• Search Menu
  • Browse content in Arts and Humanities
  • Browse content in Archaeology
  • Anglo-Saxon and Medieval Archaeology
  • Archaeological Methodology and Techniques
  • Archaeology by Region
  • Archaeology of Religion
  • Archaeology of Trade and Exchange
  • Biblical Archaeology
  • Contemporary and Public Archaeology
  • Environmental Archaeology
  • Historical Archaeology
  • History and Theory of Archaeology
  • Industrial Archaeology
  • Landscape Archaeology
  • Mortuary Archaeology
  • Prehistoric Archaeology
  • Underwater Archaeology
  • Urban Archaeology
  • Zooarchaeology
  • Browse content in Architecture
  • Architectural Structure and Design
  • History of Architecture
  • Residential and Domestic Buildings
  • Theory of Architecture
  • Browse content in Art
  • Art Subjects and Themes
  • History of Art
  • Industrial and Commercial Art
  • Theory of Art
  • Biographical Studies
  • Byzantine Studies
  • Browse content in Classical Studies
  • Classical History
  • Classical Philosophy
  • Classical Mythology
  • Classical Literature
  • Classical Reception
  • Classical Art and Architecture
  • Classical Oratory and Rhetoric
  • Greek and Roman Epigraphy
  • Greek and Roman Law
  • Greek and Roman Papyrology
  • Greek and Roman Archaeology
  • Late Antiquity
  • Religion in the Ancient World
  • Digital Humanities
  • Browse content in History
  • Colonialism and Imperialism
  • Diplomatic History
  • Environmental History
  • Genealogy, Heraldry, Names, and Honours
  • Genocide and Ethnic Cleansing
  • Historical Geography
  • History by Period
  • History of Emotions
  • History of Agriculture
  • History of Education
  • History of Gender and Sexuality
  • Industrial History
  • Intellectual History
  • International History
  • Labour History
  • Legal and Constitutional History
  • Local and Family History
  • Maritime History
  • Military History
  • National Liberation and Post-Colonialism
  • Oral History
  • Political History
  • Public History
  • Regional and National History
  • Revolutions and Rebellions
  • Slavery and Abolition of Slavery
  • Social and Cultural History
  • Theory, Methods, and Historiography
  • Urban History
  • World History
  • Browse content in Language Teaching and Learning
  • Language Learning (Specific Skills)
  • Language Teaching Theory and Methods
  • Browse content in Linguistics
  • Applied Linguistics
  • Cognitive Linguistics
  • Computational Linguistics
  • Forensic Linguistics
  • Grammar, Syntax and Morphology
  • Historical and Diachronic Linguistics
  • History of English
  • Language Acquisition
  • Language Evolution
  • Language Reference
  • Language Variation
  • Language Families
  • Lexicography
  • Linguistic Anthropology
  • Linguistic Theories
  • Linguistic Typology
  • Phonetics and Phonology
  • Psycholinguistics
  • Sociolinguistics
  • Translation and Interpretation
  • Writing Systems
  • Browse content in Literature
  • Bibliography
  • Children's Literature Studies
  • Literary Studies (Asian)
  • Literary Studies (European)
  • Literary Studies (Eco-criticism)
  • Literary Studies (Romanticism)
  • Literary Studies (American)
  • Literary Studies (Modernism)
  • Literary Studies - World
  • Literary Studies (1500 to 1800)
  • Literary Studies (19th Century)
  • Literary Studies (20th Century onwards)
  • Literary Studies (African American Literature)
  • Literary Studies (British and Irish)
  • Literary Studies (Early and Medieval)
  • Literary Studies (Fiction, Novelists, and Prose Writers)
  • Literary Studies (Gender Studies)
  • Literary Studies (Graphic Novels)
  • Literary Studies (History of the Book)
  • Literary Studies (Plays and Playwrights)
  • Literary Studies (Poetry and Poets)
  • Literary Studies (Postcolonial Literature)
  • Literary Studies (Queer Studies)
  • Literary Studies (Science Fiction)
  • Literary Studies (Travel Literature)
  • Literary Studies (War Literature)
  • Literary Studies (Women's Writing)
  • Literary Theory and Cultural Studies
  • Mythology and Folklore
  • Shakespeare Studies and Criticism
  • Browse content in Media Studies
  • Browse content in Music
  • Applied Music
  • Dance and Music
  • Ethics in Music
  • Ethnomusicology
  • Gender and Sexuality in Music
  • Medicine and Music
  • Music Cultures
  • Music and Religion
  • Music and Media
  • Music and Culture
  • Music Education and Pedagogy
  • Music Theory and Analysis
  • Musical Scores, Lyrics, and Libretti
  • Musical Structures, Styles, and Techniques
  • Musicology and Music History
  • Performance Practice and Studies
  • Race and Ethnicity in Music
  • Sound Studies
  • Browse content in Performing Arts
  • Browse content in Philosophy
  • Aesthetics and Philosophy of Art
  • Epistemology
  • Feminist Philosophy
  • History of Western Philosophy
  • Metaphysics
  • Moral Philosophy
  • Non-Western Philosophy
  • Philosophy of Science
  • Philosophy of Language
  • Philosophy of Mind
  • Philosophy of Perception
  • Philosophy of Action
  • Philosophy of Law
  • Philosophy of Religion
  • Philosophy of Mathematics and Logic
  • Practical Ethics
  • Social and Political Philosophy
  • Browse content in Religion
  • Biblical Studies
  • Christianity
  • East Asian Religions
  • History of Religion
  • Judaism and Jewish Studies
  • Qumran Studies
  • Religion and Education
  • Religion and Health
  • Religion and Politics
  • Religion and Science
  • Religion and Law
  • Religion and Art, Literature, and Music
  • Religious Studies
  • Browse content in Society and Culture
  • Cookery, Food, and Drink
  • Cultural Studies
  • Customs and Traditions
  • Ethical Issues and Debates
  • Hobbies, Games, Arts and Crafts
  • Lifestyle, Home, and Garden
  • Natural world, Country Life, and Pets
  • Popular Beliefs and Controversial Knowledge
  • Sports and Outdoor Recreation
  • Technology and Society
  • Travel and Holiday
  • Visual Culture
  • Browse content in Law
  • Arbitration
  • Browse content in Company and Commercial Law
  • Commercial Law
  • Company Law
  • Browse content in Comparative Law
  • Systems of Law
  • Competition Law
  • Browse content in Constitutional and Administrative Law
  • Government Powers
  • Judicial Review
  • Local Government Law
  • Military and Defence Law
  • Parliamentary and Legislative Practice
  • Construction Law
  • Contract Law
  • Browse content in Criminal Law
  • Criminal Procedure
  • Criminal Evidence Law
  • Sentencing and Punishment
  • Employment and Labour Law
  • Environment and Energy Law
  • Browse content in Financial Law
  • Banking Law
  • Insolvency Law
  • History of Law
  • Human Rights and Immigration
  • Intellectual Property Law
  • Browse content in International Law
  • Private International Law and Conflict of Laws
  • Public International Law
  • IT and Communications Law
  • Jurisprudence and Philosophy of Law
  • Law and Politics
  • Law and Society
  • Browse content in Legal System and Practice
  • Courts and Procedure
  • Legal Skills and Practice
  • Primary Sources of Law
  • Regulation of Legal Profession
  • Medical and Healthcare Law
  • Browse content in Policing
  • Criminal Investigation and Detection
  • Police and Security Services
  • Police Procedure and Law
  • Police Regional Planning
  • Browse content in Property Law
  • Personal Property Law
  • Study and Revision
  • Terrorism and National Security Law
  • Browse content in Trusts Law
  • Wills and Probate or Succession
  • Browse content in Medicine and Health
  • Browse content in Allied Health Professions
  • Arts Therapies
  • Clinical Science
  • Dietetics and Nutrition
  • Occupational Therapy
  • Operating Department Practice
  • Physiotherapy
  • Radiography
  • Speech and Language Therapy
  • Browse content in Anaesthetics
  • General Anaesthesia
  • Neuroanaesthesia
  • Browse content in Clinical Medicine
  • Acute Medicine
  • Cardiovascular Medicine
  • Clinical Genetics
  • Clinical Pharmacology and Therapeutics
  • Dermatology
  • Endocrinology and Diabetes
  • Gastroenterology
  • Genito-urinary Medicine
  • Geriatric Medicine
  • Infectious Diseases
  • Medical Toxicology
  • Medical Oncology
  • Pain Medicine
  • Palliative Medicine
  • Rehabilitation Medicine
  • Respiratory Medicine and Pulmonology
  • Rheumatology
  • Sleep Medicine
  • Sports and Exercise Medicine
  • Clinical Neuroscience
  • Community Medical Services
  • Critical Care
  • Emergency Medicine
  • Forensic Medicine
  • Haematology
  • History of Medicine
  • Browse content in Medical Dentistry
  • Oral and Maxillofacial Surgery
  • Paediatric Dentistry
  • Restorative Dentistry and Orthodontics
  • Surgical Dentistry
  • Browse content in Medical Skills
  • Clinical Skills
  • Communication Skills
  • Nursing Skills
  • Surgical Skills
  • Medical Ethics
  • Medical Statistics and Methodology
  • Browse content in Neurology
  • Clinical Neurophysiology
  • Neuropathology
  • Nursing Studies
  • Browse content in Obstetrics and Gynaecology
  • Gynaecology
  • Occupational Medicine
  • Ophthalmology
  • Otolaryngology (ENT)
  • Browse content in Paediatrics
  • Neonatology
  • Browse content in Pathology
  • Chemical Pathology
  • Clinical Cytogenetics and Molecular Genetics
  • Histopathology
  • Medical Microbiology and Virology
  • Patient Education and Information
  • Browse content in Pharmacology
  • Psychopharmacology
  • Browse content in Popular Health
  • Caring for Others
  • Complementary and Alternative Medicine
  • Self-help and Personal Development
  • Browse content in Preclinical Medicine
  • Cell Biology
  • Molecular Biology and Genetics
  • Reproduction, Growth and Development
  • Primary Care
  • Professional Development in Medicine
  • Browse content in Psychiatry
  • Addiction Medicine
  • Child and Adolescent Psychiatry
  • Forensic Psychiatry
  • Learning Disabilities
  • Old Age Psychiatry
  • Psychotherapy
  • Browse content in Public Health and Epidemiology
  • Epidemiology
  • Public Health
  • Browse content in Radiology
  • Clinical Radiology
  • Interventional Radiology
  • Nuclear Medicine
  • Radiation Oncology
  • Reproductive Medicine
  • Browse content in Surgery
  • Cardiothoracic Surgery
  • Gastro-intestinal and Colorectal Surgery
  • General Surgery
  • Neurosurgery
  • Paediatric Surgery
  • Peri-operative Care
  • Plastic and Reconstructive Surgery
  • Surgical Oncology
  • Transplant Surgery
  • Trauma and Orthopaedic Surgery
  • Vascular Surgery
  • Browse content in Science and Mathematics
  • Browse content in Biological Sciences
  • Aquatic Biology
  • Biochemistry
  • Bioinformatics and Computational Biology
  • Developmental Biology
  • Ecology and Conservation
  • Evolutionary Biology
  • Genetics and Genomics
  • Microbiology
  • Molecular and Cell Biology
  • Natural History
  • Plant Sciences and Forestry
  • Research Methods in Life Sciences
  • Structural Biology
  • Systems Biology
  • Zoology and Animal Sciences
  • Browse content in Chemistry
  • Analytical Chemistry
  • Computational Chemistry
  • Crystallography
  • Environmental Chemistry
  • Industrial Chemistry
  • Inorganic Chemistry
  • Materials Chemistry
  • Medicinal Chemistry
  • Mineralogy and Gems
  • Organic Chemistry
  • Physical Chemistry
  • Polymer Chemistry
  • Study and Communication Skills in Chemistry
  • Theoretical Chemistry
  • Browse content in Computer Science
  • Artificial Intelligence
  • Computer Architecture and Logic Design
  • Game Studies
  • Human-Computer Interaction
  • Mathematical Theory of Computation
  • Programming Languages
  • Software Engineering
  • Systems Analysis and Design
  • Virtual Reality
  • Browse content in Computing
  • Business Applications
  • Computer Security
  • Computer Games
  • Computer Networking and Communications
  • Digital Lifestyle
  • Graphical and Digital Media Applications
  • Operating Systems
  • Browse content in Earth Sciences and Geography
  • Atmospheric Sciences
  • Environmental Geography
  • Geology and the Lithosphere
  • Maps and Map-making
  • Meteorology and Climatology
  • Oceanography and Hydrology
  • Palaeontology
  • Physical Geography and Topography
  • Regional Geography
  • Soil Science
  • Urban Geography
  • Browse content in Engineering and Technology
  • Agriculture and Farming
  • Biological Engineering
  • Civil Engineering, Surveying, and Building
  • Electronics and Communications Engineering
  • Energy Technology
  • Engineering (General)
  • Environmental Science, Engineering, and Technology
  • History of Engineering and Technology
  • Mechanical Engineering and Materials
  • Technology of Industrial Chemistry
  • Transport Technology and Trades
  • Browse content in Environmental Science
  • Applied Ecology (Environmental Science)
  • Conservation of the Environment (Environmental Science)
  • Environmental Sustainability
  • Environmentalist Thought and Ideology (Environmental Science)
  • Management of Land and Natural Resources (Environmental Science)
  • Natural Disasters (Environmental Science)
  • Nuclear Issues (Environmental Science)
  • Pollution and Threats to the Environment (Environmental Science)
  • Social Impact of Environmental Issues (Environmental Science)
  • History of Science and Technology
  • Browse content in Materials Science
  • Ceramics and Glasses
  • Composite Materials
  • Metals, Alloying, and Corrosion
  • Nanotechnology
  • Browse content in Mathematics
  • Applied Mathematics
  • Biomathematics and Statistics
  • History of Mathematics
  • Mathematical Education
  • Mathematical Finance
  • Mathematical Analysis
  • Numerical and Computational Mathematics
  • Probability and Statistics
  • Pure Mathematics
  • Browse content in Neuroscience
  • Cognition and Behavioural Neuroscience
  • Development of the Nervous System
  • Disorders of the Nervous System
  • History of Neuroscience
  • Invertebrate Neurobiology
  • Molecular and Cellular Systems
  • Neuroendocrinology and Autonomic Nervous System
  • Neuroscientific Techniques
  • Sensory and Motor Systems
  • Browse content in Physics
  • Astronomy and Astrophysics
  • Atomic, Molecular, and Optical Physics
  • Biological and Medical Physics
  • Classical Mechanics
  • Computational Physics
  • Condensed Matter Physics
  • Electromagnetism, Optics, and Acoustics
  • History of Physics
  • Mathematical and Statistical Physics
  • Measurement Science
  • Nuclear Physics
  • Particles and Fields
  • Plasma Physics
  • Quantum Physics
  • Relativity and Gravitation
  • Semiconductor and Mesoscopic Physics
  • Browse content in Psychology
  • Affective Sciences
  • Clinical Psychology
  • Cognitive Psychology
  • Cognitive Neuroscience
  • Criminal and Forensic Psychology
  • Developmental Psychology
  • Educational Psychology
  • Evolutionary Psychology
  • Health Psychology
  • History and Systems in Psychology
  • Music Psychology
  • Neuropsychology
  • Organizational Psychology
  • Psychological Assessment and Testing
  • Psychology of Human-Technology Interaction
  • Psychology Professional Development and Training
  • Research Methods in Psychology
  • Social Psychology
  • Browse content in Social Sciences
  • Browse content in Anthropology
  • Anthropology of Religion
  • Human Evolution
  • Medical Anthropology
  • Physical Anthropology
  • Regional Anthropology
  • Social and Cultural Anthropology
  • Theory and Practice of Anthropology
  • Browse content in Business and Management
  • Business Strategy
  • Business Ethics
  • Business History
  • Business and Government
  • Business and Technology
  • Business and the Environment
  • Comparative Management
  • Corporate Governance
  • Corporate Social Responsibility
  • Entrepreneurship
  • Health Management
  • Human Resource Management
  • Industrial and Employment Relations
  • Industry Studies
  • Information and Communication Technologies
  • International Business
  • Knowledge Management
  • Management and Management Techniques
  • Operations Management
  • Organizational Theory and Behaviour
  • Pensions and Pension Management
  • Public and Nonprofit Management
  • Strategic Management
  • Supply Chain Management
  • Browse content in Criminology and Criminal Justice
  • Criminal Justice
  • Criminology
  • Forms of Crime
  • International and Comparative Criminology
  • Youth Violence and Juvenile Justice
  • Development Studies
  • Browse content in Economics
  • Agricultural, Environmental, and Natural Resource Economics
  • Asian Economics
  • Behavioural Finance
  • Behavioural Economics and Neuroeconomics
  • Econometrics and Mathematical Economics
  • Economic Systems
  • Economic History
  • Economic Methodology
  • Economic Development and Growth
  • Financial Markets
  • Financial Institutions and Services
  • General Economics and Teaching
  • Health, Education, and Welfare
  • History of Economic Thought
  • International Economics
  • Labour and Demographic Economics
  • Law and Economics
  • Macroeconomics and Monetary Economics
  • Microeconomics
  • Public Economics
  • Urban, Rural, and Regional Economics
  • Welfare Economics
  • Browse content in Education
  • Adult Education and Continuous Learning
  • Care and Counselling of Students
  • Early Childhood and Elementary Education
  • Educational Equipment and Technology
  • Educational Strategies and Policy
  • Higher and Further Education
  • Organization and Management of Education
  • Philosophy and Theory of Education
  • Schools Studies
  • Secondary Education
  • Teaching of a Specific Subject
  • Teaching of Specific Groups and Special Educational Needs
  • Teaching Skills and Techniques
  • Browse content in Environment
  • Applied Ecology (Social Science)
  • Climate Change
  • Conservation of the Environment (Social Science)
  • Environmentalist Thought and Ideology (Social Science)
  • Natural Disasters (Environment)
  • Social Impact of Environmental Issues (Social Science)
  • Browse content in Human Geography
  • Cultural Geography
  • Economic Geography
  • Political Geography
  • Browse content in Interdisciplinary Studies
  • Communication Studies
  • Museums, Libraries, and Information Sciences
  • Browse content in Politics
  • African Politics
  • Asian Politics
  • Chinese Politics
  • Comparative Politics
  • Conflict Politics
  • Elections and Electoral Studies
  • Environmental Politics
  • European Union
  • Foreign Policy
  • Gender and Politics
  • Human Rights and Politics
  • Indian Politics
  • International Relations
  • International Organization (Politics)
  • International Political Economy
  • Irish Politics
  • Latin American Politics
  • Middle Eastern Politics
  • Political Methodology
  • Political Communication
  • Political Philosophy
  • Political Sociology
  • Political Behaviour
  • Political Economy
  • Political Institutions
  • Political Theory
  • Politics and Law
  • Public Administration
  • Public Policy
  • Quantitative Political Methodology
  • Regional Political Studies
  • Russian Politics
  • Security Studies
  • State and Local Government
  • UK Politics
  • US Politics
  • Browse content in Regional and Area Studies
  • African Studies
  • Asian Studies
  • East Asian Studies
  • Japanese Studies
  • Latin American Studies
  • Middle Eastern Studies
  • Native American Studies
  • Scottish Studies
  • Browse content in Research and Information
  • Research Methods
  • Browse content in Social Work
  • Addictions and Substance Misuse
  • Adoption and Fostering
  • Care of the Elderly
  • Child and Adolescent Social Work
  • Couple and Family Social Work
  • Developmental and Physical Disabilities Social Work
  • Direct Practice and Clinical Social Work
  • Emergency Services
  • Human Behaviour and the Social Environment
  • International and Global Issues in Social Work
  • Mental and Behavioural Health
  • Social Justice and Human Rights
  • Social Policy and Advocacy
  • Social Work and Crime and Justice
  • Social Work Macro Practice
  • Social Work Practice Settings
  • Social Work Research and Evidence-based Practice
  • Welfare and Benefit Systems
  • Browse content in Sociology
  • Childhood Studies
  • Community Development
  • Comparative and Historical Sociology
  • Economic Sociology
  • Gender and Sexuality
  • Gerontology and Ageing
  • Health, Illness, and Medicine
  • Marriage and the Family
  • Migration Studies
  • Occupations, Professions, and Work
  • Organizations
  • Population and Demography
  • Race and Ethnicity
  • Social Theory
  • Social Movements and Social Change
  • Social Research and Statistics
  • Social Stratification, Inequality, and Mobility
  • Sociology of Religion
  • Sociology of Education
  • Sport and Leisure
  • Urban and Rural Studies
  • Browse content in Warfare and Defence
  • Defence Strategy, Planning, and Research
  • Land Forces and Warfare
  • Military Administration
  • Military Life and Institutions
  • Naval Forces and Warfare
  • Other Warfare and Defence Issues
  • Peace Studies and Conflict Resolution
  • Weapons and Equipment

The Oxford Handbook of Cognitive Psychology

  • < Previous chapter
  • Next chapter >

The Oxford Handbook of Cognitive Psychology

48 Problem Solving

Department of Psychological and Brain Sciences, University of California, Santa Barbara

  • Published: 03 June 2013
  • Cite Icon Cite
  • Permissions Icon Permissions

Problem solving refers to cognitive processing directed at achieving a goal when the problem solver does not initially know a solution method. A problem exists when someone has a goal but does not know how to achieve it. Problems can be classified as routine or nonroutine, and as well defined or ill defined. The major cognitive processes in problem solving are representing, planning, executing, and monitoring. The major kinds of knowledge required for problem solving are facts, concepts, procedures, strategies, and beliefs. Classic theoretical approaches to the study of problem solving are associationism, Gestalt, and information processing. Current issues and suggested future issues include decision making, intelligence and creativity, teaching of thinking skills, expert problem solving, analogical reasoning, mathematical and scientific thinking, everyday thinking, and the cognitive neuroscience of problem solving. Common themes concern the domain specificity of problem solving and a focus on problem solving in authentic contexts.

The study of problem solving begins with defining problem solving, problem, and problem types. This introduction to problem solving is rounded out with an examination of cognitive processes in problem solving, the role of knowledge in problem solving, and historical approaches to the study of problem solving.

Definition of Problem Solving

Problem solving refers to cognitive processing directed at achieving a goal for which the problem solver does not initially know a solution method. This definition consists of four major elements (Mayer, 1992 ; Mayer & Wittrock, 2006 ):

Cognitive —Problem solving occurs within the problem solver’s cognitive system and can only be inferred indirectly from the problem solver’s behavior (including biological changes, introspections, and actions during problem solving). Process —Problem solving involves mental computations in which some operation is applied to a mental representation, sometimes resulting in the creation of a new mental representation. Directed —Problem solving is aimed at achieving a goal. Personal —Problem solving depends on the existing knowledge of the problem solver so that what is a problem for one problem solver may not be a problem for someone who already knows a solution method.

The definition is broad enough to include a wide array of cognitive activities such as deciding which apartment to rent, figuring out how to use a cell phone interface, playing a game of chess, making a medical diagnosis, finding the answer to an arithmetic word problem, or writing a chapter for a handbook. Problem solving is pervasive in human life and is crucial for human survival. Although this chapter focuses on problem solving in humans, problem solving also occurs in nonhuman animals and in intelligent machines.

How is problem solving related to other forms of high-level cognition processing, such as thinking and reasoning? Thinking refers to cognitive processing in individuals but includes both directed thinking (which corresponds to the definition of problem solving) and undirected thinking such as daydreaming (which does not correspond to the definition of problem solving). Thus, problem solving is a type of thinking (i.e., directed thinking).

Reasoning refers to problem solving within specific classes of problems, such as deductive reasoning or inductive reasoning. In deductive reasoning, the reasoner is given premises and must derive a conclusion by applying the rules of logic. For example, given that “A is greater than B” and “B is greater than C,” a reasoner can conclude that “A is greater than C.” In inductive reasoning, the reasoner is given (or has experienced) a collection of examples or instances and must infer a rule. For example, given that X, C, and V are in the “yes” group and x, c, and v are in the “no” group, the reasoning may conclude that B is in “yes” group because it is in uppercase format. Thus, reasoning is a type of problem solving.

Definition of Problem

A problem occurs when someone has a goal but does not know to achieve it. This definition is consistent with how the Gestalt psychologist Karl Duncker ( 1945 , p. 1) defined a problem in his classic monograph, On Problem Solving : “A problem arises when a living creature has a goal but does not know how this goal is to be reached.” However, today researchers recognize that the definition should be extended to include problem solving by intelligent machines. This definition can be clarified using an information processing approach by noting that a problem occurs when a situation is in the given state, the problem solver wants the situation to be in the goal state, and there is no obvious way to move from the given state to the goal state (Newell & Simon, 1972 ). Accordingly, the three main elements in describing a problem are the given state (i.e., the current state of the situation), the goal state (i.e., the desired state of the situation), and the set of allowable operators (i.e., the actions the problem solver is allowed to take). The definition of “problem” is broad enough to include the situation confronting a physician who wishes to make a diagnosis on the basis of preliminary tests and a patient examination, as well as a beginning physics student trying to solve a complex physics problem.

Types of Problems

It is customary in the problem-solving literature to make a distinction between routine and nonroutine problems. Routine problems are problems that are so familiar to the problem solver that the problem solver knows a solution method. For example, for most adults, “What is 365 divided by 12?” is a routine problem because they already know the procedure for long division. Nonroutine problems are so unfamiliar to the problem solver that the problem solver does not know a solution method. For example, figuring out the best way to set up a funding campaign for a nonprofit charity is a nonroutine problem for most volunteers. Technically, routine problems do not meet the definition of problem because the problem solver has a goal but knows how to achieve it. Much research on problem solving has focused on routine problems, although most interesting problems in life are nonroutine.

Another customary distinction is between well-defined and ill-defined problems. Well-defined problems have a clearly specified given state, goal state, and legal operators. Examples include arithmetic computation problems or games such as checkers or tic-tac-toe. Ill-defined problems have a poorly specified given state, goal state, or legal operators, or a combination of poorly defined features. Examples include solving the problem of global warming or finding a life partner. Although, ill-defined problems are more challenging, much research in problem solving has focused on well-defined problems.

Cognitive Processes in Problem Solving

The process of problem solving can be broken down into two main phases: problem representation , in which the problem solver builds a mental representation of the problem situation, and problem solution , in which the problem solver works to produce a solution. The major subprocess in problem representation is representing , which involves building a situation model —that is, a mental representation of the situation described in the problem. The major subprocesses in problem solution are planning , which involves devising a plan for how to solve the problem; executing , which involves carrying out the plan; and monitoring , which involves evaluating and adjusting one’s problem solving.

