review of education research journal

  • AERA Open Editors
  • AERJ Editors
  • EEPA Editors
  • ER Issues and Archives
  • JEBS Editors
  • JSTOR Online Archives
  • RER Editors
  • RRE Editors
  • AERA Examination and Desk Copies
  • Mail/Fax Book Order Form
  • International Distribution
  • Books & Publications
  • Merchandise
  • Search The Store
  • Online Paper Repository
  • Inaugural Presentations in the i-Presentation Gallery
  • Research Points
  • AERA Journal Advertising Rate Cards
  • Publications Permissions
  • Publications FAQs

review of education research journal

Share 

Review of Educational Research

The  Review of Educational Research  ( RER , bimonthly, begun in 1931) publishes critical, integrative reviews of research literature bearing on education. Such reviews should include conceptualizations, interpretations, and syntheses of literature and scholarly work in a field broadly relevant to education and educational research.  RER  encourages the submission of research relevant to education from any discipline, such as reviews of research in psychology, sociology, history, philosophy, political science, economics, computer science, statistics, anthropology, and biology, provided that the review bears on educational issues.  RER  does not publish original empirical research unless it is incorporated in a broader integrative review.  RER  will occasionally publish solicited, but carefully refereed, analytic reviews of special topics, particularly from disciplines infrequently represented.

Impact Factor : 11.2 5-Year Impact Factor : 16.6 Ranking : 1/263 in Education & Educational Research

Review of Educational Research

review of education research journal

Subject Area and Category

SAGE Publications Inc.

Publication type

00346543, 19351046

Information

How to publish in this journal

[email protected]

review of education research journal

The set of journals have been ranked according to their SJR and divided into four equal groups, four quartiles. Q1 (green) comprises the quarter of the journals with the highest values, Q2 (yellow) the second highest values, Q3 (orange) the third highest values and Q4 (red) the lowest values.

The SJR is a size-independent prestige indicator that ranks journals by their 'average prestige per article'. It is based on the idea that 'all citations are not created equal'. SJR is a measure of scientific influence of journals that accounts for both the number of citations received by a journal and the importance or prestige of the journals where such citations come from It measures the scientific influence of the average article in a journal, it expresses how central to the global scientific discussion an average article of the journal is.

Evolution of the number of published documents. All types of documents are considered, including citable and non citable documents.

This indicator counts the number of citations received by documents from a journal and divides them by the total number of documents published in that journal. The chart shows the evolution of the average number of times documents published in a journal in the past two, three and four years have been cited in the current year. The two years line is equivalent to journal impact factor ™ (Thomson Reuters) metric.

Evolution of the total number of citations and journal's self-citations received by a journal's published documents during the three previous years. Journal Self-citation is defined as the number of citation from a journal citing article to articles published by the same journal.

Evolution of the number of total citation per document and external citation per document (i.e. journal self-citations removed) received by a journal's published documents during the three previous years. External citations are calculated by subtracting the number of self-citations from the total number of citations received by the journal’s documents.

International Collaboration accounts for the articles that have been produced by researchers from several countries. The chart shows the ratio of a journal's documents signed by researchers from more than one country; that is including more than one country address.

Not every article in a journal is considered primary research and therefore "citable", this chart shows the ratio of a journal's articles including substantial research (research articles, conference papers and reviews) in three year windows vs. those documents other than research articles, reviews and conference papers.

Ratio of a journal's items, grouped in three years windows, that have been cited at least once vs. those not cited during the following year.

Scimago Journal & Country Rank

Leave a comment

Name * Required

Email (will not be published) * Required

* Required Cancel

The users of Scimago Journal & Country Rank have the possibility to dialogue through comments linked to a specific journal. The purpose is to have a forum in which general doubts about the processes of publication in the journal, experiences and other issues derived from the publication of papers are resolved. For topics on particular articles, maintain the dialogue through the usual channels with your editor.

Scimago Lab

Follow us on @ScimagoJR Scimago Lab , Copyright 2007-2024. Data Source: Scopus®

review of education research journal

Cookie settings

Cookie Policy

Legal Notice

Privacy Policy

Harvard Education Press

On The Site

Harvard educational review.

Edited by Maya Alkateb-Chami, Jane Choi, Jeannette Garcia Coppersmith, Ron Grady, Phoebe A. Grant-Robinson, Pennie M. Gregory, Jennifer Ha, Woohee Kim, Catherine E. Pitcher, Elizabeth Salinas, Caroline Tucker, Kemeyawi Q. Wahpepah

HER logo displays the letters "H", "E", and "R" in a geometric configuration within a hexagon.

Individuals

Institutions.

  • Read the journal here

Journal Information

  • ISSN: 0017-8055
  • eISSN: 1943-5045
  • Keywords: scholarly journal, education research
  • First Issue: 1930
  • Frequency: Quarterly

Description

The Harvard Educational Review (HER) is a scholarly journal of opinion and research in education. The Editorial Board aims to publish pieces from interdisciplinary and wide-ranging fields that advance our understanding of educational theory, equity, and practice. HER encourages submissions from established and emerging scholars, as well as from practitioners working in the field of education. Since its founding in 1930, HER has been central to elevating pieces and debates that tackle various dimensions of educational justice, with circulation to researchers, policymakers, teachers, and administrators.

Our Editorial Board is composed entirely of doctoral students from the Harvard Graduate School of Education who review all manuscripts considered for publication. For more information on the current Editorial Board, please see here.

A subscription to the Review includes access to the full-text electronic archives at our Subscribers-Only-Website .

Editorial Board

2023-2024 Harvard Educational Review Editorial Board Members

Maya Alkateb-Chami Development and Partnerships Editor, 2023-2024 Editor, 2022-2024 [email protected]

Maya Alkateb-Chami is a PhD student at the Harvard Graduate School of Education. Her research focuses on the role of schooling in fostering just futures—specifically in relation to language of instruction policies in multilingual contexts and with a focus on epistemic injustice. Prior to starting doctoral studies, she was the Managing Director of Columbia University’s Human Rights Institute, where she supported and co-led a team of lawyers working to advance human rights through research, education, and advocacy. Prior to that, she was the Executive Director of Jusoor, a nonprofit organization that helps conflict-affected Syrian youth and children pursue their education in four countries. Alkateb-Chami is a Fulbright Scholar and UNESCO cultural heritage expert. She holds an MEd in Language and Literacy from Harvard University; an MSc in Education from Indiana University, Bloomington; and a BA in Political Science from Damascus University, and her research on arts-based youth empowerment won the annual Master’s Thesis Award of the U.S. Society for Education Through Art.

Jane Choi Editor, 2023-2025

Jane Choi is a second-year PhD student in Sociology with broad interests in culture, education, and inequality. Her research examines intra-racial and interracial boundaries in US educational contexts. She has researched legacy and first-generation students at Ivy League colleges, families served by Head Start and Early Head Start programs, and parents of pre-K and kindergarten-age children in the New York City School District. Previously, Jane worked as a Research Assistant in the Family Well-Being and Children’s Development policy area at MDRC and received a BA in Sociology from Columbia University.

Jeannette Garcia Coppersmith Content Editor, 2023-2024 Editor, 2022-2024 [email protected]

Jeannette Garcia Coppersmith is a fourth-year Education PhD student in the Human Development, Learning and Teaching concentration at the Harvard Graduate School of Education. A former public middle and high school mathematics teacher and department chair, she is interested in understanding the mechanisms that contribute to disparities in secondary mathematics education, particularly how teacher beliefs and biases intersect with the social-psychological processes and pedagogical choices involved in math teaching. Jeannette holds an EdM in Learning and Teaching from the Harvard Graduate School of Education where she studied as an Urban Scholar and a BA in Environmental Sciences from the University of California, Berkeley.

Ron Grady Editor, 2023-2025

Ron Grady is a second-year doctoral student in the Human Development, Learning, and Teaching concentration at the Harvard Graduate School of Education. His central curiosities involve the social worlds and peer cultures of young children, wondering how lived experience is both constructed within and revealed throughout play, the creation of art and narrative, and through interaction with/production of visual artifacts such as photography and film. Ron also works extensively with educators interested in developing and deepening practices rooted in reflection on, inquiry into, and translation of the social, emotional, and aesthetic aspects of their classroom ecosystems. Prior to his doctoral studies, Ron worked as a preschool teacher in New Orleans. He holds a MS in Early Childhood Education from the Erikson Institute and a BA in Psychology with Honors in Education from Stanford University.

Phoebe A. Grant-Robinson Editor, 2023-2024

Phoebe A. Grant-Robinson is a first year student in the Doctor of Education Leadership(EdLD) program at the Harvard Graduate School of Education. Her ultimate quest is to position all students as drivers of their destiny. Phoebe is passionate about early learning and literacy. She is committed to ensuring that districts and school leaders, have the necessary tools to create equitable learning organizations that facilitate the academic and social well-being of all students. Phoebe is particularly interested in the intersection of homeless students and literacy. Prior to her doctoral studies, Phoebe was a Special Education Instructional Specialist. Supporting a portfolio of more than thirty schools, she facilitated the rollout of New York City’s Special Education Reform. Phoebe also served as an elementary school principal. She holds a BS in Inclusive Education from Syracuse University, and an MS in Curriculum and Instruction from Pace University.

Pennie M. Gregory Editor, 2023-2024

Pennie M. Gregory is a second-year student in the Doctor of Education Leadership (EdLD) program at the Harvard Graduate School of Education. Pennie was born in Incheon, South Korea and raised in Gary, Indiana. She has decades of experience leading efforts to improve outcomes for students with disabilities first as a special education teacher and then as a school district special education administrator. Prior to her doctoral studies, Pennie helped to create Indiana’s first Aspiring Special Education Leadership Institute (ASELI) and served as its Director. She was also the Capacity Events Director for MelanatED Leaders, an organization created to support educational leaders of color in Indianapolis. Pennie has a unique perspective, having worked with members of the school community, with advocacy organizations, and supporting state special education leaders. Pennie holds an EdM in Education Leadership from Marian University.

Jennifer Ha Editor, 2023-2025

Jen Ha is a second-year PhD student in the Culture, Institutions, and Society concentration at the Harvard Graduate School of Education. Her research explores how high school students learn to write personal narratives for school applications, scholarships, and professional opportunities amidst changing landscapes in college access and admissions. Prior to doctoral studies, Jen served as the Coordinator of Public Humanities at Bard Graduate Center and worked in several roles organizing academic enrichment opportunities and supporting postsecondary planning for students in New Haven and New York City. Jen holds a BA in Humanities from Yale University, where she was an Education Studies Scholar.

Woohee Kim Editor, 2023-2025

Woohee Kim is a PhD student studying youth activists’ civic and pedagogical practices. She is a scholar-activist dedicated to creating spaces for pedagogies of resistance and transformative possibilities. Shaped by her activism and research across South Korea, the US, and the UK, Woohee seeks to interrogate how educational spaces are shaped as cultural and political sites and reshaped by activists as sites of struggle. She hopes to continue exploring the intersections of education, knowledge, power, and resistance.

Catherine E. Pitcher Editor, 2023-2025

Catherine is a second-year doctoral student at Harvard Graduate School of Education in the Culture, Institutions, and Society program. She has over 10 years of experience in education in the US in roles that range from special education teacher to instructional coach to department head to educational game designer. She started working in Palestine in 2017, first teaching, and then designing and implementing educational programming. Currently, she is working on research to understand how Palestinian youth think about and build their futures and continues to lead programming in the West Bank, Gaza, and East Jerusalem. She holds an EdM from Harvard in International Education Policy.

Elizabeth Salinas Editor, 2023-2025

Elizabeth Salinas is a doctoral student in the Education Policy and Program Evaluation concentration at HGSE. She is interested in the intersection of higher education and the social safety net and hopes to examine policies that address basic needs insecurity among college students. Before her doctoral studies, Liz was a research director at a public policy consulting firm. There, she supported government, education, and philanthropy leaders by conducting and translating research into clear and actionable information. Previously, Liz served as a high school physics teacher in her hometown in Texas and as a STEM outreach program director at her alma mater. She currently sits on the Board of Directors at Leadership Enterprise for a Diverse America, a nonprofit organization working to diversify the leadership pipeline in the United States. Liz holds a bachelor’s degree in civil engineering from the Massachusetts Institute of Technology and a master’s degree in higher education from the Harvard Graduate School of Education.

Caroline Tucker Co-Chair, 2023-2024 Editor, 2022-2024 [email protected]

Caroline Tucker is a fourth-year doctoral student in the Culture, Institutions, and Society concentration at the Harvard Graduate School of Education. Her research focuses on the history and organizational dynamics of women’s colleges as women gained entry into the professions and coeducation took root in the United States. She is also a research assistant for the Harvard and the Legacy of Slavery Initiative’s Subcommittee on Curriculum and the editorial assistant for Into Practice, the pedagogy newsletter distributed by Harvard University’s Office of the Vice Provost for Advances in Learning. Prior to her doctoral studies, Caroline served as an American politics and English teaching fellow in London and worked in college advising. Caroline holds a BA in History from Princeton University, an MA in the Social Sciences from the University of Chicago, and an EdM in Higher Education from the Harvard Graduate School of Education.

Kemeyawi Q. Wahpepah Co-Chair, 2023-2024 Editor, 2022-2024 [email protected]

Kemeyawi Q. Wahpepah (Kickapoo, Sac & Fox) is a fourth-year doctoral student in the Culture, Institutions, and Society concentration at the Harvard Graduate School of Education. Their research explores how settler colonialism is addressed in K-12 history and social studies classrooms in the United States. Prior to their doctoral studies, Kemeyawi taught middle and high school English and history for eleven years in Boston and New York City. They hold an MS in Middle Childhood Education from Hunter College and an AB in Social Studies from Harvard University.

Submission Information

Click here to view submission guidelines .

Contact Information

Click here to view contact information for the editorial board and customer service .

Subscriber Support

Individual subscriptions must have an individual name in the given address for shipment. Individual copies are not for multiple readers or libraries. Individual accounts come with a personal username and password for access to online archives. Online access instructions will be attached to your order confirmation e-mail.

Institutional rates apply to libraries and organizations with multiple readers. Institutions receive digital access to content on Meridian from IP addresses via theIPregistry.org (by sending HER your PSI Org ID).

Online access instructions will be attached to your order confirmation e-mail. If you have questions about using theIPregistry.org you may find the answers in their FAQs. Otherwise please let us know at [email protected] .

How to Subscribe

To order online via credit card, please use the subscribe button at the top of this page.

To order by phone, please call 888-437-1437.

Checks can be mailed to Harvard Educational Review C/O Fulco, 30 Broad Street, Suite 6, Denville, NJ 07834. (Please include reference to your subscriber number if you are renewing. Institutions must include their PSI Org ID or follow up with this information via email to [email protected] .)

Permissions

Click here to view permissions information.

Article Submission FAQ

Closing the open call, question: “i have already submitted an article to her and i am awaiting a decision, what can i expect”.

Answer: First, any manuscripts already submitted through the open call and acknowledged by HER, as well as all invited manuscripts, R&R’d manuscripts, and manuscripts currently in production are NOT affected in any way by our pause in open calls. Editors are working to move through all current submissions and you can expect to receive any updates or decisions as we move through each step of our production process. If you have any questions, please contact the Co-Chairs, Caroline Tucker and Kemeyawi Wahpepah at [email protected] .

Question: “Can you share more about why you are closing the open call?”

Answer: As a graduate student run journal, we perform our editorial tasks in addition to our daily lives as doctoral students. We have been (and continue to be) incredibly grateful for the authors who share their work with us. In closing the open call, we hope to give ourselves time to review each manuscript in the best manner possible.

Submissions

Question: “what manuscripts are a good fit for her ”.

Answer: As a generalist scholarly journal, HER publishes on a wide range of topics within the field of education and related disciplines. We receive many articles that deserve publication, but due to the restrictions of print publication, we are only able to publish very few in the journal. The originality and import of the findings, as well as the accessibility of a piece to HER’s interdisciplinary, international audience which includes education practitioners, are key criteria in determining if an article will be selected for publication.

We strongly recommend that prospective authors review the current and past issues of HER to see the types of articles we have published recently. If you are unsure whether your manuscript is a good fit, please reach out to the Content Editor at [email protected] .

Question: “What makes HER a developmental journal?”

Answer: Supporting the development of high-quality education research is a key tenet of HER’s mission. HER promotes this development through offering comprehensive feedback to authors. All manuscripts that pass the first stage of our review process (see below) receive detailed feedback. For accepted manuscripts, HER also has a unique feedback process called casting whereby two editors carefully read a manuscript and offer overarching suggestions to strengthen and clarify the argument.

Question: “What is a Voices piece and how does it differ from an essay?”

Answer: Voices pieces are first-person reflections about an education-related topic rather than empirical or theoretical essays. Our strongest pieces have often come from educators and policy makers who draw on their personal experiences in the education field. Although they may not present data or generate theory, Voices pieces should still advance a cogent argument, drawing on appropriate literature to support any claims asserted. For examples of Voices pieces, please see Alvarez et al. (2021) and Snow (2021).

Question: “Does HER accept Book Note or book review submissions?”

Answer: No, all Book Notes are written internally by members of the Editorial Board.

Question: “If I want to submit a book for review consideration, who do I contact?”

Answer: Please send details about your book to the Content Editor at [email protected].

Manuscript Formatting

Question: “the submission guidelines state that manuscripts should be a maximum of 9,000 words – including abstract, appendices, and references. is this applicable only for research articles, or should the word count limit be followed for other manuscripts, such as essays”.

Answer: The 9,000-word limit is the same for all categories of manuscripts.

Question: “We are trying to figure out the best way to mask our names in the references. Is it OK if we do not cite any of our references in the reference list? Our names have been removed in the in-text citations. We just cite Author (date).”

Answer: Any references that identify the author/s in the text must be masked or made anonymous (e.g., instead of citing “Field & Bloom, 2007,” cite “Author/s, 2007”). For the reference list, place the citations alphabetically as “Author/s. (2007)” You can also indicate that details are omitted for blind review. Articles can also be blinded effectively by use of the third person in the manuscript. For example, rather than “in an earlier article, we showed that” substitute something like “as has been shown in Field & Bloom, 2007.” In this case, there is no need to mask the reference in the list. Please do not submit a title page as part of your manuscript. We will capture the contact information and any author statement about the fit and scope of the work in the submission form. Finally, please save the uploaded manuscript as the title of the manuscript and do not include the author/s name/s.

Invitations

Question: “can i be invited to submit a manuscript how”.

