2.1 Why Is Research Important?

Learning objectives.

By the end of this section, you will be able to:

  • Explain how scientific research addresses questions about behavior
  • Discuss how scientific research guides public policy
  • Appreciate how scientific research can be important in making personal decisions

Scientific research is a critical tool for successfully navigating our complex world. Without it, we would be forced to rely solely on intuition, other people’s authority, and blind luck. While many of us feel confident in our abilities to decipher and interact with the world around us, history is filled with examples of how very wrong we can be when we fail to recognize the need for evidence in supporting claims. At various times in history, we would have been certain that the sun revolved around a flat earth, that the earth’s continents did not move, and that mental illness was caused by possession ( Figure 2.2 ). It is through systematic scientific research that we divest ourselves of our preconceived notions and superstitions and gain an objective understanding of ourselves and our world.

The goal of all scientists is to better understand the world around them. Psychologists focus their attention on understanding behavior, as well as the cognitive (mental) and physiological (body) processes that underlie behavior. In contrast to other methods that people use to understand the behavior of others, such as intuition and personal experience, the hallmark of scientific research is that there is evidence to support a claim. Scientific knowledge is empirical : It is grounded in objective, tangible evidence that can be observed time and time again, regardless of who is observing.

While behavior is observable, the mind is not. If someone is crying, we can see behavior. However, the reason for the behavior is more difficult to determine. Is the person crying due to being sad, in pain, or happy? Sometimes we can learn the reason for someone’s behavior by simply asking a question, like “Why are you crying?” However, there are situations in which an individual is either uncomfortable or unwilling to answer the question honestly, or is incapable of answering. For example, infants would not be able to explain why they are crying. In such circumstances, the psychologist must be creative in finding ways to better understand behavior. This chapter explores how scientific knowledge is generated, and how important that knowledge is in forming decisions in our personal lives and in the public domain.

Use of Research Information

Trying to determine which theories are and are not accepted by the scientific community can be difficult, especially in an area of research as broad as psychology. More than ever before, we have an incredible amount of information at our fingertips, and a simple internet search on any given research topic might result in a number of contradictory studies. In these cases, we are witnessing the scientific community going through the process of reaching a consensus, and it could be quite some time before a consensus emerges. For example, the explosion in our use of technology has led researchers to question whether this ultimately helps or hinders us. The use and implementation of technology in educational settings has become widespread over the last few decades. Researchers are coming to different conclusions regarding the use of technology. To illustrate this point, a study investigating a smartphone app targeting surgery residents (graduate students in surgery training) found that the use of this app can increase student engagement and raise test scores (Shaw & Tan, 2015). Conversely, another study found that the use of technology in undergraduate student populations had negative impacts on sleep, communication, and time management skills (Massimini & Peterson, 2009). Until sufficient amounts of research have been conducted, there will be no clear consensus on the effects that technology has on a student's acquisition of knowledge, study skills, and mental health.

In the meantime, we should strive to think critically about the information we encounter by exercising a degree of healthy skepticism. When someone makes a claim, we should examine the claim from a number of different perspectives: what is the expertise of the person making the claim, what might they gain if the claim is valid, does the claim seem justified given the evidence, and what do other researchers think of the claim? This is especially important when we consider how much information in advertising campaigns and on the internet claims to be based on “scientific evidence” when in actuality it is a belief or perspective of just a few individuals trying to sell a product or draw attention to their perspectives.

We should be informed consumers of the information made available to us because decisions based on this information have significant consequences. One such consequence can be seen in politics and public policy. Imagine that you have been elected as the governor of your state. One of your responsibilities is to manage the state budget and determine how to best spend your constituents’ tax dollars. As the new governor, you need to decide whether to continue funding early intervention programs. These programs are designed to help children who come from low-income backgrounds, have special needs, or face other disadvantages. These programs may involve providing a wide variety of services to maximize the children's development and position them for optimal levels of success in school and later in life (Blann, 2005). While such programs sound appealing, you would want to be sure that they also proved effective before investing additional money in these programs. Fortunately, psychologists and other scientists have conducted vast amounts of research on such programs and, in general, the programs are found to be effective (Neil & Christensen, 2009; Peters-Scheffer, Didden, Korzilius, & Sturmey, 2011). While not all programs are equally effective, and the short-term effects of many such programs are more pronounced, there is reason to believe that many of these programs produce long-term benefits for participants (Barnett, 2011). If you are committed to being a good steward of taxpayer money, you would want to look at research. Which programs are most effective? What characteristics of these programs make them effective? Which programs promote the best outcomes? After examining the research, you would be best equipped to make decisions about which programs to fund.

Link to Learning

Watch this video about early childhood program effectiveness to learn how scientists evaluate effectiveness and how best to invest money into programs that are most effective.

Ultimately, it is not just politicians who can benefit from using research in guiding their decisions. We all might look to research from time to time when making decisions in our lives. Imagine that your sister, Maria, expresses concern about her two-year-old child, Umberto. Umberto does not speak as much or as clearly as the other children in his daycare or others in the family. Umberto's pediatrician undertakes some screening and recommends an evaluation by a speech pathologist, but does not refer Maria to any other specialists. Maria is concerned that Umberto's speech delays are signs of a developmental disorder, but Umberto's pediatrician does not; she sees indications of differences in Umberto's jaw and facial muscles. Hearing this, you do some internet searches, but you are overwhelmed by the breadth of information and the wide array of sources. You see blog posts, top-ten lists, advertisements from healthcare providers, and recommendations from several advocacy organizations. Why are there so many sites? Which are based in research, and which are not?

In the end, research is what makes the difference between facts and opinions. Facts are observable realities, and opinions are personal judgments, conclusions, or attitudes that may or may not be accurate. In the scientific community, facts can be established only using evidence collected through empirical research.

NOTABLE RESEARCHERS

Psychological research has a long history involving important figures from diverse backgrounds. While the introductory chapter discussed several researchers who made significant contributions to the discipline, there are many more individuals who deserve attention in considering how psychology has advanced as a science through their work ( Figure 2.3 ). For instance, Margaret Floy Washburn (1871–1939) was the first woman to earn a PhD in psychology. Her research focused on animal behavior and cognition (Margaret Floy Washburn, PhD, n.d.). Mary Whiton Calkins (1863–1930) was a preeminent first-generation American psychologist who opposed the behaviorist movement, conducted significant research into memory, and established one of the earliest experimental psychology labs in the United States (Mary Whiton Calkins, n.d.).

Francis Sumner (1895–1954) was the first African American to receive a PhD in psychology in 1920. His dissertation focused on issues related to psychoanalysis. Sumner also had research interests in racial bias and educational justice. Sumner was one of the founders of Howard University’s department of psychology, and because of his accomplishments, he is sometimes referred to as the “Father of Black Psychology.” Thirteen years later, Inez Beverly Prosser (1895–1934) became the first African American woman to receive a PhD in psychology. Prosser’s research highlighted issues related to education in segregated versus integrated schools, and ultimately, her work was very influential in the hallmark Brown v. Board of Education Supreme Court ruling that segregation of public schools was unconstitutional (Ethnicity and Health in America Series: Featured Psychologists, n.d.).

Although the establishment of psychology’s scientific roots occurred first in Europe and the United States, it did not take much time until researchers from around the world began to establish their own laboratories and research programs. For example, some of the first experimental psychology laboratories in South America were founded by Horatio Piñero (1869–1919) at two institutions in Buenos Aires, Argentina (Godoy & Brussino, 2010). In India, Gunamudian David Boaz (1908–1965) and Narendra Nath Sen Gupta (1889–1944) established the first independent departments of psychology at the University of Madras and the University of Calcutta, respectively. These developments provided an opportunity for Indian researchers to make important contributions to the field (Gunamudian David Boaz, n.d.; Narendra Nath Sen Gupta, n.d.).

When the American Psychological Association (APA) was first founded in 1892, all of the members were White males (Women and Minorities in Psychology, n.d.). However, by 1905, Mary Whiton Calkins was elected as the first female president of the APA, and by 1946, nearly one-quarter of American psychologists were female. Psychology became a popular degree option for students enrolled in the nation’s historically Black higher education institutions, increasing the number of Black Americans who went on to become psychologists. Given demographic shifts occurring in the United States and increased access to higher educational opportunities among historically underrepresented populations, there is reason to hope that the diversity of the field will increasingly match the larger population, and that the research contributions made by the psychologists of the future will better serve people of all backgrounds (Women and Minorities in Psychology, n.d.).

The Process of Scientific Research

Scientific knowledge is advanced through a process known as the scientific method . Basically, ideas (in the form of theories and hypotheses) are tested against the real world (in the form of empirical observations), and those empirical observations lead to more ideas that are tested against the real world, and so on. In this sense, the scientific process is circular. The types of reasoning within the circle are called deductive and inductive. In deductive reasoning , ideas are tested in the real world; in inductive reasoning , real-world observations lead to new ideas ( Figure 2.4 ). These processes are inseparable, like inhaling and exhaling, but different research approaches place different emphasis on the deductive and inductive aspects.

In the scientific context, deductive reasoning begins with a generalization—one hypothesis—that is then used to reach logical conclusions about the real world. If the hypothesis is correct, then the logical conclusions reached through deductive reasoning should also be correct. A deductive reasoning argument might go something like this: All living things require energy to survive (this would be your hypothesis). Ducks are living things. Therefore, ducks require energy to survive (logical conclusion). In this example, the hypothesis is correct; therefore, the conclusion is correct as well. Sometimes, however, an incorrect hypothesis may lead to a logical but incorrect conclusion. Consider this argument: all ducks are born with the ability to see. Quackers is a duck. Therefore, Quackers was born with the ability to see. Scientists use deductive reasoning to empirically test their hypotheses. Returning to the example of the ducks, researchers might design a study to test the hypothesis that if all living things require energy to survive, then ducks will be found to require energy to survive.

Deductive reasoning starts with a generalization that is tested against real-world observations; however, inductive reasoning moves in the opposite direction. Inductive reasoning uses empirical observations to construct broad generalizations. Unlike deductive reasoning, conclusions drawn from inductive reasoning may or may not be correct, regardless of the observations on which they are based. For instance, you may notice that your favorite fruits—apples, bananas, and oranges—all grow on trees; therefore, you assume that all fruit must grow on trees. This would be an example of inductive reasoning, and, clearly, the existence of strawberries, blueberries, and kiwi demonstrate that this generalization is not correct despite it being based on a number of direct observations. Scientists use inductive reasoning to formulate theories, which in turn generate hypotheses that are tested with deductive reasoning. In the end, science involves both deductive and inductive processes.

For example, case studies, which you will read about in the next section, are heavily weighted on the side of empirical observations. Thus, case studies are closely associated with inductive processes as researchers gather massive amounts of observations and seek interesting patterns (new ideas) in the data. Experimental research, on the other hand, puts great emphasis on deductive reasoning.

We’ve stated that theories and hypotheses are ideas, but what sort of ideas are they, exactly? A theory is a well-developed set of ideas that propose an explanation for observed phenomena. Theories are repeatedly checked against the world, but they tend to be too complex to be tested all at once; instead, researchers create hypotheses to test specific aspects of a theory.

A hypothesis is a testable prediction about how the world will behave if our idea is correct, and it is often worded as an if-then statement (e.g., if I study all night, I will get a passing grade on the test). The hypothesis is extremely important because it bridges the gap between the realm of ideas and the real world. As specific hypotheses are tested, theories are modified and refined to reflect and incorporate the result of these tests Figure 2.5 .

To see how this process works, let’s consider a specific theory and a hypothesis that might be generated from that theory. As you’ll learn in a later chapter, the James-Lange theory of emotion asserts that emotional experience relies on the physiological arousal associated with the emotional state. If you walked out of your home and discovered a very aggressive snake waiting on your doorstep, your heart would begin to race and your stomach churn. According to the James-Lange theory, these physiological changes would result in your feeling of fear. A hypothesis that could be derived from this theory might be that a person who is unaware of the physiological arousal that the sight of the snake elicits will not feel fear.

A scientific hypothesis is also falsifiable , or capable of being shown to be incorrect. Recall from the introductory chapter that Sigmund Freud had lots of interesting ideas to explain various human behaviors ( Figure 2.6 ). However, a major criticism of Freud’s theories is that many of his ideas are not falsifiable; for example, it is impossible to imagine empirical observations that would disprove the existence of the id, the ego, and the superego—the three elements of personality described in Freud’s theories. Despite this, Freud’s theories are widely taught in introductory psychology texts because of their historical significance for personality psychology and psychotherapy, and these remain the root of all modern forms of therapy.

In contrast, the James-Lange theory does generate falsifiable hypotheses, such as the one described above. Some individuals who suffer significant injuries to their spinal columns are unable to feel the bodily changes that often accompany emotional experiences. Therefore, we could test the hypothesis by determining how emotional experiences differ between individuals who have the ability to detect these changes in their physiological arousal and those who do not. In fact, this research has been conducted and while the emotional experiences of people deprived of an awareness of their physiological arousal may be less intense, they still experience emotion (Chwalisz, Diener, & Gallagher, 1988).

Scientific research’s dependence on falsifiability allows for great confidence in the information that it produces. Typically, by the time information is accepted by the scientific community, it has been tested repeatedly.

As an Amazon Associate we earn from qualifying purchases.

This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute OpenStax.

Access for free at https://openstax.org/books/psychology-2e/pages/1-introduction
  • Authors: Rose M. Spielman, William J. Jenkins, Marilyn D. Lovett
  • Publisher/website: OpenStax
  • Book title: Psychology 2e
  • Publication date: Apr 22, 2020
  • Location: Houston, Texas
  • Book URL: https://openstax.org/books/psychology-2e/pages/1-introduction
  • Section URL: https://openstax.org/books/psychology-2e/pages/2-1-why-is-research-important

© Jan 6, 2024 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.

Logo for UH Pressbooks

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

Psychological Research

Why Is Research Important?

OpenStaxCollege

[latexpage]

Learning Objectives

By the end of this section, you will be able to:

  • Explain how scientific research addresses questions about behavior
  • Discuss how scientific research guides public policy
  • Appreciate how scientific research can be important in making personal decisions

Scientific research is a critical tool for successfully navigating our complex world. Without it, we would be forced to rely solely on intuition, other people’s authority, and blind luck. While many of us feel confident in our abilities to decipher and interact with the world around us, history is filled with examples of how very wrong we can be when we fail to recognize the need for evidence in supporting claims. At various times in history, we would have been certain that the sun revolved around a flat earth, that the earth’s continents did not move, and that mental illness was caused by possession ( [link] ). It is through systematic scientific research that we divest ourselves of our preconceived notions and superstitions and gain an objective understanding of ourselves and our world.

A skull has a large hole bored through the forehead.

The goal of all scientists is to better understand the world around them. Psychologists focus their attention on understanding behavior, as well as the cognitive (mental) and physiological (body) processes that underlie behavior. In contrast to other methods that people use to understand the behavior of others, such as intuition and personal experience, the hallmark of scientific research is that there is evidence to support a claim. Scientific knowledge is empirical : It is grounded in objective, tangible evidence that can be observed time and time again, regardless of who is observing.

While behavior is observable, the mind is not. If someone is crying, we can see behavior. However, the reason for the behavior is more difficult to determine. Is the person crying due to being sad, in pain, or happy? Sometimes we can learn the reason for someone’s behavior by simply asking a question, like “Why are you crying?” However, there are situations in which an individual is either uncomfortable or unwilling to answer the question honestly, or is incapable of answering. For example, infants would not be able to explain why they are crying. In such circumstances, the psychologist must be creative in finding ways to better understand behavior. This chapter explores how scientific knowledge is generated, and how important that knowledge is in forming decisions in our personal lives and in the public domain.

USE OF RESEARCH INFORMATION

Trying to determine which theories are and are not accepted by the scientific community can be difficult, especially in an area of research as broad as psychology. More than ever before, we have an incredible amount of information at our fingertips, and a simple internet search on any given research topic might result in a number of contradictory studies. In these cases, we are witnessing the scientific community going through the process of reaching a consensus, and it could be quite some time before a consensus emerges. For example, the hypothesized link between exposure to media violence and subsequent aggression has been debated in the scientific community for roughly 60 years. Even today, we will find detractors, but a consensus is building. Several professional organizations view media violence exposure as a risk factor for actual violence, including the American Medical Association, the American Psychiatric Association, and the American Psychological Association (American Academy of Pediatrics, American Academy of Child & Adolescent Psychiatry, American Psychological Association, American Medical Association, American Academy of Family Physicians, American Psychiatric Association, 2000).

In the meantime, we should strive to think critically about the information we encounter by exercising a degree of healthy skepticism. When someone makes a claim, we should examine the claim from a number of different perspectives: what is the expertise of the person making the claim, what might they gain if the claim is valid, does the claim seem justified given the evidence, and what do other researchers think of the claim? This is especially important when we consider how much information in advertising campaigns and on the internet claims to be based on “scientific evidence” when in actuality it is a belief or perspective of just a few individuals trying to sell a product or draw attention to their perspectives.

We should be informed consumers of the information made available to us because decisions based on this information have significant consequences. One such consequence can be seen in politics and public policy. Imagine that you have been elected as the governor of your state. One of your responsibilities is to manage the state budget and determine how to best spend your constituents’ tax dollars. As the new governor, you need to decide whether to continue funding the D.A.R.E. (Drug Abuse Resistance Education) program in public schools ( [link] ). This program typically involves police officers coming into the classroom to educate students about the dangers of becoming involved with alcohol and other drugs. According to the D.A.R.E. website (www.dare.org), this program has been very popular since its inception in 1983, and it is currently operating in 75% of school districts in the United States and in more than 40 countries worldwide. Sounds like an easy decision, right? However, on closer review, you discover that the vast majority of research into this program consistently suggests that participation has little, if any, effect on whether or not someone uses alcohol or other drugs (Clayton, Cattarello, & Johnstone, 1996; Ennett, Tobler, Ringwalt, & Flewelling, 1994; Lynam et al., 1999; Ringwalt, Ennett, & Holt, 1991). If you are committed to being a good steward of taxpayer money, will you fund this particular program, or will you try to find other programs that research has consistently demonstrated to be effective?

A D.A.R.E. poster reads “D.A.R.E. to resist drugs and violence.”

Watch this news report to learn more about some of the controversial issues surrounding the D.A.R.E. program.

Ultimately, it is not just politicians who can benefit from using research in guiding their decisions. We all might look to research from time to time when making decisions in our lives. Imagine you just found out that a close friend has breast cancer or that one of your young relatives has recently been diagnosed with autism. In either case, you want to know which treatment options are most successful with the fewest side effects. How would you find that out? You would probably talk with your doctor and personally review the research that has been done on various treatment options—always with a critical eye to ensure that you are as informed as possible.

In the end, research is what makes the difference between facts and opinions. Facts are observable realities, and opinions are personal judgments, conclusions, or attitudes that may or may not be accurate. In the scientific community, facts can be established only using evidence collected through empirical research.

THE PROCESS OF SCIENTIFIC RESEARCH

Scientific knowledge is advanced through a process known as the scientific method . Basically, ideas (in the form of theories and hypotheses) are tested against the real world (in the form of empirical observations), and those empirical observations lead to more ideas that are tested against the real world, and so on. In this sense, the scientific process is circular. The types of reasoning within the circle are called deductive and inductive. In deductive reasoning , ideas are tested against the empirical world; in inductive reasoning , empirical observations lead to new ideas ( [link] ). These processes are inseparable, like inhaling and exhaling, but different research approaches place different emphasis on the deductive and inductive aspects.

A diagram has a box at the top labeled “hypothesis or general premise” and a box at the bottom labeled “empirical observations.” On the left, an arrow labeled “inductive reasoning” goes from the bottom to top box. On the right, an arrow labeled “deductive reasoning” goes from the top to the bottom box.

In the scientific context, deductive reasoning begins with a generalization—one hypothesis—that is then used to reach logical conclusions about the real world. If the hypothesis is correct, then the logical conclusions reached through deductive reasoning should also be correct. A deductive reasoning argument might go something like this: All living things require energy to survive (this would be your hypothesis). Ducks are living things. Therefore, ducks require energy to survive (logical conclusion). In this example, the hypothesis is correct; therefore, the conclusion is correct as well. Sometimes, however, an incorrect hypothesis may lead to a logical but incorrect conclusion. Consider this argument: all ducks are born with the ability to see. Quackers is a duck. Therefore, Quackers was born with the ability to see. Scientists use deductive reasoning to empirically test their hypotheses. Returning to the example of the ducks, researchers might design a study to test the hypothesis that if all living things require energy to survive, then ducks will be found to require energy to survive.

Deductive reasoning starts with a generalization that is tested against real-world observations; however, inductive reasoning moves in the opposite direction. Inductive reasoning uses empirical observations to construct broad generalizations. Unlike deductive reasoning, conclusions drawn from inductive reasoning may or may not be correct, regardless of the observations on which they are based. For instance, you may notice that your favorite fruits—apples, bananas, and oranges—all grow on trees; therefore, you assume that all fruit must grow on trees. This would be an example of inductive reasoning, and, clearly, the existence of strawberries, blueberries, and kiwi demonstrate that this generalization is not correct despite it being based on a number of direct observations. Scientists use inductive reasoning to formulate theories, which in turn generate hypotheses that are tested with deductive reasoning. In the end, science involves both deductive and inductive processes.

