mathematical problem solving book

Mathematical Problem Solving

Current Themes, Trends, and Research

  • © 2019
  • Peter Liljedahl 0 ,
  • Manuel Santos-Trigo 1

Faculty of Education, Simon Fraser University, Burnaby, Canada

You can also search for this editor in PubMed   Google Scholar

Department of Mathematics Education, Cinvestav-Instituto Politecnico Nacional, Mexico City, Mexico

  • Brings together some of the latest research on problem solving
  • Offers international perspectives on current themes, trends, and research on problem solving
  • Presents multiple frameworks and views on problem solving

Part of the book series: ICME-13 Monographs (ICME13Mo)

26k Accesses

64 Citations

2 Altmetric

Buy print copy

  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Table of contents (15 chapters)

Front matter, problem solving heuristics, “looking back” to solve differently: familiarity, fluency, and flexibility.

  • Hartono Tjoe

Future-Oriented Thinking and Activity in Mathematical Problem Solving

  • Wes Maciejewski

Problem Solving and Technology

A model of mathematical problem solving with technology: the case of marco solving-and-expressing two geometry problems.

  • Susana Carreira, Hélia Jacinto

Mathematical Problem Solving and the Use of Digital Technologies

Manuel Santos-Trigo

The Spreadsheet Affordances in Solving Complex Word Problems

  • Nélia Amado, Susana Carreira, Sandra Nobre

Inquiry and Problem Posing in Mathematics Education

Is an inquiry-based approach possible at the elementary school.

  • Magali Hersant, Christine Choquet

How to Stimulate In-Service Teachers’ Didactic Analysis Competence by Means of Problem Posing

  • Uldarico Malaspina, Carlos Torres, Norma Rubio

Assessment of and Through Problem Solving

The impact of various methods in evaluating metacognitive strategies in mathematical problem solving.

  • Mei Yoke Loh, Ngan Hoe Lee

Assessing Inquiry-Based Mathematics Education with Both a Summative and Formative Purpose

  • Maud Chanudet

Beyond the Standardized Assessment of Mathematical Problem Solving Competencies: From Products to Processes

  • Pietro Di Martino, Giulia Signorini

Toward Designing and Developing Likert Items to Assess Mathematical Problem Solving

  • James A. Mendoza Álvarez, Kathryn Rhoads, R. Cavender Campbell

The Problem Solving Environment

Creating and sustaining online problem solving forums: two perspectives.

  • Boris Koichu, Nelly Keller

Conditions for Supporting Problem Solving: Vertical Non-permanent Surfaces

Peter Liljedahl

The ARPA Experience in Chile: Problem Solving for Teachers’ Professional Development

  • Patricio Felmer, Josefa Perdomo-Díaz, Cristián Reyes
  • Mathematical problem solving
  • Problem solving heuristics
  • Problem posing in mathematics education
  • Problem solving environment
  • Future-oriented Thinking in Mathematical Problem Solving
  • Mathematical problem solving with technology
  • Spreadsheet affordances in solving complex word problems
  • Didactic analysis by means of problem posing
  • Mathematical problem solving competencies
  • Activating Problem Solving in the Classroom
  • Creating and sustaining online problem-solving forums
  • Methods in Evaluating Metacognitive Strategies

About this book

This book contributes to the field of mathematical problem solving by exploring current themes, trends and research perspectives. It does so by addressing five broad and related dimensions: problem solving heuristics, problem solving and technology, inquiry and problem posing in mathematics education, assessment of and through problem solving, and the problem solving environment.

Mathematical problem solving has long been recognized as an important aspect of mathematics, teaching mathematics, and learning mathematics. It has influenced mathematics curricula around the world, with calls for the teaching of problem solving as well as the teaching of mathematics through problem solving. And as such, it has been of interest to mathematics education researchers for as long as the field has existed. Research in this area has generally aimed at understanding and relating the processes involved in solving problems to students’ development of mathematical knowledge and problem solving skills. The accumulated knowledge and field developments have included conceptual frameworks for characterizing learners’ success in problem solving activities, cognitive, metacognitive, social and affective analysis, curriculum proposals, and ways to promote problem solving approaches. 

“The volume will be a useful addition to the libraries of education researchers and to mathematics teacher educators who are charged with supporting preservice or inservice teachers’ development of capacities to incorporate problem solving into their instruction. … this volume offer interesting insights into the phenomenon of problem solving and the technological tools and learning environments that support students to engage in problem solving.” (Duane Gaysay, MAA Reviews, August 16, 2020)

Problem Books in Mathematics

About this book series.

  • Peter Winkler

Book titles in this series

Selection tests in number theory for mathematical olympiads.

  • Corneliu Mănescu-Avram
  • Copyright: 2024

Available Renditions

mathematical problem solving book

Functional Analysis and Operator Theory

  • Volodymyr Brayman
  • Andrii Chaikovskyi
  • Oleksii Konstantinov
  • Alexander Kukush

mathematical problem solving book

Creative Puzzles to Ignite Your Mind

  • Shyam Sunder Gupta
  • Copyright: 2023

mathematical problem solving book

Applying Power Series to Differential Equations

An Exploration through Questions and Projects

  • James Sochacki
  • Anthony Tongen
  • Copyright: 2022

mathematical problem solving book

An Excursion Through Partial Differential Equations

  • Svetlin G. Georgiev

mathematical problem solving book

Publish with us

Abstracted and indexed in.

  • Mathematical Reviews
  • Norwegian Register for Scientific Journals and Series

Cambridge University Faculty of Mathematics

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Mathematical mindsets
  • Cross-curricular contexts
  • Physical and digital manipulatives

For younger learners

  • Early Years Foundation Stage

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics

Recommended Books

Here is a list of books that we would recommended for young people who are interested in mathematics. They are grouped into three different categories:

History of Mathematics

Recreational, thinking mathematically.

We have given each book a lower age band based on the content and language used in the book and have presented them in ascending order of age. This is merely a guideline and you are welcome to make your own judgements on whether or not a book is suitable.

If you'd like to see some book recommendations for younger learners, take a look at the list of books compiled by our Primary team .

Students considering studying Maths or a related subject at university might be interested in the Cambridge Mathematical Reading List , which contains a wide range of suggested books including historical, recreational and technical maths books.

There are lots of maths podcasts you can listen to. Why not try: BBC's More or Less podcast Numberphile 's videos and postcasts.

The Boy Who Loved Math: The Improbable Life of Paul Erdős

Age 7+ Most people think of mathematicians as solitary, working away in isolation. And, it's true, many of them do. But Paul Erdős never followed the usual path. At the age of four, he could ask you when you were born and then calculate the number of seconds you had been alive in his head. But he didn't learn to butter his own bread until he turned twenty. Instead, he traveled around the world, from one mathematician to the next, collaborating on an astonishing number of publications. With a simple, lyrical text and richly layered illustrations, this is a beautiful introduction to the world of math and a fascinating look at the unique character traits that made "Uncle Paul" a great man.

Blockhead: The Life of Fibonacci

mathematical problem solving book

Infinity and Me

Uma can't help feeling small when she peers up at the night sky. She begins to wonder about infinity. Is infinity a number that grows forever? Is it an endless racetrack? Could infinity be in an ice cream cone? Uma soon finds that the ways to think about this big idea may just be . . . infinite.

On a Beam of Light: A Story of Albert Einstein

mathematical problem solving book

Travel along with Einstein on a journey full of curiosity, laughter, and scientific discovery. Parents and children alike will appreciate this moving story of the powerful difference imagination can make in any life.

50 Mathematical Ideas You Really Need to Know by Tony Crilly

In this book, Professor Tony Crilly explains in 50 clear and concise essays the mathematical concepts - ancient and modern, theoretical and practical, everyday and esoteric - that allow us to understand and shape the world around us. Packed with diagrams, examples and anecdotes, this book is the perfect overview of this often daunting but always essential subject. For once, mathematics couldn't be simpler.

The Math Book by Clifford A Pickover

Mathematic's infinite mysteries and beauty unfold in this book. Beginning millions of years ago with ancient ant odometers and moving through time to our modern-day quest for new dimensions, prolific polymath Clifford Pickover covers 250 milestones in mathematical history. Among the numerous concepts readers will encounter as they dip into this inviting anthology: cicada-generated prime numbers, magic squares, the discovery of pi and calculus, and the butterfly effect. Each topic is presented in a lavishly illustrated spread, including formulas, fascinating facts about scientists' lives and real-world applications of the theorems.

