CProgramming Tutorial

  • C Programming Tutorial
  • C - Overview
  • C - Features
  • C - History
  • C - Environment Setup
  • C - Program Structure
  • C - Hello World
  • C - Compilation Process
  • C - Comments
  • C - Keywords
  • C - Identifiers
  • C - User Input
  • C - Basic Syntax
  • C - Data Types
  • C - Variables
  • C - Integer Promotions
  • C - Type Conversion
  • C - Constants
  • C - Literals
  • C - Escape sequences
  • C - Format Specifiers
  • C - Storage Classes
  • C - Operators
  • C - Decision Making
  • C - While loop
  • C - Functions
  • C - Main Functions
  • C - Return Statement
  • C - Scope Rules
  • C - Properties of Array
  • C - Multi-Dimensional Arrays
  • C - Passing Arrays to Function
  • C - Return Array from Function
  • C - Variable Length Arrays
  • C - Pointers
  • C - Pointer Arithmetics
  • C - Strings
  • C - Array of Strings
  • C - Structures
  • C - Bit Fields
  • C - Typedef
  • C - Input & Output
  • C - File I/O
  • C - Preprocessors
  • C - Header Files
  • C - Type Casting
  • C - Error Handling
  • C - Recursion
  • C - Variable Arguments
  • C - Memory Management
  • C - Command Line Arguments
  • C Programming Resources
  • C - Questions & Answers
  • C - Quick Guide
  • C - Useful Resources
  • C - Discussion
  • Selected Reading
  • UPSC IAS Exams Notes
  • Developer's Best Practices
  • Questions and Answers
  • Effective Resume Writing
  • HR Interview Questions
  • Computer Glossary

Assignment Operators in C

In C, the assignment operator stores a certain value in an already declared variable. A variable in C can be assigned the value in the form of a literal, another variable or an expression. The value to be assigned forms the right hand operand, whereas the variable to be assigned should be the operand to the left of = symbol, which is defined as a simple assignment operator in C. In addition, C has several augmented assignment operators.

The following table lists the assignment operators supported by the C language −

Simple assignment operator (=)

The = operator is the most frequently used operator in C. As per ANSI C standard, all the variables must be declared in the beginning. Variable declaration after the first processing statement is not allowed. You can declare a variable to be assigned a value later in the code, or you can initialize it at the time of declaration.

You can use a literal, another variable or an expression in the assignment statement.

Once a variable of a certain type is declared, it cannot be assigned a value of any other type. In such a case the C compiler reports a type mismatch error.

In C, the expressions that refer to a memory location are called "lvalue" expressions. A lvalue may appear as either the left-hand or right-hand side of an assignment.

On the other hand, the term rvalue refers to a data value that is stored at some address in memory. A rvalue is an expression that cannot have a value assigned to it which means an rvalue may appear on the right-hand side but not on the left-hand side of an assignment.

Variables are lvalues and so they may appear on the left-hand side of an assignment. Numeric literals are rvalues and so they may not be assigned and cannot appear on the left-hand side. Take a look at the following valid and invalid statements −

Augmented assignment operators

In addition to the = operator, C allows you to combine arithmetic and bitwise operators with the = symbol to form augmented or compound assignment operator. The augmented operators offer a convenient shortcut for combining arithmetic or bitwise operation with assignment.

For example, the expression a+=b has the same effect of performing a+b first and then assigning the result back to the variable a.

Similarly, the expression a<<=b has the same effect of performing a<<b first and then assigning the result back to the variable a.

Here is a C program that demonstrates the use of assignment operators in C:

When you compile and execute the above program, it produces the following result −

Codeforwin

Assignment and shorthand assignment operator in C

Quick links.

  • Shorthand assignment

Assignment operator is used to assign value to a variable (memory location). There is a single assignment operator = in C. It evaluates expression on right side of = symbol and assigns evaluated value to left side the variable.

For example consider the below assignment table.

The RHS of assignment operator must be a constant, expression or variable. Whereas LHS must be a variable (valid memory location).

Shorthand assignment operator

C supports a short variant of assignment operator called compound assignment or shorthand assignment. Shorthand assignment operator combines one of the arithmetic or bitwise operators with assignment operator.