Answer: If you think your manuscript is a strong fit for HER, we welcome your request for invitation. Invited manuscripts receive one round of feedback from Editors before the piece enters the formal review process. To submit information about your manuscript for the Board to consider for invitation, please fill out the Invitation Request Form. Please provide as many details as possible. Whether we could invite your manuscript depends on the interest and availability of the current Board. Once you submit the form, we will give you an update in about 2–3 weeks on whether there are Editors who are interested in inviting your manuscript.

Review Timeline

Question: “who reviews manuscripts”.

Answer: All manuscripts are reviewed by the Editorial Board composed of doctoral students at Harvard University.

Question: “What is the HER evaluation process as a student-run journal?”

Answer: HER does not utilize the traditional external peer review process and instead has an internal, two-stage review procedure.

Upon submission, every manuscript receives a preliminary assessment by the Content Editor to confirm that the formatting requirements have been carefully followed in preparation of the manuscript, and that the manuscript is in accord with the scope and aim of the journal. The manuscript then formally enters the review process.

In the first stage of review, all manuscripts are read by a minimum of two Editorial Board members. During the second stage of review, manuscripts are read by the full Editorial Board at a weekly meeting.

Question: “How long after submission can I expect a decision on my manuscript?”

Answer: It usually takes 6 to 10 weeks for a manuscript to complete the first stage of review and an additional 12 weeks for a manuscript to complete the second stage. Due to time constraints and the large volume of manuscripts received, HER only provides detailed comments on manuscripts that complete the second stage of review.

Question: “How soon are accepted pieces published?”

Answer: The date of publication depends entirely on how many manuscripts are already in the queue for an issue. Typically, however, it takes about 6 months post-acceptance for a piece to be published.

Submission Process

Question: “how do i submit a manuscript for publication in her”.

Answer: Manuscripts are submitted through HER’s Submittable platform, accessible here. All first-time submitters must create an account to access the platform. You can find details on our submission guidelines on our Submissions page.

MINI REVIEW article

The impact of virtual reality on student engagement in the classroom–a critical review of the literature.

Xiao Ping Lin&#x;

  • 1 Faculty of Education, Silpakorn University, Nakhon Pathom, Thailand
  • 2 Melbourne Graduate School of Education, The University of Melbourne, Melbourne, VIC, Australia
  • 3 Graduate Department, Xi’an Physical Education University, Xi’an, China
  • 4 College of Commerce and Tourism, Hunan Vocational College for Nationalities, Yueyang, China
  • 5 Graduate Department, Sehan University, Yeongam County, Republic of Korea

Objective: The purpose of this review is to identify the impact of virtual reality (VR) technology on student engagement, specifically cognitive engagement, behavioral engagement, and affective engagement.

Methods: A comprehensive search of databases such as Google, Scopus, and Elsevier was conducted to identify English-language articles related to VR and classroom engagement for the period from 2014 to 2023. After systematic screening, 33 articles were finally reviewed.

Results: The use of VR in the classroom is expected to improve student engagement and learning outcomes, and is particularly effective for students with learning disabilities. However, introducing VR into middle school education poses several challenges, including difficulties in the education system to keep up with VR developments, increased demands on students’ digital literacy, and insufficient proficiency of teachers in using VR.

Conclusion: To effectively utilize VR to increase student engagement, we advocate for educational policymakers to provide training and technical support to teachers to ensure that they can fully master and integrate VR to increase student engagement and instructional effectiveness.

Introduction

In recent years, virtual reality (VR) has emerged as a transformative technology in education, providing new avenues for immersive and interactive learning experiences ( Pottle, 2019 ). At its core, VR offers a departure from the tangible, allowing users to delve into an environment transcending conventional reality ( Brooks, 1999 ; Jeong et al., 2019 ). VR’s essence is captured in three pillars: presence, interactivity, and immersion ( Lee et al., 2017 ). Presence grants users access to previously unreachable 3D landscapes, facilitating a unique, experiential insight ( Poux et al., 2020 ). Interactivity kindles user curiosity, enabling dynamic engagements within the virtual milieu ( Steuer et al. 1995 ; Huvila, 2013 ; Song et al., 2023 ). Immersion pushes the boundaries of conventional experiences, reviving or manifesting phenomena outside the realm of everyday life ( Sanchez-Vives and Slater, 2005 ; Poux et al., 2020 ).

The introduction of VR in education might increase student engagement, which is closely related to the cognitive, behavioral, and affective dimensions of the engagement model ( Wang and Degol, 2014 ). Cognitive engagement underscores the depth of students’ attention, comprehension, and retention ( Wang and Degol, 2014 ). Behavioral engagement is observable, characterized by consistent attendance and active classroom participation ( Wang and Degol, 2014 ). Affective engagement delves into the emotional realm, encompassing motivation, passion, and learning efficacy ( Wang and Degol, 2014 ).

Existing literature emphasizes the importance of virtual reality technology in promoting full student engagement in cognitive, behavioral, and affective dimensions, and states that the application of virtual reality technology in education has become a trend ( Mystakidis et al., 2021 ). Some literature shows that higher education institutions are increasingly adopting VR, with adoption rates as high as 46% at US universities and 96% at United Kingdom universities ( United Kingdom Authority, 2019 ; Agbo et al., 2021 ). In addition, the establishment of dedicated VR laboratories at leading universities such as Harvard University and Colorado State University underscores the commitment to using VR for educational innovation and advancement ( Reid, 1987 ; Leidner and Jarvenpaa, 1995 ). This literature shows that the widespread use of VR in education has attracted the attention of a growing number of researchers and educators, with a particular interest in the impact of VR in the classroom in terms of students’ cognitive, behavioral, and affective engagement.

It is worth noting that although existing literature begins to discuss the impact of VR on student engagement, there are still shortcomings in determining the impact of VR on various dimensions of student engagement, which may limit our overall understanding of the topic. Therefore, further discussion is needed to more specifically identify the impact of VR on the various dimensions of student engagement to gain a more comprehensive and concrete understanding. To accomplish this, this review is guided by the following three questions: (1) What are the positive impacts of VR in education? (2) What are the challenges of VR in education? (3) What interventions can address these challenges? With this in mind, the article will first discuss the positive impact of VR on students’ cognitive, behavioral, and affective engagement to help readers understand its potential in education. It will then discuss the challenges facing VR to make constructive recommendations to address the problems in education.

Searching strategy

In our methods, we used critical review. According to Grant and Booth (2009) “an effective critical review presents, analyses and synthesizes material from diverse sources”(p.93). Critical perspectives were used to assess the potential of VR in reforming educational practices and improving teaching and learning outcomes. The purpose of this article was to collect literature on the impact of VR on student engagement. Therefore, this article summarizes the previous studies as follows. First, information was obtained from Google, Scopus, and Elsevier databases: “virtual reality,” “cognitive engagement,” “affective engagement,” “behavioral engagement” and “learning outcomes.” The search was limited to articles published between January 2014 and December 2023 in English. The first search used all combinations of the above keywords and, after an initial review, produced 97 potentially relevant articles (Google: 92, Scopus: 3, Elsevier: 2).

In the second phase, secondary terms such as “affect,” “challenge,” and “education” were added, reducing the number of studies to 63 (Google:60, Scopus:1, Elsevier:2). Of these, 34 did not meet the criteria and were excluded. They were excluded because their target audience was teachers and did not discuss the impact of VR on student engagement from the student’s perspective. In the final stage, another 53 articles were excluded because they were repetitive and their purpose was to discuss either technology or engagement, or both. Finally, their full texts were reviewed to determine if their work fits the focus of this article 20 articles (Google: 17, Scopus: 1, Elsevier: 2) qualified for final review, covered a sample on the impact of VR on student engagement, and were included in the analysis.

Inclusion and exclusion criteria

To ensure the quality of the literature, we selected only peer-reviewed journal articles published in English in the last decade. The main purpose of this article was to review the impact of VR on student engagement. Therefore, we selected only review articles on the impact of VR on student engagement in educational settings. Articles that were not written in English did not discuss the impact on engagement from a student perspective, and were published beyond the previously established time and language were excluded. In addition, a selection of articles was identified and assessed by manually searching the references of articles related to the topic, of which 13 met the eligibility criteria. Therefore, 13 additional articles were added to the 20 identified. In total, 33 articles that met these eligibility criteria were included and reviewed here. Full-text versions of the articles were obtained, with each article being reviewed and confirmed as appropriate by the authors. Finally, to maximize transparency and traceability, we list the rationale and relevant evidence for all articles included (see Table 1 ). The process of article selection followed the Preferred Reporting of Items for Systematic Reviews and Meta-Analyses (PRISMA) Statement ( Moher et al., 2009 ; see Figure 1 ). Figure 1 illustrates the process of article selection.

www.frontiersin.org

Table 1 . Publications reviewed in full text with reasons for inclusion or exclusion.

www.frontiersin.org

Figure 1 . PRISMA flow diagram for article selection.

The review found that the number of publications increased each year from 2014 to 2023, indicating the continued interest of researchers in exploring the impact of VR on student engagement. When reviewing the impact of VR on student engagement, Wang and Degol’s (2014) article had the most citations at 450, suggesting that the article had a strong impact in the area of student use of VR in the classroom. The majority of articles had only 10 or fewer citations, which may have indicated that these articles were relatively new or had less impact in the field. It was worth noting that more recently published articles, such as Rzanova et al. (2023) , did not have enough time to accumulate citations, so their impact on the field may not have been fully reflected in current citations.

To summarize, the differences in the number of citations for these articles highlighted their different levels of influence in the area of VR’s impact on student engagement. However, there were some limitations to the review methods. For example, some articles might not have fully reflected their impact on the field in the current citations due to their short time frames, which might have resulted in less comprehensive findings. Furthermore, the literature included was small, and in the future consideration would be given to expanding the search of literature and databases, such as PubMed and Web of Science databases, as well as expanding the search with keywords, such as “students’ attitudes toward VR.” In addition, the inclusion and exclusion criteria might have limited the generalizability of the results of the review, and therefore more caution was needed when generalizing the results of the review.

The positive impact of VR on education

This section will discuss the impact of VR on students’ cognitive, behavioral, and affective engagement participation. It is important in the field of education. Radianti et al. (2020) noted that student engagement in educational settings was critical to learning outcomes and classroom climate. Yuan and Wang (2021) further noted that the combined effects of cognitive, behavioral, and affective engagement could directly impact student learning outcomes and classroom contextual experiences. Therefore, a deeper understanding of the impact of VR on these three dimensions of engagement can provide valuable insights into educational practices and help educators better optimize classroom environments and teaching methods.

First, Papanastasiou et al. (2019) noted that VR immersive learning experiences promoted students’ cognitive engagement and aided in understanding complex and abstract knowledge. That is, through immersive learning, students can understand and remember what they have learned in greater depth and increase cognitive engagement. Pellas (2016) also found that VR encouraged students to learn through self-directed inquiry and move away from traditional teacher-centered instruction. Pellas (2016) further explained that, through VR scenario reenactments and simulations, students could engage in real-world unavailable learning experiences such as exploring historical sites and visiting distant planets. This means that such learning experiences enable students to explore knowledge in deeper and more varied ways, thus increasing cognitive engagement. Similarly, Maples-Keller et al. (2017) showed that VR was beneficial in engaging different types of students in learning, particularly for at-risk students, including those with learning difficulties, anxiety disorders, and other mental illnesses. VR provided personalized and adaptive learning environments that helped students improve cognitive engagement and achievement ( Maples-Keller et al., 2017 ). In summary, VR facilitates understanding of complex knowledge and promotes cognitive engagement for different types of students through immersive learning experiences and self-directed inquiry learning.

Secondly, Pirker and Dengel (2021) demonstrated that VR could promote student behavioral engagement. They discussed the potential of immersive VR in education through an in-depth analysis of 64 articles. They showed that “learning tasks in 3-D VLEs can foster intrinsic motivation for and engagement with the learning content” (p.77). Sun and Peng (2020) also suggested that by combining classical educational concepts with VR, such as Confucianism’s promotion of teaching for fun, students were better able to engage in learning activities. For example, Rzanova et al. (2023) found that the use of VR in the teaching of poetry to create the scenarios depicted in the verses enabled students to actively participate in classroom activities. Similarly, Freina and Ott (2015) also found that by simulating real school escape scenarios in VR, students could take on different roles to perform escape drills, and this sense of behavioral engagement can help students better master escape techniques and enhance safety awareness. These articles seem to echo that VR helps to enhance student behavioral engagement.

It is worth noting that there is debate about whether VR has a positive impact on student behavioral engagement. Proponents noted that students’ hands-on experience and exploration in virtual environments stimulated interest and behavioral engagement ( Wong et al., 2010 ; Allcoat and Von Mühlenen, 2018 ). This view suggests that VR provides an immersive learning experience that enhances students’ motivation and promotes deeper engagement in classroom activities. However, contrary findings exist, suggesting that the use of VR may have some negative effects. For example, students might have become addicted to the virtual world and neglected their real-life tasks and responsibilities, thus affecting their behavior in the classroom ( Cheng et al., 2015 ; Greenwald et al., 2018 ; Makransky et al., 2019 ). In addition, some other scholars noted that there might have been a gap between learning experiences in virtual environments and real-world learning experiences, which might have affected students’ ability to acquire and apply knowledge ( Makransky and Petersen, 2021 ). These conflicting results remind us that these complexities and diversities need to be taken into account when evaluating the role of VR technology in improving student engagement in the classroom.

Finally, scholars such as Wu et al. (2013) , Schutte and Stilinović (2017) , and Yuen et al. (2011) found that VR helped to promote student affective engagement. For example, Schutte and Stilinović (2017) found that contexts provided by VR for children with emotional impairments or disabilities taught them skills in communicating with people and managing their emotions, thus fostering empathy. This implies that VR may stimulate affective engagement. Wu et al. (2013) and Yuen et al. (2011) also found that VR provided opportunities for affective interaction, enabling students to interact with characters in the virtual environment. In language learning, for example, practicing through conversations with virtual characters could help students improve their oral expression ( Dhimolea et al., 2022 ). This means that affective interactions may increase students’ affective engagement with the learning content. Similarly, Misak (2018) noted that VR allowed students to role-play in virtual literature and experience the affective portrayed in the story. In other words, affective experiences may deepen students’ understanding of literary works and increase affective engagement. This literature seems to reflect that VR can promote student affective engagement.

In general, VR positively impacts students’ cognitive, behavioral, and affective engagement. In terms of cognitive engagement, VR can facilitate students’ cognitive engagement with learning materials and better understanding of abstract and complex knowledge by creating immersive situations. In terms of behavioral engagement, VR stimulates active student engagement and action through interactive learning. Although there is debate about whether VR has a positive impact on student behavioral engagement, literature has demonstrated the positive impact of VR on student behavioral engagement. In terms of affective engagement, VR promotes students’ emotional engagement by triggering affective resonance through affective experience and affective interaction. This full engagement helps students improve their learning and develop empathy.

The following section discusses the challenges faced when introducing VR in education. Through understanding these challenges, we can better understand the problems in the education system and make some constructive suggestions to help address them.

The challenge of VR in education

Despite the positive impact of VR on students’ cognitive, behavioral, and affective engagement, there are still two challenges to introducing VR into middle education, namely the difficulty of the educational system in keeping up with VR developments and the lack of teacher proficiency in VR use ( Islam et al., 2015 ; Zhong, 2017 ; Abich et al., 2021 ). For example, Islam et al. (2015) observed that the pace of technological advancement, including VR, outpaced the ability of the education system to adapt. This phenomenon is due to the slow reform of the education system, which takes time for the acceptance and adoption of emerging technologies ( Islam et al., 2015 ). To this end, the education sector may take longer to standardize the syllabus, resulting in students not having immediate access to VR ( Zhong, 2017 ). In other words, students may not have the opportunity to experience VR in the classroom until the education department completes the standardization process. Sahlberg (2016) further stated that while reform and standardization in the education sector took time, once VR and the education system evolved in tandem, students benefited from an education that matched the VR of the day.

Other scholars observed that VR education faced several challenges in developing digital literacy in students ( Aviram and Eshet-Alkalai, 2006 ; Sahlberg, 2016 ). According to Reddy et al. (2020) , “digital literacy is a set of skills required by 21st Century individuals to use digital tools to support the achievement of goals in their life situations” (p. 66). Digital literacy encompasses the assessment of digital technologies, critical thinking, and the ability to create and express oneself digitally ( Reddy et al., 2020 ). For example, Tsivitanidou et al. (2021) and Necci et al. (2015) emphasized the need for students to identify the differences between the results of simulation experiments and real experiments and to assess the reliability and accuracy of simulation experiments. In other words, students need to judge the plausibility of the results of simulation experiments and interpret and evaluate those results in real-world situations.

Similarly, Farmer and Farmer (2023) found that digital literacy required students to master VR painting and sculpting tools to create art. This involved learning to select appropriate colors and textures and creating three-dimensional effects with VR tools ( Skulmowski et al., 2021 ). Meanwhile, Andone et al. (2018) further noted that students also needed to learn to share and present their work to others in virtual reality. This observation seems to reflect the high demand for students’ creativity, technical skills, and expressive abilities when introducing VR into education. In sum, while the development of VR education benefits students’ learning in conjunction with VR, there are challenges to students’ digital literacy and the technological adaptability of the education system.

In addition, teachers’ lack of proficiency in the use of VR is another major challenge in introducing VR into middle education. For example, Abich et al. (2021) found that teachers might lack proficiency in the operation and application of VR, which might result in teachers not being able to fully utilize VR to supplement instruction. Jensen and Konradsen (2018) claimed that “for HMDs to become a relevant tool for instructors they must have the ability to produce and edit their content” (p.1525). This means that teachers need to spend time familiarizing themselves with HMDs and related software to create, edit, and customize content to meet their specific instructional needs. Similarly, Fransson et al. (2020) discussed the challenges of teachers operating VR equipment and software. They interviewed 28 teachers to understand teachers’ challenges with implementing helmet display VR in educational settings. Fransson et al. (2020) indicated that there might be a technological threshold and learning curve for teachers in controlling and operating VR devices, which might affect the effective use of VR for teaching and learning.

While teachers may lack familiarity with VR, there are solutions to this challenge. For example, Alfalah (2018) noted that proper training and support could help teachers make the most of VR to supplement instruction. That is, teacher training can provide teachers with the technical knowledge and operational skills they need to familiarize themselves with how VR equipment and software work. To this end, Alfalah (2018) found the impact of providing teachers with VR training in schools. They used a quantitative approach by distributing a questionnaire online to 30 IT teachers. Alfalah (2018) indicated that “technology training may be maximized for the integration of VR technology” (P.2634). This finding seems to reflect that proper teacher training and support can be effective in helping teachers overcome the operational and application of VR technology’s difficulties.