For example, case studies, which you will read about in the next section, are heavily weighted on the side of empirical observations. Thus, case studies are closely associated with inductive processes as researchers gather massive amounts of observations and seek interesting patterns (new ideas) in the data. Experimental research, on the other hand, puts great emphasis on deductive reasoning.

Play this “Deal Me In” interactive card game to practice using inductive reasoning.

We’ve stated that theories and hypotheses are ideas, but what sort of ideas are they, exactly? A theory is a well-developed set of ideas that propose an explanation for observed phenomena. Theories are repeatedly checked against the world, but they tend to be too complex to be tested all at once; instead, researchers create hypotheses to test specific aspects of a theory.

A hypothesis is a testable prediction about how the world will behave if our idea is correct, and it is often worded as an if-then statement (e.g., if I study all night, I will get a passing grade on the test). The hypothesis is extremely important because it bridges the gap between the realm of ideas and the real world. As specific hypotheses are tested, theories are modified and refined to reflect and incorporate the result of these tests [link] .

A diagram has four boxes: the top is labeled “theory,” the right is labeled “hypothesis,” the bottom is labeled “research,” and the left is labeled “observation.” Arrows flow in the direction from top to right to bottom to left and back to the top, clockwise. The top right arrow is labeled “use the hypothesis to form a theory,” the bottom right arrow is labeled “design a study to test the hypothesis,” the bottom left arrow is labeled “perform the research,” and the top left arrow is labeled “create or modify the theory.”

To see how this process works, let’s consider a specific theory and a hypothesis that might be generated from that theory. As you’ll learn in a later chapter, the James-Lange theory of emotion asserts that emotional experience relies on the physiological arousal associated with the emotional state. If you walked out of your home and discovered a very aggressive snake waiting on your doorstep, your heart would begin to race and your stomach churn. According to the James-Lange theory, these physiological changes would result in your feeling of fear. A hypothesis that could be derived from this theory might be that a person who is unaware of the physiological arousal that the sight of the snake elicits will not feel fear.

A scientific hypothesis is also falsifiable , or capable of being shown to be incorrect. Recall from the introductory chapter that Sigmund Freud had lots of interesting ideas to explain various human behaviors ( [link] ). However, a major criticism of Freud’s theories is that many of his ideas are not falsifiable; for example, it is impossible to imagine empirical observations that would disprove the existence of the id, the ego, and the superego—the three elements of personality described in Freud’s theories. Despite this, Freud’s theories are widely taught in introductory psychology texts because of their historical significance for personality psychology and psychotherapy, and these remain the root of all modern forms of therapy.

(a)A photograph shows Freud holding a cigar. (b) The mind’s conscious and unconscious states are illustrated as an iceberg floating in water. Beneath the water’s surface in the “unconscious” area are the id, ego, and superego. The area just below the water’s surface is labeled “preconscious.” The area above the water’s surface is labeled “conscious.”

In contrast, the James-Lange theory does generate falsifiable hypotheses, such as the one described above. Some individuals who suffer significant injuries to their spinal columns are unable to feel the bodily changes that often accompany emotional experiences. Therefore, we could test the hypothesis by determining how emotional experiences differ between individuals who have the ability to detect these changes in their physiological arousal and those who do not. In fact, this research has been conducted and while the emotional experiences of people deprived of an awareness of their physiological arousal may be less intense, they still experience emotion (Chwalisz, Diener, & Gallagher, 1988).

Scientific research’s dependence on falsifiability allows for great confidence in the information that it produces. Typically, by the time information is accepted by the scientific community, it has been tested repeatedly.

Visit this website to apply the scientific method and practice its steps by using them to solve a murder mystery, determine why a student is in trouble, and design an experiment to test house paint.

Scientists are engaged in explaining and understanding how the world around them works, and they are able to do so by coming up with theories that generate hypotheses that are testable and falsifiable. Theories that stand up to their tests are retained and refined, while those that do not are discarded or modified. In this way, research enables scientists to separate fact from simple opinion. Having good information generated from research aids in making wise decisions both in public policy and in our personal lives.

Review Questions

Scientific hypotheses are ________ and falsifiable.

________ are defined as observable realities.

Scientific knowledge is ________.

A major criticism of Freud’s early theories involves the fact that his theories ________.

  • were too limited in scope
  • were too outrageous
  • were too broad
  • were not testable

Critical Thinking Questions

In this section, the D.A.R.E. program was described as an incredibly popular program in schools across the United States despite the fact that research consistently suggests that this program is largely ineffective. How might one explain this discrepancy?

There is probably tremendous political pressure to appear to be hard on drugs. Therefore, even though D.A.R.E. might be ineffective, it is a well-known program with which voters are familiar.

The scientific method is often described as self-correcting and cyclical. Briefly describe your understanding of the scientific method with regard to these concepts.

This cyclical, self-correcting process is primarily a function of the empirical nature of science. Theories are generated as explanations of real-world phenomena. From theories, specific hypotheses are developed and tested. As a function of this testing, theories will be revisited and modified or refined to generate new hypotheses that are again tested. This cyclical process ultimately allows for more and more precise (and presumably accurate) information to be collected.

Personal Application Questions

Healthcare professionals cite an enormous number of health problems related to obesity, and many people have an understandable desire to attain a healthy weight. There are many diet programs, services, and products on the market to aid those who wish to lose weight. If a close friend was considering purchasing or participating in one of these products, programs, or services, how would you make sure your friend was fully aware of the potential consequences of this decision? What sort of information would you want to review before making such an investment or lifestyle change yourself?

Why Is Research Important? Copyright © 2014 by OpenStaxCollege is licensed under a Creative Commons Attribution 4.0 International License , except where otherwise noted.

Logo for Digital Editions

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

10 Why is Research Important?

Learning Objectives

  • Explain how scientific research addresses questions about behaviour
  • Discuss how scientific research guides public policy
  • Appreciate how scientific research can be important in making personal decisions

Scientific research is a critical tool for successfully navigating our complex world. Without it, we would be forced to rely solely on intuition, other people’s authority, and blind luck. While many of us feel confident in our abilities to decipher and interact with the world around us, history is filled with examples of how very wrong we can be when we fail to recognize the need for evidence in supporting claims. At various times in history, we would have been certain that the sun revolved around a flat earth, that the earth’s continents did not move, and that mental illness was caused by possession ( Figure PR.2 ). It is through systematic scientific research that we divest ourselves of our preconceived notions and superstitions and gain an objective understanding of ourselves and our world.

A skull has a large hole bored through the forehead.

The goal of all scientists is to better understand the world around them. Psychologists focus their attention on understanding behaviour, as well as the cognitive (mental) and physiological (body) processes that underlie behaviour. In contrast to other methods that people use to understand the behaviour of others, such as intuition and personal experience, the hallmark of scientific research is that there is evidence to support a claim. Scientific knowledge is  empirical : it is grounded in objective, tangible evidence that can be observed time and time again, regardless of who is observing.

While behaviour is observable, the mind is not. If someone is crying, we can see behaviour. However, the reason for the behaviour is more difficult to determine. Is the person crying due to being sad, in pain, or happy? Sometimes we can learn the reason for someone’s behaviour by simply asking a question, like “Why are you crying?” However, there are situations in which an individual is either uncomfortable or unwilling to answer the question honestly, or is incapable of answering. For example, infants would not be able to explain why they are crying. In such circumstances, the psychologist must be creative in finding ways to better understand behaviour. This chapter explores how scientific knowledge is generated, and how important that knowledge is in forming decisions in our personal lives and in the public domain.

Use of Research Information

Trying to determine which theories are and are not accepted by the scientific community can be difficult, especially in an area of research as broad as psychology. More than ever before, we have an incredible amount of information at our fingertips, and a simple internet search on any given research topic might result in a number of contradictory studies. In these cases, we are witnessing the scientific community going through the process of reaching a consensus, and it could be quite some time before a consensus emerges. For example, the explosion in our use of technology has led researchers to question whether this ultimately helps or hinders us. The use and implementation of technology in educational settings has become widespread over the last few decades. Researchers are coming to different conclusions regarding the use of technology. To illustrate this point, a study investigating a smartphone app targeting surgery residents (graduate students in surgery training) found that the use of this app can increase student engagement and raise test scores (Shaw & Tan, 2015). Conversely, another study found that the use of technology in undergraduate student populations had negative impacts on sleep, communication, and time management skills (Massimini & Peterson, 2009). Until sufficient amounts of research have been conducted, there will be no clear consensus on the effects that technology has on a student’s acquisition of knowledge, study skills, and mental health.

In the meantime, we should strive to think critically about the information we encounter by exercising a degree of healthy skepticism. When someone makes a claim, we should examine the claim from a number of different perspectives: what is the expertise of the person making the claim, what might they gain if the claim is valid, does the claim seem justified given the evidence, and what do other researchers think of the claim? This is especially important when we consider how much information in advertising campaigns and on the internet claims to be based on “scientific evidence” when in actuality it is a belief or perspective of just a few individuals trying to sell a product or draw attention to their perspectives.

We should be informed consumers of the information made available to us because decisions based on this information have significant consequences. One such consequence can be seen in politics and public policy. Imagine that you have been elected as the Premier of your province. One of your responsibilities is to manage the provincial budget and determine how to best spend your constituents’ tax dollars. As the new Premier, you need to decide whether to continue funding early intervention programs. These programs are designed to help children who come from low-income backgrounds, have special needs, or face other disadvantages. These programs may involve providing a wide variety of services to maximize the children’s development and position them for optimal levels of success in school and later in life (Blann, 2005). While such programs sound appealing, you would want to be sure that they also proved effective before investing additional money in these programs. Fortunately, psychologists and other scientists have conducted vast amounts of research on such programs and, in general, the programs are found to be effective (Neil & Christensen, 2009; Peters-Scheffer, Didden, Korzilius, & Sturmey, 2011). While not all programs are equally effective, and the short-term effects of many such programs are more pronounced, there is reason to believe that many of these programs produce long-term benefits for participants (Barnett, 2011). If you are committed to being a good steward of taxpayer money, you would want to look at research. Which programs are most effective? What characteristics of these programs make them effective? Which programs promote the best outcomes? After examining the research, you would be best equipped to make decisions about which programs to fund.

LINK TO LEARNING

Ultimately, it is not just politicians who can benefit from using research in guiding their decisions. We all might look to research from time to time when making decisions in our lives. Imagine you just found out that a close friend has breast cancer or that one of your young relatives has recently been diagnosed with autism. In either case, you want to know which treatment options are most successful with the fewest side effects. How would you find that out? You would probably talk with your doctor and personally review the research that has been done on various treatment options—always with a critical eye to ensure that you are as informed as possible.

In the end, research is what makes the difference between facts and opinions.  Facts  are observable realities, and  opinions  are personal judgments, conclusions, or attitudes that may or may not be accurate. In the scientific community, facts can be established only using evidence collected through empirical research.

The Process of Scientific Research

Scientific knowledge is advanced through a process known as the  scientific method . Basically, ideas (in the form of theories and hypotheses) are tested against the real world (in the form of empirical observations), and those empirical observations lead to more ideas that are tested against the real world, and so on. In this sense, the scientific process is circular. The types of reasoning within the circle are called deductive and inductive. In  deductive reasoning , ideas are tested in the real world; in  inductive reasoning , real-world observations lead to new ideas ( Figure PR.3 ). These processes are inseparable, like inhaling and exhaling, but different research approaches place different emphasis on the deductive and inductive aspects.

A diagram has a box at the top labeled “hypothesis or general premise” and a box at the bottom labeled “empirical observations.” On the left, an arrow labeled “inductive reasoning” goes from the bottom to top box. On the right, an arrow labeled “deductive reasoning” goes from the top to the bottom box.

In the scientific context, deductive reasoning begins with a generalization—one hypothesis—that is then used to reach logical conclusions about the real world. If the hypothesis is supported, then the logical conclusions reached through deductive reasoning should also be correct. A deductive reasoning argument might go something like this: All living things require energy to survive (this would be your hypothesis). Ducks are living things. Therefore, ducks require energy to survive (logical conclusion). In this example, the hypothesis is correct; therefore, the conclusion is correct as well. Sometimes, however, an incorrect hypothesis may lead to a logical but incorrect conclusion. Consider this argument: all ducks are born with the ability to see. Quackers is a duck. Therefore, Quackers was born with the ability to see. Scientists use deductive reasoning to empirically test their hypotheses. Returning to the example of the ducks, researchers might design a study to test the hypothesis that if all living things require energy to survive, then ducks will be found to require energy to survive.

Deductive reasoning starts with a generalization that is tested against real-world observations; however, inductive reasoning moves in the opposite direction. Inductive reasoning uses empirical observations to construct broad generalizations. Unlike deductive reasoning, conclusions drawn from inductive reasoning may or may not be correct, regardless of the observations on which they are based. For instance, you may notice that your favourite fruits—apples, bananas, and oranges—all grow on trees; therefore, you assume that all fruit must grow on trees. This would be an example of inductive reasoning, and, clearly, the existence of strawberries, blueberries, and kiwi demonstrate that this generalization is not correct despite it being based on a number of direct observations. Scientists use inductive reasoning to formulate theories, which in turn generate hypotheses that are tested with deductive reasoning. In the end, science involves both deductive and inductive processes.

For example, case studies, which you will read about in the next section, are heavily weighted on the side of empirical observations. Thus, case studies are closely associated with inductive processes as researchers gather massive amounts of observations and seek interesting patterns (new ideas) in the data. Experimental research, on the other hand, puts great emphasis on deductive reasoning.

We’ve stated that theories and hypotheses are ideas, but what sort of ideas are they, exactly? A  theory   is a well-developed set of ideas that propose an explanation for observed phenomena. Theories are repeatedly checked against the world, but they tend to be too complex to be tested all at once; instead, researchers create hypotheses to test specific aspects of a theory.

A  hypothesis  is a testable prediction about how the world will behave if our idea is correct, and it is often worded as an if-then statement (e.g., if I study all night, I will get a passing grade on the test). The hypothesis is extremely important because it bridges the gap between the realm of ideas and the real world. As specific hypotheses are tested, theories are modified and refined to reflect and incorporate the result of these tests  Figure PR.4 .

A diagram has seven labeled boxes with arrows to show the progression in the flow chart. The chart starts at “Theory” and moves to “Generate hypothesis,” “Collect data,” “Analyze data,” and “Summarize data and report findings.” There are two arrows coming from “Summarize data and report findings” to show two options. The first arrow points to “Confirm theory.” The second arrow points to “Modify theory,” which has an arrow that points back to “Generate hypothesis.”

Introduction to Psychology & Neuroscience Copyright © 2020 by Edited by Leanne Stevens is licensed under a Creative Commons Attribution 4.0 International License , except where otherwise noted.

Share This Book

  • U.S. Department of Health & Human Services

National Institutes of Health (NIH) - Turning Discovery into Health

  • Virtual Tour
  • Staff Directory
  • En Español

You are here

Science, health, and public trust.

September 8, 2021

Explaining How Research Works

Understanding Research infographic

We’ve heard “follow the science” a lot during the pandemic. But it seems science has taken us on a long and winding road filled with twists and turns, even changing directions at times. That’s led some people to feel they can’t trust science. But when what we know changes, it often means science is working.

Expaling How Research Works Infographic en español

Explaining the scientific process may be one way that science communicators can help maintain public trust in science. Placing research in the bigger context of its field and where it fits into the scientific process can help people better understand and interpret new findings as they emerge. A single study usually uncovers only a piece of a larger puzzle.

Questions about how the world works are often investigated on many different levels. For example, scientists can look at the different atoms in a molecule, cells in a tissue, or how different tissues or systems affect each other. Researchers often must choose one or a finite number of ways to investigate a question. It can take many different studies using different approaches to start piecing the whole picture together.

Sometimes it might seem like research results contradict each other. But often, studies are just looking at different aspects of the same problem. Researchers can also investigate a question using different techniques or timeframes. That may lead them to arrive at different conclusions from the same data.

Using the data available at the time of their study, scientists develop different explanations, or models. New information may mean that a novel model needs to be developed to account for it. The models that prevail are those that can withstand the test of time and incorporate new information. Science is a constantly evolving and self-correcting process.

Scientists gain more confidence about a model through the scientific process. They replicate each other’s work. They present at conferences. And papers undergo peer review, in which experts in the field review the work before it can be published in scientific journals. This helps ensure that the study is up to current scientific standards and maintains a level of integrity. Peer reviewers may find problems with the experiments or think different experiments are needed to justify the conclusions. They might even offer new ways to interpret the data.

It’s important for science communicators to consider which stage a study is at in the scientific process when deciding whether to cover it. Some studies are posted on preprint servers for other scientists to start weighing in on and haven’t yet been fully vetted. Results that haven't yet been subjected to scientific scrutiny should be reported on with care and context to avoid confusion or frustration from readers.

We’ve developed a one-page guide, "How Research Works: Understanding the Process of Science" to help communicators put the process of science into perspective. We hope it can serve as a useful resource to help explain why science changes—and why it’s important to expect that change. Please take a look and share your thoughts with us by sending an email to  [email protected].

Below are some additional resources:

  • Discoveries in Basic Science: A Perfectly Imperfect Process
  • When Clinical Research Is in the News
  • What is Basic Science and Why is it Important?
  • ​ What is a Research Organism?
  • What Are Clinical Trials and Studies?
  • Basic Research – Digital Media Kit
  • Decoding Science: How Does Science Know What It Knows? (NAS)
  • Can Science Help People Make Decisions ? (NAS)

Connect with Us

  • More Social Media from NIH

Science Resource Online

What Is the Importance of Research? 5 Reasons Why Research is Critical

by Logan Bessant | Nov 16, 2021 | Science

What Is the Importance of Research? 5 Reasons Why Research is Critical

Most of us appreciate that research is a crucial part of medical advancement. But what exactly is the importance of research? In short, it is critical in the development of new medicines as well as ensuring that existing treatments are used to their full potential. 

Research can bridge knowledge gaps and change the way healthcare practitioners work by providing solutions to previously unknown questions.

In this post, we’ll discuss the importance of research and its impact on medical breakthroughs.  

The Importance Of Health Research

The purpose of studying is to gather information and evidence, inform actions, and contribute to the overall knowledge of a certain field. None of this is possible without research. 

Understanding how to conduct research and the importance of it may seem like a very simple idea to some, but in reality, it’s more than conducting a quick browser search and reading a few chapters in a textbook. 

No matter what career field you are in, there is always more to learn. Even for people who hold a Doctor of Philosophy (PhD) in their field of study, there is always some sort of unknown that can be researched. Delving into this unlocks the unknowns, letting you explore the world from different perspectives and fueling a deeper understanding of how the universe works.

To make things a little more specific, this concept can be clearly applied in any healthcare scenario. Health research has an incredibly high value to society as it provides important information about disease trends and risk factors, outcomes of treatments, patterns of care, and health care costs and use. All of these factors as well as many more are usually researched through a clinical trial. 

What Is The Importance Of Clinical Research?

Clinical trials are a type of research that provides information about a new test or treatment. They are usually carried out to find out what, or if, there are any effects of these procedures or drugs on the human body. 

All legitimate clinical trials are carefully designed, reviewed and completed, and need to be approved by professionals before they can begin. They also play a vital part in the advancement of medical research including:

  • Providing new and good information on which types of drugs are more effective.  
  • Bringing new treatments such as medicines, vaccines and devices into the field. 
  • Testing the safety and efficacy of a new drug before it is brought to market and used in clinical practice.
  • Giving the opportunity for more effective treatments to benefit millions of lives both now and in the future. 
  • Enhancing health, lengthening life, and reducing the burdens of illness and disability. 

This all plays back to clinical research as it opens doors to advancing prevention, as well as providing treatments and cures for diseases and disabilities. Clinical trial volunteer participants are essential to this progress which further supports the need for the importance of research to be well-known amongst healthcare professionals, students and the general public. 

The image shows a researchers hand holding a magnifying glass to signify the importance of research.

Five Reasons Why Research is Critical

Research is vital for almost everyone irrespective of their career field. From doctors to lawyers to students to scientists, research is the key to better work. 

  • Increases quality of life

 Research is the backbone of any major scientific or medical breakthrough. None of the advanced treatments or life-saving discoveries used to treat patients today would be available if it wasn’t for the detailed and intricate work carried out by scientists, doctors and healthcare professionals over the past decade. 

This improves quality of life because it can help us find out important facts connected to the researched subject. For example, universities across the globe are now studying a wide variety of things from how technology can help breed healthier livestock, to how dance can provide long-term benefits to people living with Parkinson’s. 

For both of these studies, quality of life is improved. Farmers can use technology to breed healthier livestock which in turn provides them with a better turnover, and people who suffer from Parkinson’s disease can find a way to reduce their symptoms and ease their stress. 

Research is a catalyst for solving the world’s most pressing issues. Even though the complexity of these issues evolves over time, they always provide a glimmer of hope to improving lives and making processes simpler. 

