• Search Search Please fill out this field.
  • What Is R&D?
  • Understanding R&D
  • Types of R&D
  • Pros and Cons
  • Considerations
  • R&D vs. Applied Research
  • Who Spends the Most?

The Bottom Line

  • Business Essentials

Research and Development (R&D) Definition, Types, and Importance

short note on research development

Investopedia / Ellen Lindner

What Is Research and Development (R&D)?

The term research and development (R&D) is used to describe a series of activities that companies undertake to innovate and introduce new products and services. R&D is often the first stage in the development process. Companies require knowledge, talent, and investment in order to further their R&D needs and goals. The purpose of research and development is generally to take new products and services to market and add to the company's bottom line .

Key Takeaways

  • Research and development represents the activities companies undertake to innovate and introduce new products and services or to improve their existing offerings.
  • R&D allows a company to stay ahead of its competition by catering to new wants or needs in the market.
  • Companies in different sectors and industries conduct R&D—pharmaceuticals, semiconductors, and technology companies generally spend the most.
  • R&D is often a broad approach to exploratory advancement, while applied research is more geared towards researching a more narrow scope.
  • The accounting for treatment for R&D costs can materially impact a company's income statement and balance sheet.

Understanding Research and Development (R&D)

The concept of research and development is widely linked to innovation both in the corporate and government sectors. R&D allows a company to stay ahead of its competition. Without an R&D program, a company may not survive on its own and may have to rely on other ways to innovate such as engaging in mergers and acquisitions (M&A) or partnerships. Through R&D, companies can design new products and improve their existing offerings.

R&D is distinct from most operational activities performed by a corporation. The research and/or development is typically not performed with the expectation of immediate profit. Instead, it is expected to contribute to the long-term profitability of a company. R&D may often allow companies to secure intellectual property, including patents , copyrights, and trademarks as discoveries are made and products created.

Companies that set up and employ departments dedicated entirely to R&D commit substantial capital to the effort. They must estimate the risk-adjusted return on their R&D expenditures, which inevitably involves risk of capital. That's because there is no immediate payoff, and the return on investment (ROI) is uncertain. As more money is invested in R&D, the level of capital risk increases. Other companies may choose to outsource their R&D for a variety of reasons including size and cost.

Companies across all sectors and industries undergo R&D activities. Corporations experience growth through these improvements and the development of new goods and services. Pharmaceuticals, semiconductors , and software/technology companies tend to spend the most on R&D. In Europe, R&D is known as research and technical or technological development.

Many small and mid-sized businesses may choose to outsource their R&D efforts because they don't have the right staff in-house to meet their needs.

Types of R&D

There are several different types of R&D that exist in the corporate world and within government. The type used depends entirely on the entity undertaking it and the results can differ.

Basic Research

There are business incubators and accelerators, where corporations invest in startups and provide funding assistance and guidance to entrepreneurs in the hope that innovations will result that they can use to their benefit.

M&As and partnerships are also forms of R&D as companies join forces to take advantage of other companies' institutional knowledge and talent.

Applied Research

One R&D model is a department staffed primarily by engineers who develop new products —a task that typically involves extensive research. There is no specific goal or application in mind with this model. Instead, the research is done for the sake of research.

Development Research

This model involves a department composed of industrial scientists or researchers, all of who are tasked with applied research in technical, scientific, or industrial fields. This model facilitates the development of future products or the improvement of current products and/or operating procedures.

$42.7 billion of research and development costs later, Amazon was granted 2,244 new patents in 2020. Their patents included advancements in artificial intelligence, machine learning, and cloud computing.

Advantages and Disadvantages of R&D

There are several key benefits to research and development. It facilitates innovation, allowing companies to improve existing products and services or by letting them develop new ones to bring to the market.

Because R&D also is a key component of innovation, it requires a greater degree of skill from employees who take part. This allows companies to expand their talent pool, which often comes with special skill sets.

The advantages go beyond corporations. Consumers stand to benefit from R&D because it gives them better, high-quality products and services as well as a wider range of options. Corporations can, therefore, rely on consumers to remain loyal to their brands. It also helps drive productivity and economic growth.

Disadvantages

One of the major drawbacks to R&D is the cost. First, there is the financial expense as it requires a significant investment of cash upfront. This can include setting up a separate R&D department, hiring talent, and product and service testing, among others.

Innovation doesn't happen overnight so there is also a time factor to consider. This means that it takes a lot of time to bring products and services to market from conception to production to delivery.

Because it does take time to go from concept to product, companies stand the risk of being at the mercy of changing market trends . So what they thought may be a great seller at one time may reach the market too late and not fly off the shelves once it's ready.

Facilitates innovation

Improved or new products and services

Expands knowledge and talent pool

Increased consumer choice and brand loyalty

Economic driver

Financial investment

Shifting market trends

R&D Accounting

R&D may be beneficial to a company's bottom line, but it is considered an expense . After all, companies spend substantial amounts on research and trying to develop new products and services. As such, these expenses are often reported for accounting purposes on the income statement and do not carry long-term value.

There are certain situations where R&D costs are capitalized and reported on the balance sheet. Some examples include but are not limited to:

  • Materials, fixed assets, or other assets have alternative future uses with an estimable value and useful life.
  • Software that can be converted or applied elsewhere in the company to have a useful life beyond a specific single R&D project.
  • Indirect costs or overhead expenses allocated between projects.
  • R&D purchased from a third party that is accompanied by intangible value. That intangible asset may be recorded as a separate balance sheet asset.

R&D Considerations

Before taking on the task of research and development, it's important for companies and governments to consider some of the key factors associated with it. Some of the most notable considerations are:

  • Objectives and Outcome: One of the most important factors to consider is the intended goals of the R&D project. Is it to innovate and fill a need for certain products that aren't being sold? Or is it to make improvements on existing ones? Whatever the reason, it's always important to note that there should be some flexibility as things can change over time.
  • Timing: R&D requires a lot of time. This involves reviewing the market to see where there may be a lack of certain products and services or finding ways to improve on those that are already on the shelves.
  • Cost: R&D costs a great deal of money, especially when it comes to the upfront costs. And there may be higher costs associated with the conception and production of new products rather than updating existing ones.
  • Risks: As with any venture, R&D does come with risks. R&D doesn't come with any guarantees, no matter the time and money that goes into it. This means that companies and governments may sacrifice their ROI if the end product isn't successful.

Research and Development vs. Applied Research

Basic research is aimed at a fuller, more complete understanding of the fundamental aspects of a concept or phenomenon. This understanding is generally the first step in R&D. These activities provide a basis of information without directed applications toward products, policies, or operational processes .

Applied research entails the activities used to gain knowledge with a specific goal in mind. The activities may be to determine and develop new products, policies, or operational processes. While basic research is time-consuming, applied research is painstaking and more costly because of its detailed and complex nature.

Who Spends the Most on R&D?

Companies spend billions of dollars on R&D to produce the newest, most sought-after products. According to public company filings, these companies incurred the highest research and development spending in 2020:

  • Amazon: $42.7 billion
  • Alphabet.: $27.6 billion
  • Huawei: $22.0 billion
  • Microsoft: $19.3 billion
  • Apple: $18.8 billion
  • Samsung: $18.8 billion
  • Facebook: $18.5 billion

What Types of Activities Can Be Found in Research and Development?

Research and development activities focus on the innovation of new products or services in a company. Among the primary purposes of R&D activities is for a company to remain competitive as it produces products that advance and elevate its current product line. Since R&D typically operates on a longer-term horizon, its activities are not anticipated to generate immediate returns. However, in time, R&D projects may lead to patents, trademarks, or breakthrough discoveries with lasting benefits to the company. 

What Is an Example of Research and Development?

Alphabet allocated over $16 billion annually to R&D in 2018. Under its R&D arm X, the moonshot factory, it has developed Waymo self-driving cars. Meanwhile, Amazon has spent even more on R&D projects, with key developments in cloud computing and its cashier-less store Amazon Go. At the same time, R&D can take the approach of a merger & acquisition, where a company will leverage the talent and intel of another company to create a competitive edge. The same can be said with company investment in accelerators and incubators, whose developments it could later leverage.

Why Is Research and Development Important?

Given the rapid rate of technological advancement, R&D is important for companies to stay competitive. Specifically, R&D allows companies to create products that are difficult for their competitors to replicate. Meanwhile, R&D efforts can lead to improved productivity that helps increase margins, further creating an edge in outpacing competitors. From a broader perspective, R&D can allow a company to stay ahead of the curve, anticipating customer demands or trends.

There are many things companies can do in order to advance in their industries and the overall market. Research and development is just one way they can set themselves apart from their competition. It opens up the potential for innovation and increasing sales. But it does come with some drawbacks—the most obvious being the financial cost and the time it takes to innovate.

NASDAQ. " Which Companies Spend the Most in Research and Development (R&D)? "

Strategy+Business. " WHAT THE TOP INNOVATORS GET RIGHT ."

short note on research development

  • Terms of Service
  • Editorial Policy
  • Privacy Policy
  • Your Privacy Choices

Library homepage

  • school Campus Bookshelves
  • menu_book Bookshelves
  • perm_media Learning Objects
  • login Login
  • how_to_reg Request Instructor Account
  • hub Instructor Commons
  • Download Page (PDF)
  • Download Full Book (PDF)
  • Periodic Table
  • Physics Constants
  • Scientific Calculator
  • Reference & Cite
  • Tools expand_more
  • Readability

selected template will load here

This action is not available.

Business LibreTexts

13.1: An Introduction to Research and Development (R&D)

  • Last updated
  • Save as PDF
  • Page ID 16730

Learning Objectives

  • Know what constitutes research and development (R&D).
  • Understand the importance of R&D to corporations.
  • Recognize the role government plays in R&D.

Research and development (R&D) refers to two intertwined processes of research (to identify new knowledge and ideas) and development (turning the ideas into tangible products or processes). Companies undertake R&D in order to develop new products, services, or procedures that will help them grow and expand their operations. Corporate R&D began in the United States with Thomas Edison and the Edison General Electric Company he founded in 1890 (which is today’s GE). Edison is credited with 1,093 patents, but it’s actually his invention of the corporate R&D lab that made all those other inventions possible.Andrea Meyer, “High-Value Innovation: Innovating the Management of Innovation,” Working Knowledge (blog), August 20, 2009, accessed February 22, 2011, http://workingknowledge.com/blog/?p=594 . Edison was the first to bring management discipline to R&D, which enabled a much more powerful method of invention by systematically harnessing the talent of many individuals. Edison’s 1,093 patents had less to do with individual genius and more to do with management genius: creating and managing an R&D lab that could efficiently and effectively crank out new inventions. For fifty years following the early twentieth century, GE was awarded more patents than any other firm in America.Gary Hamel, “The Why, What and How of Management Innovation,” Harvard Business Review , February 2006, accessed February 24, 2011, http://hbr.org/2006/02/the-why-what-and-how-of-management-innovation/ar/1 .

Edison is known as an inventor, but he was also a great innovator. Here’s the difference: an invention brings an idea into tangible reality by embodying it as a product or system. An innovation converts a new idea into revenues and profits. Inventors can get patents on original ideas, but those inventions may not make money. For an invention to become an innovation, people must be willing to buy it in high enough numbers that the firm benefits from making it.A. G. Lafley and Ram Charan, The Game-Changer (New York: Crown Publishing Group, 2008), 21.

Edison wanted his lab to be a commercial success. “Anything that won’t sell, I don’t want to invent. Its sale is proof of utility and utility is success,”A. G. Lafley and Ram Charan, The Game-Changer (New York: Crown Publishing Group, 2008), 25. Edison said. Edison’s lab in Menlo Park, New Jersey, was an applied research lab, which is a lab that develops and commercializes its research findings. As defined by the National Science Foundation, applied research is “systematic study to gain knowledge or understanding necessary to determine the means by which a recognized and specific need may be met.”National Science Foundation, “Definitions of Research and Development,” Office of Management and Budget Circular A-11, accessed March 5, 2011, http://www.nsf.gov/statistics/randdef/fedgov.cfm . In contrast, basic research advances the knowledge of science without an explicit, anticipated commercial outcome.

History and Importance

From Edison’s lab onward, companies learned that a systematic approach to research could provide big competitive advantages. Companies could not only invent new products, but they could also turn those inventions into innovations that launched whole new industries. For example, the radio, wireless communications, and television industry grew out of early-twentieth-century research by General Electric and American Telephone and Telegraph (AT&T, which founded Bell Labs).

The heyday of American R&D labs came in the 1950s and early 1960s, with corporate institutions like Bell Labs, RCA labs, IBM’s research centers, and government institutions such as NASA and DARPA. These labs funded both basic and applied research, giving birth to the transistor, long-distance TV transmission, photovoltaic solar cells, the UNIX operating system, and cellular telephony, each of which led to the creation of not just hundreds of products but whole industries and millions of jobs.Adrian Slywotzky, “How Science Can Create Millions of New Jobs,” BusinessWeek , September 7, 2009, accessed May 11, 2011, http://www.businessweek.com/magazine/content/09_36/b4145036678131.htm . DARPA’s creation of the Internet (known at its inception as ARPAnet) and Xerox PARC’s Ethernet and graphical-user interface (GUI) laid the foundations for the PC revolution.Adrian Slywotzky, “How Science Can Create Millions of New Jobs,” BusinessWeek , September 7, 2009, accessed May 11, 2011, http://www.businessweek.com/magazine/content/09_36/b4145036678131.htm .

Companies invest in R&D to gain a pipeline of new products. For a high-tech company like Apple, it means coming up with new types of products (e.g., the iPad) as well as newer and better versions of its existing computers and iPhones. For a pharmaceutical company, it means coming out with new drugs to treat diseases. Different parts of the world have different diseases or different forms of known diseases. For example, diabetes in China has a different molecular structure than diabetes elsewhere in the world, and pharmaceutical company Eli Lilly’s new R&D center in Shanghai will focus on this disease variant.“2011 Global R&D Funding Forecast,” R&D Magazine , December 2010, accessed February 27, 2011, www.battelle.org/aboutus/rd/2011.pdf . Even companies that sell only services benefit from innovation and developing new services. For example, MasterCard Global Service started providing customers with emergency cash advances, directions to nearby ATMs, and emergency card replacements.Lance Bettencourt, Service Innovation (New York: McGraw-Hill, 2010), 99.

Innovation also includes new product and service combinations. For example, heavy-equipment manufacturer John Deere created a product and service combination by equipping a GPS into one of its tractors. The GPS keeps the tractor on a parallel path, even under hands-free operation, and keeps the tractor with only a two-centimeter overlap of those parallel lines. This innovation helps a farmer increase the yield of the field and complete passes over the field in the tractor more quickly. The innovation also helps reduce fuel, seed, and chemical costs because there is little overlap and waste of the successive parallel passes.Lance Bettencourt, Service Innovation (New York: McGraw-Hill, 2010), 110.

Did You Know?

Appliance maker Whirlpool has made innovation a strategic priority in order to stay competitive. Whirlpool has an innovation pipeline that currently numbers close to 1,000 new products. On average, Whirlpool introduces one hundred new products to the market each year. “Every month we report pipeline size measured by estimated sales, and our goal this year is $4 billion,” said Moises Norena, director of global innovation at Whirlpool. With Whirlpool’s 2008 revenue totaling $18.9 billion, that means roughly 20 percent of sales would be from new products.Jessie Scanlon, “How Whirlpool Puts New Ideas through the Wringer,” BusinessWeek , August 3, 2009, accessed January 17, 2011, http://www.businessweek.com/innovate/content/aug2009/id2009083_452757.htm .

Not only do companies benefit from investing in R&D, but the nation’s economy benefits as well, as Massachusetts Institute of Technology (MIT) professor Robert Solow discovered. Solow showed mathematically that, in the long run, growth in gross national product per worker is due more to technological progress than to mere capital investment. Solow won a Nobel Prize for his research, and investment in corporate R&D labs grew.

Although R&D has its roots in national interests, it has become globalized. Most US and European Fortune 1000 companies have R&D centers in Asia.“2011 Global R&D Funding Forecast,” R&D Magazine , December 2010, accessed February 27, 2011, www.battelle.org/aboutus/rd/2011.pdf . You’ll see the reasons for the globalization of R&D in Section 13.3 .

The Role of Government

Governments have played a large role in the inception of R&D, mainly to fund research for military applications for war efforts. Today, governments still play a big role in innovation because of their ability to fund R&D. A government can fund R&D directly, by offering grants to universities and research centers or by offering contracts to corporations for performing research in a specific area.