In sum, prior literature has shown that introducing VR into middle school education faces several challenges. First, the rapid development of technology makes the educational system keep up with VR, resulting in a disconnect between the educational curriculum and VR. Second, there may be a lack of proficiency in students’ digital literacy and teachers’ handling and application of VR. However, these challenges are not insurmountable. With proper training and support, teachers can make full use of VR to supplement their teaching and learning to realize the potential of VR in education. It is worth noting that through the literature we have found that in practice, due to the rapid development of technology and the limitations of the educational system, achieving a complete balance may take some time and effort. Therefore, considering how to address the gap between the speed of VR development and the education system to better integrate and apply VR in education makes sense.

This article describes the impact of VR on student cognitive, behavioral, and affective engagement and the challenges posed by VR education. The literature review finds that using VR in the classroom can positively impact student engagement and learning outcomes. An interesting finding is that VR can be a promising tool for providing education to students with learning disabilities. For example, the previous literature review section describes how for students with learning difficulties, anxiety disorders, and other mental illnesses, VR can provide personalized and adaptive learning environments that can help students improve cognitive engagement and academic performance. And, for children with emotional disorders or disabilities, VR provides contexts that can teach them skills for communicating with others and managing their emotions, thereby developing empathy and stimulating affective engagement.

However, the potential problems with incorporating VR in middle education are the difficulty of the education system in keeping up with VR developments, the higher demands of student digital literacy, and the lack of teacher proficiency in the use of VR. These challenges require educational policymakers to provide training and technical support to teachers to ensure that they can fully master and integrate VR to improve student engagement and teaching effectiveness.

Author contributions

XL: Writing – original draft, Writing – review & editing. BL: Conceptualization, Writing – original draft, Writing – review & editing. ZNY: Writing – original draft, Writing – review & editing. ZY: Funding acquisition, Supervision, Writing – original draft, Writing – review & editing. MZ: Funding acquisition, Writing – original draft, Writing – review & editing, Supervision.

The author(s) declare financial support was received for the research, authorship, and/or publication of this article. This work was supported by the General Topics of China’s Hunan Province Social Science Achievement Evaluation Committee Fund [Grant no. XSP2023JYC123].

Acknowledgments

We are deeply appreciative of the editors and reviewers of this journal for their unwavering dedication and contributions that have shaped the publication of this article. Their constructive feedback and invaluable insights were instrumental in bringing this piece to fruition. We extend our heartfelt thanks to the readers with a keen interest in virtual reality technology. It is our sincere hope that this article will inspire enriched discussions within the academic community about the potential and nuances of using virtual reality in educational contexts.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Abich, J., Parker, J., Murphy, J. S., and Eudy, M. (2021). A review of the evidence for training effectiveness with virtual reality technology. Virtual Reality 25, 919–933. doi: 10.1007/s10055-020-00498-8

Crossref Full Text | Google Scholar

Agbo, F. J., Sanusi, I. T., Oyelere, S. S., and Suhonen, J. (2021). Application of virtual reality in computer science education: a systemic review based on bibliometric and content analysis methods. Educ. Sci. 11, 1–23. doi: 10.3390/educsci11030142

Alfalah, S. F. (2018). Perceptions toward adopting virtual reality as a teaching aid in information technology. Educ. Inf. Technol. 23, 2633–2653. doi: 10.1007/s10639-018-9734-2

Allcoat, D., and Von Mühlenen, A. (2018). Learning in virtual reality: effects on performance, emotion, and engagement. Res. Learn. Technol. 26, 1–13. doi: 10.25304/rlt.v26.2140

Andone, D., Vert, S., Frydenberg, M., and Vasiu, R. (2018). Open virtual reality project to improve students’ skills. In 2018 IEEE 18th International Conference on Advanced Learning Technologies (ICALT) , 6–10. doi: 10.1109/ICALT.2018.00008

Aviram, A., and Eshet-Alkalai, Y. (2006). Towards a theory of digital literacy: three scenarios for the next steps. Eur. J. Open Distance E Learn 9, 1–11.

Google Scholar

Brooks, F. P. (1999). What's real about virtual reality? Institute of Electrical and Electronic Engineers (IEEE). Comput. Graph. Appl. 19, 16–27. doi: 10.1109/38.799723

Cheng, M.-T., Chen, J.-H., Chu, S.-J., and Chen, S.-Y. (2015). The use of serious games in science education: a review of selected empirical research from 2002 to 2013. J. Comput. Educ. 2, 353–375. doi: 10.1007/s40692-015-0039-9

Dhimolea, T. K., Kaplan-Rakowski, R., and Lin, L. (2022). A systematic review of research on high-immersion virtual reality for language learning. TechTrends 66, 810–824. doi: 10.1007/s11528-022-00717-w

Fransson, G., Holmberg, J., and Westelius, C. (2020). The challenges of using head mounted virtual reality in K-12 schools from a teacher perspective. Educ. Inf. Technol. 25, 3383–3404. doi: 10.1007/s10639-020-10119-1

Freina, L., and Ott, M. (2015). A literature review on immersive virtual reality in education: state of the art and perspectives. Int. Sci. Conf. E Learn. Softw. Educ. 1, 10–1007. doi: 10.12753/2066-026x-15-020

Grant, M. J., and Booth, A. (2009). A typology of reviews: an analysis of 14 review types and associated methodologies. Health Inf. Libr. J. 26, 91–108. doi: 10.1111/j.1471-1842.2009.00848.x

PubMed Abstract | Crossref Full Text | Google Scholar

Greenwald, S. W., Corning, W., Funk, M., and Maes, P. (2018). Comparing learning in virtual reality with learning on a 2D screen using electrostatics activities. J. Comput. Sci. 24, 220–245. doi: 10.3217/jucs-024-02-0220

Huvila, I. (2013). Sorting out the metaverse and how the metaverse is sorting us out . London: Palgrave Macmillan.

Islam, N., Beer, M., and Slack, F. (2015). E-learning challenges faced by academics in higher education. J. Educ. Train. Stud. 3, 102–112. doi: 10.11114/jets.v3i5.947

Jensen, L., and Konradsen, F. (2018). A review of the use of virtual reality head-mounted displays in education and training. Educ. Inf. Technol. 23, 1515–1529. doi: 10.1007/s10639-017-9676-0

Jeong, K., Kim, J., Kim, M., Lee, J., and Kim, C. (2019). Asymmetric interface: user interface of asymmetric virtual reality for new presence and experience. Symmetry 12, 1–25. doi: 10.3390/sym12010053

Lee, J., Kim, M., and Kim, J. (2017). A study on immersion and VR sickness in walking interaction for immersive virtual reality applications. Symmetry 9, 1–17. doi: 10.3390/sym9050078

Leidner, D. E., and Jarvenpaa, S. L. (1995). The use of information technology to enhance management school education: a theoretical view. Manag. Inf. Serv. Q. 19, 265–291. doi: 10.2307/249596

Makransky, G., and Petersen, G. B. (2021). The cognitive-affective model of immersive learning: a theoretical research-based model of learning in immersive virtual reality. Educ. Psychol. Rev. 33, 937–958. doi: 10.1007/s10648-020-09586-2

Makransky, G., Terkildsen, T. S., and Mayer, R. E. (2019). Adding immersive virtual reality to a science lab simulation causes more presence but less learning. Learn. Instr. 60, 225–236. doi: 10.1016/j.learninstruc.2017.12.007

Maples-Keller, J. L., Bunnell, B. E., Kim, S.-J., and Rothbaum, B. O. (2017). The use of virtual reality technology in the treatment of anxiety and other psychiatric disorders. Harv. Rev. Psychiatry 25, 103–113. doi: 10.1097/HRP.0000000000000138

Misak, J. (2018). A (virtual) bridge not too far: teaching narrative sense of place with virtual reality. Comput. Compos. 50, 39–52. doi: 10.1016/j.compcom.2018.07.007

Moher, D., Liberati, A., Tetzlaff, J., and Altman, D. G.PRISMA Group* (2009). Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann. Intern. Med. 151, 264–269. doi: 10.7326/0003-4819-151-4-200908180-00135

Mystakidis, S., Berki, E., and Valtanen, J. P. (2021). Deep and meaningful e-learning with social virtual reality environments in higher education: a systematic literature review. Appl. Sci. 11, 1–25. doi: 10.3390/app11052412

Necci, A., Cozzani, V., Spadoni, G., and Khan, F. (2015). Assessment of domino effect: state of the art and research needs. Reliab. Eng. Syst. Saf. 143, 3–18. doi: 10.1016/j.ress.2015.05.017

Papanastasiou, G., Drigas, A., Skianis, C., Lytras, M., and Papanastasiou, E. (2019). Virtual and augmented reality effects on K-12, higher, and tertiary education students’twenty-first-century skills. Virtual Reality 23, 425–436. doi: 10.1007/s10055-018-0363-2

Pellas, N. (2016). “Unraveling a progressive inquiry script in persistent virtual worlds: theoretical foundations and decision processes for constructing a socio-cultural learning framework” in Web design and development: Concepts, methodologies, tools, and applications (Pennsylvania, US: IGI Global), 610–647.

Pirker, J., and Dengel, A. (2021). The potential of 360 virtual reality videos and real VR for education—a literature review. IEEE Comput. Graph. Appl. 41, 76–89. doi: 10.1109/MCG.2021.3067999

Pottle, J. (2019). Virtual reality and the transformation of medical education. Future Healthcare J. 6, 181–185. doi: 10.7861/fhj.2019-0036

Poux, F., Valembois, Q., Mattes, C., Kobbelt, L., and Billen, R. (2020). Initial user-centered design of a virtual reality heritage system: applications for digital tourism. Remote Sens. 12, 1–25. doi: 10.3390/rs12162583

Radianti, J., Majchrzak, T. A., Fromm, J., and Wohlgenannt, I. (2020). A systematic review of immersive virtual reality applications for higher education: design elements, lessons learned, and research agenda. Comput. Educ. 147, 103778–103729. doi: 10.1016/j.compedu.2019.103778

Reddy, P., Sharma, B., and Chaudhary, K. (2020). Digital literacy: a review of literature. Int. J. Technoethics (IJT) 11, 65–94. doi: 10.4018/IJT.20200701.oa1

Reid, J. M. (1987). The learning style preferences of English as a second language (ESL) students. Teach. Engl. Speakers Other Lang. Q. 21, 87–111. doi: 10.2307/3586356

Rzanova, S., Yushchik, E., Markova, S., and Sergeeva, A. (2023). Impact of virtual reality technologies in the context of the case method on engineering students’ competencies. Educ. Inf. Technol. 7, 1–19. doi: 10.56028/aetr.7.1.7.2023

Sahlberg, P. (2016). The global educational reform movement and its impact on schooling. In: K. Mundy, A. Green, B. Lingard, and A. Verger The Handbook of Global Education Policy . Hoboken, NJ: John Wiley and Sons, 128–144.

Sanchez-Vives, M. V., and Slater, M. (2005). From presence to consciousness through virtual reality. Nat. Rev. Neurosci. 6, 332–339. doi: 10.1038/nrn1651

Schutte, N. S., and Stilinović, E. J. (2017). Facilitating empathy through virtual reality. Motiv. Emot. 41, 708–712. doi: 10.1007/s11031-017-9641-7

Skulmowski, A., Nebel, S., Remmele, M., and Rey, G. D. (2021). Is a preference for realism really naive after all? A cognitive model of learning with realistic visualizations. Educ. Psychol. Rev. 34, 1–27. doi: 10.1007/s10648-021-09638-1

Song, C., Shin, S. Y., and Shin, K. S. (2023). Optimizing foreign language learning in virtual reality: a comprehensive theoretical framework based on constructivism and cognitive load theory. Appl. Sci. 13, 1–31. doi: 10.3390/app132312557

Steuer, J., Biocca, F., and Levy, M. R. (1995). Communication in the age of virtual reality , New York: Routledge

Sun, S. Y., and Peng, L. H. (2020). Study of the virtual reality education and digitalization in China. J. Physics 1456, 012042–012047. doi: 10.1088/1742-6596/1456/1/012042

Tsivitanidou, O. E., Georgiou, Y., and Ioannou, A. (2021). A learning experience in inquiry-based physics with immersive virtual reality: student perceptions and an interaction effect between conceptual gains and attitudinal profiles. J. Sci. Educ. Technol. 30, 841–861. doi: 10.1007/s10956-021-09924-1

United Kingdom Authority. (2019). VR and AR attract education sector interest . Available at: https://www.ukauthority.com/articles/vr-and-ar-attract-education-sector-interest/ .

Wang, M. T., and Degol, J. (2014). Staying engaged: knowledge and research need in student engagement. Child Dev. Perspect. 8, 137–143. doi: 10.1111/cdep.12073

Wong, B. M., Etchells, E. E., Kuper, A., Levinson, W., and Shojania, K. G. (2010). Teaching quality improvement and patient safety to trainees: a systematic review. Acad. Med. 85, 1425–1439. doi: 10.1097/ACM.0b013e3181e2d0c6

Wu, H.-K., Lee, S. W.-Y., Chang, H.-Y., and Liang, J.-C. (2013). Current status, opportunities and challenges of augmented reality in education. Comput. Educ. 62, 41–49. doi: 10.1016/j.compedu.2012.10.024

Yuan, H., and Wang, Z. (2021). A review of research on technology enhancing Chinese learning . 2021 international conference on internet, education and information technology (IEIT), pp. 462–467.

Yuen, S. C.-Y., Yaoyuneyong, G., and Johnson, E. (2011). Augmented reality: an overview and five directions for augmented reality (AR) in education. J. Educ. Technol. Dev. Exchange 4, 119–140. doi: 10.18785/jetde.0401.10

Zhong, L. (2017). Indicators of digital leadership in the context of K-12 education. J. Educ. Technol. Dev. Exchange 10, 27–40. doi: 10.18785/jetde.1001.03

Keywords: virtual reality technology, cognitive engagement, affective engagement, behavioral engagement, learning outcomes

Citation: Lin XP, Li BB, Yao ZN, Yang Z and Zhang M (2024) The impact of virtual reality on student engagement in the classroom–a critical review of the literature. Front. Psychol . 15:1360574. doi: 10.3389/fpsyg.2024.1360574

Received: 23 December 2023; Accepted: 22 March 2024; Published: 10 April 2024.

Reviewed by:

Copyright © 2024 Lin, Li, Yao, Yang and Zhang. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY) . The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

*Correspondence: Zhi Yang, [email protected] ; Mingshu Zhang, [email protected]

† These authors have contributed equally to this work and share first authorship

Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

  • Find My Rep

You are here

Review of Educational Research

Review of Educational Research

Preview this book.

  • Description
  • Aims and Scope
  • Editorial Board
  • Abstracting / Indexing
  • Submission Guidelines

The Review of Educational Research ( RER , quarterly, begun in 1931; approximately 640 pp./volume year) publishes critical, integrative reviews of research literature bearing on education. Such reviews should include conceptualizations, interpretations, and syntheses of literature and scholarly work in a field broadly relevant to education and educational research. RER encourages the submission of research relevant to education from any discipline, such as reviews of research in psychology, sociology, history, philosophy, political science, economics, computer science, statistics, anthropology, and biology, provided that the review bears on educational issues. RER does not publish original empirical research unless it is incorporated in a broader integrative review. RER will occasionally publish solicited, but carefully refereed, analytic reviews of special topics, particularly from disciplines infrequently represented.

The Review of Educational Research publishes critical, integrative reviews of research literature bearing on education. Such reviews should include conceptualizations, interpretations, and syntheses of literature and scholarly work in a field broadly relevant to education and educational research. RER encourages the submission of research relevant to education from any discipline, such as reviews of research in psychology, sociology, history, philosophy, political science, economics, computer science, statistics, anthropology, and biology, provided that the review bears on educational issues. RER does not publish original empirical research, and all analyses should be incorporated in a broader integrative review. RER will occasionally publish solicited, but carefully refereed, analytic reviews of special topics, particularly from disciplines infrequently represented. The following types of manuscripts fall within the journal’s purview:

Integrative reviews pull together the existing work on an educational topic and work to understand trends in that body of scholarship. In such a review, the author describes how the issue is conceptualized within the literature, how research methods and theories have shaped the outcomes of scholarship, and what the strengths and weaknesses of the literature are. Meta-analyses are of particular interest when they are accompanied by an interpretive framework that takes the article beyond the reporting of effect sizes and the bibliographic outcome of a computer search.

Theoretical reviews should explore how theory shapes research. To the extent that research is cited and interpreted, it is in the service of the specification, explication, and illumination of a theory. Theoretical reviews and integrative reviews have many similarities, but the former are primarily about how a theory is employed to frame research and our understandings, and refer to the research as it relates to the theory.

Methodological reviews are descriptions of research design, methods, and procedures that can be employed in literature reviews or research in general. The articles should highlight the strengths and weaknesses of methodological tools and explore how methods constrain or open up opportunities for learning about educational problems. They should be written in a style that is accessible to researchers in education rather than methodologists.

Historical reviews provide analyses that situate literature in historical contexts. Within these reviews, explanations for educational phenomena are framed within the historical forces that shape language and understanding.

Commissioned reviews and thematic issues. The editors may commission and solicit authors to review areas of literature. In all other respects, commissioned reviews are subject to the same review process as submitted reviews. The editors also encourage readers to propose thematic topics for special issues and, as potential guest editors, to submit plans for such issues.

In addition to review articles, RER will occasionally publish notes and responses which are short pieces of no more than 1,200 words on any topic that would be of use to reviewers of research. Typically, they point out shortcomings and differences in interpretation in RER articles and policy.

The standards and criteria for review articles in RER are the following:

1. Quality of the Literature. Standards used to determine quality of literature in education vary greatly. Any review needs to take into account the quality of the literature and its impact on findings. Authors should attempt to review all relevant literature on a topic (e.g., international literature, cross-disciplinary work, etc.).

2. Quality of Analysis. The review should go beyond description to include analysis and critiques of theories, methods, and conclusions represented in the literature. This analysis should also examine the issue of access—which perspectives are included or excluded in a body of work? Finally, the analysis should be reflexive—how does the scholars’ framework constrain what can be known in this review?

3. Significance of the Topic. The review should seek to inform and/or illuminate questions important to the field of education. While these questions may be broad-based, they should have implications for the educational problems and issues affecting our national and global societies.

4. Impact of the Article. The review should be seen as an important contribution and tool for the many different educators dealing with the educational problems and issues confronting society.

5. Advancement of the Field. The review should validate or inform the knowledge of researchers and guide and improve the quality of their research and scholarship.