For example, consider following C statements.

The above expression a = a + 2 is equivalent to a += 2 .

Similarly, there are many shorthand assignment operators. Below is a list of shorthand assignment operators in C.

Learn C practically and Get Certified .

Popular Tutorials

Popular examples, reference materials, learn c interactively, c introduction.

  • Keywords & Identifier
  • Variables & Constants
  • C Data Types
  • C Input/Output
  • C Operators
  • C Introduction Examples

C Flow Control

  • C if...else
  • C while Loop
  • C break and continue
  • C switch...case
  • C Programming goto
  • Control Flow Examples

C Functions

  • C Programming Functions
  • C User-defined Functions
  • C Function Types
  • C Recursion
  • C Storage Class
  • C Function Examples
  • C Programming Arrays
  • C Multi-dimensional Arrays
  • C Arrays & Function
  • C Programming Pointers
  • C Pointers & Arrays
  • C Pointers And Functions
  • C Memory Allocation
  • Array & Pointer Examples

C Programming Strings

  • C Programming String
  • C String Functions
  • C String Examples

Structure And Union

  • C Structure
  • C Struct & Pointers
  • C Struct & Function
  • C struct Examples

C Programming Files

  • C Files Input/Output
  • C Files Examples

Additional Topics

  • C Enumeration
  • C Preprocessors
  • C Standard Library
  • C Programming Examples

Bitwise Operators in C Programming

C Programming Operators

C if...else Statement

  • C while and do...while Loop
  • Compute Quotient and Remainder

C Precedence And Associativity Of Operators

  • Precedence of operators

The precedence of operators determines which operator is executed first if there is more than one operator in an expression.

Let us consider an example:

In C, the precedence of * is higher than - and = . Hence, 17 * 6 is evaluated first. Then the expression involving - is evaluated as the precedence of - is higher than that of = .

Here's a table of operators precedence from higher to lower. The property of associativity will be discussed shortly.

  • Operators Precedence & Associativity Table
  • Associativity of Operators

The associativity of operators determines the direction in which an expression is evaluated. For example,

Here, the value of a is assigned to b , and not the other way around. It's because the associativity of the = operator is from right to left.

Also, if two operators of the same precedence (priority) are present, associativity determines the direction in which they execute.

Here, operators == and != have the same precedence. And, their associativity is from left to right. Hence, 1 == 2 is executed first.

The expression above is equivalent to:

Note: If a statement has multiple operators, you can use parentheses () to make the code more readable.

Table of Contents

Sorry about that.

Related Tutorials

C Programming Tutorial

  • Assignment Operator in C

Last updated on July 27, 2020

We have already used the assignment operator ( = ) several times before. Let's discuss it here in detail. The assignment operator ( = ) is used to assign a value to the variable. Its general format is as follows:

The operand on the left side of the assignment operator must be a variable and operand on the right-hand side must be a constant, variable or expression. Here are some examples:

The precedence of the assignment operator is lower than all the operators we have discussed so far and it associates from right to left.

We can also assign the same value to multiple variables at once.

here x , y and z are initialized to 100 .

Since the associativity of the assignment operator ( = ) is from right to left. The above expression is equivalent to the following:

Note that expressions like:

are called assignment expression. If we put a semicolon( ; ) at the end of the expression like this:

then the assignment expression becomes assignment statement.

Compound Assignment Operator #

Assignment operations that use the old value of a variable to compute its new value are called Compound Assignment.

Consider the following two statements:

Here the second statement adds 5 to the existing value of x . This value is then assigned back to x . Now, the new value of x is 105 .

To handle such operations more succinctly, C provides a special operator called Compound Assignment operator.

The general format of compound assignment operator is as follows:

where op can be any of the arithmetic operators ( + , - , * , / , % ). The above statement is functionally equivalent to the following:

Note : In addition to arithmetic operators, op can also be >> (right shift), << (left shift), | (Bitwise OR), & (Bitwise AND), ^ (Bitwise XOR). We haven't discussed these operators yet.

After evaluating the expression, the op operator is then applied to the result of the expression and the current value of the variable (on the RHS). The result of this operation is then assigned back to the variable (on the LHS). Let's take some examples: The statement:

is equivalent to x = x + 5; or x = x + (5); .