  • Builds up credibility 

People are willing to listen and trust someone with new information on one condition – it’s backed up. And that’s exactly where research comes in. Conducting studies on new and unfamiliar subjects, and achieving the desired or expected outcome, can help people accept the unknown.

However, this goes without saying that your research should be focused on the best sources. It is easy for people to poke holes in your findings if your studies have not been carried out correctly, or there is no reliable data to back them up. 

This way once you have done completed your research, you can speak with confidence about your findings within your field of study. 

  • Drives progress forward 

It is with thanks to scientific research that many diseases once thought incurable, now have treatments. For example, before the 1930s, anyone who contracted a bacterial infection had a high probability of death. There simply was no treatment for even the mildest of infections as, at the time, it was thought that nothing could kill bacteria in the gut.

When antibiotics were discovered and researched in 1928, it was considered one of the biggest breakthroughs in the medical field. This goes to show how much research drives progress forward, and how it is also responsible for the evolution of technology . 

Today vaccines, diagnoses and treatments can all be simplified with the progression of medical research, making us question just what research can achieve in the future. 

  • Engages curiosity 

The acts of searching for information and thinking critically serve as food for the brain, allowing our inherent creativity and logic to remain active. Aside from the fact that this curiosity plays such a huge part within research, it is also proven that exercising our minds can reduce anxiety and our chances of developing mental illnesses in the future. 

Without our natural thirst and our constant need to ask ‘why?’ and ‘how?’ many important theories would not have been put forward and life-changing discoveries would not have been made. The best part is that the research process itself rewards this curiosity. 

Research opens you up to different opinions and new ideas which can take a proposed question and turn into a real-life concept. It also builds discerning and analytical skills which are always beneficial in many career fields – not just scientific ones. 

  • Increases awareness 

The main goal of any research study is to increase awareness, whether it’s contemplating new concepts with peers from work or attracting the attention of the general public surrounding a certain issue. 

Around the globe, research is used to help raise awareness of issues like climate change, racial discrimination, and gender inequality. Without consistent and reliable studies to back up these issues, it would be hard to convenience people that there is a problem that needs to be solved in the first place. 

The problem is that social media has become a place where fake news spreads like a wildfire, and with so many incorrect facts out there it can be hard to know who to trust. Assessing the integrity of the news source and checking for similar news on legitimate media outlets can help prove right from wrong. 

This can pinpoint fake research articles and raises awareness of just how important fact-checking can be. 

The Importance Of Research To Students

It is not a hidden fact that research can be mentally draining, which is why most students avoid it like the plague. But the matter of fact is that no matter which career path you choose to go down, research will inevitably be a part of it. 

But why is research so important to students ? The truth is without research, any intellectual growth is pretty much impossible. It acts as a knowledge-building tool that can guide you up to the different levels of learning. Even if you are an expert in your field, there is always more to uncover, or if you are studying an entirely new topic, research can help you build a unique perspective about it.

For example, if you are looking into a topic for the first time, it might be confusing knowing where to begin. Most of the time you have an overwhelming amount of information to sort through whether that be reading through scientific journals online or getting through a pile of textbooks. Research helps to narrow down to the most important points you need so you are able to find what you need to succeed quickly and easily. 

It can also open up great doors in the working world. Employers, especially those in the scientific and medical fields, are always looking for skilled people to hire. Undertaking research and completing studies within your academic phase can show just how multi-skilled you are and give you the resources to tackle any tasks given to you in the workplace. 

The Importance Of Research Methodology

There are many different types of research that can be done, each one with its unique methodology and features that have been designed to use in specific settings. 

When showing your research to others, they will want to be guaranteed that your proposed inquiry needs asking, and that your methodology is equipt to answer your inquiry and will convey the results you’re looking for.

That’s why it’s so important to choose the right methodology for your study. Knowing what the different types of research are and what each of them focuses on can allow you to plan your project to better utilise the most appropriate methodologies and techniques available. Here are some of the most common types:

  • Theoretical Research: This attempts to answer a question based on the unknown. This could include studying phenomena or ideas whose conclusions may not have any immediate real-world application. Commonly used in physics and astronomy applications.
  • Applied Research: Mainly for development purposes, this seeks to solve a practical problem that draws on theory to generate practical scientific knowledge. Commonly used in STEM and medical fields. 
  • Exploratory Research: Used to investigate a problem that is not clearly defined, this type of research can be used to establish cause-and-effect relationships. It can be applied in a wide range of fields from business to literature. 
  • Correlational Research: This identifies the relationship between two or more variables to see if and how they interact with each other. Very commonly used in psychological and statistical applications. 

The Importance Of Qualitative Research

This type of research is most commonly used in scientific and social applications. It collects, compares and interprets information to specifically address the “how” and “why” research questions. 

Qualitative research allows you to ask questions that cannot be easily put into numbers to understand human experience because you’re not limited by survey instruments with a fixed set of possible responses.

Information can be gathered in numerous ways including interviews, focus groups and ethnographic research which is then all reported in the language of the informant instead of statistical analyses. 

This type of research is important because they do not usually require a hypothesis to be carried out. Instead, it is an open-ended research approach that can be adapted and changed while the study is ongoing. This enhances the quality of the data and insights generated and creates a much more unique set of data to analyse. 

The Process Of Scientific Research

No matter the type of research completed, it will be shared and read by others. Whether this is with colleagues at work, peers at university, or whilst it’s being reviewed and repeated during secondary analysis.

A reliable procedure is necessary in order to obtain the best information which is why it’s important to have a plan. Here are the six basic steps that apply in any research process. 

  • Observation and asking questions: Seeing a phenomenon and asking yourself ‘How, What, When, Who, Which, Why, or Where?’. It is best that these questions are measurable and answerable through experimentation. 
  • Gathering information: Doing some background research to learn what is already known about the topic, and what you need to find out. 
  • Forming a hypothesis: Constructing a tentative statement to study.
  • Testing the hypothesis: Conducting an experiment to test the accuracy of your statement. This is a way to gather data about your predictions and should be easy to repeat. 
  • Making conclusions: Analysing the data from the experiment(s) and drawing conclusions about whether they support or contradict your hypothesis. 
  • Reporting: Presenting your findings in a clear way to communicate with others. This could include making a video, writing a report or giving a presentation to illustrate your findings. 

Although most scientists and researchers use this method, it may be tweaked between one study and another. Skipping or repeating steps is common within, however the core principles of the research process still apply.

By clearly explaining the steps and procedures used throughout the study, other researchers can then replicate the results. This is especially beneficial for peer reviews that try to replicate the results to ensure that the study is sound. 

What Is The Importance Of Research In Everyday Life?

Conducting a research study and comparing it to how important it is in everyday life are two very different things.

Carrying out research allows you to gain a deeper understanding of science and medicine by developing research questions and letting your curiosity blossom. You can experience what it is like to work in a lab and learn about the whole reasoning behind the scientific process. But how does that impact everyday life? 

Simply put, it allows us to disprove lies and support truths. This can help society to develop a confident attitude and not believe everything as easily, especially with the rise of fake news.

Research is the best and reliable way to understand and act on the complexities of various issues that we as humans are facing. From technology to healthcare to defence to climate change, carrying out studies is the only safe and reliable way to face our future.

Not only does research sharpen our brains, but also helps us to understand various issues of life in a much larger manner, always leaving us questioning everything and fuelling our need for answers. 

Logan Bessant

Related Articles:

  • What is STEM education?
  • How Stem Education Improves Student Learning
  • What Are the Three Domains for the Roles of Technology for Teaching and Learning?
  • Why Is FIDO2 Secure?
  • The Significance of Workplace Incident Reporting Software
  • The Operating Principle of Syringe Pumps: A Comprehensive Guide
  • Choosing the Right Penetration Testing Service for Your Business
  • The Benefits of Powerflushing in Central Heating Systems
  • The Role of AI and Machine Learning in Modern Scientific Research

Open Education Online

10 Reasons Why Research is Important

No matter what career field you’re in or how high up you are, there’s always more to learn . The same applies to your personal life. No matter how many experiences you have or how diverse your social circle, there are things you don’t know. Research unlocks the unknowns, lets you explore the world from different perspectives, and fuels a deeper understanding. In some areas, research is an essential part of success. In others, it may not be absolutely necessary, but it has many benefits. Here are ten reasons why research is important:

#1. Research expands your knowledge base

The most obvious reason to do research is that you’ll learn more. There’s always more to learn about a topic, even if you are already well-versed in it. If you aren’t, research allows you to build on any personal experience you have with the subject. The process of research opens up new opportunities for learning and growth.

#2. Research gives you the latest information

Research encourages you to find the most recent information available . In certain fields, especially scientific ones, there’s always new information and discoveries being made. Staying updated prevents you from falling behind and giving info that’s inaccurate or doesn’t paint the whole picture. With the latest info, you’ll be better equipped to talk about a subject and build on ideas.

#3. Research helps you know what you’re up against

In business, you’ll have competition. Researching your competitors and what they’re up to helps you formulate your plans and strategies. You can figure out what sets you apart. In other types of research, like medicine, your research might identify diseases, classify symptoms, and come up with ways to tackle them. Even if your “enemy” isn’t an actual person or competitor, there’s always some kind of antagonist force or problem that research can help you deal with.

#4. Research builds your credibility

People will take what you have to say more seriously when they can tell you’re informed. Doing research gives you a solid foundation on which you can build your ideas and opinions. You can speak with confidence about what you know is accurate. When you’ve done the research, it’s much harder for someone to poke holes in what you’re saying. Your research should be focused on the best sources. If your “research” consists of opinions from non-experts, you won’t be very credible. When your research is good, though, people are more likely to pay attention.

#5. Research helps you narrow your scope

When you’re circling a topic for the first time, you might not be exactly sure where to start. Most of the time, the amount of work ahead of you is overwhelming. Whether you’re writing a paper or formulating a business plan, it’s important to narrow the scope at some point. Research helps you identify the most unique and/or important themes. You can choose the themes that fit best with the project and its goals.

#6. Research teaches you better discernment

Doing a lot of research helps you sift through low-quality and high-quality information. The more research you do on a topic, the better you’ll get at discerning what’s accurate and what’s not. You’ll also get better at discerning the gray areas where information may be technically correct but used to draw questionable conclusions.

#7. Research introduces you to new ideas

You may already have opinions and ideas about a topic when you start researching. The more you research, the more viewpoints you’ll come across. This encourages you to entertain new ideas and perhaps take a closer look at yours. You might change your mind about something or, at least, figure out how to position your ideas as the best ones.

#8. Research helps with problem-solving

Whether it’s a personal or professional problem, it helps to look outside yourself for help. Depending on what the issue is, your research can focus on what others have done before. You might just need more information, so you can make an informed plan of attack and an informed decision. When you know you’ve collected good information, you’ll feel much more confident in your solution.

#9. Research helps you reach people

Research is used to help raise awareness of issues like climate change , racial discrimination, gender inequality , and more. Without hard facts, it’s very difficult to prove that climate change is getting worse or that gender inequality isn’t progressing as quickly as it should. The public needs to know what the facts are, so they have a clear idea of what “getting worse” or “not progressing” actually means. Research also entails going beyond the raw data and sharing real-life stories that have a more personal impact on people.

#10. Research encourages curiosity

Having curiosity and a love of learning take you far in life. Research opens you up to different opinions and new ideas. It also builds discerning and analytical skills. The research process rewards curiosity. When you’re committed to learning, you’re always in a place of growth. Curiosity is also good for your health. Studies show curiosity is associated with higher levels of positivity, better satisfaction with life, and lower anxiety.

Leave a Comment Cancel reply

You must be logged in to post a comment.

Book cover

Research Impact pp 1–15 Cite as

Research Impact: The What, Why, When and How

  • Hugh P. McKenna   ORCID: orcid.org/0000-0003-4916-6602 2  
  • First Online: 06 October 2020

781 Accesses

1 Citations

In this opening chapter, readers will be introduced to the attainment and assessment of research impact. The traditional approach to research assessment will be described briefly and how more active and proactive means of achieving impact have developed. It is a given that researchers have not grasped the importance of impact voluntarily. Rather, various incentives encouraged them to pursue research impact from their projects. These included the emphasis that funding bodies placed on pathways to impact and the drive within universities for a third funding stream through technology and knowledge transfer. However, it was the United Kingdom’s Research Excellence Framework that concentrated the minds of researchers and university leaders on research impact. This chapter will introduce the REF structures and processes and pay specific attention to the reach and significance of impact.

We grow no food on campus, so like every poet, priest or potter…, we must explain why we have faith in the usefulness of what we do provide (Gray and Gray [ 1 ]).

This is a preview of subscription content, log in via an institution .

Buying options

  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
  • Available as EPUB and PDF
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Gray, GT. Gray, SW. Customer retention in sports organization marketing: examining the impact of team identification and satisfaction with team performance. Int. J. Consum. 2012. https://doi.org/10.1111/j.1470-6431.2011.00999.x .

Cambridge Dictionary. Impact. Cambridge: Cambridge University Press; 2020. https://dictionary.cambridge.org/ .

Google Scholar  

Collins. Business dictionaries – pocket business English dictionary. London: Collins; 2012. ISBN: 978-0-00-745420-4. https://collins.co.uk/pages/about .

Banzi R, Moja L, Pistotti V, Facchinni A, Liberati A. Conceptual frameworks and empirical approaches used to assess the impact of health research: an overview of reviews. Health Res Policy Syst. 2011;9:26. https://doi.org/10.1186/1478-4505-9-26 . PMCID: PMC3141787.

Article   PubMed   PubMed Central   Google Scholar  

UKRI. Research excellence framework. Swindon: United Kingdom Research and Innovation; 2020. https://re.ukri.org/research/research-excellence-framework-ref/ .

Nightingale F. Notes on nursing; what it is, and what it is not. D. Appleton and Company: New York, NY; 1860.

Bacon F. Selected philosophical works. Indianapolis, IN: Hackett Pub; 1999. ISBN 0-87220-470-7. OCLC 41211508.

United Nations. Sustainability development goals 2030. New York, NY: United Nations; 2015. https://www.un.org/sustainabledevelopment/sustainable-development-goals/ .

Block WH. Justus Freiherr Von Liebig. Encyclopaedia Britannica; 2020. https://www.britannica.com/biography/Justus-Freiherr-von-Liebig .

EHEA. The Magna Charta Universitatum. Bologna: EHEA; 1988. http://www.ehea.info/cid101830/magna-charta.html .

Dearing R. The Dearing report: higher education in the learning society. London: Her Majesty's Stationery Office; 1997. http://www.educationengland.org.uk/documents/dearing1997/dearing1997.html . Accessed Mar 2020.

OECD. Education. Paris: Organization for Economic Co-operation and Development; 2020. https://www.oecd.org/education/ .

Hamdullahpur F. How to forge stronger ties between universities and industry. The Times Higher Education; 2017. https://www.timeshighereducation.com/blog/how-forge-stronger-ties-between-universities-and-industry .

Baker S. Do university excellence initiatives work? The Times Higher Education; 2020. https://www.timeshighereducation.com/features/do-university-excellence-initiatives-work .

UK Parliament. The Haldane principle. London: House of Commons; 2009. https://publications.parliament.uk/pa/cm200809/cmselect/cmdius/168/16807.htm .

Penfield T, Baker MJ, Scoble R, Wykes MC. Assessment, evaluations, and definitions of research impact: a review. Res Eval. 2014;23(1):21–32. https://doi.org/10.1093/reseval/rvt021 .

Article   Google Scholar  

Carr D. Maximising the value of research outputs: Wellcome’s perspective. London: Wellcome; 2018. https://www.belmontforum.org/wp-content/uploads/2019/10/Carr-WellcomeTrust_OpenSci.pdf .

Department for Business; Energy; Industrial Strategy. Building on success and learning from experience an independent review of the research excellence framework. London: Department for Business, Energy & Industrial Strategy; 2016.

Research England. The research excellence framework. Swindon: Research England; 2020. https://re.ukri.org/research/research-excellence-framework-ref/ .

Stern N. Building on success and learning from experience an independent review of the research excellence framework. London: Department of Business, Energy and Industrial Strategy; 2016. https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/541338/ind-16-9-ref-stern-review.pdf .

Hill S. Assessing (for) impact: future assessment of the societal impact of research. London: Palgrave Communications; 2016. https://doi.org/10.1057/palcomms.2016.73 .

Book   Google Scholar  

Digital Science. The societal and economic impacts of academic research international perspectives on good practice and managing evidence; 2016. https://www.digital-science.com/resources/digital-research-reports/digital-research-report-societal-economic-impacts-academic-research/ .

Bush V. Science: the endless frontier, a report to president Truman outlining his proposal for post-war U.S. science and technology policy. Washington, DC: United States Government Printing Office; 1945.

Khazragui H. Measuring the benefits of university research: impact and the REF in the UK. Res Eval. 2014;24(1):51–62. https://doi.org/10.1093/reseval/rvu028 .

Dunleavy P. ‘REF advice note 1. Understanding HEFCE’s definition of impact’, LSE impact of social sciences blog; 2012. http://blogs.lse.ac.uk/impactofsocialsciences/2012/10/22/dunleavy-ref-advice-1/ . Accessed 7 Jun 2020.

Rand Europe. Lessons from EU Research Funding (1998-2013). Published in: EU Law and Publications. https://doi.org/10.2777/667857 . Posted on RAND.org on December 15, 2017. https://www.rand.org/pubs/external_publications/EP67423.html .

McKenna HP, Daly J, Davidson P, Duffield C, Jackson D. RAE and ERA – spot the difference. Int. J. Nurs. 2012;49(4):375–77.

Grant J, Hewlett K. Putting impact in its place. Research Fortnight. 2019. https://www.researchprofessional.com/0/rr/news/uk/views-of-the-uk/2019/9/Putting-impact-in-itsplace.html?utm_medium=email&utm_source=rpMailing&utm_campaign=researchFortnightNews_2019-09-04#sthash.DQR1zNmy.dpuf .

Download references

Author information

Authors and affiliations.

Ulster University, Ulster, UK

Professor Hugh P. McKenna

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Hugh P. McKenna .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Cite this chapter.

McKenna, H.P. (2021). Research Impact: The What, Why, When and How. In: Research Impact. Springer, Cham. https://doi.org/10.1007/978-3-030-57028-6_1

Download citation

DOI : https://doi.org/10.1007/978-3-030-57028-6_1

Published : 06 October 2020

Publisher Name : Springer, Cham

Print ISBN : 978-3-030-57027-9

Online ISBN : 978-3-030-57028-6

eBook Packages : Medicine Medicine (R0)

Share this chapter

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research

Library homepage

  • school Campus Bookshelves
  • menu_book Bookshelves
  • perm_media Learning Objects
  • login Login
  • how_to_reg Request Instructor Account
  • hub Instructor Commons
  • Download Page (PDF)
  • Download Full Book (PDF)
  • Periodic Table
  • Physics Constants
  • Scientific Calculator
  • Reference & Cite
  • Tools expand_more
  • Readability

selected template will load here

This action is not available.

Social Sci LibreTexts

2.2: Why Is Research Important?

  • Last updated
  • Save as PDF
  • Page ID 536

Learning Objectives

  • Explain how scientific research addresses questions about behavior
  • Discuss how scientific research guides public policy
  • Appreciate how scientific research can be important in making personal decisions

Scientific research is a critical tool for successfully navigating our complex world. Without it, we would be forced to rely solely on intuition, other people’s authority, and blind luck. While many of us feel confident in our abilities to decipher and interact with the world around us, history is filled with examples of how very wrong we can be when we fail to recognize the need for evidence in supporting claims. At various times in history, we would have been certain that the sun revolved around a flat earth, that the earth’s continents did not move, and that mental illness was caused by possession. It is through systematic scientific research that we divest ourselves of our preconceived notions and superstitions and gain an objective understanding of ourselves and our world.

A skull has a large hole bored through the forehead.

The goal of all scientists is to better understand the world around them. Psychologists focus their attention on understanding behavior, as well as the cognitive (mental) and physiological (body) processes that underlie behavior. In contrast to other methods that people use to understand the behavior of others, such as intuition and personal experience, the hallmark of scientific research is that there is evidence to support a claim. Scientific knowledge is empirical : It is grounded in objective, tangible evidence that can be observed time and time again, regardless of who is observing.

While behavior is observable, the mind is not. If someone is crying, we can see behavior. However, the reason for the behavior is more difficult to determine. Is the person crying due to being sad, in pain, or happy? Sometimes we can learn the reason for someone’s behavior by simply asking a question, like “Why are you crying?” However, there are situations in which an individual is either uncomfortable or unwilling to answer the question honestly, or is incapable of answering. For example, infants would not be able to explain why they are crying. In such circumstances, the psychologist must be creative in finding ways to better understand behavior. This chapter explores how scientific knowledge is generated, and how important that knowledge is in forming decisions in our personal lives and in the public domain.