6. Style. The review must be well written and conform to style of the Publication Manual of the American Psychological Association (6th edition). Authors should avoid the use of unexplained jargon and parochialism.

7. Balance and Fairness. The review should be careful not to misrepresent the positions taken by others, or be disrespectful of contrary positions.

8. Purpose. Any review should be accessible to the broad readership of RER. The purpose of any article should be to connect the particular problem addressed by the researcher(s) to a larger context of education.

We also encourage all authors interested in submitting a manuscript to RER to read our Editorial Vision for more information on our publication aims.

  • Academic Search - Premier
  • Academic Search Alumni Edition
  • Academic Search Elite
  • Clarivate Analytics: Current Contents - Physical, Chemical & Earth Sciences
  • EBSCO: MasterFILE Elite
  • EBSCO: MasterFILE Premier
  • EBSCO: Professional Development Collection
  • EBSCO: Sales & Marketing Source
  • EBSCOhost: Current Abstracts
  • ERIC (Education Resources Information Center)
  • Educational Research Abstracts Online (T&F)
  • Higher Education Abstracts
  • MasterFILE Select - EBSCO
  • ProQuest Education Journals
  • Social SciSearch
  • Social Sciences Citation Index (Web of Science)
  • Teacher Reference Center
  • Wilson Education Index/Abstracts

1. Publication Standards 2. Submission Preparation Checklist 3. How to Get Help With the Quality of English in Your Submission 4. Copyright Information 5. For authors who use figures or other materials for which they do not own copyright 6. Right of Reply 7. Sage Choice and Open Access

The Review of Educational Research (RER) publishes comprehensive reviews of literature related to education and does not publish new empirical work, except in the context of meta-analytic reviews of an area. Please check the journal’s Aims and Scope to see if your manuscript is appropriate to submit to RER.

All manuscripts should be submitted electronically to the editorial team at http://mc.manuscriptcentral.com/rer . For questions or inquiries about manuscripts, email us at [email protected] . Manuscripts may not be submitted via e-mail.

Publication Standards

Researchers who intend to submit studies for publication should consult the Standards for Research Conduct adopted by the AERA Council. We also recommend consulting (a) the Guidelines for Reviewers , which outline the criteria under which manuscripts are reviewed for publication by AERA and (b) recent previous editions of the journal. Individuals submitting systematic reviews or meta-analyses should also consult The PRISMA Statement ( http://www.prisma-statement.org ) as well the article on “Reporting Standards for Research in Psychology” in American Psychologist, 63 , 839 – 851 (doi:10.1037/0003-066X.63.9.839).

Submission Preparation Checklist

When you upload your initial submission, upload (1) a separate title page that is not anonymized. Please format the title page as described by the 7th edition of the APA Manual and (2) the main manuscript, which includes an ANONYMIZED title page, an abstract with keywords at the bottom, and the rest of the document including tables and figures, and finally (c) Author Bios.

Please ensure that your manuscript complies with the “ RER Formatting Requirements and Common Formatting Errors ” (see PDF on the RER website). If your submission does not meet these requirements, it will be returned to you.

Additionally, your submission should meet the following guidelines:

1. The submission has not been previously published and is not under consideration for publication elsewhere; or an explanation has been provided in the Cover Letter. Authors should indicate in the Author Note on the separate title page if sections of the manuscript have been published in other venues.

2. THE MANUSCRIPT CONTAINS NO IDENTIFYING INFORMATION, EVEN ON THE ANONYMIZED TITLE PAGE. Please anonymize any work of limited circulation (e.g., in press papers, manuscripts under submission) that would point to the author, both in the body of the manuscript and the reference list. More information on anonymizing is described subsequently. Please double check that the author’s name has been removed from the document’s Properties, which in Microsoft Word is found in the File menu (select “File,” “Properties,” “Summary,” and remove the author’s name; select “OK” to save).

3. The text conforms to APA style (currently the 7th ed.). Consult the guidelines spelled out under “Manuscript Style, Length, and Format” on this webpage and in the RER Formatting Requirements PDF included on our website.

4. The submission must be in Microsoft Word format (.doc or .docx), which will be converted into a PDF file. Please do not upload PDF files, or they will be returned to you.

5. All URL addresses and DOIs in the manuscript (e.g., http://www.aera.net ) should be activated and ready to click.

6. An abstract of 150 words maximum is included (both separately and on the second page of the main document after the ANONYMIZED title page). Please also include three to five keywords—the terms that researchers will use to find your article in indexes and databases.

Manuscript Style, Length, and Format

The style guide for the Review of Educational Research and all AERA journals is the Publication Manual of the American Psychological Association, 7th ed., 2020. The manual is available for purchase here . Guidelines are also available on the APA website .

Manuscripts should NOT exceed 65 pages (or 15,000 words), including tables, figures, appendices, notes, and references, but excluding anonymized title page, abstract, and any supplementary files. Pages should be numbered consecutively in the top right-hand corner, with a fully capitalized running head in the top-left corner. All manuscripts should begin with the anonymized title page (p.1). Manuscripts should be typed for 8½” x 11” paper, in upper and lower case, with 1-inch margins on all sides. Manuscripts should be typed in 12-point Times New Roman font. Manuscripts that exceed 65 pages may be returned without review.

All text, from the title page to the end of the manuscript should be double-spaced , including the abstract, block quotations, bulleted text, and the reference list. Single-spacing is allowed in tables when it is useful in making the table clearer. Do not leave blank lines after paragraphs or before sub-headings. However, if a heading or subheading is the last line on a page, use a page break to move it to the top of the next page. The Abstract, Introduction (beginning with the title), the References, and all tables and figures begin on new pages.

Please use the five subheadings as appropriate based on the 7th edition of the APA style manual. In addition to being on the title page, the title should also be placed at the beginning of the Introduction (in lieu of the word, “Introduction,” which should not appear) and the title at the beginning of the Introduction should be a Level 1 heading.

Tables and figures are to be placed after the references—all tables precede all figures—and should not be included in the body of the text. Each figure and table should begin on a separate page. Do NOT use the “Place Table 5 here” or “Place Figure 1 here” convention. The tables and figures will be placed nearest to where they are mentioned as appropriate when copyediting is done.

Figures and tables should present data to the reader in a clear and unambiguous manner, and should be referred to in the text. If the illustration/table/figure and text are redundant, eliminate the illustration or reduce the amount of detail provided in text. The use of lines in tables is limited (please consult the APA style manual for formatting guidelines ). Figure captions should be placed at the bottom of the figure. One high-quality electronic version of each figure must be submitted with the manuscript. Tables will be typeset. Note that any figures and tables uploaded separately from the main manuscript will still count toward the total 65-page limit.

Italics can be used for emphasis or contrast in special situations but should be used sparingly. Ideally, sentence structure should be used for these issues. All words to be set in italics (e.g., book titles, journal names) should be typed in italics. There should be no underlined text . Abbreviations and acronyms should be spelled out the first time they are mentioned unless they are found as entries in their abbreviated form in Merriam-Webster’s Collegiate Dictionary , 11th ed., 2003 (e.g., “IQ” can be used without being spelled out). Mathematical symbols and symbols for vectors should be clearly formatted in italics and boldface, respectively.

You can use the footnote or endnote feature of Microsoft Word. However, notes are only for explanations or amplifications of textual material that cannot be incorporated into the regular text; they are not for reference information. Moreover, notes are distracting to readers and expensive to produce and should be used sparingly and avoided whenever possible.

The reference list should contain only references that are cited in the text. Its accuracy and completeness are the responsibility of the authors. Reference each publicly available dataset with its title, author, date, and a persistent Web identifier such as a digital object identifier (doi), a handle, or a uniform resource name (URN). If necessary, this last element may be replaced by a web address. Additionally, any references that were included in the analysis but not cited in-text in the main manuscript can be included in a separate reference list that is uploaded as a Supplementary File for Review (this may assist in meeting the page limit).

Authors should anonymize their manuscripts for review . Anonymizing does not mean removing all self-citations. Authors should only anonymize citations of limited circulation (e.g., forthcoming, in press, unpublished) that point to the author. Publications already in the extant literature (e.g., books, book chapters, journal articles) should be cited normally, but authors should include self-citations judiciously . When anonymizing, please use “Author” or “Authors” as in the examples below and place this alphabetically in the reference list and not where the author’s actual name would typically appear.

For examples of common types of references, consult the APA 7th edition manual, or visit the webpage here: https://apastyle.apa.org/style-grammar-guidelines/references

How to Get Help with the Quality of English in Your Submission

Authors who would like to refine the use of English in their manuscripts might consider using the services of a professional English-language editing company. We highlight some of these companies at  https://languageservices.sagepub.com/en/ .

Please be aware that Sage has no affiliation with these companies and makes no endorsement of them. An author's use of these services in no way guarantees that his or her submission will ultimately be accepted. Any arrangement an author enters into will be exclusively between the author and the particular company, and any costs incurred are the sole responsibility of the author.

Copyright Information Accepted authors will be asked to  assign copyright  to AERA, in return for which AERA grants several rights to authors.

Permission to reproduce your own published material

No written or oral permission is necessary to reproduce a table, a figure, or an excerpt of fewer than 500 words from this journal, or to make photocopies for classroom use. Authors are granted permission, without fee, to photocopy their own material or make printouts from the final pdf of their article. Copies must include a full and accurate bibliographic citation and the following credit line: “Copyright [year] by the American Educational Research Association; reproduced with permission from the publisher.” Written permission must be obtained to reproduce or reprint material in circumstances other than those just described. Please review Sage Publishing’s  Journal Permissions  for further information on policies and fees.

Permission to submit material for which you do not own copyright

Authors who wish to use material, such as figures or tables, for which they do not own the copyright must obtain written permission from the copyright holder (usually the publisher) and submit it along with their manuscript. However, no written or oral permission is necessary to reproduce a table, a figure, or an excerpt of fewer than 500 words from an AERA journal.

Copyright transfer agreements for accepted works with more than one author

This journal uses a transfer of copyright agreement that requires just one author (the corresponding author) to sign on behalf of all authors. Please identify the corresponding author for your work when submitting your manuscript for review. The corresponding author will be responsible for the following:

1. Ensuring that all authors are identified on the copyright agreement, and notifying the editorial office of any changes in the authorship.

2. Securing written permission (by letter or e-mail) from each co-author to sign the copyright agreement on the co-author’s behalf.

3. Warranting and indemnifying the journal owner and publisher on behalf of all co-authors. Although such instances are very rare, you should be aware that in the event that a co-author has included content in his or her portion of the article that infringes the copyright of another or is otherwise in violation of any other warranty listed in the agreement, you will be the sole author indemnifying the publisher and the editor of the journal against such violation.

Please contact the publications office at  AERA  if you have questions or if you prefer to use a copyright agreement for all coauthors to sign.

Right of Reply

The right of reply policy encourages comments on recently published articles in AERA publications. They are, of course, subject to the same editorial review and decision process as articles. If the comment is accepted for publication, the editor shall inform the author of the original article. If the author submits a reply to the comment, the reply is also subject to editorial review and decision. The editor may allot a specific amount of journal space for the comment (ordinarily about 1,500 words) and for the reply (ordinarily about 750 words). The reply may appear in the same issue as the comment or in a later issue (Council, June 1980).

If an article is accepted for publication in an AERA journal that, in the judgment of the editor, has as its main theme or thrust a critique of a specific piece of work or a specific line of work associated with an individual or program of research, then the individual or representative of the research program whose work is critiqued should be notified in advance about the upcoming publication and given the opportunity to reply, ideally in the same issue. The author of the original article should also be notified. Normal guidelines for length and review of the reply and publication of a rejoinder by the original article’s author(s) should be followed. Articles in the format “an open letter to …” may constitute prototypical exemplars of the category defined here, but other formats may well be used, and would be included under the qualifications for response prescribed here (Council, January 2002).

Sage Choice and Open Access

If you or your funder wish your article to be freely available online to nonsubscribers immediately upon publication (gold open access), you can opt for it to be included in Sage Choice, subject to payment of a publication fee. The manuscript submission and peer review procedure is unchanged. On acceptance of your article, you will be asked to let Sage know directly if you are choosing Sage Choice. To check journal eligibility and the publication fee, please visit  Sage Choice . For more information on open access options and compliance at Sage, including self author archiving deposits (green open access) visit  Sage Publishing Policies  on our Journal Author Gateway.

  • Read Online
  • Sample Issues
  • Current Issue
  • Email Alert
  • Permissions
  • Foreign rights
  • Reprints and sponsorship
  • Advertising

Individual Subscription, Combined (Print & E-access)

Institutional Subscription, E-access

Institutional Subscription & Backfile Lease, E-access Plus Backfile (All Online Content)

Institutional Subscription, Print Only

Institutional Subscription, Combined (Print & E-access)

Institutional Subscription & Backfile Lease, Combined Plus Backfile (Current Volume Print & All Online Content)

Institutional Backfile Purchase, E-access (Content through 1998)

Individual, Single Print Issue

Institutional, Single Print Issue

Subscription Information

To purchase a non-standard subscription or a back issue, please contact SAGE Customer Services for availability.

[email protected]  +44 (0) 20 7324 8701

  • Open access
  • Published: 14 October 2023

A scoping review of ‘Pacing’ for management of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS): lessons learned for the long COVID pandemic

  • Nilihan E. M. Sanal-Hayes 1 , 7 ,
  • Marie Mclaughlin 1 , 8 ,
  • Lawrence D. Hayes 1 ,
  • Jacqueline L. Mair   ORCID: orcid.org/0000-0002-1466-8680 2 , 3 ,
  • Jane Ormerod 4 ,
  • David Carless 1 ,
  • Natalie Hilliard 5 ,
  • Rachel Meach 1 ,
  • Joanne Ingram 6 &
  • Nicholas F. Sculthorpe 1  

Journal of Translational Medicine volume  21 , Article number:  720 ( 2023 ) Cite this article

3333 Accesses

5 Citations

21 Altmetric

Metrics details

Controversy over treatment for people with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a barrier to appropriate treatment. Energy management or pacing is a prominent coping strategy for people with ME/CFS. Whilst a definitive definition of pacing is not unanimous within the literature or healthcare providers, it typically comprises regulating activity to avoid post exertional malaise (PEM), the worsening of symptoms after an activity. Until now, characteristics of pacing, and the effects on patients’ symptoms had not been systematically reviewed. This is problematic as the most common approach to pacing, pacing prescription, and the pooled efficacy of pacing was unknown. Collating evidence may help advise those suffering with similar symptoms, including long COVID, as practitioners would be better informed on methodological approaches to adopt, pacing implementation, and expected outcomes.

In this scoping review of the literature, we aggregated type of, and outcomes of, pacing in people with ME/CFS.

Eligibility criteria

Original investigations concerning pacing were considered in participants with ME/CFS.

Sources of evidence

Six electronic databases (PubMed, Scholar, ScienceDirect, Scopus, Web of Science and the Cochrane Central Register of Controlled Trials [CENTRAL]) were searched; and websites MEPedia, Action for ME, and ME Action were also searched for grey literature, to fully capture patient surveys not published in academic journals.

A scoping review was conducted. Review selection and characterisation was performed by two independent reviewers using pretested forms.

Authors reviewed 177 titles and abstracts, resulting in 17 included studies: three randomised control trials (RCTs); one uncontrolled trial; one interventional case series; one retrospective observational study; two prospective observational studies; four cross-sectional observational studies; and five cross-sectional analytical studies. Studies included variable designs, durations, and outcome measures. In terms of pacing administration, studies used educational sessions and diaries for activity monitoring. Eleven studies reported benefits of pacing, four studies reported no effect, and two studies reported a detrimental effect in comparison to the control group.

Conclusions

Highly variable study designs and outcome measures, allied to poor to fair methodological quality resulted in heterogenous findings and highlights the requirement for more research examining pacing. Looking to the long COVID pandemic, our results suggest future studies should be RCTs utilising objectively quantified digitised pacing, over a longer duration of examination (i.e. longitudinal studies), using the core outcome set for patient reported outcome measures. Until these are completed, the literature base is insufficient to inform treatment practises for people with ME/CFS and long COVID.

Introduction

Post-viral illness occurs when individuals experience an extended period of feeling unwell after a viral infection [ 1 , 2 , 3 , 4 , 5 , 6 ]. While post-viral illness is generally a non-specific condition with a constellation of symptoms that may be experienced, fatigue is amongst the most commonly reported [ 7 , 8 , 9 ]. For example, our recent systematic review found there was up to 94% prevalence of fatigue in people following acute COVID-19 infection [ 3 ]. The increasing prevalence of long COVID has generated renewed interest in symptomology and time-course of post-viral fatigue, with PubMed reporting 72 articles related to “post-viral fatigue” between 2020 and 2022, but less than five for every year since 1990.

As the coronavirus pandemic developed, it became clear that a significant proportion of the population experienced symptoms which persisted beyond the initial viral infection, meeting the definition of a post-viral illness. Current estimates suggest one in eight people develop long COVID [ 10 ] and its symptomatology has repeatedly been suggested to overlap with clinical demonstrations of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). In a study by Wong and Weitzer [ 11 ], long COVID symptoms from 21 studies were compared to a list of ME/CFS symptoms. Of the 29 known ME/CFS symptoms the authors reported that 25 (86%) were reported in at least one long COVID study suggesting significant similarities. Sukocheva et al. [ 12 ] reported that long COVID included changes in immune, cardiovascular, metabolic, gastrointestinal, nervous and autonomic systems. When observed from a pathological stance, this list of symptoms is shared with, or is similar to, the symptoms patients with ME/CFS describe [ 13 ]. In fact, a recent article reported 43% of people with long COVID are diagnosed with ME/CFS [ 13 ], evidencing the analogous symptom loads.

A striking commonality between long COVID and similar conditions such as ME/CFS is the worsening of symptoms including fatigue, pain, cognitive difficulties, sore throat, and/or swollen lymph nodes following exertion. Termed post exertional malaise (PEM) [ 14 , 15 , 16 , 17 ], lasting from hours to several days, it is arguably one of the most debilitating side effects experienced by those with ME/CFS [ 16 , 17 , 18 ]. PEM is associated with considerably reduced quality of life amongst those with ME/CFS, with reduced ability to perform activities of daily living, leading to restraints on social and family life, mental health comorbidities such as depression and anxiety, and devastating employment and financial consequences [ 19 , 20 , 21 , 22 ]. At present, there is no cure or pharmacological treatments for PEM, and therefore, effective symptom management strategies are required. This may be in part because the triggers of PEM are poorly understood, and there is little evidence for what causes PEM, beyond anecdotal evidence. The most common approach to manage PEM is to incorporate activity pacing into the day-to-day lives of those with ME/CFS with the intention of reducing the frequency of severity of bouts of PEM [ 23 ]. Pacing is defined as an approach where patients are encouraged to be as active as possible within the limits imposed by the illness [ 23 , 24 , 25 ]. In practice, pacing requires individuals to determine a level at which they can function, but which does not lead to a marked increase in fatigue and other symptoms [ 26 , 27 ].