Alex's Adventures in Numberland by Alex Bellos

The world of maths can seem mind-boggling, irrelevant and, sometimes, boring. This groundbreaking book reclaims maths from the geeks. Mathematical ideas underpin just about everything in our lives: from the surprising geometry of the 50p piece to how probability can help you win in any casino. In search of weird and wonderful mathematical phenomena, Alex Bellos travels across the globe and meets the world's fastest mental calculators in Germany and a startlingly numerate chimpanzee in Japan. Packed with fascinating, eye-opening anecdotes, Alex's Adventures in Numberland is an exhilarating cocktail of history, reportage and mathematical proofs that will leave you awestruck.

The Monty Hall Problem: Beyond Closed Doors by Rob Deaves

This short book explores the Monty Hall dilemma, a well known mathematical puzzle. The original problem, the controversy surrounding it and its solution are discussed. Further, the boundaries of the problem are expanded to consider prior knowledge and host intention. This book should be of interest to those who enjoy problem solving.

The Language of Mathematics by Keith Devlin

In The Language of Mathematics, award-winning author Keith Devlin reveals the vital role mathematics plays in our eternal quest to understand who we are and the world we live in. More than just the study of numbers, mathematics provides us with the eyes to recognize and describe the hidden patterns of life. Devlin shows us what keeps a jumbo jet in the air, explains how we can see and hear a football game on TV, allows us to predict the weather, the behavior of the stock market, and the outcome of elections. Far from a dry and esoteric subject, mathematics is a rich and living part of our culture. An exploration of an often woefully misunderstood subject, this book celebrates the simplicity, the precision, the purity, and the elegance of mathematics.

The Music of the Primes by Marcus Du Sautoy

How can one predict when the next prime number will occur? Is there a formula which could generate primes? These apparently simple questions have confounded mathematicians ever since the Ancient Greeks. In 1859, the brilliant German mathematician Bernhard Riemann put forward a hypothesis which finally seemed to reveal a magical harmony at work in the numerical landscape. The promise that these eternal, unchanging numbers would finally reveal their secret thrilled mathematicians around the world. Yet Riemann never publicly provided a proof for his hypothesis and his housekeeper burned most of his personal papers on his death. Whoever cracks Riemann's hypothesis will go down in history, for it has implications far beyond mathematics. In business, it plays a central role in security and e-commerce. In science, it brings together vastly different areas, with critical ramifications in Quantum Mechanics, Chaos Theory and the future of computing. Pioneers in each of these fields are racing to crack the code and a prize of $1 million has been offered to the winner. As yet, it remains unsolved.

Journey Through Genius: The Great Theorems of Mathematics by William Dunham

In this book Dunham treats mathematical theorems as creative works of art. He places each theorem within its historical context and explores the very human and often turbulent life of the creator. He studies such great mathematicians as Archimedes, Gerolamo Cardano and Georg Cantor. He also provides step-by-step proofs for the theorems, each easily accessible to readers with no more than a knowledge of high school mathematics.

The Mathematical Universe: Alphabetical Journey Through the Great Proofs, Problems & Personalities by William Dunham

In this book, Dunham takes us through a tantalizing selection of the great proofs, notorious disputes, and intriguing unsolved mysteries of the mathematical universe. Subjects range from the golden age of Greek geometry to the furthest frontier of infinite series. Dunham explores more than five thousand years of mathematical history, digging into the earliest records in Egypt, Babylon, India, and China, and turning up surprising tales and tidbits from modern times. All along the way, Dunham portrays the great masters of mathematics at their work. In colorful anecdotes, the brilliant - often eccentric - luminaries chart the course of mathematical progress. This book is accessible to any reader with a basic knowledge of algebra and geometry. You will come away from this exhilarating book with a keen sense of the power and splendor of the magical mathematical world.

Chaos by James Gleick

Chaos is what happens when the behaviour of a system gets too complicated to predict; the most familiar example is the weather, which apparently cannot be forecast accurately more than five days ahead. This book tells the story so far in the study of this new field of Physics.

Euclid's Window: The Story of Geometry from Parallel Lines to Hyperspace by Leonard Mlodinow

Anyone who thought geometry was boring or dry should prepare to be amazed. Despite its worthy cover this book is exactly what its title says - a story - and the plot of this story involves life, death and revolutions of understanding and belief. It stars the some of the most famous names in history, from Euclid who laid the logical foundations, to Albert Einstein, who united space and time in a single non-Euclidean geometry. It offers an alternative history of mathematics, revealing how simple questions anyone might ask about space - in the living room or in some other galaxy - have been the hidden engines of the highest achievements in science and technology.

Closing the Gap: The Quest to Understand Prime Numbers by Vicky Neale

Prime numbers have intrigued, inspired and infuriated mathematicians for millennia. Every school student studies prime numbers and can appreciate their beauty, and yet mathematicians' difficulty with answering some seemingly simple questions about them reveals the depth and subtlety of prime numbers. In this book, Vicky Neale charts the recent progress towards proving the famous Twin Primes Conjecture, and the very different ways in which the breakthroughs have been made: a solo mathematician working in isolation and obscurity, and a large collaboration that is more public than any previous collaborative effort in mathematics. Interleaved with this story are highlights from a significantly older tale, going back two thousand years and more, of mathematicians' efforts to comprehend the beauty and unlock the mysteries of the prime numbers.

Fermat's Last Theorem by Simon Singh

The story of the solving of a puzzle that has confounded mathematicians since the 17th century. In 1963, a schoolboy browsing in his local library stumbled across the world's greatest mathematical problem: Fermat's Last Theorem, a puzzle that every child can understand but which has baffled mathematicians for over 300 years. Aged just ten, Andrew Wiles dreamed that he would crack it. Wiles's lifelong obsession with a seemingly simple challenge set by a long-dead Frenchman is an emotional tale of sacrifice and extraordinary determination. In the end, Wiles was forced to work in secrecy and isolation for seven years, harnessing all the power of modern maths to achieve his childhood dream. Many before him had tried and failed, including a 18-century philanderer who was killed in a duel. An 18-century Frenchwoman made a major breakthrough in solving the riddle, but she had to attend maths lectures at the Ecole Polytechnique disguised as a man since women were forbidden entry to the school.

The Code Book by Simon Singh

The Code Book is a history of man's urge to uncover the secrets of codes, from Egyptian puzzles to modern day computer encryptions. As in Fermat's Last Theorem, Simon Singh brings life to an astonishing story of puzzles, codes, languages and riddles that reveals man's continual pursuit to disguise and uncover, and to work out the secret languages of others. Codes have influenced events throughout history, both in the stories of those who make them and those who break them. The betrayal of Mary Queen of Scots and the cracking of the enigma code that helped the Allies in World War II are major episodes in a continuing history of cryptography. In addition to stories of intrigue and warfare, Simon Singh also investigates other codes, the unravelling of genes and the rediscovery of ancient languages and most tantalisingly, the Beale ciphers, an unbroken code that could hold the key to a 20 million dollar treasure.

The Penguin Dictionary of Curious and Interesting Numbers by David Wells

Look up 1729 to see why it is 'among the most famous of all numbers'. Look up 0.7404 ($= \frac{\pi}{18}$) to discover that this is the density of closely packed identical spheres in what is believed by many mathematicians (though it was at that time an unproven hypothesis) and is known by all physicists and greengrocers to be the optimal packing. Look up Graham's number (the last one in the book), which is inconceivably big: even written as a tower of powers ($9 ^{9^ {9 ^\cdots}}$) it would take up far more ink than could be made from all the atoms in the universe. It is an upper bound for a quantity in Ramsey theory whose actual value is believed to be about 6. A book to be dipped into at leisure.

mathematical problem solving book

Calculus has a fierce reputation as complicated, abstract and difficult, but Steven Strogatz tells the true story of its beauty and simplicity. Starting with the Ancient Greeks, calculus has tantilised and fascinated humanity for millenia. Its applications grew from teaching us how to determine the area of a circle with only sand and a stick to safely launching rockets into space. Without it, we wouldn’t have mobile phones, TV, GPS, or ultrasound. This book explains the history of our relationship with calculus, and its relationship with infinity.