Governments can also provide tax incentives for companies that invest in R&D. Countries vary in the tax incentives that they give to corporations that invest in R&D. By giving corporations a tax credit when they invest in R&D, governments encourage corporations to invest in R&D in their countries. For example, Australia gave a 125 percent tax deduction for R&D expenses. The Australian government’s website noted, “It’s little surprise then, that many companies from around the world are choosing to locate their R&D facilities in Australia.” The government also pointed out that “50 percent of the most innovative companies in Australia are foreign-based.”Committee on Prospering in the Global Economy of the 21st Century (U.S.), Committee on Science, Engineering, and Public Policy (U.S.), Rising Above the Gathering Storm (Washington, DC: National Academies Press, 2007), 195.

Finally, governments can promote innovation through investments in infrastructure that will support new technology and by committing to buy the new technology. China is doing this in a big way, and it is thus influencing the course of many companies around the world. Since 2000, China has had a policy in place “to encourage tech transfer from abroad and to force foreign companies to transfer their R&D operations to China in exchange for access to China’s large volume markets,” reported R&D Magazine in its 2010 review of global R&D.“2011 Global R&D Funding Forecast,” R&D Magazine , December 2010, accessed February 27, 2011, www.battelle.org/aboutus/rd/2011.pdf . For example, any automobile manufacturer that wants to sell cars in China must enter into a partnership with a Chinese company. As a result, General Motors (GM), Daimler, Hyundai, Volkswagen (VW), and Toyota have all formed joint ventures with Chinese companies. General Motors and Volkswagen, for example, have both formed joint ventures with the Chinese company Shanghai Automotive Industry Corporation (SAIC), even though SAIC also sells cars under its own brand.Brian Dumaine, “China Charges into Electric Cars,” Fortune , November 1, 2010, 140. The Chinese government made another strategic decision influencing innovation in the automobile industry. Because no Chinese company is a leader in internal combustion engines, the government decided to leapfrog the technology and focus on becoming a leader in electric cars.Bill Russo, Tao Ke, Edward Tse, and Bill Peng, China’s Next Revolution: Transforming The Global Auto Industry , Booz & Company report, 2010, accessed February 27, 2011, www.booz.com/media/file/China’s_Next_Revolution_en.pdf . “Beijing has pledged that it will do whatever it takes to help the Chinese car industry take the lead in electric vehicles,” notes industry watcher Brian Dumaine. Brian Dumaine, “China Charges into Electric Cars,” Fortune , November 1, 2010, 140. That includes allocating $8 billion in R&D funds as well as another $10 billion in infrastructure (e.g., installing charging stations).Gordon Orr, “Unleashing Innovation in China,” McKinsey Quarterly , January 2011, accessed January 2, 2011, www.mckinseyquarterly.com/Strategy/Innovation/Unleashing_innovation_in_China_2725 . The government will also subsidize the purchase of electric cars by consumers and has committed to buying electric cars for government fleets, thus guaranteeing that there will be buyers for the new electric vehicles that companies invent and develop.

Another role of government is to set high targets that require innovation. In the 1960s, the US Apollo space program launched by President John F. Kennedy inspired US corporations to work toward putting a man on the moon. The government’s investments in the Apollo program sped up the development of computer and communications technology and also led to innovations in fuel cells, water purification, freeze-drying food, and digital image processing now used in medical products for CAT scans and MRIs.Adrian Slywotzky, “How Science Can Create Millions of New Jobs,” BusinessWeek , September 7, 2009, accessed May 11, 2011, http://www.businessweek.com/magazine/content/09_36/b4145036678131.htm . Today, government policies coming from the European Union mandate ambitious environmental targets, such as carbon-neutral fuels and energy, which are driving global R&D to achieve environmental goals the way the Apollo program drove R&D in the 1960s.Martin Grueber and Tim Studt, “A Battelle Perspective on Investing in International R&D,” R&D Magazine , December 22, 2009, http://www.rdmag.com/Featured-Articles/2009/12/Global-Funding-Forecast-A-Battelle-Perspective-International-R-D .

After the 1990s, US investment in R&D declined, especially in basic research. Governments in other countries, however, continue to invest. New government-corporate partnerships are developing around the world. IBM, which for years closely guarded its R&D labs (even IBM employees were required to have special badges to enter the R&D area), is now setting up “collaboratories” around the world. These collaboratories are partnerships between IBM researchers and outside experts from government, universities, and even other companies. “The world is our lab now,” says John E. Kelly III, director of IBM Research.Steve Hamm, “How Big Blue Is Forging Cutting-edge Partnerships around the World,” BusinessWeek , August 27, 2009, accessed January 2, 2010, http://www.businessweek.com/print/magazine/content/09_36/b4145040683083.htm . IBM has deals for six future collaboratories in China, Ireland, Taiwan, Switzerland, India, and Saudi Arabia.

The reason for the collaboratory strategy is to share R&D costs—IBM’s partners must share 50 percent of the funding costs, which means that together the partners can participate in a large-scale effort that they’d be hard pressed to fund on their own. An example is IBM’s research partnership with the state-funded Swiss university ETH Zurich. The two are building a $70 million semiconductor lab for nanotech research with the goal of identifying a replacement for the current semiconductor-switch technology.Steve Hamm, “How Big Blue Is Forging Cutting-Edge Partnerships around the World,” BusinessWeek , August 27, 2009, accessed January 2, 2010, http://www.businessweek.com/print/magazine/content/09_36/b4145040683083.htm . Such a breakthrough could harken the creation of a whole new industry.

Of all the countries in the world, the United States remains the largest investor in R&D. One-third of all spending on R&D comes from the United States. Just one government agency—the Department of Defense—provides more funding than all the nations of the world except China and Japan. Nonetheless, other countries are increasing the amounts of money they spend on R&D. Their governments are funding R&D at higher levels and are giving more attractive tax incentives to firms that spend on R&D.

Governments can also play a big role in the protection of intellectual property rights, as you’ll see in Section 13.2 .

KEY TAKEAWAYS

  • R&D refers to two intertwined processes of research (to identify new facts and ideas) and development (turning the ideas into tangible products and services.) Companies undertake R&D to get a pipeline of new products. Breakthrough innovations can create whole new industries, which can provide thousands of jobs.
  • Invention is the creation of a new idea embodied in a product or process, while innovation takes that new idea and commercializes it in a way that enables a company to generate revenue from it.
  • Government support of R&D plays a significant role in innovation. It has been generally accepted that it’s desirable to encourage R&D for reasons of economic growth as well as national security. This has resulted in massive support from public funds for many sorts of laboratories. Governments influence R&D not only by providing direct funding but also by providing tax incentives to companies that invest in R&D. Governments also stimulate innovation through supporting institutions such as education and providing reliable infrastructure.

(AACSB: Reflective Thinking, Analytical Skills)

  • What benefits does a company get by investing in R&D?
  • Why do organizations make a distinction between basic research and applied research?
  • Describe three ways in which government can influence R&D.

Building an R&D strategy for modern times

The global investment in research and development (R&D) is staggering. In 2019 alone, organizations around the world spent $2.3 trillion on R&D—the equivalent of roughly 2 percent of global GDP—about half of which came from industry and the remainder from governments and academic institutions. What’s more, that annual investment has been growing at approximately 4 percent per year over the past decade. 1 2.3 trillion on purchasing-power-parity basis; 2019 global R&D funding forecast , Supplement, R&D Magazine, March 2019, rdworldonline.com.

While the pharmaceutical sector garners much attention due to its high R&D spending as a percentage of revenues, a comparison based on industry profits shows that several industries, ranging from high tech to automotive to consumer, are putting more than 20 percent of earnings before interest, taxes, depreciation, and amortization (EBITDA) back into innovation research (Exhibit 1).

What do organizations expect to get in return? At the core, they hope their R&D investments yield the critical technology from which they can develop new products, services, and business models. But for R&D to deliver genuine value, its role must be woven centrally into the organization’s mission. R&D should help to both deliver and shape corporate strategy, so that it develops differentiated offerings for the company’s priority markets and reveals strategic options, highlighting promising ways to reposition the business through new platforms and disruptive breakthroughs.

Yet many enterprises lack an R&D strategy that has the necessary clarity, agility, and conviction to realize the organization’s aspirations. Instead of serving as the company’s innovation engine, R&D ends up isolated from corporate priorities, disconnected from market developments, and out of sync with the speed of business. Amid a growing gap in performance  between those that innovate successfully and those that do not, companies wishing to get ahead and stay ahead of competitors need a robust R&D strategy that makes the most of their innovation investments. Building such a strategy takes three steps: understanding the challenges that often work as barriers to R&D success, choosing the right ingredients for your strategy, and then pressure testing it before enacting it.

Overcoming the barriers to successful R&D

The first step to building an R&D strategy is to understand the four main challenges that modern R&D organizations face:

Innovation cycles are accelerating. The growing reliance on software and the availability of simulation and automation technologies have caused the cost of experimentation to plummet while raising R&D throughput. The pace of corporate innovation is further spurred by the increasing emergence of broadly applicable technologies, such as digital and biotech, from outside the walls of leading industry players.

But incumbent corporations are only one part of the equation. The trillion dollars a year that companies spend on R&D is matched by the public sector. Well-funded start-ups, meanwhile, are developing and rapidly scaling innovations that often threaten to upset established business models or steer industry growth into new areas. Add increasing investor scrutiny of research spending, and the result is rising pressure on R&D leaders to quickly show results for their efforts.

R&D lacks connection to the customer. The R&D group tends to be isolated from the rest of the organization. The complexity of its activities and its specialized lexicon make it difficult for others to understand what the R&D function really does. That sense of working inside a “black box” often exists even within the R&D organization. During a meeting of one large company’s R&D leaders, a significant portion of the discussion focused on simply getting everyone up to speed on what the various divisions were doing, let alone connecting those efforts to the company’s broader goals.

Given the challenges R&D faces in collaborating with other functions, going one step further and connecting with customers becomes all the more difficult. While many organizations pay lip service to customer-centric development, their R&D groups rarely get the opportunity to test products directly with end users. This frequently results in market-back product development that relies on a game of telephone via many intermediaries about what the customers want and need.

Projects have few accountability metrics. R&D groups in most sectors lack effective mechanisms to measure and communicate progress; the pharmaceutical industry, with its standard pipeline for new therapeutics that provides well-understood metrics of progress and valuation implications, is the exception, not the rule. When failure is explained away as experimentation and success is described in terms of patents, rather than profits, corporate leaders find it hard to quantify R&D’s contribution.

Yet proven metrics exist  to effectively measure progress and outcomes. A common challenge we observe at R&D organizations, ranging from automotive to chemical companies, is how to value the contribution of a single component that is a building block of multiple products. One specialty-chemicals company faced this challenge in determining the value of an ingredient it used in its complex formulations. It created categorizations to help develop initial business cases and enable long-term tracking. This allowed pragmatic investment decisions at the start of projects and helped determine the value created after their completion.

Even with outcomes clearly measured, the often-lengthy period between initial investment and finished product can obscure the R&D organization’s performance. Yet, this too can be effectively managed by tracking the overall value and development progress of the pipeline so that the organization can react and, potentially, promptly reorient both the portfolio and individual projects within it.

Incremental projects get priority. Our research indicates that incremental projects account for more than half of an average company’s R&D investment, even though bold bets and aggressive reallocation  of the innovation portfolio deliver higher rates of success. Organizations tend to favor “safe” projects with near-term returns—such as those emerging out of customer requests—that in many cases do little more than maintain existing market share. One consumer-goods company, for example, divided the R&D budget among its business units, whose leaders then used the money to meet their short-term targets rather than the company’s longer-term differentiation and growth objectives.

Focusing innovation solely around the core business may enable a company to coast for a while—until the industry suddenly passes it by. A mindset that views risk as something to be avoided rather than managed can be unwittingly reinforced by how the business case is measured. Transformational projects at one company faced a higher internal-rate-of-return hurdle than incremental R&D, even after the probability of success had been factored into their valuation, reducing their chances of securing funding and tilting the pipeline toward initiatives close to the core.

As organizations mature, innovation-driven growth becomes increasingly important, as their traditional means of organic growth, such as geographic expansion and entry into untapped market segments, diminish. To succeed, they need to develop R&D strategies equipped for the modern era that treat R&D not as a cost center but as the growth engine it can become.

Would you like to learn more about our Strategy & Corporate Finance Practice ?

Choosing the ingredients of a winning r&d strategy.

Given R&D’s role as the innovation driver that advances the corporate agenda, its guiding strategy needs to link board-level priorities with the technologies that are the organization’s focus (Exhibit 2). The R&D strategy must provide clarity and commitment to three central elements: what we want to deliver, what we need to deliver it, and how we will deliver it.

What we want to deliver. To understand what a company wants to and can deliver, the R&D, commercial, and corporate-strategy functions need to collaborate closely, with commercial and corporate-strategy teams anchoring the R&D team on the company’s priorities and the R&D team revealing what is possible. The R&D strategy and the corporate strategy must be in sync while answering questions such as the following: At the highest level, what are the company’s goals? Which of these will require R&D in order to be realized? In short, what is the R&D organization’s purpose?

Bringing the two strategies into alignment is not as easy as it may seem. In some companies, what passes for corporate strategy is merely a five-year business plan. In others, the corporate strategy is detailed but covers only three to five years—too short a time horizon to guide R&D, especially in industries such as pharma or semiconductors where the product-development cycle is much longer than that. To get this first step right, corporate-strategy leaders should actively engage with R&D. That means providing clarity where it is lacking and incorporating R&D feedback that may illuminate opportunities, such as new technologies that unlock growth adjacencies for the company or enable completely new business models.

Secondly, the R&D and commercial functions need to align on core battlegrounds and solutions. Chief technology officers want to be close to and shape the market by delivering innovative solutions that define new levels of customer expectations. Aligning R&D strategy provides a powerful forum for identifying those opportunities by forcing conversations about customer needs and possible solutions that, in many companies, occur only rarely. Just as with the corporate strategy alignment, the commercial and R&D teams need to clearly articulate their aspirations by asking questions such as the following: Which markets will make or break us as a company? What does a winning product or service look like for customers?

When defining these essential battlegrounds, companies should not feel bound by conventional market definitions based on product groups, geographies, or customer segments. One agricultural player instead defined its markets by the challenges customers faced that its solutions could address. For example, drought resistance was a key battleground no matter where in the world it occurred. That framing clarified the R&D–commercial strategy link: if an R&D project could improve drought resistance, it was aligned to the strategy.

The dialogue between the R&D, commercial, and strategy functions cannot stop once the R&D strategy is set. Over time, leaders of all three groups should reexamine the strategic direction and continuously refine target product profiles as customer needs and the competitive landscape evolve.

What we need to deliver it. This part of the R&D strategy determines what capabilities and technologies the R&D organization must have in place to bring the desired solutions to market. The distinction between the two is subtle but important. Simply put, R&D capabilities are the technical abilities to discover, develop, or scale marketable solutions. Capabilities are unlocked by a combination of technologies and assets, and focus on the outcomes. Technologies, however, focus on the inputs—for example, CRISPR is a technology that enables the genome-editing capability.

This delineation protects against the common pitfall of the R&D organization fixating on components of a capability instead of the capability itself—potentially missing the fact that the capability itself has evolved. Consider the dawn of the digital age: in many engineering fields, a historical reliance on talent (human number crunchers) was suddenly replaced by the need for assets (computers). Those who focused on hiring the fastest mathematicians were soon overtaken by rivals who recognized the capability provided by emerging technologies.

The simplest way to identify the needed capabilities is to go through the development processes of priority solutions step by step—what will it take to produce a new product or feature? Being exhaustive is not the point; the goal is to identify high-priority capabilities, not to log standard operating procedures.

Prioritizing capabilities is a critical but often contentious aspect of developing an R&D strategy. For some capabilities, being good is sufficient. For others, being best in class is vital because it enables a faster path to market or the development of a better product than those of competitors. Take computer-aided design (CAD), which is used to design and prototype engineering components in numerous industries, such as aerospace or automotive. While companies in those sectors need that capability, it is unlikely that being the best at it will deliver a meaningful advantage. Furthermore, organizations should strive to anticipate which capabilities will be most important in the future, not what has mattered most to the business historically.