For example, given an arithmetic word problem such as “Alice has three marbles. Sarah has two more marbles than Alice. How many marbles does Sarah have?” the process of representing involves building a situation model in which Alice has a set of marbles, there is set of marbles for the difference between the two girls, and Sarah has a set of marbles that consists of Alice’s marbles and the difference set. In the planning process, the problem solver sets a goal of adding 3 and 2. In the executing process, the problem solver carries out the computation, yielding an answer of 5. In the monitoring process, the problem solver looks over what was done and concludes that 5 is a reasonable answer. In most complex problem-solving episodes, the four cognitive processes may not occur in linear order, but rather may interact with one another. Although some research focuses mainly on the execution process, problem solvers may tend to have more difficulty with the processes of representing, planning, and monitoring.

Knowledge for Problem Solving

An important theme in problem-solving research is that problem-solving proficiency on any task depends on the learner’s knowledge (Anderson et al., 2001 ; Mayer, 1992 ). Five kinds of knowledge are as follows:

Facts —factual knowledge about the characteristics of elements in the world, such as “Sacramento is the capital of California” Concepts —conceptual knowledge, including categories, schemas, or models, such as knowing the difference between plants and animals or knowing how a battery works Procedures —procedural knowledge of step-by-step processes, such as how to carry out long-division computations Strategies —strategic knowledge of general methods such as breaking a problem into parts or thinking of a related problem Beliefs —attitudinal knowledge about how one’s cognitive processing works such as thinking, “I’m good at this”

Although some research focuses mainly on the role of facts and procedures in problem solving, complex problem solving also depends on the problem solver’s concepts, strategies, and beliefs (Mayer, 1992 ).

Historical Approaches to Problem Solving

Psychological research on problem solving began in the early 1900s, as an outgrowth of mental philosophy (Humphrey, 1963 ; Mandler & Mandler, 1964 ). Throughout the 20th century four theoretical approaches developed: early conceptions, associationism, Gestalt psychology, and information processing.

Early Conceptions

The start of psychology as a science can be set at 1879—the year Wilhelm Wundt opened the first world’s psychology laboratory in Leipzig, Germany, and sought to train the world’s first cohort of experimental psychologists. Instead of relying solely on philosophical speculations about how the human mind works, Wundt sought to apply the methods of experimental science to issues addressed in mental philosophy. His theoretical approach became structuralism —the analysis of consciousness into its basic elements.

Wundt’s main contribution to the study of problem solving, however, was to call for its banishment. According to Wundt, complex cognitive processing was too complicated to be studied by experimental methods, so “nothing can be discovered in such experiments” (Wundt, 1911/1973 ). Despite his admonishments, however, a group of his former students began studying thinking mainly in Wurzburg, Germany. Using the method of introspection, subjects were asked to describe their thought process as they solved word association problems, such as finding the superordinate of “newspaper” (e.g., an answer is “publication”). Although the Wurzburg group—as they came to be called—did not produce a new theoretical approach, they found empirical evidence that challenged some of the key assumptions of mental philosophy. For example, Aristotle had proclaimed that all thinking involves mental imagery, but the Wurzburg group was able to find empirical evidence for imageless thought .

Associationism

The first major theoretical approach to take hold in the scientific study of problem solving was associationism —the idea that the cognitive representations in the mind consist of ideas and links between them and that cognitive processing in the mind involves following a chain of associations from one idea to the next (Mandler & Mandler, 1964 ; Mayer, 1992 ). For example, in a classic study, E. L. Thorndike ( 1911 ) placed a hungry cat in what he called a puzzle box—a wooden crate in which pulling a loop of string that hung from overhead would open a trap door to allow the cat to escape to a bowl of food outside the crate. Thorndike placed the cat in the puzzle box once a day for several weeks. On the first day, the cat engaged in many extraneous behaviors such as pouncing against the wall, pushing its paws through the slats, and meowing, but on successive days the number of extraneous behaviors tended to decrease. Overall, the time required to get out of the puzzle box decreased over the course of the experiment, indicating the cat was learning how to escape.

Thorndike’s explanation for how the cat learned to solve the puzzle box problem is based on an associationist view: The cat begins with a habit family hierarchy —a set of potential responses (e.g., pouncing, thrusting, meowing, etc.) all associated with the same stimulus (i.e., being hungry and confined) and ordered in terms of strength of association. When placed in the puzzle box, the cat executes its strongest response (e.g., perhaps pouncing against the wall), but when it fails, the strength of the association is weakened, and so on for each unsuccessful action. Eventually, the cat gets down to what was initially a weak response—waving its paw in the air—but when that response leads to accidentally pulling the string and getting out, it is strengthened. Over the course of many trials, the ineffective responses become weak and the successful response becomes strong. Thorndike refers to this process as the law of effect : Responses that lead to dissatisfaction become less associated with the situation and responses that lead to satisfaction become more associated with the situation. According to Thorndike’s associationist view, solving a problem is simply a matter of trial and error and accidental success. A major challenge to assocationist theory concerns the nature of transfer—that is, where does a problem solver find a creative solution that has never been performed before? Associationist conceptions of cognition can be seen in current research, including neural networks, connectionist models, and parallel distributed processing models (Rogers & McClelland, 2004 ).

Gestalt Psychology

The Gestalt approach to problem solving developed in the 1930s and 1940s as a counterbalance to the associationist approach. According to the Gestalt approach, cognitive representations consist of coherent structures (rather than individual associations) and the cognitive process of problem solving involves building a coherent structure (rather than strengthening and weakening of associations). For example, in a classic study, Kohler ( 1925 ) placed a hungry ape in a play yard that contained several empty shipping crates and a banana attached overhead but out of reach. Based on observing the ape in this situation, Kohler noted that the ape did not randomly try responses until one worked—as suggested by Thorndike’s associationist view. Instead, the ape stood under the banana, looked up at it, looked at the crates, and then in a flash of insight stacked the crates under the bananas as a ladder, and walked up the steps in order to reach the banana.

According to Kohler, the ape experienced a sudden visual reorganization in which the elements in the situation fit together in a way to solve the problem; that is, the crates could become a ladder that reduces the distance to the banana. Kohler referred to the underlying mechanism as insight —literally seeing into the structure of the situation. A major challenge of Gestalt theory is its lack of precision; for example, naming a process (i.e., insight) is not the same as explaining how it works. Gestalt conceptions can be seen in modern research on mental models and schemas (Gentner & Stevens, 1983 ).

Information Processing

The information processing approach to problem solving developed in the 1960s and 1970s and was based on the influence of the computer metaphor—the idea that humans are processors of information (Mayer, 2009 ). According to the information processing approach, problem solving involves a series of mental computations—each of which consists of applying a process to a mental representation (such as comparing two elements to determine whether they differ).

In their classic book, Human Problem Solving , Newell and Simon ( 1972 ) proposed that problem solving involved a problem space and search heuristics . A problem space is a mental representation of the initial state of the problem, the goal state of the problem, and all possible intervening states (based on applying allowable operators). Search heuristics are strategies for moving through the problem space from the given to the goal state. Newell and Simon focused on means-ends analysis , in which the problem solver continually sets goals and finds moves to accomplish goals.

Newell and Simon used computer simulation as a research method to test their conception of human problem solving. First, they asked human problem solvers to think aloud as they solved various problems such as logic problems, chess, and cryptarithmetic problems. Then, based on an information processing analysis, Newell and Simon created computer programs that solved these problems. In comparing the solution behavior of humans and computers, they found high similarity, suggesting that the computer programs were solving problems using the same thought processes as humans.

An important advantage of the information processing approach is that problem solving can be described with great clarity—as a computer program. An important limitation of the information processing approach is that it is most useful for describing problem solving for well-defined problems rather than ill-defined problems. The information processing conception of cognition lives on as a keystone of today’s cognitive science (Mayer, 2009 ).

Classic Issues in Problem Solving

Three classic issues in research on problem solving concern the nature of transfer (suggested by the associationist approach), the nature of insight (suggested by the Gestalt approach), and the role of problem-solving heuristics (suggested by the information processing approach).

Transfer refers to the effects of prior learning on new learning (or new problem solving). Positive transfer occurs when learning A helps someone learn B. Negative transfer occurs when learning A hinders someone from learning B. Neutral transfer occurs when learning A has no effect on learning B. Positive transfer is a central goal of education, but research shows that people often do not transfer what they learned to solving problems in new contexts (Mayer, 1992 ; Singley & Anderson, 1989 ).

Three conceptions of the mechanisms underlying transfer are specific transfer , general transfer , and specific transfer of general principles . Specific transfer refers to the idea that learning A will help someone learn B only if A and B have specific elements in common. For example, learning Spanish may help someone learn Latin because some of the vocabulary words are similar and the verb conjugation rules are similar. General transfer refers to the idea that learning A can help someone learn B even they have nothing specifically in common but A helps improve the learner’s mind in general. For example, learning Latin may help people learn “proper habits of mind” so they are better able to learn completely unrelated subjects as well. Specific transfer of general principles is the idea that learning A will help someone learn B if the same general principle or solution method is required for both even if the specific elements are different.

In a classic study, Thorndike and Woodworth ( 1901 ) found that students who learned Latin did not subsequently learn bookkeeping any better than students who had not learned Latin. They interpreted this finding as evidence for specific transfer—learning A did not transfer to learning B because A and B did not have specific elements in common. Modern research on problem-solving transfer continues to show that people often do not demonstrate general transfer (Mayer, 1992 ). However, it is possible to teach people a general strategy for solving a problem, so that when they see a new problem in a different context they are able to apply the strategy to the new problem (Judd, 1908 ; Mayer, 2008 )—so there is also research support for the idea of specific transfer of general principles.

Insight refers to a change in a problem solver’s mind from not knowing how to solve a problem to knowing how to solve it (Mayer, 1995 ; Metcalfe & Wiebe, 1987 ). In short, where does the idea for a creative solution come from? A central goal of problem-solving research is to determine the mechanisms underlying insight.

The search for insight has led to five major (but not mutually exclusive) explanatory mechanisms—insight as completing a schema, insight as suddenly reorganizing visual information, insight as reformulation of a problem, insight as removing mental blocks, and insight as finding a problem analog (Mayer, 1995 ). Completing a schema is exemplified in a study by Selz (Fridja & de Groot, 1982 ), in which people were asked to think aloud as they solved word association problems such as “What is the superordinate for newspaper?” To solve the problem, people sometimes thought of a coordinate, such as “magazine,” and then searched for a superordinate category that subsumed both terms, such as “publication.” According to Selz, finding a solution involved building a schema that consisted of a superordinate and two subordinate categories.

Reorganizing visual information is reflected in Kohler’s ( 1925 ) study described in a previous section in which a hungry ape figured out how to stack boxes as a ladder to reach a banana hanging above. According to Kohler, the ape looked around the yard and found the solution in a flash of insight by mentally seeing how the parts could be rearranged to accomplish the goal.

Reformulating a problem is reflected in a classic study by Duncker ( 1945 ) in which people are asked to think aloud as they solve the tumor problem—how can you destroy a tumor in a patient without destroying surrounding healthy tissue by using rays that at sufficient intensity will destroy any tissue in their path? In analyzing the thinking-aloud protocols—that is, transcripts of what the problem solvers said—Duncker concluded that people reformulated the goal in various ways (e.g., avoid contact with healthy tissue, immunize healthy tissue, have ray be weak in healthy tissue) until they hit upon a productive formulation that led to the solution (i.e., concentrating many weak rays on the tumor).

Removing mental blocks is reflected in classic studies by Duncker ( 1945 ) in which solving a problem involved thinking of a novel use for an object, and by Luchins ( 1942 ) in which solving a problem involved not using a procedure that had worked well on previous problems. Finding a problem analog is reflected in classic research by Wertheimer ( 1959 ) in which learning to find the area of a parallelogram is supported by the insight that one could cut off the triangle on one side and place it on the other side to form a rectangle—so a parallelogram is really a rectangle in disguise. The search for insight along each of these five lines continues in current problem-solving research.

Heuristics are problem-solving strategies, that is, general approaches to how to solve problems. Newell and Simon ( 1972 ) suggested three general problem-solving heuristics for moving from a given state to a goal state: random trial and error , hill climbing , and means-ends analysis . Random trial and error involves randomly selecting a legal move and applying it to create a new problem state, and repeating that process until the goal state is reached. Random trial and error may work for simple problems but is not efficient for complex ones. Hill climbing involves selecting the legal move that moves the problem solver closer to the goal state. Hill climbing will not work for problems in which the problem solver must take a move that temporarily moves away from the goal as is required in many problems.

Means-ends analysis involves creating goals and seeking moves that can accomplish the goal. If a goal cannot be directly accomplished, a subgoal is created to remove one or more obstacles. Newell and Simon ( 1972 ) successfully used means-ends analysis as the search heuristic in a computer program aimed at general problem solving, that is, solving a diverse collection of problems. However, people may also use specific heuristics that are designed to work for specific problem-solving situations (Gigerenzer, Todd, & ABC Research Group, 1999 ; Kahneman & Tversky, 1984 ).

Current and Future Issues in Problem Solving

Eight current issues in problem solving involve decision making, intelligence and creativity, teaching of thinking skills, expert problem solving, analogical reasoning, mathematical and scientific problem solving, everyday thinking, and the cognitive neuroscience of problem solving.

Decision Making

Decision making refers to the cognitive processing involved in choosing between two or more alternatives (Baron, 2000 ; Markman & Medin, 2002 ). For example, a decision-making task may involve choosing between getting $240 for sure or having a 25% change of getting $1000. According to economic theories such as expected value theory, people should chose the second option, which is worth $250 (i.e., .25 x $1000) rather than the first option, which is worth $240 (1.00 x $240), but psychological research shows that most people prefer the first option (Kahneman & Tversky, 1984 ).

Research on decision making has generated three classes of theories (Markman & Medin, 2002 ): descriptive theories, such as prospect theory (Kahneman & Tversky), which are based on the ideas that people prefer to overweight the cost of a loss and tend to overestimate small probabilities; heuristic theories, which are based on the idea that people use a collection of short-cut strategies such as the availability heuristic (Gigerenzer et al., 1999 ; Kahneman & Tversky, 2000 ); and constructive theories, such as mental accounting (Kahneman & Tversky, 2000 ), in which people build a narrative to justify their choices to themselves. Future research is needed to examine decision making in more realistic settings.

Intelligence and Creativity

Although researchers do not have complete consensus on the definition of intelligence (Sternberg, 1990 ), it is reasonable to view intelligence as the ability to learn or adapt to new situations. Fluid intelligence refers to the potential to solve problems without any relevant knowledge, whereas crystallized intelligence refers to the potential to solve problems based on relevant prior knowledge (Sternberg & Gregorenko, 2003 ). As people gain more experience in a field, their problem-solving performance depends more on crystallized intelligence (i.e., domain knowledge) than on fluid intelligence (i.e., general ability) (Sternberg & Gregorenko, 2003 ). The ability to monitor and manage one’s cognitive processing during problem solving—which can be called metacognition —is an important aspect of intelligence (Sternberg, 1990 ). Research is needed to pinpoint the knowledge that is needed to support intelligent performance on problem-solving tasks.

Creativity refers to the ability to generate ideas that are original (i.e., other people do not think of the same idea) and functional (i.e., the idea works; Sternberg, 1999 ). Creativity is often measured using tests of divergent thinking —that is, generating as many solutions as possible for a problem (Guilford, 1967 ). For example, the uses test asks people to list as many uses as they can think of for a brick. Creativity is different from intelligence, and it is at the heart of creative problem solving—generating a novel solution to a problem that the problem solver has never seen before. An important research question concerns whether creative problem solving depends on specific knowledge or creativity ability in general.

Teaching of Thinking Skills

How can people learn to be better problem solvers? Mayer ( 2008 ) proposes four questions concerning teaching of thinking skills:

What to teach —Successful programs attempt to teach small component skills (such as how to generate and evaluate hypotheses) rather than improve the mind as a single monolithic skill (Covington, Crutchfield, Davies, & Olton, 1974 ). How to teach —Successful programs focus on modeling the process of problem solving rather than solely reinforcing the product of problem solving (Bloom & Broder, 1950 ). Where to teach —Successful programs teach problem-solving skills within the specific context they will be used rather than within a general course on how to solve problems (Nickerson, 1999 ). When to teach —Successful programs teaching higher order skills early rather than waiting until lower order skills are completely mastered (Tharp & Gallimore, 1988 ).

Overall, research on teaching of thinking skills points to the domain specificity of problem solving; that is, successful problem solving depends on the problem solver having domain knowledge that is relevant to the problem-solving task.

Expert Problem Solving

Research on expertise is concerned with differences between how experts and novices solve problems (Ericsson, Feltovich, & Hoffman, 2006 ). Expertise can be defined in terms of time (e.g., 10 years of concentrated experience in a field), performance (e.g., earning a perfect score on an assessment), or recognition (e.g., receiving a Nobel Prize or becoming Grand Master in chess). For example, in classic research conducted in the 1940s, de Groot ( 1965 ) found that chess experts did not have better general memory than chess novices, but they did have better domain-specific memory for the arrangement of chess pieces on the board. Chase and Simon ( 1973 ) replicated this result in a better controlled experiment. An explanation is that experts have developed schemas that allow them to chunk collections of pieces into a single configuration.

In another landmark study, Larkin et al. ( 1980 ) compared how experts (e.g., physics professors) and novices (e.g., first-year physics students) solved textbook physics problems about motion. Experts tended to work forward from the given information to the goal, whereas novices tended to work backward from the goal to the givens using a means-ends analysis strategy. Experts tended to store their knowledge in an integrated way, whereas novices tended to store their knowledge in isolated fragments. In another study, Chi, Feltovich, and Glaser ( 1981 ) found that experts tended to focus on the underlying physics concepts (such as conservation of energy), whereas novices tended to focus on the surface features of the problem (such as inclined planes or springs). Overall, research on expertise is useful in pinpointing what experts know that is different from what novices know. An important theme is that experts rely on domain-specific knowledge rather than solely general cognitive ability.

Analogical Reasoning

Analogical reasoning occurs when people solve one problem by using their knowledge about another problem (Holyoak, 2005 ). For example, suppose a problem solver learns how to solve a problem in one context using one solution method and then is given a problem in another context that requires the same solution method. In this case, the problem solver must recognize that the new problem has structural similarity to the old problem (i.e., it may be solved by the same method), even though they do not have surface similarity (i.e., the cover stories are different). Three steps in analogical reasoning are recognizing —seeing that a new problem is similar to a previously solved problem; abstracting —finding the general method used to solve the old problem; and mapping —using that general method to solve the new problem.

Research on analogical reasoning shows that people often do not recognize that a new problem can be solved by the same method as a previously solved problem (Holyoak, 2005 ). However, research also shows that successful analogical transfer to a new problem is more likely when the problem solver has experience with two old problems that have the same underlying structural features (i.e., they are solved by the same principle) but different surface features (i.e., they have different cover stories) (Holyoak, 2005 ). This finding is consistent with the idea of specific transfer of general principles as described in the section on “Transfer.”

Mathematical and Scientific Problem Solving

Research on mathematical problem solving suggests that five kinds of knowledge are needed to solve arithmetic word problems (Mayer, 2008 ):

Factual knowledge —knowledge about the characteristics of problem elements, such as knowing that there are 100 cents in a dollar Schematic knowledge —knowledge of problem types, such as being able to recognize time-rate-distance problems Strategic knowledge —knowledge of general methods, such as how to break a problem into parts Procedural knowledge —knowledge of processes, such as how to carry our arithmetic operations Attitudinal knowledge —beliefs about one’s mathematical problem-solving ability, such as thinking, “I am good at this”

People generally possess adequate procedural knowledge but may have difficulty in solving mathematics problems because they lack factual, schematic, strategic, or attitudinal knowledge (Mayer, 2008 ). Research is needed to pinpoint the role of domain knowledge in mathematical problem solving.

Research on scientific problem solving shows that people harbor misconceptions, such as believing that a force is needed to keep an object in motion (McCloskey, 1983 ). Learning to solve science problems involves conceptual change, in which the problem solver comes to recognize that previous conceptions are wrong (Mayer, 2008 ). Students can be taught to engage in scientific reasoning such as hypothesis testing through direct instruction in how to control for variables (Chen & Klahr, 1999 ). A central theme of research on scientific problem solving concerns the role of domain knowledge.

Everyday Thinking

Everyday thinking refers to problem solving in the context of one’s life outside of school. For example, children who are street vendors tend to use different procedures for solving arithmetic problems when they are working on the streets than when they are in school (Nunes, Schlieman, & Carraher, 1993 ). This line of research highlights the role of situated cognition —the idea that thinking always is shaped by the physical and social context in which it occurs (Robbins & Aydede, 2009 ). Research is needed to determine how people solve problems in authentic contexts.

Cognitive Neuroscience of Problem Solving

The cognitive neuroscience of problem solving is concerned with the brain activity that occurs during problem solving. For example, using fMRI brain imaging methodology, Goel ( 2005 ) found that people used the language areas of the brain to solve logical reasoning problems presented in sentences (e.g., “All dogs are pets…”) and used the spatial areas of the brain to solve logical reasoning problems presented in abstract letters (e.g., “All D are P…”). Cognitive neuroscience holds the potential to make unique contributions to the study of problem solving.

Problem solving has always been a topic at the fringe of cognitive psychology—too complicated to study intensively but too important to completely ignore. Problem solving—especially in realistic environments—is messy in comparison to studying elementary processes in cognition. The field remains fragmented in the sense that topics such as decision making, reasoning, intelligence, expertise, mathematical problem solving, everyday thinking, and the like are considered to be separate topics, each with its own separate literature. Yet some recurring themes are the role of domain-specific knowledge in problem solving and the advantages of studying problem solving in authentic contexts.

Future Directions

Some important issues for future research include the three classic issues examined in this chapter—the nature of problem-solving transfer (i.e., How are people able to use what they know about previous problem solving to help them in new problem solving?), the nature of insight (e.g., What is the mechanism by which a creative solution is constructed?), and heuristics (e.g., What are some teachable strategies for problem solving?). In addition, future research in problem solving should continue to pinpoint the role of domain-specific knowledge in problem solving, the nature of cognitive ability in problem solving, how to help people develop proficiency in solving problems, and how to provide aids for problem solving.

Anderson L. W. , Krathwohl D. R. , Airasian P. W. , Cruikshank K. A. , Mayer R. E. , Pintrich P. R. , Raths, J., & Wittrock M. C. ( 2001 ). A taxonomy for learning, teaching, and assessing: A revision of Bloom’s taxonomy of educational objectives. New York : Longman.

Baron J. ( 2000 ). Thinking and deciding (3rd ed.). New York : Cambridge University Press.

Google Scholar

Google Preview

Bloom B. S. , & Broder B. J. ( 1950 ). Problem-solving processes of college students: An exploratory investigation. Chicago : University of Chicago Press.

Chase W. G. , & Simon H. A. ( 1973 ). Perception in chess.   Cognitive Psychology, 4, 55–81.

Chen Z. , & Klahr D. ( 1999 ). All other things being equal: Acquisition and transfer of the control of variable strategy . Child Development, 70, 1098–1120.

Chi M. T. H. , Feltovich P. J. , & Glaser R. ( 1981 ). Categorization and representation of physics problems by experts and novices. Cognitive Science, 5, 121–152.

Covington M. V. , Crutchfield R. S. , Davies L. B. , & Olton R. M. ( 1974 ). The productive thinking program. Columbus, OH : Merrill.

de Groot A. D. ( 1965 ). Thought and choice in chess. The Hague, The Netherlands : Mouton.

Duncker K. ( 1945 ). On problem solving.   Psychological Monographs, 58 (3) (Whole No. 270).

Ericsson K. A. , Feltovich P. J. , & Hoffman R. R. (Eds.). ( 2006 ). The Cambridge handbook of expertise and expert performance. New York : Cambridge University Press.

Fridja N. H. , & de Groot A. D. ( 1982 ). Otto Selz: His contribution to psychology. The Hague, The Netherlands : Mouton.

Gentner D. , & Stevens A. L. (Eds.). ( 1983 ). Mental models. Hillsdale, NJ : Erlbaum.

Gigerenzer G. , Todd P. M. , & ABC Research Group (Eds.). ( 1999 ). Simple heuristics that make us smart. Oxford, England : Oxford University Press.

Goel V. ( 2005 ). Cognitive neuroscience of deductive reasoning. In K. J. Holyoak & R. G. Morrison (Eds.), The Cambridge handbook of thinking and reasoning (pp. 475–492). New York : Cambridge University Press.

Guilford J. P. ( 1967 ). The nature of human intelligence. New York : McGraw-Hill.

Holyoak K. J. ( 2005 ). Analogy. In K. J. Holyoak & R. G. Morrison (Eds.), The Cambridge handbook of thinking and reasoning (pp. 117–142). New York : Cambridge University Press.

Humphrey G. ( 1963 ). Thinking: An introduction to experimental psychology. New York : Wiley.

Judd C. H. ( 1908 ). The relation of special training and general intelligence. Educational Review, 36, 28–42.

Kahneman D. , & Tversky A. ( 1984 ). Choices, values, and frames. American Psychologist, 39, 341–350.

Kahneman D. , & Tversky A. (Eds.). ( 2000 ). Choices, values, and frames. New York : Cambridge University Press.

Kohler W. ( 1925 ). The mentality of apes. New York : Liveright.

Larkin J. H. , McDermott J. , Simon D. P. , & Simon H. A. ( 1980 ). Expert and novice performance in solving physics problems. Science, 208, 1335–1342.

Luchins A. ( 1942 ). Mechanization in problem solving.   Psychological Monographs, 54 (6) (Whole No. 248).

Mandler J. M. , & Mandler G. ( 1964 ). Thinking from associationism to Gestalt. New York : Wiley.

Markman A. B. , & Medin D. L. ( 2002 ). Decision making. In D. Medin (Ed.), Stevens’ handbook of experimental psychology, Vol. 2. Memory and cognitive processes (2nd ed., pp. 413–466). New York : Wiley.

Mayer R. E. ( 1992 ). Thinking, problem solving, cognition (2nd ed). New York : Freeman.

Mayer R. E. ( 1995 ). The search for insight: Grappling with Gestalt psychology’s unanswered questions. In R. J. Sternberg & J. E. Davidson (Eds.), The nature of insight (pp. 3–32). Cambridge, MA : MIT Press.