Gödel, Escher, Bach: An Eternal Golden Braid by Douglas Hofstadter

Douglas Hofstadter's book is concerned directly with the nature of maps or links between formal systems. However, according to Hofstadter, the formal system that underlies all mental activity transcends the system that supports it. If life can grow out of the formal chemical substrate of the cell, if consciousness can emerge out of a formal system of firing neurons, then so too will computers attain human intelligence. Gödel, Escher, Bach is a wonderful exploration of fascinating ideas at the heart of cognitive science: meaning, reduction, recursion, and much more.

The Great Mathematical Problems by Ian Stewart

There are some mathematical problems whose significance goes beyond the ordinary - like Fermat's Last Theorem or Goldbach's Conjecture - they are the enigmas which define mathematics. This book explains why these problems exist, why they matter, what drives mathematicians to incredible lengths to solve them and where they stand in the context of mathematics and science as a whole. It contains solved problems - like the Poincaré Conjecture, cracked by the eccentric genius Grigori Perelman, who refused academic honours and a million-dollar prize for his work, and problems which, like the Riemann Hypothesis, remain baffling after centuries. Stewart is the guide to this mysterious and exciting world, showing how modern mathematicians constantly rise to the challenges set by their predecessors, as the great mathematical problems of the past succumb to the new techniques and ideas of the present.

Can you Solve my Problems? by Alex Bellos

This book contains 125 of the world's best brainteasers from the last two millennia, taking us from ancient China to medieval Europe, Victorian England to modern-day Japan, with stories of espionage, mathematical breakthroughs and puzzling rivalries along the way. Some solutions rely on a touch of cunning, others call for creativity, others need mercilessly logical thought. All are guaranteed to sharpen your mind!

Snowflake Seashell Star by Alex Bellos and Edmund Harriss

This book is the first in a series of mathematical colouring books by Alex Bellos and mathematical artist, Edmund Hariss. It is full of intricate and divinely beautiful illustrations, using patterns such as loops, waves and spirals. Stretch your artistic talents and embrace mathematics' aesthetic and conceptual exquisiteness. In 80 glorious images, Alex will teach you how to convey the wonder of mathematics through colour and design. Snowflake, Seashell, Star is an incredible celebration of the overlaps between mathematics and art, learning and play, concentration and calm.

A Mathematical Pandora's Box by Brian Bolt

Through his own experience, Brian Bolt has discovered a worldwide interest in mathematical puzzles. Bolt not only uses them to stimulate creative thinking, but also to open up new areas of mathematics to the reader. This book contains 142 activities: in addition to puzzles, there are games, tricks, models and explanation of various phenomena. They range from number manipulation, through happy and amicable numbers, coin puzzles, picnicking bears and pentominoes, to building shapes with cubes. There is a detailed commentary at the end of the book, giving solutions and explanations, together with the occasional follow-up problem.

The Number Devil by Hans Magnus Enzensberger

The quirky and unusual story of a young boy who hates maths at school, but who discovers a new side to the subject when he meets an unusual mathematician in a dream. This book takes you on an adventure through creative mathematical thinking, with great illustrations along the way.

The Indisputable Existence of Santa Claus by Hannah Fry and Thomas Oléron Evans

How do you apply game theory to select who should be on your Christmas shopping list? Can you predict Her Majesty's Christmas Message? Will calculations show Santa is getting steadily thinner - shimmying up and down chimneys for a whole night - or fatter - as he tucks into a mince pie and a glass of sherry in billions of houses across the world? Full of diagrams, sketches and graphs, beautiful equations, Markov chains and matrices, this book brightens up the bleak midwinter with stockingfuls of mathematical marvels. Mathematics has never been merrier.

Aha! Insight & aha! Gotcha by Martin Gardner

Previously published separately, the two books aha! Gotcha and aha! Insight have been combined as a single volume. The aha! books, as they are referred to by fans of Martin Gardner, contain 144 wonderful puzzles from the reigning king of recreational mathematics. In this combined volume, you will find puzzles ranging over geometry, logic, probability, statistics, number, time, combinatorics, and word play. Gardner calls these puzzles aha! problems, that 'seem difficult, and indeed are difficult if you go about trying to solve them in traditional ways. But if you can free your mind from standard problem solving techniques, you may be receptive to an aha! reaction that leads immediately to a solution. Don't be discouraged if, at first, you have difficulty with these problems. After a while you will begin to catch the spirit of offbeat, nonlinear thinking, and you may be surprised to find your aha! ability improving.'

My Best Mathematical and Logic Puzzles by Martin Gardner

Over a period of 25 years as author of the Mathematical Games column for Scientific American, Martin Gardner devoted a column every six months or so to short math problems or puzzles. This volume contains a rich selection of 70 of the best of these brain teasers, in some cases including references to new developments related to the puzzle. Now enthusiasts can challenge their solving skills and rattle their egos with such stimulating mind-benders as The Returning Explorer, The Mutilated Chessboard, Scrambled Box Tops, The Fork in the Road, Bronx vs. Brooklyn, Touching Cigarettes, and 64 other problems involving logic and basic math. Solutions are included.

The Thrilling Adventures of Lovelace and Babbage by Sydney Padua

In this book Sydney Padua transforms one of the most compelling scientific collaborations into a hilarious set of adventures, starring Ada Lovelace and Charles Babbage. This book presents a delightful alternate reality in which Lovelace and Babbage build the Difference Engine and use it to create runaway economic models, battle the scourge of spelling errors, explore the wider realms of mathematics and, of course, fight crime - for the sake of both London and science. Extremely funny and utterly unusual, this book comes complete with historical curiosities, extensive footnotes and never-before-seen diagrams of Babbage's mechanical, steam-powered computer. And ray guns.

The 'Uncle Albert' Series by Russell Stannard

A best selling science/adventure series, beginning with 'The Time and Space of Uncle Albert'. Uncle Albert and his intrepid niece, Gedanken, enter the dangerous and unknown world of a thought bubble. Their mission: to unlock the deep mysteries of Time and Space... Discover why you can't break the ultimate speed barrier, how to become older than your mother, how to put on weight without getting fat, and how to live forever without even knowing it. Other books in the series include: 'Black Holes and Uncle Albert' and 'Uncle Albert and the Quantum Quest'.

Professor Stewart's Cabinet of Mathematical Curiosities by Ian Stewart

A selection of mathematical puzzles, stories, tricks and short articles - great to read all in one go, or to dip into. The content varies between simple logic puzzles to introductions to more advanced topics such as the Four Colour Theorem, which tells us that we can colour in any map using only four colours, so that no bordering countries have the same colour.

Book of Curious & Interesting Mathematics by David Wells

A collection of strange mathematical facts and stories. This anthology covers a whole range of ages, maths and mathematicians, and includes probability paradoxes, jumbled Shakespearean sonnets, record-breaking monkeys and typewriters, and theories of big game hunting. Also featured are stories of people who looked for logical loopholes in the American Constitution or calmed their nerves with algebra.

Book of Curious & Interesting Puzzles by David Wells

This collection by best-selling author David Wells, a Cambridge math scholar and teacher, includes more than 560 puzzles, from the "mind sharpeners" of a medieval monk to the eitheenth-century Ladies' Diary, the Hindu Bhakshali manuscript, and riddles and popular rhymes. None require any mathematics beyond the most elementary algebra and geometry - and few require even that. Complete answers appear at the end.

Mathematics, Magic and Mystery by Martin Gardner

Famed puzzle expert Martin Gardner explains the mathematics behind a multitude of mystifying tricks: card tricks, stage "mind reading," coin and match tricks, counting out games, geometric dissections, etc. Each of these are actually demonstrations of probability, sets, number theory, topology and other braches of mathematics. No skill at sleight of hand is needed to perform the more than 500 tricks described in this book because mathematics guarantees their success.

How Many Socks Make a Pair? by Rob Eastaway

Can maths be creative? This book sets out to prove that it can, through a selection of short articles on surprising maths in everyday life. Through lots of intriguing problems, involving card tricks, polar bears and, of course, socks, Rob Eastaway shows shows how maths can demonstrate its secret beauties in even the most mundane of everyday objects.

Why do Buses Come in Threes? by Rob Eastaway and Jeremy Wyndham

With a foreword by Tim Rice, this book will change the way you see the world. Why is it better to buy a lottery ticket on a Friday? Why are showers always too hot or too cold? And what's the connection between a rugby player taking a conversion and a tourist trying to get the best photograph of Nelson's Column? These and many other fascinating questions are answered in this entertaining and highly informative book, which is ideal for anyone wanting to remind themselves - or discover for the first time - that maths is relevant to almost everything we do. Dating, cooking, travelling by car, gambling and even life-saving techniques have links with intriguing mathematical problems, as you will find explained here. Whether you have a PhD in astrophysics or haven't touched a maths problem since your school days, this book will give you a fresh understanding of the world around you.