Use of Research Information

Trying to determine which theories are and are not accepted by the scientific community can be difficult, especially in an area of research as broad as psychology. More than ever before, we have an incredible amount of information at our fingertips, and a simple internet search on any given research topic might result in a number of contradictory studies. In these cases, we are witnessing the scientific community going through the process of reaching a consensus, and it could be quite some time before a consensus emerges. For example, the hypothesized link between exposure to media violence and subsequent aggression has been debated in the scientific community for roughly \(60\) years. Even today, we will find detractors, but a consensus is building. Several professional organizations view media violence exposure as a risk factor for actual violence, including the American Medical Association, the American Psychiatric Association, and the American Psychological Association (American Academy of Pediatrics, American Academy of Child & Adolescent Psychiatry, American Psychological Association, American Medical Association, American Academy of Family Physicians, American Psychiatric Association, 2000).

In the meantime, we should strive to think critically about the information we encounter by exercising a degree of healthy skepticism. When someone makes a claim, we should examine the claim from a number of different perspectives: what is the expertise of the person making the claim, what might they gain if the claim is valid, does the claim seem justified given the evidence, and what do other researchers think of the claim? This is especially important when we consider how much information in advertising campaigns and on the internet claims to be based on “scientific evidence” when in actuality it is a belief or perspective of just a few individuals trying to sell a product or draw attention to their perspectives.

We should be informed consumers of the information made available to us because decisions based on this information have significant consequences. One such consequence can be seen in politics and public policy. Imagine that you have been elected as the governor of your state. One of your responsibilities is to manage the state budget and determine how to best spend your constituents’ tax dollars. As the new governor, you need to decide whether to continue funding the D.A.R.E. (Drug Abuse Resistance Education) program in public schools (Figure \(\PageIndex{2}\)). This program typically involves police officers coming into the classroom to educate students about the dangers of becoming involved with alcohol and other drugs. According to the D.A.R.E. website (www.dare.org), this program has been very popular since its inception in 1983, and it is currently operating in \(75\%\) of school districts in the United States and in more than \(40\) countries worldwide. Sounds like an easy decision, right? However, on closer review, you discover that the vast majority of research into this program consistently suggests that participation has little, if any, effect on whether or not someone uses alcohol or other drugs (Clayton, Cattarello, & Johnstone, 1996; Ennett, Tobler, Ringwalt, & Flewelling, 1994; Lynam et al., 1999; Ringwalt, Ennett, & Holt, 1991). If you are committed to being a good steward of taxpayer money, will you fund this particular program, or will you try to find other programs that research has consistently demonstrated to be effective?

A D.A.R.E. poster reads “D.A.R.E. to resist drugs and violence.”

Ultimately, it is not just politicians who can benefit from using research in guiding their decisions. We all might look to research from time to time when making decisions in our lives. Imagine you just found out that a close friend has breast cancer or that one of your young relatives has recently been diagnosed with autism. In either case, you want to know which treatment options are most successful with the fewest side effects. How would you find that out? You would probably talk with your doctor and personally review the research that has been done on various treatment options—always with a critical eye to ensure that you are as informed as possible.

In the end, research is what makes the difference between facts and opinions. Facts are observable realities, and opinions are personal judgments, conclusions, or attitudes that may or may not be accurate. In the scientific community, facts can be established only using evidence collected through empirical research.

The Process of Scientific Research

Scientific knowledge is advanced through a process known as the scientific method . Basically, ideas (in the form of theories and hypotheses) are tested against the real world (in the form of empirical observations), and those empirical observations lead to more ideas that are tested against the real world, and so on. In this sense, the scientific process is circular. The types of reasoning within the circle are called deductive and inductive. In deductive reasoning , ideas are tested against the empirical world; in inductive reasoning , empirical observations lead to new ideas. These processes are inseparable, like inhaling and exhaling, but different research approaches place different emphasis on the deductive and inductive aspects.

A diagram has a box at the top labeled “hypothesis or general premise” and a box at the bottom labeled “empirical observations.” On the left, an arrow labeled “inductive reasoning” goes from the bottom to top box. On the right, an arrow labeled “deductive reasoning” goes from the top to the bottom box.

In the scientific context, deductive reasoning begins with a generalization—one hypothesis—that is then used to reach logical conclusions about the real world. If the hypothesis is correct, then the logical conclusions reached through deductive reasoning should also be correct. A deductive reasoning argument might go something like this: All living things require energy to survive (this would be your hypothesis). Ducks are living things. Therefore, ducks require energy to survive (logical conclusion). In this example, the hypothesis is correct; therefore, the conclusion is correct as well. Sometimes, however, an incorrect hypothesis may lead to a logical but incorrect conclusion. Consider this argument: all ducks are born with the ability to see. Quackers is a duck. Therefore, Quackers was born with the ability to see. Scientists use deductive reasoning to empirically test their hypotheses. Returning to the example of the ducks, researchers might design a study to test the hypothesis that if all living things require energy to survive, then ducks will be found to require energy to survive.

Deductive reasoning starts with a generalization that is tested against real-world observations; however, inductive reasoning moves in the opposite direction. Inductive reasoning uses empirical observations to construct broad generalizations. Unlike deductive reasoning, conclusions drawn from inductive reasoning may or may not be correct, regardless of the observations on which they are based. For instance, you may notice that your favorite fruits—apples, bananas, and oranges—all grow on trees; therefore, you assume that all fruit must grow on trees. This would be an example of inductive reasoning, and, clearly, the existence of strawberries, blueberries, and kiwi demonstrate that this generalization is not correct despite it being based on a number of direct observations. Scientists use inductive reasoning to formulate theories, which in turn generate hypotheses that are tested with deductive reasoning. In the end, science involves both deductive and inductive processes.

For example, case studies, which you will read about in the next section, are heavily weighted on the side of empirical observations. Thus, case studies are closely associated with inductive processes as researchers gather massive amounts of observations and seek interesting patterns (new ideas) in the data. Experimental research, on the other hand, puts great emphasis on deductive reasoning.

We’ve stated that theories and hypotheses are ideas, but what sort of ideas are they, exactly? A theory is a well-developed set of ideas that propose an explanation for observed phenomena. Theories are repeatedly checked against the world, but they tend to be too complex to be tested all at once; instead, researchers create hypotheses to test specific aspects of a theory.

A hypothesis is a testable prediction about how the world will behave if our idea is correct, and it is often worded as an if-then statement (e.g., if I study all night, I will get a passing grade on the test). The hypothesis is extremely important because it bridges the gap between the realm of ideas and the real world. As specific hypotheses are tested, theories are modified and refined to reflect and incorporate the result of these tests.

A diagram has four boxes: the top is labeled “theory,” the right is labeled “hypothesis,” the bottom is labeled “research,” and the left is labeled “observation.” Arrows flow in the direction from top to right to bottom to left and back to the top, clockwise. The top right arrow is labeled “use the hypothesis to form a theory,” the bottom right arrow is labeled “design a study to test the hypothesis,” the bottom left arrow is labeled “perform the research,” and the top left arrow is labeled “create or modify the theory.”

To see how this process works, let’s consider a specific theory and a hypothesis that might be generated from that theory. As you’ll learn in a later chapter, the James-Lange theory of emotion asserts that emotional experience relies on the physiological arousal associated with the emotional state. If you walked out of your home and discovered a very aggressive snake waiting on your doorstep, your heart would begin to race and your stomach churn. According to the James-Lange theory, these physiological changes would result in your feeling of fear. A hypothesis that could be derived from this theory might be that a person who is unaware of the physiological arousal that the sight of the snake elicits will not feel fear.

A scientific hypothesis is also falsifiable , or capable of being shown to be incorrect. Recall from the introductory chapter that Sigmund Freud had lots of interesting ideas to explain various human behaviors. However, a major criticism of Freud’s theories is that many of his ideas are not falsifiable; for example, it is impossible to imagine empirical observations that would disprove the existence of the id, the ego, and the superego—the three elements of personality described in Freud’s theories. Despite this, Freud’s theories are widely taught in introductory psychology texts because of their historical significance for personality psychology and psychotherapy, and these remain the root of all modern forms of therapy.

(a)A photograph shows Freud holding a cigar. (b) The mind’s conscious and unconscious states are illustrated as an iceberg floating in water. Beneath the water’s surface in the “unconscious” area are the id, ego, and superego. The area just below the water’s surface is labeled “preconscious.” The area above the water’s surface is labeled “conscious.”

In contrast, the James-Lange theory does generate falsifiable hypotheses, such as the one described above. Some individuals who suffer significant injuries to their spinal columns are unable to feel the bodily changes that often accompany emotional experiences. Therefore, we could test the hypothesis by determining how emotional experiences differ between individuals who have the ability to detect these changes in their physiological arousal and those who do not. In fact, this research has been conducted and while the emotional experiences of people deprived of an awareness of their physiological arousal may be less intense, they still experience emotion (Chwalisz, Diener, & Gallagher, 1988).

Scientific research’s dependence on falsifiability allows for great confidence in the information that it produces. Typically, by the time information is accepted by the scientific community, it has been tested repeatedly.

Scientists are engaged in explaining and understanding how the world around them works, and they are able to do so by coming up with theories that generate hypotheses that are testable and falsifiable. Theories that stand up to their tests are retained and refined, while those that do not are discarded or modified. In this way, research enables scientists to separate fact from simple opinion. Having good information generated from research aids in making wise decisions both in public policy and in our personal lives.

Contributors and Attributions

Rose M. Spielman with many significant contributors. The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the creative commons license and may not be reproduced without the prior and express written consent of Rice University. For questions regarding this license, please contact  [email protected] .Textbook content produced by OpenStax College is licensed under a  Creative Commons Attribution License 4.0  license. Download for free at http://cnx.org/contents/[email protected] .

It’s a wonderful world — and universe — out there.

Come explore with us!  

Science News Explores

Research is important because….

Intel International Science and Engineering Fair finalists share why research matters

Meredith Blaise

Meredith Blaise, 15, loves research because it allows her to pursue the truth.

B. Brookshire/SSP

Share this:

  • Google Classroom

By Bethany Brookshire

May 17, 2017 at 8:11 am

LOS ANGELES, Calif. — Kids’ science fair projects require long hours and hard work to overcome many challenges. No one would bother unless they thought they were doing something important.

This week, nearly 1,800 high school students from more than 75 countries took over Los Angeles for the Intel International Science and Engineering Fair (ISEF). Created by Society for Science & the Public and sponsored by Intel, the competition lets students from around the world show off their winning science fair projects. (The Society also publishes Science News for Students and this blog.)

Here, in their own words, competitors share why they think research is worth all the work.

Research is important because it’s a way to give back to the beautiful world that gave us life.

— Amy Wang, 17, Paul Laurence Dunbar High School, Lexington, Ky.

I think research is important for people with disabilities, who have [special] needs, [because] technology can make things possible for these people.

— Leonardo Azzi Martins, 17, Instituto Federal de Educação, Charqueadas, Brazil

Research is important because the world faces many problems and science tries to solve [them]. Research makes our brains think with scientific methods.

— Dina Abdelaal, 18, Suez Advanced Industrial School, Suez, Egypt

Science is most important because from science we can know everything, and we can do everything to find out what we want to know.

— Bagus Putra, 17, SMA Negeri Bali Mandara, Buleleng, Indonesia

I think that research is important because it allows us to understand the clandestine truths of nature and opens a margin of creativity and thought that can’t otherwise be found in other ways of study.

— Meredith Blaise, 15, Bishop Feehan High School, Attleboro, Mass.

Research is important to me because it’s endless. It’s a vast landscape where you can travel wherever you want to go. And it’s something that occupies me.

— Thirushan Wignakumar, 17, Paul Laurence Dunbar High School, Lexington, Ky.

Research is important because science is changing every day, and these people here at ISEF, they’re going to be the leaders in science. It’s just really important to keep up with the technology that’s changing every day.

— Natalie White, 14, University High School, Fresno, Calif.

I think research is important because it’s the only way we can make the world better for us. [By] researching and applying what we discover to the world, we’ll make it better.

— Arthur de Freitas e Precht, 18, Instituto Federal de Educação, Charqueadas, Brazil

I think science is important to me because science is something that really matters in human history. Many inventions and discoveries improve life and change our way of life and our point of view. Also science is something I’m really interested in. When I was in primary school, we started to learn about general science, I performed better in this subject than anyone else. It gave me the confidence and the motivation to discover something new.

— Wuzhekai Zeng, 16, Hefei Number Eight Senior High School, Hefei, China

Follow Eureka! Lab on Twitter

More Stories from Science News Explores on Science & Society

in two boxes on a piece of paper are two fingerprints stamped in ink; one is labeled as coming from a person's thumb and the other from their index finger

Let’s learn about fingerprints

four teens sit on a couch all smiling at something they're watching on their phones

Scientists Say: Digital Footprint

An illustration of a smiley face with a green monster with lots of tentacles and eyes behind it. The monster's fangs and tongue are visible at the bottom of the illustration.

‘Jailbreaks’ bring out the evil side of chatbots

an illustration of a robot hand grabbing a small planet earth, the image has 1s and 0s throughout to illustrate an online/digital environment

How to design artificial intelligence that acts nice — and only nice

an illustration of robotic hand using a human brain as a puppet on strings while inside a person's head

AI learned how to influence humans by watching a video game

A photo of a teen sitting in front of their bedroom desk. They are looking at a monitor, listening to headphones, holding up a smartphone, and potentially streaming (there's a ring light that is turned on pointed at them).

You’re too distracted. Here’s why that matters and what to do about it

a girl and her mom sit a table in a restaurant, the girl is playing with various rainbow colored fidget toys

Explainer: What is autism?

A photo of Kwesi Joseph, a Black man with a big smile, short hair and a neatly trimmed beard. He's wearing a dress shirt with a sweater and a pink tie.

This urban gardener is mimicking nature to create healthier plants

Logo for AtlanticOER Pressbooks Network

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

11 Why is Research Important?

Learning objectives.

By the end of this section, you will be able to:

  • Explain how scientific research addresses questions about behaviour
  • Discuss how scientific research guides public policy
  • Appreciate how scientific research can be important in making personal decisions

Scientific research is a critical tool for successfully navigating our complex world. Without it, we would be forced to rely solely on intuition, other people’s authority, and blind luck. While many of us feel confident in our abilities to decipher and interact with the world around us, history is filled with examples of how very wrong we can be when we fail to recognize the need for evidence in supporting claims. At various times in history, we would have been certain that the sun revolved around a flat earth, that the earth’s continents did not move, and that mental illness was caused by possession ( Figure PR.2 ). It is through systematic scientific research that we divest ourselves of our preconceived notions and superstitions and gain an objective understanding of ourselves and our world.

A skull has a large hole bored through the forehead.

The goal of all scientists is to better understand the world around them. Psychologists focus their attention on understanding behaviour, as well as the cognitive (mental) and physiological (body) processes that underlie behaviour. In contrast to other methods that people use to understand the behaviour of others, such as intuition and personal experience, the hallmark of scientific research is that there is evidence to support a claim. Scientific knowledge is  empirical : it is grounded in objective, tangible evidence that can be observed time and time again, regardless of who is observing.

While behaviour is observable, the mind is not. If someone is crying, we can see behaviour. However, the reason for the behaviour is more difficult to determine. Is the person crying due to being sad, in pain, or happy? Sometimes we can learn the reason for someone’s behaviour by simply asking a question, like “Why are you crying?” However, there are situations in which an individual is either uncomfortable or unwilling to answer the question honestly, or is incapable of answering. For example, infants would not be able to explain why they are crying. In such circumstances, the psychologist must be creative in finding ways to better understand behaviour. This chapter explores how scientific knowledge is generated, and how important that knowledge is in forming decisions in our personal lives and in the public domain.

Use of Research Information

Trying to determine which theories are and are not accepted by the scientific community can be difficult, especially in an area of research as broad as psychology. More than ever before, we have an incredible amount of information at our fingertips, and a simple internet search on any given research topic might result in a number of contradictory studies. In these cases, we are witnessing the scientific community going through the process of reaching a consensus, and it could be quite some time before a consensus emerges. For example, the explosion in our use of technology has led researchers to question whether this ultimately helps or hinders us. The use and implementation of technology in educational settings has become widespread over the last few decades. Researchers are coming to different conclusions regarding the use of technology. To illustrate this point, a study investigating a smartphone app targeting surgery residents (graduate students in surgery training) found that the use of this app can increase student engagement and raise test scores (Shaw & Tan, 2015). Conversely, another study found that the use of technology in undergraduate student populations had negative impacts on sleep, communication, and time management skills (Massimini & Peterson, 2009). Until sufficient amounts of research have been conducted, there will be no clear consensus on the effects that technology has on a student’s acquisition of knowledge, study skills, and mental health.

In the meantime, we should strive to think critically about the information we encounter by exercising a degree of healthy skepticism. When someone makes a claim, we should examine the claim from a number of different perspectives: what is the expertise of the person making the claim, what might they gain if the claim is valid, does the claim seem justified given the evidence, and what do other researchers think of the claim? This is especially important when we consider how much information in advertising campaigns and on the internet claims to be based on “scientific evidence” when in actuality it is a belief or perspective of just a few individuals trying to sell a product or draw attention to their perspectives.

We should be informed consumers of the information made available to us because decisions based on this information have significant consequences. One such consequence can be seen in politics and public policy. Imagine that you have been elected as the Premier of your province. One of your responsibilities is to manage the provincial budget and determine how to best spend your constituents’ tax dollars. As the new Premier, you need to decide whether to continue funding early intervention programs. These programs are designed to help children who come from low-income backgrounds, have special needs, or face other disadvantages. These programs may involve providing a wide variety of services to maximize the children’s development and position them for optimal levels of success in school and later in life (Blann, 2005). While such programs sound appealing, you would want to be sure that they also proved effective before investing additional money in these programs. Fortunately, psychologists and other scientists have conducted vast amounts of research on such programs and, in general, the programs are found to be effective (Neil & Christensen, 2009; Peters-Scheffer, Didden, Korzilius, & Sturmey, 2011). While not all programs are equally effective, and the short-term effects of many such programs are more pronounced, there is reason to believe that many of these programs produce long-term benefits for participants (Barnett, 2011). If you are committed to being a good steward of taxpayer money, you would want to look at research. Which programs are most effective? What characteristics of these programs make them effective? Which programs promote the best outcomes? After examining the research, you would be best equipped to make decisions about which programs to fund.

Ultimately, it is not just politicians who can benefit from using research in guiding their decisions. We all might look to research from time to time when making decisions in our lives. Imagine you just found out that a close friend has breast cancer or that one of your young relatives has recently been diagnosed with autism. In either case, you want to know which treatment options are most successful with the fewest side effects. How would you find that out? You would probably talk with your doctor and personally review the research that has been done on various treatment options—always with a critical eye to ensure that you are as informed as possible.

In the end, research is what makes the difference between facts and opinions.  Facts  are observable realities, and  opinions  are personal judgments, conclusions, or attitudes that may or may not be accurate. In the scientific community, facts can be established only using evidence collected through empirical research.

The Process of Scientific Research

Scientific knowledge is advanced through a process known as the  scientific method . Basically, ideas (in the form of theories and hypotheses) are tested against the real world (in the form of empirical observations), and those empirical observations lead to more ideas that are tested against the real world, and so on. In this sense, the scientific process is circular. The types of reasoning within the circle are called deductive and inductive. In  deductive reasoning , ideas are tested in the real world; in  inductive reasoning , real-world observations lead to new ideas (Figure PR.3). These processes are inseparable, like inhaling and exhaling, but different research approaches place different emphasis on the deductive and inductive aspects.

A diagram has a box at the top labeled “hypothesis or general premise” and a box at the bottom labeled “empirical observations.” On the left, an arrow labeled “inductive reasoning” goes from the bottom to top box. On the right, an arrow labeled “deductive reasoning” goes from the top to the bottom box.

In the scientific context, deductive reasoning begins with a generalization—one hypothesis—that is then used to reach logical conclusions about the real world. If the hypothesis is supported, then the logical conclusions reached through deductive reasoning should also be correct. A deductive reasoning argument might go something like this: All living things require energy to survive (this would be your hypothesis). Ducks are living things. Therefore, ducks require energy to survive (logical conclusion). In this example, the hypothesis is correct; therefore, the conclusion is correct as well. Sometimes, however, an incorrect hypothesis may lead to a logical but incorrect conclusion. Consider this argument: all ducks are born with the ability to see. Quackers is a duck. Therefore, Quackers was born with the ability to see. Scientists use deductive reasoning to empirically test their hypotheses. Returning to the example of the ducks, researchers might design a study to test the hypothesis that if all living things require energy to survive, then ducks will be found to require energy to survive.

Deductive reasoning starts with a generalization that is tested against real-world observations; however, inductive reasoning moves in the opposite direction. Inductive reasoning uses empirical observations to construct broad generalizations. Unlike deductive reasoning, conclusions drawn from inductive reasoning may or may not be correct, regardless of the observations on which they are based. For instance, you may notice that your favourite fruits—apples, bananas, and oranges—all grow on trees; therefore, you assume that all fruit must grow on trees. This would be an example of inductive reasoning, and, clearly, the existence of strawberries, blueberries, and kiwi demonstrate that this generalization is not correct despite it being based on a number of direct observations. Scientists use inductive reasoning to formulate theories, which in turn generate hypotheses that are tested with deductive reasoning. In the end, science involves both deductive and inductive processes.

