Eat, Sleep, Wander

5 Examples of Problem Solving Scenarios + ROLE PLAY SCRIPTS

Problem-solving is an essential skill in our daily lives. It enables us to analyze situations, identify challenges, and find suitable solutions. In this article, we’ll explore five real-life problem-solving scenarios from various areas, including business, education, and personal growth. By understanding these examples, you can develop your problem-solving abilities and effectively tackle challenges in your life.

Examples of Problem Solving Scenarios

Examples of Problem Solving Scenarios

Improving Customer Service Scenario:

A retail store is experiencing a decline in customer satisfaction, with clients complaining about slow service and unhelpful staff.

Solution : The store manager assembles a team to analyze customer feedback, identify key issues, and propose solutions. They implement a new training program focused on customer service skills, streamline the checkout process, and introduce an incentive system to motivate employees. As a result, customer satisfaction improves, and the store’s reputation is restored.

Enhancing Learning Outcomes Scenario:

A high school teacher notices that her students struggle with understanding complex concepts in her science class, leading to poor performance on tests.

Solution : The teacher reevaluates her teaching methods and incorporates active learning strategies, such as group discussions, hands-on activities, and real-world examples, to make the material more engaging and relatable. She also offers additional support sessions and resources for students who need extra help. Consequently, students’ understanding improves, and test scores increase.

Overcoming Procrastination Scenario:

An individual consistently procrastinates, leading to increased stress and reduced productivity.

Solution : The person identifies the root cause of their procrastination, such as fear of failure or lack of motivation. They establish clear goals and deadlines, break tasks into manageable steps, and use time management tools, like the Pomodoro Technique , to stay focused. By consistently applying these strategies, they successfully overcome procrastination and enhance their productivity.

Reducing Patient Wait Times Scenario:

A medical clinic has long wait times, leading to patient dissatisfaction and overworked staff.

Solution : The clinic’s management team conducts a thorough analysis of the appointment scheduling process and identifies bottlenecks. They implement a new appointment system, hire additional staff, and optimize the workflow to reduce wait times. As a result, patient satisfaction increases, and staff stress levels decrease.

Reducing Plastic Waste Scenario:

A local community is struggling with an excessive amount of plastic waste, causing environmental pollution and health concerns.

Solution : Community leaders organize a task force to address the issue. They implement a recycling program, educate residents about the environmental impact of plastic waste, and collaborate with local businesses to promote the use of eco-friendly packaging alternatives. These actions lead to a significant reduction in plastic waste and a cleaner, healthier community.

Conclusion : These five examples of problem-solving scenarios demonstrate how effective problem-solving strategies can lead to successful outcomes in various aspects of life. By learning from these scenarios, you can develop your problem-solving skills and become better equipped to face challenges in your personal and professional life. Remember to analyze situations carefully, identify the root causes, and implement solutions that address these issues for optimal results.

  • See also: 4 Medical Role Play Scenarios: Prepare for the Real Thing
  • See also: 3 Financial Advisor Role Play Scenarios: Practice Your Skills!
  • See also: 3 Insurance Role Play Examples
  • See also: 3 Workplace Scenarios for Role Play

Role Play: Improving Customer Service in a Retail Store

Objective : To practice effective problem-solving and communication skills in a retail setting by addressing customer service issues and finding solutions to improve customer satisfaction.

Scenario : A retail store is experiencing a decline in customer satisfaction, with clients complaining about slow service and unhelpful staff.

Characters :

  • Store Manager
  • Sales Associate
  • Assistant Manager

Role Play Script:

Scene 1 : Store Manager’s Office Store Manager: (Addressing the Assistant Manager and Sales Associate) I’ve noticed that our customer satisfaction has been declining lately. We’ve received several complaints about slow service and unhelpful staff. We need to address these issues immediately. Any suggestions?

Sales Associate : I’ve observed that the checkout process can be quite slow, especially during peak hours. Maybe we can improve our system to make it more efficient?

Assistant Manager : I agree. We could also implement a new training program for our staff, focusing on customer service skills and techniques.

Scene 2 : Staff Training Session Store Manager: (Addressing the entire staff) We’re implementing a new training program to improve our customer service. This program will cover effective communication, problem-solving, and time management skills. We’ll also introduce an incentive system to reward those who provide exceptional service.

Scene 3 : Retail Floor Customer: (Approaching the Sales Associate) Excuse me, I can’t find the product I’m looking for. Can you help me?

Sales Associate : (Smiling) Of course! I’d be happy to help. What product are you looking for?

Customer : I need a specific brand of shampoo, but I can’t find it on the shelves.

Sales Associate : Let me check our inventory system to see if we have it in stock. (Checks inventory) I’m sorry, but it seems we’re currently out of stock. However, we’re expecting a new shipment within two days. I can take your contact information and let you know as soon as it arrives.

Customer : That would be great! Thank you for your help.

Scene 4 : Store Manager’s Office Assistant Manager: (Reporting to the Store Manager) Since we implemented the new training program and made changes to the checkout process, we’ve seen a significant improvement in customer satisfaction.

Store Manager : That’s excellent news! Let’s continue to monitor our progress and make any necessary adjustments to ensure we maintain this positive trend.

More Examples of Problem Solving Scenarios on the next page…

10 Everyday uses for Problem Solving Skills

real life situation problem solving

  • Problem Solving & Decision Making Real world training delivers real world results. Learn More

Many employers are recognizing the value and placing significant investments in developing the problem solving skills of their employees.  While we often think about these skills in the work context, problem solving isn’t just helpful in the workplace.  Here are 10 everyday uses for problem solving skills that can you may not have thought about

1. Stuck in traffic and late for work, again

With busy schedules and competing demands for your time, getting where you need to be on time can be a real challenge.  When traffic backs up, problem solving skills can help you figure out alternatives to avoid congestion, resolve the immediate situation and develop a solution to avoid encountering the situation in the future.

2. What is that stain on the living room carpet?

Parents, pet owners and spouses face this situation all the time.  The living room carpet was clean yesterday but somehow a mysterious stain has appeared and nobody is claiming it.  In order to clean it effectively, first you need to figure out what it is.  Problem solving can help you track down the culprit, diagnose the cause of the stain and develop an action plan to get your home clean and fresh again.

3. What is that smell coming from my garden shed?

Drawing from past experiences, the seasoned problem solver in you suspects that the source of the peculiar odor likely lurks somewhere within the depths of the shed. Your challenge now lies in uncovering the origin of this scent, managing its effects, and formulating a practical plan to prevent such occurrences in the future.

4. I don’t think the car is supposed to make that thumping noise

As with many problems in the workplace, this may be a situation to bring in problem solving experts in the form of your trusted mechanic.  If that isn’t an option, problem solving skills can be helpful to diagnose and assess the impact of the situation to ensure you can get where you need to be.

5. Creating a budget

Tap into your problem-solving prowess as you embark on the journey of budgeting. Begin by determining what expenses to include in your budget, and strategize how to account for unexpected financial surprises. The challenge lies in crafting a comprehensive budget that not only covers your known expenses but also prepares you for the uncertainties that may arise.

6. My daughter has a science project – due tomorrow

Sometimes the challenge isn’t impact, its urgency.  Problem solving skills can help you quickly assess the situation and develop an action plan to get that science project done and turned in on time.

7. What should I get my spouse for his/her birthday?

As with many problems, this one may not have a “right answer” or apparent solution.  Its time to apply those problem solving skills to evaluate the effects of past decisions combined with current environmental signals and available resources to select the perfect gift to put a smile on your significant other’s face.

8. The office printer suddenly stopped working, and there are important documents that need to be printed urgently.

Uh oh, time to think quickly.  There is an urgent situation that must be addressed to get things back to normal, a cause to be identified (what’s causing the printer issue), and an action plan to resolve it.  Problem solving skills can help you avoid stress and ensure that your documents are printed on time.

9. I’m torn between two cars! Which one should I choose?

In a world brimming with countless choices, employ decision analysis as your trusty tool to navigate the sea of options. Whether you’re selecting a car (or any other product), the challenge is to methodically identify and evaluate the best choices that align with your unique needs and preferences.

10. What’s for dinner?

Whether you are planning to eat alone, with family or entertaining friends and colleagues, meal planning can be a cause of daily stress.  Applying problem solving skills can put the dinner dilemma into perspective and help get the food on the table and keep everyone happy.

Problem Solving skills aren’t just for the workplace – they can be applied in your everyday life.  Kepner-Tregoe can help you and your team develop your problem solving skills through a combination of training and consulting with our problem solving experts.

Blog Image 1

We are experts in:

For inquiries, details, or a proposal!

Subscribe to the KT Newsletter

Learn more

How it works

Transform your enterprise with the scalable mindsets, skills, & behavior change that drive performance.

Explore how BetterUp connects to your core business systems.

We pair AI with the latest in human-centered coaching to drive powerful, lasting learning and behavior change.

Build leaders that accelerate team performance and engagement.

Unlock performance potential at scale with AI-powered curated growth journeys.

Build resilience, well-being and agility to drive performance across your entire enterprise.

Transform your business, starting with your sales leaders.

Unlock business impact from the top with executive coaching.

Foster a culture of inclusion and belonging.

Accelerate the performance and potential of your agencies and employees.

See how innovative organizations use BetterUp to build a thriving workforce.

Discover how BetterUp measurably impacts key business outcomes for organizations like yours.

A demo is the first step to transforming your business. Meet with us to develop a plan for attaining your goals.

Request a demo

  • What is coaching?

Learn how 1:1 coaching works, who its for, and if it's right for you.

Accelerate your personal and professional growth with the expert guidance of a BetterUp Coach.

Types of Coaching

Navigate career transitions, accelerate your professional growth, and achieve your career goals with expert coaching.

Enhance your communication skills for better personal and professional relationships, with tailored coaching that focuses on your needs.

Find balance, resilience, and well-being in all areas of your life with holistic coaching designed to empower you.

Discover your perfect match : Take our 5-minute assessment and let us pair you with one of our top Coaches tailored just for you.

Find your Coach

Research, expert insights, and resources to develop courageous leaders within your organization.

Best practices, research, and tools to fuel individual and business growth.

View on-demand BetterUp events and learn about upcoming live discussions.

The latest insights and ideas for building a high-performing workplace.

  • BetterUp Briefing

The online magazine that helps you understand tomorrow's workforce trends, today.

Innovative research featured in peer-reviewed journals, press, and more.

Founded in 2022 to deepen the understanding of the intersection of well-being, purpose, and performance

We're on a mission to help everyone live with clarity, purpose, and passion.

Join us and create impactful change.

Read the buzz about BetterUp.

Meet the leadership that's passionate about empowering your workforce.

For Business

For Individuals

10 Problem-solving strategies to turn challenges on their head

Find my Coach

Jump to section

What is an example of problem-solving?

What are the 5 steps to problem-solving, 10 effective problem-solving strategies, what skills do efficient problem solvers have, how to improve your problem-solving skills.

Problems come in all shapes and sizes — from workplace conflict to budget cuts.

Creative problem-solving is one of the most in-demand skills in all roles and industries. It can boost an organization’s human capital and give it a competitive edge. 

Problem-solving strategies are ways of approaching problems that can help you look beyond the obvious answers and find the best solution to your problem . 

Let’s take a look at a five-step problem-solving process and how to combine it with proven problem-solving strategies. This will give you the tools and skills to solve even your most complex problems.

Good problem-solving is an essential part of the decision-making process . To see what a problem-solving process might look like in real life, let’s take a common problem for SaaS brands — decreasing customer churn rates.

To solve this problem, the company must first identify it. In this case, the problem is that the churn rate is too high. 

Next, they need to identify the root causes of the problem. This could be anything from their customer service experience to their email marketing campaigns. If there are several problems, they will need a separate problem-solving process for each one. 

Let’s say the problem is with email marketing — they’re not nurturing existing customers. Now that they’ve identified the problem, they can start using problem-solving strategies to look for solutions. 

This might look like coming up with special offers, discounts, or bonuses for existing customers. They need to find ways to remind them to use their products and services while providing added value. This will encourage customers to keep paying their monthly subscriptions.

They might also want to add incentives, such as access to a premium service at no extra cost after 12 months of membership. They could publish blog posts that help their customers solve common problems and share them as an email newsletter.

The company should set targets and a time frame in which to achieve them. This will allow leaders to measure progress and identify which actions yield the best results.

team-meeting-problem-solving-strategies

Perhaps you’ve got a problem you need to tackle. Or maybe you want to be prepared the next time one arises. Either way, it’s a good idea to get familiar with the five steps of problem-solving. 

Use this step-by-step problem-solving method with the strategies in the following section to find possible solutions to your problem.

1. Identify the problem

The first step is to know which problem you need to solve. Then, you need to find the root cause of the problem. 

The best course of action is to gather as much data as possible, speak to the people involved, and separate facts from opinions. 

Once this is done, formulate a statement that describes the problem. Use rational persuasion to make sure your team agrees .

2. Break the problem down 

Identifying the problem allows you to see which steps need to be taken to solve it. 

First, break the problem down into achievable blocks. Then, use strategic planning to set a time frame in which to solve the problem and establish a timeline for the completion of each stage.

3. Generate potential solutions

At this stage, the aim isn’t to evaluate possible solutions but to generate as many ideas as possible. 

Encourage your team to use creative thinking and be patient — the best solution may not be the first or most obvious one.

Use one or more of the different strategies in the following section to help come up with solutions — the more creative, the better.

4. Evaluate the possible solutions

Once you’ve generated potential solutions, narrow them down to a shortlist. Then, evaluate the options on your shortlist. 

There are usually many factors to consider. So when evaluating a solution, ask yourself the following questions:

  • Will my team be on board with the proposition?
  • Does the solution align with organizational goals ?
  • Is the solution likely to achieve the desired outcomes?
  • Is the solution realistic and possible with current resources and constraints?
  • Will the solution solve the problem without causing additional unintended problems?

woman-helping-her-colleague-problem-solving-strategies

5. Implement and monitor the solutions

Once you’ve identified your solution and got buy-in from your team, it’s time to implement it. 

But the work doesn’t stop there. You need to monitor your solution to see whether it actually solves your problem. 

Request regular feedback from the team members involved and have a monitoring and evaluation plan in place to measure progress.

If the solution doesn’t achieve your desired results, start this step-by-step process again.

There are many different ways to approach problem-solving. Each is suitable for different types of problems. 

The most appropriate problem-solving techniques will depend on your specific problem. You may need to experiment with several strategies before you find a workable solution.

Here are 10 effective problem-solving strategies for you to try:

  • Use a solution that worked before
  • Brainstorming
  • Work backward
  • Use the Kipling method
  • Draw the problem
  • Use trial and error
  • Sleep on it
  • Get advice from your peers
  • Use the Pareto principle
  • Add successful solutions to your toolkit

Let’s break each of these down.

1. Use a solution that worked before

It might seem obvious, but if you’ve faced similar problems in the past, look back to what worked then. See if any of the solutions could apply to your current situation and, if so, replicate them.

2. Brainstorming

The more people you enlist to help solve the problem, the more potential solutions you can come up with.

Use different brainstorming techniques to workshop potential solutions with your team. They’ll likely bring something you haven’t thought of to the table.

3. Work backward

Working backward is a way to reverse engineer your problem. Imagine your problem has been solved, and make that the starting point.

Then, retrace your steps back to where you are now. This can help you see which course of action may be most effective.

4. Use the Kipling method

This is a method that poses six questions based on Rudyard Kipling’s poem, “ I Keep Six Honest Serving Men .” 

  • What is the problem?
  • Why is the problem important?
  • When did the problem arise, and when does it need to be solved?
  • How did the problem happen?
  • Where is the problem occurring?
  • Who does the problem affect?

Answering these questions can help you identify possible solutions.

5. Draw the problem

Sometimes it can be difficult to visualize all the components and moving parts of a problem and its solution. Drawing a diagram can help.

This technique is particularly helpful for solving process-related problems. For example, a product development team might want to decrease the time they take to fix bugs and create new iterations. Drawing the processes involved can help you see where improvements can be made.

woman-drawing-mind-map-problem-solving-strategies

6. Use trial-and-error

A trial-and-error approach can be useful when you have several possible solutions and want to test them to see which one works best.

7. Sleep on it

Finding the best solution to a problem is a process. Remember to take breaks and get enough rest . Sometimes, a walk around the block can bring inspiration, but you should sleep on it if possible.

A good night’s sleep helps us find creative solutions to problems. This is because when you sleep, your brain sorts through the day’s events and stores them as memories. This enables you to process your ideas at a subconscious level. 

If possible, give yourself a few days to develop and analyze possible solutions. You may find you have greater clarity after sleeping on it. Your mind will also be fresh, so you’ll be able to make better decisions.

8. Get advice from your peers

Getting input from a group of people can help you find solutions you may not have thought of on your own. 

For solo entrepreneurs or freelancers, this might look like hiring a coach or mentor or joining a mastermind group. 

For leaders , it might be consulting other members of the leadership team or working with a business coach .

It’s important to recognize you might not have all the skills, experience, or knowledge necessary to find a solution alone. 

9. Use the Pareto principle

The Pareto principle — also known as the 80/20 rule — can help you identify possible root causes and potential solutions for your problems.

Although it’s not a mathematical law, it’s a principle found throughout many aspects of business and life. For example, 20% of the sales reps in a company might close 80% of the sales. 

You may be able to narrow down the causes of your problem by applying the Pareto principle. This can also help you identify the most appropriate solutions.

10. Add successful solutions to your toolkit

Every situation is different, and the same solutions might not always work. But by keeping a record of successful problem-solving strategies, you can build up a solutions toolkit. 

These solutions may be applicable to future problems. Even if not, they may save you some of the time and work needed to come up with a new solution.

three-colleagues-looking-at-computer-problem-solving-strategies

Improving problem-solving skills is essential for professional development — both yours and your team’s. Here are some of the key skills of effective problem solvers:

  • Critical thinking and analytical skills
  • Communication skills , including active listening
  • Decision-making
  • Planning and prioritization
  • Emotional intelligence , including empathy and emotional regulation
  • Time management
  • Data analysis
  • Research skills
  • Project management

And they see problems as opportunities. Everyone is born with problem-solving skills. But accessing these abilities depends on how we view problems. Effective problem-solvers see problems as opportunities to learn and improve.

Ready to work on your problem-solving abilities? Get started with these seven tips.

1. Build your problem-solving skills

One of the best ways to improve your problem-solving skills is to learn from experts. Consider enrolling in organizational training , shadowing a mentor , or working with a coach .

2. Practice

Practice using your new problem-solving skills by applying them to smaller problems you might encounter in your daily life. 

Alternatively, imagine problematic scenarios that might arise at work and use problem-solving strategies to find hypothetical solutions.

3. Don’t try to find a solution right away

Often, the first solution you think of to solve a problem isn’t the most appropriate or effective.

Instead of thinking on the spot, give yourself time and use one or more of the problem-solving strategies above to activate your creative thinking. 

two-colleagues-talking-at-corporate-event-problem-solving-strategies

4. Ask for feedback

Receiving feedback is always important for learning and growth. Your perception of your problem-solving skills may be different from that of your colleagues. They can provide insights that help you improve. 

5. Learn new approaches and methodologies

There are entire books written about problem-solving methodologies if you want to take a deep dive into the subject. 

We recommend starting with “ Fixed — How to Perfect the Fine Art of Problem Solving ” by Amy E. Herman. 

6. Experiment

Tried-and-tested problem-solving techniques can be useful. However, they don’t teach you how to innovate and develop your own problem-solving approaches. 

Sometimes, an unconventional approach can lead to the development of a brilliant new idea or strategy. So don’t be afraid to suggest your most “out there” ideas.

7. Analyze the success of your competitors

Do you have competitors who have already solved the problem you’re facing? Look at what they did, and work backward to solve your own problem. 

For example, Netflix started in the 1990s as a DVD mail-rental company. Its main competitor at the time was Blockbuster. 

But when streaming became the norm in the early 2000s, both companies faced a crisis. Netflix innovated, unveiling its streaming service in 2007. 

If Blockbuster had followed Netflix’s example, it might have survived. Instead, it declared bankruptcy in 2010.

Use problem-solving strategies to uplevel your business

When facing a problem, it’s worth taking the time to find the right solution. 

Otherwise, we risk either running away from our problems or headlong into solutions. When we do this, we might miss out on other, better options.

Use the problem-solving strategies outlined above to find innovative solutions to your business’ most perplexing problems.

If you’re ready to take problem-solving to the next level, request a demo with BetterUp . Our expert coaches specialize in helping teams develop and implement strategies that work.

Boost your productivity

Maximize your time and productivity with strategies from our expert coaches.

Elizabeth Perry, ACC

Elizabeth Perry is a Coach Community Manager at BetterUp. She uses strategic engagement strategies to cultivate a learning community across a global network of Coaches through in-person and virtual experiences, technology-enabled platforms, and strategic coaching industry partnerships. With over 3 years of coaching experience and a certification in transformative leadership and life coaching from Sofia University, Elizabeth leverages transpersonal psychology expertise to help coaches and clients gain awareness of their behavioral and thought patterns, discover their purpose and passions, and elevate their potential. She is a lifelong student of psychology, personal growth, and human potential as well as an ICF-certified ACC transpersonal life and leadership Coach.

8 creative solutions to your most challenging problems

5 problem-solving questions to prepare you for your next interview, what are metacognitive skills examples in everyday life, 31 examples of problem solving performance review phrases, what is lateral thinking 7 techniques to encourage creative ideas, leadership activities that encourage employee engagement, learn what process mapping is and how to create one (+ examples), how much do distractions cost 8 effects of lack of focus, can dreams help you solve problems 6 ways to try, similar articles, the pareto principle: how the 80/20 rule can help you do more with less, thinking outside the box: 8 ways to become a creative problem solver, experimentation brings innovation: create an experimental workplace, effective problem statements have these 5 components, contingency planning: 4 steps to prepare for the unexpected, stay connected with betterup, get our newsletter, event invites, plus product insights and research..

3100 E 5th Street, Suite 350 Austin, TX 78702

  • Platform Overview
  • Integrations
  • Powered by AI
  • BetterUp Lead
  • BetterUp Manage™
  • BetterUp Care™
  • Sales Performance
  • Diversity & Inclusion
  • Case Studies
  • Why BetterUp?
  • About Coaching
  • Find your Coach
  • Career Coaching
  • Communication Coaching
  • Life Coaching
  • News and Press
  • Leadership Team
  • Become a BetterUp Coach
  • BetterUp Labs
  • Center for Purpose & Performance
  • Leadership Training
  • Business Coaching
  • Contact Support
  • Contact Sales
  • Privacy Policy
  • Acceptable Use Policy
  • Trust & Security
  • Cookie Preferences
  • Bipolar Disorder
  • Therapy Center
  • When To See a Therapist
  • Types of Therapy
  • Best Online Therapy
  • Best Couples Therapy
  • Best Family Therapy
  • Managing Stress
  • Sleep and Dreaming
  • Understanding Emotions
  • Self-Improvement
  • Healthy Relationships
  • Student Resources
  • Personality Types
  • Guided Meditations
  • Verywell Mind Insights
  • 2023 Verywell Mind 25
  • Mental Health in the Classroom
  • Editorial Process
  • Meet Our Review Board
  • Crisis Support

Overview of the Problem-Solving Mental Process

Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

real life situation problem solving

Rachel Goldman, PhD FTOS, is a licensed psychologist, clinical assistant professor, speaker, wellness expert specializing in eating behaviors, stress management, and health behavior change.

real life situation problem solving

  • Identify the Problem
  • Define the Problem
  • Form a Strategy
  • Organize Information
  • Allocate Resources
  • Monitor Progress
  • Evaluate the Results

Frequently Asked Questions

Problem-solving is a mental process that involves discovering, analyzing, and solving problems. The ultimate goal of problem-solving is to overcome obstacles and find a solution that best resolves the issue.

The best strategy for solving a problem depends largely on the unique situation. In some cases, people are better off learning everything they can about the issue and then using factual knowledge to come up with a solution. In other instances, creativity and insight are the best options.

It is not necessary to follow problem-solving steps sequentially, It is common to skip steps or even go back through steps multiple times until the desired solution is reached.

In order to correctly solve a problem, it is often important to follow a series of steps. Researchers sometimes refer to this as the problem-solving cycle. While this cycle is portrayed sequentially, people rarely follow a rigid series of steps to find a solution.

The following steps include developing strategies and organizing knowledge.

1. Identifying the Problem

While it may seem like an obvious step, identifying the problem is not always as simple as it sounds. In some cases, people might mistakenly identify the wrong source of a problem, which will make attempts to solve it inefficient or even useless.

Some strategies that you might use to figure out the source of a problem include :

  • Asking questions about the problem
  • Breaking the problem down into smaller pieces
  • Looking at the problem from different perspectives
  • Conducting research to figure out what relationships exist between different variables

2. Defining the Problem

After the problem has been identified, it is important to fully define the problem so that it can be solved. You can define a problem by operationally defining each aspect of the problem and setting goals for what aspects of the problem you will address

At this point, you should focus on figuring out which aspects of the problems are facts and which are opinions. State the problem clearly and identify the scope of the solution.

3. Forming a Strategy

After the problem has been identified, it is time to start brainstorming potential solutions. This step usually involves generating as many ideas as possible without judging their quality. Once several possibilities have been generated, they can be evaluated and narrowed down.

The next step is to develop a strategy to solve the problem. The approach used will vary depending upon the situation and the individual's unique preferences. Common problem-solving strategies include heuristics and algorithms.

  • Heuristics are mental shortcuts that are often based on solutions that have worked in the past. They can work well if the problem is similar to something you have encountered before and are often the best choice if you need a fast solution.
  • Algorithms are step-by-step strategies that are guaranteed to produce a correct result. While this approach is great for accuracy, it can also consume time and resources.

Heuristics are often best used when time is of the essence, while algorithms are a better choice when a decision needs to be as accurate as possible.

4. Organizing Information

Before coming up with a solution, you need to first organize the available information. What do you know about the problem? What do you not know? The more information that is available the better prepared you will be to come up with an accurate solution.

When approaching a problem, it is important to make sure that you have all the data you need. Making a decision without adequate information can lead to biased or inaccurate results.

5. Allocating Resources

Of course, we don't always have unlimited money, time, and other resources to solve a problem. Before you begin to solve a problem, you need to determine how high priority it is.

If it is an important problem, it is probably worth allocating more resources to solving it. If, however, it is a fairly unimportant problem, then you do not want to spend too much of your available resources on coming up with a solution.

At this stage, it is important to consider all of the factors that might affect the problem at hand. This includes looking at the available resources, deadlines that need to be met, and any possible risks involved in each solution. After careful evaluation, a decision can be made about which solution to pursue.

6. Monitoring Progress

After selecting a problem-solving strategy, it is time to put the plan into action and see if it works. This step might involve trying out different solutions to see which one is the most effective.

It is also important to monitor the situation after implementing a solution to ensure that the problem has been solved and that no new problems have arisen as a result of the proposed solution.

Effective problem-solvers tend to monitor their progress as they work towards a solution. If they are not making good progress toward reaching their goal, they will reevaluate their approach or look for new strategies .

7. Evaluating the Results

After a solution has been reached, it is important to evaluate the results to determine if it is the best possible solution to the problem. This evaluation might be immediate, such as checking the results of a math problem to ensure the answer is correct, or it can be delayed, such as evaluating the success of a therapy program after several months of treatment.

Once a problem has been solved, it is important to take some time to reflect on the process that was used and evaluate the results. This will help you to improve your problem-solving skills and become more efficient at solving future problems.

A Word From Verywell​

It is important to remember that there are many different problem-solving processes with different steps, and this is just one example. Problem-solving in real-world situations requires a great deal of resourcefulness, flexibility, resilience, and continuous interaction with the environment.

Get Advice From The Verywell Mind Podcast

Hosted by therapist Amy Morin, LCSW, this episode of The Verywell Mind Podcast shares how you can stop dwelling in a negative mindset.

Follow Now : Apple Podcasts / Spotify / Google Podcasts

You can become a better problem solving by:

  • Practicing brainstorming and coming up with multiple potential solutions to problems
  • Being open-minded and considering all possible options before making a decision
  • Breaking down problems into smaller, more manageable pieces
  • Asking for help when needed
  • Researching different problem-solving techniques and trying out new ones
  • Learning from mistakes and using them as opportunities to grow

It's important to communicate openly and honestly with your partner about what's going on. Try to see things from their perspective as well as your own. Work together to find a resolution that works for both of you. Be willing to compromise and accept that there may not be a perfect solution.

Take breaks if things are getting too heated, and come back to the problem when you feel calm and collected. Don't try to fix every problem on your own—consider asking a therapist or counselor for help and insight.

If you've tried everything and there doesn't seem to be a way to fix the problem, you may have to learn to accept it. This can be difficult, but try to focus on the positive aspects of your life and remember that every situation is temporary. Don't dwell on what's going wrong—instead, think about what's going right. Find support by talking to friends or family. Seek professional help if you're having trouble coping.

Davidson JE, Sternberg RJ, editors.  The Psychology of Problem Solving .  Cambridge University Press; 2003. doi:10.1017/CBO9780511615771

Sarathy V. Real world problem-solving .  Front Hum Neurosci . 2018;12:261. Published 2018 Jun 26. doi:10.3389/fnhum.2018.00261

By Kendra Cherry, MSEd Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

10 Best Problem-Solving Therapy Worksheets & Activities

Problem solving therapy

Cognitive science tells us that we regularly face not only well-defined problems but, importantly, many that are ill defined (Eysenck & Keane, 2015).

Sometimes, we find ourselves unable to overcome our daily problems or the inevitable (though hopefully infrequent) life traumas we face.