Similarly, the statement:

is equivalent to x = x * 2; or x = x * (2); .

Since, expression on the right side of op operator is evaluated first, the statement:

is equivalent to x = x * (y + 1) .

The precedence of compound assignment operators are same and they associate from right to left (see the precedence table ).

The following table lists some Compound assignment operators:

The following program demonstrates Compound assignment operators in action:

Expected Output:

Load Comments

  • Intro to C Programming
  • Installing Code Blocks
  • Creating and Running The First C Program
  • Basic Elements of a C Program
  • Keywords and Identifiers
  • Data Types in C
  • Constants in C
  • Variables in C
  • Input and Output in C
  • Formatted Input and Output in C
  • Arithmetic Operators in C
  • Operator Precedence and Associativity in C
  • Increment and Decrement Operators in C
  • Relational Operators in C
  • Logical Operators in C
  • Conditional Operator, Comma operator and sizeof() operator in C
  • Implicit Type Conversion in C
  • Explicit Type Conversion in C
  • if-else statements in C
  • The while loop in C
  • The do while loop in C
  • The for loop in C
  • The Infinite Loop in C
  • The break and continue statement in C
  • The Switch statement in C
  • Function basics in C
  • The return statement in C
  • Actual and Formal arguments in C
  • Local, Global and Static variables in C
  • Recursive Function in C
  • One dimensional Array in C
  • One Dimensional Array and Function in C
  • Two Dimensional Array in C
  • Pointer Basics in C
  • Pointer Arithmetic in C
  • Pointers and 1-D arrays
  • Pointers and 2-D arrays
  • Call by Value and Call by Reference in C
  • Returning more than one value from function in C
  • Returning a Pointer from a Function in C
  • Passing 1-D Array to a Function in C
  • Passing 2-D Array to a Function in C
  • Array of Pointers in C
  • Void Pointers in C
  • The malloc() Function in C
  • The calloc() Function in C
  • The realloc() Function in C
  • String Basics in C
  • The strlen() Function in C
  • The strcmp() Function in C
  • The strcpy() Function in C
  • The strcat() Function in C
  • Character Array and Character Pointer in C
  • Array of Strings in C
  • Array of Pointers to Strings in C
  • The sprintf() Function in C
  • The sscanf() Function in C
  • Structure Basics in C
  • Array of Structures in C
  • Array as Member of Structure in C
  • Nested Structures in C
  • Pointer to a Structure in C
  • Pointers as Structure Member in C
  • Structures and Functions in C
  • Union Basics in C
  • typedef statement in C
  • Basics of File Handling in C
  • fputc() Function in C
  • fgetc() Function in C
  • fputs() Function in C
  • fgets() Function in C
  • fprintf() Function in C
  • fscanf() Function in C
  • fwrite() Function in C
  • fread() Function in C

Recent Posts

  • Machine Learning Experts You Should Be Following Online
  • 4 Ways to Prepare for the AP Computer Science A Exam
  • Finance Assignment Online Help for the Busy and Tired Students: Get Help from Experts
  • Top 9 Machine Learning Algorithms for Data Scientists
  • Data Science Learning Path or Steps to become a data scientist Final
  • Enable Edit Button in Shutter In Linux Mint 19 and Ubuntu 18.04
  • Python 3 time module
  • Pygments Tutorial
  • How to use Virtualenv?
  • Installing MySQL (Windows, Linux and Mac)
  • What is if __name__ == '__main__' in Python ?
  • Installing GoAccess (A Real-time web log analyzer)
  • Installing Isso

Next: Execution Control Expressions , Previous: Arithmetic , Up: Top   [ Contents ][ Index ]

7 Assignment Expressions

As a general concept in programming, an assignment is a construct that stores a new value into a place where values can be stored—for instance, in a variable. Such places are called lvalues (see Lvalues ) because they are locations that hold a value.

An assignment in C is an expression because it has a value; we call it an assignment expression . A simple assignment looks like

We say it assigns the value of the expression value-to-store to the location lvalue , or that it stores value-to-store there. You can think of the “l” in “lvalue” as standing for “left,” since that’s what you put on the left side of the assignment operator.