Once capabilities are prioritized, the R&D organization needs to define what being “good” and “the best” at them will mean over the course of the strategy. The bar rises rapidly in many fields. Between 2009 and 2019, the cost of sequencing a genome dropped 150-fold, for example. 2 Kris A. Wetterstrand, “DNA sequencing costs: Data,” NHGRI Genome Sequencing Program (GSP), August 25, 2020, genome.gov. Next, the organization needs to determine how to develop, acquire, or access the needed capabilities. The decision of whether to look internally or externally is crucial. An automatic “we can build it better” mindset diminishes the benefits of specialization and dilutes focus. Additionally, the bias to building everything in-house can cut off or delay access to the best the world has to offer—something that may be essential for high-priority capabilities. At Procter & Gamble, it famously took the clearly articulated aspiration of former CEO A. G. Lafley to break the company’s focus on in-house R&D and set targets for sourcing innovation externally. As R&D organizations increasingly source capabilities externally, finding partners and collaborating with them effectively is becoming a critical capability in its own right.

How we will do it. The choices of operating model and organizational design will ultimately determine how well the R&D strategy is executed. During the strategy’s development, however, the focus should be on enablers that represent cross-cutting skills and ways of working. A strategy for attracting, developing, and retaining talent is one common example.

Another is digital enablement, which today touches nearly every aspect of what the R&D function does. Artificial intelligence can be used at the discovery phase to identify emerging market needs or new uses of existing technology. Automation and advanced analytics approaches to experimentation can enable high throughput screening at a small scale and distinguish the signal from the noise. Digital (“in silico”) simulations are particularly valuable when physical experiments are expensive or dangerous. Collaboration tools are addressing the connectivity challenges common among geographically dispersed project teams. They have become indispensable in bringing together existing collaborators, but the next horizon is to generate the serendipity of chance encounters that are the hallmark of so many innovations.

Testing your R&D strategy

Developing a strategy for the R&D organization entails some unique challenges that other functions do not face. For one, scientists and engineers have to weigh considerations beyond their core expertise, such as customer, market, and economic factors. Stakeholders outside R&D labs, meanwhile, need to understand complex technologies and development processes and think along much longer time horizons than those to which they are accustomed.

For an R&D strategy to be robust and comprehensive enough to serve as a blueprint to guide the organization, it needs to involve stakeholders both inside and outside the R&D group, from leading scientists to chief commercial officers. What’s more, its definition of capabilities, technologies, talent, and assets should become progressively more granular as the strategy is brought to life at deeper levels of the R&D organization. So how can an organization tell if its new strategy passes muster? In our experience, McKinsey’s ten timeless tests of strategy  apply just as well to R&D strategy as to corporate and business-unit strategies. The following two tests are the most important in the R&D context:

  • Does the organization’s strategy tap the true source of advantage? Too often, R&D organizations conflate technical necessity (what is needed to develop a solution) with strategic importance (distinctive capabilities that allow an organization to develop a meaningfully better solution than those of their competitors). It is also vital for organizations to regularly review their answers to this question, as capabilities that once provided differentiation can become commoditized and no longer serve as sources of advantage.
  • Does the organization’s strategy balance commitment-rich choices with flexibility and learning? R&D strategies may have relatively long time horizons but that does not mean they should be insulated from changes in the outside world and never revisited. Companies should establish technical, regulatory, or other milestones that serve as clear decision points for shifting resources to or away from certain research areas. Such milestones can also help mark progress and gauge whether strategy execution is on track.

Additionally, the R&D strategy should be simply and clearly communicated to other functions within the company and to external stakeholders. To boost its clarity, organizations might try this exercise: distill the strategy into a set of fill-in-the-blank components that define, first, how the world will evolve and how the company plans to refocus accordingly (for example, industry trends that may lead the organization to pursue new target markets or segments); next, the choices the R&D function will make in order to support the company’s new focus (which capabilities will be prioritized and which de-emphasized); and finally, how the R&D team will execute the strategy in terms of concrete actions and milestones. If a company cannot fit the exercise on a single page, it has not sufficiently synthesized the strategy—as the famed physicist Richard Feynman observed, the ultimate test of comprehension is the ability to convey something to others in a simple manner.

Cascading the strategy down through the R&D organization will further reinforce its impact. For example, asking managers to communicate the strategy to their subordinates will deepen their own understanding. A useful corollary is that those hearing the strategy for the first time are introduced to it by their immediate supervisors rather than more distant R&D leaders. One R&D group demonstrated the broad benefits of this communication model: involving employees in developing and communicating the R&D strategy helped it double its Organizational Health Index  strategic clarity score, which measures one of the four “power practices”  highly connected to organizational performance.

R&D represents a massive innovation investment, but as companies confront globalized competition, rapidly changing customer needs, and technological shifts coming from an ever-wider range of fields, they are struggling to deliver on R&D’s full potential. A clearly articulated R&D strategy that supports and informs the corporate strategy is necessary to maximize the innovation investment and long-term company value.

Explore a career with us

Related articles.

The innovation commitment

The innovation commitment

Eight_essentials_1536x1536_Original

The eight essentials of innovation

The committed innovator: An interview with Salesforce’s Simon Mulcahy

The Committed Innovator: An interview with Salesforce’s Simon Mulcahy

Book cover

Encyclopedia of Quality of Life and Well-Being Research pp 5516–5517 Cite as

Research and Development (R&D)

  • Sakari Kainulainen 3  
  • Reference work entry

528 Accesses

Mode 2 knowledge production (Mode 2) ; Mode 2 knowledge production ; Research and development and innovations (R&D&I)

Research and development (R&D) is a broad category describing the entity of basic research, applied research, and development activities. In general research and development means systematic activities in order to increase knowledge and use of this knowledge when developing new products, processes, or services. Nowadays innovation activities are strongly tight into the concept of research and development. In the broadest meaning, research and development consists of every activity from the basic research to the (successful) marketing of a product or (effective) launching of a new process (R&D&I).

Description

Research and development work is mostly related to business organizations. Development activities are targeted for them to development of new products and their success within the markets. A new product can be seen as the end of the chain of which...

This is a preview of subscription content, log in via an institution .

Buying options

  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
  • Available as EPUB and PDF
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Gibbons, M., Limoges, C., Nowotny, H., Schwartzman, S., Scott, P., & Trow, M. (1994). The new production of knowledge: The dynamics of science and research in contemporary societies . London: Sage.

Google Scholar  

Gulbrandsen, M. The role of basic research in innovation. Confluence , 55 . Retrieved from http://www.cas.uio.no/Publications/Seminar/Confluence_Gulbrandsen.pdf

Download references

Author information

Authors and affiliations.

Diaconia University of Applied Sciences, Sturenkatu 2, Helsinki, 00510, Finland

Sakari Kainulainen

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Sakari Kainulainen .

Editor information

Editors and affiliations.

University of Northern British Columbia, Prince George, BC, Canada

Alex C. Michalos

(residence), Brandon, MB, Canada

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this entry

Cite this entry.

Kainulainen, S. (2014). Research and Development (R&D). In: Michalos, A.C. (eds) Encyclopedia of Quality of Life and Well-Being Research. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0753-5_2482

Download citation

DOI : https://doi.org/10.1007/978-94-007-0753-5_2482

Publisher Name : Springer, Dordrecht

Print ISBN : 978-94-007-0752-8

Online ISBN : 978-94-007-0753-5

eBook Packages : Humanities, Social Sciences and Law

Share this entry

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research

ASHA_org_pad

  • CREd Library , Planning, Managing, and Publishing Research

Developing a Five-Year Research Plan

Cathy binger and lizbeth finestack, doi: 10.1044/cred-pvd-path006.

The following is a transcript of the presentation videos, edited for clarity.

What Is a Research Plan, and Why Do You Need One?

Presented by Cathy Binger

short note on research development

First we’re going to talk about what a research plan is, why it’s important to write one, and why five years—why not one year, why not ten years. So we’ll do some of those basic things, then Liza is going to get down and dirty into the nitty-gritty of “now what” how do I go about writing that research plan.

short note on research development

First of all, what is a research plan? I’m sure some of you have taken a stab at these already. In case you haven’t, this is a real personalized map that relates your projects to goals. It’s exactly what it sounds like, it’s a plan of how you’re going to go about doing your research. It doesn’t necessarily just include research.

It’s something that you need to put a little time and effort into in the beginning. And then, if you don’t revisit it, it’s really a useless document. It’s something that you need to come back to repeatedly, at least annually, and you need to make it visible. So it’s not a document that sits around and once a year you pull it out and look at it.

It can and should be designed, especially initially, with the help of a mentor or colleague. And it does serve multiple purposes, with different lengths and different amounts of detail.

I forgot to say, too, getting started, the slides for this talk were started using as a jumping off point Ray Kent’s talk from last year. So some of the slides we’ve borrowed from him, so many thanks to him for that.

short note on research development

But why do we want to do a research plan? Well, to me the big thing is the vision. Dr. Barlow talked this morning about your line of research and really knowing where you want to go, and this is where that shows up with all the nuts and bolts in place.

What do you want to accomplish? What do you want to contribute? Most of you are at the stage in your career where maybe you have started out with that you want to change the world scenario and realized that whatever you wanted your first research project to be, really, is your entire career. You need to get that down to the point where it is manageable projects that you can do—this is where you map out what those projects are and set reasonable timelines for that.

You want to really demonstrate your independent thinking and your own creativity, whatever that is that you then establish as a PhD student, postdoc, and beyond—this is where you come back to, okay, here’s how I’m going to go about achieving all of that.

This next point, learning to realistically gauge how long it takes to achieve each goal, this for most of us is a phenomenally challenging thing to do. Most of us really overestimate what we can do in a certain amount of time, and we learn the hard way that you can’t, and that’s another reason why you keep coming back to these plans repeatedly and learning over time what’s really manageable, what’s really doable, so we can still reach our goals and be very strategic about how we do that.

When you’re not strategic, you just don’t meet the goals. Your time gets sucked into so many different things. We need to be really practical and strategic.

Everything we do is going to take longer than we think.

I think this last one is something that maybe we don’t talk about enough. Really being honest with ourselves about the role of research in our lives. Not all of you are at very high-level research universities. Some of you have chosen to go elsewhere, where research maybe isn’t going to be playing the same role as it is for other people. The research plan for someone at an R One research intensive university is going to look quite different from someone who is at a primary teaching university. We need to be open and practical about that.

short note on research development

Getting sidetracked. I love this picture, I just found this picture the other day. This feels like my life. You can get pulled in so many different directions once you are a professor. You will get asked to do a thousand different things. There are lots of great opportunities that are out there. Especially initially, it’s tempting to say yes to all of them. But if you’re going to be productive, you have to be very strategic. I’m going to be a little bit sexist against my own sex here for a minute, but my observation has been that women tend to fall into this a little bit more than men do in wanting to say yes and be people pleasers for everything that comes down the pike.

It is a professional skill to learn how to say no. And to do that in such a way that you are not burning bridges as you go down the path. That is a critical skill if you are going to be a successful researcher. I can’t tell you how many countless people I’ve seen who are very bright, very dedicated, have the skills that it takes in terms of doing the work—but then they are not successful because they’ve gotten sidetracked and they try to be too much of a good citizen, give too much service to the department, too much “sure I’ll take on that extra class” or whatever else comes down the line.

I just spoke with a professor recently who had something like five hours a week of office hours scheduled every single week for one class. Margaret is shaking her head like “are you kidding?” That’s crazy stuff. But he wanted to really support his students. His students loved him, but he was not going to get tenure. That’s the story.

So we have to be very thoughtful and strategic, and what can help you with this, and ASHA very firmly recognizes which is why we’re here—is that your mentors in your life should be there to help you learn these skills and learn what to say yes to, and learn what to say no to. I’ve learned to say things like, “Let me check with my mentor before I agree to that.” And it gives you a way out of that. The line that I use a lot is, “Let me check with my department head” or, I just said this to somebody last week, “I just promised my department head two weeks ago that I would only do X number of external workshops this year, so I’m going to have to turn this one down.” Those are really important skills to develop.

And having that research plan in place that you can go back to and say, know what, it’s not on my plan I can’t do it. If I do it—I have to go back to my research plan and figure out what I’m going to kick off in order to review this extra paper, in order to take on this extra task. The plan also helps me to know exactly what to say no to. And to be very direct and have a very strong visual.

I actually have my research plan up on a giant whiteboard in my office, so I can always go back to that and see where I am, and I can say, “Okay, what am I going to kick off of here? Nothing. Okay, I have to say no to whatever comes up.” Just be strategic. This is where I see most beginning professors really end up taking that wrong fork in the road—taking that right instead of that left, and ending up not being the successful researcher that they wanted to be.

short note on research development

What evidence supports research planning? This was something Ray Kent had found. That a recent analysis had found that postdoc scholars who developed a written plan with their postdoc advisers were much more productive than those who didn’t. And your performance during a postdoc—and I know many of you have either finished your postdoc or decided not to—so more simply, just during those first six years, the decisions you make really do establish the foundation for the rest of your professional life. It’s very important to get started and get off on the right foot.

short note on research development

I love this quote, I just found it the other day: “Productivity is never an accident. It is always the result of a commitment to excellence, intelligent planning, and focused effort.”

short note on research development

What we see with productivity is that postdoc scholars who developed written productivity expectations with their advisers were more productive than those who didn’t. You see 23% more papers submitted, 30% more first-author papers, and more grant proposals as well.

short note on research development

So why five years? I’m going to start with number 5. It’s long enough to build a program of research, but short enough to deal with changing circumstances. That’s really the long and the short of the matter. As well as these other things as well that I won’t take the time to go through point by point.

What Should a Five-Year Plan Include?

Presented by Lizbeth Finestack

short note on research development

So, thinking about a five-year research plan, I like to think about it like your major “To Do List.” It’s what you’re going to accomplish in five years. Start thinking: What is going to be on my to do list?

short note on research development

You can also think about it like: Okay, I have research. I’ve got to do research. Maybe think about this as one big bucket, or maybe one humongous silo. I have some farm themes going on. Cathy was just on a farm, so I thought I’d tie that in.

So here’s your big silo. You can call that your research silo.

short note on research development

But more realistically, you need to think about it like separate buckets, separate silos, where research is just one of those. Just like Cathy indicated, there’s going to be lots of other things coming up that you’re going to have to manage. They are going to have to be on your to do list, you need to figure out how to fit everything in.

What all those other buckets or silos are, are really going to depend on your job. And maybe the size of the silos, and the size of the buckets are going to vary depending on where you are, what the expectations are at your institution.

That’s important to keep in mind, and Cathy said this too, it’s not going to be the same for everyone. The five-year plan has to be your plan, your to do list.

short note on research development

Here are some buckets or some silos that I have on my list and the way that I break it up, this is just one example, take it or leave it.

The first three are all very closely related, right? Thinking about grants, thinking about research, thinking about publications. I’m going to define grants as actual writing, getting the grant, getting the money.

Research is what you’re going to do once you get that money. Steps you need to take before you are getting the money. Any sorts of projects, the lab work, that’s why I have the lab picture there. Of course, publications are part of the product—what’s coming out of the research—but it also cycles in because you need publications to support that you are a researcher to apply for funding and show you have this line of research that you’ve established and you’ll be able to continue. So, those first three are really closely related. And that’s where I’ll go next. And then have teaching and service you see here at the bottom.

short note on research development

So thinking about research, in that broad sense. As you’re writing your five-year plan you’re going to want to think of, “What’s my long-term goal?” There’s lots of ways to think of long-term goals. You could think, before I die, this is what I want to accomplish. For me I kind of have that. My long-term goal is that I’m going to find the most effective and efficient interventions for kids with language impairment. Huge broad goal. But within that I can start narrowing it down.

Where am I within that? Within the next five years or maybe the next ten years, what is it I want to accomplish towards that goal. Then start thinking about: In order to accomplish that goal, what are the steps I need to take? Starting to break it down a little bit. Then it’s also going to be really important to think: where are you going to start? Where are you now? What do you need to have happen? And is it reasonable to accomplish this goal within five years? Is it going to take longer? Maybe you could do it in a couple years? Start thinking about the timeline that’s going to work for you.

short note on research development

Then thinking about your goals—and everyone’s program is going to be different, like I said, there’s going to be a lot of individual needs, preferences. So it might be the case that you have this one long-term goal that you’re aiming for. Long-term goal in the sense of, maybe, what you want to study in your R01, perhaps something like that. But in order to get to that point, you’re going to have several short-term goals that need to be accomplished.

short note on research development

Or maybe it’s the case that you have two long-term goals. And with each of those you’re going to have multiple short-term goals that you’re working on. Maybe the scope of each of these long-term goals is a little bit less than in that first scenario.