For example, case studies, which you will read about in the next section, are heavily weighted on the side of empirical observations. Thus, case studies are closely associated with inductive processes as researchers gather massive amounts of observations and seek interesting patterns (new ideas) in the data. Experimental research, on the other hand, puts great emphasis on deductive reasoning.

We’ve stated that theories and hypotheses are ideas, but what sort of ideas are they, exactly? A  theory is a well-developed set of ideas that propose an explanation for observed phenomena. Theories are repeatedly checked against the world, but they tend to be too complex to be tested all at once; instead, researchers create hypotheses to test specific aspects of a theory.

A  hypothesis  is a testable prediction about how the world will behave if our idea is correct, and it is often worded as an if-then statement (e.g., if I study all night, I will get a passing grade on the test). The hypothesis is extremely important because it bridges the gap between the realm of ideas and the real world. As specific hypotheses are tested, theories are modified and refined to reflect and incorporate the result of these tests Figure PR.4.

A diagram has seven labeled boxes with arrows to show the progression in the flow chart. The chart starts at “Theory” and moves to “Generate hypothesis,” “Collect data,” “Analyze data,” and “Summarize data and report findings.” There are two arrows coming from “Summarize data and report findings” to show two options. The first arrow points to “Confirm theory.” The second arrow points to “Modify theory,” which has an arrow that points back to “Generate hypothesis.”

Introduction to Psychology & Neuroscience (2nd Edition) Copyright © 2020 by Edited by Leanne Stevens & Jennifer Stamp is licensed under a Creative Commons Attribution 4.0 International License , except where otherwise noted.

Share This Book

Health Analytics Logo

Why is Research Important in Healthcare?

Picture of Joshua N. Liberman PhD, MBA

  • January 9, 2023

Table of Contents

Research is critical to improving patient outcomes and the quality of healthcare. It helps us to understand what works, what doesn’t work, and why. In addition, research is essential for developing new treatments and therapies. Without research, we would not have many of the lifesaving vaccines and medications that we take for granted today.

What Is Healthcare Research?

Research in healthcare is scientific and academic innovation aimed at answering medical and social questions. It typically involves observing, comparing, and sometimes testing people with different conditions; analyzing samples of blood or other tissues; examining patient records; surveying data from health and lifestyle surveys; and exploring the benefits, costs, acceptability, and wider impact of treatments.

Research in healthcare can also focus on improving the lives of people who receive care from our social care sector by introducing new devices or technologies, such as lifting equipment for residents or changing policies for better practice.

1. Research helps determine the best treatments and practices for various conditions.

Research helps to identify new and better ways to prevent, diagnose, and treat diseases and conditions. It provides insights into the causes of illnesses as well as potential treatments that can be applied in clinical practice.

By studying various factors such as lifestyle choices, diet patterns, social networks, and family support systems, researchers can provide information about what works best for different conditions. This helps doctors make informed decisions about their patients’ healthcare plans and provides them with the knowledge they need to provide effective treatments.

2. Research can identify risk factors for certain diseases and conditions

Research can help identify risk factors associated with specific diseases and conditions. These include physical , social , genetic , environmental , and lifestyle factors.

By studying groups of people and their patterns of disease occurrence, researchers can identify potential risk factors for a given condition and explore ways to reduce them or prevent them from occurring in the first place. This includes exploring potential preventive measures such as vaccines or lifestyle changes that may help reduce the risk of developing a given condition.

3. Research can identify early warning signs of certain diseases and conditions

Research can help identify early warning signs of certain diseases and conditions by examining new detection methods, conducting clinical trials, and performing studies on patients. This enables researchers to gain a better understanding of the causes, symptoms, and progression of diseases so they can develop more accurate diagnostic tools and effective treatments.

Research also provides insights into how certain conditions may affect individuals differently depending on their age or genetic background. Ultimately this leads to better outcomes for people with diagnosed illnesses by allowing them to take proactive steps to manage their condition or live a healthier lifestyle.

4. Research can identify the most effective treatments for certain conditions

Research can help to identify new and better ways to prevent, diagnose, and treat diseases and conditions. This enables researchers to study the effectiveness of different treatments for specific ailments in order to provide patients with information about what works best for them.

5. Research can help identify the best ways to care for patients

Research can help to identify the best ways to care for patients by providing new and improved treatments, information about what works and what does not, and an overall better understanding of diseases. This knowledge can be used to prevent, diagnose, treat, and prevent disease; provide better quality care; and improve patient outcomes.

Additionally, research helps medical professionals stay up-to-date on the latest advances in medical science so they can provide their patients with the best care possible, including health digitalization .

6. Research can help find ways to prevent certain conditions from developing

Research can help identify risk factors and explore potential methods of prevention for certain conditions. This may include vaccines, lifestyle changes, or medicines.

By understanding the causes of certain conditions and exploring ways to prevent them, researchers can help prevent people from developing those conditions in the first place. This can have a positive impact on communities by improving care and helping more people around the world.

7. Research can help find ways to prevent complications from developing in certain conditions

Research can help to identify risk factors and explore potential methods of prevention for conditions such as diseases and illnesses. By understanding the causes of a condition and its associated risks, researchers can develop strategies to reduce the likelihood of complications occurring. This will help improve patient care by allowing doctors to provide more effective treatments while also reducing the number of adverse side effects associated with them.

8. Research can help find better ways to communicate information about specific conditions and treatments to the public

Research can help improve public communication about certain conditions and treatments by providing evidence-based information. By disseminating this research-based knowledge to the public through various channels such as websites and publications, people can make more informed decisions about their healthcare. They will also have access to up-to-date information about current research trends in their area of interest or concern.

9. Research can help identify the best ways to engage with healthcare stakeholders

Research can help to identify the key stakeholders involved in healthcare, such as patients, healthcare providers, payers, and insurers, and analyze existing theories, models, and frameworks that govern these relationships to better understand how they work together to influence health outcomes and research effectiveness.

It can also identify ways to improve communication between stakeholders through research in order to ensure that everyone has access to the best possible care while reducing costs associated with treatments or hospital stays.

10. Research can help find ways to improve the quality and effectiveness of healthcare by generating new evidence .

Research can help improve the quality and effectiveness of healthcare by generating new evidence that can be applied to make healthcare affordable, safe, effective, equitable, accessible, and patient-centered .

By applying this evidence in practice, healthcare systems can be improved to ensure that patients receive the best possible care. This may include making decisions that are better informed by research findings or organizing care processes to improve safety and efficacy. It may also provide an opportunity to design healthcare benefits or inform policy changes that benefit patients across the board.

Research is essential in healthcare in order to improve the quality and effectiveness of care while also making it more affordable and accessible. By applying evidence-based practices and real-world evidence , healthcare systems can be improved to better serve patients and digitalize the field.

Health Analytics bridges the gap between sound scientific data and market access. Phone: (410) 997-3314 Email: [email protected]

  • Health Care
  • Evidence Generation Planning
  • Evidence Generation
  • Translating to Market Access

AOFIRS

  • Board Members
  • Management Team
  • Become a Contributor
  • Volunteer Opportunities
  • Code of Ethical Practices

KNOWLEDGE NETWORK

  • Search Engines List
  • Suggested Reading Library
  • Web Directories
  • Research Papers
  • Industry News

AOFIRS Knowledge Share Network

  • Become a Member
  • Associate Membership
  • Certified Membership
  • Membership Application
  • Corporate Application

Join Professional Group of Online Researchers

  • CIRS Certification Program
  • CIRS Certification Objectives
  • CIRS Certification Benefits
  • CIRS Certification Exam
  • Maintain Your Certification

Top Research Courses

  • Upcoming Events
  • Live Classes
  • Classes Schedule
  • Webinars Schedules

Online Research Training Program

  • Latest Articles
  • Internet Research
  • Search Techniques
  • Research Methods
  • Business Research
  • Search Engines
  • Research & Tools
  • Investigative Research
  • Internet Search
  • Work from Home
  • Internet Ethics
  • Internet Privacy

Six Reasons Why Research is Important

Importance of internet Research

Everyone conducts research in some form or another from a young age, whether news, books, or browsing the Internet. Internet users come across thoughts, ideas, or perspectives - the curiosity that drives the desire to explore. However, when research is essential to make practical decisions, the nature of the study alters - it all depends on its application and purpose. For instance, skilled research offered as a  research paper service  has a definite objective, and it is focused and organized. Professional research helps derive inferences and conclusions from solving problems. visit the HB tool services for the amazing research tools that will help to solve your problems regarding the research on any project.

What is the Importance of Research?

The primary goal of the research is to guide action, gather evidence for theories, and contribute to the growth of knowledge in data analysis. This article discusses the importance of research and the multiple reasons why it is beneficial to everyone, not just students and scientists.

On the other hand, research is important in business decision-making because it can assist in making better decisions when combined with their experience and intuition.

Reasons for the Importance of Research

  • Acquire Knowledge Effectively
  • Research helps in problem-solving
  • Provides the latest information
  • Builds credibility
  • Helps in business success
  • Discover and Seize opportunities

1-  Acquire Knowledge Efficiently through Research

The most apparent reason to conduct research is to understand more. Even if you think you know everything there is to know about a subject, there is always more to learn. Research helps you expand on any prior knowledge you have of the subject. The research process creates new opportunities for learning and progress.

2- Research Helps in Problem-solving

Problem-solving can be divided into several components, which require knowledge and analysis, for example,  identification of issues, cause identification,  identifying potential solutions, decision to take action, monitoring and evaluation of activity and outcomes.

You may just require additional knowledge to formulate an informed strategy and make an informed decision. When you know you've gathered reliable data, you'll be a lot more confident in your answer.

3- Research Provides the Latest Information

Research enables you to seek out the most up-to-date facts. There is always new knowledge and discoveries in various sectors, particularly scientific ones. Staying updated keeps you from falling behind and providing inaccurate or incomplete information. You'll be better prepared to discuss a topic and build on ideas if you have the most up-to-date information. With the help of tools and certifications such as CIRS , you may learn internet research skills quickly and easily. Internet research can provide instant, global access to information.

4- Research Builds Credibility

Research provides a solid basis for formulating thoughts and views. You can speak confidently about something you know to be true. It's much more difficult for someone to find flaws in your arguments after you've finished your tasks. In your study, you should prioritize the most reputable sources. Your research should focus on the most reliable sources. You won't be credible if your "research" comprises non-experts' opinions. People are more inclined to pay attention if your research is excellent.

5-  Research Helps in Business Success

R&D might also help you gain a competitive advantage. Finding ways to make things run more smoothly and differentiate a company's products from those of its competitors can help to increase a company's market worth.

6-  Research Discover and Seize Opportunities

People can maximize their potential and achieve their goals through various opportunities provided by research. These include getting jobs, scholarships, educational subsidies, projects, commercial collaboration, and budgeted travel. Research is essential for anyone looking for work or a change of environment. Unemployed people will have a better chance of finding potential employers through job advertisements or agencies. 

How to Improve Your Research Skills

Start with the big picture and work your way down.

It might be hard to figure out where to start when you start researching. There's nothing wrong with a simple internet search to get you started. Online resources like Google and Wikipedia are a great way to get a general idea of a subject, even though they aren't always correct. They usually give a basic overview with a short history and any important points.

Identify Reliable Source

Not every source is reliable, so it's critical that you can tell the difference between the good ones and the bad ones. To find a reliable source, use your analytical and critical thinking skills and ask yourself the following questions: Is this source consistent with other sources I've discovered? Is the author a subject matter expert? Is there a conflict of interest in the author's point of view on this topic?

Validate Information from Various Sources

Take in new information.

The purpose of research is to find answers to your questions, not back up what you already assume. Only looking for confirmation is a minimal way to research because it forces you to pick and choose what information you get and stops you from getting the most accurate picture of the subject. When you do research, keep an open mind to learn as much as possible.

Facilitates Learning Process

Learning new things and implementing them in daily life can be frustrating. Finding relevant and credible information requires specialized training and web search skills due to the sheer enormity of the Internet and the rapid growth of indexed web pages. On the other hand, short courses and Certifications like CIRS make the research process more accessible. CIRS Certification offers complete knowledge from beginner to expert level. You can become a Certified Professional Researcher and get a high-paying job, but you'll also be much more efficient and skilled at filtering out reliable data. You can learn more about becoming a Certified Professional Researcher.

Stay Organized

You'll see a lot of different material during the process of gathering data, from web pages to PDFs to videos. You must keep all of this information organized in some way so that you don't lose anything or forget to mention something properly. There are many ways to keep your research project organized, but here are a few of the most common:  Learning Management Software , Bookmarks in your browser, index cards, and a bibliography that you can add to as you go are all excellent tools for writing.

Make Use of the library's Resources

If you still have questions about researching, don't worry—even if you're not a student performing academic or course-related research, there are many resources available to assist you. Many high school and university libraries, in reality, provide resources not only for staff and students but also for the general public. Look for research guidelines or access to specific databases on the library's website. Association of Internet Research Specialists enjoys sharing informational content such as research-related articles , research papers , specialized search engines list compiled from various sources, and contributions from our members and in-house experts.

of Conducting Research

Latest from erin r. goodrich.

  • 10 Best People Search Engines and Websites in 2022
  • Leveraging Local SEO Strategies for Small Business Growth
  • 6 Ways to Make Your Small Business Punch Above Its Weight

Live Classes Schedule

World's leading professional association of Internet Research Specialists - We deliver Knowledge, Education, Training, and Certification in the field of Professional Online Research. The AOFIRS is considered a major contributor in improving Web Search Skills and recognizes Online Research work as a full-time occupation for those that use the Internet as their primary source of information.

Get Exclusive Research Tips in Your Inbox

  • Privacy Policy
  • Terms & Conditions
  • Advertising Opportunities
  • Knowledge Network

7 Why Is Research Important?

[latexpage]

Learning Objectives

By the end of this section, you will be able to:

  • Explain how scientific research addresses questions about behavior
  • Discuss how scientific research guides public policy
  • Appreciate how scientific research can be important in making personal decisions

Scientific research is a critical tool for successfully navigating our complex world. Without it, we would be forced to rely solely on intuition, other people’s authority, and blind luck. While many of us feel confident in our abilities to decipher and interact with the world around us, history is filled with examples of how very wrong we can be when we fail to recognize the need for evidence in supporting claims. At various times in history, we would have been certain that the sun revolved around a flat earth, that the earth’s continents did not move, and that mental illness was caused by possession ( [link] ). It is through systematic scientific research that we divest ourselves of our preconceived notions and superstitions and gain an objective understanding of ourselves and our world.

A skull has a large hole bored through the forehead.

The goal of all scientists is to better understand the world around them. Psychologists focus their attention on understanding behavior, as well as the cognitive (mental) and physiological (body) processes that underlie behavior. In contrast to other methods that people use to understand the behavior of others, such as intuition and personal experience, the hallmark of scientific research is that there is evidence to support a claim. Scientific knowledge is empirical : It is grounded in objective, tangible evidence that can be observed time and time again, regardless of who is observing.

While behavior is observable, the mind is not. If someone is crying, we can see behavior. However, the reason for the behavior is more difficult to determine. Is the person crying due to being sad, in pain, or happy? Sometimes we can learn the reason for someone’s behavior by simply asking a question, like “Why are you crying?” However, there are situations in which an individual is either uncomfortable or unwilling to answer the question honestly, or is incapable of answering. For example, infants would not be able to explain why they are crying. In such circumstances, the psychologist must be creative in finding ways to better understand behavior. This chapter explores how scientific knowledge is generated, and how important that knowledge is in forming decisions in our personal lives and in the public domain.

USE OF RESEARCH INFORMATION

Trying to determine which theories are and are not accepted by the scientific community can be difficult, especially in an area of research as broad as psychology. More than ever before, we have an incredible amount of information at our fingertips, and a simple internet search on any given research topic might result in a number of contradictory studies. In these cases, we are witnessing the scientific community going through the process of reaching a consensus, and it could be quite some time before a consensus emerges. For example, the hypothesized link between exposure to media violence and subsequent aggression has been debated in the scientific community for roughly 60 years. Even today, we will find detractors, but a consensus is building. Several professional organizations view media violence exposure as a risk factor for actual violence, including the American Medical Association, the American Psychiatric Association, and the American Psychological Association (American Academy of Pediatrics, American Academy of Child & Adolescent Psychiatry, American Psychological Association, American Medical Association, American Academy of Family Physicians, American Psychiatric Association, 2000).

In the meantime, we should strive to think critically about the information we encounter by exercising a degree of healthy skepticism. When someone makes a claim, we should examine the claim from a number of different perspectives: what is the expertise of the person making the claim, what might they gain if the claim is valid, does the claim seem justified given the evidence, and what do other researchers think of the claim? This is especially important when we consider how much information in advertising campaigns and on the internet claims to be based on “scientific evidence” when in actuality it is a belief or perspective of just a few individuals trying to sell a product or draw attention to their perspectives.

We should be informed consumers of the information made available to us because decisions based on this information have significant consequences. One such consequence can be seen in politics and public policy. Imagine that you have been elected as the governor of your state. One of your responsibilities is to manage the state budget and determine how to best spend your constituents’ tax dollars. As the new governor, you need to decide whether to continue funding the D.A.R.E. (Drug Abuse Resistance Education) program in public schools ( [link] ). This program typically involves police officers coming into the classroom to educate students about the dangers of becoming involved with alcohol and other drugs. According to the D.A.R.E. website (www.dare.org), this program has been very popular since its inception in 1983, and it is currently operating in 75% of school districts in the United States and in more than 40 countries worldwide. Sounds like an easy decision, right? However, on closer review, you discover that the vast majority of research into this program consistently suggests that participation has little, if any, effect on whether or not someone uses alcohol or other drugs (Clayton, Cattarello, & Johnstone, 1996; Ennett, Tobler, Ringwalt, & Flewelling, 1994; Lynam et al., 1999; Ringwalt, Ennett, & Holt, 1991). If you are committed to being a good steward of taxpayer money, will you fund this particular program, or will you try to find other programs that research has consistently demonstrated to be effective?

A D.A.R.E. poster reads “D.A.R.E. to resist drugs and violence.”

Watch this news report to learn more about some of the controversial issues surrounding the D.A.R.E. program.

Ultimately, it is not just politicians who can benefit from using research in guiding their decisions. We all might look to research from time to time when making decisions in our lives. Imagine you just found out that a close friend has breast cancer or that one of your young relatives has recently been diagnosed with autism. In either case, you want to know which treatment options are most successful with the fewest side effects. How would you find that out? You would probably talk with your doctor and personally review the research that has been done on various treatment options—always with a critical eye to ensure that you are as informed as possible.

In the end, research is what makes the difference between facts and opinions. Facts are observable realities, and opinions are personal judgments, conclusions, or attitudes that may or may not be accurate. In the scientific community, facts can be established only using evidence collected through empirical research.

THE PROCESS OF SCIENTIFIC RESEARCH

Scientific knowledge is advanced through a process known as the scientific method . Basically, ideas (in the form of theories and hypotheses) are tested against the real world (in the form of empirical observations), and those empirical observations lead to more ideas that are tested against the real world, and so on. In this sense, the scientific process is circular. The types of reasoning within the circle are called deductive and inductive. In deductive reasoning , ideas are tested against the empirical world; in inductive reasoning , empirical observations lead to new ideas ( [link] ). These processes are inseparable, like inhaling and exhaling, but different research approaches place different emphasis on the deductive and inductive aspects.

A diagram has a box at the top labeled “hypothesis or general premise” and a box at the bottom labeled “empirical observations.” On the left, an arrow labeled “inductive reasoning” goes from the bottom to top box. On the right, an arrow labeled “deductive reasoning” goes from the top to the bottom box.

In the scientific context, deductive reasoning begins with a generalization—one hypothesis—that is then used to reach logical conclusions about the real world. If the hypothesis is correct, then the logical conclusions reached through deductive reasoning should also be correct. A deductive reasoning argument might go something like this: All living things require energy to survive (this would be your hypothesis). Ducks are living things. Therefore, ducks require energy to survive (logical conclusion). In this example, the hypothesis is correct; therefore, the conclusion is correct as well. Sometimes, however, an incorrect hypothesis may lead to a logical but incorrect conclusion. Consider this argument: all ducks are born with the ability to see. Quackers is a duck. Therefore, Quackers was born with the ability to see. Scientists use deductive reasoning to empirically test their hypotheses. Returning to the example of the ducks, researchers might design a study to test the hypothesis that if all living things require energy to survive, then ducks will be found to require energy to survive.

Deductive reasoning starts with a generalization that is tested against real-world observations; however, inductive reasoning moves in the opposite direction. Inductive reasoning uses empirical observations to construct broad generalizations. Unlike deductive reasoning, conclusions drawn from inductive reasoning may or may not be correct, regardless of the observations on which they are based. For instance, you may notice that your favorite fruits—apples, bananas, and oranges—all grow on trees; therefore, you assume that all fruit must grow on trees. This would be an example of inductive reasoning, and, clearly, the existence of strawberries, blueberries, and kiwi demonstrate that this generalization is not correct despite it being based on a number of direct observations. Scientists use inductive reasoning to formulate theories, which in turn generate hypotheses that are tested with deductive reasoning. In the end, science involves both deductive and inductive processes.