However, that’s not the only way to use an lvalue, and not all lvalues can be assigned to. To use the lvalue in the left side of an assignment, it has to be modifiable . In C, that means it was not declared with the type qualifier const (see const ).

The value of the assignment expression is that of lvalue after the new value is stored in it. This means you can use an assignment inside other expressions. Assignment operators are right-associative so that

is equivalent to

This is the only useful way for them to associate; the other way,

would be invalid since an assignment expression such as x = y is not valid as an lvalue.

Warning: Write parentheses around an assignment if you nest it inside another expression, unless that is a conditional expression, or comma-separated series, or another assignment.

Home » Learn C Programming from Scratch » C Assignment Operators

C Assignment Operators

Summary : in this tutorial, you’ll learn about the C assignment operators and how to use them effectively.

Introduction to the C assignment operators

An assignment operator assigns the vale of the right-hand operand to the left-hand operand. The following example uses the assignment operator (=) to assign 1 to the counter variable:

After the assignmment, the counter variable holds the number 1.

The following example adds 1 to the counter and assign the result to the counter:

The = assignment operator is called a simple assignment operator. It assigns the value of the left operand to the right operand.

Besides the simple assignment operator, C supports compound assignment operators. A compound assignment operator performs the operation specified by the additional operator and then assigns the result to the left operand.

The following example uses a compound-assignment operator (+=):

The expression:

is equivalent to the following expression:

The following table illustrates the compound-assignment operators in C:

  • A simple assignment operator assigns the value of the left operand to the right operand.
  • A compound assignment operator performs the operation specified by the additional operator and then assigns the result to the left operand.

Library homepage

  • school Campus Bookshelves
  • menu_book Bookshelves
  • perm_media Learning Objects
  • login Login
  • how_to_reg Request Instructor Account
  • hub Instructor Commons
  • Download Page (PDF)
  • Download Full Book (PDF)
  • Periodic Table
  • Physics Constants
  • Scientific Calculator
  • Reference & Cite
  • Tools expand_more
  • Readability

selected template will load here

This action is not available.

Engineering LibreTexts

4.6: Assignment Operator

  • Last updated
  • Save as PDF
  • Page ID 29038

  • Patrick McClanahan
  • San Joaquin Delta College

Assignment Operator

The assignment operator allows us to change the value of a modifiable data object (for beginning programmers this typically means a variable). It is associated with the concept of moving a value into the storage location (again usually a variable). Within C++ programming language the symbol used is the equal symbol. But bite your tongue, when you see the = symbol you need to start thinking: assignment. The assignment operator has two operands. The one to the left of the operator is usually an identifier name for a variable. The one to the right of the operator is a value.

The value 21 is moved to the memory location for the variable named: age. Another way to say it: age is assigned the value 21.

The item to the right of the assignment operator is an expression. The expression will be evaluated and the answer is 14. The value 14 would assigned to the variable named: total_cousins.

The expression to the right of the assignment operator contains some identifier names. The program would fetch the values stored in those variables; add them together and get a value of 44; then assign the 44 to the total_students variable.

As we have seen, assignment operators are used to assigning value to a variable. The left side operand of the assignment operator is a variable and right side operand of the assignment operator is a value. The value on the right side must be of the same data-type of the variable on the left side otherwise the compiler will raise an error. Different types of assignment operators are shown below:

  • “=” : This is the simplest assignment operator, which was discussed above. This operator is used to assign the value on the right to the variable on the left. For example: a = 10; b = 20; ch = 'y';

If initially the value 5 is stored in the variable a,  then:  (a += 6) is equal to 11.  (the same as: a = a + 6)

If initially value 8 is stored in the variable a, then (a -= 6) is equal to  2. (the same as a = a - 6)

If initially value 5 is stored in the variable a,, then (a *= 6) is equal to 30. (the same as a = a * 6)

If initially value 6 is stored in the variable a, then (a /= 2) is equal to 3. (the same as a = a / 2)

Below example illustrates the various Assignment Operators:

Definitions

 Adapted from:  "Assignment Operator"  by  Kenneth Leroy Busbee , (Download for free at http://cnx.org/contents/[email protected] ) is licensed under  CC BY 4.0

This browser is no longer supported.