Problem-Solving Therapy aims to reduce the incidence and impact of mental health disorders and improve wellbeing by helping clients face life’s difficulties (Dobson, 2011).

This article introduces Problem-Solving Therapy and offers techniques, activities, and worksheets that mental health professionals can use with clients.

Before you continue, we thought you might like to download our three Positive Psychology Exercises for free . These science-based exercises explore fundamental aspects of positive psychology, including strengths, values, and self-compassion, and will give you the tools to enhance the wellbeing of your clients, students, or employees.

This Article Contains:

What is problem-solving therapy, 14 steps for problem-solving therapy, 3 best interventions and techniques, 7 activities and worksheets for your session, fascinating books on the topic, resources from positivepsychology.com, a take-home message.

Problem-Solving Therapy assumes that mental disorders arise in response to ineffective or maladaptive coping. By adopting a more realistic and optimistic view of coping, individuals can understand the role of emotions and develop actions to reduce distress and maintain mental wellbeing (Nezu & Nezu, 2009).

“Problem-solving therapy (PST) is a psychosocial intervention, generally considered to be under a cognitive-behavioral umbrella” (Nezu, Nezu, & D’Zurilla, 2013, p. ix). It aims to encourage the client to cope better with day-to-day problems and traumatic events and reduce their impact on mental and physical wellbeing.

Clinical research, counseling, and health psychology have shown PST to be highly effective in clients of all ages, ranging from children to the elderly, across multiple clinical settings, including schizophrenia, stress, and anxiety disorders (Dobson, 2011).

Can it help with depression?

PST appears particularly helpful in treating clients with depression. A recent analysis of 30 studies found that PST was an effective treatment with a similar degree of success as other successful therapies targeting depression (Cuijpers, Wit, Kleiboer, Karyotaki, & Ebert, 2020).

Other studies confirm the value of PST and its effectiveness at treating depression in multiple age groups and its capacity to combine with other therapies, including drug treatments (Dobson, 2011).

The major concepts

Effective coping varies depending on the situation, and treatment typically focuses on improving the environment and reducing emotional distress (Dobson, 2011).

PST is based on two overlapping models:

Social problem-solving model

This model focuses on solving the problem “as it occurs in the natural social environment,” combined with a general coping strategy and a method of self-control (Dobson, 2011, p. 198).

The model includes three central concepts:

  • Social problem-solving
  • The problem
  • The solution

The model is a “self-directed cognitive-behavioral process by which an individual, couple, or group attempts to identify or discover effective solutions for specific problems encountered in everyday living” (Dobson, 2011, p. 199).

Relational problem-solving model

The theory of PST is underpinned by a relational problem-solving model, whereby stress is viewed in terms of the relationships between three factors:

  • Stressful life events
  • Emotional distress and wellbeing
  • Problem-solving coping

Therefore, when a significant adverse life event occurs, it may require “sweeping readjustments in a person’s life” (Dobson, 2011, p. 202).

real life situation problem solving

  • Enhance positive problem orientation
  • Decrease negative orientation
  • Foster ability to apply rational problem-solving skills
  • Reduce the tendency to avoid problem-solving
  • Minimize the tendency to be careless and impulsive

D’Zurilla’s and Nezu’s model includes (modified from Dobson, 2011):

  • Initial structuring Establish a positive therapeutic relationship that encourages optimism and explains the PST approach.
  • Assessment Formally and informally assess areas of stress in the client’s life and their problem-solving strengths and weaknesses.
  • Obstacles to effective problem-solving Explore typically human challenges to problem-solving, such as multitasking and the negative impact of stress. Introduce tools that can help, such as making lists, visualization, and breaking complex problems down.
  • Problem orientation – fostering self-efficacy Introduce the importance of a positive problem orientation, adopting tools, such as visualization, to promote self-efficacy.
  • Problem orientation – recognizing problems Help clients recognize issues as they occur and use problem checklists to ‘normalize’ the experience.
  • Problem orientation – seeing problems as challenges Encourage clients to break free of harmful and restricted ways of thinking while learning how to argue from another point of view.
  • Problem orientation – use and control emotions Help clients understand the role of emotions in problem-solving, including using feelings to inform the process and managing disruptive emotions (such as cognitive reframing and relaxation exercises).
  • Problem orientation – stop and think Teach clients how to reduce impulsive and avoidance tendencies (visualizing a stop sign or traffic light).
  • Problem definition and formulation Encourage an understanding of the nature of problems and set realistic goals and objectives.
  • Generation of alternatives Work with clients to help them recognize the wide range of potential solutions to each problem (for example, brainstorming).
  • Decision-making Encourage better decision-making through an improved understanding of the consequences of decisions and the value and likelihood of different outcomes.
  • Solution implementation and verification Foster the client’s ability to carry out a solution plan, monitor its outcome, evaluate its effectiveness, and use self-reinforcement to increase the chance of success.
  • Guided practice Encourage the application of problem-solving skills across multiple domains and future stressful problems.
  • Rapid problem-solving Teach clients how to apply problem-solving questions and guidelines quickly in any given situation.

Success in PST depends on the effectiveness of its implementation; using the right approach is crucial (Dobson, 2011).

Problem-solving therapy – Baycrest

The following interventions and techniques are helpful when implementing more effective problem-solving approaches in client’s lives.

First, it is essential to consider if PST is the best approach for the client, based on the problems they present.

Is PPT appropriate?

It is vital to consider whether PST is appropriate for the client’s situation. Therapists new to the approach may require additional guidance (Nezu et al., 2013).

Therapists should consider the following questions before beginning PST with a client (modified from Nezu et al., 2013):

  • Has PST proven effective in the past for the problem? For example, research has shown success with depression, generalized anxiety, back pain, Alzheimer’s disease, cancer, and supporting caregivers (Nezu et al., 2013).
  • Is PST acceptable to the client?
  • Is the individual experiencing a significant mental or physical health problem?

All affirmative answers suggest that PST would be a helpful technique to apply in this instance.

Five problem-solving steps

The following five steps are valuable when working with clients to help them cope with and manage their environment (modified from Dobson, 2011).

Ask the client to consider the following points (forming the acronym ADAPT) when confronted by a problem:

  • Attitude Aim to adopt a positive, optimistic attitude to the problem and problem-solving process.
  • Define Obtain all required facts and details of potential obstacles to define the problem.
  • Alternatives Identify various alternative solutions and actions to overcome the obstacle and achieve the problem-solving goal.
  • Predict Predict each alternative’s positive and negative outcomes and choose the one most likely to achieve the goal and maximize the benefits.
  • Try out Once selected, try out the solution and monitor its effectiveness while engaging in self-reinforcement.

If the client is not satisfied with their solution, they can return to step ‘A’ and find a more appropriate solution.

3 positive psychology exercises

Download 3 Free Positive Psychology Exercises (PDF)

Enhance wellbeing with these free, science-based exercises that draw on the latest insights from positive psychology.

Download 3 Free Positive Psychology Tools Pack (PDF)

By filling out your name and email address below.

Positive self-statements

When dealing with clients facing negative self-beliefs, it can be helpful for them to use positive self-statements.

Use the following (or add new) self-statements to replace harmful, negative thinking (modified from Dobson, 2011):

  • I can solve this problem; I’ve tackled similar ones before.
  • I can cope with this.
  • I just need to take a breath and relax.
  • Once I start, it will be easier.
  • It’s okay to look out for myself.
  • I can get help if needed.
  • Other people feel the same way I do.
  • I’ll take one piece of the problem at a time.
  • I can keep my fears in check.
  • I don’t need to please everyone.

Worksheets for problem solving therapy

5 Worksheets and workbooks

Problem-solving self-monitoring form.

Answering the questions in the Problem-Solving Self-Monitoring Form provides the therapist with necessary information regarding the client’s overall and specific problem-solving approaches and reactions (Dobson, 2011).

Ask the client to complete the following:

  • Describe the problem you are facing.
  • What is your goal?
  • What have you tried so far to solve the problem?
  • What was the outcome?

Reactions to Stress

It can be helpful for the client to recognize their own experiences of stress. Do they react angrily, withdraw, or give up (Dobson, 2011)?

The Reactions to Stress worksheet can be given to the client as homework to capture stressful events and their reactions. By recording how they felt, behaved, and thought, they can recognize repeating patterns.

What Are Your Unique Triggers?

Helping clients capture triggers for their stressful reactions can encourage emotional regulation.

When clients can identify triggers that may lead to a negative response, they can stop the experience or slow down their emotional reaction (Dobson, 2011).

The What Are Your Unique Triggers ? worksheet helps the client identify their triggers (e.g., conflict, relationships, physical environment, etc.).

Problem-Solving worksheet

Imagining an existing or potential problem and working through how to resolve it can be a powerful exercise for the client.

Use the Problem-Solving worksheet to state a problem and goal and consider the obstacles in the way. Then explore options for achieving the goal, along with their pros and cons, to assess the best action plan.

Getting the Facts

Clients can become better equipped to tackle problems and choose the right course of action by recognizing facts versus assumptions and gathering all the necessary information (Dobson, 2011).

Use the Getting the Facts worksheet to answer the following questions clearly and unambiguously:

  • Who is involved?
  • What did or did not happen, and how did it bother you?
  • Where did it happen?
  • When did it happen?
  • Why did it happen?
  • How did you respond?

2 Helpful Group Activities

While therapists can use the worksheets above in group situations, the following two interventions work particularly well with more than one person.

Generating Alternative Solutions and Better Decision-Making

A group setting can provide an ideal opportunity to share a problem and identify potential solutions arising from multiple perspectives.

Use the Generating Alternative Solutions and Better Decision-Making worksheet and ask the client to explain the situation or problem to the group and the obstacles in the way.

Once the approaches are captured and reviewed, the individual can share their decision-making process with the group if they want further feedback.

Visualization

Visualization can be performed with individuals or in a group setting to help clients solve problems in multiple ways, including (Dobson, 2011):

  • Clarifying the problem by looking at it from multiple perspectives
  • Rehearsing a solution in the mind to improve and get more practice
  • Visualizing a ‘safe place’ for relaxation, slowing down, and stress management

Guided imagery is particularly valuable for encouraging the group to take a ‘mental vacation’ and let go of stress.

Ask the group to begin with slow, deep breathing that fills the entire diaphragm. Then ask them to visualize a favorite scene (real or imagined) that makes them feel relaxed, perhaps beside a gently flowing river, a summer meadow, or at the beach.

The more the senses are engaged, the more real the experience. Ask the group to think about what they can hear, see, touch, smell, and even taste.

Encourage them to experience the situation as fully as possible, immersing themselves and enjoying their place of safety.

Such feelings of relaxation may be able to help clients fall asleep, relieve stress, and become more ready to solve problems.

We have included three of our favorite books on the subject of Problem-Solving Therapy below.

1. Problem-Solving Therapy: A Treatment Manual – Arthur Nezu, Christine Maguth Nezu, and Thomas D’Zurilla

Problem-Solving Therapy

This is an incredibly valuable book for anyone wishing to understand the principles and practice behind PST.

Written by the co-developers of PST, the manual provides powerful toolkits to overcome cognitive overload, emotional dysregulation, and the barriers to practical problem-solving.

Find the book on Amazon .

2. Emotion-Centered Problem-Solving Therapy: Treatment Guidelines – Arthur Nezu and Christine Maguth Nezu

Emotion-Centered Problem-Solving Therapy

Another, more recent, book from the creators of PST, this text includes important advances in neuroscience underpinning the role of emotion in behavioral treatment.

Along with clinical examples, the book also includes crucial toolkits that form part of a stepped model for the application of PST.

3. Handbook of Cognitive-Behavioral Therapies – Keith Dobson and David Dozois

Handbook of Cognitive-Behavioral Therapies

This is the fourth edition of a hugely popular guide to Cognitive-Behavioral Therapies and includes a valuable and insightful section on Problem-Solving Therapy.

This is an important book for students and more experienced therapists wishing to form a high-level and in-depth understanding of the tools and techniques available to Cognitive-Behavioral Therapists.

For even more tools to help strengthen your clients’ problem-solving skills, check out the following free worksheets from our blog.

  • Case Formulation Worksheet This worksheet presents a four-step framework to help therapists and their clients come to a shared understanding of the client’s presenting problem.
  • Understanding Your Default Problem-Solving Approach This worksheet poses a series of questions helping clients reflect on their typical cognitive, emotional, and behavioral responses to problems.
  • Social Problem Solving: Step by Step This worksheet presents a streamlined template to help clients define a problem, generate possible courses of action, and evaluate the effectiveness of an implemented solution.

If you’re looking for more science-based ways to help others enhance their wellbeing, check out this signature collection of 17 validated positive psychology tools for practitioners. Use them to help others flourish and thrive.

real life situation problem solving

17 Top-Rated Positive Psychology Exercises for Practitioners

Expand your arsenal and impact with these 17 Positive Psychology Exercises [PDF] , scientifically designed to promote human flourishing, meaning, and wellbeing.

Created by Experts. 100% Science-based.

While we are born problem-solvers, facing an incredibly diverse set of challenges daily, we sometimes need support.

Problem-Solving Therapy aims to reduce stress and associated mental health disorders and improve wellbeing by improving our ability to cope. PST is valuable in diverse clinical settings, ranging from depression to schizophrenia, with research suggesting it as a highly effective treatment for teaching coping strategies and reducing emotional distress.

Many PST techniques are available to help improve clients’ positive outlook on obstacles while reducing avoidance of problem situations and the tendency to be careless and impulsive.

The PST model typically assesses the client’s strengths, weaknesses, and coping strategies when facing problems before encouraging a healthy experience of and relationship with problem-solving.

Why not use this article to explore the theory behind PST and try out some of our powerful tools and interventions with your clients to help them with their decision-making, coping, and problem-solving?

We hope you enjoyed reading this article. Don’t forget to download our three Positive Psychology Exercises for free .

  • Cuijpers, P., Wit, L., Kleiboer, A., Karyotaki, E., & Ebert, D. (2020). Problem-solving therapy for adult depression: An updated meta-analysis. European P sychiatry ,  48 (1), 27–37.
  • Dobson, K. S. (2011). Handbook of cognitive-behavioral therapies (3rd ed.). Guilford Press.
  • Dobson, K. S., & Dozois, D. J. A. (2021). Handbook of cognitive-behavioral therapies  (4th ed.). Guilford Press.
  • Eysenck, M. W., & Keane, M. T. (2015). Cognitive psychology: A student’s handbook . Psychology Press.
  • Nezu, A. M., & Nezu, C. M. (2009). Problem-solving therapy DVD . Retrieved September 13, 2021, from https://www.apa.org/pubs/videos/4310852
  • Nezu, A. M., & Nezu, C. M. (2018). Emotion-centered problem-solving therapy: Treatment guidelines. Springer.
  • Nezu, A. M., Nezu, C. M., & D’Zurilla, T. J. (2013). Problem-solving therapy: A treatment manual . Springer.

' src=

Share this article:

Article feedback

What our readers think.

Saranya

Thanks for your information given, it was helpful for me something new I learned

Let us know your thoughts Cancel reply

Your email address will not be published.

Save my name, email, and website in this browser for the next time I comment.

Related articles

Variations of the empty chair

The Empty Chair Technique: How It Can Help Your Clients

Resolving ‘unfinished business’ is often an essential part of counseling. If left unresolved, it can contribute to depression, anxiety, and mental ill-health while damaging existing [...]

real life situation problem solving

29 Best Group Therapy Activities for Supporting Adults

As humans, we are social creatures with personal histories based on the various groups that make up our lives. Childhood begins with a family of [...]

Free Therapy Resources

47 Free Therapy Resources to Help Kick-Start Your New Practice

Setting up a private practice in psychotherapy brings several challenges, including a considerable investment of time and money. You can reduce risks early on by [...]

Read other articles by their category

  • Body & Brain (49)
  • Coaching & Application (57)
  • Compassion (26)
  • Counseling (51)
  • Emotional Intelligence (24)
  • Gratitude (18)
  • Grief & Bereavement (21)
  • Happiness & SWB (40)
  • Meaning & Values (26)
  • Meditation (20)
  • Mindfulness (45)
  • Motivation & Goals (45)
  • Optimism & Mindset (34)
  • Positive CBT (28)
  • Positive Communication (20)
  • Positive Education (47)
  • Positive Emotions (32)
  • Positive Leadership (18)
  • Positive Parenting (4)
  • Positive Psychology (33)
  • Positive Workplace (37)
  • Productivity (17)
  • Relationships (46)
  • Resilience & Coping (36)
  • Self Awareness (21)
  • Self Esteem (38)
  • Strengths & Virtues (32)
  • Stress & Burnout Prevention (34)
  • Theory & Books (46)
  • Therapy Exercises (37)
  • Types of Therapy (64)

35 problem-solving techniques and methods for solving complex problems

Problem solving workshop

Design your next session with SessionLab

Join the 150,000+ facilitators 
using SessionLab.

Recommended Articles

A step-by-step guide to planning a workshop, how to create an unforgettable training session in 8 simple steps, 47 useful online tools for workshop planning and meeting facilitation.

All teams and organizations encounter challenges as they grow. There are problems that might occur for teams when it comes to miscommunication or resolving business-critical issues . You may face challenges around growth , design , user engagement, and even team culture and happiness. In short, problem-solving techniques should be part of every team’s skillset.

Problem-solving methods are primarily designed to help a group or team through a process of first identifying problems and challenges , ideating possible solutions , and then evaluating the most suitable .

Finding effective solutions to complex problems isn’t easy, but by using the right process and techniques, you can help your team be more efficient in the process.

So how do you develop strategies that are engaging, and empower your team to solve problems effectively?

In this blog post, we share a series of problem-solving tools you can use in your next workshop or team meeting. You’ll also find some tips for facilitating the process and how to enable others to solve complex problems.

Let’s get started! 

How do you identify problems?

How do you identify the right solution.

  • Tips for more effective problem-solving

Complete problem-solving methods

  • Problem-solving techniques to identify and analyze problems
  • Problem-solving techniques for developing solutions

Problem-solving warm-up activities

Closing activities for a problem-solving process.

Before you can move towards finding the right solution for a given problem, you first need to identify and define the problem you wish to solve. 

Here, you want to clearly articulate what the problem is and allow your group to do the same. Remember that everyone in a group is likely to have differing perspectives and alignment is necessary in order to help the group move forward. 

Identifying a problem accurately also requires that all members of a group are able to contribute their views in an open and safe manner. It can be scary for people to stand up and contribute, especially if the problems or challenges are emotive or personal in nature. Be sure to try and create a psychologically safe space for these kinds of discussions.

Remember that problem analysis and further discussion are also important. Not taking the time to fully analyze and discuss a challenge can result in the development of solutions that are not fit for purpose or do not address the underlying issue.

Successfully identifying and then analyzing a problem means facilitating a group through activities designed to help them clearly and honestly articulate their thoughts and produce usable insight.

With this data, you might then produce a problem statement that clearly describes the problem you wish to be addressed and also state the goal of any process you undertake to tackle this issue.  

Finding solutions is the end goal of any process. Complex organizational challenges can only be solved with an appropriate solution but discovering them requires using the right problem-solving tool.

After you’ve explored a problem and discussed ideas, you need to help a team discuss and choose the right solution. Consensus tools and methods such as those below help a group explore possible solutions before then voting for the best. They’re a great way to tap into the collective intelligence of the group for great results!

Remember that the process is often iterative. Great problem solvers often roadtest a viable solution in a measured way to see what works too. While you might not get the right solution on your first try, the methods below help teams land on the most likely to succeed solution while also holding space for improvement.

Every effective problem solving process begins with an agenda . A well-structured workshop is one of the best methods for successfully guiding a group from exploring a problem to implementing a solution.

In SessionLab, it’s easy to go from an idea to a complete agenda . Start by dragging and dropping your core problem solving activities into place . Add timings, breaks and necessary materials before sharing your agenda with your colleagues.

The resulting agenda will be your guide to an effective and productive problem solving session that will also help you stay organized on the day!

real life situation problem solving

Tips for more effective problem solving

Problem-solving activities are only one part of the puzzle. While a great method can help unlock your team’s ability to solve problems, without a thoughtful approach and strong facilitation the solutions may not be fit for purpose.

Let’s take a look at some problem-solving tips you can apply to any process to help it be a success!

Clearly define the problem

Jumping straight to solutions can be tempting, though without first clearly articulating a problem, the solution might not be the right one. Many of the problem-solving activities below include sections where the problem is explored and clearly defined before moving on.

This is a vital part of the problem-solving process and taking the time to fully define an issue can save time and effort later. A clear definition helps identify irrelevant information and it also ensures that your team sets off on the right track.

Don’t jump to conclusions

It’s easy for groups to exhibit cognitive bias or have preconceived ideas about both problems and potential solutions. Be sure to back up any problem statements or potential solutions with facts, research, and adequate forethought.

The best techniques ask participants to be methodical and challenge preconceived notions. Make sure you give the group enough time and space to collect relevant information and consider the problem in a new way. By approaching the process with a clear, rational mindset, you’ll often find that better solutions are more forthcoming.  

Try different approaches  

Problems come in all shapes and sizes and so too should the methods you use to solve them. If you find that one approach isn’t yielding results and your team isn’t finding different solutions, try mixing it up. You’ll be surprised at how using a new creative activity can unblock your team and generate great solutions.

Don’t take it personally 

Depending on the nature of your team or organizational problems, it’s easy for conversations to get heated. While it’s good for participants to be engaged in the discussions, ensure that emotions don’t run too high and that blame isn’t thrown around while finding solutions.

You’re all in it together, and even if your team or area is seeing problems, that isn’t necessarily a disparagement of you personally. Using facilitation skills to manage group dynamics is one effective method of helping conversations be more constructive.

Get the right people in the room

Your problem-solving method is often only as effective as the group using it. Getting the right people on the job and managing the number of people present is important too!

If the group is too small, you may not get enough different perspectives to effectively solve a problem. If the group is too large, you can go round and round during the ideation stages.

Creating the right group makeup is also important in ensuring you have the necessary expertise and skillset to both identify and follow up on potential solutions. Carefully consider who to include at each stage to help ensure your problem-solving method is followed and positioned for success.

Document everything

The best solutions can take refinement, iteration, and reflection to come out. Get into a habit of documenting your process in order to keep all the learnings from the session and to allow ideas to mature and develop. Many of the methods below involve the creation of documents or shared resources. Be sure to keep and share these so everyone can benefit from the work done!

Bring a facilitator 

Facilitation is all about making group processes easier. With a subject as potentially emotive and important as problem-solving, having an impartial third party in the form of a facilitator can make all the difference in finding great solutions and keeping the process moving. Consider bringing a facilitator to your problem-solving session to get better results and generate meaningful solutions!

Develop your problem-solving skills

It takes time and practice to be an effective problem solver. While some roles or participants might more naturally gravitate towards problem-solving, it can take development and planning to help everyone create better solutions.

You might develop a training program, run a problem-solving workshop or simply ask your team to practice using the techniques below. Check out our post on problem-solving skills to see how you and your group can develop the right mental process and be more resilient to issues too!

Design a great agenda

Workshops are a great format for solving problems. With the right approach, you can focus a group and help them find the solutions to their own problems. But designing a process can be time-consuming and finding the right activities can be difficult.

Check out our workshop planning guide to level-up your agenda design and start running more effective workshops. Need inspiration? Check out templates designed by expert facilitators to help you kickstart your process!

In this section, we’ll look at in-depth problem-solving methods that provide a complete end-to-end process for developing effective solutions. These will help guide your team from the discovery and definition of a problem through to delivering the right solution.

If you’re looking for an all-encompassing method or problem-solving model, these processes are a great place to start. They’ll ask your team to challenge preconceived ideas and adopt a mindset for solving problems more effectively.

  • Six Thinking Hats
  • Lightning Decision Jam
  • Problem Definition Process
  • Discovery & Action Dialogue
Design Sprint 2.0
  • Open Space Technology

1. Six Thinking Hats

Individual approaches to solving a problem can be very different based on what team or role an individual holds. It can be easy for existing biases or perspectives to find their way into the mix, or for internal politics to direct a conversation.

Six Thinking Hats is a classic method for identifying the problems that need to be solved and enables your team to consider them from different angles, whether that is by focusing on facts and data, creative solutions, or by considering why a particular solution might not work.

Like all problem-solving frameworks, Six Thinking Hats is effective at helping teams remove roadblocks from a conversation or discussion and come to terms with all the aspects necessary to solve complex problems.

2. Lightning Decision Jam

Featured courtesy of Jonathan Courtney of AJ&Smart Berlin, Lightning Decision Jam is one of those strategies that should be in every facilitation toolbox. Exploring problems and finding solutions is often creative in nature, though as with any creative process, there is the potential to lose focus and get lost.

Unstructured discussions might get you there in the end, but it’s much more effective to use a method that creates a clear process and team focus.

In Lightning Decision Jam, participants are invited to begin by writing challenges, concerns, or mistakes on post-its without discussing them before then being invited by the moderator to present them to the group.

From there, the team vote on which problems to solve and are guided through steps that will allow them to reframe those problems, create solutions and then decide what to execute on. 

By deciding the problems that need to be solved as a team before moving on, this group process is great for ensuring the whole team is aligned and can take ownership over the next stages. 

Lightning Decision Jam (LDJ)   #action   #decision making   #problem solving   #issue analysis   #innovation   #design   #remote-friendly   The problem with anything that requires creative thinking is that it’s easy to get lost—lose focus and fall into the trap of having useless, open-ended, unstructured discussions. Here’s the most effective solution I’ve found: Replace all open, unstructured discussion with a clear process. What to use this exercise for: Anything which requires a group of people to make decisions, solve problems or discuss challenges. It’s always good to frame an LDJ session with a broad topic, here are some examples: The conversion flow of our checkout Our internal design process How we organise events Keeping up with our competition Improving sales flow

3. Problem Definition Process

While problems can be complex, the problem-solving methods you use to identify and solve those problems can often be simple in design. 

By taking the time to truly identify and define a problem before asking the group to reframe the challenge as an opportunity, this method is a great way to enable change.

Begin by identifying a focus question and exploring the ways in which it manifests before splitting into five teams who will each consider the problem using a different method: escape, reversal, exaggeration, distortion or wishful. Teams develop a problem objective and create ideas in line with their method before then feeding them back to the group.

This method is great for enabling in-depth discussions while also creating space for finding creative solutions too!

Problem Definition   #problem solving   #idea generation   #creativity   #online   #remote-friendly   A problem solving technique to define a problem, challenge or opportunity and to generate ideas.

4. The 5 Whys 

Sometimes, a group needs to go further with their strategies and analyze the root cause at the heart of organizational issues. An RCA or root cause analysis is the process of identifying what is at the heart of business problems or recurring challenges. 

The 5 Whys is a simple and effective method of helping a group go find the root cause of any problem or challenge and conduct analysis that will deliver results. 

By beginning with the creation of a problem statement and going through five stages to refine it, The 5 Whys provides everything you need to truly discover the cause of an issue.

The 5 Whys   #hyperisland   #innovation   This simple and powerful method is useful for getting to the core of a problem or challenge. As the title suggests, the group defines a problems, then asks the question “why” five times, often using the resulting explanation as a starting point for creative problem solving.

5. World Cafe

World Cafe is a simple but powerful facilitation technique to help bigger groups to focus their energy and attention on solving complex problems.

World Cafe enables this approach by creating a relaxed atmosphere where participants are able to self-organize and explore topics relevant and important to them which are themed around a central problem-solving purpose. Create the right atmosphere by modeling your space after a cafe and after guiding the group through the method, let them take the lead!

Making problem-solving a part of your organization’s culture in the long term can be a difficult undertaking. More approachable formats like World Cafe can be especially effective in bringing people unfamiliar with workshops into the fold. 

World Cafe   #hyperisland   #innovation   #issue analysis   World Café is a simple yet powerful method, originated by Juanita Brown, for enabling meaningful conversations driven completely by participants and the topics that are relevant and important to them. Facilitators create a cafe-style space and provide simple guidelines. Participants then self-organize and explore a set of relevant topics or questions for conversation.

6. Discovery & Action Dialogue (DAD)

One of the best approaches is to create a safe space for a group to share and discover practices and behaviors that can help them find their own solutions.

With DAD, you can help a group choose which problems they wish to solve and which approaches they will take to do so. It’s great at helping remove resistance to change and can help get buy-in at every level too!

This process of enabling frontline ownership is great in ensuring follow-through and is one of the methods you will want in your toolbox as a facilitator.

Discovery & Action Dialogue (DAD)   #idea generation   #liberating structures   #action   #issue analysis   #remote-friendly   DADs make it easy for a group or community to discover practices and behaviors that enable some individuals (without access to special resources and facing the same constraints) to find better solutions than their peers to common problems. These are called positive deviant (PD) behaviors and practices. DADs make it possible for people in the group, unit, or community to discover by themselves these PD practices. DADs also create favorable conditions for stimulating participants’ creativity in spaces where they can feel safe to invent new and more effective practices. Resistance to change evaporates as participants are unleashed to choose freely which practices they will adopt or try and which problems they will tackle. DADs make it possible to achieve frontline ownership of solutions.

7. Design Sprint 2.0

Want to see how a team can solve big problems and move forward with prototyping and testing solutions in a few days? The Design Sprint 2.0 template from Jake Knapp, author of Sprint, is a complete agenda for a with proven results.

Developing the right agenda can involve difficult but necessary planning. Ensuring all the correct steps are followed can also be stressful or time-consuming depending on your level of experience.

Use this complete 4-day workshop template if you are finding there is no obvious solution to your challenge and want to focus your team around a specific problem that might require a shortcut to launching a minimum viable product or waiting for the organization-wide implementation of a solution.