Start thinking about my research, what I want to do, and how it might fit into these different circumstances.

short note on research development

Also thinking about your goals, this is a slide from Ray Kent from last year, was thinking about the different types of projects you might want to pursue, and thinking about ones that are definitely well on your way. They are safe bets. You have some funding. They are going to lead directly into your longer-term plan.

Those are going to be your front burner—things you can easily focus on. That said, don’t put everything there.

You can also have things on the back burner. Things that really excite you, might have huge benefits, big pay. But you don’t want to spend all of your time there because they could be pretty risky.

Start thinking about where you’re putting your time. Are you putting it all on this high-risk thing that if it doesn’t pan out you’re going to be in big trouble? Or balancing that somewhat with your front burner. Making that steady progress that will lead directly to help fund an R01 or whatever the mechanism that you’re looking for.

short note on research development

Then, thinking about your goals—if you have multiple long-term goals, or thinking about your short-term goals, you could think about your process. Is it something where you need to do study 1 then study 2, then study 3—each of those building on each other, that’s leading to that long-term goal. In many cases, that is the case, where you have to get information from the first study which is going to lead directly to the second study and so forth.

short note on research development

Or is it the case that you can be working on these three short-term goals simultaneously? Spreading your resources at the same time. Maybe it will take longer for any one study, but across a longer period of time you’ll get the information that you need to reach that long-term goal.

Lots and lots of different ways to go about it. The important thing is to think about what your needs are and what makes the most sense for you.

short note on research development

Here’s my own little personal example. Starting over here, I have my dissertation study. My dissertation study was this early efficacy study looking at one treatment approach using novel forms that really can’t generalize to anything too useful, but it was important.

Then I did a follow up study, where I was taking that same paradigm, looking to see where kids with typical development perform on the task. So I have these two studies, and they served as my preliminary studies for an R03. So I just finished an R03 where I was looking at different treatment approaching for kids with primary language impairment. At the same time, while conducting my R03, I’m also looking at some different approaches that might help with language development. Also conducting surveys to see what current practices are.

I have these three projects going on simultaneously, that are going to lead to a bigger pilot study that are going to feed directly into my R01. All of this will serve as preliminary data to go into an R01.

Start thinking about your projects, what you have. Maybe starting with your dissertation project or work that you’re doing as a postdoc as seeing how that can feed into your long-term goal. And really utilizing it, building on it, to your benefit.

short note on research development

That’s all fine and dandy. You can draw these great pictures. But you still have to break it down some more. It’s not like, “Oh, I’m just going to do this project.” There are other steps involved, and lots of the time these steps are going to be just as time consuming.

Starting to think about: well, if you have the funding. Saying, “I want to do this study, but I have no money to do it.” What are the steps in order to get the money to do it? Do you have a pilot study? What do you need?

Start thinking about the resources? Do you need to develop stimuli, protocols, procedures? Start working on that. All of these can be very time consuming, and if you don’t jump on that immediately, it’s going to delay when you can start that project.

Thinking about IRB. Relationships for recruitment, if you’re working with special populations especially? Do you have necessary personnel, grad students, people to help you with the project? Do you need to train them? What’s the timeline of the study?

Start thinking about all these pieces, and how they are going to fit in that timeline.

short note on research development

This is one way that might help you start thinking about the resources that you need. This is online—Ray Kent had it in his talk, and when I was doing my searches I came across it too and I have the website at the end. Just different ways to think about the resources you might need.

short note on research development

Let’s talk about mapping it out. You have your long-term goal. You have your short-term goals. You’re breaking it down thinking about all those little steps that you need to accomplish. We gotta put it on a calendar. When is it going to happen?

This is an example—you might have your five years. Each month plugging in what are you going to accomplish by that time. Maybe it’s when are grant applications due? It’s going to be important to put those on there to go what do I need to do to make that deadline. Maybe it’s putting when you’re going to get publications out. Things like that.

Honestly, looking at this drives me a little bit crazy, it seems a bit overwhelming. But it’s important to get to these details.

short note on research development

This is an example from, I did Lessons for Success a few years ago and they had their format for doing your plan. I wrote out all my projects, started thinking about all the different aspects. So if something like this works for you, by all means you could use that type of procedure.

short note on research development

Here’s a grid that Ray Kent showed last year. We’re breaking it down by semester. Thinking about each of your semesters, what manuscripts you’re going to be working on, what data collection, your grant applications. Starting to get into some of those other buckets: course preparation, conference submissions.

short note on research development

We also need to include teaching and service.

You probably can’t see this very well. This is similar to that last slide Ray Kent had used last year.

I have my five year plan: what studies I want to accomplish, start thinking about breaking it down.

Then at the beginning of each semester, I fill in a grid like this. Where at the top, I have each of my buckets. I have my grant bucket, my writing bucket which is going to include publications. I also include doing article reviews in my writing bucket, because that’s my writing time. My teaching bucket, my research bucket. Then at the end, my service bucket.

At the beginning of the semester, I think about the big things I want to accomplish. I list those at the top. Then at the beginning of each month, I say, okay what are the things I’m going to accomplish this month, write those in. Then at the beginning of each week, I start looking at whether I’m dedicating any time to the things I said I was going to do that month. I start listing those out saying, this is the amount of time I’m going to spend on that. Of course, I have to take data on what I actually do, so I plug in how much time I’m spending on each of the tasks. Then I graph it, because that’s rewarding to see how much time you’re spending on things, and I get a little side-tracked sometimes.

Think about a system that will help you keep on track, to make sure you’re meeting the goals that you want to meet in terms of your research. But also getting the other things done that you need to get done in terms of teaching and service.

Discussion and Questions

Compiled from comments made during the Pathways 2014 and 2015 conferences. (Video unavailable.)

Building Flexibility into Your Five-Year Plan Comments by Ray Kent, University of Wisconsin-Madison

The five-year plan is not a contract. It’s a map or a compass. A general set of directions to help you plan ahead. It’s not even a contract with yourself, because it will inevitably be revised in some ways.

Sometimes cool things land in your lap. Very often it turns out that through serendipity or whatever else, you find opportunities that are very enticing. Some of those can be path to an entirely new line of research. Some of them can be a huge distraction and a waste of time. It’s a really cool part of science that new things come along. If we put on blinders and say, “I’m committed to my research plan,” and we don’t look to the left or the right, we’re really robbing ourselves of much of the richness of the scientific life. Science is full of surprises, and sometimes those surprises are going to appear as research projects. The problem is you don’t want to redirect all your time and resources to those until you’re really sure they are going to pay off. I personally believe, some of those high risk but really appealing projects are things you can nurse along. You can devote some time and build some collaborations – far enough to determine how realistic and viable they are. That’s important because those things can be the core of your next research program.

It’s very easy to get overcommitted. We all know people who always say “yes”—and we know those people, and they are often disappointing because they can’t get things done. It’s important to have new directions, but limit them. Don’t say, “I’m going to have 12 new directions this year.” Maybe one or two. Weigh them carefully. Talk about them with other people to get a judgment about how difficult it might be to implement them. It enriches science: not only our knowledge, but the way we acquire new knowledge. A psychologist, George Miller—this is the guy with the magic number 7 +- 2—when we interviewed him years ago at Boystown, he said, “My conviction is that everybody should be able to learn a new area of study within three months.” That’s what he thought for a scientist was a goal.

The idea is that you can learn new things. And that’s very important because when you think of it in terms of a 30-year career, how likely is it that the project that you’re undertaking at age 28 is the same project you’ll be working on at age 68? Not very likely. You’re going to be reinventing yourself as a scientist. And reinventing yourself is one of the most important things you can do, because otherwise you’re going to be dead wood. Some projects aren’t worth carrying beyond five or ten years. They have an expiration date.

Building Risk into Your Five-Year Plan Comments by Ray Kent, University of Wisconsin-Madison

Your doctoral study should generally be low-risk research. As you move into a postdoctoral fellowship, think about having two studies—one low-risk, one high-risk with a potential for high impact. At this time you can begin to play the risk factor a little bit differently.

When you are tenure-track you can have a mix of significance with low-risk and high-risk studies. And when you are tenured, then you can go for high risk, clinical trials, and collaborations. Because you have established your independence, so you do not need to worry about losing your visibility. You can be recognized as a legitimate member of the team.

As you plan your career, you should take risk into account. Just as you manage your money taking risk into account, we should manage our careers taking risk into account. I have met people who did not really think about that, and they embarked on some very risky procedures and wasted a lot of time and resources with very little to show for it. For example, don’t put everything into an untested technology basket. You want to be using state of the art technology, but you want to be sure it is going to give you what you need.

Other Formats and Uses of Your Research Plan Audience Comments

  • If you do your job right with your job talk, there’s a lot of cross-pollination between your job talk and your research plan. Ideally your job talk tells your colleagues that this is the long-term plan that you have. And they shouldn’t be surprised when you submit a more detailed research plan. They should say, “okay this is very consistent with the job talk.” In my view, the job talk should be a crystal summary of the major aspects of that research program. Of course, much of the talk will be about a specific project or two—but it should always be embedded within the larger program. That helps the audience keep sight of the fact that you are looking at the program. You can say that this is one project that I’ve done, and I plan to do more of these, and this is how they are conceptually related. That’s a good example of why the research plan has multiple purposes – it can be a research statement, it can be the core of your job talk, it can be the nature of your elevator message, and it can be a version of your research plan for a K award application or R01 application or anything else of that nature.
  • I think what’s useful is to actually draft your NIH biosketch. The new biosketch has a section called “contributions to science.” It’s really helpful to think about all your projects. It’s hard to start with a blank sheet of paper. But to have it in the format of a biosketch can be really helpful.

Avoiding Overcommitment Audience Comments

  • One of the things that is amazing about planning is that if you put an estimate on the level of effort for each part of your plan, you’ll quickly find that you are living three or four lives. Some 300% of your time is spent. It’s helpful for those of us who might share my lack of ability to see constraints or limitations to reel it back and say, “I have a lot on my plate.” Which allows you to say no—which is not something we all do very well when it comes to those nice colleagues and those people you want to impress nationally and connect with. But it allows you to look at what’s planned and go, “I don’t know where I’d find the time to do that.” Which will hopefully help you stay on track.
  • I keep a to do list, but I also keep a “to not do” list. One of the things I will keep on my plan is the maximum number of papers I will review in a year. If I hit that number in March, that’s it. I say no to every other paper that comes down the pike. That’s something to work out with your mentor as far as what’s realistic and what’s okay for you. Every time I get a request, I think, “That’s my reading and writing time, so what am I willing to give up. If it means I won’t be able to write on my own paper this week, am I willing to do this?”

Staying on Schedule with Reading, Writing, and Reviewing Audience Comments

  • You have to do what works for you. Some people do wait for big blocks of time for writing—which are hard to come by. But the most important thing is to block off your time. Put it on your schedule, or it is the first thing that will get pushed aside.
  • Another thing I’ve done with some of my colleagues is writing retreats. So maybe once a year, twice a year, we’ll get together. Usually we’ll go to a hotel or somewhere, and we’re just writing. It’s a great way to get a jumpstart on a project. Like, I need to sit down and start this manuscript, and you can keep going once you’ve got that momentum.
  • My input would be that you really have to write all the time, every day. It’s a skill. I’ve found that if I take time off, my writing deteriorates. It’s something you need to keep up with.
  • I would look at it like a savings account that you put money into on a daily, weekly, monthly basis. The flip side of writing is reading. I would read constantly, widely, and not just in the discipline. That will give you not only a breadth in terms of your understanding of your field and the world around you, but it will also give you an incentive to make your own contributions. I think we don’t talk enough about the comprehensive side to this, and being receptive to the reading. I have a book, or something, by my bedside every night. And I read that until I fall asleep every night. And it’s done me in good stead over the years.
  • Reviewing articles can help advance your career, but it is something you need to weigh carefully as a draw on your time. You get a lot from it. You get to see what’s out there. You get to see what’s coming down the pipe before publication. To me that’s a huge benefit. You get to learn from other people’s writing, and that’s part of your reading you get to do. But it is time consuming. And it depends on the kinds of papers you get. Sometimes you’re lucky and sometimes you’re not.
  • If someone else is reviewing your grants and your articles, at some point you owe it back. You should at least be in break-even mode. Now, pre-tenure or postdoc your mentor should be doing that or senior faculty in the department. But there are so many articles to review. I review so many articles, but I am also at the tail end of my career. The bottom line is, if you don’t put on your schedule that if you don’t put time on your schedule for reading, reviewing articles forces you to look at and think about the literature, so you can be accomplishing what you owe back to the field—and at the same time, staying one step ahead knowledge wise. It forces you to do what you should be doing all along, which is keeping up with the literature.

Further Reading: Web Resources

Golash-Boza, T. (2014). In Response to Popular Demand, More on the 5-Year Plan. The Professor Is In . Available at http://theprofessorisin.com/2014/05/09/in-response-to-popular-demand-more-on-the-5-year-plan

Kelsky, K. (2010). The Five-Year Plan for Tenure-Track Professors. Get a life, PhD . Available at http://getalifephd.blogspot.com/2010/07/five-year-plan-for-tenure-track.html

National Association of Geoscience Teachers (NAGT). (2012). Planning Worksheets . Planning your Research Program (Available from the Science Education Resource Center at Carelton College Website at http://serc.carleton.edu/).

Pfirman, S., Bell, R., Culligan, P., Balsam, P. & Laird, J. (2008) . Maximizing Productivity and Recognition , Part 3: Developing a Research Plan. Science Careers. Available at http://sciencecareers.sciencemag.org/career_magazine/previous_issues/articles/2008_10_10/caredit.a0800148

Cathy Binger University of New Mexico

Lizbeth Finestack University of Minnesota

Based on a presentation and slides originally developed by Ray Kent, University of Wisconsin-Madison.

Presented at Pathways (2015). Hosted by the American Speech-Language-Hearing Association Research Mentoring Network.

Pathways is sponsored by the National Institute on Deafness and Other Communication Disorders (NIDCD) of the National Institutes of Health (NIH) through a U24 grant awarded to ASHA.

Copyrighted Material. Reproduced by the American Speech-Language-Hearing Association in the Clinical Research Education Library with permission from the author or presenter.

logoCREDHeader

Clinical Research Education

More from the cred library, innovative treatments for persons with dementia, implementation science resources for crisp, when the ears interact with the brain, follow asha journals on twitter.

logoAcademy_Revised_2

© 1997-2024 American Speech-Language-Hearing Association Privacy Notice Terms of Use

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base

Methodology

  • What Is a Research Design | Types, Guide & Examples

What Is a Research Design | Types, Guide & Examples

Published on June 7, 2021 by Shona McCombes . Revised on November 20, 2023 by Pritha Bhandari.

A research design is a strategy for answering your   research question  using empirical data. Creating a research design means making decisions about:

  • Your overall research objectives and approach
  • Whether you’ll rely on primary research or secondary research
  • Your sampling methods or criteria for selecting subjects
  • Your data collection methods
  • The procedures you’ll follow to collect data
  • Your data analysis methods

A well-planned research design helps ensure that your methods match your research objectives and that you use the right kind of analysis for your data.

Table of contents

Step 1: consider your aims and approach, step 2: choose a type of research design, step 3: identify your population and sampling method, step 4: choose your data collection methods, step 5: plan your data collection procedures, step 6: decide on your data analysis strategies, other interesting articles, frequently asked questions about research design.

  • Introduction

Before you can start designing your research, you should already have a clear idea of the research question you want to investigate.

There are many different ways you could go about answering this question. Your research design choices should be driven by your aims and priorities—start by thinking carefully about what you want to achieve.

The first choice you need to make is whether you’ll take a qualitative or quantitative approach.

Qualitative research designs tend to be more flexible and inductive , allowing you to adjust your approach based on what you find throughout the research process.

Quantitative research designs tend to be more fixed and deductive , with variables and hypotheses clearly defined in advance of data collection.

It’s also possible to use a mixed-methods design that integrates aspects of both approaches. By combining qualitative and quantitative insights, you can gain a more complete picture of the problem you’re studying and strengthen the credibility of your conclusions.

Practical and ethical considerations when designing research

As well as scientific considerations, you need to think practically when designing your research. If your research involves people or animals, you also need to consider research ethics .