Upgrade to Microsoft Edge to take advantage of the latest features, security updates, and technical support.

Assignment operators (C# reference)

  • 11 contributors

The assignment operator = assigns the value of its right-hand operand to a variable, a property , or an indexer element given by its left-hand operand. The result of an assignment expression is the value assigned to the left-hand operand. The type of the right-hand operand must be the same as the type of the left-hand operand or implicitly convertible to it.

The assignment operator = is right-associative, that is, an expression of the form

is evaluated as

The following example demonstrates the usage of the assignment operator with a local variable, a property, and an indexer element as its left-hand operand:

The left-hand operand of an assignment receives the value of the right-hand operand. When the operands are of value types , assignment copies the contents of the right-hand operand. When the operands are of reference types , assignment copies the reference to the object.

This is called value assignment : the value is assigned.

ref assignment

Ref assignment = ref makes its left-hand operand an alias to the right-hand operand, as the following example demonstrates:

In the preceding example, the local reference variable arrayElement is initialized as an alias to the first array element. Then, it's ref reassigned to refer to the last array element. As it's an alias, when you update its value with an ordinary assignment operator = , the corresponding array element is also updated.

The left-hand operand of ref assignment can be a local reference variable , a ref field , and a ref , out , or in method parameter. Both operands must be of the same type.

Compound assignment

For a binary operator op , a compound assignment expression of the form

is equivalent to

except that x is only evaluated once.

Compound assignment is supported by arithmetic , Boolean logical , and bitwise logical and shift operators.

Null-coalescing assignment

You can use the null-coalescing assignment operator ??= to assign the value of its right-hand operand to its left-hand operand only if the left-hand operand evaluates to null . For more information, see the ?? and ??= operators article.

Operator overloadability

A user-defined type can't overload the assignment operator. However, a user-defined type can define an implicit conversion to another type. That way, the value of a user-defined type can be assigned to a variable, a property, or an indexer element of another type. For more information, see User-defined conversion operators .

A user-defined type can't explicitly overload a compound assignment operator. However, if a user-defined type overloads a binary operator op , the op= operator, if it exists, is also implicitly overloaded.

C# language specification

For more information, see the Assignment operators section of the C# language specification .

  • C# reference
  • C# operators and expressions
  • ref keyword
  • Use compound assignment (style rules IDE0054 and IDE0074)

Coming soon: Throughout 2024 we will be phasing out GitHub Issues as the feedback mechanism for content and replacing it with a new feedback system. For more information see: https://aka.ms/ContentUserFeedback .

Submit and view feedback for

Additional resources

  • C++ Data Types
  • C++ Input/Output
  • C++ Pointers
  • C++ Interview Questions
  • C++ Programs
  • C++ Cheatsheet
  • C++ Projects
  • C++ Exception Handling
  • C++ Memory Management

Related Articles

  • Solve Coding Problems
  • CHAR_BIT in C
  • What are the differences between bitwise and logical AND operators in C/C++?
  • Set a variable without using Arithmetic, Relational or Conditional Operator
  • Maximize the number by rearranging bits
  • Bit Fields in C
  • C++ bitset interesting facts
  • Finding the Parity of a number Efficiently
  • Pre-increment and Post-increment in C/C++
  • Results of comparison operations in C and C++
  • Bitwise Complement Operator (~ tilde)
  • Arithmetic operations with std::bitset in C++
  • Modulo Operator (%) in C/C++ with Examples
  • Scope Resolution Operator vs this pointer in C++
  • std::unary_negate() in C++ with Examples
  • Builtin functions of GCC compiler
  • Sum of array Elements without using loops and recursion
  • Print 1 to 100 in C++ Without Loops and Recursion
  • Program to print hollow pyramid, diamond pattern and their modifications
  • How to sort an array of dates in C/C++?

Left Shift and Right Shift Operators in C/C++

Left shift(<<).

It is a binary operator that takes two numbers, left shifts the bits of the first operand, and the second operand decides the number of places to shift. In other words, left-shifting an integer “ a ” with an integer “ b ” denoted as ‘ (a<<b)’ is equivalent to multiplying a with 2^b (2 raised to power b).  