Although long COVID is a new condition [ 3 , 14 ], the available evidence suggests substantial overlap with the symptoms of conditions such as ME/CFS and it is therefore pragmatic to consider the utility of management strategies (such as pacing) used in ME/CFS for people with long COVID. In fact, a recent Delphi study recommended that management of long COVID should incorporate careful pacing to avoid PEM relapse [ 28 ]. This position was enforced by a multidisciplinary consensus statement considering treatment of fatigue in long COVID, recommending energy conservation strategies (including pacing) for people with long COVID [ 29 ]. Given the estimated > 2 million individuals who have experienced long COVID in the UK alone [ 30 , 31 , 32 ], there is an urgent need for evidence-based public health strategies. In this context, it seems pragmatic to borrow from the ME/CFS literature.

From a historical perspective, the 2007 NICE guidelines for people with ME/CFS advised both cognitive behavioural therapy (CBT) and graded exercise therapy (GET) should be offered to people with ME/CFS [ 33 ]. As of the 2021 update, NICE guidelines for people with ME/CFS do not advise CBT or GET, and the only recommended management strategy is pacing [ 34 ]. In the years between changes to these guidelines, the landmark PACE trial [ 35 ] was published in 2011. This large, randomised control trial (RCT; n = 639) compared pacing with CBT and reported GET and CBT were more effective than pacing for improving symptoms. Yet, this study has come under considerable criticism from patient groups and clinicians alike [ 36 , 37 , 38 , 39 ]. This may partly explain why NICE do not advise CBT or GET as of 2021, and only recommend pacing for symptom management people with ME/CFS [ 34 ]. There has been some controversy over best treatment for people with ME/CFS in the literature and support groups, potentially amplified by the ambiguity of evidence for pacing efficacy and how pacing should be implemented. As such, before pacing can be advised for people with long COVID, it is imperative previous literature concerning pacing is systematically reviewed. This is because a consensus is needed within the literature for implementing pacing so practitioners treating people with ME/CFS or long COVID can do so effectively. A lack of agreement in pacing implementation is a barrier to adoption for both practitioners and patients. Despite several systematic reviews concerning pharmacological interventions or cognitive behavioural therapy in people with ME/CFS [ 36 , 40 , 41 ], to date, there are no systematic reviews concerning pacing.

Despite the widespread use of pacing, the literature base is limited and includes clinical commentaries, case studies, case series, and few randomised control trials. Consequently, while a comprehensive review of the effects of pacing in ME/CFS is an essential tool to guide symptom management advice, the available literature means that effective pooling of data is not feasible [ 42 ] and therefore, a traditional systematic review and meta-analysis, with a tightly focussed research question would be premature [ 43 ]. Consequently, we elected to undertake a scoping review. This approach retains the systematic approach to literature searching but aims to map out the current state of the research [ 43 ]. Using the framework of Arksey and O'Malley [ 44 ], a scoping review aims to use a broad set of search terms and include a wide range of study designs and methods (in contrast to a systematic review [ 44 ]). This approach, has the benefit of clarifying key concepts, surveying current data collection approaches, and identifying critical knowledge gaps.

We aimed to provide an overview of existing literature concerning pacing in ME/CFS. Our three specific objectives of this scoping review were to (1) conduct a systematic search of the published literature concerning ME/CFS and pacing, (2) map characteristics and methodologies used, and (3) provide recommendations for the advancement of the research area.

Protocol and registration

The review was conducted and reported according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for scoping reviews (PRISMA-ScR) guidelines [ 45 ] and the five-stage framework outlined in Arksey and O’Malley [ 44 ]. Registration is not recommended for scoping reviews.

Studies that met the following criteria were included in this review: (1) published as a full-text manuscript; (2) not a review; (3) participants with ME/CFS; (4) studies employed a pacing intervention or retrospective analysis of pacing or a case study of pacing. Studies utilising sub-analysis of the pacing, graded activity, and cognitive behaviour therapy: a randomised evaluation (PACE) trial were included as these have different outcome measures and, as this is not a meta-analysis, this will not influence effect size estimates. Additionally, due to the paucity of evidence, grey literature has also been included in this review.

Search strategy

The search strategy consisted of a combination of free-text and MeSH terms relating to ME/CFS and pacing, which were developed through an examination of published original literature and review articles. Example search terms for PubMed included: ‘ME/CFS’ OR ‘ME’ OR ‘CFS’ OR ‘chronic fatigue syndrome’ OR ‘PEM’ OR ‘post exertional malaise’ OR ‘pene’ OR ‘post-exertion neurogenic exhaust’ AND ‘pacing’ OR ‘adaptive pacing’. The search was performed within title/abstract. Full search terms can be found in Additional file 1 .

Information sources

Six electronic databases [PubMed, Scholar, ScienceDirect, Scopus, Web of Science, and the Cochrane Central Register of Controlled Trials (CENTRAL)] were searched to identify original research articles published from the earliest available date up until 02/02/2022. Additional records were identified through reference lists of included studies. ‘Grey literature’ repositories including MEPedia, Action for ME, and ME Action were also searched with the same terms.

Study selection and data items

Once each database search was completed and manuscripts were sourced, all studies were downloaded into a single reference list (Zotero, version 6.0.23) and duplicates were removed. Titles and abstracts were screened for eligibility by two reviewers independently and discrepancies were resolved through discussion between reviewers. Subsequently, full text papers of potentially relevant studies were retrieved and assessed for eligibility by the same two reviewers independently. Any uncertainty by reviewers was discussed in consensus meetings and resolved by agreement. Data extracted from each study included sample size, participant characteristics, study design, trial registration details, study location, pacing description (type), intervention duration, intervention adherence, outcome variables, and main outcome data. Descriptions were extracted with as much detail as was provided by the authors. Study quality was assessed using the Physiotherapy Evidence Database (PEDro) scale [ 46 , 47 ].

Role of the funding source

The study sponsors had no role in study design, data collection, analysis, or interpretation, nor writing the report, nor submitting the paper for publication.

Study selection

After the initial database search, 281 records were identified (see Fig.  1 ). Once duplicates were removed, 177 titles and abstracts were screened for inclusion resulting in 22 studies being retrieved as full text and assessed for eligibility. Of those, five were excluded, and 17 articles remained and were used in the final qualitative synthesis.

figure 1

Schematic flow diagram describing exclusions of potential studies and final number of studies. RCT = randomized control trial. CT = controlled trial. UCT = uncontrolled trial

Study characteristics

Study characteristics are summarised in Table 1 . Of the 17 studies included, three were randomised control trials (RCTs [ 35 , 48 , 49 ]); one was an uncontrolled trial [ 50 ]; one was a case series [ 51 ]; one was a retrospective observational study [ 52 ], two were prospective observational studies [ 53 , 54 ]; four were cross-sectional observational studies [ 25 , 55 , 56 ]; and five were cross-sectional analytical studies [ 57 , 58 , 59 , 60 , 61 ] including sub-analysis of the PACE trial [ 35 , 56 , 59 , 61 ]. Seven of the studies were registered trials [ 35 , 48 , 49 , 50 , 56 , 57 , 58 ]. Diagnostic criteria for ME/CFS are summarised in Table 2 .

Types of pacing

Pacing interventions.

Of the 17 studies included, five implemented their own pacing interventions and will be discussed in this section. Sample sizes ranged from n = 7 in an interventional case series [ 51 ] to n = 641 participants in the largest RCT [ 35 ]. The first of these five studies considered an education session on pacing and self-management as the ‘pacing’ group, and a ‘pain physiology education’ group as the control group [ 49 ]. Two studies included educational sessions provided by a therapist plus activity monitoring via ActiGraph accelerometers [ 51 ] and diaries [ 48 ] at baseline and follow-up. In the first of these two studies, Nijs and colleagues [ 51 ] implemented a ‘self-management program’ which asked patients to estimate their current physical capabilities prior to commencing an activity and then complete 25–50% less than their perceived energy envelope. They[ 51 ] did not include a control group and had a sample size of only n = 7. Six years later, the same research group [ 48 ] conducted another pacing study which utilised relaxation as a comparator group (n = 12 and n = 14 in the pacing and relaxation groups, respectively). The pacing group underwent a pacing phase whereby participants again aimed to complete 25–50% less than their perceived energy envelope, followed by a gradual increase in exercise after the pacing phase (the total intervention spanned three weeks, and it is unclear how much was allocated to pacing, and how much to activity increase). Therefore, it could be argued that Kos et al. [ 48 ] really assessed pacing followed by a gradual exercise increase as outcome measures were assessed following the graded activity phase. Another pacing intervention delivered weekly educational sessions for six weeks and utilised a standardised rehabilitation programme using the ‘activity pacing framework’ [ 50 ] in a single-arm, no comparator group feasibility study. Finally, the PACE trial adopted an adaptive pacing therapy intervention consisting of occupational therapists helping patients to plan and pace activities utilising activity diaries to identify activities associated with fatigue and staying within their energy envelope [ 35 ]. This study incorporated standard medical care, cognitive behavioural therapy (CBT) and graded exercise therapy (GET) as comparator groups [ 35 ]. It is worth noting that the pacing group and the CBT group were both ‘encouraged’ to increase physical activity levels as long as participants did not exceed their energy envelope. Although not all five intervention studies explicitly mentioned the “Energy Envelope Theory”, which dictates that people with ME/CFS should not necessarily increase or decrease their activity levels, but moderate activity and practice energy conservation [ 62 ], all intervention studies used language analogous to this theory, such as participants staying within limits, within capacity, or similar.

The interventions included in this review were of varying durations, from a single 30-min education session [ 49 ], a 3-week (one session a week) educational programme [ 51 ], a 3-week (3 × 60–90 min sessions/week) educational programme [ 48 ], a 6-week rehabilitation programme [ 50 ], to a 24-week programme [ 35 ]. Intervention follow-up durations also varied across studies from immediately after [ 49 ], 1-week [ 51 ], 3-weeks [ 48 ], 3-months [ 50 ], and 1-year post-intervention [ 35 ].

Observational studies of pacing

Eight studies were observational and, therefore, included no intervention. Observational study sample sizes ranged from 16 in a cross-sectional interview study [ 25 ] to 1428 in a cross-sectional survey [ 52 ]. One study involved a retrospective analysis of participants’ own pacing strategies varying from self-guided pacing or pacing administered by a therapist compared with implementation of CBT and GET [ 52 ]. Five involved a cross-sectional analysis of participants own pacing strategies which varied from activity adjustment, planning and acceptance [ 50 , 55 ], and the Energy Envelope method [ 58 , 60 ]. Two studies were prospective observational studies investigating the Energy Envelope theory [ 53 , 54 ]. Four studies [ 56 , 57 , 59 , 61 ] included in this review involved sub-analysis of results of the PACE trial [ 35 ].

Outcome measures

Quantitative health outcomes.

ME/CFS severity and general health status were the most common outcome measures across studies (16/17) [ 35 , 48 , 49 , 50 , 51 , 52 , 53 , 54 , 55 , 56 , 57 , 58 , 59 , 60 , 61 , 63 ]. Studies utilised different instruments, including the Short-Form 36 (SF-36; 8/16) [ 35 , 51 , 53 , 54 , 56 , 57 , 58 , 60 ], SF-12 (2/16) [ 50 , 63 ], ME symptom and illness severity (2/16) [ 52 , 55 ], Patient health (PHQ-15; 1/16) [ 59 ], DePaul symptom questionnaire (DSQ; 1/16) [ 58 ], and the Patient health questionnaire-9 (1/16) [ 50 ]. Additionally, some studies used diagnostic criteria for ME/CFS as an outcome measure to determine recovery [ 57 , 59 , 61 ].

Pain was assessed by most included studies (11/17) [ 35 , 49 , 50 , 51 , 53 , 54 , 55 , 57 , 59 , 60 , 61 , 63 ]. Two studies [ 59 , 61 ] included the international CDC criteria for CFS which contain five painful symptoms central to a diagnosis of CFS: muscle pain and joint pain. Other methods of assessment included Brief Pain Inventory (1/11) [ 53 ], Chronic Pain Coping Inventory (CPCI; 1/11) [ 49 ], Pain Self Efficacy Questionnaire (PSEQ; 1/11) [ 50 ], Tampa Scale for Kinesiophobia–version CFS (1/11) [ 49 ], algometry (1/11) [ 49 ], Knowledge of Neurophysiology of Pain Test (1/12) [ 49 ], Pain Catastrophizing Scale (1/11) [ 49 ], Pain Anxiety Symptoms Scale short version (PASS-20; 1/11) [ 50 ], Pain Numerical Rating Scale (NRS; 1/11) [ 63 ].

Fatigue or post-exertional malaise was assessed by 11 of the 17 studies [ 35 , 48 , 50 , 51 , 53 , 54 , 56 , 57 , 60 , 61 , 63 ]. Again, measurement instruments were divergent between studies and included the Chalder Fatigue Questionnaire (CFQ; 4/11) [ 35 , 50 , 57 , 63 ], Fatigue Severity Scale (2/11) [ 53 , 60 ], the Chronic Fatigue Syndrome Medical Questionnaire (1/11) [ 60 ], and Checklist Individual Strength (CIS; 2/11) [ 48 , 51 ].

Anxiety and depression were also common outcome measures, utilised by four studies (4/17) [ 50 , 53 , 59 , 63 ]. These were also assessed using different instruments including Hospital Anxiety and Depression Scale (HADS; 2/4) [ 59 , 63 ], Generalised Anxiety Disorder Assessment (1/4 [ 50 ]), Beck Depression Inventory (BDI-II; 1/4) [ 53 ], Beck Anxiety Inventory (BAI; 1/4) [ 53 ], and Perceived Stress Scale (PSS; 1/4) [ 53 ].

Outcome measures also included sleep (2/17) [ 53 , 59 ], assessed by The Pittsburgh Sleep Quality Index (1/2) [ 53 ] and Jenkins sleep scale (1/2) [ 59 ]; and quality of life (2/17) [ 50 , 53 ] as assessed by the EuroQol five-dimensions, five-levels (EQ-5D-5L; 1/2) [ 50 ] and The Quality-of-Life Scale (1/2) [ 53 ]. Self-Efficacy was measured in four studies [ 50 , 53 , 59 , 60 ], assessed by the Brief Coping Orientation to Problems Experienced Scale (bCOPE; 1/4) [ 60 ] and the Chronic Disease Self-Efficacy measure (3/4) [ 50 , 53 , 59 ].

Quantitative evaluation of pacing

Some studies (4/17) [ 25 , 50 , 52 , 63 ] included assessments of the participants’ experiences of pacing, using the Activity Pacing Questionnaire (APQ-28; 1/4 [ 50 ], APQ-38 (2/4) [ 25 , 63 ]), a re-analysis of the 228 question survey regarding treatment (1/4) [ 52 ] originally produced by the ME Association [ 55 ], and qualitative semi-structured telephone interviews regarding appropriateness of courses in relation to individual patient needs (1/4) [ 25 ]. The APQ-28 and -38 have been previously validated, but the 228-question survey has not. When outcome measures included physical activity levels (4/17), the Canadian Occupational Performance Measure (COPM) was used in two studies [ 48 , 51 ], and two studies used accelerometers to record physical activity [ 51 , 54 ]. Of these two studies, Nijs [ 51 ] examined accelerometery after a 3-week intervention based on the Energy Envelope Theory and Brown et al. [ 54 ] evaluated the Energy Envelope Theory of pacing over 12 months.

Other outcomes

Two [ 53 , 59 ] of the 17 studies included structured clinical interviews for the Diagnostic and Statistical Manual of Mental Disorders, 4th edition (DSM-IV) to assess psychiatric comorbidity and psychiatric exclusions. One study included a disability benefits questionnaire [ 55 ], and one study included employment and education questionnaire [ 55 ]. Additionally, satisfaction of primary care was also used as an outcome measure (2/17) [ 25 , 55 ] assessed using the Chronic Pain Coping Inventory (CPCI).

Efficacy of pacing interventions

The majority of studies (12/17) [ 25 , 48 , 50 , 51 , 52 , 53 , 54 , 55 , 56 , 58 , 60 , 63 ] highlighted improvements in at least one outcome following pacing (Fig.  2 ). When the effect of pacing was assessed by ME symptomology and general health outcomes, studies reported pacing to be beneficial [ 25 , 50 , 51 , 53 , 54 , 55 , 56 , 58 ]. It is worth noting however that pacing reportedly worsened ME symptoms in 14% of survey respondents, whilst improving symptoms in 44% of respondents [ 52 ]. Most studies using fatigue as an outcome measure reported pacing to be efficacious (7/10) [ 50 , 51 , 53 , 54 , 56 , 60 , 63 ]. However, one study reported no change in fatigue with a pacing intervention (1/10) [ 35 ], and 2/10 studies [ 53 , 63 ] reported a worsening of fatigue with pacing. Physical function was used to determine the efficacy of pacing in 11 studies [ 35 , 48 , 50 , 51 , 53 , 54 , 56 , 58 , 59 , 60 , 63 ]. Of these, the majority found pacing improved physical functioning (8/10) [ 48 , 50 , 51 , 53 , 54 , 56 , 58 , 60 ], with 1/10 [ 35 ] studies reporting no change in physical functioning, and 1/10 [ 59 ] reporting a worsening of physical functioning from pre- to post-pacing. Of the seven studies [ 35 , 49 , 50 , 51 , 53 , 54 , 60 ] which used pain to assess pacing efficacy, 4/7 [ 50 , 51 , 53 , 60 ] reported improvements in pain and 3/7 [ 35 , 51 , 53 ] reported no change in pain scores with pacing. All studies reporting quality of life (1/1) [ 53 ], self-efficacy (3/3) [ 50 , 53 , 59 ], sleep (2/2) [ 53 , 59 ], and depression and anxiety (4/4) [ 50 , 53 , 59 , 63 ], found pacing to be efficacious for ME/CFS participants.

figure 2

Bubble plot displaying number of studies reporting each domain (x-axis) and the percentage of studies reporting improvement with pacing (y-axis), including a coloured scale of improvement from 0–100%. PEM = post-exertional malaise, 6MWT = 6-min walk time, CFS = chronic fatigue syndrome, DSQ = DePaul Symptom Questionnaire, PA = Physical Activity, HRQOL = Health-related quality of life, COPM = The Canadian Occupational Performance Measure

Participant characteristics

The majority of studies (10/17) [ 25 , 50 , 52 , 53 , 54 , 58 , 59 , 60 , 61 , 63 ] did not report age of the participants. For those which did report age, this ranged from 32 ± 14 to 43 ± 13 years. Where studies reported sex (11/17) [ 35 , 48 , 49 , 50 , 51 , 54 , 55 , 56 , 57 , 58 , 60 ], this was predominantly female, ranging from 75 to 100% female. Only six studies [ 35 , 54 , 56 , 57 , 58 , 60 ] reported ethnicity, with cohorts predominantly Caucasian (94–98%). Time since diagnosis was mostly unreported (12/17) [ 25 , 48 , 49 , 50 , 52 , 53 , 54 , 58 , 59 , 60 , 61 , 63 ] but ranged from 32 to 96 months, with a cross-sectional survey reporting 2% of the participants were diagnosed 1–2 years previously; 6% 3–4 years since diagnosis; 13% 3–4 years since diagnosis; 12% 5–6 years since diagnosis; 20% 7–10 years since diagnosis; 29% 11–21 years since diagnosis; 13% 21–30 years since diagnosis; and 5% > 30 years since diagnosis. Of the studies which reported comorbidities of the participants (6/17) [ 25 , 35 , 50 , 56 , 57 , 63 ], the comorbidities were chronic pain, depressive disorder, psychiatric disorder.