Mayer R. E. ( 2008 ). Learning and instruction. Upper Saddle River, NJ : Merrill Prentice Hall.

Mayer R. E. ( 2009 ). Information processing. In T. L. Good (Ed.), 21st century education: A reference handbook (pp. 168–174). Thousand Oaks, CA : Sage.

Mayer R. E. , & Wittrock M. C. ( 2006 ). Problem solving. In P. A. Alexander & P. H. Winne (Eds.), Handbook of educational psychology (2nd ed., pp. 287–304). Mahwah, NJ : Erlbaum.

McCloskey M. ( 1983 ). Intuitive physics.   Scientific American, 248 (4), 122–130.

Metcalfe J. , & Wiebe D. ( 1987 ). Intuition in insight and non-insight problem solving. Memory and Cognition, 15, 238–246.

Newell A. , & Simon H. A. ( 1972 ). Human problem solving. Englewood Cliffs, NJ : Prentice-Hall.

Nickerson R. S. ( 1999 ). Enhancing creativity. In R. J. Sternberg (Ed.), Handbook of creativity (pp. 392–430). New York : Cambridge University Press.

Nunes T. , Schliemann A. D. , & Carraher D. W , ( 1993 ). Street mathematics and school mathematics. Cambridge, England : Cambridge University Press.

Robbins P. , & Aydede M. (Eds.). ( 2009 ). The Cambridge handbook of situated cognition. New York : Cambridge University Press.

Rogers T. T. , & McClelland J. L. ( 2004 ). Semantic cognition: A parallel distributed processing approach. Cambridge, MA : MIT Press.

Singley M. K. , & Anderson J. R. ( 1989 ). The transfer of cognitive skill. Cambridge, MA : Harvard University Press.

Sternberg R. J. ( 1990 ). Metaphors of mind: Conceptions of the nature of intelligence. New York : Cambridge University Press.

Sternberg R. J. ( 1999 ). Handbook of creativity. New York : Cambridge University Press.

Sternberg R. J. , & Gregorenko E. L. (Eds.). ( 2003 ). The psychology of abilities, competencies, and expertise. New York : Cambridge University Press.

Tharp R. G. , & Gallimore R. ( 1988 ). Rousing minds to life: Teaching, learning, and schooling in social context. New York : Cambridge University Press.

Thorndike E. L. ( 1911 ). Animal intelligence. New York: Hafner.

Thorndike E. L. , & Woodworth R. S. ( 1901 ). The influence of improvement in one mental function upon the efficiency of other functions. Psychological Review, 8, 247–261.

Wertheimer M. ( 1959 ). Productive thinking. New York : Harper and Collins.

Wundt W. ( 1973 ). An introduction to experimental psychology. New York : Arno Press. (Original work published in 1911).

Further Reading

Baron, J. ( 2008 ). Thinking and deciding (4th ed). New York: Cambridge University Press.

Duncker, K. ( 1945 ). On problem solving. Psychological Monographs , 58(3) (Whole No. 270).

Holyoak, K. J. , & Morrison, R. G. ( 2005 ). The Cambridge handbook of thinking and reasoning . New York: Cambridge University Press.

Mayer, R. E. , & Wittrock, M. C. ( 2006 ). Problem solving. In P. A. Alexander & P. H. Winne (Eds.), Handbook of educational psychology (2nd ed., pp. 287–304). Mahwah, NJ: Erlbaum.

Sternberg, R. J. , & Ben-Zeev, T. ( 2001 ). Complex cognition: The psychology of human thought . New York: Oxford University Press.

Weisberg, R. W. ( 2006 ). Creativity . New York: Wiley.

  • About Oxford Academic
  • Publish journals with us
  • University press partners
  • What we publish
  • New features  
  • Open access
  • Institutional account management
  • Rights and permissions
  • Get help with access
  • Accessibility
  • Advertising
  • Media enquiries
  • Oxford University Press
  • Oxford Languages
  • University of Oxford

Oxford University Press is a department of the University of Oxford. It furthers the University's objective of excellence in research, scholarship, and education by publishing worldwide

  • Copyright © 2024 Oxford University Press
  • Cookie settings
  • Cookie policy
  • Privacy policy
  • Legal notice

This Feature Is Available To Subscribers Only

Sign In or Create an Account

This PDF is available to Subscribers Only

For full access to this pdf, sign in to an existing account, or purchase an annual subscription.

  • Publications
  • Presentations
  • Lectures Notes
  • Conferences
  • Top Ranked Papers
  • Most Viewed Conferences
  • Conferences by Acronym
  • Conferences by Subject
  • Conferences by Year
  • International Keyboard
  • Graphical Social Symbols
  • CSS3 Style Generator
  • Web Page to Image
  • Web Page to PDF
  • Latex Equation Editor
  • Extract Images from PDF
  • Convert JPEG to PS
  • Convert Latex to Word
  • Convert Word to PDF
  • Image Converter
  • PDF Converter
  • Terms of Use
  • Privacy Policy

On the cognitive process of human problem solving

On the cognitive process of human problem solving

Cognitive | Cognitive Process | COGSR 2010 | Internal Knowledge Representation |

  • More Details (n/a)

Explore & Download

Productivity tools, document tools, image tools.

Copyright © Sciweavers LLC, 2009-2024, USA.

Salene M. W. Jones Ph.D.

Cognitive Behavioral Therapy

Solving problems the cognitive-behavioral way, problem solving is another part of behavioral therapy..

Posted February 2, 2022 | Reviewed by Ekua Hagan

  • What Is Cognitive Behavioral Therapy?
  • Find a therapist who practices CBT
  • Problem-solving is one technique used on the behavioral side of cognitive-behavioral therapy.
  • The problem-solving technique is an iterative, five-step process that requires one to identify the problem and test different solutions.
  • The technique differs from ad-hoc problem-solving in its suspension of judgment and evaluation of each solution.

As I have mentioned in previous posts, cognitive behavioral therapy is more than challenging negative, automatic thoughts. There is a whole behavioral piece of this therapy that focuses on what people do and how to change their actions to support their mental health. In this post, I’ll talk about the problem-solving technique from cognitive behavioral therapy and what makes it unique.

The problem-solving technique

While there are many different variations of this technique, I am going to describe the version I typically use, and which includes the main components of the technique:

The first step is to clearly define the problem. Sometimes, this includes answering a series of questions to make sure the problem is described in detail. Sometimes, the client is able to define the problem pretty clearly on their own. Sometimes, a discussion is needed to clearly outline the problem.

The next step is generating solutions without judgment. The "without judgment" part is crucial: Often when people are solving problems on their own, they will reject each potential solution as soon as they or someone else suggests it. This can lead to feeling helpless and also discarding solutions that would work.

The third step is evaluating the advantages and disadvantages of each solution. This is the step where judgment comes back.

Fourth, the client picks the most feasible solution that is most likely to work and they try it out.

The fifth step is evaluating whether the chosen solution worked, and if not, going back to step two or three to find another option. For step five, enough time has to pass for the solution to have made a difference.

This process is iterative, meaning the client and therapist always go back to the beginning to make sure the problem is resolved and if not, identify what needs to change.

Andrey Burmakin/Shutterstock

Advantages of the problem-solving technique

The problem-solving technique might differ from ad hoc problem-solving in several ways. The most obvious is the suspension of judgment when coming up with solutions. We sometimes need to withhold judgment and see the solution (or problem) from a different perspective. Deliberately deciding not to judge solutions until later can help trigger that mindset change.

Another difference is the explicit evaluation of whether the solution worked. When people usually try to solve problems, they don’t go back and check whether the solution worked. It’s only if something goes very wrong that they try again. The problem-solving technique specifically includes evaluating the solution.

Lastly, the problem-solving technique starts with a specific definition of the problem instead of just jumping to solutions. To figure out where you are going, you have to know where you are.

One benefit of the cognitive behavioral therapy approach is the behavioral side. The behavioral part of therapy is a wide umbrella that includes problem-solving techniques among other techniques. Accessing multiple techniques means one is more likely to address the client’s main concern.

Salene M. W. Jones Ph.D.

Salene M. W. Jones, Ph.D., is a clinical psychologist in Washington State.

  • Find a Therapist
  • Find a Treatment Center
  • Find a Psychiatrist
  • Find a Support Group
  • Find Online Therapy
  • United States
  • Brooklyn, NY
  • Chicago, IL
  • Houston, TX
  • Los Angeles, CA
  • New York, NY
  • Portland, OR
  • San Diego, CA
  • San Francisco, CA
  • Seattle, WA
  • Washington, DC
  • Asperger's
  • Bipolar Disorder
  • Chronic Pain
  • Eating Disorders
  • Passive Aggression
  • Personality
  • Goal Setting
  • Positive Psychology
  • Stopping Smoking
  • Low Sexual Desire
  • Relationships
  • Child Development
  • Therapy Center NEW
  • Diagnosis Dictionary
  • Types of Therapy

March 2024 magazine cover

Understanding what emotional intelligence looks like and the steps needed to improve it could light a path to a more emotionally adept world.

  • Emotional Intelligence
  • Gaslighting
  • Affective Forecasting
  • Neuroscience
  • Skip to main content
  • Skip to primary sidebar

IResearchNet

Problem Solving

Problem solving, a fundamental cognitive process deeply rooted in psychology, plays a pivotal role in various aspects of human existence, especially within educational contexts. This article delves into the nature of problem solving, exploring its theoretical underpinnings, the cognitive and psychological processes that underlie it, and the application of problem-solving skills within educational settings and the broader real world. With a focus on both theory and practice, this article underscores the significance of cultivating problem-solving abilities as a cornerstone of cognitive development and innovation, shedding light on its applications in fields ranging from education to clinical psychology and beyond, thereby paving the way for future research and intervention in this critical domain of human cognition.

Introduction

Problem solving, a quintessential cognitive process deeply embedded in the domains of psychology and education, serves as a linchpin for human intellectual development and adaptation to the ever-evolving challenges of the world. The fundamental capacity to identify, analyze, and surmount obstacles is intrinsic to human nature and has been a subject of profound interest for psychologists, educators, and researchers alike. This article aims to provide a comprehensive exploration of problem solving, investigating its theoretical foundations, cognitive intricacies, and practical applications in educational contexts. With a clear understanding of its multifaceted nature, we will elucidate the pivotal role that problem solving plays in enhancing learning, fostering creativity, and promoting cognitive growth, setting the stage for a detailed examination of its significance in both psychology and education. In the continuum of psychological research and educational practice, problem solving stands as a cornerstone, enabling individuals to navigate the complexities of their world. This article’s thesis asserts that problem solving is not merely a cognitive skill but a dynamic process with profound implications for intellectual growth and application in diverse real-world contexts.

The Nature of Problem Solving

Problem solving, within the realm of psychology, refers to the cognitive process through which individuals identify, analyze, and resolve challenges or obstacles to achieve a desired goal. It encompasses a range of mental activities, such as perception, memory, reasoning, and decision-making, aimed at devising effective solutions in the face of uncertainty or complexity.

Problem solving as a subject of inquiry has drawn from various theoretical perspectives, each offering unique insights into its nature. Among the seminal theories, Gestalt psychology has highlighted the role of insight and restructuring in problem solving, emphasizing that individuals often reorganize their mental representations to attain solutions. Information processing theories, inspired by computer models, emphasize the systematic and step-by-step nature of problem solving, likening it to information retrieval and manipulation. Furthermore, cognitive psychology has provided a comprehensive framework for understanding problem solving by examining the underlying cognitive processes involved, such as attention, memory, and decision-making. These theoretical foundations collectively offer a richer comprehension of how humans engage in and approach problem-solving tasks.

Problem solving is not a monolithic process but a series of interrelated stages that individuals progress through. These stages are integral to the overall problem-solving process, and they include:

  • Problem Representation: At the outset, individuals must clearly define and represent the problem they face. This involves grasping the nature of the problem, identifying its constraints, and understanding the relationships between various elements.
  • Goal Setting: Setting a clear and attainable goal is essential for effective problem solving. This step involves specifying the desired outcome or solution and establishing criteria for success.
  • Solution Generation: In this stage, individuals generate potential solutions to the problem. This often involves brainstorming, creative thinking, and the exploration of different strategies to overcome the obstacles presented by the problem.
  • Solution Evaluation: After generating potential solutions, individuals must evaluate these alternatives to determine their feasibility and effectiveness. This involves comparing solutions, considering potential consequences, and making choices based on the criteria established in the goal-setting phase.

These components collectively form the roadmap for navigating the terrain of problem solving and provide a structured approach to addressing challenges effectively. Understanding these stages is crucial for both researchers studying problem solving and educators aiming to foster problem-solving skills in learners.

Cognitive and Psychological Aspects of Problem Solving

Problem solving is intricately tied to a range of cognitive processes, each contributing to the effectiveness of the problem-solving endeavor.

  • Perception: Perception serves as the initial gateway in problem solving. It involves the gathering and interpretation of sensory information from the environment. Effective perception allows individuals to identify relevant cues and patterns within a problem, aiding in problem representation and understanding.
  • Memory: Memory is crucial in problem solving as it enables the retrieval of relevant information from past experiences, learned strategies, and knowledge. Working memory, in particular, helps individuals maintain and manipulate information while navigating through the various stages of problem solving.
  • Reasoning: Reasoning encompasses logical and critical thinking processes that guide the generation and evaluation of potential solutions. Deductive and inductive reasoning, as well as analogical reasoning, play vital roles in identifying relationships and formulating hypotheses.

While problem solving is a universal cognitive function, individuals differ in their problem-solving skills due to various factors.

  • Intelligence: Intelligence, as measured by IQ or related assessments, significantly influences problem-solving abilities. Higher levels of intelligence are often associated with better problem-solving performance, as individuals with greater cognitive resources can process information more efficiently and effectively.
  • Creativity: Creativity is a crucial factor in problem solving, especially in situations that require innovative solutions. Creative individuals tend to approach problems with fresh perspectives, making novel connections and generating unconventional solutions.
  • Expertise: Expertise in a specific domain enhances problem-solving abilities within that domain. Experts possess a wealth of knowledge and experience, allowing them to recognize patterns and solutions more readily. However, expertise can sometimes lead to domain-specific biases or difficulties in adapting to new problem types.

Despite the cognitive processes and individual differences that contribute to effective problem solving, individuals often encounter barriers that impede their progress. Recognizing and overcoming these barriers is crucial for successful problem solving.

  • Functional Fixedness: Functional fixedness is a cognitive bias that limits problem solving by causing individuals to perceive objects or concepts only in their traditional or “fixed” roles. Overcoming functional fixedness requires the ability to see alternative uses and functions for objects or ideas.
  • Confirmation Bias: Confirmation bias is the tendency to seek, interpret, and remember information that confirms preexisting beliefs or hypotheses. This bias can hinder objective evaluation of potential solutions, as individuals may favor information that aligns with their initial perspectives.
  • Mental Sets: Mental sets are cognitive frameworks or problem-solving strategies that individuals habitually use. While mental sets can be helpful in certain contexts, they can also limit creativity and flexibility when faced with new problems. Recognizing and breaking out of mental sets is essential for overcoming this barrier.

Understanding these cognitive processes, individual differences, and common obstacles provides valuable insights into the intricacies of problem solving and offers a foundation for improving problem-solving skills and strategies in both educational and practical settings.

Problem Solving in Educational Settings

Problem solving holds a central position in educational psychology, as it is a fundamental skill that empowers students to navigate the complexities of the learning process and prepares them for real-world challenges. It goes beyond rote memorization and standardized testing, allowing students to apply critical thinking, creativity, and analytical skills to authentic problems. Problem-solving tasks in educational settings range from solving mathematical equations to tackling complex issues in subjects like science, history, and literature. These tasks not only bolster subject-specific knowledge but also cultivate transferable skills that extend beyond the classroom.

Problem-solving skills offer numerous advantages to both educators and students. For teachers, integrating problem-solving tasks into the curriculum allows for more engaging and dynamic instruction, fostering a deeper understanding of the subject matter. Additionally, it provides educators with insights into students’ thought processes and areas where additional support may be needed. Students, on the other hand, benefit from the development of critical thinking, analytical reasoning, and creativity. These skills are transferable to various life situations, enhancing students’ abilities to solve complex real-world problems and adapt to a rapidly changing society.

Teaching problem-solving skills is a dynamic process that requires effective pedagogical approaches. In K-12 education, educators often use methods such as the problem-based learning (PBL) approach, where students work on open-ended, real-world problems, fostering self-directed learning and collaboration. Higher education institutions, on the other hand, employ strategies like case-based learning, simulations, and design thinking to promote problem solving within specialized disciplines. Additionally, educators use scaffolding techniques to provide support and guidance as students develop their problem-solving abilities. In both K-12 and higher education, a key component is metacognition, which helps students become aware of their thought processes and adapt their problem-solving strategies as needed.

Assessing problem-solving abilities in educational settings involves a combination of formative and summative assessments. Formative assessments, including classroom discussions, peer evaluations, and self-assessments, provide ongoing feedback and opportunities for improvement. Summative assessments may include standardized tests designed to evaluate problem-solving skills within a particular subject area. Performance-based assessments, such as essays, projects, and presentations, offer a holistic view of students’ problem-solving capabilities. Rubrics and scoring guides are often used to ensure consistency in assessment, allowing educators to measure not only the correctness of answers but also the quality of the problem-solving process. The evolving field of educational technology has also introduced computer-based simulations and adaptive learning platforms, enabling precise measurement and tailored feedback on students’ problem-solving performance.

Understanding the pivotal role of problem solving in educational psychology, the diverse pedagogical strategies for teaching it, and the methods for assessing and measuring problem-solving abilities equips educators and students with the tools necessary to thrive in educational environments and beyond. Problem solving remains a cornerstone of 21st-century education, preparing students to meet the complex challenges of a rapidly changing world.

Applications and Practical Implications

Problem solving is not confined to the classroom; it extends its influence to various real-world contexts, showcasing its relevance and impact. In business, problem solving is the driving force behind product development, process improvement, and conflict resolution. For instance, companies often use problem-solving methodologies like Six Sigma to identify and rectify issues in manufacturing. In healthcare, medical professionals employ problem-solving skills to diagnose complex illnesses and devise treatment plans. Additionally, technology advancements frequently stem from creative problem solving, as engineers and developers tackle challenges in software, hardware, and systems design. Real-world problem solving transcends specific domains, as individuals in diverse fields address multifaceted issues by drawing upon their cognitive abilities and creative problem-solving strategies.

Clinical psychology recognizes the profound therapeutic potential of problem-solving techniques. Problem-solving therapy (PST) is an evidence-based approach that focuses on helping individuals develop effective strategies for coping with emotional and interpersonal challenges. PST equips individuals with the skills to define problems, set realistic goals, generate solutions, and evaluate their effectiveness. This approach has shown efficacy in treating conditions like depression, anxiety, and stress, emphasizing the role of problem-solving abilities in enhancing emotional well-being. Furthermore, cognitive-behavioral therapy (CBT) incorporates problem-solving elements to help individuals challenge and modify dysfunctional thought patterns, reinforcing the importance of cognitive processes in addressing psychological distress.

Problem solving is the bedrock of innovation and creativity in various fields. Innovators and creative thinkers use problem-solving skills to identify unmet needs, devise novel solutions, and overcome obstacles. Design thinking, a problem-solving approach, is instrumental in product design, architecture, and user experience design, fostering innovative solutions grounded in human needs. Moreover, creative industries like art, literature, and music rely on problem-solving abilities to transcend conventional boundaries and produce groundbreaking works. By exploring alternative perspectives, making connections, and persistently seeking solutions, creative individuals harness problem-solving processes to ignite innovation and drive progress in all facets of human endeavor.

Understanding the practical applications of problem solving in business, healthcare, technology, and its therapeutic significance in clinical psychology, as well as its indispensable role in nurturing innovation and creativity, underscores its universal value. Problem solving is not only a cognitive skill but also a dynamic force that shapes and improves the world we inhabit, enhancing the quality of life and promoting progress and discovery.

In summary, problem solving stands as an indispensable cornerstone within the domains of psychology and education. This article has explored the multifaceted nature of problem solving, from its theoretical foundations rooted in Gestalt psychology, information processing theories, and cognitive psychology to its integral components of problem representation, goal setting, solution generation, and solution evaluation. It has delved into the cognitive processes underpinning effective problem solving, including perception, memory, and reasoning, as well as the impact of individual differences such as intelligence, creativity, and expertise. Common barriers to problem solving, including functional fixedness, confirmation bias, and mental sets, have been examined in-depth.

The significance of problem solving in educational settings was elucidated, underscoring its pivotal role in fostering critical thinking, creativity, and adaptability. Pedagogical approaches and assessment methods were discussed, providing educators with insights into effective strategies for teaching and evaluating problem-solving skills in K-12 and higher education.

Furthermore, the practical implications of problem solving were demonstrated in the real world, where it serves as the driving force behind advancements in business, healthcare, and technology. In clinical psychology, problem-solving therapies offer effective interventions for emotional and psychological well-being. The symbiotic relationship between problem solving and innovation and creativity was explored, highlighting the role of this cognitive process in pushing the boundaries of human accomplishment.

As we conclude, it is evident that problem solving is not merely a skill but a dynamic process with profound implications. It enables individuals to navigate the complexities of their environment, fostering intellectual growth, adaptability, and innovation. Future research in the field of problem solving should continue to explore the intricate cognitive processes involved, individual differences that influence problem-solving abilities, and innovative teaching methods in educational settings. In practice, educators and clinicians should continue to incorporate problem-solving strategies to empower individuals with the tools necessary for success in education, personal development, and the ever-evolving challenges of the real world. Problem solving remains a steadfast ally in the pursuit of knowledge, progress, and the enhancement of human potential.

References:

  • Anderson, J. R. (1995). Cognitive psychology and its implications. W. H. Freeman.
  • Atkinson, R. C., & Shiffrin, R. M. (1968). Human memory: A proposed system and its control processes. In The psychology of learning and motivation (Vol. 2, pp. 89-195). Academic Press.
  • Duncker, K. (1945). On problem-solving. Psychological Monographs, 58(5), i-113.
  • Gick, M. L., & Holyoak, K. J. (1980). Analogical problem solving. Cognitive Psychology, 12(3), 306-355.
  • Jonassen, D. H., & Hung, W. (2008). All problems are not equal: Implications for problem-based learning. Interdisciplinary Journal of Problem-Based Learning, 2(2), 6.
  • Kitchener, K. S., & King, P. M. (1981). Reflective judgment: Concepts of justification and their relation to age and education. Journal of Applied Developmental Psychology, 2(2), 89-116.
  • Luchins, A. S. (1942). Mechanization in problem solving: The effect of Einstellung. Psychological Monographs, 54(6), i-95.
  • Mayer, R. E. (1992). Thinking, problem solving, cognition. W. H. Freeman.
  • Newell, A., & Simon, H. A. (1972). Human problem solving (Vol. 104). Prentice-Hall Englewood Cliffs, NJ.
  • Osborn, A. F. (1953). Applied imagination: Principles and procedures of creative problem solving (3rd ed.). Charles Scribner’s Sons.
  • Polya, G. (1945). How to solve it: A new aspect of mathematical method. Princeton University Press.
  • Sternberg, R. J. (2003). Wisdom, intelligence, and creativity synthesized. Cambridge University Press.
  • Open access
  • Published: 30 April 2024

Neurophysiological insights into sequential decision-making: exploring the secretary problem through ERPs and TBR dynamics

  • Dor Mizrahi 1 ,
  • Ilan Laufer 1 &
  • Inon Zuckerman 1  

BMC Psychology volume  12 , Article number:  245 ( 2024 ) Cite this article

Metrics details

Decision-making under uncertainty, a cornerstone of human cognition, is encapsulated by the “secretary problem” in optimal stopping theory. Our study examines this decision-making challenge, where participants are required to sequentially evaluate and make irreversible choices under conditions that simulate cognitive overload. We probed neurophysiological responses by engaging 27 students in a secretary problem simulation while undergoing EEG monitoring, focusing on Event-Related Potentials (ERPs) P200 and P400, and Theta to Beta Ratio (TBR) dynamics.

Results revealed a nuanced pattern: the P200 component’s amplitude declined from the initial to the middle offers, suggesting a diminishing attention span as participants grew accustomed to the task. This attenuation reversed at the final offer, indicating a heightened cognitive processing as the task concluded. In contrast, the P400 component’s amplitude peaked at the middle offer, hinting at increased cognitive evaluation, and tapered off at the final decision. Additionally, TBR dynamics illustrated a fluctuation in attentional control and emotional regulation throughout the decision-making sequence, enhancing our understanding of the cognitive strategies employed.

The research elucidates the dynamic interplay of cognitive processes in high-stakes environments, with neurophysiological markers fluctuating significantly as participants navigated sequential choices. By correlating these fluctuations with decision-making behavior, we provide insights into the evolving strategies from heightened alertness to strategic evaluation. Our findings offer insights that could inform the use of neurophysiological data in the development of decision-making frameworks, potentially contributing to the practical application of cognitive research in real-life contexts.

Peer Review reports

Introduction

The secretary problem [ 1 , 2 ], a pivotal element in optimal stopping theory [ 3 , 4 , 5 , 6 ], serves as a metaphor for high-stakes decisions under uncertainty. It presents a situation where a decision-maker must choose the optimal time to commit, with each decision eliminating future options. This scenario transcends recruitment, paralleling significant life decisions in diverse contexts such as real estate, finance, and personal relationships. Here, the key challenge lies in the trade-off between acquiring adequate information and the urgency of decision-making, with the risk of missed opportunities juxtaposed against the cost of premature commitment.

This optimal stopping problem is emblematic of decision-making under uncertainty, where the decision-maker faces sequential choices without the ability to revert to previous ones. This framework is particularly resonant in an era rich with information yet constrained by human cognitive capacities [ 7 ]. Despite the plethora of data available, individuals often resort to heuristic strategies to manage the cognitive and metabolic costs associated with information processing and decision-making [ 7 ].

Our study explores the neurophysiological dimensions of decision-making within the context of the secretary problem, addressing a gap in neuroscientific research, particularly outside of visual search contexts [ 7 , 8 , 9 ]. We focus on how neurophysiological markers, especially Event-Related Potential (ERP) components P200 and P400 [ 10 , 11 , 12 , 13 ] and the Theta to Beta Ratio (TBR) dynamics [ 14 , 15 ], vary in response to sequential alternatives and influence decision-making processes, due to their relevance to focused attention, cognitive evaluation, and stress, respectively.