  • a: First Operand
  • b: Second Operand

Example: Let’s take a=5 ; which is 101 in Binary Form. Now, if “ a is left-shifted by 2 ” i.e a=a<<2 then a will become a=a*(2^2) . Thus, a=5*(2^2)=20 which can be written as 10100.

left shift operator function

Right Shift(>>)

It is a binary operator that takes two numbers, right shifts the bits of the first operand, and the second operand decides the number of places to shift. In other words, right-shifting an integer “ a ” with an integer “ b ” denoted as ‘ (a>>b) ‘ is equivalent to dividing a with 2^b. 

Example: let’s take a=5 ; which is 101 in Binary Form. Now, if “ a is right-shifted by 2 ” i.e a=a>>2 then a will become a=a/(2^2) . Thus, a=a/(2^2)=1 which can be written as 01 .

right shift operator function

Important Points

1. The left-shift and right-shift operators should not be used for negative numbers. The result of is undefined behavior if any of the operands is a negative number. For example results of both 1 >> -1 and 1 << -1 is undefined.

2. If the number is shifted more than the size of the integer, the behavior is undefined. For example, 1 << 33 is undefined if integers are stored using 32 bits. For bit shift of larger values 1ULL<<62   ULL is used for Unsigned Long Long which is defined using 64 bits that can store large values.

3. The left-shift by 1 and right-shift by 1 are equivalent to the product of the first term and 2 to the power given element(1<<3 = 1*pow(2,3)) and division of the first term and second term raised to power 2 (1>>3 = 1/pow(2,3)) respectively. 

Must Read: Bitwise Operators in C/C++

Please Login to comment...

author

  • VVNPraveenKumar
  • theWINTERSOLDIER
  • tr_abhishek
  • shivanisinghss2110
  • sumitgumber28
  • prettycoder
  • harsh_shokeen
  • owaisfarooqqureshi
  • Android Phones Might Get a Secure Face Unlock Upgrade: Introducing PolarID by Metalenz
  • Mumble vs Discord: Which is best as Virtual Chatting Platform?
  • 12 Best AI Chatbots for WordPress to Take Website on Another Level in 2024
  • Top 10 DataRobot Alternatives for Efficient Data Preparation in 2024
  • Dev Scripter 2024 - Biggest Technical Writing Event By GeeksforGeeks

Improve your Coding Skills with Practice

 alt=

What kind of Experience do you want to share?

cppreference.com

Assignment operators.

Assignment operators modify the value of the object.

[ edit ] Definitions

Copy assignment replaces the contents of the object a with a copy of the contents of b ( b is not modified). For class types, this is performed in a special member function, described in copy assignment operator .

For non-class types, copy and move assignment are indistinguishable and are referred to as direct assignment .

Compound assignment replace the contents of the object a with the result of a binary operation between the previous value of a and the value of b .

[ edit ] Assignment operator syntax

The assignment expressions have the form

  • ↑ target-expr must have higher precedence than an assignment expression.
  • ↑ new-value cannot be a comma expression, because its precedence is lower.

[ edit ] Built-in simple assignment operator

For the built-in simple assignment, the object referred to by target-expr is modified by replacing its value with the result of new-value . target-expr must be a modifiable lvalue.

The result of a built-in simple assignment is an lvalue of the type of target-expr , referring to target-expr . If target-expr is a bit-field , the result is also a bit-field.

[ edit ] Assignment from an expression

If new-value is an expression, it is implicitly converted to the cv-unqualified type of target-expr . When target-expr is a bit-field that cannot represent the value of the expression, the resulting value of the bit-field is implementation-defined.

If target-expr and new-value identify overlapping objects, the behavior is undefined (unless the overlap is exact and the type is the same).

In overload resolution against user-defined operators , for every type T , the following function signatures participate in overload resolution:

For every enumeration or pointer to member type T , optionally volatile-qualified, the following function signature participates in overload resolution:

For every pair A1 and A2 , where A1 is an arithmetic type (optionally volatile-qualified) and A2 is a promoted arithmetic type, the following function signature participates in overload resolution:

[ edit ] Built-in compound assignment operator

The behavior of every built-in compound-assignment expression target-expr   op   =   new-value is exactly the same as the behavior of the expression target-expr   =   target-expr   op   new-value , except that target-expr is evaluated only once.