Study location

Of the 17 studies, 14 were from Europe [ 25 , 35 , 48 , 49 , 50 , 51 , 52 , 55 , 56 , 57 , 58 , 59 , 61 , 63 ], and three from North America [ 53 , 54 , 60 ]. Of the 14 studies[ 25 , 35 , 48 , 49 , 50 , 51 , 52 , 55 , 56 , 57 , 58 , 59 , 61 , 63 ] from Europe, ten [ 25 , 35 , 50 , 52 , 55 , 56 , 57 , 58 , 59 , 61 , 63 ] were conducted in the United Kingdom, three in Belgium [ 48 , 49 , 51 ], and one was a multicentred study between the United Kingdom and Norway [ 58 ].

Recruitment strategy

Of the 17 studies, three [ 53 , 54 , 60 ] used announcements in a newspaper and physician referrals to recruit participants, two [ 50 , 63 ] recruited patients referred by a consultant from a National Health Service (NHS) Trust following a pain diagnosis, two [ 52 , 55 ] concerned online platforms on the web, two [ 59 , 61 ] recruited from secondary care clinics, and two used the PACE trial databases [ 56 , 57 ]. Moreover, one study recruited from the hospital [ 58 ], one from physiotherapist referrals [ 25 ], two from specialist clinic centres [ 35 , 64 ], one from waiting list of rehabilitation centre [ 48 ], and one from medical files [ 49 ].

Study settings

Ten studies were carried out in hospital and clinic setting [ 25 , 35 , 48 , 49 , 50 , 51 , 58 , 59 , 61 , 63 ]. Two studies were performed on online platforms [ 52 , 55 ]. Three studies did not report study setting [ 53 , 54 , 60 ]. Two studies generated output from PACE trial databases [ 56 , 57 ]

Adherence and feasibility

All five intervention studies reported adherence rates (which they defined as number of sessions attended), which ranged from 4–44% (4% [ 49 ], 8% [ 35 ], 25% [ 48 ], 29% [ 51 ], and 44% [ 50 ]). One study reported the median number of rehabilitation programme sessions attended was five out of six possible sessions, with 58.9% [ 50 ] participants attending ≥ 5 sessions; 83.2% participants attending at least one educational session on activity pacing and 56.1% attending both activity pacing sessions.

This scoping review summarises the existing literature, with a view to aid physicians and healthcare practitioners better summarise evidence for pacing in ME/CFS and use this knowledge for other post-viral fatiguing conditions. Overall, studies generally reported pacing to be beneficial for people with ME/CFS. The exception to this trend is the controversial PACE trial [ 36 , 37 , 38 , 39 ], which we will expand on in subsequent sections. We believe information generated within this review can facilitate discussion of research opportunities and issues that need to be addressed in future studies concerning pacing, particularly given the immediate public health issue of the long COVID pandemic. As mentioned, we found some preliminary evidence for improved symptoms following pacing interventions or strategies. However, we wish to caution the reader that the current evidence base is extremely limited and hampered by several limitations which preclude clear conclusions on the efficacy of pacing. Firstly, studies were of poor to fair methodological quality (indicated by the PEDro scores), often with small sample sizes, and therefore unknown power to detect change. Moreover, very few studies implemented pacing, with most studies merely consulting on people’s views on pacing. This may of course lead to multiple biases such as reporting, recruitment, survivorship, confirmation, availability heuristic, to name but a few. Thus, there is a pressing need for more high-quality intervention studies. Secondly, the reporting of pacing strategies used was inconsistent and lacked detail, making it difficult to describe current approaches, or implement them in future research or symptom management strategies. Furthermore, outcome evaluations varied greatly between studies. This prevents any appropriate synthesis of research findings.

The lack of evidence concerning pacing is concerning given pacing is the only NICE recommended management strategy for ME/CFS following the 2021 update [ 34 ]. Given the analogous nature of long COVID with ME/CFS, patients and practitioners will be looking to the ME/CFS literature for guidance for symptom management. There is an urgent need for high quality studies (such as RCTs) investigating the effectiveness of pacing and better reporting of pacing intervention strategies so that clear recommendations can be made to patients. If this does not happen soon, there will be serious healthcare and economic implications for years to come [ 65 , 66 ].

Efficacy of pacing

Most studies (12/17) highlighted improvements in at least one outcome measure following pacing. Pacing was self-reported to be the most efficacious, safe, acceptable, and preferred form of activity management for people with ME/CFS [ 55 ]. Pacing was reported to improve symptoms and improve general health outcomes [ 25 , 50 , 52 , 58 , 63 ], fatigue and PEM [ 48 , 50 , 51 , 53 , 54 , 55 , 56 , 60 , 63 ], physical functioning [ 48 , 50 , 51 , 53 , 56 , 58 , 60 , 63 ], pain [ 25 , 50 , 55 , 63 ], quality of life [ 50 ], self-efficacy [ 50 , 53 ], sleep [ 53 , 55 ], and depression and anxiety [ 50 , 53 , 63 ]. These positive findings provide hope for those with ME/CFS, and other chronic fatiguing conditions such as long COVID, to improve quality of life through symptom management.

Conversely, some studies reported no effects of pacing on ME/CFS symptoms [ 52 ], fatigue, physical functioning [ 35 ], or pain scores [ 49 , 61 ]. Some studies even found pacing to have detrimental effects in those with ME/CFS, including a worsening of symptoms in 14% of survey participants recalling previous pacing experiences [ 52 ]. Furthermore, a worsening of fatigue [ 35 , 59 ], and physical functioning from pre- to post-pacing [ 35 , 57 , 59 , 61 ] was reported by the PACE trial and sub-analysis of the PACE trial [ 56 , 57 , 61 ]. The PACE trial [ 35 ], a large RCT (n = 639) comparing pacing with CBT and GET, reported GET and CBT were more effective for reducing ME/CFS-related fatigue and improving physical functioning than pacing. However, the methodology and conclusions from the PACE trial have been heavily criticised, mainly due to the authors lowering the thresholds they used to determine improvement [ 36 , 37 , 38 , 67 ]. With this in mind, Sharpe et al. [ 56 ] surveyed 75% of the participants from the PACE trial 1-year post-intervention and reported pacing improved fatigue and physical functioning, with effects similar to CBT and GET.

Lessons for pacing implementation

All pacing intervention studies (5/5) implemented educational or coaching sessions. These educational components were poorly reported in terms of the specific content and how and where they had been developed, with unclear pedagogical approaches. Consequently, even where interventions reported reduction in PEM or improved symptoms, it would be impossible to transfer that research into practice, future studies, or clinical guidance, given the ambiguity of reporting. Sessions typically contained themes of pacing such as activity adjustment (decrease, break-up, and reschedule activities based on energy levels), activity consistency (maintaining a consistently low level of activity to prevent PEM), activity planning (planning activities and rest around available energy levels), and activity progression (slowly progressing activity once maintaining a steady baseline) [ 35 , 48 , 49 , 50 , 51 ]. We feel it is pertinent to note here that although activity progression has been incorporated as a pacing strategy in these included studies, some view activity progression as a form of GET. The NICE definition of GET is “first establishing an individual's baseline of achievable exercise or physical activity, then making fixed incremental increases in the time spent being physically active” [ 34 ]. Thus, this form of pacing can also be considered a type of ‘long-term GET’ in which physical activity progression is performed over weeks or months with fixed incremental increases in time spent being physically.

Intervention studies attempted to create behaviour change, through educational programmes to modify physical activity, and plan behaviours. However, none of these studies detailed integrating any evidence-based theories of behaviour change [ 68 ] or reported using any frameworks to support behaviour change objectives. This is unfortunate since there is good evidence that theory-driven behaviour change interventions result in greater intervention effects [ 69 ]. Indeed, there is a large body of work regarding methods of behaviour change covering public health messaging, education, and intervention design, which has largely been ignored by the pacing literature. Interventions relied on subjective pacing (5/5 studies), with strategies including keeping an activity diary (3/5 studies) to identify links between activity and fatigue [ 35 , 48 , 50 ]. Given the high prevalence of ‘brain fog’ within ME/CFS [ 70 , 71 , 72 , 73 ], recall may be extremely difficult and there is significant potential for under-reporting. Other strategies included simply asking participants to estimate energy levels available for daily activities (2/5 studies [ 48 , 51 ]). Again, this is subjective and relies on participants’ ability to recall previous consequences of the activity. Other methods of activity tracking and measuring energy availability, such as wearable technology [ 74 , 75 , 76 , 77 , 78 ] could provide a more objective measure of adherence and pacing strategy fidelity in future studies. Despite technology such as accelerometers being widely accessible since well-before the earliest interventional study included in this review (which was published in 2009), none of the interventional studies utilised objective activity tracking to track pacing and provide feedback to participants. One study considered accelerometery alongside an activity diary [ 51 ]. However, accelerometery was considered the outcome variable, to assess change in activity levels from pre- to post-intervention and was not part of the intervention itself (which was one pacing coaching sessions per week for 3 weeks). Moreover, most research-grade accelerometers cannot be used as part of the intervention since they have no ability to provide continuous feedback and must be retrieved by the research team in order to access any data. Consequently, their use is mostly limited to outcome assessments only. As pacing comprises a limit to physical activity to prevent push-crash cycles, it is an astonishing observation from this scoping review that only two studies objectively measured physical activity to quantify changes to activity as a result of pacing [ 51 , 54 ]. If the aim of pacing is to reduce physical activity, or reduce variations in physical activity (i.e., push-crash cycles), only two studies have objectively quantified the effect pacing had on physical activity, so it is unclear whether pacing was successfully implemented in any of the other studies.

By exploring the pacing strategies previously used, in both intervention studies and more exploratory studies, we can identify and recommend approaches to improve symptoms of ME/CFS. These approaches can be categorised as follows: activity planning, activity consistency, activity progression, activity adjustment and staying within the Energy Envelope [ 50 , 53 , 60 , 63 ]. Activity planning was identified as a particularly effective therapeutic strategy, resulting in improvement of mean scores of all symptoms included in the APQ-28, reducing current pain, improvement of physical fatigue, mental fatigue, self-efficacy, quality of life, and mental and physical functioning [ 50 ]. Activity planning aligns with the self-regulatory behaviour change technique ‘Action Planning’ [ 79 ] which is commonly used to increase physical activity behaviour. In the case of ME/CFS, activity planning is successfully used to minimise rather than increase physical activity bouts to prevent expending too much energy and avoid PEM. Activity consistency, meaning undertaking similar amounts of activity each day, was also associated with reduced levels of depression, exercise avoidance, and higher levels of physical function [ 63 ]. Activity progression was associated with higher levels of current pain. Activity adjustment associated with depression and avoidance, and lower levels of physical function [ 63 ]. Staying within the Energy Envelope was reported to reduce PEM severity [ 53 , 60 ], improve physical functioning [ 53 , 60 ] and ME/CFS symptom scores [ 53 ], and more hours engaged in activity than individuals with lower available energy [ 53 ]. These results suggest that effective pacing strategies would include activity planning, consistency, and energy management techniques while avoiding progression. This data is, of course, limited by the small number of mostly low-quality studies and should be interpreted with some caution. Nevertheless, these are considerations that repeatedly appear in the literature and, as such, warrant deeper investigation. In addition, and as outlined earlier, most studies are relatively old, and we urgently need better insight into how modern technologies, particularly longitudinal activity tracking and contemporaneous heart-rate feedback, might improve (or otherwise) adaptive pacing. Such longitudinal tracking would also enable activities and other behaviours (sleep, diet, stress) to be linked to bouts of PEM. Linking would enable a deeper insight into potential PEM triggers and mitigations that might be possible.

The PACE trial

We feel it would be remiss of us to not specifically address the PACE trial within this manuscript, as five of the 17 included studies resulted from the PACE trial [ 35 , 56 , 57 , 59 , 61 ]. There has been considerable discussion around the PACE trial, which has been particularly divisive and controversial [ 37 , 38 , 39 , 59 , 67 , 80 , 81 ]. In the PACE trial, GET and CBT were deemed superior to pacing by the authors. Despite its size and funding, the PACE trial has received several published criticisms and rebuttals. Notably, NICE's most recent ME/CFS guideline update removed GET and CBT as suggested treatment options, which hitherto had been underpinned by the PACE findings. While we will not restate the criticisms and rebuttals here, what is not in doubt, is that the PACE trial has dominated discussions of pacing, representing almost a third of all the studies in this review. However, the trial results were published over a decade ago, with the study protocol devised almost two decades ago [ 82 ]. The intervening time has seen a revolution in the development of mobile and wearable technology and an ability to remotely track activity and provide real-time feedback in a way which was not available at that time. Furthermore, there has been no substantive research since the PACE trial that has attempted such work. Indeed, possibly driven by the reported lack of effect of pacing in the PACE trial, this review has demonstrated the dearth of progress and innovation in pacing research since its publication. Therefore, regardless of its findings or criticisms, the pacing implementation in the PACE trial is dated, and there is an urgent need for more technologically informed approaches to pacing research.

Limitations of the current evidence

The first limitation to the literature included in this scoping review is that not all studies followed the minimum data set (MDS) of patient-reported outcome measures (PROMs) agreed upon by the British Association of CFS/ME Professionals (BACME) (fatigue, sleep quality, self-efficacy, pain/discomfort, anxiety/depression, mobility, activities of daily living, self-care, and illness severity) [ 83 , 84 ]. All but one study included in this review measured illness severity, most studies included fatigue and pain/discomfort, and some studies included assessments of anxiety/depression. There was a lack of quantitative assessment of sleep quality, self-efficacy, mobility, activities of daily living, and self-care. Therefore, studies did not consistently capture the diverse nature of the symptoms experienced, with crucial domains missing from the analyses. The MDS of PROMs were established in 2012 [ 83 , 84 ] and therefore, for studies published out prior to 2012, these are not applicable [ 35 , 49 , 51 , 53 , 54 ]. However, for the 12 studies carried out after this time, the MDS should have been considered elucidate the effects of pacing on ME/CFS. Importantly, despite PEM being a central characteristic of ME/CFS, only two studies included PEM as an outcome measure [ 55 , 60 ]. This may be because of the difficulty of accurately measuring fluctuating symptoms, as PEM occurs multiple times over a period of months, and therefore pre- to post- studies and cross-sectional designs cannot adequately capture PEM incidence. Therefore, it is likely studies opted for measuring general fatigue instead. More appropriate longitudinal study designs are required to track PEM over time to capture a more representative picture of PEM patterns. Secondly, reporting of participant characteristics was inadequate, but in the studies that did describe participants, characteristics were congruent with the epidemiological literature and reporting of ME/CFS populations (i.e., 60–65% female) [ 85 ]. Therefore, in this respect, studies included herein were representative samples. However, the lack of reporting of participant characteristics limits inferences we can draw concerning any population-related effects (i.e. whether older, or male, or European, or people referred by a national health service would be more or less likely to respond positively to pacing). Thirdly, comparison groups (where included) were not ideal, with CBT or GET sometimes used as comparators to pacing [ 35 ], and often no true control group included. Penultimately, there is a distinct lack of high-quality RCTs (as mentioned throughout this manuscript). Finally, in reference to the previous section, inferences from the literature are dated and do not reflect the technological capabilities of 2023.

Recommendations for advancement of the investigative area

It is clear from the studies included in this scoping review for the last decade or more, progress and innovation in pacing research have been limited. This is unfortunate for several reasons. People with ME/CFS or long COVID are, of course, invested in their recovery. From our patient and public involvement (PPI) group engagement, it is clear many are ahead of the research and are using wearable technology to track steps, heart rate, and, in some cases, heart rate variability to improve their own pacing practice. While the lack of progress in the research means this is an understandable response by patients, it is also problematic. Without underpinning research, patients may make decisions based on an individual report of trial-and-error approaches given the lack of evidence-based guidance.

A more technologically-informed pacing approach could be implemented by integrating wearable trackers [ 77 , 78 , 86 , 87 ] to provide participants with live updates on their activity and could be integrated with research-informed messaging aimed at supporting behaviour change, as has been trialled in other research areas [ 88 , 89 , 90 , 91 ]. However, more work is needed to evaluate how to incorporate wearable activity trackers and which metrics are most helpful.

A more technologically-informed approach could also be beneficial for longitudinal symptom tracking, particularly useful given the highly variable symptom loads of ME/CFS and episodic nature of PEM. This would overcome reliance on assessments at a single point in time (as the studies within this review conducted). Similarly, mobile health (mHealth) approaches also allow questionnaires to be digitised to make it easier for participants to complete if they find holding a pen or reading small font problematic [ 92 ]. Reminders and notifications can also be helpful for patients completing tasks [ 77 , 93 , 94 , 95 ]. This approach has the added advantage of allowing contemporaneous data collection rather than relying on pre- to post-intervention designs limited by recall bias. Future work must try to leverage these approaches, as unless we collect large data sets on symptoms and behaviours (i.e. activity, diet, sleep, and pharmacology) in people with conditions like ME/CFS we will not be able to leverage emerging technologies such as AI and machine learning to improve the support and care for people with these debilitating conditions. The key areas for research outline in the NICE guidelines (2021 update) speaks to this, with specific mention of improved self-monitoring strategies, sleep strategies, and dietary strategies, all of which can be measured using mHealth approaches, in a scalable and labour-inexpensive way.