8. Open space technology

Open space technology- developed by Harrison Owen – creates a space where large groups are invited to take ownership of their problem solving and lead individual sessions. Open space technology is a great format when you have a great deal of expertise and insight in the room and want to allow for different takes and approaches on a particular theme or problem you need to be solved.

Start by bringing your participants together to align around a central theme and focus their efforts. Explain the ground rules to help guide the problem-solving process and then invite members to identify any issue connecting to the central theme that they are interested in and are prepared to take responsibility for.

Once participants have decided on their approach to the core theme, they write their issue on a piece of paper, announce it to the group, pick a session time and place, and post the paper on the wall. As the wall fills up with sessions, the group is then invited to join the sessions that interest them the most and which they can contribute to, then you’re ready to begin!

Everyone joins the problem-solving group they’ve signed up to, record the discussion and if appropriate, findings can then be shared with the rest of the group afterward.

Open Space Technology   #action plan   #idea generation   #problem solving   #issue analysis   #large group   #online   #remote-friendly   Open Space is a methodology for large groups to create their agenda discerning important topics for discussion, suitable for conferences, community gatherings and whole system facilitation

Techniques to identify and analyze problems

Using a problem-solving method to help a team identify and analyze a problem can be a quick and effective addition to any workshop or meeting.

While further actions are always necessary, you can generate momentum and alignment easily, and these activities are a great place to get started.

We’ve put together this list of techniques to help you and your team with problem identification, analysis, and discussion that sets the foundation for developing effective solutions.

Let’s take a look!

  • The Creativity Dice
  • Fishbone Analysis
  • Problem Tree
  • SWOT Analysis
  • Agreement-Certainty Matrix
  • The Journalistic Six
  • LEGO Challenge
  • What, So What, Now What?
  • Journalists

Individual and group perspectives are incredibly important, but what happens if people are set in their minds and need a change of perspective in order to approach a problem more effectively?

Flip It is a method we love because it is both simple to understand and run, and allows groups to understand how their perspectives and biases are formed. 

Participants in Flip It are first invited to consider concerns, issues, or problems from a perspective of fear and write them on a flip chart. Then, the group is asked to consider those same issues from a perspective of hope and flip their understanding.  

No problem and solution is free from existing bias and by changing perspectives with Flip It, you can then develop a problem solving model quickly and effectively.

Flip It!   #gamestorming   #problem solving   #action   Often, a change in a problem or situation comes simply from a change in our perspectives. Flip It! is a quick game designed to show players that perspectives are made, not born.

10. The Creativity Dice

One of the most useful problem solving skills you can teach your team is of approaching challenges with creativity, flexibility, and openness. Games like The Creativity Dice allow teams to overcome the potential hurdle of too much linear thinking and approach the process with a sense of fun and speed. 

In The Creativity Dice, participants are organized around a topic and roll a dice to determine what they will work on for a period of 3 minutes at a time. They might roll a 3 and work on investigating factual information on the chosen topic. They might roll a 1 and work on identifying the specific goals, standards, or criteria for the session.

Encouraging rapid work and iteration while asking participants to be flexible are great skills to cultivate. Having a stage for idea incubation in this game is also important. Moments of pause can help ensure the ideas that are put forward are the most suitable. 

The Creativity Dice   #creativity   #problem solving   #thiagi   #issue analysis   Too much linear thinking is hazardous to creative problem solving. To be creative, you should approach the problem (or the opportunity) from different points of view. You should leave a thought hanging in mid-air and move to another. This skipping around prevents premature closure and lets your brain incubate one line of thought while you consciously pursue another.

11. Fishbone Analysis

Organizational or team challenges are rarely simple, and it’s important to remember that one problem can be an indication of something that goes deeper and may require further consideration to be solved.

Fishbone Analysis helps groups to dig deeper and understand the origins of a problem. It’s a great example of a root cause analysis method that is simple for everyone on a team to get their head around. 

Participants in this activity are asked to annotate a diagram of a fish, first adding the problem or issue to be worked on at the head of a fish before then brainstorming the root causes of the problem and adding them as bones on the fish. 

Using abstractions such as a diagram of a fish can really help a team break out of their regular thinking and develop a creative approach.

Fishbone Analysis   #problem solving   ##root cause analysis   #decision making   #online facilitation   A process to help identify and understand the origins of problems, issues or observations.

12. Problem Tree 

Encouraging visual thinking can be an essential part of many strategies. By simply reframing and clarifying problems, a group can move towards developing a problem solving model that works for them. 

In Problem Tree, groups are asked to first brainstorm a list of problems – these can be design problems, team problems or larger business problems – and then organize them into a hierarchy. The hierarchy could be from most important to least important or abstract to practical, though the key thing with problem solving games that involve this aspect is that your group has some way of managing and sorting all the issues that are raised.

Once you have a list of problems that need to be solved and have organized them accordingly, you’re then well-positioned for the next problem solving steps.

Problem tree   #define intentions   #create   #design   #issue analysis   A problem tree is a tool to clarify the hierarchy of problems addressed by the team within a design project; it represents high level problems or related sublevel problems.

13. SWOT Analysis

Chances are you’ve heard of the SWOT Analysis before. This problem-solving method focuses on identifying strengths, weaknesses, opportunities, and threats is a tried and tested method for both individuals and teams.

Start by creating a desired end state or outcome and bare this in mind – any process solving model is made more effective by knowing what you are moving towards. Create a quadrant made up of the four categories of a SWOT analysis and ask participants to generate ideas based on each of those quadrants.

Once you have those ideas assembled in their quadrants, cluster them together based on their affinity with other ideas. These clusters are then used to facilitate group conversations and move things forward. 

SWOT analysis   #gamestorming   #problem solving   #action   #meeting facilitation   The SWOT Analysis is a long-standing technique of looking at what we have, with respect to the desired end state, as well as what we could improve on. It gives us an opportunity to gauge approaching opportunities and dangers, and assess the seriousness of the conditions that affect our future. When we understand those conditions, we can influence what comes next.

14. Agreement-Certainty Matrix

Not every problem-solving approach is right for every challenge, and deciding on the right method for the challenge at hand is a key part of being an effective team.

The Agreement Certainty matrix helps teams align on the nature of the challenges facing them. By sorting problems from simple to chaotic, your team can understand what methods are suitable for each problem and what they can do to ensure effective results. 

If you are already using Liberating Structures techniques as part of your problem-solving strategy, the Agreement-Certainty Matrix can be an invaluable addition to your process. We’ve found it particularly if you are having issues with recurring problems in your organization and want to go deeper in understanding the root cause. 

Agreement-Certainty Matrix   #issue analysis   #liberating structures   #problem solving   You can help individuals or groups avoid the frequent mistake of trying to solve a problem with methods that are not adapted to the nature of their challenge. The combination of two questions makes it possible to easily sort challenges into four categories: simple, complicated, complex , and chaotic .  A problem is simple when it can be solved reliably with practices that are easy to duplicate.  It is complicated when experts are required to devise a sophisticated solution that will yield the desired results predictably.  A problem is complex when there are several valid ways to proceed but outcomes are not predictable in detail.  Chaotic is when the context is too turbulent to identify a path forward.  A loose analogy may be used to describe these differences: simple is like following a recipe, complicated like sending a rocket to the moon, complex like raising a child, and chaotic is like the game “Pin the Tail on the Donkey.”  The Liberating Structures Matching Matrix in Chapter 5 can be used as the first step to clarify the nature of a challenge and avoid the mismatches between problems and solutions that are frequently at the root of chronic, recurring problems.

Organizing and charting a team’s progress can be important in ensuring its success. SQUID (Sequential Question and Insight Diagram) is a great model that allows a team to effectively switch between giving questions and answers and develop the skills they need to stay on track throughout the process. 

Begin with two different colored sticky notes – one for questions and one for answers – and with your central topic (the head of the squid) on the board. Ask the group to first come up with a series of questions connected to their best guess of how to approach the topic. Ask the group to come up with answers to those questions, fix them to the board and connect them with a line. After some discussion, go back to question mode by responding to the generated answers or other points on the board.

It’s rewarding to see a diagram grow throughout the exercise, and a completed SQUID can provide a visual resource for future effort and as an example for other teams.

SQUID   #gamestorming   #project planning   #issue analysis   #problem solving   When exploring an information space, it’s important for a group to know where they are at any given time. By using SQUID, a group charts out the territory as they go and can navigate accordingly. SQUID stands for Sequential Question and Insight Diagram.

16. Speed Boat

To continue with our nautical theme, Speed Boat is a short and sweet activity that can help a team quickly identify what employees, clients or service users might have a problem with and analyze what might be standing in the way of achieving a solution.

Methods that allow for a group to make observations, have insights and obtain those eureka moments quickly are invaluable when trying to solve complex problems.

In Speed Boat, the approach is to first consider what anchors and challenges might be holding an organization (or boat) back. Bonus points if you are able to identify any sharks in the water and develop ideas that can also deal with competitors!   

Speed Boat   #gamestorming   #problem solving   #action   Speedboat is a short and sweet way to identify what your employees or clients don’t like about your product/service or what’s standing in the way of a desired goal.

17. The Journalistic Six

Some of the most effective ways of solving problems is by encouraging teams to be more inclusive and diverse in their thinking.

Based on the six key questions journalism students are taught to answer in articles and news stories, The Journalistic Six helps create teams to see the whole picture. By using who, what, when, where, why, and how to facilitate the conversation and encourage creative thinking, your team can make sure that the problem identification and problem analysis stages of the are covered exhaustively and thoughtfully. Reporter’s notebook and dictaphone optional.

The Journalistic Six – Who What When Where Why How   #idea generation   #issue analysis   #problem solving   #online   #creative thinking   #remote-friendly   A questioning method for generating, explaining, investigating ideas.

18. LEGO Challenge

Now for an activity that is a little out of the (toy) box. LEGO Serious Play is a facilitation methodology that can be used to improve creative thinking and problem-solving skills. 

The LEGO Challenge includes giving each member of the team an assignment that is hidden from the rest of the group while they create a structure without speaking.

What the LEGO challenge brings to the table is a fun working example of working with stakeholders who might not be on the same page to solve problems. Also, it’s LEGO! Who doesn’t love LEGO! 

LEGO Challenge   #hyperisland   #team   A team-building activity in which groups must work together to build a structure out of LEGO, but each individual has a secret “assignment” which makes the collaborative process more challenging. It emphasizes group communication, leadership dynamics, conflict, cooperation, patience and problem solving strategy.

19. What, So What, Now What?

If not carefully managed, the problem identification and problem analysis stages of the problem-solving process can actually create more problems and misunderstandings.

The What, So What, Now What? problem-solving activity is designed to help collect insights and move forward while also eliminating the possibility of disagreement when it comes to identifying, clarifying, and analyzing organizational or work problems. 

Facilitation is all about bringing groups together so that might work on a shared goal and the best problem-solving strategies ensure that teams are aligned in purpose, if not initially in opinion or insight.

Throughout the three steps of this game, you give everyone on a team to reflect on a problem by asking what happened, why it is important, and what actions should then be taken. 

This can be a great activity for bringing our individual perceptions about a problem or challenge and contextualizing it in a larger group setting. This is one of the most important problem-solving skills you can bring to your organization.

W³ – What, So What, Now What?   #issue analysis   #innovation   #liberating structures   You can help groups reflect on a shared experience in a way that builds understanding and spurs coordinated action while avoiding unproductive conflict. It is possible for every voice to be heard while simultaneously sifting for insights and shaping new direction. Progressing in stages makes this practical—from collecting facts about What Happened to making sense of these facts with So What and finally to what actions logically follow with Now What . The shared progression eliminates most of the misunderstandings that otherwise fuel disagreements about what to do. Voila!

20. Journalists  

Problem analysis can be one of the most important and decisive stages of all problem-solving tools. Sometimes, a team can become bogged down in the details and are unable to move forward.

Journalists is an activity that can avoid a group from getting stuck in the problem identification or problem analysis stages of the process.

In Journalists, the group is invited to draft the front page of a fictional newspaper and figure out what stories deserve to be on the cover and what headlines those stories will have. By reframing how your problems and challenges are approached, you can help a team move productively through the process and be better prepared for the steps to follow.

Journalists   #vision   #big picture   #issue analysis   #remote-friendly   This is an exercise to use when the group gets stuck in details and struggles to see the big picture. Also good for defining a vision.

Problem-solving techniques for developing solutions 

The success of any problem-solving process can be measured by the solutions it produces. After you’ve defined the issue, explored existing ideas, and ideated, it’s time to narrow down to the correct solution.

Use these problem-solving techniques when you want to help your team find consensus, compare possible solutions, and move towards taking action on a particular problem.

  • Improved Solutions
  • Four-Step Sketch
  • 15% Solutions
  • How-Now-Wow matrix
  • Impact Effort Matrix

21. Mindspin  

Brainstorming is part of the bread and butter of the problem-solving process and all problem-solving strategies benefit from getting ideas out and challenging a team to generate solutions quickly. 

With Mindspin, participants are encouraged not only to generate ideas but to do so under time constraints and by slamming down cards and passing them on. By doing multiple rounds, your team can begin with a free generation of possible solutions before moving on to developing those solutions and encouraging further ideation. 

This is one of our favorite problem-solving activities and can be great for keeping the energy up throughout the workshop. Remember the importance of helping people become engaged in the process – energizing problem-solving techniques like Mindspin can help ensure your team stays engaged and happy, even when the problems they’re coming together to solve are complex. 

MindSpin   #teampedia   #idea generation   #problem solving   #action   A fast and loud method to enhance brainstorming within a team. Since this activity has more than round ideas that are repetitive can be ruled out leaving more creative and innovative answers to the challenge.

22. Improved Solutions

After a team has successfully identified a problem and come up with a few solutions, it can be tempting to call the work of the problem-solving process complete. That said, the first solution is not necessarily the best, and by including a further review and reflection activity into your problem-solving model, you can ensure your group reaches the best possible result. 

One of a number of problem-solving games from Thiagi Group, Improved Solutions helps you go the extra mile and develop suggested solutions with close consideration and peer review. By supporting the discussion of several problems at once and by shifting team roles throughout, this problem-solving technique is a dynamic way of finding the best solution. 

Improved Solutions   #creativity   #thiagi   #problem solving   #action   #team   You can improve any solution by objectively reviewing its strengths and weaknesses and making suitable adjustments. In this creativity framegame, you improve the solutions to several problems. To maintain objective detachment, you deal with a different problem during each of six rounds and assume different roles (problem owner, consultant, basher, booster, enhancer, and evaluator) during each round. At the conclusion of the activity, each player ends up with two solutions to her problem.

23. Four Step Sketch

Creative thinking and visual ideation does not need to be confined to the opening stages of your problem-solving strategies. Exercises that include sketching and prototyping on paper can be effective at the solution finding and development stage of the process, and can be great for keeping a team engaged. 

By going from simple notes to a crazy 8s round that involves rapidly sketching 8 variations on their ideas before then producing a final solution sketch, the group is able to iterate quickly and visually. Problem-solving techniques like Four-Step Sketch are great if you have a group of different thinkers and want to change things up from a more textual or discussion-based approach.

Four-Step Sketch   #design sprint   #innovation   #idea generation   #remote-friendly   The four-step sketch is an exercise that helps people to create well-formed concepts through a structured process that includes: Review key information Start design work on paper,  Consider multiple variations , Create a detailed solution . This exercise is preceded by a set of other activities allowing the group to clarify the challenge they want to solve. See how the Four Step Sketch exercise fits into a Design Sprint

24. 15% Solutions

Some problems are simpler than others and with the right problem-solving activities, you can empower people to take immediate actions that can help create organizational change. 

Part of the liberating structures toolkit, 15% solutions is a problem-solving technique that focuses on finding and implementing solutions quickly. A process of iterating and making small changes quickly can help generate momentum and an appetite for solving complex problems.

Problem-solving strategies can live and die on whether people are onboard. Getting some quick wins is a great way of getting people behind the process.   

It can be extremely empowering for a team to realize that problem-solving techniques can be deployed quickly and easily and delineate between things they can positively impact and those things they cannot change. 

15% Solutions   #action   #liberating structures   #remote-friendly   You can reveal the actions, however small, that everyone can do immediately. At a minimum, these will create momentum, and that may make a BIG difference.  15% Solutions show that there is no reason to wait around, feel powerless, or fearful. They help people pick it up a level. They get individuals and the group to focus on what is within their discretion instead of what they cannot change.  With a very simple question, you can flip the conversation to what can be done and find solutions to big problems that are often distributed widely in places not known in advance. Shifting a few grains of sand may trigger a landslide and change the whole landscape.

25. How-Now-Wow Matrix

The problem-solving process is often creative, as complex problems usually require a change of thinking and creative response in order to find the best solutions. While it’s common for the first stages to encourage creative thinking, groups can often gravitate to familiar solutions when it comes to the end of the process. 

When selecting solutions, you don’t want to lose your creative energy! The How-Now-Wow Matrix from Gamestorming is a great problem-solving activity that enables a group to stay creative and think out of the box when it comes to selecting the right solution for a given problem.

Problem-solving techniques that encourage creative thinking and the ideation and selection of new solutions can be the most effective in organisational change. Give the How-Now-Wow Matrix a go, and not just for how pleasant it is to say out loud. 

How-Now-Wow Matrix   #gamestorming   #idea generation   #remote-friendly   When people want to develop new ideas, they most often think out of the box in the brainstorming or divergent phase. However, when it comes to convergence, people often end up picking ideas that are most familiar to them. This is called a ‘creative paradox’ or a ‘creadox’. The How-Now-Wow matrix is an idea selection tool that breaks the creadox by forcing people to weigh each idea on 2 parameters.

26. Impact and Effort Matrix

All problem-solving techniques hope to not only find solutions to a given problem or challenge but to find the best solution. When it comes to finding a solution, groups are invited to put on their decision-making hats and really think about how a proposed idea would work in practice. 

The Impact and Effort Matrix is one of the problem-solving techniques that fall into this camp, empowering participants to first generate ideas and then categorize them into a 2×2 matrix based on impact and effort.

Activities that invite critical thinking while remaining simple are invaluable. Use the Impact and Effort Matrix to move from ideation and towards evaluating potential solutions before then committing to them. 

Impact and Effort Matrix   #gamestorming   #decision making   #action   #remote-friendly   In this decision-making exercise, possible actions are mapped based on two factors: effort required to implement and potential impact. Categorizing ideas along these lines is a useful technique in decision making, as it obliges contributors to balance and evaluate suggested actions before committing to them.

27. Dotmocracy

If you’ve followed each of the problem-solving steps with your group successfully, you should move towards the end of your process with heaps of possible solutions developed with a specific problem in mind. But how do you help a group go from ideation to putting a solution into action? 

Dotmocracy – or Dot Voting -is a tried and tested method of helping a team in the problem-solving process make decisions and put actions in place with a degree of oversight and consensus. 

One of the problem-solving techniques that should be in every facilitator’s toolbox, Dot Voting is fast and effective and can help identify the most popular and best solutions and help bring a group to a decision effectively. 

Dotmocracy   #action   #decision making   #group prioritization   #hyperisland   #remote-friendly   Dotmocracy is a simple method for group prioritization or decision-making. It is not an activity on its own, but a method to use in processes where prioritization or decision-making is the aim. The method supports a group to quickly see which options are most popular or relevant. The options or ideas are written on post-its and stuck up on a wall for the whole group to see. Each person votes for the options they think are the strongest, and that information is used to inform a decision.

All facilitators know that warm-ups and icebreakers are useful for any workshop or group process. Problem-solving workshops are no different.

Use these problem-solving techniques to warm up a group and prepare them for the rest of the process. Activating your group by tapping into some of the top problem-solving skills can be one of the best ways to see great outcomes from your session.

  • Check-in/Check-out
  • Doodling Together
  • Show and Tell
  • Constellations
  • Draw a Tree

28. Check-in / Check-out

Solid processes are planned from beginning to end, and the best facilitators know that setting the tone and establishing a safe, open environment can be integral to a successful problem-solving process.

Check-in / Check-out is a great way to begin and/or bookend a problem-solving workshop. Checking in to a session emphasizes that everyone will be seen, heard, and expected to contribute. 

If you are running a series of meetings, setting a consistent pattern of checking in and checking out can really help your team get into a groove. We recommend this opening-closing activity for small to medium-sized groups though it can work with large groups if they’re disciplined!

Check-in / Check-out   #team   #opening   #closing   #hyperisland   #remote-friendly   Either checking-in or checking-out is a simple way for a team to open or close a process, symbolically and in a collaborative way. Checking-in/out invites each member in a group to be present, seen and heard, and to express a reflection or a feeling. Checking-in emphasizes presence, focus and group commitment; checking-out emphasizes reflection and symbolic closure.

29. Doodling Together  

Thinking creatively and not being afraid to make suggestions are important problem-solving skills for any group or team, and warming up by encouraging these behaviors is a great way to start. 

Doodling Together is one of our favorite creative ice breaker games – it’s quick, effective, and fun and can make all following problem-solving steps easier by encouraging a group to collaborate visually. By passing cards and adding additional items as they go, the workshop group gets into a groove of co-creation and idea development that is crucial to finding solutions to problems. 

Doodling Together   #collaboration   #creativity   #teamwork   #fun   #team   #visual methods   #energiser   #icebreaker   #remote-friendly   Create wild, weird and often funny postcards together & establish a group’s creative confidence.

30. Show and Tell

You might remember some version of Show and Tell from being a kid in school and it’s a great problem-solving activity to kick off a session.

Asking participants to prepare a little something before a workshop by bringing an object for show and tell can help them warm up before the session has even begun! Games that include a physical object can also help encourage early engagement before moving onto more big-picture thinking.

By asking your participants to tell stories about why they chose to bring a particular item to the group, you can help teams see things from new perspectives and see both differences and similarities in the way they approach a topic. Great groundwork for approaching a problem-solving process as a team! 

Show and Tell   #gamestorming   #action   #opening   #meeting facilitation   Show and Tell taps into the power of metaphors to reveal players’ underlying assumptions and associations around a topic The aim of the game is to get a deeper understanding of stakeholders’ perspectives on anything—a new project, an organizational restructuring, a shift in the company’s vision or team dynamic.

31. Constellations

Who doesn’t love stars? Constellations is a great warm-up activity for any workshop as it gets people up off their feet, energized, and ready to engage in new ways with established topics. It’s also great for showing existing beliefs, biases, and patterns that can come into play as part of your session.

Using warm-up games that help build trust and connection while also allowing for non-verbal responses can be great for easing people into the problem-solving process and encouraging engagement from everyone in the group. Constellations is great in large spaces that allow for movement and is definitely a practical exercise to allow the group to see patterns that are otherwise invisible. 

Constellations   #trust   #connection   #opening   #coaching   #patterns   #system   Individuals express their response to a statement or idea by standing closer or further from a central object. Used with teams to reveal system, hidden patterns, perspectives.

32. Draw a Tree

Problem-solving games that help raise group awareness through a central, unifying metaphor can be effective ways to warm-up a group in any problem-solving model.

Draw a Tree is a simple warm-up activity you can use in any group and which can provide a quick jolt of energy. Start by asking your participants to draw a tree in just 45 seconds – they can choose whether it will be abstract or realistic. 

Once the timer is up, ask the group how many people included the roots of the tree and use this as a means to discuss how we can ignore important parts of any system simply because they are not visible.

All problem-solving strategies are made more effective by thinking of problems critically and by exposing things that may not normally come to light. Warm-up games like Draw a Tree are great in that they quickly demonstrate some key problem-solving skills in an accessible and effective way.

Draw a Tree   #thiagi   #opening   #perspectives   #remote-friendly   With this game you can raise awarness about being more mindful, and aware of the environment we live in.

Each step of the problem-solving workshop benefits from an intelligent deployment of activities, games, and techniques. Bringing your session to an effective close helps ensure that solutions are followed through on and that you also celebrate what has been achieved.

Here are some problem-solving activities you can use to effectively close a workshop or meeting and ensure the great work you’ve done can continue afterward.

  • One Breath Feedback
  • Who What When Matrix
  • Response Cards

How do I conclude a problem-solving process?

All good things must come to an end. With the bulk of the work done, it can be tempting to conclude your workshop swiftly and without a moment to debrief and align. This can be problematic in that it doesn’t allow your team to fully process the results or reflect on the process.

At the end of an effective session, your team will have gone through a process that, while productive, can be exhausting. It’s important to give your group a moment to take a breath, ensure that they are clear on future actions, and provide short feedback before leaving the space. 

The primary purpose of any problem-solving method is to generate solutions and then implement them. Be sure to take the opportunity to ensure everyone is aligned and ready to effectively implement the solutions you produced in the workshop.

Remember that every process can be improved and by giving a short moment to collect feedback in the session, you can further refine your problem-solving methods and see further success in the future too.

33. One Breath Feedback

Maintaining attention and focus during the closing stages of a problem-solving workshop can be tricky and so being concise when giving feedback can be important. It’s easy to incur “death by feedback” should some team members go on for too long sharing their perspectives in a quick feedback round. 

One Breath Feedback is a great closing activity for workshops. You give everyone an opportunity to provide feedback on what they’ve done but only in the space of a single breath. This keeps feedback short and to the point and means that everyone is encouraged to provide the most important piece of feedback to them. 

One breath feedback   #closing   #feedback   #action   This is a feedback round in just one breath that excels in maintaining attention: each participants is able to speak during just one breath … for most people that’s around 20 to 25 seconds … unless of course you’ve been a deep sea diver in which case you’ll be able to do it for longer.

34. Who What When Matrix 

Matrices feature as part of many effective problem-solving strategies and with good reason. They are easily recognizable, simple to use, and generate results.

The Who What When Matrix is a great tool to use when closing your problem-solving session by attributing a who, what and when to the actions and solutions you have decided upon. The resulting matrix is a simple, easy-to-follow way of ensuring your team can move forward. 

Great solutions can’t be enacted without action and ownership. Your problem-solving process should include a stage for allocating tasks to individuals or teams and creating a realistic timeframe for those solutions to be implemented or checked out. Use this method to keep the solution implementation process clear and simple for all involved. 

Who/What/When Matrix   #gamestorming   #action   #project planning   With Who/What/When matrix, you can connect people with clear actions they have defined and have committed to.

35. Response cards

Group discussion can comprise the bulk of most problem-solving activities and by the end of the process, you might find that your team is talked out! 

Providing a means for your team to give feedback with short written notes can ensure everyone is head and can contribute without the need to stand up and talk. Depending on the needs of the group, giving an alternative can help ensure everyone can contribute to your problem-solving model in the way that makes the most sense for them.

Response Cards is a great way to close a workshop if you are looking for a gentle warm-down and want to get some swift discussion around some of the feedback that is raised. 

Response Cards   #debriefing   #closing   #structured sharing   #questions and answers   #thiagi   #action   It can be hard to involve everyone during a closing of a session. Some might stay in the background or get unheard because of louder participants. However, with the use of Response Cards, everyone will be involved in providing feedback or clarify questions at the end of a session.

Save time and effort discovering the right solutions

A structured problem solving process is a surefire way of solving tough problems, discovering creative solutions and driving organizational change. But how can you design for successful outcomes?

With SessionLab, it’s easy to design engaging workshops that deliver results. Drag, drop and reorder blocks  to build your agenda. When you make changes or update your agenda, your session  timing   adjusts automatically , saving you time on manual adjustments.

Collaborating with stakeholders or clients? Share your agenda with a single click and collaborate in real-time. No more sending documents back and forth over email.

Explore  how to use SessionLab  to design effective problem solving workshops or  watch this five minute video  to see the planner in action!

real life situation problem solving

Over to you

The problem-solving process can often be as complicated and multifaceted as the problems they are set-up to solve. With the right problem-solving techniques and a mix of creative exercises designed to guide discussion and generate purposeful ideas, we hope we’ve given you the tools to find the best solutions as simply and easily as possible.

Is there a problem-solving technique that you are missing here? Do you have a favorite activity or method you use when facilitating? Let us know in the comments below, we’d love to hear from you! 

' src=

thank you very much for these excellent techniques

' src=

Certainly wonderful article, very detailed. Shared!

Leave a Comment Cancel reply

Your email address will not be published. Required fields are marked *

cycle of workshop planning steps

Going from a mere idea to a workshop that delivers results for your clients can feel like a daunting task. In this piece, we will shine a light on all the work behind the scenes and help you learn how to plan a workshop from start to finish. On a good day, facilitation can feel like effortless magic, but that is mostly the result of backstage work, foresight, and a lot of careful planning. Read on to learn a step-by-step approach to breaking the process of planning a workshop into small, manageable chunks.  The flow starts with the first meeting with a client to define the purposes of a workshop.…

real life situation problem solving

How does learning work? A clever 9-year-old once told me: “I know I am learning something new when I am surprised.” The science of adult learning tells us that, in order to learn new skills (which, unsurprisingly, is harder for adults to do than kids) grown-ups need to first get into a specific headspace.  In a business, this approach is often employed in a training session where employees learn new skills or work on professional development. But how do you ensure your training is effective? In this guide, we'll explore how to create an effective training session plan and run engaging training sessions. As team leader, project manager, or consultant,…

real life situation problem solving

Effective online tools are a necessity for smooth and engaging virtual workshops and meetings. But how do you choose the right ones? Do you sometimes feel that the good old pen and paper or MS Office toolkit and email leaves you struggling to stay on top of managing and delivering your workshop? Fortunately, there are plenty of online tools to make your life easier when you need to facilitate a meeting and lead workshops. In this post, we’ll share our favorite online tools you can use to make your job as a facilitator easier. In fact, there are plenty of free online workshop tools and meeting facilitation software you can…

Design your next workshop with SessionLab

Join the 150,000 facilitators using SessionLab

Sign up for free

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Front Hum Neurosci

Real World Problem-Solving

Real world problem-solving (RWPS) is what we do every day. It requires flexibility, resilience, resourcefulness, and a certain degree of creativity. A crucial feature of RWPS is that it involves continuous interaction with the environment during the problem-solving process. In this process, the environment can be seen as not only a source of inspiration for new ideas but also as a tool to facilitate creative thinking. The cognitive neuroscience literature in creativity and problem-solving is extensive, but it has largely focused on neural networks that are active when subjects are not focused on the outside world, i.e., not using their environment. In this paper, I attempt to combine the relevant literature on creativity and problem-solving with the scattered and nascent work in perceptually-driven learning from the environment. I present my synthesis as a potential new theory for real world problem-solving and map out its hypothesized neural basis. I outline some testable predictions made by the model and provide some considerations and ideas for experimental paradigms that could be used to evaluate the model more thoroughly.