The P200 component, associated with attention and orientation toward stimuli, emerges around 200 ms after stimulus presentation. Its amplitude serves as an indicator of attentional engagement, which is pivotal for the initial interaction with the choices presented [ 10 , 16 , 17 ]. The P400 component, manifesting roughly 400 ms post-stimulus, is linked to the cognitive effort and evaluation necessary for processing decision options. This component reflects the depth of cognitive processing engaged to assess each option, highlighting its importance in the decision-making process [ 18 ]. Additionally, the Theta to Beta Ratio (TBR) is employed as a measure of stress and cognitive load. An elevated TBR suggests heightened stress levels and cognitive demand, providing insights into the psychological strain experienced by participants during the decision-making task [ 14 , 15 , 19 , 20 ]. By incorporating these neurophysiological markers, our study aims to elucidate how individuals allocate attention, engage in cognitive evaluation, and manage stress throughout the decision-making process, contributing to a more comprehensive view of the cognitive and emotional dynamics involved.

The backdrop of our research includes theoretical models that allude to the complexities of the secretary problem. The Adaptive Gain Model [ 6 , 21 , 22 ], for example, illustrates how decision-makers adaptively balance sensory input against urgency signals in varying reliability scenarios, reflecting the dynamic nature of decision-making. Similarly, Linear Threshold Models (LTMs) [ 23 , 24 ] suggest linearly increasing decision thresholds, offering insight into strategy formation in complex decision scenarios. These models, provide a broader context to understand decision-making strategies that range from linear evidence accumulation to adaptive weighting of information.

Additionally, we draw on recent findings by Sin et al. [ 25 ], who emphasize the role of subjective valuation in decision-making. Their research on physiological markers like pupil dilation correlates with internal decision-making challenges and individual choices, highlighting the importance of subjective valuation processes. Specifically, our research aims to explore how these neurophysiological markers inform our understanding of decision-making behavior, particularly in the dynamic setting of sequential offers characteristic of the secretary problem. By examining changes in ERPs and TBR in response to these choices, we seek to unveil the cognitive and emotional dynamics underpinning decision-making strategies in high-stakes, dynamically evolving environments.

To elucidate the neurophysiological processes underlying sequential decision-making in the secretary problem, we formulated specific hypotheses concerning the behavior of these key markers: the P200 and P400 components, and the TBR dynamics. For the P400 component, our hypothesis centers on its role in the cognitive evaluation of each offer. We predict a gradual increase in amplitude across the task, with peaks corresponding to moments of deeper cognitive processing and decision complexity. This pattern would reflect the participants’ engagement in more detailed evaluations as they progress through the offers, particularly as they approach the task’s end and the weight of each decision grows.

Regarding TBR dynamics, we hypothesize an initial variation in response to the task’s onset, reflecting the cognitive and emotional response to beginning the decision-making process. As participants proceed, we anticipate fluctuations in TBR levels, which could reflect changes in cognitive load and emotional regulation. Specifically, we expect these fluctuations to mirror the task’s demands at different stages, with potential increases indicating heightened cognitive effort or stress, particularly in the latter stages of decision-making.

In summary, our study seeks to contribute to the broader understanding of decision-making processes by integrating neurophysiological insights with the conceptual backdrop provided by these theoretical models. Our goal is to deepen the comprehension of the secretary problem, encouraging further detailed and practical research in various decision-making environments.

Participants

The study involved 27 fourth-year students (16 females) from a senior engineering program, ranging in age from 20 to 35 (average age of 24.25 with a standard deviation of 2.0673). Participants were selected for their right-handedness and absence of neurological issues to minimize variability in neurophysiological responses. Informed consent was obtained from each participant, and the appropriate institutional review board approved the study protocol.

Task design

Participants engaged in six blocks of the secretary problem task, each consisting of 20 monetary offers. These offers, represented as sums of money displayed on-screen, required participants to either accept or reject each one using designated keys (‘y’ for ‘yes’ to accept and ‘N’ for ‘no’ to reject). Simulating the role of apartment sellers, participants were aware that they could neither see future offers nor revisit past ones. The primary objective was to select the highest offer in each block to maximize potential earnings, with their actual compensation (ranging from 100 to 150 NIS) reflecting their performance in the task. It is important to note that if a participant did not choose any offer within a block, it was considered as if they had accepted the last offer presented to them. This approach ensures that every block results in a definitive decision, aligning with the task’s parameters. Details of the offers are documented in Table A1 in Appendix A.

This table is adapted from the study conducted by Hsiao and Kemp [ 26 ]. However, in the design of Blocks 2, 4, and 6, an experimental modification was applied where the original bid values from Hsiao and Kemp [ 26 ] were increased tenfold. This substantial augmentation of bid values was strategically employed to inject a broadened range of economic scenarios, thereby disrupting any potential conditioning to a constrained set of bid amounts. The purpose of this augmentation was to examine participant behavior in the face of significantly varied bid levels, providing insight into how participants’ valuation strategies adjust when presented with a wider spectrum of potential selling prices for an asset they ‘own’, such as an apartment. The application of increased bid values in alternate blocks is poised to yield insights into the influence of monetary scale on strategy development and risk evaluation. It allows for an assessment of whether, and how, decision-making in the secretary problem adjusts in the presence of larger potential gains, which may mimic real-world economic decision scenarios more closely than a constrained value range.

Experimental procedure

The experimental block was structured to reflect the secretary problem, an optimal stopping problem, which allowed us to scrutinize participant decision-making under uncertainty. Each block’s flow, represented in Fig.  1 , depicts the sequence of screens and decisions: from the initial welcome screen to the series of offers, punctuated by waiting screens, culminating in the participant’s final decision:

figure 1

Sequential flow diagram of a single block in the Secretary Problem experiment, depicting offer presentation and participant decision points

Below, the procedural stages within a single block are outlined as depicted in Fig.  1 , encompassing the initial orientation, the intermittent waiting periods, the offer evaluations, and the iterative feedback loop that triggers the cycle to recommence following each decision.

Welcome Screen : This initial display set the context for the upcoming task.

Waiting Screen : Displayed for a randomized duration between 200 and 500 ms, this screen served as a transitional phase, ensuring unpredictability in the timing of the subsequent offer presentation.

Offer Screen : Here, participants were presented with monetary offers, with no time restriction imposed for making decisions. This stage remained active until a decision (accept or reject) was made by the participant.

Feedback Loop : If an offer was rejected and the session had not yet concluded, the procedure reverted to the Waiting Screen, maintaining the cycle of decision-making.

Incentivization and standardization

The participants’ compensation ranged from 100 to 150 NIS, directly corresponding to their success in selecting the highest offer within the tasks. This tiered incentive system was intended to mirror realistic reward scenarios and to foster a high level of engagement with the task by making the remuneration dependent on the accuracy of their choices. Uniformity across the experiment was maintained by providing all participants with the same sequence of offers.

Preparation and training sessions

Before beginning data collection, participants underwent a thorough briefing and were equipped with an EEG cap. To ensure they were comfortable with the task and the experimental environment, two training sessions were conducted. These sessions, held without EEG recording, were important for familiarizing participants with the task.

EEG recording

EEG signals were captured using a 16-channel active EEG amplifier (e.g., USBAMP, by g.tec, Austria) at 512 Hz, adhering to the 10–20 international system. Electrode impedance was maintained below 5 Kohm, monitored using OpenVibe software. Analysis focused on six frontal and prefrontal electrodes (Fp1, F7, Fp2, F8, F3, F7), as these areas correlate with cognitive processing.

Data preprocessing involved a 1–30 Hz FIR bandpass filter and Independent Component Analysis (ICA) to segregate neural activity and artifacts, utilizing EEGLAB’s algorithm for artifact removal, as described by Delorme and Makeig (2004) [ 27 ]. In this process, we identified and removed eye movements and blinks, muscle activity from facial and neck muscles, and environmental electrical noise. The latter, often stemming from power lines, was addressed using a notch FIR filter specifically designed to remove such 50 Hz line noise artifacts.

The following steps in our protocol, illustrated in Fig.  2 , involved applying baseline correction 200 ms prior to the onset of the offer screen and implementing average referencing to further enhance the refinement of the EEG data. Downsampling to 64 Hz was strategically reserved for the computation of the TBR, which does not necessitate the high temporal resolution required for the accurate identification of P200 and P400 components’ peak amplitudes. Specifically, the original sampling rate of 512 Hz was preserved for P200 and P400 to accurately capture the temporal dynamics of these faster ERP components. The downsampled data, suitable for assessing the lower-frequency Theta and Beta bands involved in TBR, allowed us to perform this specific analysis with optimal resolution and minimal loss of information.

figure 2

Schematic of EEG preprocessing and analysis pipeline

ERP analysis and statistical approach

Our study focused on ERPs, particularly the P200 and P400 peaks, to understand the cognitive processes [ 11 ] during decision-making in the secretary problem. We analyzed these ERP components for the first, middle, and final offers within each sequence. The first offer refers to the initial one in the sequence, the last offer is the one ultimately chosen by participants, and the middle offer is calculated as the median offer within the range from the first to the last. In cases with an uneven number of offers, the middle offer was identified as the median offer ((total number of offers from first to last + 1) / 2).

For each participant, we identified the maximum amplitude point in each ERP trace within each epoch, corresponding to the initial, middle, and last offers. This approach allowed us to capture the ERP responses specific to each decision point in every block, rather than averaging across all six blocks.

Specifically, we adopted the temporal Regions of Interest (ROIs) as outlined by [ 11 ] for the analysis of ERP components, specifically focusing on the P200 and P400. Following their methodology, we identified the maximum peak within these ROIs and then conducted our amplitude calculations within a 60 ms interval surrounding these peaks. This approach closely aligns with the methodology employed by Kornmeier et al. [ 11 ], who focused on a ± 20 ms interval surrounding the peaks for their analysis. While Kornmeier et al. [ 11 ] averaged the amplitude within these intervals, our study differentiated itself by computing the relative energy across the 60 ms window, allowing for a quantification of the ERP signal’s power within the ROIs.

Kornmeier et al. included two distinct temporal ROIs in their ERP analysis, targeting the P400 between 300 ms and 650 ms, and an earlier P200 effect between 100 ms and 300 ms post-stimulus. We mirrored this approach in selecting our intervals of 170 to 230 ms for the P200 and 370 to 430 ms for the P400 around the respective peaks. With a 512 Hz sampling rate, these intervals of 60 ms surrounding each peak were standardized to correspond to 32 samples, enabling energy calculations surrounding the corresponding peaks.

The decision to utilize frontal and prefrontal electrode placements drew upon the precedent set by visual decision-making studies such as [ 28 ], which identified significant ERP activity, including the P400 in frontal regions in the context of a visual Go/ NoGo task. This alignment supports the relevance of our electrode configuration in investigating the cognitive processes mediated by the frontal lobes during decision-making tasks [ 28 ].

An essential step in our analysis was establishing a baseline for energy calculations. By assuming a uniform distribution of energy across the entire EEG signal, we calculated a baseline reference value as Relative Energy Baseline (RE Baseline ) = 32/512 = 0.0625, which is equivalent to 6.25% [ 13 ]. The Relative Energy (RE) of the P200 and P400 peaks was calculated by integrating the square of the voltage across the time window corresponding to these ERP components. This provides a measure of the total energy within the segment without baseline correction. The uniform RE Baseline value of 6.25% was then used as a reference to compare the relative energy increase during the P200 and P400 peaks, thereby allowing for the assessment of ERP activations in relation to the baseline EEG activity. To evaluate the impact of different variables on these ERP components, we conducted a two-way repeated-measures ANOVA. This analysis was key to understanding how the offer’s position (initial, middle, end) and the ERP type (P200 or P400) affected the energy patterns observed in each individual epoch.

Discrete wavelet transform computation for theta and beta band energy assessment

In this study, the TBR was utilized as a critical metric for analyzing cognitive processing across the decision-making sequence [ 14 , 15 ]. For each participant, the average TBR was computed for each of the six blocks, aggregating all epochs from the first to the selected offer. Consequently, each participant contributed six data points, one from each block, to the analysis.

The Discrete Wavelet Transform (DWT), adhering to established methodologies (referenced in studies [ 29 , 30 ]), was pivotal in our TBR computation. The DWT’s multiscale representation approach, as detailed in [ 31 ], captures various dimensions of the EEG signal. This process incorporated dual digital filters at each stage: a high-pass filter ( 𝑔 ( 𝑛 )) and a low-pass filter ( ℎ ( 𝑛 )). Post-filtering, a downsampler with a factor of 2 was employed to adjust the time resolution appropriately. We utilized a 3-level DWT, processing input signals at a 64 Hz sampling rate, effectively isolating coefficients corresponding to the four primary EEG frequency bands. The TBR for each epoch was calculated by measuring the average energy ratio between the Theta and Beta bands (Theta / Beta). Detailed methodology for this calculation can be found in Mizrahi et al. [ 32 , 33 ].

To further interpret the distribution of these data points, representing averaged TBR for a sequence of offers in each block, a polynomial modeling approach [ 34 ] was applied. This method aimed to accurately approximate the TBR values, with each point reflecting the average TBR from the initial to the final accepted offer within a block. Polynomial models of orders one to five were evaluated based on their P-value and R² statistics to determine the most representative model. This analysis allowed us to identify the polynomial order that most accurately mirrored the data trend, offering insightful perspectives on how TBR varied across different stages of offer selection.

In the next two subsections, we will detail the modulation of P200 and P400 across crucial points in task progression and will elucidate TBR modulation against the position of the accepted offer (last offer) in the task. The ERP components P200 and P400 were specifically assessed at three key stages: the first offer, the median offer, and the final offer received by the participant. These stages correspond to the initial engagement, the development of decision-making strategy, and the final decision point within the secretary problem, respectively. The first offer introduces the participant to the task demands, the median offer represents an intermediary assessment phase, and the final offer captures the participant’s commitment to a decision. In conjunction with ERP data, the TBR was analyzed in relation to the position of the final accepted offer to explore its association with stress levels at the decisive moment of the task. By correlating these neurophysiological markers with task progression, this methodological framework aims to provide insights into the cognitive and emotional aspects that inform decision-making throughout the secretary problem. Data from each of the ERP components (P200 and P400) and TBR values were aggregated across all six experimental blocks and include the data from all 27 participants.

Dynamics of ERP components across decision stages

Figure  3 displays the average relative energies (RE) for the P200 and P400 ERP components at different stages of the secretary problem, with the baseline RE set at 6.25%, as indicated by the dashed line. This baseline signifies a uniform distribution of energy throughout the EEG signal. Figure  3 displays an interaction graph comparing the amplitudes of two Event-Related Potentials (ERPs), P200 and P400, at three pivotal stages of the decision-making task within the secretary problem context. The red trace (P200) begins at a higher amplitude on the first offer, indicating initial cognitive engagement. It then descends to a lower amplitude at the middle offer, suggesting a potential decrease in attentional focus, before ascending again at the last offer selected. In contrast, the amplitude of the P400 component increases from the first to the middle offer, with this upward trend continuing, albeit at a reduced pace, towards the last offer. This pattern suggests a gradual but not uniform intensification of cognitive processing across the task.

figure 3

Comparative ERPs across offers, showing P200 and P400 amplitudes at the first, middle, and last selected offers, with standard deviation lines and a reference line indicating the RE Baseline

Statistical validation, as evidenced by the results of the ANOVA, corroborates the patterns observed in Fig.  3 . The analysis revealed significant main effects of offer position on the amplitudes of the ERP components (F(2, 966) = 184.007, p  < .00001), aligning with the observed shifts in the P200 and P400 traces at different stages of the decision-making task. Specifically, the initial heightened engagement indicated by the P200 amplitude at the first offer, the decreased attentional focus at the middle offer, and the renewed cognitive assessment at the final offer are statistically significant. Similarly, the progression of the P400 component, starting at a lower amplitude and peaking at the middle offer, followed by a decrease at the final offer, is also supported by the statistical analysis.

Furthermore, the ANOVA indicates a significant effect of the type of ERP component on cognitive processing (F(1, 966) = 1831.4, p  < .00001), reflecting the distinct roles of P200 and P400 in the participants’ cognitive strategies during the task. Notably, a significant interaction effect (F(2, 966) = 750.11, p  < .00001) highlights the complex interplay between the position of the offer and the specific ERP component. This finding underscores the interdependent influence of these factors on the cognitive processes involved in the secretary problem, suggesting that participants employ shifting cognitive strategies as they progress through the task.

Figure  4 offers a visual complement to these findings by presenting the box plots that demonstrate the median and interquartile range for ERP amplitudes of P200 and P400 at three decision-making stages. At the first offer, both P200 and P400 demonstrate the widest range of responses, with P200 showing a notably higher median amplitude. In the context of the secretary problem, the initial offer’s broader range of responses and P200’s higher median amplitude could reflect the exploratory cognitive efforts as participants establish an initial framework for value assessment. The significant difference between P200 and P400 (Estimate: 0.59, 95% CI [1.13, 1.67], p  < .0001) indicates distinct neural processing as participants encounter the first decision point, which is critical for calibrating their approach to the uncertainty inherent in the task.

figure 4

Box plots illustrating median amplitudes and interquartile ranges of P200 and P400 ERPs at the first, middle, and last selected offers in a secretary problem task

At the middle offer stage, the box plot reveals a significant decrease in the median amplitude of P200, alongside a notably narrower spread, evidencing a change in the component’s response from the initial offer. The post hoc test supports this observation, showing a significant difference (Estimate: -9.34, 95% CI [-8.80, -8.26], p  < .0001). P400’s median amplitude at this stage is observed to be larger compared to P200, with both components exhibiting a reduced variability from their initial responses.

At the final offer stage, data from the final offer stage show an increase in P200’s median amplitude and a broadening of the interquartile range. P400’s median amplitude is also noted to increase slightly, maintaining a substantially higher median than P200. The statistical analysis highlights a significant difference in response at the final offer stage (Estimate: -6.86, 95% CI [-6.32, -5.79], p  < .0001).

These observations indicate distinct patterns of ERP component responses at key stages of the decision-making task. A decrease in P200’s amplitude and variability is noted at the middle offer stage, followed by an increase at the final offer stage. P400 exhibits an overall increase in median amplitude from the initial to the final stage, with reduced variability across stages.

TBR dynamics in the secretary problem: indicators of mental stress and decision efficiency

Figure  5 presents a scatter plot where the individual TBR values, denoted by the small blue ‘x’ marks, are plotted against the sequence number of offers received. A third-order polynomial fit curve, shown in red, captures the overall trend in the decision-making process of the secretary problem. The green ‘X’ marks represent the average TBR value for each offer. The plot reveals an initial phase of lower TBR values, an ascent to peak TBR values slightly after the optimal stopping point—indicated by the dashed vertical line—and a subsequent decline as the offer sequence progresses. This pattern suggests a correlation between the TBR values and the changing levels of executive control, potentially reflecting the different stress levels experienced by participants throughout the phases of the task.

figure 5

Scatter plot of TBR values by offer sequence number with third-order polynomial fit highlighting decision-making trends in the secretary problem

Table  1 provides an analysis of polynomial fits to elucidate the relationship between TBR values and the sequence of offers. It is observed that the third-order polynomial fit, with an R² value of 0.539, offers a substantial improvement in explaining the variance in TBR values compared to the first and second-order fits. While the fourth and fifth-order fits yield a marginally higher R² value of 0.548, the third-order fit is favored due to its balance between simplicity and explanatory power, aligning with the principle of parsimony and avoiding overfitting that higher-order models may entail.

Our study explores the neurophysiological elements of decision-making within the secretary problem, focusing on ERP components P200 and P400, and TBR dynamics. We aim to elucidate cognitive processes and neural markers critical in sequential decision-making under uncertainty.

Neurophysiological insights into sequential decision-making: integrating ERP and TBR findings

In examining the P200 component during the secretary problem task, we observed a distinctive pattern correlating with the sequence of offers. Initially, there was a marked decrease in P200 amplitude from the first to the middle offers, suggesting a reduction in attentional focus as participants adjusted to the task. However, this trend reversed at the final offer, where a notable increase in amplitude indicated renewed cognitive engagement. This resurgence suggests heightened processing due to the increased significance of the concluding decision. This pattern reveals a more complex cognitive process than just the transition towards a ‘satisficing’ strategy, as posited by Brera and Fu [ 4 ]. At first, the elevated P200 amplitude suggests intense scrutiny of early offers. As the task proceeds, the decrease in amplitude at middle offers implies a shift to a ‘satisficing’ approach, where participants accept offers meeting certain acceptable standards rather than only the best. This strategy adapts to task constraints and the need for timely decision-making. However, the increased P200 amplitude at the final offer suggests a strategic reassessment, possibly as participants realize the finality of their choice. This indicates a re-evaluation of their decision against the ‘satisficing’ threshold, demonstrating flexibility in their cognitive approach.

The reduced variability in P200 amplitude at the middle offers, seemingly at odds with the individualistic nature of ‘satisficing,’ suggests a collective adjustment in cognitive engagement due to task structure and constraints. While participants may have personal satisficing thresholds, the task’s design leads to a convergence in cognitive responses. This observation underscores the adaptive nature of decision-making, evolving with the task’s progression and contextual demands.

The P400 component displayed a consistent increase in amplitude throughout the task, reflecting intensifying cognitive effort and strategic evaluation. The significant rise during the middle phase of the task implies an integration of sequential information and adjustment of expectations [ 12 ]. This finding is further supported by Hsiao and Kemp’s [ 26 ] research on incentive structures in decision-making. Additionally, our interpretation considers the role of internal decision thresholds, akin to ‘internal advice,’ influenced by task incentivization, as illustrated by Liu et al. [ 5 ]. Participants’ evolving P400 responses may reflect cognitive adjustments to these internal benchmarks and the task’s incentive structure.

TBR dynamics and ERP components: cognitive strategies and emotional regulation

The interplay between TBR dynamics and ERP components sheds light on the cognitive strategies and emotional regulation associated with decision-making in the secretary problem. Lower initial TBR values, which suggest greater executive control and align with findings by Angelidis et al. [ 15 ] of enhanced attentional control and reduced stress, set the stage for participants’ strategic information processing. As participants approach the theoretical optimal stopping point, TBR values increase, potentially reflecting heightened cognitive and emotional stress due to the impending necessity of making a critical decision. This rise in stress levels may manifest as an adaptive response, in line with the Adaptive Gain Model proposed by Tickle et al. [ 6 ], whereby participants must balance the processing of incoming sensory information with the urgency of making timely decisions. The subsequent reduction in TBR values after this peak could signify a diminution of both cognitive and emotional stress, marking a return to baseline levels of cognitive control.

Neurophysiology and decision models: conservative choices to digital strategies

Drawing on the insights of Bearden et al. [ 3 ] and Babaioff et al. [ 35 ], our study’s neurophysiological data suggest a tendency toward conservative, risk-averse strategies in decision-making. This inclination is particularly reflected in the observed patterns of the ERP components and TBR dynamics. For instance, the P200 component’s fluctuating amplitude—initially high, decreasing in the middle, and then increasing at the end of the offer sequence—might indicate a cautious approach as participants evaluate each offer. The initial heightened response suggests careful consideration of early options, while the subsequent reduction could imply a strategic withdrawal of attention from less favorable options, aligning with a risk-averse strategy that avoids premature commitments.

Similarly, the consistent increase in the P400 component’s amplitude throughout the task signals a progressive, in-depth engagement in cognitive processing and strategic evaluation. This pattern could be indicative of participants increasingly scrutinizing each offer’s potential risks and benefits as they move through the sequence, a characteristic of risk-averse behavior where decisions are made more meticulously over time.

The TBR dynamics further complement this interpretation. The rise in TBR values, suggesting heightened cognitive engagement with reduced stress, followed by a decline as participants approach their final decision, aligns with a cautious and measured approach to decision-making. Such a pattern might reflect an increasing awareness of the narrowing options and the consequential nature of the impending final choice, characteristic of a risk-averse decision-making style.

Together, these neurophysiological markers might indicate that participants were exercising a cautious, conservative approach in their decision-making process. This approach, characterized by careful evaluation and minimization of potential loss, has significant implications for designing digital interfaces and decision-making systems. Particularly in online environments where decisions are irreversible, understanding these risk-averse cognitive strategies can inform the development of systems that support users in navigating complex decision-making scenarios effectively.

Implications, limitations, and future directions

Our study’s findings offer relevant implications for several fields, particularly financial trading and medical diagnosis, where the stakes are high and decisions must be made under uncertainty. In financial trading, understanding the neurophysiological underpinnings of decision-making could lead to the development of tools that help traders better manage stress and cognitive overload, potentially leading to more informed and balanced investment decisions. Similarly, in medical diagnosis, our insights could assist in creating decision support systems that aid physicians in processing complex information under time pressure, enhancing diagnostic accuracy and patient outcomes.

Furthermore, our research holds promise for the development of advanced decision support systems across various domains. By integrating neurophysiological insights into these systems, we can create interfaces that are more attuned to the users’ cognitive and emotional states, potentially leading to more intuitive and effective decision-making tools. Such systems could be particularly beneficial in scenarios where decisions have to be made quickly and with limited information, as they could provide real-time feedback based on the users’ neurophysiological data.

Moreover, our study also highlights the potential for integrating neurophysiological data, such as EEG patterns observed in decision-making scenarios, into artificial intelligence (AI) applications in psychological research and care. This integration could lead to the development of AI-driven decision-support systems that are tailored to respond to the psychological state of users, especially in high-pressure decision-making environments. Our findings suggest that AI, equipped to analyze neurophysiological markers like ERPs and TBR, could significantly enhance decision-making effectiveness in areas such as financial trading and medical diagnosis. This points to a promising intersection of AI and cognitive neuroscience, indicating a future research direction focused on developing AI models that utilize diverse neurophysiological data for practical, real-world applications in psychology and decision-making support.

We recognize the limitations of our study, notably the homogeneity of our participant pool, primarily composed of fourth-year engineering students, and the controlled nature of the experimental setting. These factors constrain the generalizability of our findings. Future research should strive for greater diversity in participant demographics to cover a broader spectrum of cognitive styles and decision-making behaviors. Moreover, incorporating more complex, real-world decision-making scenarios will not only enhance the ecological validity of our findings but also provide deeper insights into the functionality of neurophysiological markers in everyday decision-making processes.

Additionally, our focus on frontal and prefrontal electrodes to capture ERP components P200 and P400 has illuminated the vital roles these brain regions play in decision-making. However, this approach has also limited our exploration of lateralization effects across a broader area of the scalp, potentially overlooking further insights into cognitive strategies employed during sequential decision-making. To address these concerns and broaden the scope of our neurophysiological investigations, we propose an integrated approach for future research.