The potential for existing pacing research to address the long COVID pandemic

There is now an urgent public health need to address long COVID, with over 200 million sufferers worldwide [ 30 ]. Given the analogous symptomology between ME/CFS and long COVID, and the lack of promising treatment and management strategies in ME/CFS, pacing remains the only strategy for managing long COVID symptoms. This is concerning as the quality of evidence to support pacing is lacking. Given long COVID has reached pandemic proportions, scalable solutions will be required. In this context, we propose that technology should be harnessed to a) deliver, but also b) evaluate, pacing. We recently reported on a just-in-time adaptive intervention to increase physical activity during the pandemic [ 78 ]. However, this method could be adapted to decrease or maintain physical activity levels (i.e., pacing) in long COVID. This method has the advantage of scalability and remote data collection, reducing resource commitments and participant burden, essential for addressing a condition with so many sufferers.

This review highlights the need for more studies concerning pacing in chronic fatiguing conditions. Future studies would benefit from examining pacing’s effect on symptomology and PEM with objectively quantified pacing, over a longer duration of examination, using the MDS. It is essential this is conducted as an RCT, given that in the case of long COVID, participants may improve their health over time, and it is necessary to determine whether pacing exerts an additional effect over time elapsing. Future studies would benefit from digitising pacing to support individuals with varying symptom severity and personalise support. This would improve accessibility and reduce selection bias, in addition to improving scalability of interventions. Finally, clinicians and practitioners should be cognisant of the strength of evidence reported in this review and should exert caution when promoting pacing in their patients, given the varying methods utilised herein.

Availability of data and materials

The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

Abbreviations

Activity Pacing Questionnaire

Beck Anxiety Inventory

Beck Depression Inventory

Brief Coping Orientation to Problems Experienced Scale

Canadian Occupational Performance Measure

Centers for disease control and prevention

Chalder Fatigue Questionnaire

Checklist Individual Strength

Chronic Pain Coping Inventory

Cognitive behavioural therapy

Cochrane Central Register of Controlled Trials

DePaul symptom questionnaire

EuroQol five-dimensions, five-levels questionnaire

Graded exercise therapy

Hospital Anxiety and Depression Scale

Myalgic encephalomyelitis/chronic fatigue syndrome

Pain Self Efficacy Questionnaire

Pain Anxiety Symptoms Scale short version

Pain Numerical Rating Scale

Patient health questionnaire

Patient reported outcome measures

Physiotherapy Evidence Database

Perceived Stress Scale

Post exertional malaise

Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for scoping reviews

Randomised control trial

McMurray JC, May JW, Cunningham MW, Jones OY. Multisystem Inflammatory Syndrome in Children (MIS-C), a post-viral myocarditis and systemic vasculitis-a critical review of its pathogenesis and treatment. Front Pediatr. 2020;8: 626182.

Article   PubMed   PubMed Central   Google Scholar  

Perrin R, Riste L, Hann M, Walther A, Mukherjee A, Heald A. Into the looking glass: post-viral syndrome post COVID-19. Med Hypotheses. 2020;144: 110055.

Article   PubMed   PubMed Central   CAS   Google Scholar  

Hayes LD, Ingram J, Sculthorpe NF. More than 100 persistent symptoms of SARS-CoV-2 (Long COVID): A scoping review. Front Med. 2021. https://doi.org/10.3389/fmed.2021.750378 .

Article   Google Scholar  

McLaughlin M, Cerexhe C, Macdonald E, Ingram J, Sanal-Hayes NEM, Hayes LD, et al. A Cross-sectional study of symptom prevalence, frequency, severity, and impact of long-COVID in Scotland: part I. Am J Med. 2023. https://doi.org/10.1016/j.amjmed.2023.07.009 .

Article   PubMed   Google Scholar  

McLaughlin M, Cerexhe C, Macdonald E, Ingram J, Sanal-Hayes NEM, Hayes LD, et al. A cross-sectional study of symptom prevalence, frequency, severity, and impact of long-COVID in Scotland: part II. Am J Med. 2023. https://doi.org/10.1016/j.amjmed.2023.07.009 .

Hayes LD, Sanal-Hayes NEM, Mclaughlin M, Berry ECJ, Sculthorpe NF. People with long covid and ME/CFS exhibit similarly impaired balance and physical capacity: a case-case-control study. Am J Med. 2023;S0002–9343(23):00465–75.

Google Scholar  

Jenkins R. Post-viral fatigue syndrome. Epidemiology: lessons from the past. Br Med Bull. 1991;47:952–65.

Article   PubMed   CAS   Google Scholar  

Sandler CX, Wyller VBB, Moss-Morris R, Buchwald D, Crawley E, Hautvast J, et al. Long COVID and post-infective fatigue syndrome: a review. Open Forum Infect Dis. 2021;8:440.

Carod-Artal FJ. Post-COVID-19 syndrome: epidemiology, diagnostic criteria and pathogenic mechanisms involved. Rev Neurol. 2021;72:384–96.

PubMed   CAS   Google Scholar  

Ballering AV, van Zon SKR, Olde Hartman TC, Rosmalen JGM. Lifelines corona research initiative. Persistence of somatic symptoms after COVID-19 in the Netherlands: an observational cohort study. Lancet. 2022;400:452–61.

Wong TL, Weitzer DJ. Long COVID and Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS)-a systemic review and comparison of clinical presentation and symptomatology. Medicina (Kaunas). 2021;57:418.

Sukocheva OA, Maksoud R, Beeraka NM, Madhunapantula SV, Sinelnikov M, Nikolenko VN, et al. Analysis of post COVID-19 condition and its overlap with myalgic encephalomyelitis/chronic fatigue syndrome. J Adv Res. 2021. https://doi.org/10.1016/j.jare.2021.11.013 .

Bonilla H, Quach TC, Tiwari A, Bonilla AE, Miglis M, Yang P, et al. Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is common in post-acute sequelae of SARS-CoV-2 infection (PASC): results from a post-COVID-19 multidisciplinary clinic. medrxiv. 2022. https://doi.org/10.1101/2022.08.03.22278363v1 .

Twomey R, DeMars J, Franklin K, Culos-Reed SN, Weatherald J, Wrightson JG. Chronic fatigue and postexertional malaise in people living with long COVID: an observational study. Phys Ther. 2022;102:005.

Barhorst EE, Boruch AE, Cook DB, Lindheimer JB. Pain-related post-exertional malaise in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) and fibromyalgia: a systematic review and three-level meta-analysis. Pain Med. 2022;23:1144–57.

Goudsmit EM. The psychological aspects and management of chronic fatigue syndrome [Internet] [Thesis]. Brunel University, School of Social Sciences; 1996 [cited 2022 Jan 20]. https://scholar.google.co.uk/scholar_url?url=https://bura.brunel.ac.uk/bitstream/2438/4283/1/FulltextThesis.pdf&hl=en&sa=X&ei=kNYjZdeuA4-8ywTAmKmADQ&scisig=AFWwaeZvdxcuHmzGL08L3jp-QwNn&oi=scholarr . Accessed 2 Aug 2022

Stussman B, Williams A, Snow J, Gavin A, Scott R, Nath A, et al. Characterization of post-exertional malaise in patients with myalgic encephalomyelitis/chronic fatigue syndrome. Front Neurol. 2020;11:1025.

Holtzman CS, Bhatia KP, Cotler J, La J. Assessment of Post-Exertional Malaise (PEM) in Patients with Myalgic Encephalomyelitis (ME) and Chronic Fatigue Syndrome (CFS): a patient-driven survey. Diagnostics. 2019. https://doi.org/10.3390/diagnostics9010026 .

Fukuda K, Straus SE, Hickie I, Sharpe MC, Dobbins JG, Komaroff A. The chronic fatigue syndrome: a comprehensive approach to its definition and study. International Chronic Fatigue Syndrome Study Group. Ann Intern Med. 1994;121:953–9.

Carruthers BM, van de Sande MI, De Meirleir KL, Klimas NG, Broderick G, Mitchell T, et al. Myalgic encephalomyelitis: international consensus criteria. J Intern Med. 2011;270:327–38.

Carruthers JD, Lowe NJ, Menter MA, Gibson J, Eadie N, Botox Glabellar Lines II Study Group. Double-blind, placebo-controlled study of the safety and efficacy of botulinum toxin type A for patients with glabellar lines. Plast Reconstr Surg. 2003;112:1089–98.

Jason LA, Jordan K, Miike T, Bell DS, Lapp C, Torres-Harding S, et al. A pediatric case definition for myalgic encephalomyelitis and chronic fatigue syndrome. J Chronic Fatigue Syndrome. 2006;13:1–44.

Goudsmit EM, Nijs J, Jason LA, Wallman KE. Pacing as a strategy to improve energy management in myalgic encephalomyelitis/chronic fatigue syndrome: a consensus document. Disabil Rehabil. 2012;34:1140–7.

Antcliff D, Keenan A-M, Keeley P, Woby S, McGowan L. Engaging stakeholders to refine an activity pacing framework for chronic pain/fatigue: a nominal group technique. Musculoskeletal Care. 2019;17:354–62.

Antcliff D, Keeley P, Campbell M, Woby S, McGowan L. Exploring patients’ opinions of activity pacing and a new activity pacing questionnaire for chronic pain and/or fatigue: a qualitative study. Physiotherapy. 2016;102:300–7.

Yoshiuchi K, Cook DB, Ohashi K, Kumano H, Kuboki T, Yamamoto Y, et al. A real-time assessment of the effect of exercise in chronic fatigue syndrome. Physiol Behav. 2007;92:963–8.

Davenport TE, Stevens SR, Baroni K, Van Ness M, Snell CR. Diagnostic accuracy of symptoms characterising chronic fatigue syndrome. Disabil Rehabil. 2011;33:1768–75.

Nurek M, Rayner C, Freyer A, Taylor S, Järte L, MacDermott N, Delaney BC, Panellists D, et al. Recommendations for the recognition, diagnosis, and management of long COVID: a Delphi study. Br J Gen Pract. 2021. https://doi.org/10.3399/BJGP.2021.0265 .

Herrera JE, Niehaus WN, Whiteson J, Azola A, Baratta JM, Fleming TK, Kim SY, Naqvi H, Sampsel S, Silver JK, Gutierrez MV, Maley J, Herman E, Abramoff Benjamin, et al. Multidisciplinary collaborative consensus guidance statement on the assessment and treatment of fatigue in postacute sequelae of SARS-CoV-2 infection (PASC) patients. PM & R. 2021. https://doi.org/10.1002/pmrj.12684 .

Chen C, Haupert SR, Zimmermann L, Shi X, Fritsche LG, Mukherjee B. Global prevalence of post COVID-19 condition or long COVID: a meta-analysis and systematic review. J Infect Dis. 2022. https://doi.org/10.1093/infdis/jiac136 .

Office for National Statistics. Prevalence of ongoing symptoms following coronavirus (COVID-19) infection in the UK [Internet]. https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/conditionsanddiseases/bulletins/prevalenceofongoingsymptomsfollowingcoronaviruscovid19infectionintheuk/7july2022 . Accessed 2 Aug 2022

Office for National Statistics. Prevalence of ongoing symptoms following coronavirus (COVID-19) infection in the UK [Internet]. [cited 2022 Apr 1]. https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/conditionsanddiseases/bulletins/prevalenceofongoingsymptomsfollowingcoronaviruscovid19infectionintheuk/3march2022

Baker R, Shaw EJ. Diagnosis and management of chronic fatigue syndrome or myalgic encephalomyelitis (or encephalopathy): summary of NICE guidance. BMJ. 2007;335:446–8.

NICE. Overview | Myalgic encephalomyelitis (or encephalopathy)/chronic fatigue syndrome: diagnosis and management | Guidance | NICE [Internet]. NICE; [cited 2022 Aug 22]. https://www.nice.org.uk/guidance/ng206 . Accessed 2 Aug 2022

White P, Goldsmith K, Johnson A, Potts L, Walwyn R, DeCesare J, et al. Comparison of adaptive pacing therapy, cognitive behaviour therapy, graded exercise therapy, and specialist medical care for chronic fatigue syndrome (PACE): a randomised trial. The Lancet. 2011;377:823–36.

Article   CAS   Google Scholar  

Vink M. PACE trial authors continue to ignore their own null effect. J Health Psychol. 2017;22:1134–40.

Petrie K, Weinman J. The PACE trial: it’s time to broaden perceptions and move on. J Health Psychol. 2017;22:1198–200.

Stouten B. PACE-GATE: an alternative view on a study with a poor trial protocol. J Health Psychol. 2017;22:1192–7.

Agardy S. Chronic fatigue syndrome patients have no reason to accept the PACE trial results: response to Keith J Petrie and John Weinman. J Health Psychol. 2017;22:1206–8.

Kim D-Y, Lee J-S, Park S-Y, Kim S-J, Son C-G. Systematic review of randomized controlled trials for chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME). J Transl Med. 2020;18:7.

Twisk FNM, Maes M. A review on cognitive behavorial therapy (CBT) and graded exercise therapy (GET) in myalgic encephalomyelitis (ME) / chronic fatigue syndrome (CFS): CBT/GET is not only ineffective and not evidence-based, but also potentially harmful for many patients with ME/CFS. Neuro Endocrinol Lett. 2009;30:284–99.

PubMed   Google Scholar  

Mays N, Roberts E, Popay J. Synthesising research evidence. In: Fulop N, Allen P, Clarke A, Black N, editors. Studying the organisation and delivery of health services: research methods. London: Routledge; 2001. p. 188–220.

Munn Z, Peters MDJ, Stern C, Tufanaru C, McArthur A, Aromataris E. Systematic review or scoping review? Guidance for authors when choosing between a systematic or scoping review approach. BMC Med Res Methodol. 2018;18:143.

Arksey H, O’Malley L. Scoping studies: towards a methodological framework. Int J Soc Res Methodol. 2005;8:19–32.

Tricco AC, Lillie E, Zarin W, O’Brien KK, Colquhoun H, Levac D, et al. PRISMA extension for scoping reviews (PRISMA-ScR): checklist and explanation. Ann Intern Med. 2018;169:467–73.

de Morton NA. The PEDro scale is a valid measure of the methodological quality of clinical trials: a demographic study. Aust J Physiother. 2009;55:129–33.

Maher CG, Sherrington C, Herbert RD, Moseley AM, Elkins M. Reliability of the PEDro scale for rating quality of randomized controlled trials. Phys Ther. 2003;83:713–21.

Kos D, van Eupen I, Meirte J, Van Cauwenbergh D, Moorkens G, Meeus M, et al. Activity pacing self-management in chronic fatigue syndrome: a randomized controlled trial. Am J Occup Ther. 2015;69:6905290020.

Meeus M, Nijs J, Van Oosterwijck J, Van Alsenoy V, Truijen S. Pain physiology education improves pain beliefs in patients with chronic fatigue syndrome compared with pacing and self-management education: a double-blind randomized controlled trial. Arch Phys Med Rehabil. 2010;91:1153–9.

Antcliff D, Keenan A-M, Keeley P, Woby S, McGowan L. Testing a newly developed activity pacing framework for chronic pain/fatigue: a feasibility study. BMJ Open. 2021;11: e045398.

Nijs J, van Eupen I, Vandecauter J, Augustinus E, Bleyen G, Moorkens G, et al. Can pacing self-management alter physical behavior and symptom severity in chronic fatigue syndrome? A case series. J Rehabil Res Dev. 2009;46:985–96.

Geraghty K, Hann M, Kurtev S. Myalgic encephalomyelitis/chronic fatigue syndrome patients’ reports of symptom changes following cognitive behavioural therapy, graded exercise therapy and pacing treatments: Analysis of a primary survey compared with secondary surveys. J Health Psychol. 2019;24:1318–33.

Jason L, Muldowney K, Torres-Harding S. The energy envelope theory and myalgic encephalomyelitis/chronic fatigue syndrome. AAOHN J. 2008;56:189–95.

Brown M, Khorana N, Jason LA. The role of changes in activity as a function of perceived available and expended energy in non-pharmacological treatment outcomes for ME/CFS. J Clin Psychol. 2011;67:253.

Association ME. ME/CFS illness management survey results:‘“No decisions about me without me.” Part 1: Results and in-depth analysis of the 2012 ME association patient survey examining the acceptability, efficacy and safety of cognitive behavioural therapy, graded exercise therapy and pacing, as interventions used as management strategies for ME/CFS. 2015. https://www.meassociation.org.uk/wp-content/uploads/NO-DECISIONS-WITHOUT-ME-report.docx . Accessed 2 Feb 2022

Sharpe M, Goldsmith KA, Johnson AL, Chalder T, Walker J, White PD. Rehabilitative treatments for chronic fatigue syndrome: long-term follow-up from the PACE trial. The Lancet Psychiatry. 2015;2:1067–74.

White PD, Goldsmith K, Johnson AL, Chalder T, Sharpe M. Recovery from chronic fatigue syndrome after treatments given in the PACE trial. Psychol Med. 2013;43:2227–35.

O’connor K, Sunnquist M, Nicholson L, Jason LA, Newton JL, Strand EB. Energy envelope maintenance among patients with myalgic encephalomyelitis and chronic fatigue syndrome: Implications of limited energy reserves. Chronic Illn. 2019;15:51–60.

Dougall D, Johnson A, Goldsmith K, Sharpe M, Angus B, Chalder T, et al. Adverse events and deterioration reported by participants in the PACE trial of therapies for chronic fatigue syndrome. J Psychosom Res. 2014;77:20–6.

Brown AA, Evans MA, Jason LA. Examining the energy envelope and associated symptom patterns in chronic fatigue syndrome: does coping matter? Chronic Illn. 2013;9:302–11.

Bourke JH, Johnson AL, Sharpe M, Chalder T, White PD. Pain in chronic fatigue syndrome: response to rehabilitative treatments in the PACE trial. Psychol Med. 2014;44:1545–52.

Jason LA, Brown M, Brown A, Evans M, Flores S, Grant-Holler E, et al. Energy conservation/envelope theory interventions to help patients with myalgic encephalomyelitis/chronic fatigue syndrome. Fatigue. 2013;1:27–42.

Antcliff D, Campbell M, Woby S, Keeley P. Activity pacing is associated with better and worse symptoms for patients with long-term conditions. Clin J Pain. 2017;33:205–14.

Nijs T, Klein Y, Mousavi S, Ahsan A, Nowakowska S, Constable E, et al. The different faces of 4’-Pyrimidinyl-Functionalized 4,2’:6’,4"-Terpyridin es: metal-organic assemblies from solution and on Au(111) and Cu(111) surface platforms. J Am Chem Soc. 2018;140:2933–9.