1. Introduction

In the Apollo 13 space mission, astronauts together with ground control had to overcome several challenges to bring the team safely back to Earth (Lovell and Kluger, 2006 ). One of these challenges was controlling carbon dioxide levels onboard the space craft: “For 2 days straight [they] had worked on how to jury-rig the Odysseys canisters to the Aquarius's life support system. Now, using materials known to be available onboard the spacecraft—a sock, a plastic bag, the cover of a flight manual, lots of duct tape, and so on—the crew assembled a strange contraption and taped it into place. Carbon dioxide levels immediately began to fall into the safe range” (Team, 1970 ; Cass, 2005 ).

The success of Apollo 13's recovery from failure is often cited as a glowing example of human resourcefulness and inventiveness alongside more well-known inventions and innovations over the course of human history. However, this sort of inventive capability is not restricted to a few creative geniuses, but an ability present in all of us, and exemplified in the following mundane example. Consider a situation when your only suit is covered in lint and you do not own a lint remover. You see a roll of duct tape, and being resourceful you reason that it might be a good substitute. You then solve the problem of lint removal by peeling a full turn's worth of tape and re-attaching it backwards onto the roll to expose the sticky side all around the roll. By rolling it over your suit, you can now pick up all the lint.

In both these examples (historic as well as everyday), we see evidence for our innate ability to problem-solve in the real world. Solving real world problems in real time given constraints posed by one's environment are crucial for survival. At the core of this skill is our mental capability to get out of “sticky situations” or impasses, i.e., difficulties that appear unexpectedly as impassable roadblocks to solving the problem at hand. But, what are the cognitive processes that enable a problem solver to overcome such impasses and arrive at a solution, or at least a set of promising next steps?

A central aspect of this type of real world problem solving, is the role played by the solver's surrounding environment during the problem-solving process. Is it possible that interaction with one's environment can facilitate creative thinking? The answer to this question seems somewhat obvious when one considers the most famous anecdotal account of creative problem solving, namely that of Archimedes of Syracuse. During a bath, he found a novel way to check if the King's crown contained non-gold impurities. The story has traditionally been associated with the so-called “Eureka moment,” the sudden affective experience when a solution to a particularly thorny problem emerges. In this paper, I want to temporarily turn our attention away from the specific “aha!” experience itself and take particular note that Archimedes made this discovery, not with his eyes closed at a desk, but in a real-world context of a bath 1 . The bath was not only a passive, relaxing environment for Archimedes, but also a specific source of inspiration. Indeed it was his noticing the displacement of water that gave him a specific methodology for measuring the purity of the crown; by comparing how much water a solid gold bar of the same weight would displace as compared with the crown. This sort of continuous environmental interaction was present when the Apollo 13 engineers discovered their life-saving solution, and when you solved the suit-lint-removal problem with duct tape.

The neural mechanisms underlying problem-solving have been extensively studied in the literature, and there is general agreement about the key functional networks and nodes involved in various stages of problem-solving. In addition, there has been a great deal of work in studying the neural basis for creativity and insight problem solving, which is associated with the sudden emergence of solutions. However, in the context of problem-solving, creativity, and insight have been researched as largely an internal process without much interaction with and influence from the external environment (Wegbreit et al., 2012 ; Abraham, 2013 ; Kounios and Beeman, 2014 ) 2 . Thus, there are open questions of what role the environment plays during real world problem-solving (RWPS) and how the brain enables the assimilation of novel items during these external interactions.

In this paper, I synthesize the literature on problem-solving, creativity and insight, and particularly focus on how the environment can inform RWPS. I explore three environmentally-informed mechanisms that could play a critical role: (1) partial-cue driven context-shifting, (2) heuristic prototyping and learning novel associations, and (3) learning novel physical inferences. I begin first with some intuitions about real world problem solving, that might help ground this discussion and providing some key distinctions from more traditional problem solving research. Then, I turn to a review of the relevant literature on problem-solving, creativity, and insight first, before discussing the three above-mentioned environmentally-driven mechanisms. I conclude with a potential new model and map out its hypothesized neural basis.

2. Problem solving, creativity, and insight

2.1. what is real world problem-solving.

Archimedes was embodied in the real world when he found his solution. In fact, the real world helped him solve the problem. Whether or not these sorts of historic accounts of creative inspiration are accurate 3 , they do correlate with some of our own key intuitions about how problem solving occurs “in the wild.” Real world problem solving (RWPS) is different from those that occur in a classroom or in a laboratory during an experiment. They are often dynamic and discontinuous, accompanied by many starts and stops. Solvers are never working on just one problem. Instead, they are simultaneously juggling several problems of varying difficulties and alternating their attention between them. Real world problems are typically ill-defined, and even when they are well-defined, often have open-ended solutions. Coupled with that is the added aspect of uncertainty associated with the solver's problem solving strategies. As introduced earlier, an important dimension of RWPS is the continuous interaction between the solver and their environment. During these interactions, the solver might be inspired or arrive at an “aha!” moment. However, more often than not, the solver experiences dozens of minor discovery events— “hmmm, interesting…” or “wait, what?…” moments. Like discovery events, there's typically never one singular impasse or distraction event. The solver must iterate through the problem solving process experiencing and managing these sorts of intervening events (including impasses and discoveries). In summary, RWPS is quite messy and involves a tight interplay between problem solving, creativity, and insight. Next, I explore each of these processes in more detail and explicate a possible role of memory, attention, conflict management and perception.

2.2. Analytical problem-solving

In psychology and neuroscience, problem-solving broadly refers to the inferential steps taken by an agent 4 that leads from a given state of affairs to a desired goal state (Barbey and Barsalou, 2009 ). The agent does not immediately know how this goal can be reached and must perform some mental operations (i.e., thinking) to determine a solution (Duncker, 1945 ).

The problem solving literature divides problems based on clarity (well-defined vs. ill-defined) or on the underlying cognitive processes (analytical, memory retrieval, and insight) (Sprugnoli et al., 2017 ). While memory retrieval is an important process, I consider it as a sub-process to problem solving more generally. I first focus on analytical problem-solving process, which typically involves problem-representation and encoding, and the process of forming and executing a solution plan (Robertson, 2016 ).

2.2.1. Problem definition and representation

An important initial phase of problem-solving involves defining the problem and forming a representation in the working memory. During this phase, components of the prefrontal cortex (PFC), default mode network (DMN), and the dorsal anterior cingulate cortex (dACC) have been found to be activated. If the problem is familiar and well-structured, top-down executive control mechanisms are engaged and the left prefrontal cortex including the frontopolar, dorso-lateral (dlPFC), and ventro-lateral (vlPFC) are activated (Barbey and Barsalou, 2009 ). The DMN along with the various structures in the medial temporal lobe (MTL) including the hippocampus (HF), parahippocampal cortex, perirhinal and entorhinal cortices are also believed to have limited involvement, especially in episodic memory retrieval activities during this phase (Beaty et al., 2016 ). The problem representation requires encoding problem information for which certain visual and parietal areas are also involved, although the extent of their involvement is less clear (Anderson and Fincham, 2014 ; Anderson et al., 2014 ).

2.2.1.1. Working memory

An important aspect of problem representation is the engagement and use of working memory (WM). The WM allows for the maintenance of relevant problem information and description in the mind (Gazzaley and Nobre, 2012 ). Research has shown that WM tasks consistently recruit the dlPFC and left inferior frontal cortex (IC) for encoding an manipulating information; dACC for error detection and performance adjustment; and vlPFC and the anterior insula (AI) for retrieving, selecting information and inhibitory control (Chung and Weyandt, 2014 ; Fang et al., 2016 ).

2.2.1.2. Representation

While we generally have a sense for the brain regions that are functionally influential in problem definition, less is known about how exactly events are represented within these regions. One theory for how events are represented in the PFC is the structured event complex theory (SEC), in which components of the event knowledge are represented by increasingly higher-order convergence zones localized within the PFC, akin to the convergence zones (from posterior to anterior) that integrate sensory information in the brain (Barbey et al., 2009 ). Under this theory, different zones in the PFC (left vs. right, anterior vs. posterior, lateral vs. medial, and dorsal vs. ventral) represent different aspects of the information contained in the events (e.g., number of events to be integrated together, the complexity of the event, whether planning, and action is needed). Other studies have also suggested the CEN's role in tasks requiring cognitive flexibility, and functions to switch thinking modes, levels of abstraction of thought and consider multiple concepts simultaneously (Miyake et al., 2000 ).

Thus, when the problem is well-structured, problem representation is largely an executive control activity coordinated by the PFC in which problem information from memory populates WM in a potentially structured representation. Once the problem is defined and encoded, planning and execution of a solution can begin.

2.2.2. Planning

The central executive network (CEN), particularly the PFC, is largely involved in plan formation and in plan execution. Planning is the process of generating a strategy to advance from the current state to a goal state. This in turn involves retrieving a suitable solution strategy from memory and then coordinating its execution.

2.2.2.1. Plan formation

The dlPFC supports sequential planning and plan formation, which includes the generation of hypothesis and construction of plan steps (Barbey and Barsalou, 2009 ). Interestingly, the vlPFC and the angular gyrus (AG), implicated in a variety of functions including memory retrieval, are also involved in plan formation (Anderson et al., 2014 ). Indeed, the AG together with the regions in the MTL (including the HF) and several other regions form a what is known as the “core” network. The core network is believed to be activated when recalling past experiences, imagining fictitious, and future events and navigating large-scale spaces (Summerfield et al., 2010 ), all key functions for generating plan hypotheses. A recent study suggests that the AG is critical to both episodic simulation, representation, and episodic memory (Thakral et al., 2017 ). One possibility for how plans are formulated could involve a dynamic process of retrieving an optimal strategy from memory. Research has shown significant interaction between striatal and frontal regions (Scimeca and Badre, 2012 ; Horner et al., 2015 ). The striatum is believed to play a key role in declarative memory retrieval, and specifically helping retrieve optimal (or previously rewarded) memories (Scimeca and Badre, 2012 ). Relevant to planning and plan formation, Scimeca & Badre have suggested that the striatum plays two important roles: (1) in mapping acquired value/utility to action selection, and thereby helping plan formation, and (2) modulation and re-encoding of actions and other plan parameters. Different types of problems require different sets of specialized knowledge. For example, the knowledge needed to solve mathematical problems might be quite different (albeit overlapping) from the knowledge needed to select appropriate tools in the environment.

Thus far, I have discussed planning and problem representation as being domain-independent, which has allowed me to outline key areas of the PFC, MTL, and other regions relevant to all problem-solving. However, some types of problems require domain-specific knowledge for which other regions might need to be recruited. For example, when planning for tool-use, the superior parietal lobe (SPL), supramarginal gyrus (SMG), anterior inferior parietal lobe (AIPL), and certain portions of the temporal and occipital lobe involved in visual and spatial integration have been found to be recruited (Brandi et al., 2014 ). It is believed that domain-specific information stored in these regions is recovered and used for planning.

2.2.2.2. Plan execution

Once a solution plan has been recruited from memory and suitably tuned for the problem on hand, the left-rostral PFC, caudate nucleus (CN), and bilateral posterior parietal cortices (PPC) are responsible for translating the plan into executable form (Stocco et al., 2012 ). The PPC stores and maintains “mental template” of the executable form. Hemispherical division of labor is particularly relevant in planning where it was shown that when planning to solve a Tower of Hanoi (block moving) problem, the right PFC is involved in plan construction whereas the left PFC is involved in controlling processes necessary to supervise the execution of the plan (Newman and Green, 2015 ). On a separate note and not the focus of this paper, plan execution and problem-solving can require the recruitment of affective and motivational processing in order to supply the agent with the resolve to solve problems, and the vmPFC has been found to be involved in coordinating this process (Barbey and Barsalou, 2009 ).

2.3. Creativity

During the gestalt movement in the 1930s, Maier noted that “most instances of “real” problem solving involves creative thinking” (Maier, 1930 ). Maier performed several experiments to study mental fixation and insight problem solving. This close tie between insight and creativity continues to be a recurring theme, one that will be central to the current discussion. If creativity and insight are linked to RWPS as noted by Maier, then it is reasonable to turn to the creativity and insight literature for understanding the role played by the environment. A large portion of the creativity literature has focused on viewing creativity as an internal process, one in which the solvers attention is directed inwards, and toward internal stimuli, to facilitate the generation of novel ideas and associations in memory (Beaty et al., 2016 ). Focusing on imagination, a number of researchers have looked at blinking, eye fixation, closing eyes, and looking nowhere behavior and suggested that there is a shift of attention from external to internal stimuli during creative problem solving (Salvi and Bowden, 2016 ). The idea is that shutting down external stimuli reduces cognitive load and focuses attention internally. Other experiments studying sleep behavior have also noted the beneficial role of internal stimuli in problem solving. The notion of ideas popping into ones consciousness, suddenly, during a shower is highly intuitive for many and researchers have attempted to study this phenomena through the lens of incubation, and unconscious thought that is internally-driven. There have been several theories and counter-theories proposed to account specifically for the cognitive processes underlying incubation (Ritter and Dijksterhuis, 2014 ; Gilhooly, 2016 ), but none of these theories specifically address the role of the external environment.

The neuroscience of creativity has also been extensively studied and I do not focus on an exhaustive literature review in this paper (a nice review can be found in Sawyer, 2011 ). From a problem-solving perspective, it has been found that unlike well-structured problems, ill-structured problems activate the right dlPFC. Most of the past work on creativity and creative problem-solving has focused on exploring memory structures and performing internally-directed searches. Creative idea generation has primarily been viewed as internally directed attention (Jauk et al., 2012 ; Benedek et al., 2016 ) and a primary mechanism involved is divergent thinking , which is the ability to produce a variety of responses in a given situation (Guilford, 1962 ). Divergent thinking is generally thought to involve interactions between the DMN, CEN, and the salience network (Yoruk and Runco, 2014 ; Heinonen et al., 2016 ). One psychological model of creative cognition is the Geneplore model that considers two major phases of generation (memory retrieval and mental synthesis) and exploration (conceptual interpretation and functional inference) (Finke et al., 1992 ; Boccia et al., 2015 ). It has been suggested that the associative mode of processing to generate new creative association is supported by the DMN, which includes the medial PFC, posterior cingulate cortex (PCC), tempororparietal juntion (TPJ), MTL, and IPC (Beaty et al., 2014 , 2016 ).

That said, the creativity literature is not completely devoid of acknowledging the role of the environment. In fact, it is quite the opposite. Researchers have looked closely at the role played by externally provided hints from the time of the early gestalt psychologists and through to present day studies (Öllinger et al., 2017 ). In addition to studying how hints can help problem solving, researchers have also looked at how directed action can influence subsequent problem solving—e.g., swinging arms prior to solving the two-string puzzle, which requires swinging the string (Thomas and Lleras, 2009 ). There have also been numerous studies looking at how certain external perceptual cues are correlated with creativity measures. Vohs et al. suggested that untidiness in the environment and the increased number of potential distractions helps with creativity (Vohs et al., 2013 ). Certain colors such as blue have been shown to help with creativity and attention to detail (Mehta and Zhu, 2009 ). Even environmental illumination, or lack thereof, have been shown to promote creativity (Steidle and Werth, 2013 ). However, it is important to note that while these and the substantial body of similar literature show the relationship of the environment to creative problem solving, they do not specifically account for the cognitive processes underlying the RWPS when external stimuli are received.

2.4. Insight problem solving

Analytical problem solving is believed to involve deliberate and conscious processing that advances step by step, allowing solvers to be able to explain exactly how they solved it. Inability to solve these problems is often associated with lack of required prior knowledge, which if provided, immediately makes the solution tractable. Insight, on the other hand, is believed to involve a sudden and unexpected emergence of an obvious solution or strategy sometimes accompanied by an affective aha! experience. Solvers find it difficult to consciously explain how they generated a solution in a sequential manner. That said, research has shown that having an aha! moment is neither necessary nor sufficient to insight and vice versa (Danek et al., 2016 ). Generally, it is believed that insight solvers acquire a full and deep understanding of the problem when they have solved it (Chu and Macgregor, 2011 ). There has been an active debate in the problem solving community about whether insight is something special. Some have argued that it is not, and that there are no special or spontaneous processes, but simply a good old-fashioned search of a large problem space (Kaplan and Simon, 1990 ; MacGregor et al., 2001 ; Ash and Wiley, 2006 ; Fleck, 2008 ). Others have argued that insight is special and suggested that it is likely a different process (Duncker, 1945 ; Metcalfe, 1986 ; Kounios and Beeman, 2014 ). This debate lead to two theories for insight problem solving. MacGregor et al. proposed the Criterion for Satisfactory Progress Theory (CSPT), which is based on Newell and Simons original notion of problem solving as being a heuristic search through the problem space (MacGregor et al., 2001 ). The key aspect of CSPT is that the solver is continually monitoring their progress with some set of criteria. Impasses arise when there is a criterion failure, at which point the solver tries non-maximal but promising states. The representational change theory (RCT) proposed by Ohlsson et al., on the other hand, suggests that impasses occur when the goal state is not reachable from an initial problem representation (which may have been generated through unconscious spreading activation) (Ohlsson, 1992 ). In order to overcome an impasse, the solver needs to restructure the problem representation, which they can do by (1) elaboration (noticing new features of a problem), (2) re-encoding fixing mistaken or incomplete representations of the problem, and by (3) changing constraints. Changing constraints is believed to involve two sub-processes of constraint relaxation and chunk-decomposition.

The current position is that these two theories do not compete with each other, but instead complement each other by addressing different stages of problem solving: pre- and post-impasse. Along these lines, Ollinger et al. proposed an extended RCT (eRCT) in which revising the search space and using heuristics was suggested as being a dynamic and iterative and recursive process that involves repeated instances of search, impasse and representational change (Öllinger et al., 2014 , 2017 ). Under this theory, a solver first forms a problem representation and begins searching for solutions, presumably using analytical problem solving processes as described earlier. When a solution cannot be found, the solver encounters an impasse, at which point the solver must restructure or change the problem representation and once again search for a solution. The model combines both analytical problem solving (through heuristic searches, hill climbing and progress monitoring), and creative mechanisms of constraint relaxation and chunk decomposition to enable restructuring.

Ollingers model appears to comprehensively account for both analytical and insight problem solving and, therefore, could be a strong candidate to model RWPS. However, while compelling, it is nevertheless an insufficient model of RWPS for many reasons, of which two are particularly significant for the current paper. First, the model does explicitly address mechanisms by which external stimuli might be assimilated. Second, the model is not sufficiently flexible to account for other events (beyond impasse) occurring during problem solving, such as distraction, mind-wandering and the like.

So, where does this leave us? I have shown the interplay between problem solving, creativity and insight. In particular, using Ollinger's proposal, I have suggested (maybe not quite explicitly up until now) that RWPS involves some degree of analytical problem solving as well as the post-impasse more creative modes of problem restructuring. I have also suggested that this model might need to be extended for RWPS along two dimensions. First, events such as impasses might just be an instance of a larger class of events that intervene during problem solving. Thus, there needs to be an accounting of the cognitive mechanisms that are potentially influenced by impasses and these other intervening events. It is possible that these sorts of events are crucial and trigger a switch in attentional focus, which in turn facilitates switching between different problem solving modes. Second, we need to consider when and how externally-triggered stimuli from the solver's environment can influence the problem solving process. I detail three different mechanisms by which external knowledge might influence problem solving. I address each of these ideas in more detail in the next two sections.

3. Event-triggered mode switching during problem-solving

3.1. impasse.

When solving certain types of problems, the agent might encounter an impasse, i.e., some block in its ability to solve the problem (Sprugnoli et al., 2017 ). The impasse may arise because the problem may have been ill-defined to begin with causing incomplete and unduly constrained representations to have been formed. Alternatively, impasses can occur when suitable solution strategies cannot be retrieved from memory or fail on execution. In certain instances, the solution strategies may not exist and may need to be generated from scratch. Regardless of the reason, an impasse is an interruption in the problem solving process; one that was running conflict-free up until the point when a seemingly unresolvable issue or an error in the predicted solution path was encountered. Seen as a conflict encountered in the problem-solving process it activates the anterior cingulate cortex (ACC). It is believed that the ACC not only helps detect the conflict, but also switch modes from one of “exploitation” (planning) to “exploration” (search) (Quilodran et al., 2008 ; Tang et al., 2012 ), and monitors progress during resolution (Chu and Macgregor, 2011 ). Some mode switching duties are also found to be shared with the AI (the ACC's partner in the salience network), however, it is unclear exactly the extent of this function-sharing.

Even though it is debatable if impasses are a necessary component of insight, they are still important as they provide a starting point for the creativity (Sprugnoli et al., 2017 ). Indeed, it is possible that around the moment of impasse, the AI and ACC together, as part of the salience network play a crucial role in switching thought modes from analytical planning mode to creative search and discovery mode. In the latter mode, various creative mechanisms might be activated allowing for a solution plan to emerge. Sowden et al. and many others have suggested that the salience network is potentially a candidate neurobiological mechanism for shifting between thinking processes, more generally (Sowden et al., 2015 ). When discussing various dual-process models as they relate to creative cognition, Sowden et al. have even noted that the ACC activation could be useful marker to identify shifting as participants work creative problems.

3.2. Defocused attention

As noted earlier, in the presence of an impasse there is a shift from an exploitative (analytical) thinking mode to an exploratory (creative) thinking mode. This shift impacts several networks including, for example, the attention network. It is believed attention can switch between a focused mode and a defocused mode. Focused attention facilitates analytic thought by constraining activation such that items are considered in a compact form that is amenable to complex mental operations. In the defocused mode, agents expand their attention allowing new associations to be considered. Sowden et al. ( 2015 ) note that the mechanism responsible for adjustments in cognitive control may be linked to the mechanisms responsible for attentional focus. The generally agreed position is that during generative thinking, unconscious cognitive processes activated through defocused attention are more prevalent, whereas during exploratory thinking, controlled cognition activated by focused attention becomes more prevalent (Kaufman, 2011 ; Sowden et al., 2015 ).

Defocused attention allows agents to not only process different aspects of a situation, but to also activate additional neural structures in long term memory and find new associations (Mendelsohn, 1976 ; Yoruk and Runco, 2014 ). It is believed that cognitive material attended to and cued by positive affective state results in defocused attention, allowing for more complex cognitive contexts and therefore a greater range of interpretation and integration of information (Isen et al., 1987 ). High attentional levels are commonly considered a typical feature of highly creative subjects (Sprugnoli et al., 2017 ).

4. Role of the environment

In much of the past work the focus has been on treating creativity as largely an internal process engaging the DMN to assist in making novel connections in memory. The suggestion has been that “individual needs to suppress external stimuli and concentrate on the inner creative process during idea generation” (Heinonen et al., 2016 ). These ideas can then function as seeds for testing and problem-solving. While true of many creative acts, this characterization does not capture how creative ideas arise in many real-world creative problems. In these types of problems, the agent is functioning and interacting with its environment before, during and after problem-solving. It is natural then to expect that stimuli from the environment might play a role in problem-solving. More specifically, it can be expected that through passive and active involvement with the environment, the agent is (1) able to trigger an unrelated, but potentially useful memory relevant for problem-solving, (2) make novel connections between two events in memory with the environmental cue serving as the missing link, and (3) incorporate a completely novel information from events occuring in the environment directly into the problem-solving process. I explore potential neural mechanisms for these three types of environmentally informed creative cognition, which I hypothesize are enabled by defocused attention.

4.1. Partial cues trigger relevant memories through context-shifting

I have previously discussed the interaction between the MTL and PFC in helping select task-relevant and critical memories for problem-solving. It is well-known that pattern completion is an important function of the MTL and one that enables memory retrieval. Complementary Learning Theory (CLS) and its recently updated version suggest that the MTL and related structures support initial storage as well as retrieval of item and context-specific information (Kumaran et al., 2016 ). According to CLS theory, the dentate gyrus (DG) and the CA3 regions of the HF are critical to selecting neural activity patterns that correspond to particular experiences (Kumaran et al., 2016 ). These patterns might be distinct even if experiences are similar and are stabilized through increases in connection strengths between the DG and CA3. Crucially, because of the connection strengths, reactivation of part of the pattern can activate the rest of it (i.e., pattern completion). Kumaran et al. have further noted that if consistent with existing knowledge, these new experiences can be quickly replayed and interleaved into structured representations that form part of the semantic memory.

Cues in the environment provided by these experiences hold partial information about past stimuli or events and this partial information converges in the MTL. CLS accounts for how these cues might serve to reactivate partial patterns, thereby triggering pattern completion. When attention is defocused I hypothesize that (1) previously unnoticed partial cues are considered, and (2) previously noticed partial cues are decomposed to produce previously unnoticed sub-cues, which in turn are considered. Zabelina et al. ( 2016 ) have shown that real-world creativity and creative achievement is associated with “leaky attention,” i.e., attention that allows for irrelevant information to be noticed. In two experiments they systematically explored the relationship between two notions of creativity— divergent thinking and real-world creative achievement—and the use of attention. They found that attentional use is associated in different ways for each of the two notions of creativity. While divergent thinking was associated with flexible attention, it does not appear to be leaky. Instead, selective focus and inhibition components of attention were likely facilitating successful performance on divergent thinking tasks. On the other hand, real-world creative achievement was linked to leaky attention. RWPS involves elements of both divergent thinking and of real-world creative achievement, thus I would expect some amount of attentional leaks to be part of the problem solving process.

Thus, it might be the case that a new set of cues or sub-cues “leak” in and activate memories that may not have been previously considered. These cues serve to reactivate a diverse set of patterns that then enable accessing a wide range of memories. Some of these memories are extra-contextual, in that they consider the newly noticed cues in several contexts. For example, when unable to find a screwdriver, we might consider using a coin. It is possible that defocused attention allows us to consider the coin's edge as being a potentially relevant cue that triggers uses for the thin edge outside of its current context in a coin. The new cues (or contexts) may allow new associations to emerge with cues stored in memory, which can occur during incubation. Objects and contexts are integrated into memory automatically into a blended representation and changing contexts disrupts this recognition (Hayes et al., 2007 ; Gabora, 2016 ). Cue-triggered context shifting allows an agent to break-apart a memory representation, which can then facilitate problem-solving in new ways.

4.2. Heuristic prototyping facilitates novel associations

It has long been the case that many scientific innovations have been inspired by events in nature and the surrounding environment. As noted earlier, Archimedes realized the relationship between the volume of an irregularly shaped object and the volume of water it displaced. This is an example of heuristic prototyping where the problem-solver notices an event in the environment, which then triggers the automatic activation of a heuristic prototype and the formation of novel associations (between the function of the prototype and the problem) which they can then use to solve the problem (Luo et al., 2013 ). Although still in its relative infancy, there has been some recent research into the neural basis for heuristic prototyping. Heuristic prototype has generally been defined as an enlightening prototype event with a similar element to the current problem and is often composed of a feature and a function (Hao et al., 2013 ). For example, in designing a faster and more efficient submarine hull, a heuristic prototype might be a shark's skin, while an unrelated prototype might be a fisheye camera (Dandan et al., 2013 ).

Research has shown that activating the feature function of the right heuristic prototype and linking it by way of semantic similarity to the required function of the problem was the key mechanism people used to solve several scienitific insight problems (Yang et al., 2016 ). A key region activated during heuristic prototyping is the dlPFC and it is believed to be generally responsible for encoding the events into memory and may play an important role in selecting and retrieving the matched unsolved technical problem from memory (Dandan et al., 2013 ). It is also believed that the precuneus plays a role in automatic retrieval of heuristic information allowing the heuristic prototype and the problem to combine (Luo et al., 2013 ). In addition to semantic processing, certain aspects of visual imagery have also been implicated in heuristic prototyping leading to the suggestion of the involvement of Broadman's area BA 19 in the occipital cortex.

There is some degree of overlap between the notions of heuristic prototyping and analogical transfer (the mapping of relations from one domain to another). Analogical transfer is believed to activate regions in the left medial fronto-parietal system (dlPFC and the PPC) (Barbey and Barsalou, 2009 ). I suggest here that analogical reasoning is largely an internally-guided process that is aided by heuristic prototyping which is an externally-guided process. One possible way this could work is if heuristic prototyping mechanisms help locate the relevant memory with which to then subsequently analogize.

4.3. Making physical inferences to acquire novel information

The agent might also be able to learn novel facts about their environment through passive observation as well as active experimentation. There has been some research into the neural basis for causal reasoning (Barbey and Barsalou, 2009 ; Operskalski and Barbey, 2016 ), but beyond its generally distributed nature, we do not know too much more. Beyond abstract causal reasoning, some studies looked into the cortical regions that are activated when people watch and predict physical events unfolding in real-time and in the real-world (Fischer et al., 2016 ). It was found that certain regions were associated with representing types of physical concepts, with the left intraparietal sulcus (IPS) and left middle frontal gyrus (MFG) shown to play a role in attributing causality when viewing colliding objects (Mason and Just, 2013 ). The parahippocampus (PHC) was associated with linking causal theory to observed data and the TPJ was involved in visualizing movement of objects and actions in space (Mason and Just, 2013 ).