Flatterland by Ian Stewart

In 1884, Edwin A. Abbott published “Flatland”; a brilliant novel about mathematics and philosophy that charmed and fascinated all of England. Now, Ian Stewart has written a fascinating, modern sequel to Abbott's book. Through larger-than-life characters and an inspired story line, "Flatterland" explores our present understanding of the shape and origins of the universe, the nature of space, time, and matter, as well as modern geometries and their applications.

The Liar Paradox and the Towers of Hanoi: 10 Greatest Math Puzzles of All Time by Marcel Danesi

Ever since the Sphinx asked his legendary riddle of Oedipus, riddles, conundrums, and puzzles of all sizes have kept humankind perplexed and amused. The Liar Paradox and the Towers of Hanoi takes die-hard puzzle experts on a tour of the world's most enduringly intriguing braintwisters, from Königsberg's Bridges and the Hanoi Towers to Fibonacci's Rabbits, the Four Color Problem, and the Magic Square. Each chapter introduces the basic puzzle, discusses the mathematics behind it, and includes exercises and answers plus additional puzzles similar to the one under discussion. Here is a veritable kaleidoscope of puzzling labyrinths, maps, bridges, and optical illusions that will keep aficionados entertained for hours.

The Number Mysteries by Marcus du Sautoy

An exploration of surprising ways maths occurs in our everyday lives, centred around five famous unsolved problems in mathematics. Topics include how to detect an art forgery, winning strategies in Monopoly, and how to crack a code. Sprinkled with games and links to interactive online content so you can try out some of the ideas for yourself!

Things to Make and Do in the Fourth Dimension by Matt Parker

This is the complete guide to exploring the fascinating world of maths you were never told about at school. Stand-up comedian and mathematician Matt Parker uses bizarre Klein Bottles, unimaginably small pizza slices, knots no one can untie and computers built from dominoes to reveal some of the most exotic and fascinating ideas in mathematics. Starting with simple numbers and algebra, this book goes on to deal with inconceivably big numbers in more dimensions than you ever knew existed. And always with something for you to make or do along the way.

How to Cut a Cake: and Other Mathematical Conundrums by Ian Stewart

In this book are twenty more curious puzzles and fantastical mathematical stories from one of the world's most popular and accessible writers on mathematics. This is a strange world of never-ending chess games, empires on the moon, furious fireflies, and, of course, disputes over how best to cut a cake. Each chapter - with titles such as, "How to Play Poker By Post" and "Repealing the Law of Averages" - presents a fascinating mathematical puzzle that is challenging, fun, and introduces the reader to a significant mathematical problem in an engaging and witty way. Illustrated with clever and quirky cartoons, each tale will delight those who love puzzles and mathematical conundrums.

Games and Mathematics by David Wells

The appeal of games and puzzles is timeless and universal. In this book, David Wells explores the fascinating connections between games and mathematics, proving that mathematics is not just about tedious calculation but imagination, insight and intuition. The first part of the book introduces games, puzzles and mathematical recreations, including knight tours on a chessboard. The second part explains how thinking about playing games can mirror the thinking of a mathematician, using scientific investigation, tactics and strategy, and sharp observation. Finally the author considers game-like features found in a wide range of human behaviours, illuminating the role of mathematics and helping to explain why it exists at all. This thought-provoking book is perfect for anyone with a thirst for mathematics and its hidden beauty; a good high school grounding in mathematics is all the background that is required, and the puzzles and games will suit pupils from 14 years.

Mathematical Puzzles: A Connoisseur's Collection by Peter Winkler

Collected over several years by Peter Winkler, dozens of elegant, intriguing challenges are presented in this book. The answers are easy to explain, but without this book, devilishly hard to find. Creative reasoning is the key to these puzzles. No involved computation or higher mathematics is necessary, but your ability to construct a mathematical proof will be severly tested - even if you are a professional mathematician. For the truly adventurous, there is even a chapter on unsolved puzzles.

Elastic Numbers by Daniel Griller

Beautifully crafted and immensely enjoyable, the problems in this book require minimal technical knowledge, being accessible to young secondary school pupils. However, there is an astonishing range in difficulty; while some of the problems are fairly straightforward, others are significantly tougher, with a great deal of ingenuity and clarity of thought needed to make progress. Whether you are a student preparing for a maths competition, an educational establishment seeking to supplement your problem solving resources, or an individual looking for a different sort of challenge, Elastic Numbers is a unique collection, and will push you to the very edge of your abilities.

Thinking Mathematically by Mason, Burton & Stacey

Thinking Mathematically is perfect for anyone who wants to develop their powers to think mathematically, whether at school, at university or just out of interest. This book is invaluable for anyone who wishes to promote mathematical thinking in others or for anyone who has always wondered what lies at the core of mathematics. Thinking Mathematically reveals the processes at the heart of mathematics and demonstrates how to encourage and develop them. Extremely practical, it involves the reader in questions so that subsequent discussions speak to immediate experience.

Finding Moonshine: A Mathematician's Journey Through Symmetry by Marcus Du Sautoy

This book tells the story of one of the biggest adventures in mathematics: the search for symmetry. This is the story of how humankind has come to its understanding of the bizarre world of symmetry - a subject of fundamental significance to the way we interpret the world around us. Our eyes and minds are drawn to symmetrical objects, from the sphere to the swastika, from the pyramid to the pentagon. 'Symmetry' is all-pervasive: in chemistry the concept of symmetry explains the structure of crystals; in evolutionary biology, the natural world exploits symmetry in the fight for survival; symmetry and the breaking of symmetry are central to ideas in art, architecture and music; the mathematics of symmetry is even exploited in industry, for example to find efficient ways to store more music on a CD or to keep your mobile phone conversation from cracking up through interference.

Mathematics for the Curious by Peter Higgins

When do the hands of a clock coincide? How likely is it that two children in the same class will share a birthday? How do we calculate the volume of a doughnut? Mathematics for the Curious provides anyone interested in mathematics with a simple and entertaining account of what it can do. Author Peter Higgins gives clear explanations of the more mysterious features of childhood mathematics as well as novelties and connections that prove that mathematics can be enjoyable and full of surprises. Topics include: the truth about fractions, ten questions and their answers, and the golden ratio. Higgins poses entertaining puzzles and questions tempting the reader to ponder math problems with imagination instead of dread. Mathematics for the Curious is an accessible introduction to basic mathematics for beginning students and a lively refresher for adults.

Mathematics for the Imagination by Peter Higgins

Mathematics for the Imagination provides an accessible and entertaining investigation into mathematical problems in the world around us. From world navigation, family trees, and calendars to patterns, tessellations, and number tricks, this informative and fun book helps you to understand the maths behind real-life questions and rediscover your arithmetical mind. This is a highly involving book which encourages the reader to enter into the spirit of mathematical exploration.

Mathematics and the Physical World by Morris Kline

A stimulating account of development of basic mathematics from arithmetic, algebra, geometry and trigonometry, to calculus, differential equations and non-Euclidean geometries. Also describes how maths is used in optics, astronomy, motion under the law of gravitation, acoustics, electromagnetism, and other aspects of physics.

Mathematics: A Very Short Introduction by Timothy Gowers

Tim Gowers is a Fields Medalist (the Fields medal is the mathematical equivalent of the Nobel prize), so it is not at all surprising that what he writes is worth reading. What is surprising is the ease and charm of his writing. He touches lightly many areas of mathematics, some that will be familiar (Pythagoras) and some that may not be (manifolds) and has something illuminating to say about all of them.

Excursions in Geometry by C. Stanley Ogilvy

In this book, Professor Ogilvy demonstrates the mathematical challenege and satisfaction to be had from geometry, the only requirement being two simple implements (straight-edge and compass) and a little thought. Topics including harmonic division and Apollonian circles, inversive geometry, the hexlet, conic sections, projective geometry, the Golden Section and angle trisection are addressed in a way that brings out the true intellectual excitement inherent in each. Also included are some unsolved problems of modern geometry.