The requirements on target-expr and new-value of built-in simple assignment operators also apply. Furthermore:

  • For + = and - = , the type of target-expr must be an arithmetic type or a pointer to a (possibly cv-qualified) completely-defined object type .
  • For all other compound assignment operators, the type of target-expr must be an arithmetic type.

In overload resolution against user-defined operators , for every pair A1 and A2 , where A1 is an arithmetic type (optionally volatile-qualified) and A2 is a promoted arithmetic type, the following function signatures participate in overload resolution:

For every pair I1 and I2 , where I1 is an integral type (optionally volatile-qualified) and I2 is a promoted integral type, the following function signatures participate in overload resolution:

For every optionally cv-qualified object type T , the following function signatures participate in overload resolution:

[ edit ] Example

Possible output:

[ edit ] Defect reports

The following behavior-changing defect reports were applied retroactively to previously published C++ standards.

[ edit ] See also

Operator precedence

Operator overloading

  • Recent changes
  • Offline version
  • What links here
  • Related changes
  • Upload file
  • Special pages
  • Printable version
  • Permanent link
  • Page information
  • In other languages
  • This page was last modified on 25 January 2024, at 22:41.
  • This page has been accessed 410,142 times.
  • Privacy policy
  • About cppreference.com
  • Disclaimers

Powered by MediaWiki

IMAGES

  1. Assignment Operators in C++

    c assignment operator right to left

  2. C programming +=

    c assignment operator right to left

  3. Assignment Operators in C

    c assignment operator right to left

  4. Assignment Operators in C Programming Language

    c assignment operator right to left

  5. Operators In C Logicmojo

    c assignment operator right to left

  6. PPT

    c assignment operator right to left

VIDEO

  1. NPTEL Problem Solving Through Programming In C Week 0 Quiz Assignment Solution

  2. Assignment Operator in C Programming

  3. Assignment Operator in C Programming

  4. NPTEL Problem Solving through Programming in C ASSIGNMENT 6 ANSWERS 2024

  5. (??)

  6. Operators in C language

COMMENTS

  1. Assignment Operators in C

    Different types of assignment operators are shown below: 1. "=": This is the simplest assignment operator. This operator is used to assign the value on the right to the variable on the left. Example: a = 10; b = 20; ch = 'y'; 2. "+=": This operator is combination of '+' and '=' operators. This operator first adds the current ...

  2. Assignment Operators in C

    In C, the assignment operator stores a certain value in an already declared variable. A variable in C can be assigned the value in the form of a literal, another variable or an expression. The value to be assigned forms the right hand operand, whereas the variable to be assigned should be the operand to the left of = symbol, which is defined as ...

  3. C Operator Precedence

    In C++, the conditional operator has the same precedence as assignment operators, and prefix ++ and -- and assignment operators don't have the restrictions about their operands. Associativity specification is redundant for unary operators and is only shown for completeness: unary prefix operators always associate right-to-left ( sizeof++*p is ...

  4. Operator Precedence and Associativity in C

    The concept of operator precedence and associativity in C helps in determining which operators will be given priority when there are multiple operators in the expression. It is very common to have multiple operators in C language and the compiler first evaluates the operater with higher precedence. It helps to maintain the ambiguity of the ...

  5. Assignment and shorthand assignment operator in C

    Assignment operator is used to assign value to a variable (memory location). There is a single assignment operator = in C. It evaluates expression on right side of = symbol and assigns evaluated value to left side the variable.. For example consider the below assignment table.

  6. What are the ramifications of right-to-left and left-to-right

    Assignment operators have right-to-left associativity. Left-to-right assignment would have bizarre and unexpected semantics. For example, x = y = z would result in x having the original value of y and y having the original value of z. It is expected that all three variables will have the same value after the expression is complete.

  7. C Precedence And Associativity Of Operators

    The precedence of operators determines which operator is executed first if there is more than one operator in an expression. Let us consider an example: int x = 5 - 17* 6; In C, the precedence of * is higher than - and =. Hence, 17 * 6 is evaluated first. Then the expression involving - is evaluated as the precedence of - is higher than that of =.