5. Proposed theory

I noted earlier that Ollinger's model for insight problem solving, while serving as a good candidate for RWPS, requires extension. In this section, I propose a candidate model that includes some necessary extensions to Ollinger's framework. I begin by laying out some preliminary notions that underlie the proposed model.

5.1. Dual attentional modes

I propose that the attention-switching mechanism described earlier is at the heart of RWPS and enables two modes of operation: focused and defocused mode. In the focused mode, the problem representation is more or less fixed, and problem solving proceeds in a focused and goal directed manner through search, planning, and execution mechanisms. In the defocused mode, problem solving is not necessarily goal directed, but attempts to generate ideas, driven by both internal and external items.

At first glance, these modes might seem similar to convergent and divergent thinking modes postulated by numerous others to account for creative problem solving. Divergent thinking allows for the generation of new ideas and convergent thinking allows for verification and selection of generated ideas. So, it might seem that focused mode and convergent thinking are similar and likewise divergent and defocused mode. They are, however, quite different. The modes relate less to idea generation and verification, and more to the specific mechanisms that are operating with regard to a particular problem at a particular moment in time. Convergent and divergent processes may be occurring during both defocused and focused modes. Some degree of divergent processes may be used to search and identify specific solution strategies in focused mode. Also, there might be some degree of convergent idea verification occuring in defocused mode as candidate items are evaluated for their fit with the problem and goal. Thus, convergent and divergent thinking are one amongst many mechanisms that are utilized in focused and defocused mode. Each of these two modes has to do with degree of attention placed on a particular problem.

There have been numerous dual-process and dual-systems models of cognition proposed over the years. To address criticisms raised against these models and to unify some of the terminology, Evans & Stanovich proposed a dual-process model comprising Type 1 and Type 2 thought (Evans and Stanovich, 2013 ; Sowden et al., 2015 ). Type 1 processes are those that are believed to be autonomous and do not require working memory. Type 2 processes, on the other hand, are believed to require working memory and are cognitively decoupled to prevent real-world representations from becoming confused with mental simulations (Sowden et al., 2015 ). While acknowledging various other attributes that are often used to describe dual process models (e.g., fast/slow, associative/rule-based, automatic/controlled), Evans & Stanovich note that these attributes are merely frequent correlates and not defining characteristics of Type 1 or Type 2 processes. The proposed dual attentional modes share some similarities with the Evans & Stanovich Type 1 and 2 models. Specifically, Type 2 processes might occur in focused attentional mode in the proposed model as they typically involve the working memory and certain amount of analytical thought and planning. Similarly, Type 1 processes are likely engaged in defocused attentional mode as there are notions of associative and generative thinking that might be facilitated when attention has been defocused. The crucial difference between the proposed model and other dual-process models is that the dividing line between focused and defocused attentional modes is the degree of openness to internal and external stimuli (by various networks and functional units in the brain) when problem solving. Many dual process models were designed to classify the “type” of thinking process or a form of cognitive processing. In some sense, the “processes” in dual process theories are characterized by the type of mechanism of operation or the type of output they produced. Here, I instead characterize and differentiate the modes of thinking by the receptivity of different functional units in the brain to input during problem solving.

This, however, raises a different question of the relationship between these attentional modes and conscious vs. unconscious thinking. It is clear that both the conscious and unconscious are involved in problem solving, as well as in RWPS. Here, I claim that a problem being handled is, at any given point in time, in either a focused mode or in a defocused mode. When in the focused mode, problem solving primarily proceeds in a manner that is available for conscious deliberation. More specifically, problem space elements and representations are tightly managed and plans and strategies are available in the working memory and consciously accessible. There are, however, secondary unconscious operations in the focused modes that includes targeted memory retrieval and heuristic-based searches. In the defocused mode, the problem is primarily managed in an unconscious way. The problem space elements are broken apart and loosely managed by various mechanisms that do not allow for conscious deliberation. That said, it is possible that some problem parameters remain accessible. For example, it is possible that certain goal information is still maintained consciously. It is also possible that indexes to all the problems being considered by the solver are maintained and available to conscious awareness.

5.2. RWPS model

Returning to Ollinger's model for insight problem solving, it now becomes readily apparent how this model can be modified to incorporate environmental effects as well as generalizing the notion of intervening events beyond that of impasses. I propose a theory for RWPS that begins with standard analytical problem-solving process (See Figures ​ Figures1, 1 , ​ ,2 2 ).

An external file that holds a picture, illustration, etc.
Object name is fnhum-12-00261-g0001.jpg

Summary of neural activations during focused problem-solving (Left) and defocused problem-solving (Right) . During defocused problem-solving, the salience network (insula and ACC) coordinates the switching of several networks into a defocused attention mode that permits the reception of a more varied set of stimuli and interpretations via both the internally-guided networks (default mode network DMN) and externally guided networks (Attention). PFC, prefrontal cortex; ACC, anterior cingulate cortex; PCC, posterior cingulate cortex; IPC, inferior parietal cortex; PPC, posterior parietal cortex; IPS, intra-parietal sulcus; TPJ, temporoparietal junction; MTL, medial temporal lobe; FEF, frontal eye field.

An external file that holds a picture, illustration, etc.
Object name is fnhum-12-00261-g0002.jpg

Proposed Model for Real World Problem Solving (RWPS). The corresponding neural correlates are shown in italics. During problem-solving, an initial problem representation is formed based on prior knowledge and available perceptual information. The problem-solving then proceeds in a focused, goal-directed mode until the goal is achieved or a defocusing event (e.g., impasse or distraction) occurs. During focused mode operation, the solver interacts with the environment in directed manner, executing focused plans, and allowing for predicted items to be activated by the environment. When a defocusing event occurs, the problem-solving then switches into a defocused mode until a focusing event (e.g., discovery) occurs. In defocused mode, the solver performs actions unrelated to the problem (or is inactive) and is receptive to a set of environmental triggers that activate novel aspects using the three mechanisms discussed in this paper. When a focusing event occurs, the diffused problem elements cohere into a restructured representation and problem-solving returns into a focused mode.

5.2.1. Focused problem solving mode

Initially, both prior knowledge and perceptual entities help guide the creation of problem representations in working memory. Prior optimal or rewarding solution strategies are obtained from LTM and encoded in the working memory as well. This process is largely analytical and the solver interacts with their environment through focused plan or idea execution, targeted observation of prescribed entities, and estimating prediction error of these known entities. More specifically, when a problem is presented, the problem representations are activated and populated into working memory in the PFC, possibly in structured representations along convergence zones. The PFC along with the Striatum and the MTL together attempt at retrieving an optimal or previously rewarded solution strategy from long term memory. If successfully retrieved, the solution strategy is encoded into the PPC as a mental template, which then guides relevant motor control regions to execute the plan.

5.2.2. Defocusing event-triggered mode switching

The search and solve strategy then proceeds analytically until a “defocusing event” is encountered. The salience network (AI and ACC) monitor for conflicts and attempt to detect any such events in the problem-solving process. As long as no conflicts are detected, the salience network focuses on recruiting networks to achieve goals and suppresses the DMN (Beaty et al., 2016 ). If the plan execution or retrieval of the solution strategy fails, then a defocusing event is detected and the salience network performs mode switching. The salience network dynamically switches from the focused problem-solving mode to a defocused problem-solving mode (Menon, 2015 ). Ollinger's current model does not account for other defocusing events beyond an impasse, but it is not inconceivable that there could be other such events triggered by external stimuli (e.g., distraction or an affective event) or by internal stimuli (e.g., mind wandering).

5.2.3. Defocused problem solving mode

In defocused mode, the problem is operated on by mechanisms that allow for the generation and testing of novel ideas. Several large-scale brain networks are recruited to explore and generate new ideas. The search for novel ideas is facilitated by generally defocused attention, which in turn allows for creative idea generation from both internal as well as external sources. The salience network switches operations from defocused event detection to focused event or discovery detection, whereby for example, environmental events or ideas that are deemed interesting can be detected. During this idea exploration phase, internally, the DMN is no longer suppressed and attempts to generate new ideas for problem-solving. It is known that the IPC is involved in the generation of new ideas (Benedek et al., 2014 ) and together with the PPC in coupling different information together (Simone Sandkühler, 2008 ; Stocco et al., 2012 ). Beaty et al. ( 2016 ) have proposed that even this internal idea-generation process can be goal directed, thereby allowing for a closer working relationship between the CEN and the DMN. They point to neuroimaging evidence that support the possibility that the executive control network (comprising the lateral prefrontal and inferior parietal regions) can constrain and direct the DMN in its process of generating ideas to meet task-specific goals via top down monitoring and executive control (Beaty et al., 2016 ). The control network is believed to maintain an “internal train of thought” by keeping the task goal activated, thereby allowing for strategic and goal-congruent searches for ideas. Moreover, they suggest that the extent of CEN involvement in the DMN idea-generation may depend on the extent to which the creative task is constrained. In the RWPS setting, I would suspect that the internal search for creative solutions is not entirely unconstrained, even in the defocused mode. Instead, the solver is working on a specified problem and thus, must maintain the problem-thread while searching for solutions. Moreover, self-generated ideas must be evaluated against the problem parameters and thereby might need some top-down processing. This would suggest that in such circumstances, we would expect to see an increased involvement of the CEN in constraining the DMN.

On the external front, several mechanisms are operating in this defocused mode. Of particular note are the dorsal attention network, composed of the visual cortex (V), IPS and the frontal eye field (FEF) along with the precuneus and the caudate nucleus allow for partial cues to be considered. The MTL receives synthesized cue and contextual information and populates the WM in the PFC with a potentially expanded set of information that might be relevant for problem-solving. The precuneus, dlPFC and PPC together trigger the activation and use of a heuristic prototype based on an event in the environment. The caudate nucleus facilitates information routing between the PFC and PPC and is involved in learning and skill acquisition.

5.2.4. Focusing event-triggered mode switching

The problem's life in this defocused mode continues until a focusing event occurs, which could be triggered by either external (e.g., notification of impending deadline, discovery of a novel property in the environment) or internal items (e.g., goal completion, discovery of novel association or updated relevancy of a previously irrelevant item). As noted earlier, an internal train of thought may be maintained that facilitates top-down evaluation of ideas and tracking of these triggers (Beaty et al., 2016 ). The salience network switches various networks back to the focused problem-solving mode, but not without the potential for problem restructuring. As noted earlier, problem space elements are maintained somewhat loosely in the defocused mode. Thus, upon a focusing event, a set or subset of these elements cohere into a tight (restructured) representation suitable for focused mode problem solving. The process then repeats itself until the goal has been achieved.

5.3. Model predictions

5.3.1. single-mode operation.

The proposed RWPS model provides several interesting hypotheses, which I discuss next. First, the model assumes that any given problem being worked on is in one mode or another, but not both. Thus, the model predicts that there cannot be focused plan execution on a problem that is in defocused mode. The corollary prediction is that novel perceptual cues (as those discussed in section 4) cannot help the solver when in focused mode. The corollary prediction, presumably has some support from the inattentional blindness literature. Inattentional blindness is when perceptual cues are not noticed during a task (e.g., counting the number of basketball passes between several people, but not noticing a gorilla in the scene) (Simons and Chabris, 1999 ). It is possible that during focused problem solving, that external and internally generated novel ideas are simply not considered for problem solving. I am not claiming that these perceptual cues are always ignored, but that they are not considered within the problem. Sometimes external cues (like distracting occurrences) can serve as defocusing events, but the model predicts that the actual content of these cues are not themselves useful for solving the specific problem at hand.

When comparing dual-process models Sowden et al. ( 2015 ) discuss shifting from one type of thinking to another and explore how this shift relates to creativity. In this regard, they weigh the pros and cons of serial vs. parallel shifts. In dual-process models that suggest serial shifts, it is necessary to disengage one type of thought prior to engaging the other or to shift along a continuum. Whereas, in models that suggest parallel shifts, each of the thinking types can operate in parallel. Per this construction, the proposed RWPS model is serial, however, not quite in the same sense. As noted earlier, the RWPS model is not a dual-process model in the same sense as other dual process model. Instead, here, the thrust is on when the brain is receptive or not receptive to certain kinds of internal and external stimuli that can influence problem solving. Thus, while the modes may be serial with respect to a certain problem, it does not preclude the possibility of serial and parallel thinking processes that might be involved within these modes.

5.3.2. Event-driven transitions

The model requires an event (defocusing or focusing) to transition from one mode to another. After all why else would a problem that is successfully being resolved in the focused mode (toward completion) need to necessarily be transferred to defocused mode? These events are interpreted as conflicts in the brain and therefore the mode-switching is enabled by the saliency network and the ACC. Thus, the model predicts that there can be no transition from one mode to another without an event. This is a bit circular, as an event is really what triggers the transition in the first place. But, here I am suggesting that an external or internal cue triggered event is what drives the transition, and that transitions cannot happen organically without such an event. In some sense, the argument is that the transition is discontinuous, rather than a smooth one. Mind-wandering is good example of when we might drift into defocused mode, which I suggest is an example of an internally driven event caused by an alternative thought that takes attention away from the problem.

A model assumption underlying RWPS is that events such as impasses have a similar effect to other events such as distraction or mind wandering. Thus, it is crucial to be able to establish that there exists of class of such events and they have a shared effect on RWPS, which is to switch attentional modes.

5.3.3. Focused mode completion

The model also predicts that problems cannot be solved (i.e., completed) within the defocused mode. A problem can be considered solved when a goal is reached. However, if a goal is reached and a problem is completed in the defocused mode, then there must have not been any converging event or coherence of problem elements. While it is possible that the solver arbitrarily arrived at the goal in a diffused problem space and without conscious awareness of completing the task or even any converging event or problem recompiling, it appears somewhat unlikely. It is true that there are many tasks that we complete without actively thinking about it. We do not think about what foot to place in front of another while walking, but this is not an instance of problem solving. Instead, this is an instance of unconscious task completion.

5.3.4. Restructuring required

The model predicts that a problem cannot return to a focused mode without some amount of restructuring. That is, once defocused, the problem is essentially never the same again. The problem elements begin interacting with other internally and externally-generated items, which in turn become absorbed into the problem representation. This prediction can potentially be tested by establishing some preliminary knowledge, and then showing one group of subjects the same knowledge as before, while showing the another group of subjects different stimuli. If the model's predictions hold, the problem representation will be restructured in some way for both groups.

There are numerous other such predictions, which are beyond the scope of this paper. One of the biggest challenges then becomes evaluating the model to set up suitable experiments aimed at testing the predictions and falsifying the theory, which I address next.

6. Experimental challenges and paradigms

One of challenges in evaluating the RWPS is that real world factors cannot realistically be accounted for and sufficiently controlled within a laboratory environment. So, how can one controllably test the various predictions and model assumptions of “real world” problem solving, especially given that by definition RWPS involves the external environment and unconscious processing? At the expense of ecological validity, much of insight problem solving research has employed an experimental paradigm that involves providing participants single instances of suitably difficult problems as stimuli and observing various physiological, neurological and behavioral measures. In addition, through verbal protocols, experimenters have been able to capture subjective accounts and problem solving processes that are available to the participants' conscious. These experiments have been made more sophisticated through the use of timed-hints and/or distractions. One challenge with this paradigm has been the selection of a suitable set of appropriately difficult problems. The classic insight problems (e.g., Nine-dot, eight-coin) can be quite difficult, requiring complicated problem solving processes, and also might not generalize to other problems or real world problems. Some in the insight research community have moved in the direction of verbal tasks (e.g., riddles, anagrams, matchstick rebus, remote associates tasks, and compound remote associates tasks). Unfortunately, these puzzles, while providing a great degree of controllability and repeatability, are even less realistic. These problems are not entirely congruent with the kinds of problems that humans are solving every day.

The other challenge with insight experiments is the selection of appropriate performance and process tracking measures. Most commonly, insight researchers use measures such as time to solution, probability of finding solution, and the like for performance measures. For process tracking, verbal protocols, coded solution attempts, and eye tracking are increasingly common. In neuroscientific studies of insight various neurological measures using functional magnetic resonance imaging (fMRI), electroencephalography (EEGs), transcranial direct current stimulation (tDCS), and transcranial magnetic stimulation (tMS) are popular and allow for spatially and temporally localizing an insight event.

Thus, the challenge for RWPS is two-fold: (1) selection of stimuli (real world problems) that are generalizable, and (2) selection of measures (or a set of measures) that can capture key aspects of the problem solving process. Unfortunately, these two challenges are somewhat at odds with each other. While fMRI and various neuroscientific measures can capture the problem solving process in real time, it is practically difficult to provide participants a realistic scenario while they are laying flat on their back in an fMRI machine and allowed to move nothing more than a finger. To begin addressing this conundrum, I suggest returning to object manipulation problems (not all that different from those originally introduced by Maier and Duncker nearly a century ago), but using modern computing and user-interface technologies.

One pseudo-realistic approach is to generate challenging object manipulation problems in Virtual Reality (VR). VR has been used to describe 3-D environment displays that allows participants to interact with artificially projected, but experientially realistic scenarios. It has been suggested that virtual environments (VE) invoke the same cognitive modules as real equivalent environmental experience (Foreman, 2010 ). Crucially, since VE's can be scaled and designed as desired, they provide a unique opportunity to study pseudo-RWPS. However, a VR-based research approach has its limitations, one of which is that it is nearly impossible to track participant progress through a virtual problem using popular neuroscientific measures such as fMRI because of the limited mobility of connected participants.

Most of the studies cited in this paper utilized an fMRI-based approach in conjunction with a verbal or visual task involving problem-solving or creative thinking. Very few, if any, studies involved the use physical manipulation, and those physical manipulations were restricted to limited finger movements. Thus, another pseudo-realistic approach is allowing subjects to teleoperate robotic arms and legs from inside the fMRI machine. This paradigm has seen limited usage in psychology and robotics, in studies focused on Human-Robot interaction (Loth et al., 2015 ). It could be an invaluable tool in studying real-time dynamic problem-solving through the control of a robotic arm. In this paradigm a problem solving task involving physical manipulation is presented to the subject via the cameras of a robot. The subject (in an fMRI) can push buttons to operate the robot and interact with its environment. While the subjects are not themselves moving, they can still manipulate objects in the real world. What makes this paradigm all the more interesting is that the subject's manipulation-capabilities can be systematically controlled. Thus, for a particular problem, different robotic perceptual and manipulation capabilities can be exposed, allowing researchers to study solver-problem dynamics in a new way. For example, even simple manipulation problems (e.g., re-arranging and stacking blocks on a table) can be turned into challenging problems when the robotic movements are restricted. Here, the problem space restrictions are imposed not necessarily on the underlying problem, but on the solver's own capabilities. Problems of this nature, given their simple structure, may enable studying everyday practical creativity without the burden of devising complex creative puzzles. Crucial to note, both these pseudo-realistic paradigms proposed demonstrate a tight interplay between the solver's own capabilities and their environment.

7. Conclusion

While the neural basis for problem-solving, creativity and insight have been studied extensively in the past, there is still a lack of understanding of the role of the environment in informing the problem-solving process. Current research has primarily focused on internally-guided mental processes for idea generation and evaluation. However, the type of real world problem-solving (RWPS) that is often considered a hallmark of human intelligence has involved both a dynamic interaction with the environment and the ability to handle intervening and interrupting events. In this paper, I have attempted to synthesize the literature into a unified theory of RWPS, with a specific focus on ways in which the environment can help problem-solve and the key neural networks involved in processing and utilizing relevant and useful environmental information. Understanding the neural basis for RWPS will allow us to be better situated to solve difficult problems. Moreover, for researchers in computer science and artificial intelligence, clues into the neural underpinnings of the computations taking place during creative RWPS, can inform the design the next generation of helper and exploration robots which need these capabilities in order to be resourceful and resilient in the open-world.

Author contributions

The author confirms being the sole contributor of this work and approved it for publication.

Conflict of interest statement

The author declares that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Acknowledgments

I am indebted to Professor Matthias Scheutz, Professor Elizabeth Race, Professor Ayanna Thomas, and Professor. Shaun Patel for providing guidance with the research and the manuscript. I am also grateful for the facilities provided by Tufts University, Medford, MA, USA.

1 My intention is not to ignore the benefits of a concentrated internal thought process which likely occurred as well, but merely to acknowledge the possibility that the environment might have also helped.

2 The research in insight does extensively use “hints” which are, arguably, a form of external influence. But these hints are highly targeted and might not be available in this explicit form when solving problems in the real world.

3 The accuracy of these accounts has been placed in doubt. They often are recounted years later, with inaccuracies, and embellished for dramatic effect.

4 I use the term “agent” to refer to the problem-solver. The term agent is more general than “creature” or “person” or “you" and is intentionally selected to broadly reference humans, animals as well as artificial agents. I also selectively use the term “solver.”

Funding. The research for this Hypothesis/Theory Article was funded by the authors private means. Publication costs will be covered by my institution: Tufts University, Medford, MA, USA.

  • Abraham A. (2013). The promises and perils of the neuroscience of creativity . Front. Hum. Neurosci. 7 :246. 10.3389/fnhum.2013.00246 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Anderson J. R., Fincham J. M. (2014). Discovering the sequential structure of thought . Cogn. Sci. 38 , 322–352. 10.1111/cogs.12068 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Anderson J. R., Seung H., Fincham J. M. (2014). Neuroimage discovering the structure of mathematical problem solving . Neuroimage 97 , 163–177. 10.1016/j.neuroimage.2014.04.031 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Ash I. K., Wiley J. (2006). The nature of restructuring in insight: an individual-differences approach . Psychon. Bull. Rev. 13 , 66–73. 10.3758/BF03193814 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Barbey A. K., Barsalou L. W. (2009). Reasoning and problem solving : models , in Encyclopedia of Neuroscience , ed Squire L. (Oxford: Academic Press; ), 35–43. [ Google Scholar ]
  • Barbey A. K., Krueger F., Grafman J. (2009). Structured event complexes in the medial prefrontal cortex support counterfactual representations for future planning . Philos. Trans. R. Soc. Lond. B Biol. Sci. 364 , 1291–1300. 10.1098/rstb.2008.0315 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Beaty R. E., Benedek M., Silvia P. J., Schacter D. L. (2016). Creative cognition and brain network dynamics . Trends Cogn. Sci. 20 , 87–95. 10.1016/j.tics.2015.10.004 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Beaty R. E., Benedek M., Wilkins R. W., Jauk E., Fink A., Silvia P. J., et al.. (2014). Creativity and the default network: a functional connectivity analysis of the creative brain at rest . Neuropsychologia 64 , 92–98. 10.1016/j.neuropsychologia.2014.09.019 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Benedek M., Jauk E., Beaty R. E., Fink A., Koschutnig K., Neubauer A. C. (2016). Brain mechanisms associated with internally directed attention and self-generated thought . Sci. Rep. 6 :22959. 10.1038/srep22959 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Benedek M., Jauk E., Fink A., Koschutnig K., Reishofer G., Ebner F., et al.. (2014). To create or to recall? Neural mechanisms underlying the generation of creative new ideas . Neuroimage 88 , 125–133. 10.1016/j.neuroimage.2013.11.021 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Boccia M., Piccardi L., Palermo L., Nori R., Palmiero M. (2015). Where do bright ideas occur in ourbrain? Meta-analytic evidence from neuroimaging studies of domain-specific creativity . Front. Psychol. 6 :1195. 10.3389/fpsyg.2015.01195 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Brandi M. l., Wohlschläger A., Sorg C., Hermsdörfer J. (2014). The neural correlates of planning and executing actual tool use . J. Neurosci. 34 , 13183–13194. 10.1523/JNEUROSCI.0597-14.2014 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Cass S. (2005). Apollo 13, we have a solution , in IEEE Spectrum On-line, 04 , 1. Available online at: https://spectrum.ieee.org/tech-history/space-age/apollo-13-we-have-a-solution
  • Chu Y., Macgregor J. N. (2011). Human performance on insight problem solving : a review J. Probl. Solv. 3 , 119–150. 10.7771/1932-6246.1094 [ CrossRef ] [ Google Scholar ]
  • Chung H. J., Weyandt L. L. (2014). The physiology of executive functioning , Handbook of Executive Functioning (Springer; ), 13–28. [ Google Scholar ]
  • Dandan T., Haixue Z., Wenfu L., Wenjing Y., Jiang Q., Qinglin Z. (2013). Brain activity in using heuristic prototype to solve insightful problems . Behav. Brain Res. 253 , 139–144. 10.1016/j.bbr.2013.07.017 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Danek A. H., Wiley J., Öllinger M. (2016). Solving classical insight problems without aha! experience: 9 dot, 8 coin, and matchstick arithmetic problems . J. Probl. Solv. 9 :4 10.7771/1932-6246.1183 [ CrossRef ] [ Google Scholar ]
  • Duncker K. (1945). On problem-solving . Psychol. Monogr. 58 , i–113. [ Google Scholar ]
  • Evans J. S., Stanovich K. E. (2013). Dual-process theories of higher cognition: advancing the debate . Perspect. Psychol. Sci. 8 , 223–241. 10.1177/1745691612460685 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Fang X., Zhang Y., Zhou Y., Cheng L., Li J., Wang Y., et al.. (2016). Resting-state coupling between core regions within the central-executive and salience networks contributes to working memory performance . Front. Behav. Neurosci. 10 :27. 10.3389/fnbeh.2016.00027 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Finke R. A., Ward T. B., Smith S. M. (1992). Creative Cognition: Theory, Research, and Applications . Cambridge, MA: MIT press. [ Google Scholar ]
  • Fischer J., Mikhael J. G., Tenenbaum J. B., Kanwisher N. (2016). Functional neuroanatomy of intuitive physical inference . Proc. Natl. Acad. Sci. U.S.A. 113 , E5072–E5081. 10.1073/pnas.1610344113 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Fleck J. I. (2008). Working memory demands in insight versus analytic problem solving . Eur. J. Cogn. Psychol. 20 , 139–176. 10.1080/09541440601016954 [ CrossRef ] [ Google Scholar ]
  • Foreman N. (2010). Virtual reality in psychology . Themes Sci. Technol. Educ. 2 , 225–252. Available online at: http://earthlab.uoi.gr/theste/index.php/theste/article/view/33 [ Google Scholar ]
  • Gabora L. (2016). The neural basis and evolution of divergent and convergent thought . arXiv preprint arXiv:1611.03609 . [ Google Scholar ]
  • Gazzaley A., Nobre A. C. (2012). Top-down modulation: bridging selective attention and working memory . Trends Cogn. Sci. 60 , 830–846. 10.1016/j.tics.2011.11.014 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Gilhooly K. J. (2016). Incubation and intuition in creative problem solving . Front. Psychol. 7 :1076. 10.3389/fpsyg.2016.01076 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Guilford J. P. (1962). Creativity: its measurement and development , in A Source Book for Creative Thinking (New York, NY: Charles Scribner's Sons; ), 151–167. [ Google Scholar ]
  • Hao X., Cui S., Li W., Yang W., Qiu J., Zhang Q. (2013). Enhancing insight in scientific problem solving by highlighting the functional features of prototypes: an fMRI study . Brain Res. 1534 , 46–54. 10.1016/j.brainres.2013.08.041 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Hayes S. M., Nadel L., Ryan L. (2007). The effect of scene context on episodic object recognition: parahippocampal cortex mediates memory encoding and retrieval success . Hippocampus 9 , 19–22. 10.1002/hipo.20319 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Heinonen J., Numminen J., Hlushchuk Y., Antell H., Taatila V., Suomala J. (2016). Default mode and executive networks areas: association with the serial order in divergent thinking . PLoS ONE 11 :e0162234. 10.1371/journal.pone.0162234 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Horner A. J., Bisby J. A., Bush D., Lin W.-J., Burgess N. (2015). Evidence for holistic episodic recollection via hippocampal pattern completion . Nat. Commun. 6 :7462. 10.1038/ncomms8462 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Isen A. M., Daubman K. A., Nowicki G. P. (1987). Positive affect facilitates creative problem solving . J. Pers. Soc. Psychol. 52 , 1122–1131. 10.1037/0022-3514.52.6.1122 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Jauk E., Benedek M., Neubauer A. C. (2012). Tackling creativity at its roots: evidence for different patterns of EEG alpha activity related to convergent and divergent modes of task processing . Int. J. Psychophysiol. 84 , 219–225. 10.1016/j.ijpsycho.2012.02.012 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Kaplan C. A., Simon H. A. (1990). In search of insight . Cogn. Psychol. 22 , 374–419. [ Google Scholar ]
  • Kaufman S. B. (2011). Intelligence and the cognitive unconscious , in The Cambridge Handbook of Intelligence (New York, NY: Cambridge University Press; ), 442–467. [ Google Scholar ]
  • Kounios J., Beeman M. (2014). The cognitive neuroscience of insight . Annu. Rev. Psychol. 65 , 71–93. 10.1146/annurev-psych-010213-115154 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Kumaran D., Hassabis D., McClelland J. L. (2016). What learning systems do intelligent agents need? complementary learning systems theory updated . Trends Cogn. Sci. 20 , 512–534. 10.1016/j.tics.2016.05.004 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Loth S., Jettka K., Giuliani M., De Ruiter J. P. (2015). Ghost-in-the-machine reveals human social signals for human–robot interaction . Front. Psychol. 6 :1641. 10.3389/fpsyg.2015.01641 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Lovell J., Kluger J. (2006). Apollo 13 . New York, NY: Houghton Mifflin Harcourt. [ Google Scholar ]
  • Luo J., Li W., Qiu J., Wei D., Liu Y., Zhang Q. (2013). Neural basis of scientific innovation induced by heuristic prototype . PLoS ONE 8 :e49231. 10.1371/journal.pone.0049231 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • MacGregor J. N., Ormerod T. C., Chronicle E. P. (2001). Information processing and insight: a process model of performance on the nine-dot and related problems . J. Exp. Psychol. Learn. Mem. Cogn. 27 :176. 10.1037/0278-7393.27.1.176 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Maier N. R. (1930). Reasoning in humans. i. on direction . J. Comp. Psychol. 10 :115. [ Google Scholar ]
  • Mason R. A., Just M. A. (2013). Neural representations of physics concepts . Psychol. Sci. 27 , 904–913. 10.1177/0956797616641941 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Mehta R., Zhu R. J. (2009). Blue or red? exploring the effect of color on cognitive task performances . Science 323 , 1226–1229. 10.1126/science.1169144 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Mendelsohn G. (1976). Associative and attentional processes in creative performance . J. Pers. 44 , 341–369. [ Google Scholar ]
  • Menon V. (2015). Salience network , in Brain Mapping: An Encyclopedic Reference, Vol. 2 , ed Toga A. W. (London: Academic Press; Elsevier; ), 597–611. [ Google Scholar ]
  • Metcalfe J. (1986). Premonitions of insight predict impending error . J. Exp. Psychol. Learn. Mem. Cogn. 12 , 623. [ Google Scholar ]
  • Miyake A., Friedman N. P., Emerson M. J., Witzki A. H., Howerter A., Wager T. D. (2000). The unity and diversity of executive functions and their contributions to complex “Frontal Lobe” tasks: a latent variable analysis . Cogn. Psychol. 41 , 49–100. 10.1006/cogp.1999.0734 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Newman S. D., Green S. R. (2015). Complex problem solving . Brain Mapp. 3 , 543–549. 10.1016/B978-0-12-397025-1.00282-7 [ CrossRef ] [ Google Scholar ]
  • Ohlsson S. (1992). Information-processing explanations of insight and related phenomena . Adv. Psychol. Think. 1 , 1–44. [ Google Scholar ]
  • Öllinger M., Fedor A., Brodt S., Szathmáry E. (2017). Insight into the ten-penny problem: guiding search by constraints and maximization . Psychol. Res. 81 , 925–938. 10.1007/s00426-016-0800-3 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Öllinger M., Jones G., Knoblich G. (2014). The dynamics of search, impasse, and representational change provide a coherent explanation of difficulty in the nine-dot problem . Psychol. Res. 78 , 266–275. 10.1007/s00426-013-0494-8 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Operskalski J. T., Barbey A. K. (2016). Cognitive neuroscience of causal reasoning , in Oxford Handbook of Causal Reasoning , ed Waldmann M. R. (New York, NY: Oxford University Press; ), 217–242. [ Google Scholar ]
  • Quilodran R., Rothé M., Procyk E. (2008). Behavioral shifts and action valuation in the anterior cingulate cortex . Neuron 57 , 314–325. 10.1016/j.neuron.2007.11.031 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Ritter S. M., Dijksterhuis A. (2014). Creativity the unconscious foundations of the incubation period . Front. Hum. Neurosci. 8 :215. 10.3389/fnhum.2014.00215 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Robertson S. (2016). Problem Solving: Perspectives from Cognition and Neuroscience . New York, NY: Psychology Press. [ Google Scholar ]
  • Salvi C., Bowden E. M. (2016). Looking for creativity: where do we look when we look for new ideas? Front. Psychol. 7 :161. 10.3389/fpsyg.2016.00161 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Sawyer K. (2011). The cognitive neuroscience of creativity: a critical review . Creat. Res. J. 23 , 137–154. 10.1080/10400419.2011.571191 [ CrossRef ] [ Google Scholar ]
  • Scimeca J. M., Badre D. (2012). Striatal contributions to declarative memory retrieval Jason . Neuron 75 , 380–392. 10.1016/j.neuron.2012.07.014 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Simone Sandkühler J. B. (2008). Deconstructing insight: EEG correlates of insightful problem solving . PLoS ONE 3 :e1459. 10.1371/journal.pone.0001459 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Simons D. J., Chabris C. F. (1999). Gorillas in our midst: sustained inattentional blindness for dynamic events . Perception 28 , 1059–1074. [ PubMed ] [ Google Scholar ]
  • Sowden P. T., Pringle A., Gabora L. (2015). The shifting sands of creative thinking: connections to dual-process theory . Think. Reason. 21 , 40–60. 10.1080/13546783.2014.885464 [ CrossRef ] [ Google Scholar ]
  • Sprugnoli G., Rossi S., Emmendorfer A., Rossi A., Liew S.-L., Tatti E., et al. (2017). Neural correlates of Eureka moment . Intelligence 62 , 99–118. 10.1016/j.intell.2017.03.004 [ CrossRef ] [ Google Scholar ]
  • Steidle A., Werth L. (2013). Freedom from constraints: darkness and dim illumination promote creativity . J. Environ. Psychol. 35 , 67–80. 10.1016/j.jenvp.2013.05.003 [ CrossRef ] [ Google Scholar ]
  • Stocco A., Lebiere C., O'Reilly R. C., Anderson J. R. (2012). Distinct contributions of the caudate nucleus, rostral prefrontal cortex, and parietal cortex to the execution of instructed tasks . Cogn. Affect. Behav. Neurosci. 12 , 611–628. 10.3758/s13415-012-0117-7 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Summerfield J. J., Hassabis D., Maguire E. A. (2010). Differential engagement of brain regions within a corenetwork during scene construction . Neuropsychologia 48 , 1501–1509. 10.1016/j.neuropsychologia.2010.01.022 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Tang Y.-Y., Rothbart M. K., Posner M. I. (2012). Neural Correlates of stablishing, maintaining and switching brain states . Trends Cogn. Sci. 16 , 330–337. 10.1016/j.tics.2012.05.001 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Team M. E. (1970). Mission Operations Report apollo 13 . [ Google Scholar ]
  • Thakral P. P., Madore K. P., Schacter D. L. (2017). A role for the left angular gyrus in episodic simulation and memory . J. Neurosci. 37 , 8142–8149. 10.1523/JNEUROSCI.1319-17.2017 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Thomas L. E., Lleras A. (2009). Swinging into thought: directed movement guides insight in problem solving . Psychon. Bull. Rev. 16 , 719–723. 10.3758/PBR.16.4.719 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Vohs K. D., Redden J. P., Rahinel R. (2013). Physical order produces healthy choices, generosity, and conventionality, whereas disorder produces creativity . Psychol. Sci. 24 , 1860–1867. 10.1177/0956797613480186 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Wegbreit E., Suzuki S., Grabowecky M., Kounios J., Beeman M. (2012). Visual attention modulates insight versus analytic solving of verbal problems . J. Probl. Solv. 144 , 724–732. 10.7771/1932-6246.1127 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Yang W., Dietrich A., Liu P., Ming D., Jin Y., Nusbaum H. C., et al. (2016). Prototypes are key heuristic information in insight problem solving . Creat. Res. J. 28 , 67–77. 10.1080/10400419.2016.1125274 [ CrossRef ] [ Google Scholar ]
  • Yoruk S., Runco M. A. (2014). Neuroscience of divergent thinking . Activ. Nervosa Superior 56 , 1–16. 10.1007/BF03379602 [ CrossRef ] [ Google Scholar ]
  • Zabelina D., Saporta A., Beeman M. (2016). Flexible or leaky attention in creative people? Distinct patterns of attention for different types of creative thinking . Mem Cognit . 44 , 488–498. 10.3758/s13421-015-0569-4 [ PubMed ] [ CrossRef ] [ Google Scholar ]