For example, case studies, which you will read about in the next section, are heavily weighted on the side of empirical observations. Thus, case studies are closely associated with inductive processes as researchers gather massive amounts of observations and seek interesting patterns (new ideas) in the data. Experimental research, on the other hand, puts great emphasis on deductive reasoning.

Play this “Deal Me In” interactive card game to practice using inductive reasoning.

We’ve stated that theories and hypotheses are ideas, but what sort of ideas are they, exactly? A theory is a well-developed set of ideas that propose an explanation for observed phenomena. Theories are repeatedly checked against the world, but they tend to be too complex to be tested all at once; instead, researchers create hypotheses to test specific aspects of a theory.

A hypothesis is a testable prediction about how the world will behave if our idea is correct, and it is often worded as an if-then statement (e.g., if I study all night, I will get a passing grade on the test). The hypothesis is extremely important because it bridges the gap between the realm of ideas and the real world. As specific hypotheses are tested, theories are modified and refined to reflect and incorporate the result of these tests [link] .

A diagram has four boxes: the top is labeled “theory,” the right is labeled “hypothesis,” the bottom is labeled “research,” and the left is labeled “observation.” Arrows flow in the direction from top to right to bottom to left and back to the top, clockwise. The top right arrow is labeled “use the hypothesis to form a theory,” the bottom right arrow is labeled “design a study to test the hypothesis,” the bottom left arrow is labeled “perform the research,” and the top left arrow is labeled “create or modify the theory.”

To see how this process works, let’s consider a specific theory and a hypothesis that might be generated from that theory. As you’ll learn in a later chapter, the James-Lange theory of emotion asserts that emotional experience relies on the physiological arousal associated with the emotional state. If you walked out of your home and discovered a very aggressive snake waiting on your doorstep, your heart would begin to race and your stomach churn. According to the James-Lange theory, these physiological changes would result in your feeling of fear. A hypothesis that could be derived from this theory might be that a person who is unaware of the physiological arousal that the sight of the snake elicits will not feel fear.

A scientific hypothesis is also falsifiable , or capable of being shown to be incorrect. Recall from the introductory chapter that Sigmund Freud had lots of interesting ideas to explain various human behaviors ( [link] ). However, a major criticism of Freud’s theories is that many of his ideas are not falsifiable; for example, it is impossible to imagine empirical observations that would disprove the existence of the id, the ego, and the superego—the three elements of personality described in Freud’s theories. Despite this, Freud’s theories are widely taught in introductory psychology texts because of their historical significance for personality psychology and psychotherapy, and these remain the root of all modern forms of therapy.

(a)A photograph shows Freud holding a cigar. (b) The mind’s conscious and unconscious states are illustrated as an iceberg floating in water. Beneath the water’s surface in the “unconscious” area are the id, ego, and superego. The area just below the water’s surface is labeled “preconscious.” The area above the water’s surface is labeled “conscious.”

In contrast, the James-Lange theory does generate falsifiable hypotheses, such as the one described above. Some individuals who suffer significant injuries to their spinal columns are unable to feel the bodily changes that often accompany emotional experiences. Therefore, we could test the hypothesis by determining how emotional experiences differ between individuals who have the ability to detect these changes in their physiological arousal and those who do not. In fact, this research has been conducted and while the emotional experiences of people deprived of an awareness of their physiological arousal may be less intense, they still experience emotion (Chwalisz, Diener, & Gallagher, 1988).

Scientific research’s dependence on falsifiability allows for great confidence in the information that it produces. Typically, by the time information is accepted by the scientific community, it has been tested repeatedly.

Visit this website to apply the scientific method and practice its steps by using them to solve a murder mystery, determine why a student is in trouble, and design an experiment to test house paint.

Scientists are engaged in explaining and understanding how the world around them works, and they are able to do so by coming up with theories that generate hypotheses that are testable and falsifiable. Theories that stand up to their tests are retained and refined, while those that do not are discarded or modified. In this way, research enables scientists to separate fact from simple opinion. Having good information generated from research aids in making wise decisions both in public policy and in our personal lives.

Review Questions

Scientific hypotheses are ________ and falsifiable.

________ are defined as observable realities.

Scientific knowledge is ________.

A major criticism of Freud’s early theories involves the fact that his theories ________.

  • were too limited in scope
  • were too outrageous
  • were too broad
  • were not testable

Critical Thinking Questions

In this section, the D.A.R.E. program was described as an incredibly popular program in schools across the United States despite the fact that research consistently suggests that this program is largely ineffective. How might one explain this discrepancy?

There is probably tremendous political pressure to appear to be hard on drugs. Therefore, even though D.A.R.E. might be ineffective, it is a well-known program with which voters are familiar.

The scientific method is often described as self-correcting and cyclical. Briefly describe your understanding of the scientific method with regard to these concepts.

This cyclical, self-correcting process is primarily a function of the empirical nature of science. Theories are generated as explanations of real-world phenomena. From theories, specific hypotheses are developed and tested. As a function of this testing, theories will be revisited and modified or refined to generate new hypotheses that are again tested. This cyclical process ultimately allows for more and more precise (and presumably accurate) information to be collected.

Personal Application Questions

Healthcare professionals cite an enormous number of health problems related to obesity, and many people have an understandable desire to attain a healthy weight. There are many diet programs, services, and products on the market to aid those who wish to lose weight. If a close friend was considering purchasing or participating in one of these products, programs, or services, how would you make sure your friend was fully aware of the potential consequences of this decision? What sort of information would you want to review before making such an investment or lifestyle change yourself?

Creative Commons License

Share This Book

  • Increase Font Size

Numbers, Facts and Trends Shaping Your World

Read our research on:

Full Topic List

Regions & Countries

  • Publications
  • Our Methods
  • Short Reads
  • Tools & Resources

Read Our Research On:

Teens and social media: Key findings from Pew Research Center surveys

Laughing twin sisters looking at smartphone in park on summer evening

For the latest survey data on social media and tech use among teens, see “ Teens, Social Media, and Technology 2023 .” 

Today’s teens are navigating a digital landscape unlike the one experienced by their predecessors, particularly when it comes to the pervasive presence of social media. In 2022, Pew Research Center fielded an in-depth survey asking American teens – and their parents – about their experiences with and views toward social media . Here are key findings from the survey:

Pew Research Center conducted this study to better understand American teens’ experiences with social media and their parents’ perception of these experiences. For this analysis, we surveyed 1,316 U.S. teens ages 13 to 17, along with one parent from each teen’s household. The survey was conducted online by Ipsos from April 14 to May 4, 2022.

This research was reviewed and approved by an external institutional review board (IRB), Advarra, which is an independent committee of experts that specializes in helping to protect the rights of research participants.

Ipsos invited panelists who were a parent of at least one teen ages 13 to 17 from its KnowledgePanel , a probability-based web panel recruited primarily through national, random sampling of residential addresses, to take this survey. For some of these questions, parents were asked to think about one teen in their household. (If they had multiple teenage children ages 13 to 17 in the household, one was randomly chosen.) This teen was then asked to answer questions as well. The parent portion of the survey is weighted to be representative of U.S. parents of teens ages 13 to 17 by age, gender, race, ethnicity, household income and other categories. The teen portion of the survey is weighted to be representative of U.S. teens ages 13 to 17 who live with parents by age, gender, race, ethnicity, household income and other categories.

Here are the questions used  for this report, along with responses, and its  methodology .

Majorities of teens report ever using YouTube, TikTok, Instagram and Snapchat. YouTube is the platform most commonly used by teens, with 95% of those ages 13 to 17 saying they have ever used it, according to a Center survey conducted April 14-May 4, 2022, that asked about 10 online platforms. Two-thirds of teens report using TikTok, followed by roughly six-in-ten who say they use Instagram (62%) and Snapchat (59%). Much smaller shares of teens say they have ever used Twitter (23%), Twitch (20%), WhatsApp (17%), Reddit (14%) and Tumblr (5%).

A chart showing that since 2014-15 TikTok has started to rise, Facebook usage has dropped, Instagram and Snapchat have grown.

Facebook use among teens dropped from 71% in 2014-15 to 32% in 2022. Twitter and Tumblr also experienced declines in teen users during that span, but Instagram and Snapchat saw notable increases.

TikTok use is more common among Black teens and among teen girls. For example, roughly eight-in-ten Black teens (81%) say they use TikTok, compared with 71% of Hispanic teens and 62% of White teens. And Hispanic teens (29%) are more likely than Black (19%) or White teens (10%) to report using WhatsApp. (There were not enough Asian teens in the sample to analyze separately.)

Teens’ use of certain social media platforms also varies by gender. Teen girls are more likely than teen boys to report using TikTok (73% vs. 60%), Instagram (69% vs. 55%) and Snapchat (64% vs. 54%). Boys are more likely than girls to report using YouTube (97% vs. 92%), Twitch (26% vs. 13%) and Reddit (20% vs. 8%).

A chart showing that teen girls are more likely than boys to use TikTok, Instagram and Snapchat. Teen boys are more likely to use Twitch, Reddit and YouTube. Black teens are especially drawn to TikTok compared with other groups.

Majorities of teens use YouTube and TikTok every day, and some report using these sites almost constantly. About three-quarters of teens (77%) say they use YouTube daily, while a smaller majority of teens (58%) say the same about TikTok. About half of teens use Instagram (50%) or Snapchat (51%) at least once a day, while 19% report daily use of Facebook.

A chart that shows roughly one-in-five teens are almost constantly on YouTube, and 2% say the same for Facebook.

Some teens report using these platforms almost constantly. For example, 19% say they use YouTube almost constantly, while 16% and 15% say the same about TikTok and Snapchat, respectively.

More than half of teens say it would be difficult for them to give up social media. About a third of teens (36%) say they spend too much time on social media, while 55% say they spend about the right amount of time there and just 8% say they spend too little time. Girls are more likely than boys to say they spend too much time on social media (41% vs. 31%).

A chart that shows 54% of teens say it would be hard to give up social media.

Teens are relatively divided over whether it would be hard or easy for them to give up social media. Some 54% say it would be very or somewhat hard, while 46% say it would be very or somewhat easy.

Girls are more likely than boys to say it would be difficult for them to give up social media (58% vs. 49%). Older teens are also more likely than younger teens to say this: 58% of those ages 15 to 17 say it would be very or somewhat hard to give up social media, compared with 48% of those ages 13 to 14.

Teens are more likely to say social media has had a negative effect on others than on themselves. Some 32% say social media has had a mostly negative effect on people their age, while 9% say this about social media’s effect on themselves.

A chart showing that more teens say social media has had a negative effect on people their age than on them, personally.

Conversely, teens are more likely to say these platforms have had a mostly positive impact on their own life than on those of their peers. About a third of teens (32%) say social media has had a mostly positive effect on them personally, while roughly a quarter (24%) say it has been positive for other people their age.

Still, the largest shares of teens say social media has had neither a positive nor negative effect on themselves (59%) or on other teens (45%). These patterns are consistent across demographic groups.

Teens are more likely to report positive than negative experiences in their social media use. Majorities of teens report experiencing each of the four positive experiences asked about: feeling more connected to what is going on in their friends’ lives (80%), like they have a place where they can show their creative side (71%), like they have people who can support them through tough times (67%), and that they are more accepted (58%).

A chart that shows teen girls are more likely than teen boys to say social media makes them feel more supported but also overwhelmed by drama and excluded by their friends.

When it comes to negative experiences, 38% of teens say that what they see on social media makes them feel overwhelmed because of all the drama. Roughly three-in-ten say it makes them feel like their friends are leaving them out of things (31%) or feel pressure to post content that will get lots of comments or likes (29%). And 23% say that what they see on social media makes them feel worse about their own life.

There are several gender differences in the experiences teens report having while on social media. Teen girls are more likely than teen boys to say that what they see on social media makes them feel a lot like they have a place to express their creativity or like they have people who can support them. However, girls also report encountering some of the pressures at higher rates than boys. Some 45% of girls say they feel overwhelmed because of all the drama on social media, compared with 32% of boys. Girls are also more likely than boys to say social media has made them feel like their friends are leaving them out of things (37% vs. 24%) or feel worse about their own life (28% vs. 18%).

When it comes to abuse on social media platforms, many teens think criminal charges or permanent bans would help a lot. Half of teens think criminal charges or permanent bans for users who bully or harass others on social media would help a lot to reduce harassment and bullying on these platforms. 

A chart showing that half of teens think banning users who bully or criminal charges against them would help a lot in reducing the cyberbullying teens may face on social media.

About four-in-ten teens say it would help a lot if social media companies proactively deleted abusive posts or required social media users to use their real names and pictures. Three-in-ten teens say it would help a lot if school districts monitored students’ social media activity for bullying or harassment.

Some teens – especially older girls – avoid posting certain things on social media because of fear of embarrassment or other reasons. Roughly four-in-ten teens say they often or sometimes decide not to post something on social media because they worry people might use it to embarrass them (40%) or because it does not align with how they like to represent themselves on these platforms (38%). A third of teens say they avoid posting certain things out of concern for offending others by what they say, while 27% say they avoid posting things because it could hurt their chances when applying for schools or jobs.

A chart that shows older teen girls are more likely than younger girls or boys to say they don't post things on social media because they're worried it could be used to embarrass them.

These concerns are more prevalent among older teen girls. For example, roughly half of girls ages 15 to 17 say they often or sometimes decide not to post something on social media because they worry people might use it to embarrass them (50%) or because it doesn’t fit with how they’d like to represent themselves on these sites (51%), compared with smaller shares among younger girls and among boys overall.

Many teens do not feel like they are in the driver’s seat when it comes to controlling what information social media companies collect about them. Six-in-ten teens say they think they have little (40%) or no control (20%) over the personal information that social media companies collect about them. Another 26% aren’t sure how much control they have. Just 14% of teens think they have a lot of control.

Two charts that show a majority of teens feel as if they have little to no control over their data being collected by social media companies, but only one-in-five are extremely or very concerned about the amount of information these sites have about them.

Despite many feeling a lack of control, teens are largely unconcerned about companies collecting their information. Only 8% are extremely concerned about the amount of personal information that social media companies might have and 13% are very concerned. Still, 44% of teens say they have little or no concern about how much these companies might know about them.

Only around one-in-five teens think their parents are highly worried about their use of social media. Some 22% of teens think their parents are extremely or very worried about them using social media. But a larger share of teens (41%) think their parents are either not at all (16%) or a little worried (25%) about them using social media. About a quarter of teens (27%) fall more in the middle, saying they think their parents are somewhat worried.

A chart showing that only a minority of teens say their parents are extremely or very worried about their social media use.

Many teens also believe there is a disconnect between parental perceptions of social media and teens’ lived realities. Some 39% of teens say their experiences on social media are better than parents think, and 27% say their experiences are worse. A third of teens say parents’ views are about right.

Nearly half of parents with teens (46%) are highly worried that their child could be exposed to explicit content on social media. Parents of teens are more likely to be extremely or very concerned about this than about social media causing mental health issues like anxiety, depression or lower self-esteem. Some parents also fret about time management problems for their teen stemming from social media use, such as wasting time on these sites (42%) and being distracted from completing homework (38%).

A chart that shows parents are more likely to be concerned about their teens seeing explicit content on social media than these sites leading to anxiety, depression or lower self-esteem.

Note: Here are the questions used  for this report, along with responses, and its  methodology .

CORRECTION (May 17, 2023): In a previous version of this post, the percentages of teens using Instagram and Snapchat daily were transposed in the text. The original chart was correct. This change does not substantively affect the analysis.

  • Age & Generations
  • Age, Generations & Tech
  • Internet & Technology
  • Platforms & Services
  • Social Media
  • Teens & Tech
  • Teens & Youth

Emily A. Vogels is a former research associate focusing on internet and technology at Pew Research Center

Risa Gelles-Watnick's photo

Risa Gelles-Watnick is a research analyst focusing on internet and technology research at Pew Research Center

How Teens and Parents Approach Screen Time

Who are you the art and science of measuring identity, u.s. centenarian population is projected to quadruple over the next 30 years, older workers are growing in number and earning higher wages, teens, social media and technology 2023, most popular.

1615 L St. NW, Suite 800 Washington, DC 20036 USA (+1) 202-419-4300 | Main (+1) 202-857-8562 | Fax (+1) 202-419-4372 |  Media Inquiries

Research Topics

  • Coronavirus (COVID-19)
  • Economy & Work
  • Family & Relationships
  • Gender & LGBTQ
  • Immigration & Migration
  • International Affairs
  • Methodological Research
  • News Habits & Media
  • Non-U.S. Governments
  • Other Topics
  • Politics & Policy
  • Race & Ethnicity
  • Email Newsletters

ABOUT PEW RESEARCH CENTER  Pew Research Center is a nonpartisan fact tank that informs the public about the issues, attitudes and trends shaping the world. It conducts public opinion polling, demographic research, media content analysis and other empirical social science research. Pew Research Center does not take policy positions. It is a subsidiary of  The Pew Charitable Trusts .

Copyright 2024 Pew Research Center

Terms & Conditions

Privacy Policy

Cookie Settings

Reprints, Permissions & Use Policy

Home

Site Search

  • About ARPA-E
  • Team Directory
  • ARPA-E History
  • Annual Reports
  • Budget Requests
  • Apply For Funding
  • Authorization
  • View Active Programs
  • Search Our Programs
  • Search Individual Projects
  • Interactive Project Map
  • Exploratory Topics
  • The SCALEUP Program
  • OPEN Programs
  • Project Guidance
  • ARPA-E Technology-to-Market
  • Technology Commercialization
  • External Engagement Model
  • Investor Updates
  • ARPA-E News & Media
  • Press Releases
  • ARPA-E Disruptors
  • Publications
  • ARPA-E Events
  • Energy Innovation Summit
  • Careers at ARPA-E
  • Job Opportunities
  • Life at ARPA-E
  • ARPA-E FAQs
  • General Questions
  • Current Funding Opportunities
  • Closed Funding Opportunities

ARPA-E Blog Post Zap Energy Fusion Milestone

Zap Energy Achieves Significant Fusion Energy Milestone: Electron Temperature Exceeding 10 Million Degrees

Zap Energy and their collaborators at Lawrence Livermore National Laboratory, Los Alamos National Laboratory, University of California, San Diego, and University of Washington published a peer-reviewed article in Physical Review Letters   this month demonstrating electron temperature greater than 10 million degrees (approximately 1 keV, the unit of temperature favored by fusion scientists) in a sheared-flow-stabilized Z pinch. Electron temperatures up to 3 keV were reported. This result is a major physics milestone for Zap Energy and for the broader fusion energy research community. Although achieving roughly 10-keV ion temperature is what matters directly for enabling appreciable amounts of deuterium-tritium fusion, the 1-keV threshold in electron temperature is a significant milestone in the development of any fusion concept because heating electrons to such a high temperature requires that major instabilities and cooling mechanisms have been controlled. These characteristics are necessary for any fusion energy concept, and therefore the 1-keV electron-temperature threshold can be regarded as a dividing line between “concept exploration” and readiness for “concept development” as measured by the Lawson criterion .

Zap Energy Blog Post Image 1

Due to the inherent physics and engineering challenges, it took over 15 years after initiation in the early 1950s of major controlled-fusion research efforts around the world before 1-keV electron temperature was first achieved. In 1968, Russian physicists announced 1-keV electron temperature on the T3 tokamak , a result initially met with skepticism around the world but confirmed in early 1969 by a travelling team of physicists from the United Kingdom who used a then new technique called Thomson scattering (a technique also used by Zap, more below). This early work on the tokamak concept and the confirmatory measurement of electron temperature set in motion the tremendous worldwide interest in the tokamak concept, which continues to this day.

Zap Energy Blog Post Image 2

We note that only six fusion concepts have peer-reviewed published data showing electron temperature exceeding 1 keV before this achievement: the tokamak (including spherical tokamak), laser inertial confinement fusion (laser ICF), mirror, reversed field pinch, magnetized liner inertial fusion (MagLIF), and stellarator. Published FRC data is close, so we’ll call it seven. This publication brings this number to eight, and importantly, in a Z-pinch concept that may offer economic benefits due to its relative simplicity owing to its linear geometry. We also emphasize that while 1-keV electron temperature is an important milestone, there is still significant work remaining in the sheared-flow-stabilized Z-pinch “concept development” phase to achieve further milestones (e.g., scientific breakeven) on their path to commercial fusion energy.

This result is also a major success story for ARPA-E. Building on earlier scientific studies of sheared-flow stabilization of a Z pinch supported by DOE Fusion Energy Sciences, the University of Washington pursued initial performance scale-up of the concept in the ARPA-E ALPHA program beginning in 2015. From this seed, Zap Energy was spun off, and further performance improvements were funded in the ARPA-E OPEN 2018 program and the BETHE program starting in 2020 , before Zap raised over $200M of private capital. Additionally, ARPA-E funded a Thomson-scattering diagnostic capability team from Lawrence Livermore National Laboratory and a neutron diagnostic capability team from Los Alamos National Laboratory . These two teams’ travelling diagnostic capabilities provided independent and consistent measurements, which confirmed the achievement of 1-keV electron temperature.