Excursions in Mathematics by C. Stanley Ogilvy

This book offers a fascinating glimpse into the world of mathematics and mathematicians. It is designed for the reader who has no advanced mathematical background of special aptitude, but who wants to acquaint him or herself with the intellectually stimulating and aesthetically satisfying aspects of the subject. After illuminating the role of the mathematician and dispelling several popular misconceptions about the nature of mathematics, Professor Ogilvy takes you on a lively tour of the four basic branches of the subject: number theory, algebra, geometry and analysis. Focusing on the interesting, and even amusing, aspects of mathematics, he points out the interconnections between the branches and presents mathematics as a vital subject whose frontiers are continually expanding. Many illustrations and examples illuminate classic aspects of the subject as well as recent advances.

Excursions in Number Theory by C. Stanley Ogilvy and John Anderson

This delightful volume, by two well-known mathematicians, invites readers to join a challenging expedition into the mystery and magic of number theory. No special training is needed - just high school mathematics, a fondness for figures and an inquisitive mind. Beginning with familiar notions, the authors skillfully transport the reader to higher realms of mathematics, developing the necessary concepts along the way. Included are thorough discussions of prime numbers, number patterns, irrationals and iterations and calculating prodigies, among other topics.

Q.E.D. - Beauty in Mathematical Proof by Burkard Polster

Which famous proof did Archimedes inscribe on his tombstone? How and why do knots make perfect pentagons? Have you ever seen a proof so completely that it is just obvious? In this delicious little book, top down-under mathemagician Dr. Polster presents many of the most visually intuitive and exciting proofs from the dusty annuals of mathematical history. You can test your ability to follow the logic, leap into mathemagnosis and experience eureka-moment after eureka-moment.

How to Solve It by George Polya

A perennial bestseller by eminent mathematician G. Polya, How to Solve It will show anyone in any field how to think straight. In lucid and appealing prose, Polya reveals how the mathematical method of demonstrating a proof or finding an unknown can be of help in attacking any problem that can be "reasoned" out - from building a bridge to winning a game of anagrams. Generations of readers have relished Polya's deft - indeed, brilliant - instructions on stripping away irrelevancies and going straight to the heart of the problem.

The Joy of X: A Guided Tour of Mathematics from One to Infinity by Steven Strogatz

Maths is everywhere, often where we don't even realise. Award-winning professor Steven Strogatz acts as our guide as he takes us on a tour of numbers that - unbeknownst to the unitiated - connect pop culture, literature, art, philosophy, current affairs, business and even every day life. In The Joy of X, Strogatz explains the great ideas of maths - from negative numbers to calculus, fat tails to infinity - with clarity, wit and insight. He is the maths teacher you never had and this book is perfect for the smart and curious, the expert and the beginner.

Problem-Solving Strategies In Mathematics: From Common Approaches To Exemplary Strategies by Alfred S Posamentier and Stephen Krulik

This book introduces ten problem-solving strategies by first presenting the strategy and then applying it to problems in elementary mathematics. In so doing, the common less efficient approach is first mentioned and then the effective strategy is shown. Elementary mathematics is used so that the reader can focus on the strategy and not be distracted by some more sophisticated mathematics.

1089 and All That: A Journey into Mathematics by David Acheson

David Acheson's extraordinary little book makes mathematics accessible to everyone. From very simple beginnings he takes us on a thrilling journey to some deep mathematical ideas. On the way, via Kepler and Newton, he explains what calculus really means, gives a brief history of pi, and even takes us to chaos theory and imaginary numbers. Every short chapter is carefully crafted to ensure that no one will get lost on the journey. Packed with puzzles and illustrated by world famous cartoonists, this is one of the most readable and imaginative books on mathematics ever written.

An Introduction to Mathematical Reasoning by Peter Eccles

The purpose of this book is to introduce the basic ideas of mathematical proof to students. The emphasis is on helping the reader in understanding and constructing proofs and writing clear mathematics. This is achieved by exploring set theory, combinatorics and number theory, topics which include many fundamental ideas which are part of the tool kit of any mathematician. This material illustrates how familiar ideas can be formulated rigorously, provides examples demonstrating a wide range of basic methods of proof, and includes some of the classic proofs.

mathematical problem solving book

Can the study of mathematics enrich the heart as well as the mind? Francis Su explains how humans crave logic, beauty, truth and play, and that searching for these in mathematics is not only rewarding, but builds virtues in us that help us be better individuals and members of society. The book includes puzzles to draw everyone in to the enjoyment of mathematics, as part of his vision that mathematics should be shared by everyone.

What is Mathematics? by Richard Courant, Herbert Robbins and Ian Stewart

Written for beginners and scholars, for students and teachers, for philosophers and engineers, this book is a sparkling collection of mathematical gems that offers an entertaining and accessible portrait of the mathematical world. Covering everything from natural numbers and the number system to geometrical constructions and projective geometry, this fascinating survey allows readers to delve into mathematics as an organic whole rather than an empty drill in problem solving. With chapters largely independent of one another and sections that lead upward from basic to more advanced discussions, readers can easily pick and choose areas of particular interest without impairing their understanding of subsequent parts.

Towards Higher Mathematics: A Companion by Richard Earl

Containing a large and varied set of problems, this rich resource will allow students to stretch their mathematical abilities beyond the school syllabus, and bridge the gap to university-level mathematics. Many proofs are provided to better equip students for the transition to university. The author covers substantial extension material using the language of sixth-form mathematics, thus enabling students to understand the more complex material. There are over 1500 carefully graded exercises, with hints included in the text, and solutions available online. Historical and contextual asides highlight each area of mathematics and show how it has developed over time.

The Art of the Infinite by Robert and Ellen Kaplan

This book unlocks the secrets of maths - revealing it to be our lost, native language, as much a part of us as the words we use every day. Number and form are the essence of our world: from the patterns of the stars to the pulses of the market, from the beats of our hearts to catching a ball or tying our shoelaces. Drawing on science, literature, history and philosophy, this book makes the rich patterns of maths brilliantly clear.

Algorithmic Puzzles by Anany & Maria Levitin

In this book, Anany and Maria Levitin use many classic brainteasers as well as newer examples from job interviews with major corporations to show readers how to apply analytical thinking to solve puzzles requiring well-defined procedures. The book's unique collection of puzzles is supplemented with carefully developed tutorials on algorithm design strategies and analysis techniques intended to walk the reader step-by-step through the various approaches to algorithmic problem solving. Mastery of these strategies - exhaustive search, backtracking, and divide-and-conquer, among others - will aid the reader in solving not only the puzzles contained in this book, but also others encountered in interviews, puzzle collections, and throughout everyday life. Each of the 150 puzzles contains hints and solutions, along with commentary on the puzzle's origins and solution methods. Readers with only middle school mathematics will develop their algorithmic problem-solving skills through puzzles at the elementary level, while seasoned puzzle solvers will enjoy the challenge of thinking through more difficult puzzles.

The Mathematics of Games and Gambling by Edward Packel

This book introduces and develops some of the important and beautiful elementary mathematics needed for rational analysis of various gambling and game activities. Most of the standard casino games (roulette, craps, blackjack, keno), some social games (backgammon, poker, bridge) and various other activities (state lotteries, horse racing) are treated in ways that bring out their mathematical aspects. The mathematics developed ranges from the predictable concepts of probability, expectation, and binomial coefficients to some less well-known ideas of elementary game theory. Game-related exercises are included and solutions to some appear at the end of the book.

How to Study for a Mathematics Degree by Lara Alcock

Every year, thousands of students go to university to study mathematics. Many of these students are extremely intelligent and hardworking, but even the best will, at some point, struggle with the demands of making the transition to advanced mathematics. The mathematics shifts in focus from calculation to proof, so students are expected to interact with it in different ways. These changes need not be mysterious - mathematics education research has revealed many insights into the adjustments that are necessary - but they are not obvious and they do need explaining. This book translates these research-based insights into practical advice for a student audience. It covers every aspect of studying for a mathematics degree, from the most abstract intellectual challenges to the everyday business of interacting with lecturers and making good use of study time.

How to Think Like a Mathematician by Kevin Houston

Looking for a head start in your undergraduate degree in mathematics? This friendly companion will ease your transition to real mathematical thinking. Working through the book you will develop an arsenal of techniques to help you unlock the meaning of definitions, theorems and proofs, solve problems, and write mathematics effectively. All the major methods of proof - direct method, cases, induction, contradiction and contrapositive - are featured. Concrete examples are used throughout, and you'll get plenty of practice on topics common to many courses such as divisors, Euclidean algorithms, modular arithmetic, equivalence relations, and injectivity and surjectivity of functions. With over 300 exercises to help you test your progress, you'll soon learn how to think like a mathematician.