real life situation problem solving

18 Real World Life Problems with Examples: How to Solve

There are many real-world problems with examples . We may be fat, debt-free, bite our nails, live in a dirty hut we call an apartment, can’t find a good job, and our life succeeds. Okay, that’s not too bad, but if you can stand to improve in one area or another, we can help. Here are our top solutions to the most annoying and disturbing problems in life. In this article, I am going to talk about real-world problems and examples that need to be solved.

Real-world problems examples

We can classify a problem based on the direction in which it occurs. We highlight a few of the important ones here.

The direction of life depends on the classification of real-life problems

1. Your home is a mess

If you do not work regularly to manage and maintain your home, you can expect disaster as real-world problems and examples. In the dust, the cords come out of the cracks, the laundry doesn’t fold, and your things don’t go away.

First things first, pick a few hours a week to devote to cleaning your house. It is one of the common examples of problems in life a person usually faces.

If you need it and can afford it, rent help, or find a way to enjoy clean-up time (I watch TV or listen to music.) In addition to creating time, which is a real fixture, there are many things to speed up the whole process.

Which you can do When folding laundry, use this second-tier folding method to save a ton of time. When you remove your clothing, organize it by color or some other memorable scheme so you never have to wonder where an item should be placed and can easily find that item later.

Speaking of organization, you should start organizing before you go out and buy an organizational product so you know what you really need (if anything) and avoid wasting money.

In organizing your cables, we have posted many great ways to control them. For the most part, you are not going to save much time in the dust, but by turning on your thermostat fan you can better filter it so that the dust that flies in the air during the vacuum gets up (as long as you keep the fan on) after 15 minutes. To save some money, you can make your own reusable dust-mesh cloth and follow our tips to get rid of the dust of your technology.

2. You are addicted to technology

It is one of the common examples of problems in life a person usually faces as real-world problems and examples.

Is that good Okay, okay, good addiction, and bad addiction. You can have a huge presence in your life without creating technology issues, but you need to know when to the plugin. You may find that you are using your gadgets too much if you do not know when to stop using them.

A good place to start is a social situation, perhaps allowing yourself to peek at your phone once or twice per night. When you set limits, you will know that there are only so many opportunities to check and you plan them well.

You will definitely want to unplug before bed because having the technology in the bedroom means that you will use it and the darkly lit screen will not help you sleep better.

This will serve as a distraction in the very morning and potentially delay your to work. One of the best times to unplug the plug is to think of it as the worst: when you’re out on the earth and wandering around or doing nothing. One of the major problems with technology addiction is a lack of awareness.

Like movie theaters, then TVs, and now smartphones, technology takes your mind wherever you are. If you start to become more aware of your surroundings and start spending some more time, you will find that not only are interesting things happening around you, you will become more effective in different situations.

We have a lot of small and big screens in our lives and they are fun, but we don’t have to look at them wherever we go. Set aside some time for the world and it will help your technology get addicted.

3. You’re being manipulated

We are all victims of manipulation and manipulation in various ways because we are made to try what we want, but there are many people who take the manipulation to the final and face it as a scary thing as real-world problems and examples.

First, it is important to identify how manipulation works and how to place ideas in your head, so that you know if this is actually happening to you.

At the very least you’ll be able to convince the serial manipulator to turn off the manipulator, so troubleshooting is a two-step process: identify the problems and eliminate them.

If you are manipulated, cut off all ties with the manipulator. It can be tough but it is the only way to do it. It is one of the common examples of problems in life a person usually faces.

4. Can’t sleep

Sleep is really important. It may actually be more important than food. It can even help you lose weight. If you are not sleeping well, there are many things you can do to try to solve the problem.

First, stop reading your backlit screens before going to bed! In fact, just put technology out of the bedroom together. You should limit your caffeine and other stimulants. (We found that caffeine really does happen to your brain).

It can be a drastic change, but there are different ways to effectively wake up in the morning without stimulants. (I don’t use stimulants and I have the energy most days, so I know it’s possible). Eating heavier in the morning and less at night can help with good sleep since you have derivatives with real-life problems with solutions.

It is one of the common examples of problems in life a person usually faces. Here are ten more suggestions. You may need to do some testing to find what works, but when you take care of yourself physically, in general, you will probably find that sleep works just fine.

real life problems full life problems in life and solutions in your life life problems life is full of problems fix your life get on with your life about your life real life problems and solutions of your life your life is yours life problem solution life is problem your life is life is full problem to your life do your life be your life life is your fix your problems from your life life and problems problem in your life solutions for your life your why in life a real life problem you can your life with you life the problem with life

5. Relational

This forms one of the biggest problem areas as real-world problems and examples. In your family, a close friend of yours or your boss or co-worker at work can be a problem with your relationship.

Whatever the problem, emotions, and emotions of course play a very important role in solving such problems. Technically these are sensitive issues where personal emotions are involved to a great extent.

There is plenty of literature to address these issues more frequently and how we are sure that many of these suggestions will prove to be valuable, but you will probably be confused enough to deal with many suggestions.

If you know for yourself that the basic principles and strategies for problem-solving are beginning to be implemented systematically, then you can have a better chance of getting out of this national problem.

A great truth is, No matter the circumstances, the best help is yourself.

For example, in the case of a fatal difference with your boss: analyze the root cause first by trying to understand why the problem occurred. If you find it, analyze the alternative scenario, and accurately chart the actions you can take, and the results of each operation.

There are both effective and systematic methods for this analytical work. While it is useful to remember that in order to solve a problem that does not arise, the source of that time can be used very effectively in many cases with the activity you want.

After all, one or more of the larger sets of problem-solving policies always apply to any problem, even a sensitive issue. For example, the policy of the Degree-Degree system advises you to look at the views of everyone, not just yourself.

Thinking from the perspective of another person greatly improves the chances of problem-solving in sensitive issues such as conflict resolution and real-life problems involving limits.

In short, even in the case of a strong sensitive problem, you are at times much more likely to resolve the crisis if you decide on a regular basis to use all the problem-solving resources yourself.

6. Expert Role

In many serious relationships, the help of a specialist greatly improves your chances of success. An expert in this domain can be a counselor, psychiatrist, psychologist, or knowledgeable and trusted friend as well as examples of problems in life.

You should not hesitate to get this kind of help if you need it. In this case, the method of identifying a troubleshooter becomes important. The choice of expert help should be a problem in itself to deal with analytically.

7. Work and career

Deciding what to do for your livelihood is an important decision issue to real-world problems and examples. This is rather a dynamic problem, as it does not completely depend on the actions you take in real-life derivative problems.

Market forces and job conditions change dynamically over time. It is one of the common examples of problems in life a person usually faces. You always need to balance different aspects of this important part of your life,

  • One should be satisfied with the task.
  • Your stress level should not make you sick.
  • You need to make enough money to maintain and build a buffer for your growing financial needs.
  • You should be able to spend some quality time with your family on a regular basis.
  • You should constantly increase your skillset and level of demand over time.
  • You should be able to save enough time so that you are able to stop working after due time.

There is not a complete list of all these terms that you need to adjust. The suggestion is to list the criteria or conditions fairly and choose the right mix of criteria to make your decision. Technically this is a dynamic multi-criteria decision problem area.

Once on the job, you will face a variety of problems. While you may receive training to cope with some of these, ultimately how you face the work environment depends on your problem-solving and management skills.

8. Academic

Deciding which subject to study or which trade to learn is a very important decision issue because they are closely related to what you will eventually do.

Many important problem-solving policies and strategies, such as backward-looking strategies, department policies, or multi-criteria decision-making policies, can be applied here with good results. It is one of the common examples of problems in life a person usually faces.

Again during the course, you will face a different class problem. Learning how to solve some of the most important sub-problems you need to solve for the best results in an academic career, how to best prepare for the exam and good performance in the exam.

The systematic application of one or more of the basic problem-solving policies and strategies of all the above types of problem situations, troubleshooting strategies, zero-based problem solving, backward work, etc. always produces higher quality results than solving problems with random methods.

Classify real-life problems according to the time you got to solve the problem.

We can classify real-world problems by problem-solving time or the instantaneous degree of availability of examples of real-life problems. Such classifications are:

9. You’re burning out (or getting there)

First things first, you really need to recognize that you are burned. Sometimes you can become so overwhelmed by what is happening that you are just tired and do not even know what the problem is. It is one of the common examples of problems in life a person usually faces.

Chest pain, frequent headaches, frustration, skipping meals, reduced productivity, frustration, poor concentration, and chronic fatigue are all burning symptoms as real-world problems and examples.

So what do you do about it? Sometimes the holidays are a good place to start to regain just a little bit of your focus. After you return, you need to apply your steps to find balance in your life. Strategic changes, small and large, are the key to finding that balance rather than making balanced life-changing decisions.

You will find that adjusting to the big changes is more difficult and can bring a lot of anxiety. In the end, many small things will have more impact than one big one. It is important to plan a real break for your day.

You may also find that scheduling a day later is best for the tedious tasks that you do not like or do not find annoying (such as email). Changing your work environment can also affect your feelings, but the important thing is that you look to take the necessary steps to avoid being discarded as the first place in your life.

10. You are fat and unhealthy

If you live in America, at least you will know that you are not alone. Being overweight – there is no way to avoid an injury – is a big problem and it is very hard to solve.

If you need or want to lose weight, there is no real need for a diet or exercise as real-world problems and examples.

The key is to look for a diet and exercise routine that you actually draw on. Your instinct is to try and move fast so you can speed up the process and be really nice and slender really quickly.

This is a bad idea. If you are obese, you eat healthy foods and get some physical activity, you will lose weight very quickly. For those of you who are trying to lose the last 10-20 pounds, you have a much harder job.

Either way, you need to put together a plan that you actually draw. It should be hard work, but it should be the hard work you want to do and not the hard work you hate every single day.

So how do you put this plan together? It is impossible to say what will or will not work for you, but we can talk about a few options. First, cognitive-behavioral coping skills can be a good way to formulate a plan.

Instead of taking the backseat to watching television (for example), it will help you to focus on your eating instead of regularly reminding yourself of your goals and helping you stay positive with real-life mathematics problems and solutions.

Some people find apps and accountability (say, an online community) make it easier to lose weight (here are some app suggestions for Android and iPhone)) You may lose some privacy in the process, but it is quite pricey to achieve a fairly difficult goal with a system of inequalities in real-life examples.

Reasonable prices. Personally, I think it is important to have a psychology profile before starting your diet and exercise routine because you are human and you will always be healthy if you just work with logic.

Since you are a very emotional entity, you have a desire that is not necessarily physical. Personally, I have a weird emotional obsession with cupcakes. Profiling yourself is a good way to anticipate these problems and find solutions before they are resolved.

When you truly start your diet, we think that eating less than eating less is a better way to go. Exercising before breakfast can also contribute to weight loss. Getting more sleep can also help a lot. Whatever you do, make sure it is something you promise or that it is a completely meaningless example of life problems.

Try new foods and physical activity to find the foods you love. This is a problem you cannot overcome until you find a way that you can enjoy the hard work of overcoming it.

11. You are dissatisfied

This is a very personal issue that is about to get a very personal answer and is probably the reason for contributing to one or more of the previously discussed issues. That said, there does not have to be something difficult to achieve happiness.

You will be happy most days if you take care of yourself physically (eg: regular physical activity, a healthy diet, adequate sleep, etc.) and you do something that makes you happy.

The problem is often knowing what will make you happy since people are terrible at predicting the future and most decisions are difficult to make. There are a few ways to draw it and put together a plan that you can stick to.

First, here’s what I did. I’m a generally happy man, but I haven’t been for almost a decade. I made a lot of decisions that I thought would please me, mostly that made me even more dissatisfied and then decided to come up with a new plan.

I had a friend who abused me badly, and the first step in that plan was to end that friendship. I realized that many of us have similar behaviors and those behaviors are displeasing to me, so I thought I had adopted a policy of doing the opposite.

My life has been a livelihood ever since. To make things even simpler, I make almost all of my decisions based on the answer to two questions. First, I ask that I say yes to this choice.

Secondly, I ask if saying yes is the right thing to say. If both questions are yes then I do it. If not, I don’t. I sometimes fear what I might be missing if I say no, but this fear subsides every day because so many good things happen.

12. You are poor

Obviously, you’re going to be $ 75,000 as happy as you are, but there are plenty of things you can do to pick up some more cash if you’re not there yet. The web offers plenty of ways to earn some extra cash in your free time, so pick a few and work.

If you hope that more work isn’t done well, just do the majority of being poor (or poor-ish). It is one of the common examples of problems in life a person usually faces.

Keep it short, do it yourself more, and use all the free stuff available to you (while being aware of its actual costs). If extra spending is a problem, there are a few ways that you can create a barrier to your spending and a neat web app to help you get rid of debt.

problem solving steps global issues world problems world issues world issues today global problems problems in the world today global problems today global issues today global problems of the world global problems in the world today the global issues a world problem problems about the world about global issues global issues and problems global issues in the world today problems of this world an issue in the world global it issues the global problems a world issue global issues in problems and issues in the world biggest problems in the world global problems and their solutions development aid world food problems worldwide problems important issues in the world major problems in the world biggest issues in the world top problems in the world worldwide issues top 10 global issues major issues top 10 problems in the world problems in our world major issues in the world biggest global issues top global issues un global issues international problems united nations global issues major global issues worlds biggest problems top 10 world issues world problems and solutions top issues in the world united nations problems and solutions 10 global issues important global issues biggest problems in the world today global development issues issues in our world important problems in the world problems with the un top issues food issues in the world global problems and solutions global food issues biggest global problems global issues and solutions biggest problems top global problems problems in our world today worldwide issues today 10 problems in the world top 10 global problems biggest issues in the world today global food problems the worlds biggest problems un world problems global challenges today issues in our world today major issues in the world today important issues in the world today un global problems 10 issues in the world solutions to global issues world global issues top global issues today international problems today major problems in the world today globalization problems and solutions international problems in the world problems of un 10 global problems global issues and challenges global problems global solutions solutions to world problems national problems in the world biggest global challenges world's biggest challenges national global issues un world issues challenges in the world today top issues in the world today top 10 global challenges top global challenges top 10 global problems in today's world solutions to problems of national development development issues in the world top global issues in the world global international issues solutions to globalization problems the world problems and solutions global challenges un world issues and solutions global issues and their solutions biggest global issues today biggest problem of world biggest issue in the world today 10 biggest global challenges global issues with solutions global and national issues worldwide problems and issues biggest global problems today global problems solutions problems with solutions in the world 10 global problems in the world today world problems and their solutions major global issues today our world problems major problems in the world and solutions top problems in the world today important issues in our world today world's biggest problem today world's biggest problems and solutions problems of todays world today problems in the world biggest world challenges the biggest problems of the world the biggest global issues solutions to the world's problems 10 biggest issues in the world major global problems today today's biggest world problems challenges in today's world problems of globalization and solutions the world's biggest issues biggest international issues world top issues united nations world issues the biggest global problems un problems of the world major world problems and solutions important problems in the world today 10 global challenges top 10 global issues in the world the biggest global challenges issues in this world today the world's biggest challenges a problem in the world today challenges in our world today

13. You hate your work

There are very few people who do not hate their work, and sometimes it is because their job is losing their humanity day in and day out because of their viewpoint.

If you are in a situation where your work is awful, you probably have to leave. We have posted a guide to leaving your soul-crushing work and lots of suggestions on what to do next. To decide where to go next, you need to decide what you want to do.

If this is something in your field, get your biography in great shape, and start sending it. When you get an interview, be prepared, but do not think your interview is ready.

If you want a job outside your specific field, these are still relevant, but here are some tips on how to get into a job and how to find one if you have no relevant experience. If you can be smart, charismatic, and clever, you should do just fine.

14. Want you to break a bad habit

Breaking bad habits is really tough, whether you are biting your nails or smoking, there are several things you can try. Thinking about your habits as a hater can help but be patient and take it slowly.

There are questions you may want to ask yourself and you can see that forming a good habit will make it easier to break your bad ones. I like to use my imagination (e.g. “your fingers are made of pop, so don’t chew them on”) but I’ve only found that half of the time can be successful.

No matter what methods you use, whether they are light or extreme, you need to be able to convince yourself that the habit is really bad. We like our bad habits and see the harm they cause, but they also comfort us.

If we are to realize how bad the ease is and do not fully understand it, the practice is always going to be more difficult to break problems in life examples.

15. Static problems

Get a reasonable amount of time to troubleshoot analysis, formulate appropriate strategies, evaluate potential approaches, and propose solutions for implementation where problems include a fixed class such as principal-agent problem real-life example.

These are common examples of problems in life a person usually faces. Some of the fixed problem sub-categories are as follows:

Favorite Issues – such as choosing a vendor, hiring a new employee, choosing a life partner, buying a new car, and choosing an outsourcing partner. The analytic hierarchic mechanism or AHP is a useful method to solve these problems.

Ranking problems – such as the ranking of participants in a music competition, the ranking of students in a course, the performance unit performance of an organization, and the ranking of a country university. Again AHP is useful.

Evaluation Issues – such as performance evaluation of employees, and evaluation of telecom network performance. AHP applies to real-life world problems.

Design and R&D Issues – Designing a marketing campaign, designing a product, research, and development issues. Most R&D problems are extremely complex and inherently uncertain real-life polynomial problems with solutions.

These problems are more in need of innovation. For better results, the application of the concept of innovation creation is needed here as real-world problems and examples.

Strategic issues – such as designing marketing strategies, creating HR strategies, forming a content management strategy, creating a national plan, budgeting, etc. Significant AHP applications exist in this area with real-life problem examples.

There are various important daily life issues that there is time to analyze before you take action. Many of the fundamental problems of solving surgical resources and innovative policies can be applied effectively in these different problem areas.

16. Dynamic problems

Problems that occur in the environment tend to occur rather than the decisions that are taken as real-world problems and examples. In these situations, decision-making time is very short. It is one of the common examples of problems in life a person usually faces.

Examples are: Driving from one place to another, repairing a poorly maintained telecom network, advising a patient, and treating a patient. In this section, one can club strategic and manageable issues.

Problems in life quotes global issues world problems world issues global problems global issues examples list of global issues world issues today list of problems in the world real world problems today problems in the world today issues today issues list global problems today global issues today global problems of the world common problems in the world global problems in the world today global problems list real problems in the world real world issues today global problems examples common issues in the world examples of global problems world issues list the global issues global world issues world issues examples examples of world problems about global issues examples of world issues world problems examples a world problem real issues in the world global issues and problems problems about the world global issues in the world today problems of this world real world problems list global community issues global it issues the global problems a world issue an issue in the world global community problems a list of global issues global issues in list of real world issues a list of problems in the world list of global issues in the world problems and issues in the world list of global issues today

17. Emergency problems

Problems where decisions need to be made promptly and largely by intuition as one of real-world problems and examples. Examples are supported for criticism-care in situations such as fire fighting, war front, flood, earthquake, and cyclone devastation. These are common examples of problems in life a person usually faces.

We remind you again of an important fact

There is no single method or strategy for dealing with all kinds of problems and a list of real-life problems.

Any of the above types of problems can lead to two main categories of problems: multi-criteria decision-making problems and diagnostics and problem-solving classes:

Multiple Criteria Decision Making (or MCDM) Issues: Full of life choices and evaluations as real-world problems and examples.

There are several options you should choose when buying a car; When hiring a marketing manager for your organization, you need to evaluate and choose one of the many aspirations for the position.

When choosing a location for your new factory, you need to make a hard choice between a few promising locations. In addition to the issues of choice, rankings, or even strategic decision-making, fall into this category.

In this class, real-life problems involve evaluating a set of options based on a set of qualitative criteria or specifications to solve the problem. The problems of this class are so pervasive that from the mid-sixties, useful and effective methods were introduced and developed to treat these class problems as scientifically (with the least amount of subjectivity) possible.

These problems were classified as MCDM problems and today there is a whole set of powerful methods for dealing with this particular class of common problems around us, with real-life problems in maths.

Diagnostics and Healing Classes of Problems: All doctors, physicians, paramedics, and related professionals deal with these types of problems. Furthermore, any patterns, whether man-made objects or natural objects that run the risk of failure, concern us with such problems.

Home patterns can be your laptop, mobile device, or washing machine; At work, it can be a computer network, a communication network, or a sewer system; Natural failure-prone objects may require maintenance, be it forests or the natural environment itself with social inequality examples in real life.

If you think for a while you will be surprised that failures can occur in so many unforeseen places. Failure treatment is a separate issue. Learn how to deal with failure .

Health problems are a part of our lives. We have a physician or doctor specializing in this field. When you are ill you should seek the advice of the most appropriate doctor or hospital available to you.

It is one of the common examples of problems in life a person usually faces. After you choose an expert, your responsibility for decision-making usually ends. It is now up to the experts to heal you from full health.

But you face problems when making a serious decision

  • You need to go to an expert, or can not decide
  • Your specialist is unable to cure your disease and you have to decide whether or not to consult a second specialist
  • Your disease has progressed to such a state that healing becomes a transient matter, or
  • After your release after healing, the gaps in care after treatment make you sick again.

These are just a few of the problem situations that may arise in your personal health domain. Staying healthy and fully cured of a debilitating disease is a complex problem.

The experts working in this domain will only present you to an extent – you need to work the rest of your life to keep yourself healthy, real-life problems that need to be solved.

Some guidelines To follow

At the very beginning, you need to know and follow healthy habits to stay healthy – the principle here is

Preventive maintenance is much cheaper and better than reactive maintenance when a failure occurs as an example of difficulties in life.

It is important for you to know the primary causes behind common and major illnesses so that you can analyze your illness before going to a specialist. This will help you choose the right doctor for your disease.

If you experience a persistent abnormal physical symptom, you should not delay consulting a physician. Deep symptoms or any persistent symptoms can be due to serious causes.

If you have difficulty deciding which type of specialist to consult, what you need is a good general physician or medical specialist. He is the common man to guide you to the right expert for real-life problems in the world.

These are just a few doubles in this area. But if you gain a basic understanding of the different areas of this important domain, you will be able to use your own analytical capabilities and apply more general problem-solving strategies to achieve the best possible results.