Zap Energy Blog Post Image 3

The sheared-flow-stabilized Z pinch joins the handful of fusion concepts that have exceeded 1-keV electron temperature. This is a tremendous return on the $14M over eight years invested by ARPA-E in this concept and even the entire investment of $133M that ARPA-E has made into fusion energy since 2015 when placed in the context of the other fusion concepts that have reached this milestone. We look forward to further successes both from Zap Energy and from the many other promising ARPA-E funded teams pursuing fusion energy.

  • MyU : For Students, Faculty, and Staff

Hannah Kenagy and Melissa Ramirez join Department of Chemistry

Headshot photographs of Melissa Ramirez and Hannah Kenagy on a maroon and gold polka-dot background.

MINNEAPOLIS / ST. PAUL (04/22/2024) – The Department of Chemistry will welcome Dr. Hannah Kenagy and Dr. Melissa Ramirez to the faculty in January 2025. Both chemists will enter the department as Assistant Professors. 

Hannah S. Kenagy will join the department in January 2025 after completion of her postdoctoral training at the Massachusetts Institute of Technology (MIT), where she currently works as an NSF AGS Postdoctoral Fellow with Prof. Jesse Kroll and Prof. Colette Heald. Prior to her current position at MIT, Kenagy completed her PhD at the University of California Berkeley in 2021 with Ronald Cohen and her BS in Chemistry and the University of Chicago in 2016. 

At the University of Minnesota, the Kenagy research group will focus on atmospheric chemistry. Kenagy’s research explores how emissions into the atmosphere get physically and chemically transformed into gases and particles with impacts on air quality and climate. “We will use an integrated toolset for thinking about these questions, including lab experiments, field observations, and multi-scale modeling,” Kenagy says. “In particular, we’ll focus on questions regarding how atmospheric chemistry and composition are changing as we reduce our reliance on fossil fuel combustion and as temperatures continue to rise with climate change. Integrating measurements and models together will enable us to push forward our understanding of this changing chemistry.”

Kenagy is passionate about integrating environmental chemistry learning opportunities in her classrooms to make real-world connections for students. “Because so much of my research is relevant to air quality and climate – things that impact people’s daily lives, often inequitably – outreach is a really key component of my group’s work,” Kenagy says. She also engages in ongoing efforts to make science more accessible, and to ensure all students have the resources they need to thrive and develop a sense of belonging in science.

The UMN Department of Chemistry’s strong focus on environmental chemistry and the opportunities to engage in interdisciplinary research make the move to Minnesota particularly exciting for Kenagy. “I’m looking forward to joining a university with atmospheric scientists in a variety of departments across both the Minneapolis and St. Paul campuses. I also plan to make some measurements of urban chemistry across the Twin Cities, a unique environment that is impacted by agricultural and biogenic emissions in addition to more typical urban emissions. This mix of emissions makes the Twin Cities an interesting place to study the air!”

When she’s not busy in the office and lab, Kenagy loves being outside, hiking and swimming. She also loves music – she plays piano and sings – and cooking.  You can read more about Kenagy here.

Melissa Ramirez will also make her move to Minnesota in January of 2025. Currently, Ramirez is an NIH K99/R00 MOSAIC Scholar, NSF MPS-Ascend Fellow, and Caltech Presidential Postdoctoral Scholar in the laboratory of Prof. Brian Stoltz at the California Institute of Technology, where her research focuses on enantioselective quaternary center formation using experiments and computations. Before her postdoctoral position, Ramirez completed her PhD in Organic Chemistry at the University of California, Los Angeles with Prof. Ken Houk and Prof. Neil Garg in 2021 and her BA in Chemistry at the University of Pennsylvania in 2016. 

The Ramirez laboratory at UMN will develop experimental and computational approaches to address challenges associated with efficiency in the synthesis of pharmaceutically relevant small molecules. “The mission of my research program will be to establish synthetic methods in the areas of main group catalysis, asymmetric organocatalysis, and transition metal photochemistry with the aid of computations,” Ramirez writes. “Students trained in my lab will develop strong skills in synthetic and computational organic chemistry with a focus on reaction development. This synergistic skillset in synthesis and computations will also give rise to a range of opportunities for collaboration with the broader scientific community.” Ramirez aims to bridge synthesis and catalysis research with computational chemistry at UMN.

Ramirez says an important goal for her as a professor will be to challenge students, support them, and make them feel connected to the classroom regardless of their background. “Throughout my academic career, some of the most effective teachers I have had are those who believed in my potential even when I experienced self-doubt or failure,” Ramirez says. She is also looking forward to collaborating with the Chemistry Diversity, Equity, and Inclusion Committee to explore ways to better connect students with resources to help remove barriers to their science education and career. “I am excited to help recruit a diverse student body by helping organize the  CheMNext session and by continuing my close relationship with organizations such as the Alliance for Diversity in Science and Engineering and Científico Latino, which I have served on the organizational board for during my postdoc,” Ramirez says.

When she’s not on campus, Ramirez enjoys staying active. She’s an avid runner, loves Peloton, and likes taking high-intensity interval training (HIIT) classes.  You can learn more about Ramirez here.

The hiring of Kenagy and Ramirez follows the recent announcement of Dr. Jan-Niklas Boyn and Dr. Kade Head-Marsden joining the faculty in Fall 2024 . These four incoming Gophers will bring the Department of Chemistry total of new faculty hires to nine over the past three years. We are excited for these outstanding chemists to join our community, and be part of the ongoing growth of the College of Science and Engineering on the UMN-TC campus.

Related news releases

  • hUMNs of Chemistry #14
  • hUMNs of Chemistry #13
  • Jan-Niklas Boyn and Kade Head-Marsden join Department of Chemistry
  • hUMNs of Chemistry #11
  • Professor Peter Carr retires after over 45 years on Department of Chemistry faculty
  • Future undergraduate students
  • Future transfer students
  • Future graduate students
  • Future international students
  • Diversity and Inclusion Opportunities
  • Learn abroad
  • Living Learning Communities
  • Mentor programs
  • Programs for women
  • Student groups
  • Visit, Apply & Next Steps
  • Information for current students
  • Departments and majors overview
  • Departments
  • Undergraduate majors
  • Graduate programs
  • Integrated Degree Programs
  • Additional degree-granting programs
  • Online learning
  • Academic Advising overview
  • Academic Advising FAQ
  • Academic Advising Blog
  • Appointments and drop-ins
  • Academic support
  • Commencement
  • Four-year plans
  • Honors advising
  • Policies, procedures, and forms
  • Career Services overview
  • Resumes and cover letters
  • Jobs and internships
  • Interviews and job offers
  • CSE Career Fair
  • Major and career exploration
  • Graduate school
  • Collegiate Life overview
  • Scholarships
  • Diversity & Inclusivity Alliance
  • Anderson Student Innovation Labs
  • Information for alumni
  • Get engaged with CSE
  • Upcoming events
  • CSE Alumni Society Board
  • Alumni volunteer interest form
  • Golden Medallion Society Reunion
  • 50-Year Reunion
  • Alumni honors and awards
  • Outstanding Achievement
  • Alumni Service
  • Distinguished Leadership
  • Honorary Doctorate Degrees
  • Nobel Laureates
  • Alumni resources
  • Alumni career resources
  • Alumni news outlets
  • CSE branded clothing
  • International alumni resources
  • Inventing Tomorrow magazine
  • Update your info
  • CSE giving overview
  • Why give to CSE?
  • College priorities
  • Give online now
  • External relations
  • Giving priorities
  • Donor stories
  • Impact of giving
  • Ways to give to CSE
  • Matching gifts
  • CSE directories
  • Invest in your company and the future
  • Recruit our students
  • Connect with researchers
  • K-12 initiatives
  • Diversity initiatives
  • Research news
  • Give to CSE
  • CSE priorities
  • Corporate relations
  • Information for faculty and staff
  • Administrative offices overview
  • Office of the Dean
  • Academic affairs
  • Finance and Operations
  • Communications
  • Human resources
  • Undergraduate programs and student services
  • CSE Committees
  • CSE policies overview
  • Academic policies
  • Faculty hiring and tenure policies
  • Finance policies and information
  • Graduate education policies
  • Human resources policies
  • Research policies
  • Research overview
  • Research centers and facilities
  • Research proposal submission process
  • Research safety
  • Award-winning CSE faculty
  • National academies
  • University awards
  • Honorary professorships
  • Collegiate awards
  • Other CSE honors and awards
  • Staff awards
  • Performance Management Process
  • Work. With Flexibility in CSE
  • K-12 outreach overview
  • Summer camps
  • Outreach events
  • Enrichment programs
  • Field trips and tours
  • CSE K-12 Virtual Classroom Resources
  • Educator development
  • Sponsor an event

Tactical Menu

Strip-grazing milo as a low-cost winter forage.

Rusty Lee Field Specialist in Agronomy

Drew Kientzy Research Analyst, Agricultural Business and Policy Extension

Eric Bailey Assistant Professor and State Beef Extension Specialist

Beef cattle are nearly obscured by tall and dense milo standing in their grazing area.

Minimizing the cost of winter feed is a key element of profitability on most pasture-based livestock operations. Baled dry hay is the industry standard for feeding cattle and small ruminants throughout the winter. Challenging weather often complicates the hay-making process. Some producers around the state have reduced their hay crop in exchange for stockpiled milo for their winter forage needs. Strip-grazing standing milo eliminates the costs associated with harvesting and transporting hay and forgoes milo harvesting costs; resulting in much lower daily feed costs compared to traditional baled hay.

System basics

The basics of milo stockpile grazing are like other management-intensive grazing systems. Ideally, milo is planted into fields with existing perimeter fencing and a good water supply. When the milo is mature and feed supplies are transitioning to stored forages, it is time to begin allocating milo for daily strip-grazing.

The recommended daily allocation depends on cattle stocking rate and milo yield. Based on 15 years of research perfecting the milo grazing system, University of Missouri Extension agronomist Rusty Lee recommends feeding 10-13 pounds of grain per cow per day. A grain-only allocation is used as it is difficult to quantify the fodder in the field, but grain yield increases along with fodder so the two are closely connected. Forage utilization rates can be up to 75 percent of total milo biomass if the allotments of milo restrict loafing and encourage the animals to eat all the fodder.

Production costs

The first part of implementing an annual forage grazing system is growing the crop. Corn planting equipment can be used for milo. However, milo can be successfully planted with a grain drill if you do not have access to a row crop planter.

MU Extension publishes a Grain Sorghum Planning Budget , updated annually. Table 1 summarizes the operating costs of producing milo yielding 105 bushels per acre.

Annual operating costs per acre are lower for tall fescue-clover mixed hay, compared to milo. The full planning budget for mixed hay yielding three tons per acre in Missouri can be found in MU Extension’s Fescue-Clover Hay Planning Budget . Table 2 shows annual operating costs for mixed hay.

Table 1. Operating costs of producing milo in Missouri, less harvesting, in dollars per acre.

Table 2. Operating costs of growing and harvesting established fescue-clover hay, in dollars per acre.

Movable polywire fence on step-in posts is an easy, efficient, and inexpensive way to divide daily allocations of milo.

There are two types of fencing used in the milo grazing system: exterior and interior. Exterior fencing — high tensile wire, barb wire, woven wire or some combination of these three — may or may not be electrified. To maintain forage quality and keep utilization rate high, portable fencing must be used to separate the grazed area from the standing milo in the remainder of the field. Electric fence is an inexpensive and convenient way to keep cattle out of the milo not included in their daily allotment. Since milo is an annual crop, there is no need to install a back-fence to prevent the livestock from grazing previous allotments; only one stretch of temporary fencing is necessary.

Table 3 shows the costs per foot of constructing and maintaining both permanent perimeter and portable interior fences. The cost estimates below do not include labor to move the electric interior fence for each milo allotment. A general rule of one hour per one-quarter mile of fence assuming a single wire with step-in self-insulating posts. Driving down milo with an ATV or UTV creates the pathway for a single-strand fence utilizing step-in posts.

Table 3. Fence construction costs, per foot.

Daily allocations

There are four factors in estimating the daily allocation of milo for your herd: stocking rate, consumption rate, utilization rate and milo yield. Most mature cows will consume about three percent of their body mass daily. A 1,200-pound cow needs about 36 pounds of forage per day. Experienced milo grazers have found that 10-12 pounds of milo grain provides an appropriate intake, including the milo fodder. However, the grain-based allocation may change because varying growing conditions can change the ratio of grain to forage.

Milo yield is difficult to estimate prior to harvest. Components of milo yield include heads per acre, seeds per head and seed weight. Like corn, it is easy to calculate the number of heads in a stretch of row and extrapolate that area to find the yield per acre. However, milo heads are not uniform and can have over 4,000 seeds per head, making it nearly impossible to estimate yield. For a new grower of milo, it may be easiest and most accurate to consult your agronomist or an experienced milo producer to visually assess the yield. A visual assessment will likely not be accurate enough to determine the final daily allocation but can be a helpful starting point.

Ultimately, the allocation of milo comes down to cow-days per acre. These are the steps to determine cow days per acre in this scenario:

  • 105 bushels/acre milo × 56 pounds/bushel = 5,880 pounds/acre
  • 5,880 pounds/acre × 75% utilization = 4,410 usable pounds
  • 4,410 usable pounds ÷ 11 pounds/cow/day = 400.9 cow days/acre.

Next, determine the daily allocation by:

  • Dividing the number of cow-days/acre by the number of cows in the herd to effectively find herd-days/acre.
  • Divide the area of an acre (43,560 sq. ft.) by the number of herd-days per acre to find the square footage needed for a daily allocation.
  • Divide the daily allocation area by the width of your pasture where the temporary fence will run to find out how far you will move the wire every day.

Labor needs

Labor is required to manage daily allocations of milo. Giving an allocation larger than one day’s grazing results in over-feeding the first day and wasted grain from trampling and under-feeding on the additional days before moving to the next allocation. Cattle that respect an electric fence is a requirement as portable electric fencing keeps the labor manageable. Producers consistently report the daily time commitment being about 30 minutes.

Labor requirements are mostly independent of herd size. Producers report needing the same 30 minutes to feed 30 head or 300 head. However, wider paddocks (the distance spanned by the temporary fence moved daily) require more daily labor than narrower paddocks of the same area. The time required to feed hay increases as herd size increases. Moving feed bunks or supplement tubs are unnecessary in a milo grazing system. The ground near the prior day’s portable fence-line will be clear enough to feed due to driving down the milo before installing the fence and the natural inclination of the cattle to create a track near the boundary.

Nutritional value of feeding milo

The most common use of grazing standing milo is for beef cow diets. Given the mix of spring and fall calving herds across Missouri, distinguishing nutrient requirement differences between the groups is important. The spring-calving cow will be in the third trimester of gestation when grazing standing milo whereas a fall-calving cow will have calved and be near peak lactation, which coincides with a beef cow’s greatest nutrient requirements.

To avoid weight loss, beef cows in the last trimester of gestation require a diet that is greater than 55 percent total digestible nutrients (TDN), whereas an early lactation beef cow needs a diet of at least 60 percent TDN. Tall fescue hay harvested across Missouri rarely tests at 60 percent TDN and often near 50 percent TDN. When producers provide supplemental feed to beef in conjunction with hay, energy from the supplement is most needed by cows.

Analysis of milo heads regularly return TDN values above 70 percent and milo fodder (leaves and stems) routinely test approximately 55 percent TDN. Energy is not limiting when grazing standing milo, so long as cows are allocated 10-13 pounds of grain and 18-20 pounds of fodder. Table 4 contains a simple nutrient analysis of whole-plant milo forage. Note that weather, grain-to-fodder ratio, date of sampling and many other factors may affect the nutritional value of whole milo plants.

Table 4. Basic nutrient analysis for whole-plant milo forage.

Crude protein is often the first limiting nutrient when grazing standing milo. Use of a ration balancing program shows a 0.49 pounds of crude protein deficiency in a diet containing two parts milo stalks and one part milo grain. Producers grazing milo are encouraged to provide a minimum of 0.5 pounds of crude protein per cow per day to optimize feed digestion. For example, two pounds of dried distillers grains on an as-fed basis (88 percent dry matter; 30 percent crude protein) will provide 0.53 pounds of crude protein. Crude protein can be fed as little as twice a week, so long as the amount fed averages at least 0.5 pounds of crude protein per cow per day (6 pounds of dried distillers grains fed every third day). Self-fed protein supplements are also an option but producers should be aware of significant day-to-day variation in self-fed supplement consumption.

Adaptation from forage to grain-based diets is generally recommended when feeding beef cattle. Grazing standing milo may be an exception to this rule. The rate of rumen starch fermentation is slower for milo than corn. Milo grain has a hard outer shell that is resistant to digestion, and ruminants are not efficient at grinding whole milo due to their lacking of upper teeth. Do not give unrestricted access to a milo field due to the preference for grain over fodder, as well as the risk of rumen acidosis and other digestive disorders. However, the risk of acidosis is modest when allocating feed daily.

Winter weather can substantially increase nutrient requirements, with extreme cold and cool dampness increasing energy requirements. Do not hesitate to increase the daily allocation of grain by 20 to 30 percent during adverse weather. This provides extra energy to help offset the impacts of cold stress.

Feed value per acre

Acreage available for feed production is limited on many farms. The potential 401 cow-days per acre in a milo grazing system is higher than nearly all perennial forages, grazed or harvested. A Missouri hay crop may annually yield about 3 tons, or roughly 180 cow-days per acre. However, a fescue stockpile will often be no more than 60 cow-days per acre. This means that 6.5 acres of stockpiled fescue would be needed to provide the same winter grazing as an acre of milo. For fescue-clover hay, the land needed would cost $227.50, assuming a $35 per acre rental rate. If cropland for milo can be rented at $130, producers will experience $97.50 in land cost savings for each acre of milo grazed.

Milo grazing also offers a substantial advantage over feeding dry hay in the winter in terms of feed cost per cow per day. Assuming 105 bushel per acre milo yield with operating costs of $201.85, we find that the operating investment into the milo is $1.92 per bushel, or $0.03 per pound. If each cow is allotted 13 pounds of milo grain and the associated fodder daily, the cost of fed milo per cow/day is $0.45. This example reflects the cash-based costs of grazing milo. Alternative outcomes for the milo crop may value feed per cow per day differently.

Compared to grazing milo, feed costs are typically much higher in a hay-based winter feed program. If forage growers in Missouri can produce fescue-clover hay yielding 3 tons per acre with operating costs of $196.18, the variable cost of the hay is $65.39 per ton, or $0.03 per pound. A 1,200 pound cow consuming 3 percent of her body weight in dry matter daily would eat 36 pounds of hay daily at a cost of $1.18 per cow per day. In this scenario, the daily feed cost for a cow eating hay as its primary feed would be over 2.6 times that of one eating a milo-based diet.

Crop production implications

Grazing cattle in row crop fields can lead to excessive pocking from hoof traffic. Fields will likely be rough in spring if they were wet while grazing. For this reason, producers adopting this system will likely have to use conventional tillage practices on acres grazed. Additionally, significant investment must be made in perimeter fences and water access in each field where milo is grazed. These sunk costs incentivize continuously planting milo on the same fields. The early adopters of milo grazing systems have found that milo can be grown continuously for four to five years. Milo can also be planted into late June across Missouri with no yield loss, permitting a system using a cool season crop in the spring prior to seeding milo in early summer.

Field surface damage from hoof traffic can be managed by keeping cattle close to a separate area to be used as a sacrifice when there are excessively wet conditions. There, livestock can eat other stored forages to minimize the damage done to the milo field. The economic benefit of a sacrificial lot will typically not offset the higher feed costs of feeding stored forage. The benefit of pulling animals out of the field are mostly aesthetic. If animals damage wet fields, producers will bear those costs with added input costs or lost yield on the subsequent crop.

This guide is for informational purposes and the user assumes all risks associated with its use. If you have any questions about the information in this guide, please contact Rusty Lee at [email protected] for guidance.

Related programs

  • Agricultural Business and Policy Extension
  • Beef Extension
  • Corn and Sorghum
  • Drought Resources
  • Forage-Livestock Group
  • Pasture-Based Dairy

2. Psychological Research

Why is research important, learning objectives.

By the end of this section, you will be able to:

  • Explain how scientific research addresses questions about behavior
  • Discuss how scientific research guides public policy
  • Appreciate how scientific research can be important in making personal decisions

Scientific research is a critical tool for successfully navigating our complex world. Without it, we would be forced to rely solely on intuition, other people’s authority, and blind luck. While many of us feel confident in our abilities to decipher and interact with the world around us, history is filled with examples of how very wrong we can be when we fail to recognize the need for evidence in supporting claims. At various times in history, we would have been certain that the sun revolved around a flat earth, that the earth’s continents did not move, and that mental illness was caused by possession ( [link] ). It is through systematic scientific research that we divest ourselves of our preconceived notions and superstitions and gain an objective understanding of ourselves and our world.