Future studies could benefit from refining our focus on electrode data analysis to include a comprehensive examination of data from electrodes covering posterior and parietal regions, in addition to the frontal and prefrontal areas. This expanded analysis aims to enhance our understanding of the spatial distribution of cognitive processes in decision-making and allow for a more detailed exploration of lateralization effects across the scalp. Overcoming the spatial resolution limitations of traditional EEG is also critical. Employing high-density EEG systems and integrating findings from fMRI could provide a more nuanced examination of lateralization effects and cognitive process mapping across the brain. This method could offer richer insights into the neural substrates underpinning decision-making tasks. Furthermore, considering the significant impact of physiological and psychological states on decision-making, incorporating alpha band analysis as a complementary metric could prove beneficial. This addition would enable a broader investigation into the interplay between arousal and cognitive processes, enriching our understanding of how these factors interact during decision-making tasks.

In conclusion, our study contributes to the broader understanding of decision-making research, linking neurophysiological data with theoretical and practical applications. Our study aims to contribute to bridging the gap between academic research and real-world applications, hoping that our findings will inspire further exploration and the development of effective support tools and strategies for decision-making in high-stakes environments.

Data availability

All the experimental data, which includes the players’ electrophysiological recordings and the corresponding resource allocation logs, are stored on the servers of Ariel University. The data can be obtained by request from one of the authors. All the experimental data, which includes the players’ electrophysiological recordings and the corresponding coordination logs, are stored on the servers of Ariel University. The data can be obtained by request from The IRB member, Dr. Chen Hajaj ([email protected]) or from one of the authors (Dor Mizrahi - [email protected], Ilan Laufer - [email protected], Inon Zuckerman - [email protected]).

Ferguson TS. Who solved the secretary problem? Stat Sci. 1989;4:282–9.

Google Scholar  

Skarupski M. Secretary Problem with possible errors in Observation. Mathematics. 2020;8:1639.

Article   Google Scholar  

Bearden JN, Murphy RO, Rapoport A. A multi-attribute extension of the secretary problem: theory and experiments. J Math Psychol. 2005;49:410–22.

Brera R, Fu F. The satisficing secretary problem: when closed-form solutions meet simulated annealing. arXiv Prepr. 2023;arXiv:2302.

Liu X, Milenkovic O, Moustakides GV. A combinatorial proof for the secretary problem with multiple choices. arXiv Prepr. 2023;arXiv:2303.

Tickle H, Tsetsos K, Speekenbrink M, Summerfield C. Human optional stopping in a heteroscedastic world. Psychol Rev. 2023;130:1.

Article   PubMed   Google Scholar  

Browne GJ, Walden EA. Stopping information search: an fMRI investigation. Decis Support Syst. 2021;143.

Anderson EJ, Mannan SK, Rees G, Sumner P, Kennard C. Overlapping functional anatomy for working memory and visual search. Exp Brain Res. 2010;200:91–107.

Bourke P, Brown S, Ngan E, Liotti M. Functional brain organization of preparatory attentional control in visual search. Brain Res. 2013;1530:32–43.

Carretié L, Martín-Loeches M, Hinojosa JA, Mercado F. Emotion and attention interaction studied through event-related potentials. J Cogn Neurosci. 2001;13:1109–28.

Kornmeier J, Wörner R, Bach M. Can I trust in what I see? EEG evidence for a cognitive evaluation of perceptual constructs. Psychophysiology. 2016;53:1507–23.

Dien J, Michelson CA, Franklin MS. Separating the visual sentence N400 effect from the P400 sequential expectancy effect: cognitive and neuroanatomical implications. Brain Res. 2010;1355:126–40.

Zuckerman I, Mizrahi D, Laufer I. Attachment style, emotional feedback, and neural processing: investigating the influence of attachment on the P200 and P400 components of event-related potentials. Front Hum Neurosci. 2023;17.

Angelidis A, van der Does W, Schakel L, Putman P. Frontal EEG theta/beta ratio as an electrophysiological marker for attentional control and its test-retest reliability. Biol Psychol. 2016;121:49–52.

Angelidis A, Hagenaars M, van Son D, van der Does W, Putman P. Do not look away! Spontaneous frontal EEG theta/beta ratio as a marker for cognitive control over attention to mild and high threat. Biol Psychol. 2018;135:8–17.

Lijffijt M, Lane SD, Meier SL, Boutros NN, Burroughs S, Steinberg JL, et al. P50, N100, and P200 sensory gating: relationships with behavioral inhibition, attention, and working memory. Psychophysiology. 2009;46:1059–68.

Article   PubMed   PubMed Central   Google Scholar  

Yang CL, Zhang H, Duan H, Pan H. Linguistic focus promotes the ease of discourse integration processes in reading comprehension: evidence from event-related potentials. Front Psychol. 2019;9:2718.

Kornmeier J, Bach M. Object perception: when our brain is impressed but we do not notice it. J Vis. 2009;9:7–7.

Putman P, Verkuil B, Arias-Garcia E, Pantazi I, van Schie C. EEG theta/beta ratio as a potential biomarker for attentional control and resilience against deleterious effects of stress on attention. Cogn Affect Behav Neurosci. 2014;14:782–91.

van Son D, De Blasio FM, Fogarty JS, Angelidis A, Barry RJ, Putman P. Frontal EEG theta/beta ratio during mind wandering episodes. Biol Psychol. 2019;140:19–27.

Cheadle S, Wyart V, Tsetsos K, Myers N, de Gardelle V, Castan SH, et al. Adaptive gain control during human perceptual choice. Neuron. 2014;81:1429–41.

Li V, Michael E, Balaguer J, Summerfield C. Gain control explains the effect of distraction in human perceptual, cognitive, and economic decision making. Proc Natl Acad Sci. 2018;115:E8825–34.

PubMed   PubMed Central   Google Scholar  

Baumann C, Singmann H, Gershman SJ, von Helversen B. A linear threshold model for optimal stopping behavior. Proc Natl Acad Sci. 2020;117:12750–5.

Baumann C, Schlegelmilch R, von Helversen B. Adaptive behavior in optimal sequential search. J Exp Psychol Gen. 2023;152:657.

Sin Y, Seon H, Shin YK, Kwon O-S, Chung D. Subjective optimality in finite sequential decision-making. PLoS Comput Biol. 2021;17:e1009633.

Hsiao Y-C, Kemp S. The effect of incentive structure on search in the secretary problem. Judgm Decis Mak. 2020;15:182–92.

Delorme A, Makeig S. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods. 2004;134:9–21.

Falkenstein M, Koshlykova NA, Kiroj VN, Hoormann J, Hohnsbein J. Late ERP components in visual and auditory Go/Nogo tasks. Electroencephalogr Clin Neurophysiol Potentials Sect. 1995;96:36–43.

Shensa MJ. The discrete wavelet transform: wedding the a trous and Mallat algorithms. IEEE Trans Signal Process. 1992;40:2464–82.

Jensen A, la Cour-Harbo A. Ripples in mathematics: the discrete wavelet transform. pringer Science & Business Media; 2001.

Hazarika N, Chen JZ, Tsoi AC, Sergejew A. Classification of EEG signals using the wavelet transform. Sig Process. 1997;59:61–72.

Mizrahi D, Laufer I, Zuckerman I. The Effect of Individual Coordination Ability on Cognitive-Load in Tacit Coordination Games. In: Davis F, Riedl R, Brocke J vom, Léger P-M, Randolph A, Fischer T, editors. NeuroIS Retreat 2020. Vienna, Austria; 2020.

Laufer I, Mizrahi D, Zuckerman I. An electrophysiological model for assessing cognitive load in tacit coordination games. Sensors. 2022;22:477.

Wu Y, Yang P. Polynomial methods in statistical inference: theory and practice. Found Trends® Commun Inf Theory. 2020;17:402–586.

Babaioff M, Dinitz M, Gupta A, Immorlica N, Talwar K. Secretary problems: weights and discounts. In: Proceedings of the twentieth annual ACM-SIAM Symposium on Discrete Algorithms. Society for Industrial and Applied Mathematics; 2009. pp. 1245–54.

Download references

This research for the manuscript titled “Comparative Analysis of ROCKET-Driven and Classic EEG Features in Predicting Attachment Styles” was conducted without any external funding. The authors declare that they did not receive any grants, sponsorships, or financial support from public, private, or not-for-profit sectors for the work presented in this manuscript.

Author information

Authors and affiliations.

Department of Industrial Engineering and Management, Ariel University, Ariel, Israel

Dor Mizrahi, Ilan Laufer & Inon Zuckerman

You can also search for this author in PubMed   Google Scholar

Contributions

DM responsible for visualization and implementation of supporting algorithms. IZ and IL supervised the research activity. All authors carried out the stages of conceptualization, design of methodology, data curation, formal analysis, data modeling, model validation, writing, drafting and editing, discussed the results, read and approved the final manuscript and are accountable for all aspects of the work, read, and agreed to the published version of the manuscript.

Ethics declarations

Ethics approval and consent to participate.

The Experimental protocols used in this work were evaluated and approved by the Ethic Committee of Ariel university (confirmation number: AU-ENG-IZ-20220404). Permission to perform the electrophysiological recordings in the experiment was given from February 4, 2022 to February 4, 2023. All methods were carried out in accordance with relevant guidelines and regulations. Written informed consent was obtained from all subjects and/or their legal guardian(s) involved in the study. It is important to note that no minors were involved in this study.

Consent for publication

Not applicable. The manuscript titled “Comparative Analysis of ROCKET-Driven and Classic EEG Features in Predicting Attachment Styles” does not contain any identifying images or personal or clinical details of participants that could compromise their anonymity.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ . The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/ ) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Reprints and permissions

About this article

Cite this article.

Mizrahi, D., Laufer, I. & Zuckerman, I. Neurophysiological insights into sequential decision-making: exploring the secretary problem through ERPs and TBR dynamics. BMC Psychol 12 , 245 (2024). https://doi.org/10.1186/s40359-024-01750-5

Download citation

Received : 03 January 2024

Accepted : 24 April 2024

Published : 30 April 2024

DOI : https://doi.org/10.1186/s40359-024-01750-5

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Sequential decision-making
  • ERP (event-Related potentials)
  • TBR (Theta to Beta ratio) dynamics
  • Neurophysiology
  • Cognitive strategies

BMC Psychology

ISSN: 2050-7283

cognitive process of human problem solving

Different cognitive mechanisms for process-open and process-constrained problem solving

  • Original Paper
  • Published: 28 May 2022
  • Volume 54 , pages 529–541, ( 2022 )

Cite this article

cognitive process of human problem solving

  • Li Wang 1 , 2 ,
  • Jieying Zeng 3 ,
  • Xiaomeng Ran 4 ,
  • Zhanling Cui 5 &
  • Xinlin Zhou   ORCID: orcid.org/0000-0002-3530-0922 1 , 2  

657 Accesses

3 Citations

Explore all metrics

Mathematical problems can be divided into two types, namely, process-open and process-constrained problems. Solving these two types of problems may require different cognitive mechanisms. However, there has been only one study that investigated the differences of the cognitive abilities in process-open and process-constrained problem solving, and these researchers did not consider the influence of other closely related cognitive abilities. Therefore, in the current study we aimed to investigate the different cognitive mechanisms for process-open and process-constrained problem solving while controlling for related cognitive abilities. For this study we recruited 336 fifth grade students (mean age = 10.73 ± 0.32 years old). The results showed that after controlling for age, gender, and other cognitive abilities, inductive reasoning (measured by nonverbal matrix reasoning) contributes only to process-open problem solving; language comprehension (measured by sentence comprehension) contributes only to process-constrained problem solving; spatial ability (measured by paper folding) contributes to both process-open and process-constrained problem solving; and executive function (measured by the Wisconsin card sort test) contributes to neither process-open nor process-constrained problem solving. These results suggest that cognitive abilities related to generating new information (e.g., inductive reasoning, spatial ability) might play an important role in process-open problem solving. In contrast, cognitive abilities related to retrieval prior knowledge (e.g., language comprehension, spatial ability) might play an important role in process-constrained problem solving. The current findings could promote the efficiency of learning and teaching by enabling the designing of different instruction for process-open and process-constrained problem solving according to students’ cognitive characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Russian Federation)

Instant access to the full article PDF.

Rent this article via DeepDyve

Institutional subscriptions

cognitive process of human problem solving

Similar content being viewed by others

cognitive process of human problem solving

Mathematical problem posing of elementary school students: the impact of task format and its relationship to problem solving

cognitive process of human problem solving

Problem-solving support and instructional sequence: impact on cognitive load and student performance

cognitive process of human problem solving

Exploring problem conceptualization and performance in STEM problem solving contexts

Availability of data and material.

Data are available upon reasonable request.

Code availability

Codes are available upon reasonable request.

Abedi, J., & Lord, C. (2001). The language factor in mathematics tests. Applied Measurement in Education, 14 (3), 219–234.

Article   Google Scholar  

Agustini, R. Y., Suryadi, D., & Jupri, A. (2017). Construction of open-ended problems for assessing elementary student mathematical connection ability on plane geometry. In International conference on mathematics and science education (Icmsce) (p. 895).

Andersson, U. (2008). Working memory as a predictor of written arithmetical skills in children: The importance of central executive functions. British Journal of Educational Psychology, 78 , 181–203.

Ardila, A., Pineda, D., & Rosselli, M. (2000). Correlation between intelligence test scores and executive function measures. Archives of Clinical Neuropsychology, 15 (1), 31–36.

Bahar, A., & Maker, C. J. (2015). Cognitive backgrounds of problem solving: A comparison of open-ended vs. closed mathematics problems. Eurasia Journal of Mathematics Science and Technology Education, 11 (6), 1531–1546.

Beller, M., & Gafni, N. (2000). Can item format (multiple choice vs. open-ended) account for gender differences in mathematics achievement? Sex Roles, 42 (1–2), 1–21.

Bennett, R. E., Steffen, M., Singley, M. K., Morley, M., & Jacquemin, D. (1997). Evaluating an automatically scorable, open-ended response type for measuring mathematical reasoning in computer-adaptive tests. Journal of Educational Measurement, 34 (2), 162–176.

Boaler, J. (1998). Open and closed mathematics: Student experiences and understandings. Journal for Research in Mathematics Education, 29 (1), 41–62.

Boonen, A. J., Reed, H. C., Schoonenboom, J., & Jolles, J. (2016). It’s not a math lesson—We’re learning to draw! Teachers’ use of visual representations in instructing word problem solving in sixth grade of elementary school. Frontline Learning Research, 4 (5), 55–82.

Cai, J. (2000). Mathematical thinking involved in U.S. and Chinese students’ solving of process-constrained and process-open problems. Mathematical Thinking and Learning, 2 (4), 309–340.

Cai, J., & Cifarelli, V. (2005). Exploring mathematical exploration: How two college students formulated and solved their own mathematical problems? Focus on Learning Problems in Mathematics, 27 (3), 43–72.

Google Scholar  

Cheng, D. Z., Yan, X. X., Gao, Z. J., Xu, K. M., Zhou, X. L., & Chen, Q. (2017). Neurocognitive profiles in childhood absence epilepsy: A focus on cognitive dysfunction associated with the frontal lobe. Journal of Child Neurology, 32 (1), 46–52.

Cifarelli, V., & Cai, J. (2005). The evolution of mathematical explorations in open-ended problem-solving situations. The Journal of Mathematical Behavior, 24 (3–4), 302–324.

Cirino, P. T. (2011). The interrelationships of mathematical precursors in kindergarten. Journal of Experimental Child Psychology, 108 (4), 713–733.

Clarke, D., & Roche, A. (2018). Using contextualized tasks to engage students in meaningful and worthwhile mathematics learning. Journal of Mathematical Behavior, 51 , 95–108.

Clauser, B. E., Harik, P., Margolis, M. J., McManus, I. C., Mollon, J., Chis, L., & Williams, S. (2009). An empirical examination of the impact of group discussion and examinee performance information on judgments made in the Angoff standard-setting procedure. Applied Measurement in Education, 22 (1), 1–21.

Cui, J., Zhang, Y., Cheng, D., Li, D., & Zhou, X. (2017). Visual form perception can be a cognitive correlate of lower level math categories for teenagers. Frontiers in Psychology, 8 , 1336.

Cui, J., Zhang, Y., Wan, S., Chen, C., Zeng, J., & Zhou, X. (2019). Visual form perception is fundamental for both reading comprehension and arithmetic computation. Cognition, 189 , 141–154.

De Smedt, B., & Boets, B. (2010). Phonological processing and arithmetic fact retrieval: Evidence from developmental dyslexia. Neuropsychologia, 48 (14), 3973–3981.

Ekstrom, R. B., Dermen, D., & Harman, H. H. (1976). Manual for kit of factor-referenced cognitive tests (Vol. 102). Educational Testing Service.

Fuchs, L. S., Fuchs, D., Seethaler, P. M., & Craddock, C. (2020). Improving language comprehension to enhance word-problem solving. Reading & Writing Quarterly, 36 (2), 142–156.

Gilbert, S. J., & Burgess, P. W. (2008). Executive function. Current Biology, 18 (3), 110–114.

Hawes, Z., & Ansari, D. (2020). What explains the relationship between spatial and mathematical skills? A review of evidence from brain and behavior. Psychonomic Bulletin and Review, 27 (1), 465–482.

Hegarty, M., & Kozhevnikov, M. (1999). Types of visual–spatial representations and mathematical problem solving. Journal of Educational Psychology., 91 (4), 684–689.

Jimerson, S., Egeland, B., & Teo, A. (1999). A longitudinal study of achievement trajectories: Factors associated with change. Journal of Educational Psychology, 91 (1), 116–126.

Johnson-Laird, P. N. (1983). Mental models: Towards a cognitive science of language, inference, and consciousness (Vol. 6). Harvard University Press.

Kapa, E. (2007). Transfer from structured to open-ended problem solving in a computerized metacognitive environment. Learning and Instruction, 17 (6), 688–707.

Kaplinsky, R. (2019). Open middle math: Problems that unlock student thinking (pp. 6–12). Stenhouse Publishers.

Lin, X. (2020). Investigating the unique predictors of word-problem solving using meta-analytic structural equation modeling. Educational Psychology Review., 33 (1), 1097–1124.

Linn, M. C., & Petersen, A. C. (1985). Emergence and characterization of sex-differences in spatial ability—A meta-analysis. Child Development, 56 (6), 1479–1498.

Lohman, D. F. (1996). Spatial ability and g human abilities: Their nature and measurement (Vol. 97, no. 116, p. 1)

Markina, P. N., & Vladimirov, I. Y. (2019). Executive function role on a stage of impasse in insight problem solving. Psychology-Journal of the Higher School of Economics, 16 (3), 562–570.

Mix, K., Levine, C., Cheng, Y.-L., Young, C., Hambrick, D., Ping, R., & Konstantopoulos, S. (2016). Separate but correlated: The latent structure of space and mathematics across development. Journal of Experimental Psychology. General., 145 (9), 1206.

Molnar, G., Greiff, S., & Csapo, B. (2013). Inductive reasoning, domain specific and complex problem solving: Relations and development. Thinking Skills and Creativity, 9 , 35–45.

Moreno, R., & Mayer, R. E. (1999). Gender differences in responding to open-ended problem-solving questions. Learning and Individual Differences, 11 (4), 355–364.

O’donnell, A. M., Dansereau, D. F., & Hall, R. H. (2002). Knowledge maps as scaffolds for cognitive processing. Educational Psychology Review, 14 (1), 71–86.

Oller, J. W., Jr. (1981). Language as intelligence? Language Learning, 31 (2), 465–492.

Pascual, A. C., Moyano, N., & Robres, A. Q. (2019). The relationship between executive functions and academic performance in primary education: Review and meta-analysis. Frontiers in Psychology, 10 , 1582.

Peng, P., Wang, T. F., Wang, C. C., & Lin, X. (2019). A meta-analysis on the relation between fluid intelligence and reading/mathematics: Effects of tasks, age, and social economics status. Psychological Bulletin, 145 (2), 189–236.

Rasmussen, D., & Eliasmith, C. (2011). A neural model of rule generation in inductive reasoning. Topics in Cognitive Science, 3 (1), 140–153.

Raven, J. C. (1983). Manual for Raven’s progressive matrices and vocabulary scales. Standard progressive matrices . HK Lewis.

Reilly, D., & Neumann, D. L. (2013). Gender-role differences in spatial ability: A meta-analytic review. Sex Roles, 68 (9–10), 521–535.

Resnick, L., & Glaser, R. (1975). Problem solving and intelligence (pp. 205–230). Lawrence Erlbaum Associates.

Romine, C. B., Lee, D., Wolfe, M. E., Homack, S., George, C., & Riccio, C. A. (2004). Wisconsin Card Sorting Test with children: A meta-analytic study of sensitivity and specificity. Archives of Clinical Neuropsychology, 19 (8), 1027–1041.

Rourke, B. P. (1993). Arithmetic disabilities, specific and otherwise. Journal of Learning Disabilities, 26 (4), 214–226.

Schmitt, N. (1996). Uses and abuses of coefficient alpha. Psychological Assessment, 8 (4), 350.

Shi, Z. (2021). Intelligence science: Leading the age of intelligence . Elsevier.

Book   Google Scholar  

Sternberg, R. (1982). Reasoning, problem solving, and intelligence (pp. 225–307). Cambridge University Press.

Stevenson, H., Lee, S., & Stigler, J. (1986). Mathematics achievement of Chinese, Japanese, and American children. Science, 231 (4739), 693–699.

Sung, J., & Wickrama, K. A. S. (2018). Longitudinal relationship between early academic achievement and executive function: Mediating role of approaches to learning. Contemporary Educational Psychology, 54 , 171–183.

Taasoobshirazi, G., & Wang, S. (2016). The performance of the SRMR, RMSEA, CFI, and TLI: An examination of sample size, path size, and degrees of freedom. Journal of Applied Quantitative Methods, 11 (3), 31–39.

Traff, U. (2013). The contribution of general cognitive abilities and number abilities to different aspects of mathematics in children. Journal of Experimental Child Psychology, 116 (2), 139–156.

Van Dyke, J. A., & Johns, C. L. (2012). Memory interference as a determinant of language comprehension. Language and Linguistics Compass, 6 (4), 193–211.

Villeneuve, E. F., Hajovsky, D. B., Mason, B. A., & Lewno, B. M. (2019). Cognitive ability and math computation developmental relations with math problem solving: An integrated, multigroup approach. School Psychological Quarterly, 34 (1), 96–108.

Wai, J., Lubinski, D., & Benbow, C. P. (2009). Spatial ability for STEM domains: Aligning over 50 years of cumulative psychological knowledge solidifies its importance. Journal of Educational Psychology, 101 (4), 817–835.

Wang, L., Cao, C., Zhou, X., & Qi, C. (2022). Spatial abilities associated with open math problem solving. Applied Cognitive Psychology., 36 (2), 306–317.

Wang, S. H., Lin, M. C., & Liao, C. W. (2014). A virtual experiential learning and students’ ill-structured problem-solving ability. Interacting with Computers, 26 (4), 334–347.

Wei, W., Yuan, H., Chen, C., & Zhou, X. (2012). Cognitive correlates of performance in advanced mathematics. British Journal of Educational Psychology, 82 (1), 157–181.

Williams, B. A., & Pearlberg, S. L. (2006). Learning of three-term contingencies correlates with Raven scores, but not with measures of cognitive processing. Intelligence, 34 , 177–191.

Xie, F., Zhang, L., Chen, X., & Xin, Z. (2020). Is spatial ability related to mathematical ability: A meta-analysis. Educational Psychology Review, 32 (1), 113–155.

Xin, Z. Q., & Zhang, L. (2009). Cognitive holding power, fluid intelligence, and mathematical achievement as predictors of children’s realistic problem solving. Learning and Individual Differences, 19 (1), 124–129.

Yeniad, N., Malda, M., Mesman, J., van Ijzendoorn, M. H., & Pieper, S. (2013). Shifting ability predicts math and reading performance in children: A meta-analytical study. Learning and Individual Differences, 23 , 1–9.

Download references

Acknowledgements

We thank Professor Jinfa Cai for his suggestions in designing experiment and writing manuscript.

This research was supported by a grant from Natural Science Foundation of China (31671151), the 111 Project (BP0719032), and a grant from the Advanced Innovation Center for Future Education (27900-110631111).

Author information

Authors and affiliations.

State Key Laboratory of Cognitive Neuroscience and Learning, Faculty of Psychology, Beijing Normal University, No. 19, Xinjiekouwai St, Haidian District, Beijing, 100875, China

Li Wang & Xinlin Zhou

Advanced Innovation Center for Future Education, Beijing Normal University, Beijing, China

Business School, Beijing Wuzi University, Beijing, China

Jieying Zeng

Dalu Beikou Central Primary School, Tianjin, China

Xiaomeng Ran

College of Education, Hebei Normal University, Shijiazhuang, China

Zhanling Cui

You can also search for this author in PubMed   Google Scholar

Contributions

XZ and JZ designed experiment and revised the manuscript. XR and ZC collected data and analysed data. LW analysed data and wrote the manuscript.

Corresponding author

Correspondence to Xinlin Zhou .

Ethics declarations

Conflict of interest.

We have no known conflict of interest to disclose.

Additional information

Publisher's note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 492 KB)

Rights and permissions.

Reprints and permissions

About this article

Wang, L., Zeng, J., Ran, X. et al. Different cognitive mechanisms for process-open and process-constrained problem solving. ZDM Mathematics Education 54 , 529–541 (2022). https://doi.org/10.1007/s11858-022-01373-3

Download citation

Accepted : 24 April 2022

Published : 28 May 2022

Issue Date : June 2022

DOI : https://doi.org/10.1007/s11858-022-01373-3

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Inductive reasoning
  • Spatial ability
  • Language comprehension
  • Execution function
  • Process-open problems
  • Mathematical problem solving
  • Find a journal
  • Publish with us
  • Track your research

Logo for College of DuPage Digital Press

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

7 Module 7: Thinking, Reasoning, and Problem-Solving

This module is about how a solid working knowledge of psychological principles can help you to think more effectively, so you can succeed in school and life. You might be inclined to believe that—because you have been thinking for as long as you can remember, because you are able to figure out the solution to many problems, because you feel capable of using logic to argue a point, because you can evaluate whether the things you read and hear make sense—you do not need any special training in thinking. But this, of course, is one of the key barriers to helping people think better. If you do not believe that there is anything wrong, why try to fix it?