  • How much time do you have to collect data and write up the research?
  • Will you be able to gain access to the data you need (e.g., by travelling to a specific location or contacting specific people)?
  • Do you have the necessary research skills (e.g., statistical analysis or interview techniques)?
  • Will you need ethical approval ?

At each stage of the research design process, make sure that your choices are practically feasible.

Receive feedback on language, structure, and formatting

Professional editors proofread and edit your paper by focusing on:

  • Academic style
  • Vague sentences
  • Style consistency

See an example

short note on research development

Within both qualitative and quantitative approaches, there are several types of research design to choose from. Each type provides a framework for the overall shape of your research.

Types of quantitative research designs

Quantitative designs can be split into four main types.

  • Experimental and   quasi-experimental designs allow you to test cause-and-effect relationships
  • Descriptive and correlational designs allow you to measure variables and describe relationships between them.

With descriptive and correlational designs, you can get a clear picture of characteristics, trends and relationships as they exist in the real world. However, you can’t draw conclusions about cause and effect (because correlation doesn’t imply causation ).

Experiments are the strongest way to test cause-and-effect relationships without the risk of other variables influencing the results. However, their controlled conditions may not always reflect how things work in the real world. They’re often also more difficult and expensive to implement.

Types of qualitative research designs

Qualitative designs are less strictly defined. This approach is about gaining a rich, detailed understanding of a specific context or phenomenon, and you can often be more creative and flexible in designing your research.

The table below shows some common types of qualitative design. They often have similar approaches in terms of data collection, but focus on different aspects when analyzing the data.

Your research design should clearly define who or what your research will focus on, and how you’ll go about choosing your participants or subjects.

In research, a population is the entire group that you want to draw conclusions about, while a sample is the smaller group of individuals you’ll actually collect data from.

Defining the population

A population can be made up of anything you want to study—plants, animals, organizations, texts, countries, etc. In the social sciences, it most often refers to a group of people.

For example, will you focus on people from a specific demographic, region or background? Are you interested in people with a certain job or medical condition, or users of a particular product?

The more precisely you define your population, the easier it will be to gather a representative sample.

  • Sampling methods

Even with a narrowly defined population, it’s rarely possible to collect data from every individual. Instead, you’ll collect data from a sample.

To select a sample, there are two main approaches: probability sampling and non-probability sampling . The sampling method you use affects how confidently you can generalize your results to the population as a whole.

Probability sampling is the most statistically valid option, but it’s often difficult to achieve unless you’re dealing with a very small and accessible population.

For practical reasons, many studies use non-probability sampling, but it’s important to be aware of the limitations and carefully consider potential biases. You should always make an effort to gather a sample that’s as representative as possible of the population.

Case selection in qualitative research

In some types of qualitative designs, sampling may not be relevant.

For example, in an ethnography or a case study , your aim is to deeply understand a specific context, not to generalize to a population. Instead of sampling, you may simply aim to collect as much data as possible about the context you are studying.

In these types of design, you still have to carefully consider your choice of case or community. You should have a clear rationale for why this particular case is suitable for answering your research question .

For example, you might choose a case study that reveals an unusual or neglected aspect of your research problem, or you might choose several very similar or very different cases in order to compare them.

Data collection methods are ways of directly measuring variables and gathering information. They allow you to gain first-hand knowledge and original insights into your research problem.

You can choose just one data collection method, or use several methods in the same study.

Survey methods

Surveys allow you to collect data about opinions, behaviors, experiences, and characteristics by asking people directly. There are two main survey methods to choose from: questionnaires and interviews .

Observation methods

Observational studies allow you to collect data unobtrusively, observing characteristics, behaviors or social interactions without relying on self-reporting.

Observations may be conducted in real time, taking notes as you observe, or you might make audiovisual recordings for later analysis. They can be qualitative or quantitative.

Other methods of data collection

There are many other ways you might collect data depending on your field and topic.

If you’re not sure which methods will work best for your research design, try reading some papers in your field to see what kinds of data collection methods they used.

Secondary data

If you don’t have the time or resources to collect data from the population you’re interested in, you can also choose to use secondary data that other researchers already collected—for example, datasets from government surveys or previous studies on your topic.

With this raw data, you can do your own analysis to answer new research questions that weren’t addressed by the original study.

Using secondary data can expand the scope of your research, as you may be able to access much larger and more varied samples than you could collect yourself.

However, it also means you don’t have any control over which variables to measure or how to measure them, so the conclusions you can draw may be limited.

Prevent plagiarism. Run a free check.

As well as deciding on your methods, you need to plan exactly how you’ll use these methods to collect data that’s consistent, accurate, and unbiased.

Planning systematic procedures is especially important in quantitative research, where you need to precisely define your variables and ensure your measurements are high in reliability and validity.

Operationalization

Some variables, like height or age, are easily measured. But often you’ll be dealing with more abstract concepts, like satisfaction, anxiety, or competence. Operationalization means turning these fuzzy ideas into measurable indicators.

If you’re using observations , which events or actions will you count?

If you’re using surveys , which questions will you ask and what range of responses will be offered?

You may also choose to use or adapt existing materials designed to measure the concept you’re interested in—for example, questionnaires or inventories whose reliability and validity has already been established.

Reliability and validity

Reliability means your results can be consistently reproduced, while validity means that you’re actually measuring the concept you’re interested in.

For valid and reliable results, your measurement materials should be thoroughly researched and carefully designed. Plan your procedures to make sure you carry out the same steps in the same way for each participant.

If you’re developing a new questionnaire or other instrument to measure a specific concept, running a pilot study allows you to check its validity and reliability in advance.

Sampling procedures

As well as choosing an appropriate sampling method , you need a concrete plan for how you’ll actually contact and recruit your selected sample.

That means making decisions about things like:

  • How many participants do you need for an adequate sample size?
  • What inclusion and exclusion criteria will you use to identify eligible participants?
  • How will you contact your sample—by mail, online, by phone, or in person?

If you’re using a probability sampling method , it’s important that everyone who is randomly selected actually participates in the study. How will you ensure a high response rate?

If you’re using a non-probability method , how will you avoid research bias and ensure a representative sample?

Data management

It’s also important to create a data management plan for organizing and storing your data.

Will you need to transcribe interviews or perform data entry for observations? You should anonymize and safeguard any sensitive data, and make sure it’s backed up regularly.

Keeping your data well-organized will save time when it comes to analyzing it. It can also help other researchers validate and add to your findings (high replicability ).

On its own, raw data can’t answer your research question. The last step of designing your research is planning how you’ll analyze the data.

Quantitative data analysis

In quantitative research, you’ll most likely use some form of statistical analysis . With statistics, you can summarize your sample data, make estimates, and test hypotheses.

Using descriptive statistics , you can summarize your sample data in terms of:

  • The distribution of the data (e.g., the frequency of each score on a test)
  • The central tendency of the data (e.g., the mean to describe the average score)
  • The variability of the data (e.g., the standard deviation to describe how spread out the scores are)

The specific calculations you can do depend on the level of measurement of your variables.

Using inferential statistics , you can:

  • Make estimates about the population based on your sample data.
  • Test hypotheses about a relationship between variables.

Regression and correlation tests look for associations between two or more variables, while comparison tests (such as t tests and ANOVAs ) look for differences in the outcomes of different groups.

Your choice of statistical test depends on various aspects of your research design, including the types of variables you’re dealing with and the distribution of your data.

Qualitative data analysis

In qualitative research, your data will usually be very dense with information and ideas. Instead of summing it up in numbers, you’ll need to comb through the data in detail, interpret its meanings, identify patterns, and extract the parts that are most relevant to your research question.

Two of the most common approaches to doing this are thematic analysis and discourse analysis .

There are many other ways of analyzing qualitative data depending on the aims of your research. To get a sense of potential approaches, try reading some qualitative research papers in your field.

If you want to know more about the research process , methodology , research bias , or statistics , make sure to check out some of our other articles with explanations and examples.

  • Simple random sampling
  • Stratified sampling
  • Cluster sampling
  • Likert scales
  • Reproducibility

 Statistics

  • Null hypothesis
  • Statistical power
  • Probability distribution
  • Effect size
  • Poisson distribution

Research bias

  • Optimism bias
  • Cognitive bias
  • Implicit bias
  • Hawthorne effect
  • Anchoring bias
  • Explicit bias

A research design is a strategy for answering your   research question . It defines your overall approach and determines how you will collect and analyze data.

A well-planned research design helps ensure that your methods match your research aims, that you collect high-quality data, and that you use the right kind of analysis to answer your questions, utilizing credible sources . This allows you to draw valid , trustworthy conclusions.

Quantitative research designs can be divided into two main categories:

  • Correlational and descriptive designs are used to investigate characteristics, averages, trends, and associations between variables.
  • Experimental and quasi-experimental designs are used to test causal relationships .

Qualitative research designs tend to be more flexible. Common types of qualitative design include case study , ethnography , and grounded theory designs.

The priorities of a research design can vary depending on the field, but you usually have to specify:

  • Your research questions and/or hypotheses
  • Your overall approach (e.g., qualitative or quantitative )
  • The type of design you’re using (e.g., a survey , experiment , or case study )
  • Your data collection methods (e.g., questionnaires , observations)
  • Your data collection procedures (e.g., operationalization , timing and data management)
  • Your data analysis methods (e.g., statistical tests  or thematic analysis )

A sample is a subset of individuals from a larger population . Sampling means selecting the group that you will actually collect data from in your research. For example, if you are researching the opinions of students in your university, you could survey a sample of 100 students.

In statistics, sampling allows you to test a hypothesis about the characteristics of a population.

Operationalization means turning abstract conceptual ideas into measurable observations.

For example, the concept of social anxiety isn’t directly observable, but it can be operationally defined in terms of self-rating scores, behavioral avoidance of crowded places, or physical anxiety symptoms in social situations.

Before collecting data , it’s important to consider how you will operationalize the variables that you want to measure.

A research project is an academic, scientific, or professional undertaking to answer a research question . Research projects can take many forms, such as qualitative or quantitative , descriptive , longitudinal , experimental , or correlational . What kind of research approach you choose will depend on your topic.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

McCombes, S. (2023, November 20). What Is a Research Design | Types, Guide & Examples. Scribbr. Retrieved March 28, 2024, from https://www.scribbr.com/methodology/research-design/

Is this article helpful?

Shona McCombes

Shona McCombes

Other students also liked, guide to experimental design | overview, steps, & examples, how to write a research proposal | examples & templates, ethical considerations in research | types & examples, unlimited academic ai-proofreading.

✔ Document error-free in 5minutes ✔ Unlimited document corrections ✔ Specialized in correcting academic texts

Grad Coach

What (Exactly) Is A Research Proposal?

A simple explainer with examples + free template.

By: Derek Jansen (MBA) | Reviewed By: Dr Eunice Rautenbach | June 2020 (Updated April 2023)

Whether you’re nearing the end of your degree and your dissertation is on the horizon, or you’re planning to apply for a PhD program, chances are you’ll need to craft a convincing research proposal . If you’re on this page, you’re probably unsure exactly what the research proposal is all about. Well, you’ve come to the right place.

Overview: Research Proposal Basics

  • What a research proposal is
  • What a research proposal needs to cover
  • How to structure your research proposal
  • Example /sample proposals
  • Proposal writing FAQs
  • Key takeaways & additional resources

What is a research proposal?

Simply put, a research proposal is a structured, formal document that explains what you plan to research (your research topic), why it’s worth researching (your justification), and how  you plan to investigate it (your methodology). 

The purpose of the research proposal (its job, so to speak) is to convince  your research supervisor, committee or university that your research is  suitable  (for the requirements of the degree program) and  manageable  (given the time and resource constraints you will face). 

The most important word here is “ convince ” – in other words, your research proposal needs to  sell  your research idea (to whoever is going to approve it). If it doesn’t convince them (of its suitability and manageability), you’ll need to revise and resubmit . This will cost you valuable time, which will either delay the start of your research or eat into its time allowance (which is bad news). 

A research proposal is a  formal document that explains what you plan to research , why it's worth researching and how you'll do it.

What goes into a research proposal?

A good dissertation or thesis proposal needs to cover the “ what “, “ why ” and” how ” of the proposed study. Let’s look at each of these attributes in a little more detail:

Your proposal needs to clearly articulate your research topic . This needs to be specific and unambiguous . Your research topic should make it clear exactly what you plan to research and in what context. Here’s an example of a well-articulated research topic:

An investigation into the factors which impact female Generation Y consumer’s likelihood to promote a specific makeup brand to their peers: a British context

As you can see, this topic is extremely clear. From this one line we can see exactly:

  • What’s being investigated – factors that make people promote or advocate for a brand of a specific makeup brand
  • Who it involves – female Gen-Y consumers
  • In what context – the United Kingdom

So, make sure that your research proposal provides a detailed explanation of your research topic . If possible, also briefly outline your research aims and objectives , and perhaps even your research questions (although in some cases you’ll only develop these at a later stage). Needless to say, don’t start writing your proposal until you have a clear topic in mind , or you’ll end up waffling and your research proposal will suffer as a result of this.

Need a helping hand?

short note on research development

As we touched on earlier, it’s not good enough to simply propose a research topic – you need to justify why your topic is original . In other words, what makes it  unique ? What gap in the current literature does it fill? If it’s simply a rehash of the existing research, it’s probably not going to get approval – it needs to be fresh.

But,  originality  alone is not enough. Once you’ve ticked that box, you also need to justify why your proposed topic is  important . In other words, what value will it add to the world if you achieve your research aims?

As an example, let’s look at the sample research topic we mentioned earlier (factors impacting brand advocacy). In this case, if the research could uncover relevant factors, these findings would be very useful to marketers in the cosmetics industry, and would, therefore, have commercial value . That is a clear justification for the research.

So, when you’re crafting your research proposal, remember that it’s not enough for a topic to simply be unique. It needs to be useful and value-creating – and you need to convey that value in your proposal. If you’re struggling to find a research topic that makes the cut, watch  our video covering how to find a research topic .

Free Webinar: How To Write A Research Proposal

It’s all good and well to have a great topic that’s original and valuable, but you’re not going to convince anyone to approve it without discussing the practicalities – in other words:

  • How will you actually undertake your research (i.e., your methodology)?
  • Is your research methodology appropriate given your research aims?
  • Is your approach manageable given your constraints (time, money, etc.)?

While it’s generally not expected that you’ll have a fully fleshed-out methodology at the proposal stage, you’ll likely still need to provide a high-level overview of your research methodology . Here are some important questions you’ll need to address in your research proposal:

  • Will you take a qualitative , quantitative or mixed -method approach?
  • What sampling strategy will you adopt?
  • How will you collect your data (e.g., interviews, surveys, etc)?
  • How will you analyse your data (e.g., descriptive and inferential statistics , content analysis, discourse analysis, etc, .)?
  • What potential limitations will your methodology carry?

So, be sure to give some thought to the practicalities of your research and have at least a basic methodological plan before you start writing up your proposal. If this all sounds rather intimidating, the video below provides a good introduction to research methodology and the key choices you’ll need to make.

How To Structure A Research Proposal

Now that we’ve covered the key points that need to be addressed in a proposal, you may be wondering, “ But how is a research proposal structured? “.

While the exact structure and format required for a research proposal differs from university to university, there are four “essential ingredients” that commonly make up the structure of a research proposal:

  • A rich introduction and background to the proposed research
  • An initial literature review covering the existing research
  • An overview of the proposed research methodology
  • A discussion regarding the practicalities (project plans, timelines, etc.)

In the video below, we unpack each of these four sections, step by step.

Research Proposal Examples/Samples

In the video below, we provide a detailed walkthrough of two successful research proposals (Master’s and PhD-level), as well as our popular free proposal template.

Proposal Writing FAQs

How long should a research proposal be.

This varies tremendously, depending on the university, the field of study (e.g., social sciences vs natural sciences), and the level of the degree (e.g. undergraduate, Masters or PhD) – so it’s always best to check with your university what their specific requirements are before you start planning your proposal.

As a rough guide, a formal research proposal at Masters-level often ranges between 2000-3000 words, while a PhD-level proposal can be far more detailed, ranging from 5000-8000 words. In some cases, a rough outline of the topic is all that’s needed, while in other cases, universities expect a very detailed proposal that essentially forms the first three chapters of the dissertation or thesis.

The takeaway – be sure to check with your institution before you start writing.

How do I choose a topic for my research proposal?

Finding a good research topic is a process that involves multiple steps. We cover the topic ideation process in this video post.