This is primarily a diagnostic and healing problem domain as real-life problems to solve.

process of problem solving math solver with steps free online steps to solving an equation 8d steps math equation solver step by step maths step by step solution linear equation solver with steps math solutions with steps algebra problem solver step by step 2 step inequalities one step inequalities real-world problem examples real life problems examples real life optimization problems examples explain real-world problems with examples in artificial intelligence real world issues examples real-world math problems examples real first world problems examples real world optimization problems examples

Regularly thinking about the bad things in your life for $ 75,000 per week (but no more), watching less television, not being perfect, regaining happiness, boosting your self-esteem, and laughing at what you do today.

Life can be difficult, but if you are committed to yourself and prioritize things, you probably won’t even notice real-world inequality examples.

Although at first glance, the world seems to be filled with an infinite variety of real-life problems, they can be categorized to understand some of these apparent sea problems.

Innovation or new thinking is the essential element for solving high-quality skilled problems,

Context awareness, or transparency about all conflicting elements in the domain of a problem, is crucial for real-life business problems

Duty Logic and the equation of a circle of real-life problems combine all decision-making resources into a chain of decisions – actions – events to provide you with the ultimate desired solution.

More Interesting Articles

  • Employer Contribution to Health Insurance
  • OPM Retirement Benefits for Postal Department
  • 20 Best Job Posting Sites for Employers
  • 5 Best Sites to Post Resume One Should Try
  • How the Government Can Help with Job Loss
  • 19 Surprising Facts About the Persian Language
  • 51 Facts About Chinese (Mandarin) Language
  • Increase AdSense CPC with Top Paying Keywords
  • How to Register a Trademark – Steps from Beginning
  • How to Deal With Hostile Employees
  • How to Deal With Unacceptable Behavior at Work
  • 8 Steps on How to Handle a Bully in a Meeting
  • 10 Common Cell Phones at Work Etiquette
  • 15 Steps Guide to Office Hoteling Etiquette
  • 14 Call Center Customer Service Etiquette – Learn Easily
  • Wrongful Termination due to Disability – What You Can Do
  • 6 Steps on How to Successfully Work from Home
  • 16 Tips on How to Get Media Coverage for Your Business
  • 14 Future Trends in Training and Development
  • Can Employers Make Me Work at Office Lunch?

Very very very very very very very very Helpful I loved it.. Thank u soo much

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Notify me of follow-up comments by email.

Notify me of new posts by email.

Developing real life problem-solving skills through situational design: a pilot study

  • Development Article
  • Published: 09 July 2019
  • Volume 67 , pages 1529–1545, ( 2019 )

Cite this article

real life situation problem solving

  • Lin Zhong   ORCID: orcid.org/0000-0003-2875-3461 1 &
  • Xinhao Xu 2  

1542 Accesses

11 Citations

Explore all metrics

Current problem-solving research has advanced our understanding of the problem-solving process but has provided little advice on how to teach problem-solving skills. In addition, literature reveals that individual difference is an essential issue in problem-solving skills instruction but has been rarely addressed in current research. Building upon information-processing theory, this article proposes an instructional design model, namely the situational design model, which serves as an approach to accommodate individual difference in problem-solving skills instruction. This design model was further examined with a pilot study in an introductory technology course and results showed a significant difference in students’ academic performance and problem-solving skills, especially the non-recurrent skills. The proposed situational design model contributes to research and practice by providing a novel lens to explore problem-solving skills and assisting in the design of instruction that aims to develop student’s expertise in solving real world problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Russian Federation)

Instant access to the full article PDF.

Rent this article via DeepDyve

Institutional subscriptions

real life situation problem solving

Similar content being viewed by others

real life situation problem solving

Social Learning Theory—Albert Bandura

real life situation problem solving

Using technology to make learning fun: technology use is best made fun and challenging to optimize intrinsic motivation and engagement

real life situation problem solving

The Gamification of Learning: a Meta-analysis

Angeli, C. (2013). Examining the effects of field dependence–independence on learners’ problem-solving performance and interaction with a computer modeling tool: Implications for the design of joint cognitive systems. Computers & Education, 62, 221–230.

Article   Google Scholar  

Bulu, S. T., & Pedersen, S. (2012). Supporting problem-solving performance in a hypermedia learning environment: The role of students’ prior knowledge and metacognitive skills. Computers in Human Behavior, 28 (4), 1162–1169.

Cronbach, L. J., & Snow, R. E. (1977). Aptitudes and instructional methods . New York: Irvington.

Google Scholar  

Delahaye, B. L., & Smith, H. E. (1995). The validity of the learning preference assessment. Adult Education Quarterly, 45, 159–173.

Eseryel, D., Ge, X., Ifenthaler, D., & Law, V. (2011). Dynamic modeling as a cognitive regulation scaffold for developing complex problem-solving skills in an educational massively multiplayer online game environment. Journal of Educational Computing Research, 45 (3), 265–286.

Frensch, P. A., & Funke, J. (1995). Definitions, traditions, and a general framework for understanding complex problem solving. In P. A. Frensch & J. Funke (Eds.), Complex problem solving: The European perspective (pp. 3–26). Hillsdale, NJ: Lawrence Erlbaum Associates.

Ge, X. (2013). Designing learning technologies to support self-regulation during ill-structured problem-solving processes. In R. Azevedo & V. Aleven (Eds.), International Handbook of Metacognition and Learning Technologies (pp. 213–228). Berlin: Springer.

Chapter   Google Scholar  

Ge, X., & Land, S. M. (2004). A conceptual framework for scaffolding ill-structured problem-solving processes using question prompts and peer interactions. Educational Technology Research and Development, 52 (2), 5–22.

Ge, X., Law, V., & Huang, K. (2016). Detangling the interrelationships between self-regulation and ill-structured problem solving in problem-based learning. The Interdisciplinary Journal of Problem-Based Learning, 10 (2), 11. https://doi.org/10.7771/1541-5015.1622 .

Guglielmino, L. M. (1978). Development of the self-directed learning readiness scale. (Doctoral dissertation, University of Georgia, 1977). Dissertation. Abstracts International, 38 , 6467.

Hanover Research. (2016). McGraw - hill education 2016 workforce readiness survey . Retrieved from https://www.fastcompany.com/3059940/these-are-the-biggest-skills-that-new-graduates-lack .

Hersey, P., Blanchard, K. H., & Johnson, D. E. (2012). Management of organizational behavior: Leading human resources (10th ed.). Upper Saddle, NJ: Prentice Hall.

Jeotee, K. (2012). Reasoning skills, problem solving ability and academic ability: Implications for study programme and career choice in the context of higher education in Thailand (Doctoral dissertation, Durham University).

Jonassen, D. H. (2007). Learning to solve complex, scientific problems . Mahwah, NJ: Lawrence Erlbaum Associates.

Jonassen, D. H., & Grabowski, B. (2012). Handbook of individual differences, learning, and instruction . New York: Routledge.

Kalyuga, S., & Sweller, J. (2004). Measuring knowledge to optimize cognitive load factors during instruction. Journal of Educational Psychology, 96 (3), 558–568.

Kalyuga, S., & Sweller, J. (2005). Rapid dynamic assessment of expertise to improve the efficiency of adaptive e-learning. Educational Technology Research and Development, 53 (3), 83–93.

Kim, M. K. (2012). Theoretically grounded guidelines for assessing learning progress: Cognitive changes in ill-structured complex problem-solving contexts. Educational Technology Research and Development, 60 (4), 601–622.

Kim, M. C., & Hannafin, M. J. (2011). Scaffolding problem solving in technology-enhanced learning environments (TELEs): Bridging research and theory with practice. Computers & Education, 56 (2), 403–417.

Klegeris, K., Bahniwal, M., & Hurren, H. (2013). Improvement in generic problem-solving abilities of students by use of tutor-less problem-based learning in a large classroom setting. CBE Life Sciences Education, 12, 70–73.

Lee, C. B. (2010). The interactions between problem solving and conceptual change: System dynamic modeling as a platform for learning. Computers & Education, 55 (3), 1145–1158.

Matemba, C. K., Awinja, J., & Otieno, K. O. (2014). Relationship between problem solving approaches and academic performance: A case of Kakamega municipality, Kenya. International Journal of Human Resource Studies, 4 (4), 10.

McCormick, N. J., Clark, L. M., & Raines, J. M. (2015). Engaging students in critical thinking and problem solving: A brief review of the literature. Journal of Studies in Education , 5 (4), 100–113.

Muna, K., Sanjaya, R. E., Syahmani, & Bakti, I. (2017). Metacognitive skills and students’ motivation toward chemical equilibrium problem solving ability: A correlational study on students of XI IPA SMAN 2 Banjarmasin. In AIP Conference Proceedings (Vol. 1911, No. 1, p. 020008). AIP Publishing.

Newell, A., & Rosenbloom, P. (1981). Mechanisms of skill acquisition and the law of practice. In J. R. Anderson (Ed.), Cognitive skills and their acquisition (pp. 1–55). Hillsdale, NJ: Lawrence Erlbaum Associates.

Nokes, T. J., Schunn, C. D., & Chi, M. T. H. (2010). Problem solving and human expertise. In International encyclopedia of education (pp. 265–272). Elsevier Ltd. https://doi.org/10.1016/b978-0-08-044894-7.00486-3 .

Raes, A., Schellens, T., Wever, B. D., & Vanderhoven, E. (2012). Scaffolding information problem solving in web-based collaborative inquiry learning. Computers & Education, 59 (1), 82–94.

Renkl, A., & Atkinson, R. K. (2007). Cognitive skill acquisition: Ordering instructional events in example-based learning. In F. E. Ritter, J. Nerb, E. Lehtinen, & T. O’Shea (Eds.), In order to learn: How ordering effect in machine learning illuminate human learning and vice versa . Oxford: Oxford University Press.

Robertson, I. S. (2016). Problem solving: Perspectives from cognition and neuroscience (2nd ed.). Hove: Psychology Press.

Book   Google Scholar  

Salden, R., Aleve, V., Schwonke, R., & Renkl, A. (2010). The expertise reversal effect and worked examples in tutored problem solving. Instructional Science, 38, 289–307.

Säljö, R., & Wyndhamn, J. (1990). Problem-solving, academic performance and situated reasoning. A study of joint cognitive activity in the formal setting. British Journal of Educational Psychology, 60 (3), 245–254.

Shute, V., Wang, L., Greiff, S., Zhao, W., & Moore, G. (2016). Measuring problem solving skills via stealth assessment in an engaging video game. Computers in Human Behavior, 63, 106–117.

Van Merriënboer, J. J. G. (1997). Training complex cognitive skills . Englewood Cliffs, NJ: Educational Technology Publications.

Van Merriënboer, J. J. G. (2013). Perspectives on problem solving and instruction. Computers & Education, 64 (1), 153–160.

Van Merriënboer, J. J. G. (2016). How people learn. In N. Rushby & D. W. Surry (Eds.), The Wiley handbook of learning technology (pp. 15–34). West Sussex: Wiley.

Van Merriënboer, J. J. G., & Bruin, A. B. H. (2013). Research paradigms and perspectives on learning. In J. M. Spector, et al. (Eds.), Handbook of research on educational communications and technology (pp. 21–29). New York: Springer.

Van Merriënboer, J. J. G., Clark, R. E., & Croock, M. B. M. (2002). Blueprints for complex learning: The 4C/ID-model. Educational Technology Research and Development, 50 (2), 39–64.

Yu, K., Fan, S., & Lin, K. (2014). Enhancing students’ problem-solving skills through context-based learning. International Journal of Science and Mathematics Education, 13, 1377–1401.

Download references

Author information

Authors and affiliations.

Department of Workforce Education and Development, Southern Illinois University Carbondale, 475 Clocktower Drive #4605, Carbondale, IL, 62901, USA

School of Information Science & Learning Technologies, University of Missouri Columbia, 221H Townsend Hall, Columbia, MO, 65211, USA

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Lin Zhong .

Ethics declarations

Conflict of interest.

The authors declare that they have no conflict of interest.

Additional information

Publisher's note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Learning readiness survey

For each of the following questions and statements, please rate yourself for each item. Mark the number that best reflects your situation.

Situational design of lesson 4

Learning goal Improve information visualization skills by demonstrating effective interactive image editing skills for specific purposes by using Thinglink.

Recurrent skills

Basic understanding of information visualization by using images;

Basic understanding of interactive images;

Basic image editing skills.

Non-recurrent skills

Decision-making skills to determine the purpose of the image;

Monitoring skills to ensure task completion;

Comparing and evaluation skills to ensure the quality of the newly created image;

Procedural learning activities Create interactive images by using Thinglink.

HP—create at least three interactive images by using Thinglink.

LP—create one interactive image by using Thinglink.

Supportive learning activities Consider the purpose of the images.

HS—pick up a purpose (educational, commercial, personal) and improve the image quality to achieve that purpose.

LS—consider how to create images for educational purpose.

Relationship activities

HR-interaction with students is mainly two-way communication. For example, relationship activities can focus on reviewing whether the image achieves the chosen purpose or not, checking the quality of the images, providing guidance for further improvement, keeping check emotional level, reducing the fear of making mistakes, and avoiding overwhelming.

LR-interaction with students is mainly one-way communication. For example, relationship activities can focus on clarifying task requirements, checking task completion, making sure all the given tasks are completed and providing step-by-step assistance when necessary.

Rights and permissions

Reprints and permissions

About this article

Zhong, L., Xu, X. Developing real life problem-solving skills through situational design: a pilot study. Education Tech Research Dev 67 , 1529–1545 (2019). https://doi.org/10.1007/s11423-019-09691-2

Download citation

Published : 09 July 2019

Issue Date : December 2019

DOI : https://doi.org/10.1007/s11423-019-09691-2

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Problem-solving skills
  • Individual differences
  • Learning readiness
  • Situational design
  • Find a journal
  • Publish with us
  • Track your research

Career Sidekick

Interview Questions

Comprehensive Interview Guide: 60+ Professions Explored in Detail

26 Good Examples of Problem Solving (Interview Answers)

By Biron Clark

Published: November 15, 2023

Employers like to hire people who can solve problems and work well under pressure. A job rarely goes 100% according to plan, so hiring managers will be more likely to hire you if you seem like you can handle unexpected challenges while staying calm and logical in your approach.

But how do they measure this?

They’re going to ask you interview questions about these problem solving skills, and they might also look for examples of problem solving on your resume and cover letter. So coming up, I’m going to share a list of examples of problem solving, whether you’re an experienced job seeker or recent graduate.

Then I’ll share sample interview answers to, “Give an example of a time you used logic to solve a problem?”

Problem-Solving Defined

It is the ability to identify the problem, prioritize based on gravity and urgency, analyze the root cause, gather relevant information, develop and evaluate viable solutions, decide on the most effective and logical solution, and plan and execute implementation. 

Problem-solving also involves critical thinking, communication, listening, creativity, research, data gathering, risk assessment, continuous learning, decision-making, and other soft and technical skills.

Solving problems not only prevent losses or damages but also boosts self-confidence and reputation when you successfully execute it. The spotlight shines on you when people see you handle issues with ease and savvy despite the challenges. Your ability and potential to be a future leader that can take on more significant roles and tackle bigger setbacks shine through. Problem-solving is a skill you can master by learning from others and acquiring wisdom from their and your own experiences. 

It takes a village to come up with solutions, but a good problem solver can steer the team towards the best choice and implement it to achieve the desired result.

Watch: 26 Good Examples of Problem Solving

Examples of problem solving scenarios in the workplace.

  • Correcting a mistake at work, whether it was made by you or someone else
  • Overcoming a delay at work through problem solving and communication
  • Resolving an issue with a difficult or upset customer
  • Overcoming issues related to a limited budget, and still delivering good work through the use of creative problem solving
  • Overcoming a scheduling/staffing shortage in the department to still deliver excellent work
  • Troubleshooting and resolving technical issues
  • Handling and resolving a conflict with a coworker
  • Solving any problems related to money, customer billing, accounting and bookkeeping, etc.
  • Taking initiative when another team member overlooked or missed something important
  • Taking initiative to meet with your superior to discuss a problem before it became potentially worse
  • Solving a safety issue at work or reporting the issue to those who could solve it
  • Using problem solving abilities to reduce/eliminate a company expense
  • Finding a way to make the company more profitable through new service or product offerings, new pricing ideas, promotion and sale ideas, etc.
  • Changing how a process, team, or task is organized to make it more efficient
  • Using creative thinking to come up with a solution that the company hasn’t used before
  • Performing research to collect data and information to find a new solution to a problem
  • Boosting a company or team’s performance by improving some aspect of communication among employees
  • Finding a new piece of data that can guide a company’s decisions or strategy better in a certain area

Problem Solving Examples for Recent Grads/Entry Level Job Seekers

  • Coordinating work between team members in a class project
  • Reassigning a missing team member’s work to other group members in a class project
  • Adjusting your workflow on a project to accommodate a tight deadline
  • Speaking to your professor to get help when you were struggling or unsure about a project
  • Asking classmates, peers, or professors for help in an area of struggle
  • Talking to your academic advisor to brainstorm solutions to a problem you were facing
  • Researching solutions to an academic problem online, via Google or other methods
  • Using problem solving and creative thinking to obtain an internship or other work opportunity during school after struggling at first

You can share all of the examples above when you’re asked questions about problem solving in your interview. As you can see, even if you have no professional work experience, it’s possible to think back to problems and unexpected challenges that you faced in your studies and discuss how you solved them.

Interview Answers to “Give an Example of an Occasion When You Used Logic to Solve a Problem”

Now, let’s look at some sample interview answers to, “Give me an example of a time you used logic to solve a problem,” since you’re likely to hear this interview question in all sorts of industries.

Example Answer 1:

At my current job, I recently solved a problem where a client was upset about our software pricing. They had misunderstood the sales representative who explained pricing originally, and when their package renewed for its second month, they called to complain about the invoice. I apologized for the confusion and then spoke to our billing team to see what type of solution we could come up with. We decided that the best course of action was to offer a long-term pricing package that would provide a discount. This not only solved the problem but got the customer to agree to a longer-term contract, which means we’ll keep their business for at least one year now, and they’re happy with the pricing. I feel I got the best possible outcome and the way I chose to solve the problem was effective.

Example Answer 2:

In my last job, I had to do quite a bit of problem solving related to our shift scheduling. We had four people quit within a week and the department was severely understaffed. I coordinated a ramp-up of our hiring efforts, I got approval from the department head to offer bonuses for overtime work, and then I found eight employees who were willing to do overtime this month. I think the key problem solving skills here were taking initiative, communicating clearly, and reacting quickly to solve this problem before it became an even bigger issue.

Example Answer 3:

In my current marketing role, my manager asked me to come up with a solution to our declining social media engagement. I assessed our current strategy and recent results, analyzed what some of our top competitors were doing, and then came up with an exact blueprint we could follow this year to emulate our best competitors but also stand out and develop a unique voice as a brand. I feel this is a good example of using logic to solve a problem because it was based on analysis and observation of competitors, rather than guessing or quickly reacting to the situation without reliable data. I always use logic and data to solve problems when possible. The project turned out to be a success and we increased our social media engagement by an average of 82% by the end of the year.

Answering Questions About Problem Solving with the STAR Method

When you answer interview questions about problem solving scenarios, or if you decide to demonstrate your problem solving skills in a cover letter (which is a good idea any time the job description mention problem solving as a necessary skill), I recommend using the STAR method to tell your story.

STAR stands for:

It’s a simple way of walking the listener or reader through the story in a way that will make sense to them. So before jumping in and talking about the problem that needed solving, make sure to describe the general situation. What job/company were you working at? When was this? Then, you can describe the task at hand and the problem that needed solving. After this, describe the course of action you chose and why. Ideally, show that you evaluated all the information you could given the time you had, and made a decision based on logic and fact.

Finally, describe a positive result you got.

Whether you’re answering interview questions about problem solving or writing a cover letter, you should only choose examples where you got a positive result and successfully solved the issue.

Example answer:

Situation : We had an irate client who was a social media influencer and had impossible delivery time demands we could not meet. She spoke negatively about us in her vlog and asked her followers to boycott our products. (Task : To develop an official statement to explain our company’s side, clarify the issue, and prevent it from getting out of hand). Action : I drafted a statement that balanced empathy, understanding, and utmost customer service with facts, logic, and fairness. It was direct, simple, succinct, and phrased to highlight our brand values while addressing the issue in a logical yet sensitive way.   We also tapped our influencer partners to subtly and indirectly share their positive experiences with our brand so we could counter the negative content being shared online.  Result : We got the results we worked for through proper communication and a positive and strategic campaign. The irate client agreed to have a dialogue with us. She apologized to us, and we reaffirmed our commitment to delivering quality service to all. We assured her that she can reach out to us anytime regarding her purchases and that we’d gladly accommodate her requests whenever possible. She also retracted her negative statements in her vlog and urged her followers to keep supporting our brand.

What Are Good Outcomes of Problem Solving?

Whenever you answer interview questions about problem solving or share examples of problem solving in a cover letter, you want to be sure you’re sharing a positive outcome.

Below are good outcomes of problem solving:

  • Saving the company time or money
  • Making the company money
  • Pleasing/keeping a customer
  • Obtaining new customers
  • Solving a safety issue
  • Solving a staffing/scheduling issue
  • Solving a logistical issue
  • Solving a company hiring issue
  • Solving a technical/software issue
  • Making a process more efficient and faster for the company
  • Creating a new business process to make the company more profitable
  • Improving the company’s brand/image/reputation
  • Getting the company positive reviews from customers/clients

Every employer wants to make more money, save money, and save time. If you can assess your problem solving experience and think about how you’ve helped past employers in those three areas, then that’s a great start. That’s where I recommend you begin looking for stories of times you had to solve problems.

Tips to Improve Your Problem Solving Skills

Throughout your career, you’re going to get hired for better jobs and earn more money if you can show employers that you’re a problem solver. So to improve your problem solving skills, I recommend always analyzing a problem and situation before acting. When discussing problem solving with employers, you never want to sound like you rush or make impulsive decisions. They want to see fact-based or data-based decisions when you solve problems.

Next, to get better at solving problems, analyze the outcomes of past solutions you came up with. You can recognize what works and what doesn’t. Think about how you can get better at researching and analyzing a situation, but also how you can get better at communicating, deciding the right people in the organization to talk to and “pull in” to help you if needed, etc.

Finally, practice staying calm even in stressful situations. Take a few minutes to walk outside if needed. Step away from your phone and computer to clear your head. A work problem is rarely so urgent that you cannot take five minutes to think (with the possible exception of safety problems), and you’ll get better outcomes if you solve problems by acting logically instead of rushing to react in a panic.

You can use all of the ideas above to describe your problem solving skills when asked interview questions about the topic. If you say that you do the things above, employers will be impressed when they assess your problem solving ability.

If you practice the tips above, you’ll be ready to share detailed, impressive stories and problem solving examples that will make hiring managers want to offer you the job. Every employer appreciates a problem solver, whether solving problems is a requirement listed on the job description or not. And you never know which hiring manager or interviewer will ask you about a time you solved a problem, so you should always be ready to discuss this when applying for a job.

Related interview questions & answers:

  • How do you handle stress?
  • How do you handle conflict?
  • Tell me about a time when you failed

Biron Clark

About the Author

Read more articles by Biron Clark

Continue Reading

15 Most Common Pharmacist Interview Questions and Answers

15 most common paralegal interview questions and answers, top 30+ funny interview questions and answers, 60 hardest interview questions and answers, 100+ best ice breaker questions to ask candidates, top 20 situational interview questions (& sample answers), 15 most common physical therapist interview questions and answers, 15 most common project manager interview questions and answers.

Join Pilot Waitlist

real life situation problem solving

Home » Blog » General » Navigating Real-Life Situations: Social Problem Solving Scenarios PDF

Post Image

Navigating Real-Life Situations: Social Problem Solving Scenarios PDF

As we navigate through life, we encounter various social situations that require problem-solving skills. Whether it’s resolving conflicts, making decisions, or understanding others’ perspectives, social problem-solving skills play a crucial role in our daily interactions. In this blog post, we will explore the importance of social problem-solving skills and how social problem solving scenarios PDFs can be a valuable tool in developing these skills.

Understanding Social Problem Solving

Social problem solving refers to the process of identifying, generating, evaluating, and implementing solutions to social challenges. It involves a series of steps that help individuals navigate real-life situations effectively. Let’s break down the components of social problem solving:

  • Identifying the problem: The first step is to recognize and define the problem at hand. This requires individuals to accurately perceive the situation and understand the underlying issues.
  • Generating possible solutions: Once the problem is identified, individuals need to brainstorm potential solutions. This step encourages creativity and critical thinking.
  • Evaluating and selecting the best solution: After generating multiple solutions, individuals must evaluate each option based on its feasibility and potential outcomes. The goal is to select the most effective solution.
  • Implementing the chosen solution: Once a solution is chosen, individuals need to put it into action. This step involves effective communication, collaboration, and decision-making.
  • Reflecting on the outcome: Finally, individuals should reflect on the outcome of their chosen solution. This reflection helps them learn from their experiences and make adjustments for future situations.

Benefits of Social Problem Solving Scenarios

Engaging in social problem solving scenarios offers numerous benefits, both for individuals and their social-emotional development. Let’s explore some of these benefits:

  • Enhancing critical thinking skills: Social problem solving scenarios require individuals to think critically and analyze various aspects of a situation. This process helps develop their ability to make informed decisions and solve complex problems.
  • Developing empathy and perspective-taking abilities: By engaging with different scenarios, individuals can gain a deeper understanding of others’ perspectives and develop empathy. This skill is essential for building positive relationships and resolving conflicts.
  • Improving communication and collaboration skills: Social problem solving scenarios often involve working with others to find solutions. This collaborative process helps individuals improve their communication, teamwork, and negotiation skills.

Introducing Social Problem Solving Scenarios PDF

A social problem solving scenarios PDF is a collection of real-life situations that individuals can use to practice their problem-solving skills. These scenarios are designed to simulate common social challenges and provide individuals with opportunities to navigate them effectively. They often include prompts, questions, and suggested solutions to guide the problem-solving process.

These PDFs can be used in various settings, such as classrooms, therapy sessions, or even at home. They are suitable for individuals of all ages and can be tailored to specific social-emotional learning goals.

There are several resources available online where you can find social problem solving scenarios PDFs. Websites like EverydaySpeech offer a wide range of scenarios that cover various social situations. These resources are often categorized based on age group, skill level, or specific topics, making it easier to find scenarios that suit your needs.

Tips for Navigating Real-Life Situations Using Social Problem Solving Scenarios PDF

Now that you have access to social problem solving scenarios PDFs, here are some tips to help you effectively navigate real-life situations:

  • Familiarize yourself with the scenarios: Take the time to read and understand the scenarios before engaging in problem-solving discussions. This will ensure that you are well-prepared and can guide others through the process.
  • Encourage active participation and discussion: Create a safe and inclusive environment where individuals feel comfortable sharing their thoughts and ideas. Encourage active participation and facilitate meaningful discussions to explore different perspectives.
  • Guide individuals through the problem-solving process: Use the steps of social problem solving (identifying the problem, generating solutions, evaluating and selecting the best solution, implementing the chosen solution, and reflecting on the outcome) as a framework to guide individuals through the scenarios. Ask open-ended questions to stimulate critical thinking.
  • Foster reflection and learning from the scenarios: After navigating a scenario, encourage individuals to reflect on the outcomes and discuss what they have learned. This reflection helps consolidate their problem-solving skills and prepares them for future social challenges.

Social problem-solving skills are essential for navigating real-life situations effectively. By engaging in social problem solving scenarios, individuals can enhance their critical thinking, empathy, communication, and collaboration skills. Social problem solving scenarios PDFs provide a practical and accessible tool for developing these skills.

So, why not start incorporating social problem solving scenarios PDFs into your social-emotional learning journey? Take the first step by accessing a free trial of EverydaySpeech’s resources. Start your EverydaySpeech free trial today and unlock a world of social problem-solving opportunities!

Post Image

Related Blog Posts:

Pragmatic language: enhancing social skills for meaningful interactions.

Pragmatic Language: Enhancing Social Skills for Meaningful Interactions Pragmatic Language: Enhancing Social Skills for Meaningful Interactions Introduction: Social skills play a crucial role in our daily interactions. They enable us to navigate social situations,...

Preparing for Success: Enhancing Social Communication in Grade 12

Preparing for Success: Enhancing Social Communication in Grade 12 Key Takeaways Strong social communication skills are crucial for academic success and building meaningful relationships in Grade 12. Social communication includes verbal and non-verbal communication,...

Preparing for Success: Enhancing Social Communication in Grade 12 Preparing for Success: Enhancing Social Communication in Grade 12 As students enter Grade 12, they are on the cusp of adulthood and preparing for the next chapter of their lives. While academic success...

Share on facebook

FREE MATERIALS

Better doesn’t have to be harder, social skills lessons students actually enjoy.

Be the best educator you can be with no extra prep time needed. Sign up to get access to free samples from the best Social Skills and Social-Emotional educational platform.

Get Started Instantly for Free

Complete guided therapy.

The subscription associated with this email has been cancelled and is no longer active. To reactivate your subscription, please log in.

If you would like to make changes to your account, please log in using the button below and navigate to the settings page. If you’ve forgotten your password, you can reset it using the button below.