The human brain is indeed a remarkable thinking machine, capable of amazing, complex, creative, logical thoughts. Why, then, are we telling you that you need to learn how to think? Mainly because one major lesson from cognitive psychology is that these capabilities of the human brain are relatively infrequently realized. Many psychologists believe that people are essentially “cognitive misers.” It is not that we are lazy, but that we have a tendency to expend the least amount of mental effort necessary. Although you may not realize it, it actually takes a great deal of energy to think. Careful, deliberative reasoning and critical thinking are very difficult. Because we seem to be successful without going to the trouble of using these skills well, it feels unnecessary to develop them. As you shall see, however, there are many pitfalls in the cognitive processes described in this module. When people do not devote extra effort to learning and improving reasoning, problem solving, and critical thinking skills, they make many errors.

As is true for memory, if you develop the cognitive skills presented in this module, you will be more successful in school. It is important that you realize, however, that these skills will help you far beyond school, even more so than a good memory will. Although it is somewhat useful to have a good memory, ten years from now no potential employer will care how many questions you got right on multiple choice exams during college. All of them will, however, recognize whether you are a logical, analytical, critical thinker. With these thinking skills, you will be an effective, persuasive communicator and an excellent problem solver.

The module begins by describing different kinds of thought and knowledge, especially conceptual knowledge and critical thinking. An understanding of these differences will be valuable as you progress through school and encounter different assignments that require you to tap into different kinds of knowledge. The second section covers deductive and inductive reasoning, which are processes we use to construct and evaluate strong arguments. They are essential skills to have whenever you are trying to persuade someone (including yourself) of some point, or to respond to someone’s efforts to persuade you. The module ends with a section about problem solving. A solid understanding of the key processes involved in problem solving will help you to handle many daily challenges.

7.1. Different kinds of thought

7.2. Reasoning and Judgment

7.3. Problem Solving

READING WITH PURPOSE

Remember and understand.

By reading and studying Module 7, you should be able to remember and describe:

  • Concepts and inferences (7.1)
  • Procedural knowledge (7.1)
  • Metacognition (7.1)
  • Characteristics of critical thinking:  skepticism; identify biases, distortions, omissions, and assumptions; reasoning and problem solving skills  (7.1)
  • Reasoning:  deductive reasoning, deductively valid argument, inductive reasoning, inductively strong argument, availability heuristic, representativeness heuristic  (7.2)
  • Fixation:  functional fixedness, mental set  (7.3)
  • Algorithms, heuristics, and the role of confirmation bias (7.3)
  • Effective problem solving sequence (7.3)

By reading and thinking about how the concepts in Module 6 apply to real life, you should be able to:

  • Identify which type of knowledge a piece of information is (7.1)
  • Recognize examples of deductive and inductive reasoning (7.2)
  • Recognize judgments that have probably been influenced by the availability heuristic (7.2)
  • Recognize examples of problem solving heuristics and algorithms (7.3)

Analyze, Evaluate, and Create

By reading and thinking about Module 6, participating in classroom activities, and completing out-of-class assignments, you should be able to:

  • Use the principles of critical thinking to evaluate information (7.1)
  • Explain whether examples of reasoning arguments are deductively valid or inductively strong (7.2)
  • Outline how you could try to solve a problem from your life using the effective problem solving sequence (7.3)

7.1. Different kinds of thought and knowledge

  • Take a few minutes to write down everything that you know about dogs.
  • Do you believe that:
  • Psychic ability exists?
  • Hypnosis is an altered state of consciousness?
  • Magnet therapy is effective for relieving pain?
  • Aerobic exercise is an effective treatment for depression?
  • UFO’s from outer space have visited earth?

On what do you base your belief or disbelief for the questions above?

Of course, we all know what is meant by the words  think  and  knowledge . You probably also realize that they are not unitary concepts; there are different kinds of thought and knowledge. In this section, let us look at some of these differences. If you are familiar with these different kinds of thought and pay attention to them in your classes, it will help you to focus on the right goals, learn more effectively, and succeed in school. Different assignments and requirements in school call on you to use different kinds of knowledge or thought, so it will be very helpful for you to learn to recognize them (Anderson, et al. 2001).

Factual and conceptual knowledge

Module 5 introduced the idea of declarative memory, which is composed of facts and episodes. If you have ever played a trivia game or watched Jeopardy on TV, you realize that the human brain is able to hold an extraordinary number of facts. Likewise, you realize that each of us has an enormous store of episodes, essentially facts about events that happened in our own lives. It may be difficult to keep that in mind when we are struggling to retrieve one of those facts while taking an exam, however. Part of the problem is that, in contradiction to the advice from Module 5, many students continue to try to memorize course material as a series of unrelated facts (picture a history student simply trying to memorize history as a set of unrelated dates without any coherent story tying them together). Facts in the real world are not random and unorganized, however. It is the way that they are organized that constitutes a second key kind of knowledge, conceptual.

Concepts are nothing more than our mental representations of categories of things in the world. For example, think about dogs. When you do this, you might remember specific facts about dogs, such as they have fur and they bark. You may also recall dogs that you have encountered and picture them in your mind. All of this information (and more) makes up your concept of dog. You can have concepts of simple categories (e.g., triangle), complex categories (e.g., small dogs that sleep all day, eat out of the garbage, and bark at leaves), kinds of people (e.g., psychology professors), events (e.g., birthday parties), and abstract ideas (e.g., justice). Gregory Murphy (2002) refers to concepts as the “glue that holds our mental life together” (p. 1). Very simply, summarizing the world by using concepts is one of the most important cognitive tasks that we do. Our conceptual knowledge  is  our knowledge about the world. Individual concepts are related to each other to form a rich interconnected network of knowledge. For example, think about how the following concepts might be related to each other: dog, pet, play, Frisbee, chew toy, shoe. Or, of more obvious use to you now, how these concepts are related: working memory, long-term memory, declarative memory, procedural memory, and rehearsal? Because our minds have a natural tendency to organize information conceptually, when students try to remember course material as isolated facts, they are working against their strengths.

One last important point about concepts is that they allow you to instantly know a great deal of information about something. For example, if someone hands you a small red object and says, “here is an apple,” they do not have to tell you, “it is something you can eat.” You already know that you can eat it because it is true by virtue of the fact that the object is an apple; this is called drawing an  inference , assuming that something is true on the basis of your previous knowledge (for example, of category membership or of how the world works) or logical reasoning.

Procedural knowledge

Physical skills, such as tying your shoes, doing a cartwheel, and driving a car (or doing all three at the same time, but don’t try this at home) are certainly a kind of knowledge. They are procedural knowledge, the same idea as procedural memory that you saw in Module 5. Mental skills, such as reading, debating, and planning a psychology experiment, are procedural knowledge, as well. In short, procedural knowledge is the knowledge how to do something (Cohen & Eichenbaum, 1993).

Metacognitive knowledge

Floyd used to think that he had a great memory. Now, he has a better memory. Why? Because he finally realized that his memory was not as great as he once thought it was. Because Floyd eventually learned that he often forgets where he put things, he finally developed the habit of putting things in the same place. (Unfortunately, he did not learn this lesson before losing at least 5 watches and a wedding ring.) Because he finally realized that he often forgets to do things, he finally started using the To Do list app on his phone. And so on. Floyd’s insights about the real limitations of his memory have allowed him to remember things that he used to forget.

All of us have knowledge about the way our own minds work. You may know that you have a good memory for people’s names and a poor memory for math formulas. Someone else might realize that they have difficulty remembering to do things, like stopping at the store on the way home. Others still know that they tend to overlook details. This knowledge about our own thinking is actually quite important; it is called metacognitive knowledge, or  metacognition . Like other kinds of thinking skills, it is subject to error. For example, in unpublished research, one of the authors surveyed about 120 General Psychology students on the first day of the term. Among other questions, the students were asked them to predict their grade in the class and report their current Grade Point Average. Two-thirds of the students predicted that their grade in the course would be higher than their GPA. (The reality is that at our college, students tend to earn lower grades in psychology than their overall GPA.) Another example: Students routinely report that they thought they had done well on an exam, only to discover, to their dismay, that they were wrong (more on that important problem in a moment). Both errors reveal a breakdown in metacognition.

The Dunning-Kruger Effect

In general, most college students probably do not study enough. For example, using data from the National Survey of Student Engagement, Fosnacht, McCormack, and Lerma (2018) reported that first-year students at 4-year colleges in the U.S. averaged less than 14 hours per week preparing for classes. The typical suggestion is that you should spend two hours outside of class for every hour in class, or 24 – 30 hours per week for a full-time student. Clearly, students in general are nowhere near that recommended mark. Many observers, including some faculty, believe that this shortfall is a result of students being too busy or lazy. Now, it may be true that many students are too busy, with work and family obligations, for example. Others, are not particularly motivated in school, and therefore might correctly be labeled lazy. A third possible explanation, however, is that some students might not think they need to spend this much time. And this is a matter of metacognition. Consider the scenario that we mentioned above, students thinking they had done well on an exam only to discover that they did not. Justin Kruger and David Dunning examined scenarios very much like this in 1999. Kruger and Dunning gave research participants tests measuring humor, logic, and grammar. Then, they asked the participants to assess their own abilities and test performance in these areas. They found that participants in general tended to overestimate their abilities, already a problem with metacognition. Importantly, the participants who scored the lowest overestimated their abilities the most. Specifically, students who scored in the bottom quarter (averaging in the 12th percentile) thought they had scored in the 62nd percentile. This has become known as the  Dunning-Kruger effect . Many individual faculty members have replicated these results with their own student on their course exams, including the authors of this book. Think about it. Some students who just took an exam and performed poorly believe that they did well before seeing their score. It seems very likely that these are the very same students who stopped studying the night before because they thought they were “done.” Quite simply, it is not just that they did not know the material. They did not know that they did not know the material. That is poor metacognition.

In order to develop good metacognitive skills, you should continually monitor your thinking and seek frequent feedback on the accuracy of your thinking (Medina, Castleberry, & Persky 2017). For example, in classes get in the habit of predicting your exam grades. As soon as possible after taking an exam, try to find out which questions you missed and try to figure out why. If you do this soon enough, you may be able to recall the way it felt when you originally answered the question. Did you feel confident that you had answered the question correctly? Then you have just discovered an opportunity to improve your metacognition. Be on the lookout for that feeling and respond with caution.

concept :  a mental representation of a category of things in the world

Dunning-Kruger effect : individuals who are less competent tend to overestimate their abilities more than individuals who are more competent do

inference : an assumption about the truth of something that is not stated. Inferences come from our prior knowledge and experience, and from logical reasoning

metacognition :  knowledge about one’s own cognitive processes; thinking about your thinking

Critical thinking

One particular kind of knowledge or thinking skill that is related to metacognition is  critical thinking (Chew, 2020). You may have noticed that critical thinking is an objective in many college courses, and thus it could be a legitimate topic to cover in nearly any college course. It is particularly appropriate in psychology, however. As the science of (behavior and) mental processes, psychology is obviously well suited to be the discipline through which you should be introduced to this important way of thinking.

More importantly, there is a particular need to use critical thinking in psychology. We are all, in a way, experts in human behavior and mental processes, having engaged in them literally since birth. Thus, perhaps more than in any other class, students typically approach psychology with very clear ideas and opinions about its subject matter. That is, students already “know” a lot about psychology. The problem is, “it ain’t so much the things we don’t know that get us into trouble. It’s the things we know that just ain’t so” (Ward, quoted in Gilovich 1991). Indeed, many of students’ preconceptions about psychology are just plain wrong. Randolph Smith (2002) wrote a book about critical thinking in psychology called  Challenging Your Preconceptions,  highlighting this fact. On the other hand, many of students’ preconceptions about psychology are just plain right! But wait, how do you know which of your preconceptions are right and which are wrong? And when you come across a research finding or theory in this class that contradicts your preconceptions, what will you do? Will you stick to your original idea, discounting the information from the class? Will you immediately change your mind? Critical thinking can help us sort through this confusing mess.

But what is critical thinking? The goal of critical thinking is simple to state (but extraordinarily difficult to achieve): it is to be right, to draw the correct conclusions, to believe in things that are true and to disbelieve things that are false. We will provide two definitions of critical thinking (or, if you like, one large definition with two distinct parts). First, a more conceptual one: Critical thinking is thinking like a scientist in your everyday life (Schmaltz, Jansen, & Wenckowski, 2017).  Our second definition is more operational; it is simply a list of skills that are essential to be a critical thinker. Critical thinking entails solid reasoning and problem solving skills; skepticism; and an ability to identify biases, distortions, omissions, and assumptions. Excellent deductive and inductive reasoning, and problem solving skills contribute to critical thinking. So, you can consider the subject matter of sections 7.2 and 7.3 to be part of critical thinking. Because we will be devoting considerable time to these concepts in the rest of the module, let us begin with a discussion about the other aspects of critical thinking.

Let’s address that first part of the definition. Scientists form hypotheses, or predictions about some possible future observations. Then, they collect data, or information (think of this as making those future observations). They do their best to make unbiased observations using reliable techniques that have been verified by others. Then, and only then, they draw a conclusion about what those observations mean. Oh, and do not forget the most important part. “Conclusion” is probably not the most appropriate word because this conclusion is only tentative. A scientist is always prepared that someone else might come along and produce new observations that would require a new conclusion be drawn. Wow! If you like to be right, you could do a lot worse than using a process like this.

A Critical Thinker’s Toolkit 

Now for the second part of the definition. Good critical thinkers (and scientists) rely on a variety of tools to evaluate information. Perhaps the most recognizable tool for critical thinking is  skepticism (and this term provides the clearest link to the thinking like a scientist definition, as you are about to see). Some people intend it as an insult when they call someone a skeptic. But if someone calls you a skeptic, if they are using the term correctly, you should consider it a great compliment. Simply put, skepticism is a way of thinking in which you refrain from drawing a conclusion or changing your mind until good evidence has been provided. People from Missouri should recognize this principle, as Missouri is known as the Show-Me State. As a skeptic, you are not inclined to believe something just because someone said so, because someone else believes it, or because it sounds reasonable. You must be persuaded by high quality evidence.

Of course, if that evidence is produced, you have a responsibility as a skeptic to change your belief. Failure to change a belief in the face of good evidence is not skepticism; skepticism has open mindedness at its core. M. Neil Browne and Stuart Keeley (2018) use the term weak sense critical thinking to describe critical thinking behaviors that are used only to strengthen a prior belief. Strong sense critical thinking, on the other hand, has as its goal reaching the best conclusion. Sometimes that means strengthening your prior belief, but sometimes it means changing your belief to accommodate the better evidence.

Many times, a failure to think critically or weak sense critical thinking is related to a  bias , an inclination, tendency, leaning, or prejudice. Everybody has biases, but many people are unaware of them. Awareness of your own biases gives you the opportunity to control or counteract them. Unfortunately, however, many people are happy to let their biases creep into their attempts to persuade others; indeed, it is a key part of their persuasive strategy. To see how these biases influence messages, just look at the different descriptions and explanations of the same events given by people of different ages or income brackets, or conservative versus liberal commentators, or by commentators from different parts of the world. Of course, to be successful, these people who are consciously using their biases must disguise them. Even undisguised biases can be difficult to identify, so disguised ones can be nearly impossible.

Here are some common sources of biases:

  • Personal values and beliefs.  Some people believe that human beings are basically driven to seek power and that they are typically in competition with one another over scarce resources. These beliefs are similar to the world-view that political scientists call “realism.” Other people believe that human beings prefer to cooperate and that, given the chance, they will do so. These beliefs are similar to the world-view known as “idealism.” For many people, these deeply held beliefs can influence, or bias, their interpretations of such wide ranging situations as the behavior of nations and their leaders or the behavior of the driver in the car ahead of you. For example, if your worldview is that people are typically in competition and someone cuts you off on the highway, you may assume that the driver did it purposely to get ahead of you. Other types of beliefs about the way the world is or the way the world should be, for example, political beliefs, can similarly become a significant source of bias.
  • Racism, sexism, ageism and other forms of prejudice and bigotry.  These are, sadly, a common source of bias in many people. They are essentially a special kind of “belief about the way the world is.” These beliefs—for example, that women do not make effective leaders—lead people to ignore contradictory evidence (examples of effective women leaders, or research that disputes the belief) and to interpret ambiguous evidence in a way consistent with the belief.
  • Self-interest.  When particular people benefit from things turning out a certain way, they can sometimes be very susceptible to letting that interest bias them. For example, a company that will earn a profit if they sell their product may have a bias in the way that they give information about their product. A union that will benefit if its members get a generous contract might have a bias in the way it presents information about salaries at competing organizations. (Note that our inclusion of examples describing both companies and unions is an explicit attempt to control for our own personal biases). Home buyers are often dismayed to discover that they purchased their dream house from someone whose self-interest led them to lie about flooding problems in the basement or back yard. This principle, the biasing power of self-interest, is likely what led to the famous phrase  Caveat Emptor  (let the buyer beware) .  

Knowing that these types of biases exist will help you evaluate evidence more critically. Do not forget, though, that people are not always keen to let you discover the sources of biases in their arguments. For example, companies or political organizations can sometimes disguise their support of a research study by contracting with a university professor, who comes complete with a seemingly unbiased institutional affiliation, to conduct the study.

People’s biases, conscious or unconscious, can lead them to make omissions, distortions, and assumptions that undermine our ability to correctly evaluate evidence. It is essential that you look for these elements. Always ask, what is missing, what is not as it appears, and what is being assumed here? For example, consider this (fictional) chart from an ad reporting customer satisfaction at 4 local health clubs.

cognitive process of human problem solving

Clearly, from the results of the chart, one would be tempted to give Club C a try, as customer satisfaction is much higher than for the other 3 clubs.

There are so many distortions and omissions in this chart, however, that it is actually quite meaningless. First, how was satisfaction measured? Do the bars represent responses to a survey? If so, how were the questions asked? Most importantly, where is the missing scale for the chart? Although the differences look quite large, are they really?

Well, here is the same chart, with a different scale, this time labeled:

cognitive process of human problem solving

Club C is not so impressive any more, is it? In fact, all of the health clubs have customer satisfaction ratings (whatever that means) between 85% and 88%. In the first chart, the entire scale of the graph included only the percentages between 83 and 89. This “judicious” choice of scale—some would call it a distortion—and omission of that scale from the chart make the tiny differences among the clubs seem important, however.

Also, in order to be a critical thinker, you need to learn to pay attention to the assumptions that underlie a message. Let us briefly illustrate the role of assumptions by touching on some people’s beliefs about the criminal justice system in the US. Some believe that a major problem with our judicial system is that many criminals go free because of legal technicalities. Others believe that a major problem is that many innocent people are convicted of crimes. The simple fact is, both types of errors occur. A person’s conclusion about which flaw in our judicial system is the greater tragedy is based on an assumption about which of these is the more serious error (letting the guilty go free or convicting the innocent). This type of assumption is called a value assumption (Browne and Keeley, 2018). It reflects the differences in values that people develop, differences that may lead us to disregard valid evidence that does not fit in with our particular values.

Oh, by the way, some students probably noticed this, but the seven tips for evaluating information that we shared in Module 1 are related to this. Actually, they are part of this section. The tips are, to a very large degree, set of ideas you can use to help you identify biases, distortions, omissions, and assumptions. If you do not remember this section, we strongly recommend you take a few minutes to review it.

skepticism :  a way of thinking in which you refrain from drawing a conclusion or changing your mind until good evidence has been provided

bias : an inclination, tendency, leaning, or prejudice

  • Which of your beliefs (or disbeliefs) from the Activate exercise for this section were derived from a process of critical thinking? If some of your beliefs were not based on critical thinking, are you willing to reassess these beliefs? If the answer is no, why do you think that is? If the answer is yes, what concrete steps will you take?

7.2 Reasoning and Judgment

  • What percentage of kidnappings are committed by strangers?
  • Which area of the house is riskiest: kitchen, bathroom, or stairs?
  • What is the most common cancer in the US?
  • What percentage of workplace homicides are committed by co-workers?

An essential set of procedural thinking skills is  reasoning , the ability to generate and evaluate solid conclusions from a set of statements or evidence. You should note that these conclusions (when they are generated instead of being evaluated) are one key type of inference that we described in Section 7.1. There are two main types of reasoning, deductive and inductive.

Deductive reasoning

Suppose your teacher tells you that if you get an A on the final exam in a course, you will get an A for the whole course. Then, you get an A on the final exam. What will your final course grade be? Most people can see instantly that you can conclude with certainty that you will get an A for the course. This is a type of reasoning called  deductive reasoning , which is defined as reasoning in which a conclusion is guaranteed to be true as long as the statements leading to it are true. The three statements can be listed as an  argument , with two beginning statements and a conclusion:

Statement 1: If you get an A on the final exam, you will get an A for the course

Statement 2: You get an A on the final exam

Conclusion: You will get an A for the course

This particular arrangement, in which true beginning statements lead to a guaranteed true conclusion, is known as a  deductively valid argument . Although deductive reasoning is often the subject of abstract, brain-teasing, puzzle-like word problems, it is actually an extremely important type of everyday reasoning. It is just hard to recognize sometimes. For example, imagine that you are looking for your car keys and you realize that they are either in the kitchen drawer or in your book bag. After looking in the kitchen drawer, you instantly know that they must be in your book bag. That conclusion results from a simple deductive reasoning argument. In addition, solid deductive reasoning skills are necessary for you to succeed in the sciences, philosophy, math, computer programming, and any endeavor involving the use of logic to persuade others to your point of view or to evaluate others’ arguments.

Cognitive psychologists, and before them philosophers, have been quite interested in deductive reasoning, not so much for its practical applications, but for the insights it can offer them about the ways that human beings think. One of the early ideas to emerge from the examination of deductive reasoning is that people learn (or develop) mental versions of rules that allow them to solve these types of reasoning problems (Braine, 1978; Braine, Reiser, & Rumain, 1984). The best way to see this point of view is to realize that there are different possible rules, and some of them are very simple. For example, consider this rule of logic:

therefore q

Logical rules are often presented abstractly, as letters, in order to imply that they can be used in very many specific situations. Here is a concrete version of the of the same rule:

I’ll either have pizza or a hamburger for dinner tonight (p or q)

I won’t have pizza (not p)

Therefore, I’ll have a hamburger (therefore q)

This kind of reasoning seems so natural, so easy, that it is quite plausible that we would use a version of this rule in our daily lives. At least, it seems more plausible than some of the alternative possibilities—for example, that we need to have experience with the specific situation (pizza or hamburger, in this case) in order to solve this type of problem easily. So perhaps there is a form of natural logic (Rips, 1990) that contains very simple versions of logical rules. When we are faced with a reasoning problem that maps onto one of these rules, we use the rule.

But be very careful; things are not always as easy as they seem. Even these simple rules are not so simple. For example, consider the following rule. Many people fail to realize that this rule is just as valid as the pizza or hamburger rule above.

if p, then q

therefore, not p

Concrete version:

If I eat dinner, then I will have dessert

I did not have dessert

Therefore, I did not eat dinner

The simple fact is, it can be very difficult for people to apply rules of deductive logic correctly; as a result, they make many errors when trying to do so. Is this a deductively valid argument or not?

Students who like school study a lot

Students who study a lot get good grades

Jane does not like school

Therefore, Jane does not get good grades

Many people are surprised to discover that this is not a logically valid argument; the conclusion is not guaranteed to be true from the beginning statements. Although the first statement says that students who like school study a lot, it does NOT say that students who do not like school do not study a lot. In other words, it may very well be possible to study a lot without liking school. Even people who sometimes get problems like this right might not be using the rules of deductive reasoning. Instead, they might just be making judgments for examples they know, in this case, remembering instances of people who get good grades despite not liking school.

Making deductive reasoning even more difficult is the fact that there are two important properties that an argument may have. One, it can be valid or invalid (meaning that the conclusion does or does not follow logically from the statements leading up to it). Two, an argument (or more correctly, its conclusion) can be true or false. Here is an example of an argument that is logically valid, but has a false conclusion (at least we think it is false).

Either you are eleven feet tall or the Grand Canyon was created by a spaceship crashing into the earth.

You are not eleven feet tall

Therefore the Grand Canyon was created by a spaceship crashing into the earth

This argument has the exact same form as the pizza or hamburger argument above, making it is deductively valid. The conclusion is so false, however, that it is absurd (of course, the reason the conclusion is false is that the first statement is false). When people are judging arguments, they tend to not observe the difference between deductive validity and the empirical truth of statements or conclusions. If the elements of an argument happen to be true, people are likely to judge the argument logically valid; if the elements are false, they will very likely judge it invalid (Markovits & Bouffard-Bouchard, 1992; Moshman & Franks, 1986). Thus, it seems a stretch to say that people are using these logical rules to judge the validity of arguments. Many psychologists believe that most people actually have very limited deductive reasoning skills (Johnson-Laird, 1999). They argue that when faced with a problem for which deductive logic is required, people resort to some simpler technique, such as matching terms that appear in the statements and the conclusion (Evans, 1982). This might not seem like a problem, but what if reasoners believe that the elements are true and they happen to be wrong; they will would believe that they are using a form of reasoning that guarantees they are correct and yet be wrong.

deductive reasoning :  a type of reasoning in which the conclusion is guaranteed to be true any time the statements leading up to it are true

argument :  a set of statements in which the beginning statements lead to a conclusion

deductively valid argument :  an argument for which true beginning statements guarantee that the conclusion is true

Inductive reasoning and judgment

Every day, you make many judgments about the likelihood of one thing or another. Whether you realize it or not, you are practicing  inductive reasoning   on a daily basis. In inductive reasoning arguments, a conclusion is likely whenever the statements preceding it are true. The first thing to notice about inductive reasoning is that, by definition, you can never be sure about your conclusion; you can only estimate how likely the conclusion is. Inductive reasoning may lead you to focus on Memory Encoding and Recoding when you study for the exam, but it is possible the instructor will ask more questions about Memory Retrieval instead. Unlike deductive reasoning, the conclusions you reach through inductive reasoning are only probable, not certain. That is why scientists consider inductive reasoning weaker than deductive reasoning. But imagine how hard it would be for us to function if we could not act unless we were certain about the outcome.