How do I write a literature review for my proposal?

While you typically won’t need a comprehensive literature review at the proposal stage, you still need to demonstrate that you’re familiar with the key literature and are able to synthesise it. We explain the literature review process here.

How do I create a timeline and budget for my proposal?

We explain how to craft a project plan/timeline and budget in Research Proposal Bootcamp .

Which referencing format should I use in my research proposal?

The expectations and requirements regarding formatting and referencing vary from institution to institution. Therefore, you’ll need to check this information with your university.

What common proposal writing mistakes do I need to look out for?

We’ve create a video post about some of the most common mistakes students make when writing a proposal – you can access that here . If you’re short on time, here’s a quick summary:

  • The research topic is too broad (or just poorly articulated).
  • The research aims, objectives and questions don’t align.
  • The research topic is not well justified.
  • The study has a weak theoretical foundation.
  • The research design is not well articulated well enough.
  • Poor writing and sloppy presentation.
  • Poor project planning and risk management.
  • Not following the university’s specific criteria.

Key Takeaways & Additional Resources

As you write up your research proposal, remember the all-important core purpose:  to convince . Your research proposal needs to sell your study in terms of suitability and viability. So, focus on crafting a convincing narrative to ensure a strong proposal.

At the same time, pay close attention to your university’s requirements. While we’ve covered the essentials here, every institution has its own set of expectations and it’s essential that you follow these to maximise your chances of approval.

By the way, we’ve got plenty more resources to help you fast-track your research proposal. Here are some of our most popular resources to get you started:

  • Proposal Writing 101 : A Introductory Webinar
  • Research Proposal Bootcamp : The Ultimate Online Course
  • Template : A basic template to help you craft your proposal

If you’re looking for 1-on-1 support with your research proposal, be sure to check out our private coaching service , where we hold your hand through the proposal development process (and the entire research journey), step by step.

Literature Review Course

Psst… there’s more!

This post is an extract from our bestselling Udemy Course, Research Proposal Bootcamp . If you want to work smart, you don't want to miss this .

You Might Also Like:

Thematic analysis 101

51 Comments

Myrna Pereira

I truly enjoyed this video, as it was eye-opening to what I have to do in the preparation of preparing a Research proposal.

I would be interested in getting some coaching.

BARAKAELI TEREVAELI

I real appreciate on your elaboration on how to develop research proposal,the video explains each steps clearly.

masebo joseph

Thank you for the video. It really assisted me and my niece. I am a PhD candidate and she is an undergraduate student. It is at times, very difficult to guide a family member but with this video, my job is done.

In view of the above, I welcome more coaching.

Zakia Ghafoor

Wonderful guidelines, thanks

Annie Malupande

This is very helpful. Would love to continue even as I prepare for starting my masters next year.

KYARIKUNDA MOREEN

Thanks for the work done, the text was helpful to me

Ahsanullah Mangal

Bundle of thanks to you for the research proposal guide it was really good and useful if it is possible please send me the sample of research proposal

Derek Jansen

You’re most welcome. We don’t have any research proposals that we can share (the students own the intellectual property), but you might find our research proposal template useful: https://gradcoach.com/research-proposal-template/

Cheruiyot Moses Kipyegon

Cheruiyot Moses Kipyegon

Thanks alot. It was an eye opener that came timely enough before my imminent proposal defense. Thanks, again

agnelius

thank you very much your lesson is very interested may God be with you

Abubakar

I am an undergraduate student (First Degree) preparing to write my project,this video and explanation had shed more light to me thanks for your efforts keep it up.

Synthia Atieno

Very useful. I am grateful.

belina nambeya

this is a very a good guidance on research proposal, for sure i have learnt something

Wonderful guidelines for writing a research proposal, I am a student of m.phil( education), this guideline is suitable for me. Thanks

You’re welcome 🙂

Marjorie

Thank you, this was so helpful.

Amitash Degan

A really great and insightful video. It opened my eyes as to how to write a research paper. I would like to receive more guidance for writing my research paper from your esteemed faculty.

Glaudia Njuguna

Thank you, great insights

Thank you, great insights, thank you so much, feeling edified

Yebirgual

Wow thank you, great insights, thanks a lot

Roseline Soetan

Thank you. This is a great insight. I am a student preparing for a PhD program. I am requested to write my Research Proposal as part of what I am required to submit before my unconditional admission. I am grateful having listened to this video which will go a long way in helping me to actually choose a topic of interest and not just any topic as well as to narrow down the topic and be specific about it. I indeed need more of this especially as am trying to choose a topic suitable for a DBA am about embarking on. Thank you once more. The video is indeed helpful.

Rebecca

Have learnt a lot just at the right time. Thank you so much.

laramato ikayo

thank you very much ,because have learn a lot things concerning research proposal and be blessed u for your time that you providing to help us

Cheruiyot M Kipyegon

Hi. For my MSc medical education research, please evaluate this topic for me: Training Needs Assessment of Faculty in Medical Training Institutions in Kericho and Bomet Counties

Rebecca

I have really learnt a lot based on research proposal and it’s formulation

Arega Berlie

Thank you. I learn much from the proposal since it is applied

Siyanda

Your effort is much appreciated – you have good articulation.

You have good articulation.

Douglas Eliaba

I do applaud your simplified method of explaining the subject matter, which indeed has broaden my understanding of the subject matter. Definitely this would enable me writing a sellable research proposal.

Weluzani

This really helping

Roswitta

Great! I liked your tutoring on how to find a research topic and how to write a research proposal. Precise and concise. Thank you very much. Will certainly share this with my students. Research made simple indeed.

Alice Kuyayama

Thank you very much. I an now assist my students effectively.

Thank you very much. I can now assist my students effectively.

Abdurahman Bayoh

I need any research proposal

Silverline

Thank you for these videos. I will need chapter by chapter assistance in writing my MSc dissertation

Nosi

Very helpfull

faith wugah

the videos are very good and straight forward

Imam

thanks so much for this wonderful presentations, i really enjoyed it to the fullest wish to learn more from you

Bernie E. Balmeo

Thank you very much. I learned a lot from your lecture.

Ishmael kwame Appiah

I really enjoy the in-depth knowledge on research proposal you have given. me. You have indeed broaden my understanding and skills. Thank you

David Mweemba

interesting session this has equipped me with knowledge as i head for exams in an hour’s time, am sure i get A++

Andrea Eccleston

This article was most informative and easy to understand. I now have a good idea of how to write my research proposal.

Thank you very much.

Georgina Ngufan

Wow, this literature is very resourceful and interesting to read. I enjoyed it and I intend reading it every now then.

Charity

Thank you for the clarity

Mondika Solomon

Thank you. Very helpful.

BLY

Thank you very much for this essential piece. I need 1o1 coaching, unfortunately, your service is not available in my country. Anyways, a very important eye-opener. I really enjoyed it. A thumb up to Gradcoach

Md Moneruszzaman Kayes

What is JAM? Please explain.

Gentiana

Thank you so much for these videos. They are extremely helpful! God bless!