Cutler DM, Summers LH. The COVID-19 pandemic and the $16 Trillion Virus. JAMA. 2020;324:1495–6.

Cutler DM. The costs of long COVID. JAMA Health Forum. 2022;3:e221809–e221809.

Geraghty K. ‘PACE-Gate’: when clinical trial evidence meets open data access. J Health Psychol. 2017;22:1106–12.

Davis R, Campbell R, Hildon Z, Hobbs L, Michie S. Theories of behaviour and behaviour change across the social and behavioural sciences: a scoping review. Health Psychol Rev. 2015;9:323–44.

Prestwich A, Sniehotta FF, Whittington C, Dombrowski SU, Rogers L, Michie S. Does theory influence the effectiveness of health behavior interventions? Meta-analysis Health Psychol. 2014;33:465–74.

Balinas C, Eaton-Fitch N, Maksoud R, Staines D, Marshall-Gradisnik S. Impact of life stressors on Myalgic encephalomyelitis/chronic fatigue syndrome symptoms: an Australian longitudinal study. Int J Environ Res Public Health. 2021;18:10614.

McGregor NR, Armstrong CW, Lewis DP, Gooley PR. Post-exertional malaise is associated with hypermetabolism, hypoacetylation and purine metabolism deregulation in ME/CFS cases. Diagnostics. 2019;9:70.

Nacul LC, Lacerda EM, Campion P, Pheby D, de Drachler M, Leite JC, et al. The functional status and well being of people with myalgic encephalomyelitis/chronic fatigue syndrome and their carers. BMC Public Health. 2011;11:402.

Deumer U-S, Varesi A, Floris V, Savioli G, Mantovani E, López-Carrasco P, et al. Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS): an overview. J Clin Med. 2021. https://doi.org/10.3390/jcm10204786 .

Düking P, Giessing L, Frenkel MO, Koehler K, Holmberg H-C, Sperlich B. Wrist-worn wearables for monitoring heart rate and energy expenditure while sitting or performing light-to-vigorous physical activity: validation study. JMIR Mhealth Uhealth. 2020;8: e16716.

Falter M, Budts W, Goetschalckx K, Cornelissen V, Buys R. Accuracy of apple watch measurements for heart rate and energy expenditure in patients with cardiovascular disease: cross-sectional study. JMIR Mhealth Uhealth. 2019;7: e11889.

Fuller D, Colwell E, Low J, Orychock K, Tobin MA, Simango B, et al. Reliability and validity of commercially available wearable devices for measuring steps, energy expenditure, and heart rate: systematic review. JMIR Mhealth Uhealth. 2020;8: e18694.

Mair JL, Hayes LD, Campbell AK, Sculthorpe N. Should we use activity tracker data from smartphones and wearables to understand population physical activity patterns? J Measur Phys Behav. 2022;1:1–5.

Mair JL, Hayes LD, Campbell AK, Buchan DS, Easton C, Sculthorpe N. A personalized smartphone-delivered just-in-time adaptive intervention (JitaBug) to increase physical activity in older adults: mixed methods feasibility study. JMIR Formative Res. 2022;6: e34662.

Michie S, Richardson M, Johnston M, Abraham C, Francis J, Hardeman W, et al. The behavior change technique taxonomy (v1) of 93 hierarchically clustered techniques: building an international consensus for the reporting of behavior change interventions. Ann Behav Med. 2013;46:81–95.

Feehan SM. The PACE trial in chronic fatigue syndrome. The Lancet. 2011;377:1831–2.

Giakoumakis J. The PACE trial in chronic fatigue syndrome. The Lancet. 2011;377:1831.

White PD, Sharpe MC, Chalder T, DeCesare JC, Walwyn R, PACE trial group. Protocol for the PACE trial: a randomised controlled trial of adaptive pacing, cognitive behaviour therapy, and graded exercise, as supplements to standardised specialist medical care versus standardised specialist medical care alone for patients with the chronic fatigue syndrome/myalgic encephalomyelitis or encephalopathy. BMC Neurol. 2007;7:6.

Reuben DB, Tinetti ME. Goal-oriented patient care–an alternative health outcomes paradigm. N Engl J Med. 2012;366:777–9.

Roberts D. Chronic fatigue syndrome and quality of life. PROM. 2018;9:253–62.

Valdez AR, Hancock EE, Adebayo S, Kiernicki DJ, Proskauer D, Attewell JR, et al. Estimating prevalence, demographics, and costs of ME/CFS using large scale medical claims data and machine learning. Front Pediatr. 2019. https://doi.org/10.3389/fped.2018.00412 .

Greiwe J, Nyenhuis SM. Wearable technology and how this can be implemented into clinical practice. Curr Allergy Asthma Rep. 2020;20:36.

Sun S, Folarin AA, Ranjan Y, Rashid Z, Conde P, Stewart C, et al. Using smartphones and wearable devices to monitor behavioral changes during COVID-19. J Med Internet Res. 2020;22: e19992.

Hardeman W, Houghton J, Lane K, Jones A, Naughton F. A systematic review of just-in-time adaptive interventions (JITAIs) to promote physical activity. Int J Behav Nutr Phys Act. 2019;16:31.

Perski O, Hébert ET, Naughton F, Hekler EB, Brown J, Businelle MS. Technology-mediated just-in-time adaptive interventions (JITAIs) to reduce harmful substance use: a systematic review. Addiction. 2022;117:1220–41.

AhmedS A, van Luenen S, Aslam S, van Bodegom D, Chavannes NH. A systematic review on the use of mHealth to increase physical activity in older people. Clinical eHealth. 2020;3:31–9.

Valenzuela T, Okubo Y, Woodbury A, Lord SR, Delbaere K. Adherence to technology-based exercise programs in older adults: a systematic review. J Geriatric Phys Ther. 2018;41:49–61.

Bowling A. Mode of questionnaire administration can have serious effects on data quality. J Public Health. 2005;27:281–91.

Burns SP, Terblanche M, Perea J, Lillard H, DeLaPena C, Grinage N, et al. mHealth intervention applications for adults living with the effects of stroke: a scoping review. Arch Rehabil Res Clin Transl. 2021;3: 100095.

Vandelanotte C, Müller AM, Short CE, Hingle M, Nathan N, Williams SL, et al. Past, present, and future of eHealth and mHealth research to improve physical activity and dietary behaviors. J Nutr Educ Behav. 2016;48:219-228.e1.

Ludwig K, Arthur R, Sculthorpe N, Fountain H, Buchan DS. Text messaging interventions for improvement in physical activity and sedentary behavior in youth: systematic review. JMIR Mhealth Uhealth. 2018;6:e10799.

Download references

Acknowledgements

We have no acknowledgements to make.

Open access funding provided by Swiss Federal Institute of Technology Zurich. This work was supported by grants from the National Institute for Health and Care Research (COV-LT2-0010) and the funder had no role in the conceptualisation, design, data collection, analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and affiliations.

Sport and Physical Activity Research Institute, School of Health and Life Sciences, University of the West of Scotland, Glasgow, UK

Nilihan E. M. Sanal-Hayes, Marie Mclaughlin, Lawrence D. Hayes, David Carless, Rachel Meach & Nicholas F. Sculthorpe

Future Health Technologies, Singapore-ETH Centre, Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, Singapore

Jacqueline L. Mair

Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore

Long COVID Scotland, 12 Kemnay Place, Aberdeen, UK

Jane Ormerod

Physios for ME, London, UK

Natalie Hilliard

School of Education and Social Sciences, University of the West of Scotland, Glasgow, UK

Joanne Ingram

School of Health and Society, University of Salford, Salford, UK

Nilihan E. M. Sanal-Hayes

School of Sport, Exercise & Rehabilitation Sciences, University of Hull, Hull, UK

Marie Mclaughlin

You can also search for this author in PubMed   Google Scholar

Contributions

Authors’ contributions are given according to the CRediT taxonomy as follows: Conceptualization, N.E.M.S–H., M.M., L.D.H, and N.F.S.; methodology, N.E.M.S–H., M.M., L.D.H., and N.F.S.; software, N.E.M.S–H., M.M., L.D.H., and N.F.S.B.; validation, N.E.M.S–H., M.M., L.D.H, and N.F.S.; formal analysis, N.E.M.S–H., M.M., L.D.H., and N.F.S.; investigation, N.E.M.S–H., M.M., L.D.H., and N.F.S.; resources, L.D.H., J.O., D.C., N.H., J.L.M., and N.F.S.; data curation, N.E.M.S.-H., M.M., L.D.H., and N.F.S.; writing—original draft preparation, N.E.M.S.-H., M.M., L.D.H., and N.F.S.; writing—review and editing, N.E.M.S–H., M.M., L.D.H., J.O., D.C., N.H., R.M., J.L.M., J.I., and N.F.S.; visualisation, N.E.M.S–H. and M.M., supervision, N.F.S; project administration, N.E.M.S–H., M.M., L.D.H., and N.F.S.; funding acquisition, L.D.H., J.O., D.C., N.H., J.L.M., J.I., and N.F.S. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Jacqueline L. Mair .

Ethics declarations

Ethical approval and content to participate.

This manuscript did not involve human participants, data, or tissues, so did not require ethical approval.

Consent for publication

This paper does not contain any individual person’s data in any form.

Competing interests

We report no financial and non-financial competing interests.

Additional information

Publisher's note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Additional file 1..

Supplementary file 1. Full search string for databse searching.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ . The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/ ) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Reprints and permissions

About this article

Cite this article.

Sanal-Hayes, N.E.M., Mclaughlin, M., Hayes, L.D. et al. A scoping review of ‘Pacing’ for management of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS): lessons learned for the long COVID pandemic. J Transl Med 21 , 720 (2023). https://doi.org/10.1186/s12967-023-04587-5

Download citation

Received : 30 June 2023

Accepted : 03 October 2023

Published : 14 October 2023

DOI : https://doi.org/10.1186/s12967-023-04587-5

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Myalgic encephalomyelitis
  • Chronic fatigue syndrome
  • Post-exertional malaise

Journal of Translational Medicine

ISSN: 1479-5876

  • Submission enquiries: Access here and click Contact Us
  • General enquiries: [email protected]

review of education research journal

IMAGES

  1. Buy Review of Educational Research Journal Subscription

    review of education research journal

  2. (PDF) International Journal of Educational Research

    review of education research journal

  3. Review of Educational Research: SAGE Journals

    review of education research journal

  4. International Journal of Development Education and Global Learning

    review of education research journal

  5. World Journal of Education

    review of education research journal

  6. Journal of Research in Innovative Teaching & Learning

    review of education research journal

VIDEO

  1. education review 1

  2. Research, Educational research

  3. Educational research

  4. Why PhD Students Leave India

  5. Impact of Educational Research: P David Pearson, PhD

  6. GENERAL EDUCATION SOCIAL SCIENCE & RESEARCH 2024 DRILLS FOR MARCH LET REVIEW DRILLS

COMMENTS

  1. Review of Educational Research: Sage Journals

    The Review of Educational Research (RER) publishes critical, integrative reviews of research literature bearing on education, including conceptualizations, interpretations, and syntheses of literature and scholarly work in a field broadly relevant to education and educational research. View full journal description.

  2. Review of Educational Research

    The Review of Educational Research ( RER, bimonthly, begun in 1931) publishes critical, integrative reviews of research literature bearing on education. Such reviews should include conceptualizations, interpretations, and syntheses of literature and scholarly work in a field broadly relevant to education and educational research.

  3. Review of Education

    Review of Education is the only journal outlet for publication of both major studies and substantial reviews in education, and comprehensive Research Syntheses (8,000 to 20,000 words). Review of Education publishes supplementary materials alongside articles, such as video abstracts and teaching resources, allowing you to maximize the impact of ...

  4. Review of Educational Research

    Review of Educational Research (RER) publishes critical, integrative reviews of research literature bearing on education. Such reviews should include conceptualizations, interpretations, and syntheses of literature and scholarly work in a field. ... the current year is not counted. For example, if the current year is 2008 and a journal has a 5 ...

  5. Review of Educational Research

    The Review of Educational Research is a bimonthly peer-reviewed review journal published by SAGE Publications on behalf of the American Educational Research Association.It was established in 1931 and covers all aspects of education and educational research.The journal's co-editors are Mildred Boveda, Karly Sarita Ford, Erica Frankenberg, and Francesca López (Pennsylvania State University).

  6. Educational Research Review

    The Journal of the European Association for Research on Learning and Instruction (EARLI) Educational Research Review is an international journal addressed to researchers and various agencies interested in the review of studies and theoretical papers in education at any level.The journal accepts high quality articles that are solving educational research problems by using a review approach.

  7. Review of Educational Research

    The Review of Educational Research publishes critical, integrative reviews of research literature bearing on education. Such reviews should include conceptualizations, interpretations, and syntheses of literature and scholarly work in a field broadly relevant to education and educational research. RER encourages the submission of research ...

  8. Harvard Educational Review

    Description. The Harvard Educational Review (HER) is a scholarly journal of opinion and research in education. The Editorial Board aims to publish pieces from interdisciplinary and wide-ranging fields that advance our understanding of educational theory, equity, and practice. HER encourages submissions from established and emerging scholars, as ...

  9. Review of Research in Education

    Search the journal. Review of Research in Education (RRE) is a periodical volume that provides an overview and analysis of selected areas of relevant research through critical and synthesizing essays. The editor of RRE, in close consultation with its editorial board, plays a critical role in reviewing and defining the current state of knowledge ...

  10. Overview

    Review of Education is an international peer reviewed journal for the publication of major and substantial articles of interest to researchers in education. It is a growing focal point for the publication of educational research from throughout the world, and on topics of international interest. It is one of the journals in the major portfolio ...

  11. Oxford Review of Education

    The Oxford Review of Education is a well-established journal with an extensive international readership.It is committed to cultivating educational scholarship across a wide range of academic disciplines. The Editors welcome articles reporting significant new research as well as contributions of a more conceptual or theoretical nature.

  12. Author Guidelines

    Author Guidelines. Introduction Review of Education: An International Journal of Major Studies in Education (RoE) is an online journal launched by the British Educational Research Association and Wiley-Blackwell. RoE specialises in publishing reports on major studies, substantial reviews and syntheses, with a genuinely international reach and orientation.

  13. Educational Review

    Educational Review is a leading research journal for generic educational scholarship. For almost seventy-five years it has offered cutting-edge scholarly analyses of global issues in all phases of education, formal and informal, in order to rethink and shape the future of education. It publishes peer-reviewed papers from international ...

  14. PDF Conducting a Systematic Literature Review in Education: A Basic A

    rapid review, scoping review; Grant & Booth, 2009), we believe that systematic literature review (SLR) is especially approachable for novice researchers as it follows a rigorous methodological procedure (Fink, 2019) that lends itself well to description.

  15. The Journal of Educational Research

    The Journal of Educational Research is a well-known and respected periodical that reaches an international audience of educators and others concerned with cutting-edge theories and proposals. For more than 100 years, the journal has contributed to the advancement of educational practice in elementary and secondary schools by judicious study of the latest trends, examination of new procedures ...

  16. Frontiers

    To ensure the quality of the literature, we selected only peer-reviewed journal articles published in English in the last decade. The main purpose of this article was to review the impact of VR on student engagement. Therefore, we selected only review articles on the impact of VR on student engagement in educational settings.

  17. Aims and Scope: Review of Educational Research: Sage Journals

    Impact of the Article. The review should be seen as an important contribution and tool for the many different educators dealing with the educational problems and issues confronting society. 5. Advancement of the Field. The review should validate or inform the knowledge of researchers and guide and improve the quality of their research and ...

  18. ERIC

    Aim/Purpose: This study aimed to evaluate the extant research on data science education (DSE) to identify the existing gaps, opportunities, and challenges, and make recommendations for current and future DSE. Background: There has been an increase in the number of data science programs especially because of the increased appreciation of data as a multidisciplinary strategic resource.

  19. Review of Educational Research

    The Review of Educational Research ( RER, quarterly, begun in 1931; approximately 640 pp./volume year) publishes critical, integrative reviews of research literature bearing on education. Such reviews should include conceptualizations, interpretations, and syntheses of literature and scholarly work in a field broadly relevant to education and ...

  20. Submission Guidelines: Review of Educational Research: Sage Journals

    The Review of Educational Research (RER) publishes comprehensive reviews of literature related to education and does not publish new empirical work, except in the context of meta-analytic reviews of an area. Please check the journal's Aims and Scope to see if your manuscript is appropriate to submit to RER.

  21. Open Review of Educational Research

    Open Review of Educational Research publishes papers from a multidisciplinary perspective, accepting both quantitative and qualitative studies, as well as articles that employ historical or philosophical orientations.The Journal will be underpinned by an approach to educational studies and research that is committed to the principles of openness in education and research, and by philosophies ...

  22. A scoping review of 'Pacing' for management of Myalgic

    Rationale. Post-viral illness occurs when individuals experience an extended period of feeling unwell after a viral infection [1,2,3,4,5,6].While post-viral illness is generally a non-specific condition with a constellation of symptoms that may be experienced, fatigue is amongst the most commonly reported [7,8,9].For example, our recent systematic review found there was up to 94% prevalence of ...

  23. Review of Undoing the Grade: Why We Grade, and How to Stop: Journal of

    Journal of Political Science Education ... Books, Teaching Tools, and Educational Resources. Review of Undoing the Grade: Why We Grade, and How to Stop By Jesse Stommel. Denver, CO: Hybrid Pedagogy Inc., 2023. 155p, $21.95 (paperback), ISBN: 979-8986676425 ... Her research investigates the intersections of policymaking and public discourses in ...

  24. A growing understanding of the link between movement and health

    Since the pandemic, which accelerated the shift to a virtual existence, people are moving less than ever, Gibbs said. Just 1 in 4 men and 1 in 5 women and adolescents currently get the recommended amount of aerobic and muscle-strengthening exercise, the federal guidelines say. "We have engineered physical activity out of our lives," Gibbs said.

  25. Review of Educational Research

    A Critical Review of Educator and Disability Research in Mathematics Education: A Decade of Dehumanizing Waves and Humanizing Wakes. Paulo Tan. Alexis Padilla. Rachel Lambert. Preview abstract. xml PDF / EPUB. Open Access Research article First published April 6, 2022 pp. 911-952.

  26. Going Beyond Adaptation: An Integrative Review and Ethical

    Education research has followed the same trend by increasingly collecting qualitative data from children of primary school age to study growing research topics such as student well-being (Buchanan et al., 2023) or problem-solving competencies (Celebioglu & Ezentaş, 2011), but there is little discussion about methodological challenges ...