  8. C Assignment Operators

    Syntax. The assignment operators in C can both transform and assign values in a single operation. C provides the following assignment operators: In assignment, the type of the right-hand value is converted to the type of the left-hand value, and the value is stored in the left operand after the assignment has taken place. The left operand must ...

  9. Assignment Operator in C

    The assignment operator ( = ) is used to assign a value to the variable. Its general format is as follows: variable = right_side. The operand on the left side of the assignment operator must be a variable and operand on the right-hand side must be a constant, variable or expression. Here are some examples:

  10. Assignment Expressions (GNU C Language Manual)

    To use the lvalue in the left side of an assignment, it has to be modifiable. In C, that means it was not declared with the type qualifier const (see const). The value of the assignment expression is that of lvalue after the new value is stored in it. This means you can use an assignment inside other expressions. Assignment operators are right ...

  11. Assignment operators

    Assignment and compound assignment operators are binary operators that modify the variable to their left using the value to their right. Operator Operator name Example Description Equivalent of = basic assignment a = b: a becomes equal to b: N/A + = addition assignment ... In C++, assignment operators are lvalue expressions, not so in C.

  12. C Assignment Operators

    The = assignment operator is called a simple assignment operator. It assigns the value of the left operand to the right operand. Besides the simple assignment operator, C supports compound assignment operators. A compound assignment operator performs the operation specified by the additional operator and then assigns the result to the left ...

  13. 4.6: Assignment Operator

    Different types of assignment operators are shown below: "=": This is the simplest assignment operator, which was discussed above. This operator is used to assign the value on the right to the variable on the left. For example: a = 10; b = 20; ch = 'y'; +=: This operator is combination of '+' and '=' operators. This operator first ...

  14. Why does the assignment operator assign to the left-hand side?

    When you see = (or := for Pascalish dialects), you could pronounce those as is assigned the value, then the left-to-right nature will make sense (because we also read left-to-right in most languages). Since programming languages were predominantly developed by folks who read left-to-right, the conventions stuck. It is a type of path dependence ...

  15. Operator associativity

    The right-associativity of the = operator allows expressions such as a = b = c to be interpreted as a = (b = c). In C++ , the assignment a = b is an expression that evaluates to the same value as the expression a , with the side effect of storing the R-value of b into the L-value of a .

  16. Order of evaluation

    8) The side effect (modification of the left argument) of the built-in assignment operator and of all built-in compound assignment operators is sequenced after the value computation (but not the side effects) of both left and right arguments, and is sequenced before the value computation of the assignment expression (that is, before returning ...

  17. Assignment operators

    In this article. The assignment operator = assigns the value of its right-hand operand to a variable, a property, or an indexer element given by its left-hand operand. The result of an assignment expression is the value assigned to the left-hand operand. The type of the right-hand operand must be the same as the type of the left-hand operand or ...

  18. Left Shift and Right Shift Operators in C/C++

    Left Shift (<<) It is a binary operator that takes two numbers, left shifts the bits of the first operand, and the second operand decides the number of places to shift. In other words, left-shifting an integer " a " with an integer " b " denoted as ' (a<<b)' is equivalent to multiplying a with 2^b (2 raised to power b). Syntax: a << b;

  19. Assignment operators

    for assignments to class type objects, the right operand could be an initializer list only when the assignment is defined by a user-defined assignment operator. removed user-defined assignment constraint. CWG 1538. C++11. E1 ={E2} was equivalent to E1 = T(E2) ( T is the type of E1 ), this introduced a C-style cast. it is equivalent to E1 = T{E2}

  20. c++

    The assignment operator is right to left associative, and generally speaking returns its left operand by reference. Generally speaking meaning, this is true for all built in types, library types that I can think of, and that's how you are expected to write assignment operators. That means that. double salary = wage = 9999.99; Is exactly the same as

  21. Programming Logic 9th

    The assignment operator _____. a. is a binary operator b. has left-to-right associativity c. is most often represented by a colon d. two of the above. a. is a binary operator. Multiplication has a lower precedence than _____. a. division b. assignment c. subtraction d. none of the above.