azeem kakar

very very wonderful…

Koang Kuany Bol Nyot

thank you for the video but i need a written example

Submit a Comment Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

  • Print Friendly
  • Search Menu
  • Browse content in Arts and Humanities
  • Browse content in Archaeology
  • Anglo-Saxon and Medieval Archaeology
  • Archaeological Methodology and Techniques
  • Archaeology by Region
  • Archaeology of Religion
  • Archaeology of Trade and Exchange
  • Biblical Archaeology
  • Contemporary and Public Archaeology
  • Environmental Archaeology
  • Historical Archaeology
  • History and Theory of Archaeology
  • Industrial Archaeology
  • Landscape Archaeology
  • Mortuary Archaeology
  • Prehistoric Archaeology
  • Underwater Archaeology
  • Urban Archaeology
  • Zooarchaeology
  • Browse content in Architecture
  • Architectural Structure and Design
  • History of Architecture
  • Residential and Domestic Buildings
  • Theory of Architecture
  • Browse content in Art
  • Art Subjects and Themes
  • History of Art
  • Industrial and Commercial Art
  • Theory of Art
  • Biographical Studies
  • Byzantine Studies
  • Browse content in Classical Studies
  • Classical History
  • Classical Philosophy
  • Classical Mythology
  • Classical Literature
  • Classical Reception
  • Classical Art and Architecture
  • Classical Oratory and Rhetoric
  • Greek and Roman Epigraphy
  • Greek and Roman Law
  • Greek and Roman Papyrology
  • Greek and Roman Archaeology
  • Late Antiquity
  • Religion in the Ancient World
  • Digital Humanities
  • Browse content in History
  • Colonialism and Imperialism
  • Diplomatic History
  • Environmental History
  • Genealogy, Heraldry, Names, and Honours
  • Genocide and Ethnic Cleansing
  • Historical Geography
  • History by Period
  • History of Emotions
  • History of Agriculture
  • History of Education
  • History of Gender and Sexuality
  • Industrial History
  • Intellectual History
  • International History
  • Labour History
  • Legal and Constitutional History
  • Local and Family History
  • Maritime History
  • Military History
  • National Liberation and Post-Colonialism
  • Oral History
  • Political History
  • Public History
  • Regional and National History
  • Revolutions and Rebellions
  • Slavery and Abolition of Slavery
  • Social and Cultural History
  • Theory, Methods, and Historiography
  • Urban History
  • World History
  • Browse content in Language Teaching and Learning
  • Language Learning (Specific Skills)
  • Language Teaching Theory and Methods
  • Browse content in Linguistics
  • Applied Linguistics
  • Cognitive Linguistics
  • Computational Linguistics
  • Forensic Linguistics
  • Grammar, Syntax and Morphology
  • Historical and Diachronic Linguistics
  • History of English
  • Language Acquisition
  • Language Evolution
  • Language Reference
  • Language Variation
  • Language Families
  • Lexicography
  • Linguistic Anthropology
  • Linguistic Theories
  • Linguistic Typology
  • Phonetics and Phonology
  • Psycholinguistics
  • Sociolinguistics
  • Translation and Interpretation
  • Writing Systems
  • Browse content in Literature
  • Bibliography
  • Children's Literature Studies
  • Literary Studies (Asian)
  • Literary Studies (European)
  • Literary Studies (Eco-criticism)
  • Literary Studies (Romanticism)
  • Literary Studies (American)
  • Literary Studies (Modernism)
  • Literary Studies - World
  • Literary Studies (1500 to 1800)
  • Literary Studies (19th Century)
  • Literary Studies (20th Century onwards)
  • Literary Studies (African American Literature)
  • Literary Studies (British and Irish)
  • Literary Studies (Early and Medieval)
  • Literary Studies (Fiction, Novelists, and Prose Writers)
  • Literary Studies (Gender Studies)
  • Literary Studies (Graphic Novels)
  • Literary Studies (History of the Book)
  • Literary Studies (Plays and Playwrights)
  • Literary Studies (Poetry and Poets)
  • Literary Studies (Postcolonial Literature)
  • Literary Studies (Queer Studies)
  • Literary Studies (Science Fiction)
  • Literary Studies (Travel Literature)
  • Literary Studies (War Literature)
  • Literary Studies (Women's Writing)
  • Literary Theory and Cultural Studies
  • Mythology and Folklore
  • Shakespeare Studies and Criticism
  • Browse content in Media Studies
  • Browse content in Music
  • Applied Music
  • Dance and Music
  • Ethics in Music
  • Ethnomusicology
  • Gender and Sexuality in Music
  • Medicine and Music
  • Music Cultures
  • Music and Religion
  • Music and Media
  • Music and Culture
  • Music Education and Pedagogy
  • Music Theory and Analysis
  • Musical Scores, Lyrics, and Libretti
  • Musical Structures, Styles, and Techniques
  • Musicology and Music History
  • Performance Practice and Studies
  • Race and Ethnicity in Music
  • Sound Studies
  • Browse content in Performing Arts
  • Browse content in Philosophy
  • Aesthetics and Philosophy of Art
  • Epistemology
  • Feminist Philosophy
  • History of Western Philosophy
  • Metaphysics
  • Moral Philosophy
  • Non-Western Philosophy
  • Philosophy of Science
  • Philosophy of Language
  • Philosophy of Mind
  • Philosophy of Perception
  • Philosophy of Action
  • Philosophy of Law
  • Philosophy of Religion
  • Philosophy of Mathematics and Logic
  • Practical Ethics
  • Social and Political Philosophy
  • Browse content in Religion
  • Biblical Studies
  • Christianity
  • East Asian Religions
  • History of Religion
  • Judaism and Jewish Studies
  • Qumran Studies
  • Religion and Education
  • Religion and Health
  • Religion and Politics
  • Religion and Science
  • Religion and Law
  • Religion and Art, Literature, and Music
  • Religious Studies
  • Browse content in Society and Culture
  • Cookery, Food, and Drink
  • Cultural Studies
  • Customs and Traditions
  • Ethical Issues and Debates
  • Hobbies, Games, Arts and Crafts
  • Lifestyle, Home, and Garden
  • Natural world, Country Life, and Pets
  • Popular Beliefs and Controversial Knowledge
  • Sports and Outdoor Recreation
  • Technology and Society
  • Travel and Holiday
  • Visual Culture
  • Browse content in Law
  • Arbitration
  • Browse content in Company and Commercial Law
  • Commercial Law
  • Company Law
  • Browse content in Comparative Law
  • Systems of Law
  • Competition Law
  • Browse content in Constitutional and Administrative Law
  • Government Powers
  • Judicial Review
  • Local Government Law
  • Military and Defence Law
  • Parliamentary and Legislative Practice
  • Construction Law
  • Contract Law
  • Browse content in Criminal Law
  • Criminal Procedure
  • Criminal Evidence Law
  • Sentencing and Punishment
  • Employment and Labour Law
  • Environment and Energy Law
  • Browse content in Financial Law
  • Banking Law
  • Insolvency Law
  • History of Law
  • Human Rights and Immigration
  • Intellectual Property Law
  • Browse content in International Law
  • Private International Law and Conflict of Laws
  • Public International Law
  • IT and Communications Law
  • Jurisprudence and Philosophy of Law
  • Law and Politics
  • Law and Society
  • Browse content in Legal System and Practice
  • Courts and Procedure
  • Legal Skills and Practice
  • Primary Sources of Law
  • Regulation of Legal Profession
  • Medical and Healthcare Law
  • Browse content in Policing
  • Criminal Investigation and Detection
  • Police and Security Services
  • Police Procedure and Law
  • Police Regional Planning
  • Browse content in Property Law
  • Personal Property Law
  • Study and Revision
  • Terrorism and National Security Law
  • Browse content in Trusts Law
  • Wills and Probate or Succession
  • Browse content in Medicine and Health
  • Browse content in Allied Health Professions
  • Arts Therapies
  • Clinical Science
  • Dietetics and Nutrition
  • Occupational Therapy
  • Operating Department Practice
  • Physiotherapy
  • Radiography
  • Speech and Language Therapy
  • Browse content in Anaesthetics
  • General Anaesthesia
  • Neuroanaesthesia
  • Browse content in Clinical Medicine
  • Acute Medicine
  • Cardiovascular Medicine
  • Clinical Genetics
  • Clinical Pharmacology and Therapeutics
  • Dermatology
  • Endocrinology and Diabetes
  • Gastroenterology
  • Genito-urinary Medicine
  • Geriatric Medicine
  • Infectious Diseases
  • Medical Toxicology
  • Medical Oncology
  • Pain Medicine
  • Palliative Medicine
  • Rehabilitation Medicine
  • Respiratory Medicine and Pulmonology
  • Rheumatology
  • Sleep Medicine
  • Sports and Exercise Medicine
  • Clinical Neuroscience
  • Community Medical Services
  • Critical Care
  • Emergency Medicine
  • Forensic Medicine
  • Haematology
  • History of Medicine
  • Browse content in Medical Dentistry
  • Oral and Maxillofacial Surgery
  • Paediatric Dentistry
  • Restorative Dentistry and Orthodontics
  • Surgical Dentistry
  • Browse content in Medical Skills
  • Clinical Skills
  • Communication Skills
  • Nursing Skills
  • Surgical Skills
  • Medical Ethics
  • Medical Statistics and Methodology
  • Browse content in Neurology
  • Clinical Neurophysiology
  • Neuropathology
  • Nursing Studies
  • Browse content in Obstetrics and Gynaecology
  • Gynaecology
  • Occupational Medicine
  • Ophthalmology
  • Otolaryngology (ENT)
  • Browse content in Paediatrics
  • Neonatology
  • Browse content in Pathology
  • Chemical Pathology
  • Clinical Cytogenetics and Molecular Genetics
  • Histopathology
  • Medical Microbiology and Virology
  • Patient Education and Information
  • Browse content in Pharmacology
  • Psychopharmacology
  • Browse content in Popular Health
  • Caring for Others
  • Complementary and Alternative Medicine
  • Self-help and Personal Development
  • Browse content in Preclinical Medicine
  • Cell Biology
  • Molecular Biology and Genetics
  • Reproduction, Growth and Development
  • Primary Care
  • Professional Development in Medicine
  • Browse content in Psychiatry
  • Addiction Medicine
  • Child and Adolescent Psychiatry
  • Forensic Psychiatry
  • Learning Disabilities
  • Old Age Psychiatry
  • Psychotherapy
  • Browse content in Public Health and Epidemiology
  • Epidemiology
  • Public Health
  • Browse content in Radiology
  • Clinical Radiology
  • Interventional Radiology
  • Nuclear Medicine
  • Radiation Oncology
  • Reproductive Medicine
  • Browse content in Surgery
  • Cardiothoracic Surgery
  • Gastro-intestinal and Colorectal Surgery
  • General Surgery
  • Neurosurgery
  • Paediatric Surgery
  • Peri-operative Care
  • Plastic and Reconstructive Surgery
  • Surgical Oncology
  • Transplant Surgery
  • Trauma and Orthopaedic Surgery
  • Vascular Surgery
  • Browse content in Science and Mathematics
  • Browse content in Biological Sciences
  • Aquatic Biology
  • Biochemistry
  • Bioinformatics and Computational Biology
  • Developmental Biology
  • Ecology and Conservation
  • Evolutionary Biology
  • Genetics and Genomics
  • Microbiology
  • Molecular and Cell Biology
  • Natural History
  • Plant Sciences and Forestry
  • Research Methods in Life Sciences
  • Structural Biology
  • Systems Biology
  • Zoology and Animal Sciences
  • Browse content in Chemistry
  • Analytical Chemistry
  • Computational Chemistry
  • Crystallography
  • Environmental Chemistry
  • Industrial Chemistry
  • Inorganic Chemistry
  • Materials Chemistry
  • Medicinal Chemistry
  • Mineralogy and Gems
  • Organic Chemistry
  • Physical Chemistry
  • Polymer Chemistry
  • Study and Communication Skills in Chemistry
  • Theoretical Chemistry
  • Browse content in Computer Science
  • Artificial Intelligence
  • Computer Architecture and Logic Design
  • Game Studies
  • Human-Computer Interaction
  • Mathematical Theory of Computation
  • Programming Languages
  • Software Engineering
  • Systems Analysis and Design
  • Virtual Reality
  • Browse content in Computing
  • Business Applications
  • Computer Security
  • Computer Games
  • Computer Networking and Communications
  • Digital Lifestyle
  • Graphical and Digital Media Applications
  • Operating Systems
  • Browse content in Earth Sciences and Geography
  • Atmospheric Sciences
  • Environmental Geography
  • Geology and the Lithosphere
  • Maps and Map-making
  • Meteorology and Climatology
  • Oceanography and Hydrology
  • Palaeontology
  • Physical Geography and Topography
  • Regional Geography
  • Soil Science
  • Urban Geography
  • Browse content in Engineering and Technology
  • Agriculture and Farming
  • Biological Engineering
  • Civil Engineering, Surveying, and Building
  • Electronics and Communications Engineering
  • Energy Technology
  • Engineering (General)
  • Environmental Science, Engineering, and Technology
  • History of Engineering and Technology
  • Mechanical Engineering and Materials
  • Technology of Industrial Chemistry
  • Transport Technology and Trades
  • Browse content in Environmental Science
  • Applied Ecology (Environmental Science)
  • Conservation of the Environment (Environmental Science)
  • Environmental Sustainability
  • Environmentalist Thought and Ideology (Environmental Science)
  • Management of Land and Natural Resources (Environmental Science)
  • Natural Disasters (Environmental Science)
  • Nuclear Issues (Environmental Science)
  • Pollution and Threats to the Environment (Environmental Science)
  • Social Impact of Environmental Issues (Environmental Science)
  • History of Science and Technology
  • Browse content in Materials Science
  • Ceramics and Glasses
  • Composite Materials
  • Metals, Alloying, and Corrosion
  • Nanotechnology
  • Browse content in Mathematics
  • Applied Mathematics
  • Biomathematics and Statistics
  • History of Mathematics
  • Mathematical Education
  • Mathematical Finance
  • Mathematical Analysis
  • Numerical and Computational Mathematics
  • Probability and Statistics
  • Pure Mathematics
  • Browse content in Neuroscience
  • Cognition and Behavioural Neuroscience
  • Development of the Nervous System
  • Disorders of the Nervous System
  • History of Neuroscience
  • Invertebrate Neurobiology
  • Molecular and Cellular Systems
  • Neuroendocrinology and Autonomic Nervous System
  • Neuroscientific Techniques
  • Sensory and Motor Systems
  • Browse content in Physics
  • Astronomy and Astrophysics
  • Atomic, Molecular, and Optical Physics
  • Biological and Medical Physics
  • Classical Mechanics
  • Computational Physics
  • Condensed Matter Physics
  • Electromagnetism, Optics, and Acoustics
  • History of Physics
  • Mathematical and Statistical Physics
  • Measurement Science
  • Nuclear Physics
  • Particles and Fields
  • Plasma Physics
  • Quantum Physics
  • Relativity and Gravitation
  • Semiconductor and Mesoscopic Physics
  • Browse content in Psychology
  • Affective Sciences
  • Clinical Psychology
  • Cognitive Psychology
  • Cognitive Neuroscience
  • Criminal and Forensic Psychology
  • Developmental Psychology
  • Educational Psychology
  • Evolutionary Psychology
  • Health Psychology
  • History and Systems in Psychology
  • Music Psychology
  • Neuropsychology
  • Organizational Psychology
  • Psychological Assessment and Testing
  • Psychology of Human-Technology Interaction
  • Psychology Professional Development and Training
  • Research Methods in Psychology
  • Social Psychology
  • Browse content in Social Sciences
  • Browse content in Anthropology
  • Anthropology of Religion
  • Human Evolution
  • Medical Anthropology
  • Physical Anthropology
  • Regional Anthropology
  • Social and Cultural Anthropology
  • Theory and Practice of Anthropology
  • Browse content in Business and Management
  • Business Strategy
  • Business Ethics
  • Business History
  • Business and Government
  • Business and Technology
  • Business and the Environment
  • Comparative Management
  • Corporate Governance
  • Corporate Social Responsibility
  • Entrepreneurship
  • Health Management
  • Human Resource Management
  • Industrial and Employment Relations
  • Industry Studies
  • Information and Communication Technologies
  • International Business
  • Knowledge Management
  • Management and Management Techniques
  • Operations Management
  • Organizational Theory and Behaviour
  • Pensions and Pension Management
  • Public and Nonprofit Management
  • Strategic Management
  • Supply Chain Management
  • Browse content in Criminology and Criminal Justice
  • Criminal Justice
  • Criminology
  • Forms of Crime
  • International and Comparative Criminology
  • Youth Violence and Juvenile Justice
  • Development Studies
  • Browse content in Economics
  • Agricultural, Environmental, and Natural Resource Economics
  • Asian Economics
  • Behavioural Finance
  • Behavioural Economics and Neuroeconomics
  • Econometrics and Mathematical Economics
  • Economic Systems
  • Economic History
  • Economic Methodology
  • Economic Development and Growth
  • Financial Markets
  • Financial Institutions and Services
  • General Economics and Teaching
  • Health, Education, and Welfare
  • History of Economic Thought
  • International Economics
  • Labour and Demographic Economics
  • Law and Economics
  • Macroeconomics and Monetary Economics
  • Microeconomics
  • Public Economics
  • Urban, Rural, and Regional Economics
  • Welfare Economics
  • Browse content in Education
  • Adult Education and Continuous Learning
  • Care and Counselling of Students
  • Early Childhood and Elementary Education
  • Educational Equipment and Technology
  • Educational Strategies and Policy
  • Higher and Further Education
  • Organization and Management of Education
  • Philosophy and Theory of Education
  • Schools Studies
  • Secondary Education
  • Teaching of a Specific Subject
  • Teaching of Specific Groups and Special Educational Needs
  • Teaching Skills and Techniques
  • Browse content in Environment
  • Applied Ecology (Social Science)
  • Climate Change
  • Conservation of the Environment (Social Science)
  • Environmentalist Thought and Ideology (Social Science)
  • Natural Disasters (Environment)
  • Social Impact of Environmental Issues (Social Science)
  • Browse content in Human Geography
  • Cultural Geography
  • Economic Geography
  • Political Geography
  • Browse content in Interdisciplinary Studies
  • Communication Studies
  • Museums, Libraries, and Information Sciences
  • Browse content in Politics
  • African Politics
  • Asian Politics
  • Chinese Politics
  • Comparative Politics
  • Conflict Politics
  • Elections and Electoral Studies
  • Environmental Politics
  • European Union
  • Foreign Policy
  • Gender and Politics
  • Human Rights and Politics
  • Indian Politics
  • International Relations
  • International Organization (Politics)
  • International Political Economy
  • Irish Politics
  • Latin American Politics
  • Middle Eastern Politics
  • Political Methodology
  • Political Communication
  • Political Philosophy
  • Political Sociology
  • Political Behaviour
  • Political Economy
  • Political Institutions
  • Political Theory
  • Politics and Law
  • Public Administration
  • Public Policy
  • Quantitative Political Methodology
  • Regional Political Studies
  • Russian Politics
  • Security Studies
  • State and Local Government
  • UK Politics
  • US Politics
  • Browse content in Regional and Area Studies
  • African Studies
  • Asian Studies
  • East Asian Studies
  • Japanese Studies
  • Latin American Studies
  • Middle Eastern Studies
  • Native American Studies
  • Scottish Studies
  • Browse content in Research and Information
  • Research Methods
  • Browse content in Social Work
  • Addictions and Substance Misuse
  • Adoption and Fostering
  • Care of the Elderly
  • Child and Adolescent Social Work
  • Couple and Family Social Work
  • Developmental and Physical Disabilities Social Work
  • Direct Practice and Clinical Social Work
  • Emergency Services
  • Human Behaviour and the Social Environment
  • International and Global Issues in Social Work
  • Mental and Behavioural Health
  • Social Justice and Human Rights
  • Social Policy and Advocacy
  • Social Work and Crime and Justice
  • Social Work Macro Practice
  • Social Work Practice Settings
  • Social Work Research and Evidence-based Practice
  • Welfare and Benefit Systems
  • Browse content in Sociology
  • Childhood Studies
  • Community Development
  • Comparative and Historical Sociology
  • Economic Sociology
  • Gender and Sexuality
  • Gerontology and Ageing
  • Health, Illness, and Medicine
  • Marriage and the Family
  • Migration Studies
  • Occupations, Professions, and Work
  • Organizations
  • Population and Demography
  • Race and Ethnicity
  • Social Theory
  • Social Movements and Social Change
  • Social Research and Statistics
  • Social Stratification, Inequality, and Mobility
  • Sociology of Religion
  • Sociology of Education
  • Sport and Leisure
  • Urban and Rural Studies
  • Browse content in Warfare and Defence
  • Defence Strategy, Planning, and Research
  • Land Forces and Warfare
  • Military Administration
  • Military Life and Institutions
  • Naval Forces and Warfare
  • Other Warfare and Defence Issues
  • Peace Studies and Conflict Resolution
  • Weapons and Equipment

Development: A Very Short Introduction

  • < Previous
  • Next chapter >

1 (page 1) p. 1 What is development?

  • Published: March 2018
  • This version: July 2020

Updated in this version:

Uefa could appeal against the decision in the Swiss federal courts. It is unlikely that any such appeal would be heard before the 2020-21 Champions League starts. The Premier League could have looked to take action as well if the ban had been upheld because their own FFP rules are similar - but not exactly the same - as Uefa's.

  • Previous version
  • Cite Icon Cite
  • Permissions Icon Permissions

Progress in tackling poverty over the past twenty-five years has been remarkable, but significant numbers of people remain in poverty and suffer severe deprivation despite the overall progress. ‘What is development?’ explains that there are many definitions of development and the concept itself has evolved rapidly since the Second World War. The concept now brings together economic, psychological, and environmental notions of development to meet physical, emotional, and social needs. Different development indicators are explained and the new challenges facing development progress are outlined, including climate change and health issues such as obesity and antibiotic resistance.

Uefa could appeal against the decision in the Swiss federal courts. It is unlikely that any such ... More

Signed in as

Institutional accounts.

  • GoogleCrawler [DO NOT DELETE]
  • Google Scholar Indexing

Personal account

  • Sign in with email/username & password
  • Get email alerts
  • Save searches
  • Purchase content
  • Activate your purchase/trial code

Institutional access

  • Sign in with a library card Sign in with username/password Recommend to your librarian
  • Institutional account management
  • Get help with access

Access to content on Oxford Academic is often provided through institutional subscriptions and purchases. If you are a member of an institution with an active account, you may be able to access content in one of the following ways:

IP based access

Typically, access is provided across an institutional network to a range of IP addresses. This authentication occurs automatically, and it is not possible to sign out of an IP authenticated account.

Sign in through your institution

Choose this option to get remote access when outside your institution. Shibboleth/Open Athens technology is used to provide single sign-on between your institution’s website and Oxford Academic.

  • Click Sign in through your institution.
  • Select your institution from the list provided, which will take you to your institution's website to sign in.
  • When on the institution site, please use the credentials provided by your institution. Do not use an Oxford Academic personal account.
  • Following successful sign in, you will be returned to Oxford Academic.

If your institution is not listed or you cannot sign in to your institution’s website, please contact your librarian or administrator.

Sign in with a library card

Enter your library card number to sign in. If you cannot sign in, please contact your librarian.

Society Members

Society member access to a journal is achieved in one of the following ways:

Sign in through society site

Many societies offer single sign-on between the society website and Oxford Academic. If you see ‘Sign in through society site’ in the sign in pane within a journal:

  • Click Sign in through society site.
  • When on the society site, please use the credentials provided by that society. Do not use an Oxford Academic personal account.

If you do not have a society account or have forgotten your username or password, please contact your society.

Sign in using a personal account

Some societies use Oxford Academic personal accounts to provide access to their members. See below.

A personal account can be used to get email alerts, save searches, purchase content, and activate subscriptions.

Some societies use Oxford Academic personal accounts to provide access to their members.

Viewing your signed in accounts

Click the account icon in the top right to:

  • View your signed in personal account and access account management features.
  • View the institutional accounts that are providing access.

Signed in but can't access content

Oxford Academic is home to a wide variety of products. The institutional subscription may not cover the content that you are trying to access. If you believe you should have access to that content, please contact your librarian.

For librarians and administrators, your personal account also provides access to institutional account management. Here you will find options to view and activate subscriptions, manage institutional settings and access options, access usage statistics, and more.

Our books are available by subscription or purchase to libraries and institutions.

  • About Oxford Academic
  • Publish journals with us
  • University press partners
  • What we publish
  • New features  
  • Open access
  • Rights and permissions
  • Accessibility
  • Advertising
  • Media enquiries
  • Oxford University Press
  • Oxford Languages
  • University of Oxford

Oxford University Press is a department of the University of Oxford. It furthers the University's objective of excellence in research, scholarship, and education by publishing worldwide

  • Copyright © 2024 Oxford University Press
  • Cookie settings
  • Cookie policy
  • Privacy policy
  • Legal notice

This Feature Is Available To Subscribers Only

Sign In or Create an Account

This PDF is available to Subscribers Only

For full access to this pdf, sign in to an existing account, or purchase an annual subscription.

short note on research development

  • Meet NMHC President Sharon Wilson Géno
  • Foundations for Rental Housing
  • NMHC Values and Expectations
  • Careers in Multifamily
  • Diversity, Equity and Inclusion (DEI) Commitment
  • 2023 Impact Report
  • Work at NMHC
  • NMHC Antitrust Compliance Policy
  • Primary Policy Priorities and Goals
  • Advocacy Accomplishments
  • Quick Facts
  • Market Conditions
  • Research Notes
  • Research Reports
  • Industry Benchmarks
  • NMHC Research Foundation
  • All Research
  • Emerging Leaders
  • Member Directory
  • NMHC Career Center
  • Women in Multifamily Networking Series
  • Upcoming Events
  • Changes to Spring and Fall Meetings
  • Meeting Archive
  • Past Attendees List
  • Sponsorship Opportunities
  • All Meetings
  • Media Resources
  • Newsletters
  • Code 53 Podcast
  • Research Corner
  • Industry Topic Updates
  • Housing Affordability
  • Diversity, Equity and Inclusion
  • Property Operations
  • Tax and Accounting
  • Technology and Telecommunications
  • All Industry Topics
  • Membership Benefits
  • Membership Levels
  • DEI and Nonprofit Membership Opportunity
  • Membership Application
  • Resources for Renters
  • Housing Provider Resources

Understanding the Impacts of the Emergency Rental Assistance Program (ERA)

March 29, 2024.