AMS Logo

  • AMS Home (opens in a new tab)
  • My Bookshelf
  • MAA Press Books
  • Book Series
  • eBook Collections (opens in a new tab)
  • Advanced Search

Problem Books

This series will include a variety of books related to problems and problem-solving, including collections of problems from prominent mathematical competitions, collections of problems specific to particular branches of mathematics, and books on the art and practice of problem-solving.

mathematical problem solving book

  • Science & Math
  • Mathematics

Amazon prime logo

Enjoy fast, free delivery, exclusive deals, and award-winning movies & TV shows with Prime Try Prime and start saving today with fast, free delivery

Amazon Prime includes:

Fast, FREE Delivery is available to Prime members. To join, select "Try Amazon Prime and start saving today with Fast, FREE Delivery" below the Add to Cart button.

  • Cardmembers earn 5% Back at Amazon.com with a Prime Credit Card.
  • Unlimited Free Two-Day Delivery
  • Streaming of thousands of movies and TV shows with limited ads on Prime Video.
  • A Kindle book to borrow for free each month - with no due dates
  • Listen to over 2 million songs and hundreds of playlists
  • Unlimited photo storage with anywhere access

Important:  Your credit card will NOT be charged when you start your free trial or if you cancel during the trial period. If you're happy with Amazon Prime, do nothing. At the end of the free trial, your membership will automatically upgrade to a monthly membership.

Buy new: .savingPriceOverride { color:#CC0C39!important; font-weight: 300!important; } .reinventMobileHeaderPrice { font-weight: 400; } #apex_offerDisplay_mobile_feature_div .reinventPriceSavingsPercentageMargin, #apex_offerDisplay_mobile_feature_div .reinventPricePriceToPayMargin { margin-right: 4px; } -37% $81.47 $ 81 . 47 FREE delivery Thursday, May 9 Ships from: Amazon Sold by: itemspopularsonlineaindemand

Return this item for free.

Free returns are available for the shipping address you chose. You can return the item for any reason in new and unused condition: no shipping charges

  • Go to your orders and start the return
  • Select the return method

Save with Used - Good .savingPriceOverride { color:#CC0C39!important; font-weight: 300!important; } .reinventMobileHeaderPrice { font-weight: 400; } #apex_offerDisplay_mobile_feature_div .reinventPriceSavingsPercentageMargin, #apex_offerDisplay_mobile_feature_div .reinventPricePriceToPayMargin { margin-right: 4px; } $54.89 $ 54 . 89 $3.98 delivery May 14 - 15 Ships from: glenthebookseller Sold by: glenthebookseller

Kindle app logo image

Download the free Kindle app and start reading Kindle books instantly on your smartphone, tablet, or computer - no Kindle device required .

Read instantly on your browser with Kindle for Web.

Using your mobile phone camera - scan the code below and download the Kindle app.

QR code to download the Kindle App

Image Unavailable

Problem-Solving Strategies (Problem Books in Mathematics)

  • To view this video download Flash Player

Follow the author

Arthur Engel

Problem-Solving Strategies (Problem Books in Mathematics) Corrected Edition

Purchase options and add-ons.

Problem-Solving Strategies is a unique collection of competition problems from over twenty major national and international mathematical competitions for high school students. The discussion of problem solving strategies is extensive. It is written for trainers and participants of contests of all levels up to the highest level: IMO, Tournament of the Towns, and the noncalculus parts of the Putnam Competition. It will appeal to high school teachers conducting a mathematics club who need a range of simple to complex problems and to those instructors wishing to pose a "problem of the week", "problem of the month", and "research problem of the year" to their students, thus bringing a creative atmosphere into their classrooms with continuous discussions of mathematical problems. This volume is a must-have for instructors wishing to enrich their teaching with some interesting non -routine problems and for individuals who are just interested in solving difficult and challenging problems. Each chapter starts with typical examples illustrating the central concepts and is followed by a number of carefully selected problems and their solutions. Most of the solutions are complete, but some merely point to the road leading to the final solution. Very few problems have no solutions. Readers interested in increasing the effectiveness of the book can do so by working on the examples in addition to the problems thereby increasing the number of problems to over 1300. In addition to being a valuable resource of mathematical problems and solution strategies, this volume is the most complete training book on the market.

  • ISBN-10 0387982191
  • ISBN-13 978-0387982199
  • Edition Corrected
  • Publisher Springer
  • Publication date December 12, 1997
  • Part of series Problem Books in Mathematics
  • Language English
  • Dimensions 6.1 x 0.94 x 9.17 inches
  • Print length 413 pages
  • See all details

Amazon First Reads | Editors' picks at exclusive prices

Frequently bought together

Problem-Solving Strategies (Problem Books in Mathematics)

Similar items that may ship from close to you

Love and Math

Editorial Reviews

About the author, product details.

  • Publisher ‏ : ‎ Springer; Corrected edition (December 12, 1997)
  • Language ‏ : ‎ English
  • Paperback ‏ : ‎ 413 pages
  • ISBN-10 ‏ : ‎ 0387982191
  • ISBN-13 ‏ : ‎ 978-0387982199
  • Item Weight ‏ : ‎ 1.3 pounds
  • Dimensions ‏ : ‎ 6.1 x 0.94 x 9.17 inches
  • #542 in Mathematics Study & Teaching (Books)
  • #596 in Mathematics History
  • #4,425 in Core

About the author

Arthur engel.

Discover more of the author’s books, see similar authors, read author blogs and more

Customer reviews

Customer Reviews, including Product Star Ratings help customers to learn more about the product and decide whether it is the right product for them.

To calculate the overall star rating and percentage breakdown by star, we don’t use a simple average. Instead, our system considers things like how recent a review is and if the reviewer bought the item on Amazon. It also analyzed reviews to verify trustworthiness.

  • Sort reviews by Top reviews Most recent Top reviews

Top reviews from the United States

There was a problem filtering reviews right now. please try again later..

mathematical problem solving book

Top reviews from other countries

mathematical problem solving book

  • Amazon Newsletter
  • About Amazon
  • Accessibility
  • Sustainability
  • Press Center
  • Investor Relations
  • Amazon Devices
  • Amazon Science
  • Sell on Amazon
  • Sell apps on Amazon
  • Supply to Amazon
  • Protect & Build Your Brand
  • Become an Affiliate
  • Become a Delivery Driver
  • Start a Package Delivery Business
  • Advertise Your Products
  • Self-Publish with Us
  • Become an Amazon Hub Partner
  • › See More Ways to Make Money
  • Amazon Visa
  • Amazon Store Card
  • Amazon Secured Card
  • Amazon Business Card
  • Shop with Points
  • Credit Card Marketplace
  • Reload Your Balance
  • Amazon Currency Converter
  • Your Account
  • Your Orders
  • Shipping Rates & Policies
  • Amazon Prime
  • Returns & Replacements
  • Manage Your Content and Devices
  • Recalls and Product Safety Alerts
  • Conditions of Use
  • Privacy Notice
  • Consumer Health Data Privacy Disclosure
  • Your Ads Privacy Choices

Library homepage

  • school Campus Bookshelves
  • menu_book Bookshelves
  • perm_media Learning Objects
  • login Login
  • how_to_reg Request Instructor Account
  • hub Instructor Commons
  • Download Page (PDF)
  • Download Full Book (PDF)
  • Periodic Table
  • Physics Constants
  • Scientific Calculator
  • Reference & Cite
  • Tools expand_more
  • Readability

selected template will load here

This action is not available.

Mathematics LibreTexts

Module 1: Problem Solving Strategies

  • Last updated
  • Save as PDF
  • Page ID 10352

Unlike exercises, there is never a simple recipe for solving a problem. You can get better and better at solving problems, both by building up your background knowledge and by simply practicing. As you solve more problems (and learn how other people solved them), you learn strategies and techniques that can be useful. But no single strategy works every time.

Pólya’s How to Solve It

George Pólya was a great champion in the field of teaching effective problem solving skills. He was born in Hungary in 1887, received his Ph.D. at the University of Budapest, and was a professor at Stanford University (among other universities). He wrote many mathematical papers along with three books, most famously, “How to Solve it.” Pólya died at the age 98 in 1985.1

1. Image of Pólya by Thane Plambeck from Palo Alto, California (Flickr) [CC BY

Screen Shot 2018-08-30 at 4.43.05 PM.png

In 1945, Pólya published the short book How to Solve It , which gave a four-step method for solving mathematical problems:

First, you have to understand the problem.

