Table 1.

  17. Data Collection, Presentation and Analysis

    Abstract. This chapter covers the topics of data collection, data presentation and data analysis. It gives attention to data collection for studies based on experiments, on data derived from existing published or unpublished data sets, on observation, on simulation and digital twins, on surveys, on interviews and on focus group discussions.

  18. PDF DATA ANALYSIS, INTERPRETATION AND PRESENTATION

    analysis to use on a set of data and the relevant forms of pictorial presentation or data display. The decision is based on the scale of measurement of the data. These scales are nominal, ordinal and numerical. Nominal scale A nominal scale is where: the data can be classified into a non-numerical or named categories, and

  19. (PDF) DATA PRESENTATION: TABLE AND FIGURE DESIGN

    collected through enquiry. A table represen ts sum mary of the data by usin g columns and rows. entering figures in the body of table. 12.2 PURPOSE OF THE TABULATION. The purposes of tables and ...

  20. PDF Introduction to Big Data

    Heechan Chae. Location: 7-328 Email: [email protected]. If you have any questions about the course please email me and I will reply as soon as I see it. If you need to meet in person, please make an appointment by email first. I will be available at Mon: 12:00 - 17:00 | Wed: 10:00 - 13:00 | Thu: 10:00 - 13:00.

  21. (PDF) Data Presentation in Qualitative Research: The Outcomes of the

    The data presentation is one of the segments of the methodology in every research depending on the approach. The methodology, therefore, refers to the design and the theory that underpins the ...

  22. What Is Data Presentation? (Definition, Types And How-To)

    This method of displaying data uses diagrams and images. It is the most visual type for presenting data and provides a quick glance at statistical data. There are four basic types of diagrams, including: Pictograms: This diagram uses images to represent data. For example, to show the number of books sold in the first release week, you may draw ...

  23. (PDF) Defining Terms: Data, Information and Knowledge

    Defining Terms: Data, Information and Knowledge. John Sanders. Bluestone Enterprise Ltd. UK. Abstract —in normal conversation, the meanings of data, information and kno wledge can often be used ...