A skull has a large hole bored through the forehead.

Some of our ancestors, across the world and over the centuries, believed that trephination—the practice of making a hole in the skull, as shown here—allowed evil spirits to leave the body, thus curing mental illness and other disorders. (credit: “taiproject”/Flickr)

The goal of all scientists is to better understand the world around them. Psychologists focus their attention on understanding behavior, as well as the cognitive (mental) and physiological (body) processes that underlie behavior. In contrast to other methods that people use to understand the behavior of others, such as intuition and personal experience, the hallmark of scientific research is that there is evidence to support a claim. Scientific knowledge is empirical : It is grounded in objective, tangible evidence that can be observed time and time again, regardless of who is observing.

While behavior is observable, the mind is not. If someone is crying, we can see behavior. However, the reason for the behavior is more difficult to determine. Is the person crying due to being sad, in pain, or happy? Sometimes we can learn the reason for someone’s behavior by simply asking a question, like “Why are you crying?” However, there are situations in which an individual is either uncomfortable or unwilling to answer the question honestly, or is incapable of answering. For example, infants would not be able to explain why they are crying. In such circumstances, the psychologist must be creative in finding ways to better understand behavior. This chapter explores how scientific knowledge is generated, and how important that knowledge is in forming decisions in our personal lives and in the public domain.

USE OF RESEARCH INFORMATION

Trying to determine which theories are and are not accepted by the scientific community can be difficult, especially in an area of research as broad as psychology. More than ever before, we have an incredible amount of information at our fingertips, and a simple internet search on any given research topic might result in a number of contradictory studies. In these cases, we are witnessing the scientific community going through the process of reaching a consensus, and it could be quite some time before a consensus emerges. For example, the hypothesized link between exposure to media violence and subsequent aggression has been debated in the scientific community for roughly 60 years. Even today, we will find detractors, but a consensus is building. Several professional organizations view media violence exposure as a risk factor for actual violence, including the American Medical Association, the American Psychiatric Association, and the American Psychological Association (American Academy of Pediatrics, American Academy of Child & Adolescent Psychiatry, American Psychological Association, American Medical Association, American Academy of Family Physicians, American Psychiatric Association, 2000).

In the meantime, we should strive to think critically about the information we encounter by exercising a degree of healthy skepticism. When someone makes a claim, we should examine the claim from a number of different perspectives: what is the expertise of the person making the claim, what might they gain if the claim is valid, does the claim seem justified given the evidence, and what do other researchers think of the claim? This is especially important when we consider how much information in advertising campaigns and on the internet claims to be based on “scientific evidence” when in actuality it is a belief or perspective of just a few individuals trying to sell a product or draw attention to their perspectives.

We should be informed consumers of the information made available to us because decisions based on this information have significant consequences. One such consequence can be seen in politics and public policy. Imagine that you have been elected as the governor of your state. One of your responsibilities is to manage the state budget and determine how to best spend your constituents’ tax dollars. As the new governor, you need to decide whether to continue funding the D.A.R.E. (Drug Abuse Resistance Education) program in public schools ( [link] ). This program typically involves police officers coming into the classroom to educate students about the dangers of becoming involved with alcohol and other drugs. According to the D.A.R.E. website (www.dare.org), this program has been very popular since its inception in 1983, and it is currently operating in 75% of school districts in the United States and in more than 40 countries worldwide. Sounds like an easy decision, right? However, on closer review, you discover that the vast majority of research into this program consistently suggests that participation has little, if any, effect on whether or not someone uses alcohol or other drugs (Clayton, Cattarello, & Johnstone, 1996; Ennett, Tobler, Ringwalt, & Flewelling, 1994; Lynam et al., 1999; Ringwalt, Ennett, & Holt, 1991). If you are committed to being a good steward of taxpayer money, will you fund this particular program, or will you try to find other programs that research has consistently demonstrated to be effective?

A D.A.R.E. poster reads “D.A.R.E. to resist drugs and violence.”

The D.A.R.E. program continues to be popular in schools around the world despite research suggesting that it is ineffective.

Link to Learning

Watch this news report to learn more about some of the controversial issues surrounding the D.A.R.E. program.

Ultimately, it is not just politicians who can benefit from using research in guiding their decisions. We all might look to research from time to time when making decisions in our lives. Imagine you just found out that a close friend has breast cancer or that one of your young relatives has recently been diagnosed with autism. In either case, you want to know which treatment options are most successful with the fewest side effects. How would you find that out? You would probably talk with your doctor and personally review the research that has been done on various treatment options—always with a critical eye to ensure that you are as informed as possible.

In the end, research is what makes the difference between facts and opinions. Facts are observable realities, and opinions are personal judgments, conclusions, or attitudes that may or may not be accurate. In the scientific community, facts can be established only using evidence collected through empirical research.

THE PROCESS OF SCIENTIFIC RESEARCH

Scientific knowledge is advanced through a process known as the scientific method . Basically, ideas (in the form of theories and hypotheses) are tested against the real world (in the form of empirical observations), and those empirical observations lead to more ideas that are tested against the real world, and so on. In this sense, the scientific process is circular. The types of reasoning within the circle are called deductive and inductive. In deductive reasoning , ideas are tested against the empirical world; in inductive reasoning , empirical observations lead to new ideas ( [link] ). These processes are inseparable, like inhaling and exhaling, but different research approaches place different emphasis on the deductive and inductive aspects.

A diagram has a box at the top labeled “hypothesis or general premise” and a box at the bottom labeled “empirical observations.” On the left, an arrow labeled “inductive reasoning” goes from the top to bottom box. On the right, an arrow labeled “deductive reasoning” goes from the bottom to the top box.

Psychological research relies on both inductive and deductive reasoning.

In the scientific context, deductive reasoning begins with a generalization—one hypothesis—that is then used to reach logical conclusions about the real world. If the hypothesis is correct, then the logical conclusions reached through deductive reasoning should also be correct. A deductive reasoning argument might go something like this: All living things require energy to survive (this would be your hypothesis). Ducks are living things. Therefore, ducks require energy to survive (logical conclusion). In this example, the hypothesis is correct; therefore, the conclusion is correct as well. Sometimes, however, an incorrect hypothesis may lead to a logical but incorrect conclusion. Consider this argument: all ducks are born with the ability to see. Quackers is a duck. Therefore, Quackers was born with the ability to see. Scientists use deductive reasoning to empirically test their hypotheses. Returning to the example of the ducks, researchers might design a study to test the hypothesis that if all living things require energy to survive, then ducks will be found to require energy to survive.

Deductive reasoning starts with a generalization that is tested against real-world observations; however, inductive reasoning moves in the opposite direction. Inductive reasoning uses empirical observations to construct broad generalizations. Unlike deductive reasoning, conclusions drawn from inductive reasoning may or may not be correct, regardless of the observations on which they are based. For instance, you may notice that your favorite fruits—apples, bananas, and oranges—all grow on trees; therefore, you assume that all fruit must grow on trees. This would be an example of inductive reasoning, and, clearly, the existence of strawberries, blueberries, and kiwi demonstrate that this generalization is not correct despite it being based on a number of direct observations. Scientists use inductive reasoning to formulate theories, which in turn generate hypotheses that are tested with deductive reasoning. In the end, science involves both deductive and inductive processes.

For example, case studies, which you will read about in the next section, are heavily weighted on the side of empirical observations. Thus, case studies are closely associated with inductive processes as researchers gather massive amounts of observations and seek interesting patterns (new ideas) in the data. Experimental research, on the other hand, puts great emphasis on deductive reasoning.

Play this “Deal Me In” interactive card game to practice using inductive reasoning.

We’ve stated that theories and hypotheses are ideas, but what sort of ideas are they, exactly? A theory is a well-developed set of ideas that propose an explanation for observed phenomena. Theories are repeatedly checked against the world, but they tend to be too complex to be tested all at once; instead, researchers create hypotheses to test specific aspects of a theory.

A hypothesis is a testable prediction about how the world will behave if our idea is correct, and it is often worded as an if-then statement (e.g., if I study all night, I will get a passing grade on the test). The hypothesis is extremely important because it bridges the gap between the realm of ideas and the real world. As specific hypotheses are tested, theories are modified and refined to reflect and incorporate the result of these tests [link] .

A diagram has four boxes: the top is labeled “theory,” the right is labeled “hypothesis,” the bottom is labeled “research,” and the left is labeled “observation.” Arrows flow in the direction from top to right to bottom to left and back to the top, clockwise. The top right arrow is labeled “use the hypothesis to form a theory,” the bottom right arrow is labeled “design a study to test the hypothesis,” the bottom left arrow is labeled “perform the research,” and the top left arrow is labeled “create or modify the theory.”

The scientific method of research includes proposing hypotheses, conducting research, and creating or modifying theories based on results.

To see how this process works, let’s consider a specific theory and a hypothesis that might be generated from that theory. As you’ll learn in a later chapter, the James-Lange theory of emotion asserts that emotional experience relies on the physiological arousal associated with the emotional state. If you walked out of your home and discovered a very aggressive snake waiting on your doorstep, your heart would begin to race and your stomach churn. According to the James-Lange theory, these physiological changes would result in your feeling of fear. A hypothesis that could be derived from this theory might be that a person who is unaware of the physiological arousal that the sight of the snake elicits will not feel fear.

A scientific hypothesis is also falsifiable , or capable of being shown to be incorrect. Recall from the introductory chapter that Sigmund Freud had lots of interesting ideas to explain various human behaviors ( [link] ). However, a major criticism of Freud’s theories is that many of his ideas are not falsifiable; for example, it is impossible to imagine empirical observations that would disprove the existence of the id, the ego, and the superego—the three elements of personality described in Freud’s theories. Despite this, Freud’s theories are widely taught in introductory psychology texts because of their historical significance for personality psychology and psychotherapy, and these remain the root of all modern forms of therapy.

(a)A photograph shows Freud holding a cigar. (b) The mind’s conscious and unconscious states are illustrated as an iceberg floating in water. Beneath the water’s surface in the “unconscious” area are the id, ego, and superego. The area just below the water’s surface is labeled “preconscious.” The area above the water’s surface is labeled “conscious.”

Many of the specifics of (a) Freud’s theories, such as (b) his division of the mind into id, ego, and superego, have fallen out of favor in recent decades because they are not falsifiable. In broader strokes, his views set the stage for much of psychological thinking today, such as the unconscious nature of the majority of psychological processes.

In contrast, the James-Lange theory does generate falsifiable hypotheses, such as the one described above. Some individuals who suffer significant injuries to their spinal columns are unable to feel the bodily changes that often accompany emotional experiences. Therefore, we could test the hypothesis by determining how emotional experiences differ between individuals who have the ability to detect these changes in their physiological arousal and those who do not. In fact, this research has been conducted and while the emotional experiences of people deprived of an awareness of their physiological arousal may be less intense, they still experience emotion (Chwalisz, Diener, & Gallagher, 1988).

Scientific research’s dependence on falsifiability allows for great confidence in the information that it produces. Typically, by the time information is accepted by the scientific community, it has been tested repeatedly.

Visit this website to apply the scientific method and practice its steps by using them to solve a murder mystery, determine why a student is in trouble, and design an experiment to test house paint.

Scientists are engaged in explaining and understanding how the world around them works, and they are able to do so by coming up with theories that generate hypotheses that are testable and falsifiable. Theories that stand up to their tests are retained and refined, while those that do not are discarded or modified. In this way, research enables scientists to separate fact from simple opinion. Having good information generated from research aids in making wise decisions both in public policy and in our personal lives.

Self Check Questions

Critical thinking questions.

1. In this section, the D.A.R.E. program was described as an incredibly popular program in schools across the United States despite the fact that research consistently suggests that this program is largely ineffective. How might one explain this discrepancy?

2. The scientific method is often described as self-correcting and cyclical. Briefly describe your understanding of the scientific method with regard to these concepts.

Personal Application Questions

3. Healthcare professionals cite an enormous number of health problems related to obesity, and many people have an understandable desire to attain a healthy weight. There are many diet programs, services, and products on the market to aid those who wish to lose weight. If a close friend was considering purchasing or participating in one of these products, programs, or services, how would you make sure your friend was fully aware of the potential consequences of this decision? What sort of information would you want to review before making such an investment or lifestyle change yourself?

1. There is probably tremendous political pressure to appear to be hard on drugs. Therefore, even though D.A.R.E. might be ineffective, it is a well-known program with which voters are familiar.

2. This cyclical, self-correcting process is primarily a function of the empirical nature of science. Theories are generated as explanations of real-world phenomena. From theories, specific hypotheses are developed and tested. As a function of this testing, theories will be revisited and modified or refined to generate new hypotheses that are again tested. This cyclical process ultimately allows for more and more precise (and presumably accurate) information to be collected.

  • Psychology. Authored by : OpenStax College. Located at : http://cnx.org/contents/[email protected]:1/Psychology . License : CC BY: Attribution . License Terms : Download for free at http://cnx.org/content/col11629/latest/.

IMAGES

  1. 15 Reasons Why Research Is Important

    research is important because

  2. 7 Reasons Why Research Is Important

    research is important because

  3. 10 Reasons Why Research is Important!

    research is important because

  4. 7 Reasons Why Research Is Important

    research is important because

  5. 7 Reasons Why Research Is Important

    research is important because

  6. Why is Research Important for Undergraduate Students?

    research is important because

VIDEO

  1. GENOMICS RESEARCH

  2. Importance of Research

  3. Why is research important ?!

  4. why is research important and role of research in business in Pashto #reserchmethodology BBA MBA

  5. LECTURE 1. THE MEANING OF RESEARCH

  6. BSN|| Research Mcqs part _2 #research #research_design #research_design #researchmcqs

COMMENTS

  1. 2.1 Why Is Research Important?

    Appreciate how scientific research can be important in making personal decisions; Scientific research is a critical tool for successfully navigating our complex world. ... described in Freud's theories. Despite this, Freud's theories are widely taught in introductory psychology texts because of their historical significance for personality ...

  2. 7 Reasons Why Research Is Important

    Why Research Is Necessary and Valuable in Our Daily Lives. It's a tool for building knowledge and facilitating learning. It's a means to understand issues and increase public awareness. It helps us succeed in business. It allows us to disprove lies and support truths. It is a means to find, gauge, and seize opportunities.

  3. Why Is Research Important?

    Appreciate how scientific research can be important in making personal decisions. Scientific research is a critical tool for successfully navigating our complex world. Without it, we would be forced to rely solely on intuition, other people's authority, and blind luck. While many of us feel confident in our abilities to decipher and interact ...

  4. Why Is Research Important?

    Learn how scientific research helps us understand behavior and the world around us. Explore how research informs public policy and personal decisions, and how to critically evaluate research claims.

  5. What Is Research, and Why Do People Do It?

    And, because research is a social practice, you should also think about whether the results of your study are likely to be important and significant to the education community. If you are doing research in the way we have described—as scientific inquiry—then one purpose of your study is to understand , not just to describe or evaluate or ...

  6. 10 Why is Research Important?

    Appreciate how scientific research can be important in making personal decisions. Scientific research is a critical tool for successfully navigating our complex world. Without it, we would be forced to rely solely on intuition, other people's authority, and blind luck. While many of us feel confident in our abilities to decipher and interact ...

  7. Explaining How Research Works

    Placing research in the bigger context of its field and where it fits into the scientific process can help people better understand and interpret new findings as they emerge. A single study usually uncovers only a piece of a larger puzzle. Questions about how the world works are often investigated on many different levels.

  8. PDF Why research is important

    Why research is important 3 concepts or constructs. A piece of research is embedded in a frame-work or way of seeing the world. Second, research involves the application of a method, which has been designed to achieve knowledge that is as valid and truthful as possible. 4 The products of research are propositions or statements. There is a

  9. 2.1 Why is Research Important

    Discuss how scientific research guides public policy. Appreciate how scientific research can be important in making personal decisions. Scientific research is a critical tool for successfully navigating our complex world. Without it, we would be forced to rely solely on intuition, other people's authority, and blind luck.

  10. What Is the Importance of Research? 5 Reasons Why Research is Critical

    Research is critical for medical advancement, quality of life, credibility, progress, curiosity and awareness. Learn how research is conducted, why it matters and see examples of clinical trials and studies.

  11. 10 Reasons Why Research is Important

    Here are ten reasons why research is important: #1. Research expands your knowledge base. The most obvious reason to do research is that you'll learn more. There's always more to learn about a topic, even if you are already well-versed in it. If you aren't, research allows you to build on any personal experience you have with the subject.

  12. 2.8: Why Is Research Important?

    By the end of this section, you will be able to: Explain how scientific research addresses questions about behavior. Discuss how scientific research guides public policy. Appreciate how scientific research can be important in making personal decisions. Scientific research is a critical tool for successfully navigating our complex world.

  13. Research 101: Understanding Research Studies

    The basis of a scientific research study follows a common pattern: Define the question. Gather information and resources. Form hypotheses. Perform an experiment and collect data. Analyze the data ...

  14. Research Impact: The What, Why, When and How

    Abstract. In this opening chapter, readers will be introduced to the attainment and assessment of research impact. The traditional approach to research assessment will be described briefly and how more active and proactive means of achieving impact have developed. It is a given that researchers have not grasped the importance of impact voluntarily.

  15. 2.2: Why Is Research Important?

    Discuss how scientific research guides public policy. Appreciate how scientific research can be important in making personal decisions. Scientific research is a critical tool for successfully navigating our complex world. Without it, we would be forced to rely solely on intuition, other people's authority, and blind luck.

  16. Research is important because…

    Research is important because the world faces many problems and science tries to solve [them]. Research makes our brains think with scientific methods. — Dina Abdelaal, 18, Suez Advanced Industrial School, Suez, Egypt. Science is most important because from science we can know everything, and we can do everything to find out what we want to know.

  17. How to effectively explain why my research is important?

    Many researchers struggle to communicate the significance of their work to a broader audience. This question on academia.stackexchange.com asks for advice on how to effectively explain why one's research is important, and receives several helpful answers from experienced academics. The answers cover topics such as identifying the problem, the gap, and the contribution of the research, using ...

  18. Why is Research Important?

    Appreciate how scientific research can be important in making personal decisions. Scientific research is a critical tool for successfully navigating our complex world. Without it, we would be forced to rely solely on intuition, other people's authority, and blind luck. While many of us feel confident in our abilities to decipher and interact ...

  19. Why is Research Important in Healthcare?

    Research is critical to improving patient outcomes and the quality of healthcare. It helps us to understand what works, what doesn't work, and why. In addition, research is essential for developing new treatments and therapies. Without research, we would not have many of the lifesaving vaccines and medications that we take for granted today.

  20. Six Reasons Why Research Is Important

    2- Research Helps in Problem-solving. The goal of the research is to broaden our understanding. Research gives us the information and knowledge to solve problems and make decisions. To differentiate between research that attempts to advance our knowledge and research that seeks to apply pre-existing information to real-world situations.

  21. Why Is Research Important?

    Appreciate how scientific research can be important in making personal decisions. Scientific research is a critical tool for successfully navigating our complex world. Without it, we would be forced to rely solely on intuition, other people's authority, and blind luck. While many of us feel confident in our abilities to decipher and interact ...

  22. Teens and social media: Key findings from Pew Research Center surveys

    Girls are more likely than boys to say it would be difficult for them to give up social media (58% vs. 49%). Older teens are also more likely than younger teens to say this: 58% of those ages 15 to 17 say it would be very or somewhat hard to give up social media, compared with 48% of those ages 13 to 14. Teens are more likely to say social ...

  23. Academic excellence lesson 4 Flashcards

    Two main characteristics of a critical thinker are being open-minded and an independent thinker. True. Critical thinking doesn't require much effort because it focuses on surface level information. False. Conducting research is important because it allows you to do all of the following EXCEPT: Conducting research allows you to do all of the above.

  24. Blog Post

    This result is a major physics milestone for Zap Energy and for the broader fusion energy research community. ... the 1-keV threshold in electron temperature is a significant milestone in the development of any fusion concept because heating electrons to such a high temperature requires that major instabilities and cooling mechanisms have been ...

  25. Hannah Kenagy and Melissa Ramirez join Department of Chemistry

    "Because so much of my research is relevant to air quality and climate - things that impact people's daily lives, often inequitably - outreach is a really key component of my group's work," Kenagy says. ... Ramirez says an important goal for her as a professor will be to challenge students, support them, and make them feel connected ...

  26. Strip-Grazing Milo as a Low-Cost Winter Forage

    Explore an affordable solution for winter cattle feed by strip-grazing standing milo. This guide discusses milo production, nutritional value and the details of managing cattle while using this low-cost feed. | Rusty Lee Field Specialist in Agronomy Drew Kientzy Research Analyst, Agricultural Business and Policy Extension Eric Bailey Assistant Professor and State Beef Extension Specialist ...

  27. Why Is Research Important?

    Appreciate how scientific research can be important in making personal decisions. Scientific research is a critical tool for successfully navigating our complex world. Without it, we would be forced to rely solely on intuition, other people's authority, and blind luck. While many of us feel confident in our abilities to decipher and interact ...