After understanding, then make a plan.

Carry out the plan.

Look back on your work. How could it be better?

This is all well and good, but how do you actually do these steps?!?! Steps 1. and 2. are particularly mysterious! How do you “make a plan?” That is where you need some tools in your toolbox, and some experience to draw upon.

Much has been written since 1945 to explain these steps in more detail, but the truth is that they are more art than science. This is where math becomes a creative endeavor (and where it becomes so much fun). We will articulate some useful problem solving strategies, but no such list will ever be complete. This is really just a start to help you on your way. The best way to become a skilled problem solver is to learn the background material well, and then to solve a lot of problems!

Problem Solving Strategy 1 (Guess and Test)

Make a guess and test to see if it satisfies the demands of the problem. If it doesn't, alter the guess appropriately and check again. Keep doing this until you find a solution.

Mr. Jones has a total of 25 chickens and cows on his farm. How many of each does he have if all together there are 76 feet?

Step 1: Understanding the problem

We are given in the problem that there are 25 chickens and cows.

All together there are 76 feet.

Chickens have 2 feet and cows have 4 feet.

We are trying to determine how many cows and how many chickens Mr. Jones has on his farm.

Step 2: Devise a plan

Going to use Guess and test along with making a tab

Many times the strategy below is used with guess and test.

Make a table and look for a pattern:

Procedure: Make a table reflecting the data in the problem. If done in an orderly way, such a table will often reveal patterns and relationships that suggest how the problem can be solved.

Step 3: Carry out the plan:

Notice we are going in the wrong direction! The total number of feet is decreasing!

Better! The total number of feet are increasing!

Step 4: Looking back:

Check: 12 + 13 = 25 heads

24 + 52 = 76 feet.

We have found the solution to this problem. I could use this strategy when there are a limited number of possible answers and when two items are the same but they have one characteristic that is different.

Videos to watch:

1. Click on this link to see an example of “Guess and Test”

http://www.mathstories.com/strategies.htm

2. Click on this link to see another example of Guess and Test.

http://www.mathinaction.org/problem-solving-strategies.html

Check in question 1:

clipboard_e6298bbd7c7f66d9eb9affcd33892ef0d.png

Place the digits 8, 10, 11, 12, and 13 in the circles to make the sums across and vertically equal 31. (5 points)

Check in question 2:

Old McDonald has 250 chickens and goats in the barnyard. Altogether there are 760 feet . How many of each animal does he have? Make sure you use Polya’s 4 problem solving steps. (12 points)

Problem Solving Strategy 2 (Draw a Picture). Some problems are obviously about a geometric situation, and it is clear you want to draw a picture and mark down all of the given information before you try to solve it. But even for a problem that is not geometric thinking visually can help!

Videos to watch demonstrating how to use "Draw a Picture".

1. Click on this link to see an example of “Draw a Picture”

2. Click on this link to see another example of Draw a Picture.

Problem Solving Strategy 3 ( Using a variable to find the sum of a sequence.)

Gauss's strategy for sequences.

last term = fixed number ( n -1) + first term

The fix number is the the amount each term is increasing or decreasing by. "n" is the number of terms you have. You can use this formula to find the last term in the sequence or the number of terms you have in a sequence.

Ex: 2, 5, 8, ... Find the 200th term.

Last term = 3(200-1) +2

Last term is 599.

To find the sum of a sequence: sum = [(first term + last term) (number of terms)]/ 2

Sum = (2 + 599) (200) then divide by 2

Sum = 60,100

Check in question 3: (10 points)

Find the 320 th term of 7, 10, 13, 16 …

Then find the sum of the first 320 terms.

Problem Solving Strategy 4 (Working Backwards)

This is considered a strategy in many schools. If you are given an answer, and the steps that were taken to arrive at that answer, you should be able to determine the starting point.

Videos to watch demonstrating of “Working Backwards”

https://www.youtube.com/watch?v=5FFWTsMEeJw

Karen is thinking of a number. If you double it, and subtract 7, you obtain 11. What is Karen’s number?

1. We start with 11 and work backwards.

2. The opposite of subtraction is addition. We will add 7 to 11. We are now at 18.

3. The opposite of doubling something is dividing by 2. 18/2 = 9

4. This should be our answer. Looking back:

9 x 2 = 18 -7 = 11

5. We have the right answer.

Check in question 4:

Christina is thinking of a number.

If you multiply her number by 93, add 6, and divide by 3, you obtain 436. What is her number? Solve this problem by working backwards. (5 points)

Problem Solving Strategy 5 (Looking for a Pattern)

Definition: A sequence is a pattern involving an ordered arrangement of numbers.

We first need to find a pattern.

Ask yourself as you search for a pattern – are the numbers growing steadily larger? Steadily smaller? How is each number related?

Example 1: 1, 4, 7, 10, 13…

Find the next 2 numbers. The pattern is each number is increasing by 3. The next two numbers would be 16 and 19.

Example 2: 1, 4, 9, 16 … find the next 2 numbers. It looks like each successive number is increase by the next odd number. 1 + 3 = 4.

So the next number would be

25 + 11 = 36

Example 3: 10, 7, 4, 1, -2… find the next 2 numbers.

In this sequence, the numbers are decreasing by 3. So the next 2 numbers would be -2 -3 = -5

-5 – 3 = -8

Example 4: 1, 2, 4, 8 … find the next two numbers.

This example is a little bit harder. The numbers are increasing but not by a constant. Maybe a factor?

So each number is being multiplied by 2.

16 x 2 = 32

1. Click on this link to see an example of “Looking for a Pattern”

2. Click on this link to see another example of Looking for a Pattern.

Problem Solving Strategy 6 (Make a List)

Example 1 : Can perfect squares end in a 2 or a 3?

List all the squares of the numbers 1 to 20.

1 4 9 16 25 36 49 64 81 100 121 144 169 196 225 256 289 324 361 400.

Now look at the number in the ones digits. Notice they are 0, 1, 4, 5, 6, or 9. Notice none of the perfect squares end in 2, 3, 7, or 8. This list suggests that perfect squares cannot end in a 2, 3, 7 or 8.

How many different amounts of money can you have in your pocket if you have only three coins including only dimes and quarters?

Quarter’s dimes

0 3 30 cents

1 2 45 cents

2 1 60 cents

3 0 75 cents

Videos demonstrating "Make a List"

Check in question 5:

How many ways can you make change for 23 cents using only pennies, nickels, and dimes? (10 points)

Problem Solving Strategy 7 (Solve a Simpler Problem)

Geometric Sequences:

How would we find the nth term?

Solve a simpler problem:

1, 3, 9, 27.

1. To get from 1 to 3 what did we do?

2. To get from 3 to 9 what did we do?

Let’s set up a table:

Term Number what did we do

mathematical problem solving book

Looking back: How would you find the nth term?

mathematical problem solving book

Find the 10 th term of the above sequence.

Let L = the tenth term

mathematical problem solving book

Problem Solving Strategy 8 (Process of Elimination)

This strategy can be used when there is only one possible solution.

I’m thinking of a number.

The number is odd.

It is more than 1 but less than 100.

It is greater than 20.

It is less than 5 times 7.

The sum of the digits is 7.

It is evenly divisible by 5.

a. We know it is an odd number between 1 and 100.

b. It is greater than 20 but less than 35

21, 23, 25, 27, 29, 31, 33, 35. These are the possibilities.

c. The sum of the digits is 7

21 (2+1=3) No 23 (2+3 = 5) No 25 (2 + 5= 7) Yes Using the same process we see there are no other numbers that meet this criteria. Also we notice 25 is divisible by 5. By using the strategy elimination, we have found our answer.

Check in question 6: (8 points)

Jose is thinking of a number.

The number is not odd.

The sum of the digits is divisible by 2.

The number is a multiple of 11.

It is greater than 5 times 4.

It is a multiple of 6

It is less than 7 times 8 +23

What is the number?