Unfortunately it looks like we’re not able to create your subscription at this time. Please contact support to have the issue resolved. We apologize for the inconvenience. Error: Web signup - customer email already exists

Welcome back! The subscription associated with this email was previously cancelled, but don’t fret! We make it easy to reactivate your subscription and pick up right where you left off. Note that subscription reactivations aren't eligible for free trials, but your purchase is protected by a 30 day money back guarantee. Let us know anytime within 30 days if you aren’t satisfied and we'll send you a full refund, no questions asked. Please press ‘Continue’ to enter your payment details and reactivate your subscription

Notice About Our SEL Curriculum

Our SEL Curriculum is currently in a soft product launch stage and is only available by Site License. A Site License is currently defined as a school-building minimum or a minimum cost of $3,000 for the first year of use. Individual SEL Curriculum licenses are not currently available based on the current version of this product.

By clicking continue below, you understand that access to our SEL curriculum is currently limited to the terms above.

real life situation problem solving

  • Grades 6-12
  • School Leaders

Get our FREE Field Trip Reflection printable 🦁!

26 Snappy Answers to the Question “When Are We Ever Going to Use This Math in Real Life?”

Next time they ask, you’ll be ready.

real life situation problem solving

As a math teacher, how many times have you heard frustrated students ask, “When are we ever going to use this math in real life!?” We know, it’s maddening! Especially for those of us who love math so much we’ve devoted our lives to sharing it with others.

It may very well be true that students won’t use some of the more abstract mathematical concepts they learn in school unless they choose to work in specific fields. But the underlying skills they develop in math class—like taking risks, thinking logically and solving problems—will last a lifetime and help them solve work-related and real-world problems.

Here are 26 images and accompanying comebacks to share with your students to get them thinking about all the different and unexpected ways they might use math in their futures!

1. If you go bungee jumping, you might want to know a thing or two about trajectories.

https://giphy.com/gifs/funny-fail-5OuUiP0we57b2

Source: GIPHY

2. When you invest your money, you’ll do better if you understand concepts such as interest rates, risk vs. reward, and probability.

3. once you’re a driver, you’ll need to be able to calculate things like reaction time and stopping distance., 4. in case of a zombie apocalypse, you’re going to want to explore geometric progressions, interpret data and make predictions in order to stay human..

Trigger an outbreak of learning and infectious fun in your classroom with this Zombie Apocalypse activity from TI’s STEM Behind Hollywood series.

5. Before you tackle that home wallpaper project, you’ll need to calculate just how much wall paper glue you need per square foot.

6. when you buy your first house and apply for a 30-year mortgage, you may be shocked by the reality of what interest compounded over 30 years looks like., 7. to be a responsible pet owner, you’ll need to calculate how much hamster food to have on hand., 8. even if you’re just an armchair athlete, you can’t believe the math involved in kicking field goals.

Check out this Field Goal for the Win activity that encourages students to model, explore and explain the dynamics of kicking a football through the uprights.

9. When you double a recipe, you’re going to need to understand ratios so your dinner guests don’t look like this.

10. before you take that family road trip , you’re going to want to calculate time and distance., 11. before you go candy shopping, you’re going to have to figure out x trick or treaters times x pieces of candy equals…, 12. if  you grow up to be an ice cream scientist, you’re going to have to understand the effect of temperature and pressure at the molecular level..

https://giphy.com/gifs/ice-lick-cream-3Z1kRYmLRQm5y

Explore states of matter and the processes that change cow milk into a cone of delicious decadence with this Ice Cream, Cool Science activity .

13. Once you have little ones, you’ll need to know how many diapers to buy for the month.

14. because what if it’s your turn to organize the annual ping pong tournament, and there are 7 players at a club with 4 tables, where each player plays against each other player, 15. when dressing for the day, you might want to consider the percent likelihood of rain., 16. if you go into medical research, you’re going to have to know how to solve equations..

Learn more about inspiring careers that improve lives with STEM Behind Health , a series of free activities from TI.

17. Understanding percentages will help you get the best deal at the mall. For example, how much will something cost with 40% off? What about once the 8% tax is added? What if it’s advertised as half-off?

https://giphy.com/gifs/blue-kawaii-pink-5aplc3D2G0IrC

18. Budgeting for vacation will require figuring out how many hours at your pay rate you’ll have to work to afford the trip you want.

19. when you volunteer to host the company holiday party, you’ll need to figure out how much food to get., 20. if you grow up to be a super villain, you’re going to need to use math to determine the most effective way to slow down the superhero and keep him from saving the day..

Put your students in the role of an arch-villain’s minions with Science Friction, a STEM Behind Hollywood activity .

21. You’ll definitely want to understand how to budget your money so you don’t look like this at the grocery checkout.

22. if you don’t work the numbers out in advance, you might at some point regret choosing that expensive out-of-state college., 23. before taking on a building project, remember the old saying—measure twice, cut once., 24. if have aspirations of being a fashion designer, you’ll have to understand geometry in order to make the perfect twirling skirt.

https://giphy.com/gifs/loop-bunny-ballet-yarFJggnH24da

Geometry and fashion design intersect in this STEM Behind Cool Careers activity .

25. Everyone loves a good bargain! Figuring out the best deal is not only fun, it’s smart!

26. if you can’t manage calculations, running the numbers at the car dealership might leave you feeling like this:, you might also like.

Examples of math strategies such as playing addition tic tac toe and emphasizing hands-on learning with manipulatives like dice, play money, dominoes and base ten blocks.

21 Essential Strategies in Teaching Math

Even veteran teachers need to read these. Continue Reading

Copyright © 2024. All rights reserved. 5335 Gate Parkway, Jacksonville, FL 32256

  • WV App Login
  • Site Search
  • Report Templates
  • Speech Helpers
  • SLP Resources
  • Top 10 Tips
  • Getting an Eval
  • Certified SLP
  • How to Say the R Sound
  • 0-18 Months
  • 18-36 Months
  • 18-30 Months
  • 30-36 Months
  • 10-11 Years
  • Articulation
  • Cleft Palate
  • Phonological
  • Dysphagia Causes
  • Dysphagia Treatment

real life situation problem solving

30 Problem Solving Scenarios for Speech Therapy Practice

As promised here are the words for your unlimited use .

If you know others who can use our lists ...

... please share this page using our site share buttons.

Explore Our Goal Reaching, Client Centered Products

all products

SEE ALSO: Houston We Have a Problem! Activities for Problem Solving

Problem solving scenarios.

  • Your friends came over to your house for a movie night. One of your friends brought another friend so there are more people than you planned for. You want to pass out the drinks but you only have five cans of soda and you need 6 for everyone to have one. What could you do?
  • After basketball practice you go back to the locker room with your team to shower and change. When you are done dressing, you can't find your shoes. What could you do?
  • You have been waiting all day for lunch to come because you are starving. Finally class gets over and you get to go to lunch. Except when you go to get to your lunch, it's not there. You probably left it at home. What could you do?
  • There is a guy in your class who is always mean to you. He always bumps you when he walks by and he calls you names. He knocks stuff out of your hands and makes you feel stupid. You don't think you can take it anymore. What could you do?
  • You really want to invite this new girl/guy to come to your birthday party, but you have never talked to them before. You are worried they will say no. What could you do?
  • You rode the bus to school today and on the way in people are pointing and laughing at you. You go in the bathroom and see that you have pink gum all over the back of your pants. What could you do?
  • You wake up and see that your alarm never went off. So you are starting your morning 15 minutes later than you planned. It is a really important day at school and you cannot be late. What could you do?
  • You are giving a group presentation in front of class and it's your turn to talk. All of the sudden you sneeze. You cover it with your hand, but now your hand is full of stuff you sneezed out. What could you do?
  • You are eating dinner at a fancy restaurant with your parents and their friends. You have a really messy dinner and accidentally flip a noodle into the lady's lap. They are busy talking and don't notice it. What could you do?
  • You are taking a test and there is no talking allowed. You are writing your answers on the paper and your pencil breaks. What could you do?
  • You are taking a test and the guy behind you asks you for help. He wants to know what you put for question number two. What could you do?
  • You are at a birthday party and you have waited in line for a long time for your turn to hit the pinata. It is finally going to be your turn and it looks like the next hit will break the pinata. But you suddenly have to go to the bathroom. What could you do?
  • You are hanging outside with your friend and she decides to pick your neighbor's flowers. She gives you the pretty handful of flowers and right then your neighbor opens the door. She asks you why you picked her flowers. What could you do?
  • You borrowed your sister's skates one day without asking and they broke while you were using them. What could you do?
  • You are eating at a friend's house and the mom piles your plate full of food. It looks really good and you want to eat it all but you can't because you just ate a snack. What could you do so you don't hurt her feelings?

SEE ALSO:   The Best Free App for Speech Therapy

real life situation problem solving

  • Your teacher was working at her desk.  You wanted to ask her a question, but she didn't see your hand raised. What should you do?
  • You started to do your work, but you weren't sure if you were doing it right. What should you do?
  • You were playing tether-ball and were the champion so far.  In the next game, you slightly touched the rope.  Only one student saw you touch the rope. What will you do?
  • The teacher is giving directions, but your friend sitting next to you keeps talking.  You can't hear the directions. What should you do?
  • You didn't do your homework.  Your teacher was upset with you. What should you do?
  • You finished eating and felt a burp coming. What are you going to do?
  • You were waiting to swing.  When it was your turn, another boy jumped in front of you and took the swing. What would you do?
  • You waited a long time, but your mom didn't come to pick you up after school. What should you do?
  • A bully threatened to beat you up after school. What should you do?
  • A boy on the playground keeps pushing you and making you mad. What would you do?
  • You were sitting in class doing your work and you hear the fire alarm. What should you do?
  • An adult you didn't know came on to the playground and asked if you would help look for his lost dog. What would you do?
  • You forgot your lunch at home. What would you do?
  • The person sitting behind you keeps tapping your chair with his foot. What should you do?
  • You finished your work early. What should you do?

This list of functional words was professionally selected to be the most useful for a child or adult who has difficulty with problem solving scenarios.

We encourage you to use this list when practicing at home.

Home practice will make progress toward meeting individual language goals much faster.

Speech-Language Pathologists (SLPs) are only able to see students/clients 30-60 mins (or less) per week. This is not enough time or practice for someone to handle Problem solving scenarios.

Every day that your loved one goes without practice it becomes more difficult to help them. 

SEE ALSO:   The Best Books for Speech Therapy Practice

Speech therapy books for targeting multiple goals

We know life is busy , but if you're reading this you're probably someone who cares about helping their loved one as much as you can.

Practice 5-10 minutes whenever you can, but try to do it on a consistent basis (daily).

Please, please, please use this list to practice.

It will be a great benefit to you and your loved one's progress.

real life situation problem solving

Freebies, Activities, and Specials, Oh My! Sign up for Terrific Therapy Activity Emails

See Past Email Examples

Your information is 100% private & never shared .

real life situation problem solving

Hi! We're Luke and Hollie.

We are both MS CCC-SLPs and fell in love while studying for our degrees. Since then we have done everything together - graduated, worked, and started a family. We spend most of our time with our family and the rest making this site for you.

real life situation problem solving

Top Free Resources

real life situation problem solving

Word Vault Essential

real life situation problem solving

# 1 Chronological Age Calculator

real life situation problem solving

Popular Materials

All in one printable flashcards.

real life situation problem solving

Multiple Meaning Word Mega Pack

real life situation problem solving

Complete Articulation Word Search

real life situation problem solving

New! 111 Articulation Stories

real life situation problem solving

Teaching the Sound Books

real life situation problem solving

Multi-Syllabic Words Flashcards

real life situation problem solving

Apps to Save You Time & Help Your Clients

Articulation therapy + pirate adventures = awesomeness.

real life situation problem solving

This App Will Get Your Kids Talking

real life situation problem solving

Image Credits

Copyright © 2010 –

HomeSpeechHome.com | All Rights Reserved

real life situation problem solving

This website contains affiliate links, meaning if you buy something from them we may make some money (at no cost to you). By using our affiliate links, you are helping to support our site which is a U.S.-based, family-run small business :)

MBTP Logo

5 Real Life Algebra Problems That You Solve Everyday

Algebra has a reputation for not being very useful in daily life. In fact, in my experience as a high school math teacher, the complaint that I get the most often is that we don’t spend enough time solving real life algebra problems.

You might be surprised to hear that I understand the frustration that my students experience. Unless we are solving real life algebra problems related to money in some way, algebra can feel very “artificial” or disconnected from real life.

My goal here is to walk you through 5 real life algebra problems that will give you a whole new appreciation for the application of algebra to the real-world. I am excited to help you see how many algebraic equations and algebraic concepts are applicable beyond just algebra word problems in your math class!

What is an Example of Algebra in Real Life?

While it is often seen as an abstract branch of mathematics, there are many real-life applications of algebra in everyday life. Now, it is unlikely that you will be solving quadratic equations while walking your dog, or solving real-world problems with linear equations while you play video games. But you can see examples of real life algebra problems all around you!

A simple example is when you want to quickly determine the total cost of a product including taxes, or the total cost after a discount from the original price. Knowing the total amount of money something will cost is a real-life scenario that everyone can relate to!

Depending on your chosen career path, you may see the use of algebra more often than others (I know I see it a lot in my daily life as a math teacher…!).

For example, if you are a business owner, you may use algebra to determine the number of labor hours to spread amongst your staff, or the lowest price you can sell your product for to break even.

For more uses of algebra, check out my list of 20  examples of algebra in real life !

What is an Example of an Algebra Problem in Real Life?

An algebra problem is a mathematical problem that requires the use of algebraic concepts and strategies to determine unknown values or unknown variables. Much like how the order of operations are required to evaluate numerical expressions, algebra problems require the problem solver to apply a set of rules in order to arrive at a solution.

Real world problems that require the use of algebra usually involve modelling real-life situations with  algebraic formulas . A formula is a specific equation that can be applied to solve a problem. Formulas make it possible to make predictions about a given real-life scenario.

For example, consider the following problem:

You are saving up for a new smartphone and currently have $200 in your savings account. Your plan is to save a certain amount of money each week from your allowance. If the smartphone costs $600, and you want to have enough money to buy it in 8 weeks, how much money should you save each week?

cell phone pixel art

To solve this problem, we first need to use the information provided in the problem to create an equation that models the real-life scenario. Thinking about the problem in terms of variables, we can define T as the total of the savings, and variable x as the amount saved each week.

Since we know that we have a fixed value of 200, we can use the following equation to model this real world problem:

$$T=200+8x$$

This equation says “the total saved is equal to the original $200 plus whatever amount is saved per week, for 8 weeks”.

Substituting the total of the smartphone allows us to begin solving for the unknown variable x. Remember, when solving algebraic equations, you must apply the same operation to both sides of the equation.

$$ \begin{split} T&=200+8x  \\ \\ 600&=200+8x  \\ \\ 600-200 &= 8x \\ \\ 400 &= 8x \\ \\ \frac{400}{8} &= \frac{8x}{8} \\\\ 50 &= x \end{split} $$

Therefore, since x = 50, you should save $50 each week in order to save enough money for the smartphone. For more practice with the algebra used in this solution, check out this free collection of  solving two step equations worksheets !

5 Real Life Algebra Problems with Step-By-Step Solutions

There are so many real-life examples of algebra problems, but I want to focus on 5 here that I believe will convince you of just how applicable algebra is to the real-world! So let’s dig into these 5 real-world algebraic word problems!

Example #1: Comparing Cell Phone Plans

Link is considering two different cell phone plans. Plan A charges a monthly fee of $30 and an additional $0.10 per minute of talk time. Plan B charges a monthly fee of $45 regardless of how much time is used talking. How many minutes of total time talking will make the plans equal in cost?

The best way to start this problem is by writing two equations to represent each scenario. If C represents total cost, and x represents minutes of talk time used, the equations can be written as follows:

  • Plan A: \(C=30+0.1x\)
  • Plan B: \(C=45\)

Setting the first equation equal to the second equation will allow us to employ algebra to solve for the number of minutes that makes the two plans equal.

$$ \begin{split}  30+0.1x&=45 \\ \\ 30-30+0.1x&=45-30 \\ \\ 0.1x&=15 \\ \\ \frac{0.1x}{0.1}&=\frac{15}{0.1} \\ \\ x&=150 \end{split} $$

Therefore, the two cell phone plans are equal when 150 minutes of total time talking are used.

Example #2: Calculating Gallons of Gas

Zelda is driving from Hyrule to the Mushroom Kingdom, which are 180 miles apart. Her car can travel 30 miles per gallon of gas. Write an equation to represent the number of gallons of gas, G, that Zelda needs for the trip in terms of the distance, d, she needs to travel. Then calculate how many gallons of gas she needs for this trip.

jerry can pixel art

The number of gallons of gas (G) Zelda needs for any trip can be represented by the equation \(G = \frac{d}{30}\). Since the distance between Hyrule and the Mushroom Kingdom is 180 miles, we can substitute 180 into the equation for  d  to determine the number of gallons of gas needed:

$$G=\frac{180}{30}=6$$

Therefore, Zelda needs 6 gallons of gas for her trip.

Example #3: Basketball Players in Action!

A basketball player shoots a basketball from a height of 6 feet above the ground. Unfortunately he completely misses the net and the ball bounces off court. A sports analyst models the path of the basketball using the equation \(h(t) = -16t^2 + 16t + 6\), where h(t) represents the height of the basketball above the ground in feet at time t seconds after the shot. Determine the time it takes for the basketball to hit the ground.

basketball pixel art

Since we are asked for when the ball hits the ground and  h(t)  is given as the height above the ground, we know that we are looking for the x-intercepts of this quadratic function. We therefore set the equation equal to zero and solve for x. 

Note that we cannot use  trinomial factoring  here since the quadratic is not factorable! Thankfully quadratic equations are solvable using the quadratic formula!

$$ \begin{split}  x&=\frac{-b \pm \sqrt{b^2-4ac}}{2a} \\\\ &=\frac{-16 \pm \sqrt{16^2-4(-16)(6)}}{2(-16)}\\\\ &=\frac{-16 \pm \sqrt{640}}{-32}\\\\ x&=-0.291 \\\\ x&=1.291 \end{split}$$

Therefore, the ball hits the ground after approximately 1.3 seconds. Remember that time cannot be negative, so the first answer is inadmissible and rejected!

Example #4: Saving for a Computer Game

You are saving to buy a new computer game that costs $90. You decide to save up for the computer game by depositing some money into a savings account that earns an annual interest rate of 5% (compounded monthly). You start with an initial deposit of $30 and plan to save for 22 months. Will you have enough to purchase the computer game?

pixel art cd

This is an example of a math problem that connects to financial problems people encounter everyday! Since the account you chose earns  interest , we can apply a compound interest formula to help us out here:

$$A=P(1+i)^n$$

In this formula:

  • A(t)  is the total amount of money.
  • P  is the initial deposit (which is $30 in this case).
  • i  is the monthly interest rate (5% annual interest, compounded monthly means that  i  is approximately 0.004167).
  • n  is the time that has elapsed (since we are working with months, we multiply by 12)

We can set up our equation and see if our total amount of money is greater than $90:

$$\begin{split}  A(22)&=30(1.004167)^{22 \times 12} \\\\ &=$89.93 \end{split} $$

Remember to always include a dollar sign in your answer and to round to two decimal places when working with money!

Since our answer is approximately equal to $90, we can say that you will have enough money after 22 months! It’s time to get saving!

Example #5: How Many Tickets Did the Movie Theater Sell?

A movie theater charges $10 per ticket for adults and $6 per ticket for children. On a particular day, the theater sold a total of 150 tickets, and the total revenue for the day was $1350. Write a system of equations to represent this real-life scenario and then solve for the number of adult and child tickets sold.

movie tickets pixel art

Let’s assume that variable  x  represents the number of adult tickets sold and variable  y  represents the number of child tickets sold. We can set up two linear equations as follows:

  • First Equation (the total number of tickets sold): \(x+y=150\) 
  • Second Equation (the total revenue from ticket sales is 1350): \(10x+6y=1350\) 

We can use substitution to solve this linear system by rearranging the first equation and substituting it into the second equation. You can catch a quick overview of the substitution process by checking out  this substitution video  on my YouTube channel!

Rearranging the first equation into a different form to solve for  y  results in \(y=-x+150\). Substituting this expression for  y  into the second equation results in: 

$$ \begin{split}  10x+6(-x+150)&=1350 \\ \\ 10x-6x+900&=1350 \\ \\ 4x&=450\\ \\ x&=112.5\\ \\ \end{split}  $$

We then substitute this value for  x  into our expression for  y: 

$$ \begin{split}  y&=-x+150 \\ \\ &=-112.50+150 \\ \\ &=37.5\\ \\ \end{split}  $$

Since we can’t have fractional ticket sales, we can say that approximately 112 adult tickets were sold and 38 child tickets were sold.

Appreciating Real Life Algebra Problems

While algebra is often seen as an abstract topic, I am hopeful that I have shown you just how applicable it can be to real-life situations! Some of these examples you may have even encountered in your own life!

Even if you aren’t drawing up complex equations and solving them while you are playing basketball, combining basic math and problem solving is one of the most important skills people can have in both their work and their lives. 

I hope that I have helped you further your understanding of algebra, while growing an appreciation for the different ways it can be used in your own life!

Did you find this guide to real life algebra problems helpful? Share this post and subscribe to Math By The Pixel on YouTube for more helpful mathematics content!

RECOMMENDED FOR YOU

Examples of One Solution Equations, zero solution equations, and infinite solutions equations

Examples of One Solution Equations, Zero, and Infinite

Linear EquatIons Word Problems worksheet with solutIons

Linear Equations Word Problems Worksheet with Solutions

' src=

National Center for Pyramid Model Innovations

National Center for Pyramid Model Innovations

Problem-Solving in Real Life Situation

Teacher guides children having a disagreement through the problem-solving steps and celebrates when they select and use a solution.

real life situation problem solving

This website was made possible by Cooperative Agreement #H326B220002 which is funded by the U.S. Department of Education, Office of Special Education Programs. However, those contents do not necessarily represent the policy of the Department of Education, and you should not assume endorsement by the Federal Government. This website is maintained by the  University of South Florida . Contact  webmaster . © University of South Florida

IMAGES

  1. How to solve any real life problem with these 7 steps (Problem solving explained)

    real life situation problem solving

  2. 10 Problem Solving Skills Examples: How To Improve

    real life situation problem solving

  3. 39 Best Problem-Solving Examples (2024)

    real life situation problem solving

  4. Problem Solving Strategies [EFFECTIVE STRATEGIES] SmallBusinessify.com

    real life situation problem solving

  5. Real-Life Problem Solving

    real life situation problem solving

  6. 8 Steps For Effective Problem Solving

    real life situation problem solving

VIDEO

  1. Solving Real Life Problems involving Linear Equations || Solution of Word Problems || Pages by Aapi

  2. Partial Variation. Application of real life situation in partial Variation... worked examples

  3. Problem-solving situation

  4. SOLVING REAL LIFE PROBLEMS INVOLVING RATIONAL FUNCTION

  5. Why Problem-Solve in Real Life

  6. Discover How to Overcome Real Life Problems

COMMENTS

  1. 5 Examples of Problem Solving Scenarios + ROLE PLAY SCRIPTS

    Problem-solving is an essential skill in our daily lives. It enables us to analyze situations, identify challenges, and find suitable solutions. In this article, we'll explore five real-life problem-solving scenarios from various areas, including business, education, and personal growth.

  2. 10 Everyday uses for Problem Solving Skills

    Here are 10 everyday uses for problem solving skills that can you may not have thought about. 1. Stuck in traffic and late for work, again. With busy schedules and competing demands for your time, getting where you need to be on time can be a real challenge. When traffic backs up, problem solving skills can help you figure out alternatives to ...

  3. Problem-Solving Strategies and Obstacles

    Problem-solving is a vital skill for coping with various challenges in life. This webpage explains the different strategies and obstacles that can affect how you solve problems, and offers tips on how to improve your problem-solving skills. Learn how to identify, analyze, and overcome problems with Verywell Mind.

  4. 10 Problem-solving strategies to turn challenges on their head

    One of the best ways to improve your problem-solving skills is to learn from experts. Consider enrolling in organizational training, shadowing a mentor, or working with a coach. 2. Practice. Practice using your new problem-solving skills by applying them to smaller problems you might encounter in your daily life.

  5. How to Solve Daily Life Problems

    Step 4: Thinking up solutions. The biggest mistake that we tend to make when finding solutions for our problems is to think about the same old solutions. However, if those old solutions worked, the problem would not still be around. In order to come up with new solutions, you can follow the rules of brainstorming:

  6. The Problem-Solving Process

    Problem-solving is a mental process that involves discovering, analyzing, and solving problems. The ultimate goal of problem-solving is to overcome obstacles and find a solution that best resolves the issue. The best strategy for solving a problem depends largely on the unique situation. In some cases, people are better off learning everything ...

  7. 12 Approaches To Problem-Solving for Every Situation

    Brainstorm options to solve the problem. Select an option. Create an implementation plan. Execute the plan and monitor the results. Evaluate the solution. Read more: Effective Problem Solving Steps in the Workplace. 2. Collaborative. This approach involves including multiple people in the problem-solving process.

  8. 10 Best Problem-Solving Therapy Worksheets & Activities

    We have included three of our favorite books on the subject of Problem-Solving Therapy below. 1. Problem-Solving Therapy: A Treatment Manual - Arthur Nezu, Christine Maguth Nezu, and Thomas D'Zurilla. This is an incredibly valuable book for anyone wishing to understand the principles and practice behind PST.

  9. 35 problem-solving techniques and methods for solving complex problems

    6. Discovery & Action Dialogue (DAD) One of the best approaches is to create a safe space for a group to share and discover practices and behaviors that can help them find their own solutions. With DAD, you can help a group choose which problems they wish to solve and which approaches they will take to do so.

  10. real life situations problem solving : The University of Akron, Ohio

    The use of videotapes, DVDs and CD-ROMs depicting real-life situations or simulations of these (either alone or in tandem with computers) makes it much more feasible to teach using real-world situations. DVDs using simulations of real-world problem-solving situations, developed to improve students' mathematics and science problem-solving skills ...

  11. Real World Problem-Solving

    2.2. Analytical problem-solving. In psychology and neuroscience, problem-solving broadly refers to the inferential steps taken by an agent 4 that leads from a given state of affairs to a desired goal state (Barbey and Barsalou, 2009).The agent does not immediately know how this goal can be reached and must perform some mental operations (i.e., thinking) to determine a solution (Duncker, 1945).

  12. 104 Examples of Real World Problems

    An overview of real world problems with examples. Real world problems are issues and risks that are causing losses or are likely to cause losses in the near future. This term is commonly used in science, mathematics, engineering, design, coding and other fields whereby students may be asked to propose solutions to problems that are currently relevant to people and planet as opposed to ...

  13. 18 Real World Life Problems with Examples: How to Solve

    5. Relational. This forms one of the biggest problem areas as real-world problems and examples. In your family, a close friend of yours or your boss or co-worker at work can be a problem with your relationship. Whatever the problem, emotions, and emotions of course play a very important role in solving such problems.

  14. Developing real life problem-solving skills through ...

    Current problem-solving research has advanced our understanding of the problem-solving process but has provided little advice on how to teach problem-solving skills. In addition, literature reveals that individual difference is an essential issue in problem-solving skills instruction but has been rarely addressed in current research. Building upon information-processing theory, this article ...

  15. 26 Good Examples of Problem Solving (Interview Answers)

    Examples of Problem Solving Scenarios in the Workplace. Correcting a mistake at work, whether it was made by you or someone else. Overcoming a delay at work through problem solving and communication. Resolving an issue with a difficult or upset customer. Overcoming issues related to a limited budget, and still delivering good work through the ...

  16. Navigating Real-Life Situations: Social Problem Solving Scenarios PDF

    A social problem solving scenarios PDF is a collection of real-life situations that individuals can use to practice their problem-solving skills. These scenarios are designed to simulate common social challenges and provide individuals with opportunities to navigate them effectively. They often include prompts, questions, and suggested ...

  17. Using Math to Solve Real World Problems

    But the underlying skills they develop in math class—like taking risks, thinking logically and solving problems—will last a lifetime and help them solve work-related and real-world problems. Here are 26 images and accompanying comebacks to share with your students to get them thinking about all the different and unexpected ways they might ...

  18. Problem-Solving in Real Life Situation

    Teacher guides children having a disagreement through the problem-solving steps and celebrates when they select and use a solution.

  19. 30 Problem Solving Scenarios for Kids & Teens

    We encourage you to use this list when practicing at home. Home practice will make progress toward meeting individual language goals much faster. Speech-Language Pathologists (SLPs) are only able to see students/clients 30-60 mins (or less) per week. This is not enough time or practice for someone to handle Problem solving scenarios.

  20. PDF Problem-Solving Skills: Case Studies

    Problem-solving skillsare the ability to work through a problem to come to a solution. These skills involve several steps. First, you must identify the problem, which sometimes ... what questions to ask in a real-life situation. Case studies allow you to apply knowledge immediately in the context of real-life situations. This enhances your ...

  21. (PDF) Developing real life problem-solving skills through situational

    The fact remains that, as Zhong and Xu (2019) also emphasize, completion of the problem-solving phases does not necessarily lead to success in solving real-life problems and it is difficult to ...

  22. 5 Real Life Algebra Problems That You Solve Everyday

    Plan B: C = 45. Setting the first equation equal to the second equation will allow us to employ algebra to solve for the number of minutes that makes the two plans equal. 30 + 0.1x 30 − 30 + 0.1x 0.1x 0.1x 0.1 x = 45 = 45 − 30 = 15 = 15 0.1 = 150. Therefore, the two cell phone plans are equal when 150 minutes of total time talking are used.

  23. Problem-Solving in Real Life Situation

    Problem-Solving in Real Life Situation. Teacher guides children having a disagreement through the problem-solving steps and celebrates when they select and use a solution. Tags: Classroom Implementation, Coaching - General, Coaching - Practitioners, Practical Strategies, Social-Emotional Skills - Problem-Solving.