NMHC Research Notes Newsletter

By Chris Bruen and Ryan Hecker

Chris Bruen Senior Director of Research, with primary responsibility for aiding in and expanding upon NMHC’s research in housing and economics. Chris holds a bachelor’s degree in Finance from The George Washington University and an M.S. in Economics from Johns Hopkins University. He can be reached at [email protected]

Ryan Hecker , Research Assistant, Provides support for NMHC's research in housing and apartment industry trends. He graduated from the University of Rochester with a bachelor's degree in Economics and Political Science. He can be reached at [email protected] .

In 2021, the Treasury Department’s Emergency Rental Assistance (ERA) programs provided more than $46 billion in funding to assist households that were unable to pay their rent or utilities amidst the COVID-19 pandemic—$25 billion from ERA1 (authorized in December 2020) and $21.55 billion from ERA2 (March 2021).

While the outcomes and implementation of this program have been widely scrutinized, does the data back up much-talked-about critiques and praises of the program? Like many fledgling programs, lessons learned aren’t entirely cut and dry. In this edition of NMHC Research Notes, we examine the short- and long-term impacts of the program. We found that, while ERA payments seemed to prevent renters from being behind on their rental payments in the short-term, there is evidence that this positive impact may have started to diminish in the months and years after assistance was received. Therefore, this type of emergency rental assistance may provide only temporary relief for renters.

Breaking Down Program Participation

Between August 2021 and April/May 2023, the share of renter households who reported having applied for emergency rental assistance remained relatively stable, according to the Census Bureau’s Household Pulse Survey, ranging from 10.9% to 14.8%. Figure 1 illustrates, however, that the lowest income households (less than $25,000 annually) applied for rental assistance at significantly higher rates, ranging from 19.4% to 27.5% of households surveyed.

Figure 1

As can be seen in Figure 2, the share of ERA applicants who received assistance steadily increased from approximately 35.3% in August 2021 to 48.1% in April 2023, while the share of applicants who were denied also increased over time, albeit at a somewhat slower pace. Meanwhile, the share of ERA applicants who were still waiting on a response steadily decreased from 39.1% in August 2021 to 21.2% in April 2023.

Figure 1

Data Indicate Clear, Positive Short-term Impact

There is good evidence that these ERA funds had at least a short-term positive effect on renters’ financial well-being. In every round of the Census Bureau’s Household Pulse Survey (HPS) conducted between August 2021 and May 2023, renter households who received ERA payments were less likely to report being behind on rent compared to those renters who had applied and were denied or applied but had not yet received ERA funds.

Figure 1

Households who applied for assistance whose application was denied reported lower rates of rental delinquency compared to those who were still waiting for a response, but higher rates of delinquency compared to those who had received rental assistance. Presumably, this is because households who were denied assistance were denied because they did not possess a great enough need. Figure 4, for example, shows that the share of households making under $35,000 was consistently lower among households who were denied assistance compared to those who were still waiting for a response.

In this same vein, renter households who did not apply for emergency rental assistance at all tended to both have higher incomes and lower rates of rental delinquency compared to households who applied for assistance.

Figure 3 shows that even among households still waiting for a response from their ERA application, however, rental delinquency rates appear to be on the decline, which may be indicative of overall improving economic conditions.

Figure 1

Longer-term Impact is Less Clear—Does ERA Support Renters Over Time?

A 2022 working paper from the Harvard Joint Center for Housing Studies found similar results – even after controlling for factors such as a renter’s age, income, race/ethnicity, gender and marital status, renter households who received ERA payments were significantly less likely to report being behind on rent relative to those who had applied and were still waiting on a response.

Building upon the methodology utilized by the Joint Center, we examined whether this positive impact of emergency rental assistance persisted beyond the time that funds were received ( see Appendix for a detailed methodology ).

Our model estimated that ERA recipients surveyed in the latter half of 2021 had a 28.9 percentage point lower average probability of being behind on their rent compared to renters who were either waiting on a response from their ERA application or had been denied assistance. By the first half of 2023, however, we estimated that ERA recipients had just a 22.8 percentage point lower average probability of being behind on their rent compared to their unassisted counterparts.

Figure 1

While the Census Bureau’s Household Pulse Survey does not ask respondents when they received their emergency assistance – just if they have received assistance – it’s fair to assume that the average ERA recipient responding to earlier rounds of the survey would have received their funds closer to the time of the survey. For example, a survey respondent in June of 2021 who reported having received emergency rental assistance must have received assistance not long before responding to the survey, since funds were only made available earlier that year. On the other hand, of those ERA recipients who responded to the Household Pulse Survey in 2023, some proportion must have received their funds a year or more earlier.

Therefore, while our results suggest that emergency rental assistance did significantly improve renters’ likelihood of staying current on their rental payments, this impact may have diminished in the months and years after funds were received.

The Takeaway

When devising future rental assistance initiatives, it is important for us to understand both the cost and efficacy of past programs. In 2021, the Treasury’s Emergency Rental Assistance (ERA) program provided more than $46 billion in funding to assist households that were unable to pay their rent or utilities amidst the COVID-19 pandemic. Our analysis of data from the Census Bureau’s Household Pulse Survey indicates that this had a strong, positive impact on renters’ ability to stay current on their rental payments. However, we also found evidence that this impact may have started to diminish in the months and years after assistance was received, which means that this type of emergency rental assistance may provide only temporary relief for renters.

While our analysis of the ERA program strongly indicates positive impacts for renters in the short-term, it also suggests the program was not a silver bullet for rental affordability in the long term. It again underscores the critical need for such policies to work in tandem with supply-side solutions that reliably address the root causes of long-term affordability.

  Click here to download the Appendix (Methodology).

About Research Notes : Published quarterly, Research Notes offers exclusive, in-depth analysis from NMHC's research team on topics of special interest to apartment industry professionals, from the demographics behind apartment demand to effect of changing economic conditions on the multifamily industry.

Questions or comments on Research Notes should be directed to Chris Bruen , Sr. Director of Research, NMHC, at [email protected]   or NMHC Research Assistant  Ryan Hecker  at  [email protected] .

Full Document

Staff resource.

short note on research development

Related Resources

  • Download PDF of the March 2024 Research Notes
  • View All Research Notes Newsletters

H.R. 7675: PFAS Research and Development Reauthorization Act of 2024

React to this bill with an emoji, save your opinion on this bill on a six-point scale from strongly oppose to strongly support.

(Shared on panel .)

Primary Source

Government Publishing Office

Widget for your website

Get a bill status widget »

Follow GovTrack on social media for more updates:

Visit us on Mastodon

  • Study Guide

Add a note about this bill. Your note is for you and will not be shared with anyone.

Because you are a member of panel , your positions on legislation and notes below will be shared with the panel administrators. ( More Info )

The text of the bill below is as of Mar 13, 2024 (Introduced).

118th CONGRESS

IN THE HOUSE OF REPRESENTATIVES

March 13, 2024

Mr. Pappas (for himself and Mr. Posey ) introduced the following bill; which was referred to the Committee on Energy and Commerce , and in addition to the Committees on Science, Space, and Technology , and Transportation and Infrastructure , for a period to be subsequently determined by the Speaker, in each case for consideration of such provisions as fall within the jurisdiction of the committee concerned

To extend the authorization of appropriations for PFAS research and development by the Environmental Protection Agency.

Short title

This Act may be cited as the PFAS Research and Development Reauthorization Act of 2024 .

Authorization

Section 7362(b) of the National Defense Authorization Act for Fiscal Year 2020 ( 15 U.S.C. 8962(b) ) is amended by striking 2024 and inserting 2029 .

[error message]

Text comparison.

IMAGES

  1. FREE 10+ Research Note Samples in MS Word

    short note on research development

  2. (PDF) NOTES OF A JOURNAL RESEARCH PAPER REVIEWER

    short note on research development

  3. Esse for All: Phd concept note sample

    short note on research development

  4. Write a short note on human development report

    short note on research development

  5. Short Research Proposal Template Download Printable PDF

    short note on research development

  6. Free Concept Note Templates & Samples [Word+PDF]

    short note on research development

VIDEO

  1. Biology Short note

  2. short note School health services in hindi

  3. MEDIA Short Note Clz 03 Suranga Gamage

  4. harmful ⭐ 🤢 short note English word \ basic English word \ @Specialenglish500

  5. 05 Short Note MEDIA Suranga Gamage

  6. Evening study vlog 💌🍃 || short note #aesthetic #minivlog #viral #studymotivation #exams

COMMENTS

  1. Research and Development (R&D) Definition, Types, and Importance

    Research And Development - R&D: Research and development (R&D) refers to the investigative activities a business conducts to improve existing products and procedures or to lead to the development ...

  2. Research and development

    The concept of research is as old as science; the concept of the intimate relationship between research and subsequent development, however, was not generally recognized until the 1950s. Research and development is the beginning of most systems of industrial production. The innovations that result in new products and new processes usually have ...

  3. PDF A GUIDE TO RESEARCH DEVELOPMENT

    The Guide walks the reader through the three stages of research strategy development: inform, create, and implement. 5.1.1 Inform. When creating a research strategy, there are three different stages. First, it is important to begin by collecting information to inform the research approach and strategy.

  4. What is Research Development?

    Research Development is an activity that many Universities have embraced to enhance the efforts of their faculty and foster the development of collaborative, team-based science as well as compete for large research center and consortia funding opportunities. Research Development professionals serve as "rainmakers" who catalyze and facilitate ...

  5. Research & Development

    R&D, which stands for research and development, refers to the activities aimed at gathering new knowledge. The main purpose of R&D is to expand the frontiers of human understanding and improve ...

  6. 13.1: An Introduction to Research and Development (R&D)

    KEY TAKEAWAYS. R&D refers to two intertwined processes of research (to identify new facts and ideas) and development (turning the ideas into tangible products and services.) Companies undertake R&D to get a pipeline of new products. Breakthrough innovations can create whole new industries, which can provide thousands of jobs.

  7. An Overview of Research and Development in Academia

    Research and development (R&D) have been variously defined individually and in their conjoined form. For example, the Organization for Economic Co-operation and Development (OECD) refers to any creative systematic activity undertaken to increase the stock of knowledge, including knowledge of man, culture and society, and the use of this knowledge to devise new applications [].

  8. research and development (R&D) summary

    For the full article, see research and development . research and development (R&D), In industry, two closely related processes by which new products and new forms of old products are created through technological innovation. The work generally focuses on two types of research, basic and applied. Basic research is directed toward a generalized ...

  9. Building an R&D strategy for modern times

    The global investment in research and development (R&D) is staggering. In 2019 alone, organizations around the world spent $2.3 trillion on R&D—the equivalent of roughly 2 percent of global GDP—about half of which came from industry and the remainder from governments and academic institutions.

  10. Research and Development (R&D)

    Definition. Research and development (R&D) is a broad category describing the entity of basic research, applied research, and development activities. In general research and development means systematic activities in order to increase knowledge and use of this knowledge when developing new products, processes, or services.

  11. Developing a Five-Year Research Plan

    Presented by Cathy Binger. First we're going to talk about what a research plan is, why it's important to write one, and why five years—why not one year, why not ten years. So we'll do some of those basic things, then Liza is going to get down and dirty into the nitty-gritty of "now what" how do I go about writing that research plan.

  12. What Is a Research Design

    A research design is a strategy for answering your research question using empirical data. Creating a research design means making decisions about: Your overall research objectives and approach. Whether you'll rely on primary research or secondary research. Your sampling methods or criteria for selecting subjects. Your data collection methods.

  13. PDF Research or Development? A Short History of Research and Development as

    A Short History of Research and Development as Categories. Benoît Godin 385 rue Sherbrooke Est Montreal, Quebec Canada H2X 1E3. [email protected]. Joseph Lane Center for Assistive Technology School of Public Health and Health Professions SUNY, Buffalo. [email protected].

  14. PDF Short Guide to Developing Interdisciplinary Research Proposals

    We define interdisciplinary research as occurring where the contributions of the various disciplines are integrated to provide holistic or systemic outcomes1. Interdisciplinary research can be within the social sciences or between the social, natural and life sciences and can be sub-divided into: Research which aims to further the expertise and ...

  15. What Is A Research Proposal? Examples + Template

    If you're short on time, here's a quick summary: The research topic is too broad (or just poorly articulated). The research aims, objectives and questions don't align. The research topic is not well justified. The study has a weak theoretical foundation. The research design is not well articulated well enough. Poor writing and sloppy ...

  16. (PDF) Research and Development

    Nobelius studied the evolution of management practices relating to research and. development ("R&D") processes and suggested that through 2002 it wa s possible t o. identify the following ...

  17. PDF What is 'Development'?

    As Thomas (2004: 1) argues, development is 'contested, ... complex, and ambiguous'. Gore (2000: 794-5) notes that in the 1950s and 1960s a 'vision of the liberation of people and peoples' dominated, based on 'structural transformation'. This perception has tended to 'slip from view' for many contributors to the development ...

  18. (PDF) A Short Note on Scientific Research Methodologies

    Scientific research methodologies are a set of principles, procedures, and techniques that researchers use to investigate. phenomena and answer research questions [1]. These methodologies provide ...

  19. Definition Purpose and Procedure of Developmental Research: An

    The Developmental Research Design was utilized by the researchers in the creation and evaluation of the Reading Assessment Manager as it is a "systematic study of designing, developing, and ...

  20. PDF Unit: 01 Research: Meaning, Types, Scope and Significance

    Understand research design and the process of research design. Formulate a research problem and state it as a hypothesis. 1.3 MEANING OF RESEARCH Research is a process to discover new knowledge to find answers to a question. The word research has two parts re (again) and search (find) which denote that we are taking up an

  21. Development: A Very Short Introduction

    An increase in a country's use of labour and capital, or its greater efficiency, provides for economic growth. Growth can be associated with increases in investment in resources, including infrastructure, education and health, leading to capital accumulation, or an increase in wealth.

  22. Development: Theories of Development

    Development is the series of age-related changes that happen over the course of a life span. Several famous psychologists, including Sigmund Freud, Erik Erikson, Jean Piaget, and Lawrence Kohlberg, describe development as a series of stages.A stage is a period in development in which people exhibit typical behavior patterns and establish particular capacities.

  23. (PDF) Research Methodology Notes

    CO URSE TITLE: STATISTICAL TECHNIQUES AND RESEARCH METHODOLOGY. COURSE CODE: PDA 711. THIS IS LECTURE NOTES ONLY; NOT TO BE SOLD, TRANSMITTED OR REPRODUCED FOR ANY. COMMERCIAL PURPOSES ...

  24. NMHC

    In this edition of NMHC Research Notes, we examine the short- and long-term impacts of the program. We found that, while ERA payments seemed to prevent renters from being behind on their rental payments in the short-term, there is evidence that this positive impact may have started to diminish in the months and years after assistance was received.

  25. Agri Commodity Markets Research Outlook 2024

    Currencies: US dollar - short of alternatives. Although the US jobs market started to loosen toward the end of 2023 in response to monetary tightening, the aging demographic suggests scope for worker shortages across most of the Organization for Economic Cooperation and Development in the years ahead.

  26. H.R. 7675: PFAS Research and Development Reauthorization Act of 2024

    I. 118th CONGRESS. 2d Session. H. R. 7675. IN THE HOUSE OF REPRESENTATIVES. March 13, 2024. Mr. Pappas (for himself and Mr. Posey) introduced the following bill; which was referred to the Committee on Energy and Commerce, and in addition to the Committees on Science, Space, and Technology, and Transportation and Infrastructure, for a period to be subsequently determined by the Speaker, in each ...