Inductive reasoning can be represented as logical arguments consisting of statements and a conclusion, just as deductive reasoning can be. In an inductive argument, you are given some statements and a conclusion (or you are given some statements and must draw a conclusion). An argument is  inductively strong   if the conclusion would be very probable whenever the statements are true. So, for example, here is an inductively strong argument:

  • Statement #1: The forecaster on Channel 2 said it is going to rain today.
  • Statement #2: The forecaster on Channel 5 said it is going to rain today.
  • Statement #3: It is very cloudy and humid.
  • Statement #4: You just heard thunder.
  • Conclusion (or judgment): It is going to rain today.

Think of the statements as evidence, on the basis of which you will draw a conclusion. So, based on the evidence presented in the four statements, it is very likely that it will rain today. Will it definitely rain today? Certainly not. We can all think of times that the weather forecaster was wrong.

A true story: Some years ago psychology student was watching a baseball playoff game between the St. Louis Cardinals and the Los Angeles Dodgers. A graphic on the screen had just informed the audience that the Cardinal at bat, (Hall of Fame shortstop) Ozzie Smith, a switch hitter batting left-handed for this plate appearance, had never, in nearly 3000 career at-bats, hit a home run left-handed. The student, who had just learned about inductive reasoning in his psychology class, turned to his companion (a Cardinals fan) and smugly said, “It is an inductively strong argument that Ozzie Smith will not hit a home run.” He turned back to face the television just in time to watch the ball sail over the right field fence for a home run. Although the student felt foolish at the time, he was not wrong. It was an inductively strong argument; 3000 at-bats is an awful lot of evidence suggesting that the Wizard of Ozz (as he was known) would not be hitting one out of the park (think of each at-bat without a home run as a statement in an inductive argument). Sadly (for the die-hard Cubs fan and Cardinals-hating student), despite the strength of the argument, the conclusion was wrong.

Given the possibility that we might draw an incorrect conclusion even with an inductively strong argument, we really want to be sure that we do, in fact, make inductively strong arguments. If we judge something probable, it had better be probable. If we judge something nearly impossible, it had better not happen. Think of inductive reasoning, then, as making reasonably accurate judgments of the probability of some conclusion given a set of evidence.

We base many decisions in our lives on inductive reasoning. For example:

Statement #1: Psychology is not my best subject

Statement #2: My psychology instructor has a reputation for giving difficult exams

Statement #3: My first psychology exam was much harder than I expected

Judgment: The next exam will probably be very difficult.

Decision: I will study tonight instead of watching Netflix.

Some other examples of judgments that people commonly make in a school context include judgments of the likelihood that:

  • A particular class will be interesting/useful/difficult
  • You will be able to finish writing a paper by next week if you go out tonight
  • Your laptop’s battery will last through the next trip to the library
  • You will not miss anything important if you skip class tomorrow
  • Your instructor will not notice if you skip class tomorrow
  • You will be able to find a book that you will need for a paper
  • There will be an essay question about Memory Encoding on the next exam

Tversky and Kahneman (1983) recognized that there are two general ways that we might make these judgments; they termed them extensional (i.e., following the laws of probability) and intuitive (i.e., using shortcuts or heuristics, see below). We will use a similar distinction between Type 1 and Type 2 thinking, as described by Keith Stanovich and his colleagues (Evans and Stanovich, 2013; Stanovich and West, 2000). Type 1 thinking is fast, automatic, effortful, and emotional. In fact, it is hardly fair to call it reasoning at all, as judgments just seem to pop into one’s head. Type 2 thinking , on the other hand, is slow, effortful, and logical. So obviously, it is more likely to lead to a correct judgment, or an optimal decision. The problem is, we tend to over-rely on Type 1. Now, we are not saying that Type 2 is the right way to go for every decision or judgment we make. It seems a bit much, for example, to engage in a step-by-step logical reasoning procedure to decide whether we will have chicken or fish for dinner tonight.

Many bad decisions in some very important contexts, however, can be traced back to poor judgments of the likelihood of certain risks or outcomes that result from the use of Type 1 when a more logical reasoning process would have been more appropriate. For example:

Statement #1: It is late at night.

Statement #2: Albert has been drinking beer for the past five hours at a party.

Statement #3: Albert is not exactly sure where he is or how far away home is.

Judgment: Albert will have no difficulty walking home.

Decision: He walks home alone.

As you can see in this example, the three statements backing up the judgment do not really support it. In other words, this argument is not inductively strong because it is based on judgments that ignore the laws of probability. What are the chances that someone facing these conditions will be able to walk home alone easily? And one need not be drunk to make poor decisions based on judgments that just pop into our heads.

The truth is that many of our probability judgments do not come very close to what the laws of probability say they should be. Think about it. In order for us to reason in accordance with these laws, we would need to know the laws of probability, which would allow us to calculate the relationship between particular pieces of evidence and the probability of some outcome (i.e., how much likelihood should change given a piece of evidence), and we would have to do these heavy math calculations in our heads. After all, that is what Type 2 requires. Needless to say, even if we were motivated, we often do not even know how to apply Type 2 reasoning in many cases.

So what do we do when we don’t have the knowledge, skills, or time required to make the correct mathematical judgment? Do we hold off and wait until we can get better evidence? Do we read up on probability and fire up our calculator app so we can compute the correct probability? Of course not. We rely on Type 1 thinking. We “wing it.” That is, we come up with a likelihood estimate using some means at our disposal. Psychologists use the term heuristic to describe the type of “winging it” we are talking about. A  heuristic   is a shortcut strategy that we use to make some judgment or solve some problem (see Section 7.3). Heuristics are easy and quick, think of them as the basic procedures that are characteristic of Type 1.  They can absolutely lead to reasonably good judgments and decisions in some situations (like choosing between chicken and fish for dinner). They are, however, far from foolproof. There are, in fact, quite a lot of situations in which heuristics can lead us to make incorrect judgments, and in many cases the decisions based on those judgments can have serious consequences.

Let us return to the activity that begins this section. You were asked to judge the likelihood (or frequency) of certain events and risks. You were free to come up with your own evidence (or statements) to make these judgments. This is where a heuristic crops up. As a judgment shortcut, we tend to generate specific examples of those very events to help us decide their likelihood or frequency. For example, if we are asked to judge how common, frequent, or likely a particular type of cancer is, many of our statements would be examples of specific cancer cases:

Statement #1: Andy Kaufman (comedian) had lung cancer.

Statement #2: Colin Powell (US Secretary of State) had prostate cancer.

Statement #3: Bob Marley (musician) had skin and brain cancer

Statement #4: Sandra Day O’Connor (Supreme Court Justice) had breast cancer.

Statement #5: Fred Rogers (children’s entertainer) had stomach cancer.

Statement #6: Robin Roberts (news anchor) had breast cancer.

Statement #7: Bette Davis (actress) had breast cancer.

Judgment: Breast cancer is the most common type.

Your own experience or memory may also tell you that breast cancer is the most common type. But it is not (although it is common). Actually, skin cancer is the most common type in the US. We make the same types of misjudgments all the time because we do not generate the examples or evidence according to their actual frequencies or probabilities. Instead, we have a tendency (or bias) to search for the examples in memory; if they are easy to retrieve, we assume that they are common. To rephrase this in the language of the heuristic, events seem more likely to the extent that they are available to memory. This bias has been termed the  availability heuristic   (Kahneman and Tversky, 1974).

The fact that we use the availability heuristic does not automatically mean that our judgment is wrong. The reason we use heuristics in the first place is that they work fairly well in many cases (and, of course that they are easy to use). So, the easiest examples to think of sometimes are the most common ones. Is it more likely that a member of the U.S. Senate is a man or a woman? Most people have a much easier time generating examples of male senators. And as it turns out, the U.S. Senate has many more men than women (74 to 26 in 2020). In this case, then, the availability heuristic would lead you to make the correct judgment; it is far more likely that a senator would be a man.

In many other cases, however, the availability heuristic will lead us astray. This is because events can be memorable for many reasons other than their frequency. Section 5.2, Encoding Meaning, suggested that one good way to encode the meaning of some information is to form a mental image of it. Thus, information that has been pictured mentally will be more available to memory. Indeed, an event that is vivid and easily pictured will trick many people into supposing that type of event is more common than it actually is. Repetition of information will also make it more memorable. So, if the same event is described to you in a magazine, on the evening news, on a podcast that you listen to, and in your Facebook feed; it will be very available to memory. Again, the availability heuristic will cause you to misperceive the frequency of these types of events.

Most interestingly, information that is unusual is more memorable. Suppose we give you the following list of words to remember: box, flower, letter, platypus, oven, boat, newspaper, purse, drum, car. Very likely, the easiest word to remember would be platypus, the unusual one. The same thing occurs with memories of events. An event may be available to memory because it is unusual, yet the availability heuristic leads us to judge that the event is common. Did you catch that? In these cases, the availability heuristic makes us think the exact opposite of the true frequency. We end up thinking something is common because it is unusual (and therefore memorable). Yikes.

The misapplication of the availability heuristic sometimes has unfortunate results. For example, if you went to K-12 school in the US over the past 10 years, it is extremely likely that you have participated in lockdown and active shooter drills. Of course, everyone is trying to prevent the tragedy of another school shooting. And believe us, we are not trying to minimize how terrible the tragedy is. But the truth of the matter is, school shootings are extremely rare. Because the federal government does not keep a database of school shootings, the Washington Post has maintained their own running tally. Between 1999 and January 2020 (the date of the most recent school shooting with a death in the US at of the time this paragraph was written), the Post reported a total of 254 people died in school shootings in the US. Not 254 per year, 254 total. That is an average of 12 per year. Of course, that is 254 people who should not have died (particularly because many were children), but in a country with approximately 60,000,000 students and teachers, this is a very small risk.

But many students and teachers are terrified that they will be victims of school shootings because of the availability heuristic. It is so easy to think of examples (they are very available to memory) that people believe the event is very common. It is not. And there is a downside to this. We happen to believe that there is an enormous gun violence problem in the United States. According the the Centers for Disease Control and Prevention, there were 39,773 firearm deaths in the US in 2017. Fifteen of those deaths were in school shootings, according to the Post. 60% of those deaths were suicides. When people pay attention to the school shooting risk (low), they often fail to notice the much larger risk.

And examples like this are by no means unique. The authors of this book have been teaching psychology since the 1990’s. We have been able to make the exact same arguments about the misapplication of the availability heuristics and keep them current by simply swapping out for the “fear of the day.” In the 1990’s it was children being kidnapped by strangers (it was known as “stranger danger”) despite the facts that kidnappings accounted for only 2% of the violent crimes committed against children, and only 24% of kidnappings are committed by strangers (US Department of Justice, 2007). This fear overlapped with the fear of terrorism that gripped the country after the 2001 terrorist attacks on the World Trade Center and US Pentagon and still plagues the population of the US somewhat in 2020. After a well-publicized, sensational act of violence, people are extremely likely to increase their estimates of the chances that they, too, will be victims of terror. Think about the reality, however. In October of 2001, a terrorist mailed anthrax spores to members of the US government and a number of media companies. A total of five people died as a result of this attack. The nation was nearly paralyzed by the fear of dying from the attack; in reality the probability of an individual person dying was 0.00000002.

The availability heuristic can lead you to make incorrect judgments in a school setting as well. For example, suppose you are trying to decide if you should take a class from a particular math professor. You might try to make a judgment of how good a teacher she is by recalling instances of friends and acquaintances making comments about her teaching skill. You may have some examples that suggest that she is a poor teacher very available to memory, so on the basis of the availability heuristic you judge her a poor teacher and decide to take the class from someone else. What if, however, the instances you recalled were all from the same person, and this person happens to be a very colorful storyteller? The subsequent ease of remembering the instances might not indicate that the professor is a poor teacher after all.

Although the availability heuristic is obviously important, it is not the only judgment heuristic we use. Amos Tversky and Daniel Kahneman examined the role of heuristics in inductive reasoning in a long series of studies. Kahneman received a Nobel Prize in Economics for this research in 2002, and Tversky would have certainly received one as well if he had not died of melanoma at age 59 in 1996 (Nobel Prizes are not awarded posthumously). Kahneman and Tversky demonstrated repeatedly that people do not reason in ways that are consistent with the laws of probability. They identified several heuristic strategies that people use instead to make judgments about likelihood. The importance of this work for economics (and the reason that Kahneman was awarded the Nobel Prize) is that earlier economic theories had assumed that people do make judgments rationally, that is, in agreement with the laws of probability.

Another common heuristic that people use for making judgments is the  representativeness heuristic (Kahneman & Tversky 1973). Suppose we describe a person to you. He is quiet and shy, has an unassuming personality, and likes to work with numbers. Is this person more likely to be an accountant or an attorney? If you said accountant, you were probably using the representativeness heuristic. Our imaginary person is judged likely to be an accountant because he resembles, or is representative of the concept of, an accountant. When research participants are asked to make judgments such as these, the only thing that seems to matter is the representativeness of the description. For example, if told that the person described is in a room that contains 70 attorneys and 30 accountants, participants will still assume that he is an accountant.

inductive reasoning :  a type of reasoning in which we make judgments about likelihood from sets of evidence

inductively strong argument :  an inductive argument in which the beginning statements lead to a conclusion that is probably true

heuristic :  a shortcut strategy that we use to make judgments and solve problems. Although they are easy to use, they do not guarantee correct judgments and solutions

availability heuristic :  judging the frequency or likelihood of some event type according to how easily examples of the event can be called to mind (i.e., how available they are to memory)

representativeness heuristic:   judging the likelihood that something is a member of a category on the basis of how much it resembles a typical category member (i.e., how representative it is of the category)

Type 1 thinking : fast, automatic, and emotional thinking.

Type 2 thinking : slow, effortful, and logical thinking.

  • What percentage of workplace homicides are co-worker violence?

Many people get these questions wrong. The answers are 10%; stairs; skin; 6%. How close were your answers? Explain how the availability heuristic might have led you to make the incorrect judgments.

  • Can you think of some other judgments that you have made (or beliefs that you have) that might have been influenced by the availability heuristic?

7.3 Problem Solving

  • Please take a few minutes to list a number of problems that you are facing right now.
  • Now write about a problem that you recently solved.
  • What is your definition of a problem?

Mary has a problem. Her daughter, ordinarily quite eager to please, appears to delight in being the last person to do anything. Whether getting ready for school, going to piano lessons or karate class, or even going out with her friends, she seems unwilling or unable to get ready on time. Other people have different kinds of problems. For example, many students work at jobs, have numerous family commitments, and are facing a course schedule full of difficult exams, assignments, papers, and speeches. How can they find enough time to devote to their studies and still fulfill their other obligations? Speaking of students and their problems: Show that a ball thrown vertically upward with initial velocity v0 takes twice as much time to return as to reach the highest point (from Spiegel, 1981).

These are three very different situations, but we have called them all problems. What makes them all the same, despite the differences? A psychologist might define a  problem   as a situation with an initial state, a goal state, and a set of possible intermediate states. Somewhat more meaningfully, we might consider a problem a situation in which you are in here one state (e.g., daughter is always late), you want to be there in another state (e.g., daughter is not always late), and with no obvious way to get from here to there. Defined this way, each of the three situations we outlined can now be seen as an example of the same general concept, a problem. At this point, you might begin to wonder what is not a problem, given such a general definition. It seems that nearly every non-routine task we engage in could qualify as a problem. As long as you realize that problems are not necessarily bad (it can be quite fun and satisfying to rise to the challenge and solve a problem), this may be a useful way to think about it.

Can we identify a set of problem-solving skills that would apply to these very different kinds of situations? That task, in a nutshell, is a major goal of this section. Let us try to begin to make sense of the wide variety of ways that problems can be solved with an important observation: the process of solving problems can be divided into two key parts. First, people have to notice, comprehend, and represent the problem properly in their minds (called  problem representation ). Second, they have to apply some kind of solution strategy to the problem. Psychologists have studied both of these key parts of the process in detail.

When you first think about the problem-solving process, you might guess that most of our difficulties would occur because we are failing in the second step, the application of strategies. Although this can be a significant difficulty much of the time, the more important source of difficulty is probably problem representation. In short, we often fail to solve a problem because we are looking at it, or thinking about it, the wrong way.

problem :  a situation in which we are in an initial state, have a desired goal state, and there is a number of possible intermediate states (i.e., there is no obvious way to get from the initial to the goal state)

problem representation :  noticing, comprehending and forming a mental conception of a problem

Defining and Mentally Representing Problems in Order to Solve Them

So, the main obstacle to solving a problem is that we do not clearly understand exactly what the problem is. Recall the problem with Mary’s daughter always being late. One way to represent, or to think about, this problem is that she is being defiant. She refuses to get ready in time. This type of representation or definition suggests a particular type of solution. Another way to think about the problem, however, is to consider the possibility that she is simply being sidetracked by interesting diversions. This different conception of what the problem is (i.e., different representation) suggests a very different solution strategy. For example, if Mary defines the problem as defiance, she may be tempted to solve the problem using some kind of coercive tactics, that is, to assert her authority as her mother and force her to listen. On the other hand, if Mary defines the problem as distraction, she may try to solve it by simply removing the distracting objects.

As you might guess, when a problem is represented one way, the solution may seem very difficult, or even impossible. Seen another way, the solution might be very easy. For example, consider the following problem (from Nasar, 1998):

Two bicyclists start 20 miles apart and head toward each other, each going at a steady rate of 10 miles per hour. At the same time, a fly that travels at a steady 15 miles per hour starts from the front wheel of the southbound bicycle and flies to the front wheel of the northbound one, then turns around and flies to the front wheel of the southbound one again, and continues in this manner until he is crushed between the two front wheels. Question: what total distance did the fly cover?

Please take a few minutes to try to solve this problem.

Most people represent this problem as a question about a fly because, well, that is how the question is asked. The solution, using this representation, is to figure out how far the fly travels on the first leg of its journey, then add this total to how far it travels on the second leg of its journey (when it turns around and returns to the first bicycle), then continue to add the smaller distance from each leg of the journey until you converge on the correct answer. You would have to be quite skilled at math to solve this problem, and you would probably need some time and pencil and paper to do it.

If you consider a different representation, however, you can solve this problem in your head. Instead of thinking about it as a question about a fly, think about it as a question about the bicycles. They are 20 miles apart, and each is traveling 10 miles per hour. How long will it take for the bicycles to reach each other? Right, one hour. The fly is traveling 15 miles per hour; therefore, it will travel a total of 15 miles back and forth in the hour before the bicycles meet. Represented one way (as a problem about a fly), the problem is quite difficult. Represented another way (as a problem about two bicycles), it is easy. Changing your representation of a problem is sometimes the best—sometimes the only—way to solve it.

Unfortunately, however, changing a problem’s representation is not the easiest thing in the world to do. Often, problem solvers get stuck looking at a problem one way. This is called  fixation . Most people who represent the preceding problem as a problem about a fly probably do not pause to reconsider, and consequently change, their representation. A parent who thinks her daughter is being defiant is unlikely to consider the possibility that her behavior is far less purposeful.

Problem-solving fixation was examined by a group of German psychologists called Gestalt psychologists during the 1930’s and 1940’s. Karl Dunker, for example, discovered an important type of failure to take a different perspective called  functional fixedness . Imagine being a participant in one of his experiments. You are asked to figure out how to mount two candles on a door and are given an assortment of odds and ends, including a small empty cardboard box and some thumbtacks. Perhaps you have already figured out a solution: tack the box to the door so it forms a platform, then put the candles on top of the box. Most people are able to arrive at this solution. Imagine a slight variation of the procedure, however. What if, instead of being empty, the box had matches in it? Most people given this version of the problem do not arrive at the solution given above. Why? Because it seems to people that when the box contains matches, it already has a function; it is a matchbox. People are unlikely to consider a new function for an object that already has a function. This is functional fixedness.

Mental set is a type of fixation in which the problem solver gets stuck using the same solution strategy that has been successful in the past, even though the solution may no longer be useful. It is commonly seen when students do math problems for homework. Often, several problems in a row require the reapplication of the same solution strategy. Then, without warning, the next problem in the set requires a new strategy. Many students attempt to apply the formerly successful strategy on the new problem and therefore cannot come up with a correct answer.

The thing to remember is that you cannot solve a problem unless you correctly identify what it is to begin with (initial state) and what you want the end result to be (goal state). That may mean looking at the problem from a different angle and representing it in a new way. The correct representation does not guarantee a successful solution, but it certainly puts you on the right track.

A bit more optimistically, the Gestalt psychologists discovered what may be considered the opposite of fixation, namely  insight . Sometimes the solution to a problem just seems to pop into your head. Wolfgang Kohler examined insight by posing many different problems to chimpanzees, principally problems pertaining to their acquisition of out-of-reach food. In one version, a banana was placed outside of a chimpanzee’s cage and a short stick inside the cage. The stick was too short to retrieve the banana, but was long enough to retrieve a longer stick also located outside of the cage. This second stick was long enough to retrieve the banana. After trying, and failing, to reach the banana with the shorter stick, the chimpanzee would try a couple of random-seeming attempts, react with some apparent frustration or anger, then suddenly rush to the longer stick, the correct solution fully realized at this point. This sudden appearance of the solution, observed many times with many different problems, was termed insight by Kohler.

Lest you think it pertains to chimpanzees only, Karl Dunker demonstrated that children also solve problems through insight in the 1930s. More importantly, you have probably experienced insight yourself. Think back to a time when you were trying to solve a difficult problem. After struggling for a while, you gave up. Hours later, the solution just popped into your head, perhaps when you were taking a walk, eating dinner, or lying in bed.

fixation :  when a problem solver gets stuck looking at a problem a particular way and cannot change his or her representation of it (or his or her intended solution strategy)

functional fixedness :  a specific type of fixation in which a problem solver cannot think of a new use for an object that already has a function

mental set :  a specific type of fixation in which a problem solver gets stuck using the same solution strategy that has been successful in the past

insight :  a sudden realization of a solution to a problem

Solving Problems by Trial and Error

Correctly identifying the problem and your goal for a solution is a good start, but recall the psychologist’s definition of a problem: it includes a set of possible intermediate states. Viewed this way, a problem can be solved satisfactorily only if one can find a path through some of these intermediate states to the goal. Imagine a fairly routine problem, finding a new route to school when your ordinary route is blocked (by road construction, for example). At each intersection, you may turn left, turn right, or go straight. A satisfactory solution to the problem (of getting to school) is a sequence of selections at each intersection that allows you to wind up at school.

If you had all the time in the world to get to school, you might try choosing intermediate states randomly. At one corner you turn left, the next you go straight, then you go left again, then right, then right, then straight. Unfortunately, trial and error will not necessarily get you where you want to go, and even if it does, it is not the fastest way to get there. For example, when a friend of ours was in college, he got lost on the way to a concert and attempted to find the venue by choosing streets to turn onto randomly (this was long before the use of GPS). Amazingly enough, the strategy worked, although he did end up missing two out of the three bands who played that night.

Trial and error is not all bad, however. B.F. Skinner, a prominent behaviorist psychologist, suggested that people often behave randomly in order to see what effect the behavior has on the environment and what subsequent effect this environmental change has on them. This seems particularly true for the very young person. Picture a child filling a household’s fish tank with toilet paper, for example. To a child trying to develop a repertoire of creative problem-solving strategies, an odd and random behavior might be just the ticket. Eventually, the exasperated parent hopes, the child will discover that many of these random behaviors do not successfully solve problems; in fact, in many cases they create problems. Thus, one would expect a decrease in this random behavior as a child matures. You should realize, however, that the opposite extreme is equally counterproductive. If the children become too rigid, never trying something unexpected and new, their problem solving skills can become too limited.

Effective problem solving seems to call for a happy medium that strikes a balance between using well-founded old strategies and trying new ground and territory. The individual who recognizes a situation in which an old problem-solving strategy would work best, and who can also recognize a situation in which a new untested strategy is necessary is halfway to success.

Solving Problems with Algorithms and Heuristics

For many problems there is a possible strategy available that will guarantee a correct solution. For example, think about math problems. Math lessons often consist of step-by-step procedures that can be used to solve the problems. If you apply the strategy without error, you are guaranteed to arrive at the correct solution to the problem. This approach is called using an  algorithm , a term that denotes the step-by-step procedure that guarantees a correct solution. Because algorithms are sometimes available and come with a guarantee, you might think that most people use them frequently. Unfortunately, however, they do not. As the experience of many students who have struggled through math classes can attest, algorithms can be extremely difficult to use, even when the problem solver knows which algorithm is supposed to work in solving the problem. In problems outside of math class, we often do not even know if an algorithm is available. It is probably fair to say, then, that algorithms are rarely used when people try to solve problems.

Because algorithms are so difficult to use, people often pass up the opportunity to guarantee a correct solution in favor of a strategy that is much easier to use and yields a reasonable chance of coming up with a correct solution. These strategies are called  problem solving heuristics . Similar to what you saw in section 6.2 with reasoning heuristics, a problem solving heuristic is a shortcut strategy that people use when trying to solve problems. It usually works pretty well, but does not guarantee a correct solution to the problem. For example, one problem solving heuristic might be “always move toward the goal” (so when trying to get to school when your regular route is blocked, you would always turn in the direction you think the school is). A heuristic that people might use when doing math homework is “use the same solution strategy that you just used for the previous problem.”

By the way, we hope these last two paragraphs feel familiar to you. They seem to parallel a distinction that you recently learned. Indeed, algorithms and problem-solving heuristics are another example of the distinction between Type 1 thinking and Type 2 thinking.

Although it is probably not worth describing a large number of specific heuristics, two observations about heuristics are worth mentioning. First, heuristics can be very general or they can be very specific, pertaining to a particular type of problem only. For example, “always move toward the goal” is a general strategy that you can apply to countless problem situations. On the other hand, “when you are lost without a functioning gps, pick the most expensive car you can see and follow it” is specific to the problem of being lost. Second, all heuristics are not equally useful. One heuristic that many students know is “when in doubt, choose c for a question on a multiple-choice exam.” This is a dreadful strategy because many instructors intentionally randomize the order of answer choices. Another test-taking heuristic, somewhat more useful, is “look for the answer to one question somewhere else on the exam.”

You really should pay attention to the application of heuristics to test taking. Imagine that while reviewing your answers for a multiple-choice exam before turning it in, you come across a question for which you originally thought the answer was c. Upon reflection, you now think that the answer might be b. Should you change the answer to b, or should you stick with your first impression? Most people will apply the heuristic strategy to “stick with your first impression.” What they do not realize, of course, is that this is a very poor strategy (Lilienfeld et al, 2009). Most of the errors on exams come on questions that were answered wrong originally and were not changed (so they remain wrong). There are many fewer errors where we change a correct answer to an incorrect answer. And, of course, sometimes we change an incorrect answer to a correct answer. In fact, research has shown that it is more common to change a wrong answer to a right answer than vice versa (Bruno, 2001).