Click on this link for a quick review of the problem solving strategies.

https://garyhall.org.uk/maths-problem-solving-strategies.html

IMAGES

  1. Primary Problem-solving in Mathematics

    mathematical problem solving book

  2. Buy Problem-Solving in Mathematics Book D

    mathematical problem solving book

  3. Mathematics Problem-solving Challenges For Secondary School Students

    mathematical problem solving book

  4. Teaching and Learning Mathematical Problem Solving

    mathematical problem solving book

  5. NEW Problem-Solving Processes in Mathematics Primary 4

    mathematical problem solving book

  6. Buy Problem-Solving in Mathematics Book A

    mathematical problem solving book

VIDEO

  1. Funny Mathematical Problem Solving

  2. 1.4.4. Requirements for Mathematical Problem Solving

  3. Mathematical Problem Solving (with a little help from Polya and Palincsar)

  4. Solving Book Questions of Chapter-14_IGCSE Edexcel

  5. Funny Mathematical Problem Solving

  6. Innovation in Plain English

COMMENTS

  1. Mathematical Problem Solving

    This book is addressed to people with research interests in the nature of mathematical thinking at any level, topeople with an interest in "higher-order thinking skills" in any domain, and to all mathematics teachers. The focal point of the book is a framework for the analysis of complex problem-solving behavior. That framework is presented in Part One, which consists of Chapters 1 through 5.

  2. Mathematical Problem Solving

    Mathematical Problem Solving. This book is addressed to people with research interests in the nature of mathematical thinking at any level, topeople with an interest in "higher-order thinking skills" in any domain, and to all mathematics teachers. The focal point of the book is a framework for the analysis of complex problem-solving behavior.

  3. The Stanford Mathematics Problem Book: With Hints and Solutions (Dover

    The book omits the human exploratory process of how to actually solve a mathematics problem. Most problem books and research papers omit all the pain, suffering, and hard work that goes between the problem statement and the seemingly miraculous solution. ... this book is a good resource for problem solving in Mathematics. It is very useful ...

  4. Amazon.com: How to Solve It: A New Aspect of Mathematical Method

    ---A. C. Schaeffer, American Journal of Psychology "Every mathematics student should experience and live this book" ― Mathematics Magazine "In an age that all solutions should be provided with the least possible effort, this book brings a very important message: mathematics and problem solving in general needs a lot of practice and experience ...

  5. Mathematical Problem Solving Books (22 books)

    Mathematical Problem Solving Books A list of good mathematical problem solving books, suitable for High School students. flag All Votes Add Books To This List. 1: The Art And Craft of Problem Solving by. Paul Zeitz. 4.58 avg rating — 257 ratings. score: 299, and 3 people voted ...

  6. Mathematical Problem Solving

    Mathematical Problem Solving provides information pertinent to the nature of mathematical thinking at any level. This book provides a framework for the analysis of complex problem-solving behavior. Organized into two parts encompassing 10 chapters, this book begins with an overview of the four qualitatively different aspects of complex ...

  7. All Math Books Available at AoPS

    Text: 320 pages. Solutions: 184 pages. A classic problem solving textbook for students in grades 9-12 who are preparing for advanced high school contests like the AMC 12, AIME, and the Harvard-MIT Mathematics Tournament. Related courses: AMC 12 Problem Series, AIME Problem Series A, and AIME Problem Series B. $ 29.50.

  8. Mathematical Problem Solving: Current Themes, Trends, and Research

    This book contributes to the field of mathematical problem solving by exploring current themes, trends and research perspectives. It does so by addressing five broad and related dimensions: problem solving heuristics, problem solving and technology, inquiry and problem posing in mathematics education, assessment of and through problem solving, and the problem solving environment.

  9. Mathematical Problem Solving

    Mathematical Problem Solving provides information pertinent to the nature of mathematical thinking at any level. This book provides a framework for the analysis of complex problem-solving behavior. Organized into two parts encompassing 10 chapters, this book begins with an overview of the four qualitatively different aspects of complex intellectual activity, namely, cognitive resources ...

  10. Math Book Store

    High School Olympiads. AoPS Curriculum. The Art of Problem Solving mathematics curriculum is designed for outstanding math students in grades 5-12. Our texts offer broader, deeper, and more challenging instruction than other curricula. Our Beast Academy elementary school curriculum covers grades 1 through 5. VIEW ALL BOOKS.

  11. Problem Books in Mathematics

    About this book series. Books in this series are devoted exclusively to problems - challenging, difficult, but accessible problems. They are intended to help at all levels - in college, in graduate school, and in the profession. Arthur Engels "Problem-Solving Strategies" is good for elementary —. show all.

  12. Amazon.com: Mathematical Problem Solving

    Amazon.com: Mathematical Problem Solving. ... Limits, Derivatives, Integrals, Sequences and Series (Problem Books in Mathematics) Part of: Problem Books in Mathematics (67 books) | by Tomasz Radożycki | Feb 21, 2020. 4.4 out of 5 stars 8. Hardcover. $45.25 $ 45. 25. List: $84.99 $84.99. FREE delivery Thu, Dec 21 .

  13. Mathematical Problem Solving

    Description. Mathematical Problem Solving provides information pertinent to the nature of mathematical thinking at any level. This book provides a framework for the analysis of complex problem-solving behavior. Organized into two parts encompassing 10 chapters, this book begins with an overview of the four qualitatively different aspects of ...

  14. Math Books

    Getting Started. Getting Started with Competition Math, a textbook meant for true beginners (on-target middle school students, or advanced elementary school students). It is written by AoPS Community Member cargeek9, currently a junior in high school. It covers the basics of algebra, geometry, combinatorics, and number theory, along with sets ...

  15. Math Problem Solving Books

    Math Problem Solving Books Showing 1-50 of 73 Problem-Solving Strategies (Problem Books in Mathematics) by. Arthur Engel (shelved 2 times as math-problem-solving) avg rating 4.48 — 168 ratings — published 1997 Want to Read saving… Want to Read; Currently Reading ...

  16. List of problem books in undergraduate and graduate mathematics

    You may consider Problem Solving Trough Problems by Loren C. Larson. That book is aimed at the advanced undergraduate level, and cover some of the branches of mathematics you need. ... It contains huge list of problem books in most branches of mathematics, even those especially for physicists. Share. Cite. Follow answered Dec 3, 2014 at 15:50 ...

  17. Recommended Books

    Problem-Solving Strategies In Mathematics: From Common Approaches To Exemplary Strategies by Alfred S Posamentier and Stephen Krulik. Age 15+ This book introduces ten problem-solving strategies by first presenting the strategy and then applying it to problems in elementary mathematics. In so doing, the common less efficient approach is first ...

  18. Amazon.com: Math Problem Solving: Books

    Comic-Strip Math: Problem Solving: 80 Reproducible Cartoons With Dozens and Dozens of Story Problems That Motivate Students and Build Essential Math Skills ... Problem-Solving Strategies (Problem Books in Mathematics) Part of: Problem Books in Mathematics (71 books) 4.3 out of 5 stars. 63. Paperback. $81.47 $ 81. 47. List: $129.99 $129.99. FREE ...

  19. Problem Books

    Problem Books. This series will include a variety of books related to problems and problem-solving, including collections of problems from prominent mathematical competitions, collections of problems specific to particular branches of mathematics, and books on the art and practice of problem-solving.

  20. Art of Problem Solving

    Art of Problem Solving offers two other multifaceted programs. Beast Academy is our comic-based online math curriculum for students ages 6-13. And AoPS Academy brings our methodology to students grades 2-12 through small, in-person classes at local campuses. Through our three programs, AoPS offers the most comprehensive honors math pathway ...

  21. Problem-Solving Strategies (Problem Books in Mathematics)

    This book must be your Bible if you are dead serious about IMO. It is not a good one to start with. Read about psychology of problem solving. I'd say 'Mathematical Problem Solving' by Alan Schoenfeld. Paul Zeitz has written a fantastic book which speaks a lot about psychology of problem solving quite a bit.

  22. Module 1: Problem Solving Strategies

    He wrote many mathematical papers along with three books, most famously, "How to Solve it." Pólya died at the age 98 in 1985.1. 1. Image of Pólya by Thane Plambeck from Palo Alto, California (Flickr) [CC BY ... Problem Solving Strategy 3 (Using a variable to find the sum of a sequence.) Gauss's strategy for sequences. last term = fixed ...

  23. Art of Problem Solving

    Advanced Olympiad Inequalities: Algebraic & Geometric Olympiad Inequalities by Alijadallah Belabess. Algebraic Inequalities - Old And New Methods - Vasile Cirtoaje. Old And New inequalities volume 1 - Titu Andreescu, Vasile Cirtoaje, Gabriel Dospinescu, Mircea Lascu. Old And New Inequalities volume 2 - Vo Quoc Ba Can, Cosmin Pohoata.