The belief in this poor test-taking strategy (stick with your first impression) is based on the  confirmation bias   (Nickerson, 1998; Wason, 1960). You first saw the confirmation bias in Module 1, but because it is so important, we will repeat the information here. People have a bias, or tendency, to notice information that confirms what they already believe. Somebody at one time told you to stick with your first impression, so when you look at the results of an exam you have taken, you will tend to notice the cases that are consistent with that belief. That is, you will notice the cases in which you originally had an answer correct and changed it to the wrong answer. You tend not to notice the other two important (and more common) cases, changing an answer from wrong to right, and leaving a wrong answer unchanged.

Because heuristics by definition do not guarantee a correct solution to a problem, mistakes are bound to occur when we employ them. A poor choice of a specific heuristic will lead to an even higher likelihood of making an error.

algorithm :  a step-by-step procedure that guarantees a correct solution to a problem

problem solving heuristic :  a shortcut strategy that we use to solve problems. Although they are easy to use, they do not guarantee correct judgments and solutions

confirmation bias :  people’s tendency to notice information that confirms what they already believe

An Effective Problem-Solving Sequence

You may be left with a big question: If algorithms are hard to use and heuristics often don’t work, how am I supposed to solve problems? Robert Sternberg (1996), as part of his theory of what makes people successfully intelligent (Module 8) described a problem-solving sequence that has been shown to work rather well:

  • Identify the existence of a problem.  In school, problem identification is often easy; problems that you encounter in math classes, for example, are conveniently labeled as problems for you. Outside of school, however, realizing that you have a problem is a key difficulty that you must get past in order to begin solving it. You must be very sensitive to the symptoms that indicate a problem.
  • Define the problem.  Suppose you realize that you have been having many headaches recently. Very likely, you would identify this as a problem. If you define the problem as “headaches,” the solution would probably be to take aspirin or ibuprofen or some other anti-inflammatory medication. If the headaches keep returning, however, you have not really solved the problem—likely because you have mistaken a symptom for the problem itself. Instead, you must find the root cause of the headaches. Stress might be the real problem. For you to successfully solve many problems it may be necessary for you to overcome your fixations and represent the problems differently. One specific strategy that you might find useful is to try to define the problem from someone else’s perspective. How would your parents, spouse, significant other, doctor, etc. define the problem? Somewhere in these different perspectives may lurk the key definition that will allow you to find an easier and permanent solution.
  • Formulate strategy.  Now it is time to begin planning exactly how the problem will be solved. Is there an algorithm or heuristic available for you to use? Remember, heuristics by their very nature guarantee that occasionally you will not be able to solve the problem. One point to keep in mind is that you should look for long-range solutions, which are more likely to address the root cause of a problem than short-range solutions.
  • Represent and organize information.  Similar to the way that the problem itself can be defined, or represented in multiple ways, information within the problem is open to different interpretations. Suppose you are studying for a big exam. You have chapters from a textbook and from a supplemental reader, along with lecture notes that all need to be studied. How should you (represent and) organize these materials? Should you separate them by type of material (text versus reader versus lecture notes), or should you separate them by topic? To solve problems effectively, you must learn to find the most useful representation and organization of information.
  • Allocate resources.  This is perhaps the simplest principle of the problem solving sequence, but it is extremely difficult for many people. First, you must decide whether time, money, skills, effort, goodwill, or some other resource would help to solve the problem Then, you must make the hard choice of deciding which resources to use, realizing that you cannot devote maximum resources to every problem. Very often, the solution to problem is simply to change how resources are allocated (for example, spending more time studying in order to improve grades).
  • Monitor and evaluate solutions.  Pay attention to the solution strategy while you are applying it. If it is not working, you may be able to select another strategy. Another fact you should realize about problem solving is that it never does end. Solving one problem frequently brings up new ones. Good monitoring and evaluation of your problem solutions can help you to anticipate and get a jump on solving the inevitable new problems that will arise.

Please note that this as  an  effective problem-solving sequence, not  the  effective problem solving sequence. Just as you can become fixated and end up representing the problem incorrectly or trying an inefficient solution, you can become stuck applying the problem-solving sequence in an inflexible way. Clearly there are problem situations that can be solved without using these skills in this order.

Additionally, many real-world problems may require that you go back and redefine a problem several times as the situation changes (Sternberg et al. 2000). For example, consider the problem with Mary’s daughter one last time. At first, Mary did represent the problem as one of defiance. When her early strategy of pleading and threatening punishment was unsuccessful, Mary began to observe her daughter more carefully. She noticed that, indeed, her daughter’s attention would be drawn by an irresistible distraction or book. Fresh with a re-representation of the problem, she began a new solution strategy. She began to remind her daughter every few minutes to stay on task and remind her that if she is ready before it is time to leave, she may return to the book or other distracting object at that time. Fortunately, this strategy was successful, so Mary did not have to go back and redefine the problem again.

Pick one or two of the problems that you listed when you first started studying this section and try to work out the steps of Sternberg’s problem solving sequence for each one.

a mental representation of a category of things in the world

an assumption about the truth of something that is not stated. Inferences come from our prior knowledge and experience, and from logical reasoning

knowledge about one’s own cognitive processes; thinking about your thinking

individuals who are less competent tend to overestimate their abilities more than individuals who are more competent do

Thinking like a scientist in your everyday life for the purpose of drawing correct conclusions. It entails skepticism; an ability to identify biases, distortions, omissions, and assumptions; and excellent deductive and inductive reasoning, and problem solving skills.

a way of thinking in which you refrain from drawing a conclusion or changing your mind until good evidence has been provided

an inclination, tendency, leaning, or prejudice

a type of reasoning in which the conclusion is guaranteed to be true any time the statements leading up to it are true

a set of statements in which the beginning statements lead to a conclusion

an argument for which true beginning statements guarantee that the conclusion is true

a type of reasoning in which we make judgments about likelihood from sets of evidence

an inductive argument in which the beginning statements lead to a conclusion that is probably true

fast, automatic, and emotional thinking

slow, effortful, and logical thinking

a shortcut strategy that we use to make judgments and solve problems. Although they are easy to use, they do not guarantee correct judgments and solutions

udging the frequency or likelihood of some event type according to how easily examples of the event can be called to mind (i.e., how available they are to memory)

judging the likelihood that something is a member of a category on the basis of how much it resembles a typical category member (i.e., how representative it is of the category)

a situation in which we are in an initial state, have a desired goal state, and there is a number of possible intermediate states (i.e., there is no obvious way to get from the initial to the goal state)

noticing, comprehending and forming a mental conception of a problem

when a problem solver gets stuck looking at a problem a particular way and cannot change his or her representation of it (or his or her intended solution strategy)

a specific type of fixation in which a problem solver cannot think of a new use for an object that already has a function

a specific type of fixation in which a problem solver gets stuck using the same solution strategy that has been successful in the past

a sudden realization of a solution to a problem

a step-by-step procedure that guarantees a correct solution to a problem

The tendency to notice and pay attention to information that confirms your prior beliefs and to ignore information that disconfirms them.

a shortcut strategy that we use to solve problems. Although they are easy to use, they do not guarantee correct judgments and solutions

Introduction to Psychology Copyright © 2020 by Ken Gray; Elizabeth Arnott-Hill; and Or'Shaundra Benson is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.

Share This Book

Formal description of the cognitive process of problem solving

Ieee account.

  • Change Username/Password
  • Update Address

Purchase Details

  • Payment Options
  • Order History
  • View Purchased Documents

Profile Information

  • Communications Preferences
  • Profession and Education
  • Technical Interests
  • US & Canada: +1 800 678 4333
  • Worldwide: +1 732 981 0060
  • Contact & Support
  • About IEEE Xplore
  • Accessibility
  • Terms of Use
  • Nondiscrimination Policy
  • Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity. © Copyright 2024 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.

  • Bipolar Disorder
  • Therapy Center
  • When To See a Therapist
  • Types of Therapy
  • Best Online Therapy
  • Best Couples Therapy
  • Best Family Therapy
  • Managing Stress
  • Sleep and Dreaming
  • Understanding Emotions
  • Self-Improvement
  • Healthy Relationships
  • Student Resources
  • Personality Types
  • Guided Meditations
  • Verywell Mind Insights
  • 2024 Verywell Mind 25
  • Mental Health in the Classroom
  • Editorial Process
  • Meet Our Review Board
  • Crisis Support

What Does 'Cognitive' Mean in Psychology?

How People Think and What's Involved in Cognitive Processes

Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

cognitive process of human problem solving

Daniel B. Block, MD, is an award-winning, board-certified psychiatrist who operates a private practice in Pennsylvania.

cognitive process of human problem solving

Verywell / Laura Porter

  • Improving Cognitive Skills

Frequently Asked Questions

'Cognitive' is a term used in psychology to describe anything related to thinking, learning, and understanding. So when you hear people talk about cognitive skills or processes, they are referring to different aspects of how the brain works—things like remembering information, learning new things, paying attention, and processing all of the information you encounter each day. 

Cognitive abilities are something you use each and every day. For example, when you are learning a new instrument, you are using your cognitive skills to learn the basics of music theory, pick up melodies, learn the notes, and put that information together to produce music.

'Cognitive' refers to the mental processes involved in gaining knowledge and comprehension. Some of the many different cognitive processes include thinking, knowing, remembering, judging, and problem-solving .

These are higher-level brain functions that encompass language, imagination, perception, and planning. Cognitive psychology is the field of psychology that investigates how people think and the processes involved in cognition. 

At a Glance

Cognitive psychology seeks to understand all of the mental processes involved in human thought and behavior. It focuses on cognitive processes such as decision-making, problem-solving, attention, memory, learning, and more. Keep reading to learn more about different types of cognitive processes, factors that can affect cognition, and the different uses for these cognitive processes.

Types of Cognitive Processes

There are many different types of cognitive processes. They include:

Attention is a cognitive process that allows people to focus on a specific environmental stimulus. Attention is an important cognitive ability because it allows us to focus on the information we need, while also filtering out irrelevant distractions.

Language and language development are cognitive processes that involve the ability to understand and express thoughts through spoken and written words. This allows us to communicate with others, including conveying our own thoughts and learning about others. It also plays an important role in thought.

Learning requires cognitive processes involved in taking in new things, synthesizing information, and integrating it with prior knowledge. Cognitive psychologists often study the mental processes that involved in processing, comprehending, and remembering information.

Memory is an important cognitive process that allows people to encode, store, and retrieve information. It is a critical component in the learning process and allows people to retain knowledge about the world and their personal histories.

Perception is a cognitive process that allows people to take in information through their senses, then utilize this information to respond and interact with the world.

Thought is an essential part of every cognitive process. It allows people to engage in decision-making , problem-solving, and higher reasoning.

Hot Cognition vs. Cold Cognition

Some split cognition into two categories: hot and cold. Hot cognition refers to mental processes in which emotion plays a role, such as reward-based learning . Conversely, cold cognition refers to mental processes that don't involve feelings or emotions, such as working memory .

What is an example of cognition?

Cognition includes all of the conscious and unconscious processes involved in thinking, perceiving, and reasoning. Examples of cognition include paying attention to something in the environment, learning something new, making decisions, processing language, sensing and perceiving environmental stimuli, solving problems, and using memory. 

History of the Study of Cognition

The study of how humans think dates back to the time of ancient Greek philosophers Plato and Aristotle.

Philosophical Origins

Plato's approach to the study of the mind suggested that people understand the world by first identifying basic principles buried deep inside themselves, then using rational thought to create knowledge. This viewpoint was later advocated by philosophers such as Rene Descartes and linguist Noam Chomsky. It is often referred to as rationalism.

Aristotle, on the other hand, believed that people acquire knowledge through their observations of the world around them. Later thinkers such as John Locke and B.F. Skinner also advocated this point of view, which is often referred to as empiricism.

Early Psychology

During the earliest days of psychology—and for the first half of the 20th century—psychology was largely dominated by psychoanalysis , behaviorism , and humanism .

Eventually, a formal field of study devoted solely to the study of cognition emerged as part of the "cognitive revolution" of the 1960s. This field is known as cognitive psychology.

The Emergence of Cognitive Psychology

One of the earliest definitions of cognition was presented in the first textbook on cognitive psychology, which was published in 1967. According to Ulric Neisser, a psychologist and the book's author, cognition is "those processes by which the sensory input is transformed, reduced, elaborated, stored, recovered, and used."

What Can Affect Cognitive Processes?

It is important to remember that these cognitive processes are complex and often imperfect. Some of the factors that can affect or influence cognition include:

Research indicates that as we age, our cognitive function tends to decline. Age-related cognitive changes include processing things more slowly, finding it harder to recall past events, and a failure to remember information that was once known (such as how to solve a particular math equation or historical information).

Attention Issues

Selective attention is a limited resource, so there are a number of things that can make it difficult to focus on everything in your environment. Attentional blink , for example, happens when you are so focused on one thing that you completely miss something else happening right in front of you.

Cognitive Biases

Cognitive biases are systematic errors in thinking related to how people process and interpret information about the world. Confirmation bias is one common example that involves only paying attention to information that aligns with your existing beliefs while ignoring evidence that doesn't support your views. 

Some studies have connected cognitive function with certain genes. For example, a 2020 study published in Brain Communications found that a person's level of brain-derived neurotrophic factor (BDNF), which is 30% determined by heritability, can impact the rate of brain neurodegeneration, a condition that ultimately impacts cognitive function.

Memory Limitations

Short-term memory is surprisingly brief, typically lasting just 20 to 30 seconds, whereas long-term memory can be stable and enduring, with memories lasting years and even decades. Memory can also be fragile and fallible. Sometimes we forget and other times we are subject to misinformation effects that may even lead to the formation of false memories .

Uses for Cognitive Processes

Cognitive processes affect every aspect of life, from school to work to relationships. Some specific uses for these processes include the following.

Learning New Things

Learning requires being able to take in new information, form new memories, and make connections with other things that you already know. Researchers and educators use their knowledge of these cognitive processes to create instructive materials to help people learn new concepts .

Forming Memories

Memory is a major topic of interest in the field of cognitive psychology. How we remember, what we remember, and what we forget reveal a great deal about how cognitive processes operate.

While people often think of memory as being much like a video camera—carefully recording, cataloging, and storing life events away for later recall—research has found that memory is much more complex.

Making Decisions

Whenever people make any type of a decision, it involves making judgments about things they have processed. This might involve comparing new information to prior knowledge, integrating new information into existing ideas, or even replacing old knowledge with new knowledge before making a choice.

Impact of Cognition

Our cognitive processes have a wide-ranging impact that influences everything from our daily life to our overall health.

Perceiving the World

As you take in sensations from the world around you, the information that you see, hear, taste, touch, and smell must first be transformed into signals that the brain can understand. The perceptual process allows you to take in this sensory information and convert it into a signal that your brain can recognize and act upon.

Forming Impressions

The world is full of an endless number of sensory experiences . To make meaning out of all this incoming information, it is important for the brain to be able to capture the fundamentals. Events are reduced to only the critical concepts and ideas that we need.

Filling in the Gaps

In addition to reducing information to make it more memorable and understandable, people also elaborate on these memories as they reconstruct them. In some cases, this elaboration happens when people are struggling to remember something . When the information cannot be recalled, the brain sometimes fills in the missing data with whatever seems to fit.

Interacting With the World

Cognition involves not only the things that go on inside our heads but also how these thoughts and mental processes influence our actions. Our attention to the world around us, memories of past events, understanding of language, judgments about how the world works, and abilities to solve problems all contribute to how we behave and interact with our surrounding environment.

Tips for Improving Cognitive Skills

Cognitive processes are influenced by a range of factors, including genetics and experiences. While you cannot change your genes or age, there are things that you can do to protect and maximize your cognitive abilities:

  • Stay healthy . Lifestyle factors such as eating a nutritious diet and getting regular exercise can have a positive effect on cognitive functioning.  
  • Think critically . Question your assumptions and ask questions about your thoughts, beliefs, and conclusions.
  • Stay curious and keep learning . A great way to flex your cognitive abilities is to keep challenging yourself to learn more about the world.
  • Skip multitasking . While it might seem like doing several things at once would help you get done faster, research has shown it actually decreases both productivity and work quality.

In psychology, the term 'cognitive' refers to all of the different mental events involved in thinking, learning, and comprehending. Cognitive processes such as learning, attention, perception, and memory are important parts of the human experience. Understanding how they function can provide insight into normal human thought and behavior and how different cognitive conditions might create problems and impairments. 

Thinking is an important component, but cognition also encompasses unconscious and perceptual processes as well. In addition to thinking, cognition involves language, attention, learning, memory, and perception.

People utilize cognitive skills to think, learn, recall, and reason. Five important cognitive skills include short-term memory, logic, processing speed, attention, and spatial recognition.

American Psychological Association. Cognition .

Ezebuilo HC. Descartes, Leibniz and Spinoza: A brief survey of rationalism . J App Philos . 2020;18(6):95-118. doi:10.13140/RG.2.2.19692.39043

Sgarbi M.  The Aristotelian Tradition and the Rise of British Empiricism: Logic and Epistemology in the British Isles (1570–1689) .

Lachman R, Lachman J L, Butterfield EC.  Cognitive Psychology and Information Processing: An Introduction .

Neisser U.  Cognitive Psychology: Classic edition .

Murman D. The impact of age on cognition . Semin Hear . 2015;36(3):111-121. doi:10.1055/s-0035-1555115

Li S, Weinstein G, Zare H, et al. The genetics of circulating BDNF: Towards understanding the role of BDNF in brain structure and function in middle and old ages . Brain Commun . 2020;2(2):fcaa176. doi:10.1093/braincomms/fcaa176

Weinsten Y. How long is short-term memory: Shorter than you might think . Duke Undergraduate Education.

Leding J, Antonio L. Need for cognition and discrepancy detection in the misinformation effect . J Cognitive Psychol . 2019;31(4):409-415. doi:10.1080/20445911.2019.1626400

Scheiter K, Schubert C, Schuler A. Self-regulated learning from illustrated text: Eye movement modelling to support use and regulation of cognitive processes during learning from multimedia . Brit J Educ Psychol . 2017;88(1):80-94. doi:10.1111/bjep.12175

Toppi J, Astolfi L, Risetti M, et al. Different topological properties of EEG-derived networks describe working memory phases as revealed by graph theoretical analysis . Front Hum Neurosci . 2018;11:637. doi:10.3389/fnhum.2017.00637

Mather G. Foundations of sensation and perception .

Sousa D.  How the brain learns .

Houben S, Otgaar H, Roelofs J, Merckelbach H. EMDR and false memories: A response to Lee, de Jongh, and Hase (2019) . Clin Psycholog Sci . 2019;7(3):405-6. doi:10.1177/2167702619830392

Schwarzer R. Self-efficacy: Thought control of action .

Imaoka M, Nakao H, Nakamura M, et al. Effect of multicomponent exercise and nutrition support on the cognitive function of older adults: A randomized controlled trial . Clin Interv Aging . 2019;14:2145-53. doi:10.2147/CIA.S229034

Petroutsatou K, Sifiniadis A. Exploring the consequences of human multitasking in industrial automation projects: A tool to mitigate impacts - Part II . Organiz Techn Manage Construct . 2018;10(1):1770-1777. doi:10.2478/otmcj-2016-0031

Mullis CE, Hatfield RC. The effects of multitasking on auditors' judgment quality . Contemp Account Res . 2017;35(1):314-333. doi:10.1111/1911-3846.12392

Revlin R. Cognition: Theory and Practice .

By Kendra Cherry, MSEd Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

IMAGES

  1. identify and explain the 7 stages of the problem solving process

    cognitive process of human problem solving

  2. Cognitive Skills

    cognitive process of human problem solving

  3. 7 Tips for Improving Cognitive Thinking

    cognitive process of human problem solving

  4. problem solving processes or models

    cognitive process of human problem solving

  5. Cognitive Skills: What They Are and Why They Are Important

    cognitive process of human problem solving

  6. Cognitive Approach

    cognitive process of human problem solving

VIDEO

  1. The Hard Problem of Consciousness: Can Science Explain the Mind?

  2. Computers and Human Behavior (1963)

  3. Problem Solving

  4. Cognitive development theory

  5. The Art of Human Problem Solving Why AI Can't Replace Humans

  6. PROBLEM SOLVING IN COGNITIVE PSYCHOLOGY

COMMENTS

  1. On the cognitive process of human problem solving.

    One of the fundamental human cognitive processes is problem solving. As a higher-layer cognitive process, problem solving interacts with many other cognitive processes such as abstraction, searching, learning, decision making, inference, analysis, and synthesis on the basis of internal knowledge representation by the object-attribute-relation (OAR) model.

  2. On the cognitive process of human problem solving

    In cognitive informatics, problem solving is identified as a cognitive process of the brain at the higher cognitive layer that searches a solution for a given problem or finds a path to reach a given goal ( Wang, 2007b ). Problem solving is one of the 39 fundamental cognitive processes modeled in the LRMB model ( Wang et al., 2006 ).

  3. On the cognitive process of human problem solving

    9. 10 Abstract. 11 One of the fundamental human cognitive processes is problem solving. As a higher-layer cognitive process, problem solving interacts. 12 with many other cognitive processes such ...

  4. Problem Solving

    The major cognitive processes in problem solving are representing, planning, executing, and monitoring. The major kinds of knowledge required for problem solving are facts, concepts, procedures, strategies, and beliefs. Classic theoretical approaches to the study of problem solving are associationism, Gestalt, and information processing.

  5. On the cognitive process of human problem solving

    Problem solving is a cognitive process of the brain that searches a solution for a given problem or finds a path to reach a given goal. When a problem object is identified, problem solving can be perceived as a search process in the memory space for finding a relationship between a set of solution goals and a set of alternative paths.

  6. Complex cognition: the science of human reasoning, problem-solving, and

    Complex psychological processes: We talk about "complex cognition", when thinking, problem-solving, or decision-making falls back on other cognitive processes such as "perception", "working memory", "long-term memory", "executive processes", or when the cognitive processes are in close connection with other processes such as ...

  7. PDF On the cognitive process of human problem solving

    102 This paper presents a formal model of human problem 103 solving and its cognitive process. It will proceed in Section. 104 2 with literature surveys on problem solving and related 105 work ...

  8. On the cognitive process of human problem solving

    A cognitive model is proposed in which text comprehension is made analogous to a problem solving situation and that relies on current research on well-known cognitive processes such as inference generation, memory, and simulations, including the formulation of questions as a component that boosts representational power.

  9. On the cognitive process of human problem solving

    On the cognitive process of human problem solving - act 11 One of the fundamental human cognitive processes is problem solving. As a higher-layer cognitive process, problem solving interacts many other cognitive processes such as abstraction, searching, learning, decision making, inference, analysis, and synthesis on the 13 basis of internal knowledge representation by the object

  10. Tracing Cognitive Processes in Insight Problem Solving: Using GAMs and

    1. Introduction. In cognitive science, the temporal dynamics of problem-solving processes have always been an important topic of investigation. Most problems are assumed to be solved gradually, by piecing together information in order to arrive at a solution (Newell and Simon 1972).To investigate these problems, several tools have been developed, which allow for the observation of each step of ...

  11. Cognitive Psychology: The Science of How We Think

    Cognitive psychology involves the study of internal mental processes—all of the workings inside your brain, including perception, thinking, memory, attention, language, problem-solving, and learning. Cognitive psychology--the study of how people think and process information--helps researchers understand the human brain.

  12. The Problem-Solving Process

    Problem-solving is a mental process that involves discovering, analyzing, and solving problems. The ultimate goal of problem-solving is to overcome obstacles and find a solution that best resolves the issue. The best strategy for solving a problem depends largely on the unique situation. In some cases, people are better off learning everything ...

  13. Solving Problems the Cognitive-Behavioral Way

    Key points. Problem-solving is one technique used on the behavioral side of cognitive-behavioral therapy. The problem-solving technique is an iterative, five-step process that requires one to ...

  14. Problem Solving

    Problem solving, a quintessential cognitive process deeply embedded in the domains of psychology and education, serves as a linchpin for human intellectual development and adaptation to the ever-evolving challenges of the world. The fundamental capacity to identify, analyze, and surmount obstacles is intrinsic to human nature and has been a ...

  15. On the cognitive process of human problem solving

    One of the fundamental human cognitive processes is problem solving. As a higher-layer cognitive process, problem solving interacts with many other cognitive processes such as abstraction, searching, learning, decision making, inference, analysis, and ...

  16. Problem-Solving Strategies and Obstacles

    Several mental processes are at work during problem-solving. Among them are: Perceptually recognizing the problem. Representing the problem in memory. Considering relevant information that applies to the problem. Identifying different aspects of the problem. Labeling and describing the problem.

  17. Neurophysiological insights into sequential decision-making: exploring

    Decision-making under uncertainty, a cornerstone of human cognition, is encapsulated by the "secretary problem" in optimal stopping theory. Our study examines this decision-making challenge, where participants are required to sequentially evaluate and make irreversible choices under conditions that simulate cognitive overload. We probed neurophysiological responses by engaging 27 students ...

  18. Different cognitive mechanisms for process-open and process ...

    Mathematical problem solving is an important part of mathematics education (Stevenson et al., 1986).It is a high-order thinking process comprising a series of cognitive processes (Resnick & Glaser, 1975; Sternberg, 1982).Therefore, cognitive psychology, which explores how the human brain realizes the mental activities of perception, learning, memory, and thinking (Shi, 2021), is an appropriate ...

  19. 7 Module 7: Thinking, Reasoning, and Problem-Solving

    The human brain is indeed a remarkable thinking machine, capable of amazing, complex, creative, logical thoughts. ... As you shall see, however, there are many pitfalls in the cognitive processes described in this module. When people do not devote extra effort to learning and improving reasoning, problem solving, and critical thinking skills ...

  20. Formal description of the cognitive process of problem solving

    One of the fundamental human cognitive processes is problem solving. Most of the decisions we make relate to some kind of problems we try to solve no matter how trivial and critical the problem may be. The problem solving process entails performing in a new situation with information acquired and knowledge learned from past situations. As a higher level cognitive process, problem solving ...

  21. Cognitive Definition and Meaning in Psychology

    Cognitive psychology seeks to understand all of the mental processes involved in human thought and behavior. It focuses on cognitive processes such as decision-making, problem-solving, attention, memory, learning, and more. Keep reading to learn more about different types of cognitive processes, factors that can affect cognition, and the ...