Library homepage

  • school Campus Bookshelves
  • menu_book Bookshelves
  • perm_media Learning Objects
  • login Login
  • how_to_reg Request Instructor Account
  • hub Instructor Commons
  • Download Page (PDF)
  • Download Full Book (PDF)
  • Periodic Table
  • Physics Constants
  • Scientific Calculator
  • Reference & Cite
  • Tools expand_more
  • Readability

selected template will load here

This action is not available.

Physics LibreTexts

7.6: The Nebular Theory

  • Last updated
  • Save as PDF
  • Page ID 64119

A protostar is an object in which no nuclear fusion has occurred, unlike a star that is undergoing nuclear fusion. A protostar becomes a star when nuclear fusion begins. Most likely the next step was that the nebula flattened into a disk called the Protoplanetary Disk ; planets eventually formed from and in this disk.

Three processes occurred with the nebular collapse:

  • The orderly motions of the solar system today are a direct result of the solar system’s beginnings in a spinning, flattened cloud of gas and dust.
  • Provided by : Florida State College at Jacksonville. License : CC BY: Attribution
  • Ask An Astrobiologist
  • Resources Graphic Histories Coloring Pages Heroes Posters Life in the extremes Digital Backgrounds SciComm Guild

NASA Astrobiology Logo

1. How did matter come together to make planets and life in the first place?

1.2. how did our solar system form.

Table of Contents

Grades K-2 or Adult Naive Learner

  • NGSS Connections for Teachers
  • Concept Boundaries for Scientists

Do you know what a planet is? A planet is a big, round world, floating in space. It can be made mostly of rock or even mostly of gas, just like the air all around us.

You, me, and everyone we know lives on a planet called Earth. Our planet is in space and goes around the Sun. Now, did you know that the Sun is a star? Well, there are also seven other planets going around our star, the Sun. The Sun and the planets are part of what we call the Solar System.

The Solar System is really old. The Sun and all of the planets came from a big cloud of stuff in space. Do you know that raindrops come from clouds in the sky? Well, it turns out that stars and even planets can come from clouds in space. Our Sun came from the middle of a big cloud in space, and the planets of our solar system also formed from that same cloud, moving around the Sun in the same kind of pattern that they follow today.

Disciplinary Core Ideas

ESS1.C: The History of Planet Earth: Some events happen very quickly; others occur very slowly, over a time period much longer than one can observe. (2-ESS1-1)

PS3.B: Conservation of Energy and Energy Transfer: Sunlight warms Earth’s surface. (K-PS3-1, K-PS3-2)

Crosscutting Concepts

Patterns in the natural world can be observed, used to describe phenomena, and used as evidence. (1-ESS1-1, 1-ESS1-2)

Big Ideas: The solar system consists of Earth and seven other planets all spinning around the Sun. Planets are big, round worlds floating in space. The Earth is a planet that goes around a much larger star called the Sun. The Sun and planets formed from a big cloud of gas and dust. The Earth, moon, Sun and planets all move in a pattern called an orbit.

Boundaries: By the end of 2nd grade, seasonal patterns of Sunrise and Sunset can be observed, described and predicted. Temperature (i.e. the Sun warms Earth) is limited to relative measurements such as warmer/cooler. (K-PS3-1)

K-5 The Science of the Sun. In this unit, students focus on the Sun as the center of our solar system and as the source for all energy on Earth. By beginning with what the Sun is and how Earth relates to it in size and distance, students gain a perspective of how powerful the Sun is compared to things we have here on Earth, and the small fraction of its energy we receive. Students also gain an understanding of how Earth relates to the other planets in the solar system. The Sun as a Star (page 17) Students identify the sun as a star. The Scale of Things (page 27). Students explore the scale of the solar system. The Size of Things (page 33) Students describe the relative sizes of the planets in the solar system by making a play-doh model. What is a year (page 37) Students act out the motion of Earth as it travels (revolves) around the Sun. Goddard Space Flight Center/NASA. https://sdo.gsfc.nasa.gov/assets/docs/UnitPlanElementary.pdf

2-12 Toilet Paper Solar System. Even in our own “cosmic neighborhood,” distances in space are so vast they are difficult to imagine. In this activity, participants build a scale model of the distances in the solar system using a roll of toilet paper. https://astrosociety.org/file_download/inline/cfdf9b2c-5947-4c19-9a23-a790ac3c7ae0

Grades 3-5 or Adult Emerging Learner

For us to learn about where we came from, we need to understand how our solar system formed.

The Sun and the planets and all of the asteroids and comets and other stuff in our solar system all formed from a really big cloud of gas and dust in space. There are clouds of gas and dust all around our galaxy. Sometimes these clouds can slowly turn into stars and planets when enough material is available and clumps together forming massive collections of ice and rock.

Do you know what kind of pattern the planets make when they go around the Sun? It kind of looks like a big circle, right? Well, when the planets were first forming from that cloud in space, the cloud itself was spinning in the same way, with the Sun forming in the middle. That’s why we see the planets moving around the Sun the way that they do today! We call that pattern of how a planet moves around the Sun an “orbit.” Have you heard of anything else that has an “orbit”? Our Moon orbits around our Earth, just like our Earth orbits around our Sun, and our entire solar system is also orbiting around the galaxy. Orbits are really important for us to learn about if we want to know where we came from.

ESS1.C: The History of Planet Earth: Local, regional, and global patterns of rock formations reveal changes over time due to earth forces, such as earthquakes. The presence and location of certain fossil types indicate the order in which rock layers were formed. (4-ESS1-1)

PS1.A: Structure and Properties of Matter: Matter of any type can be subdivided into particles that are too small to see, but even then the matter still exists and can be detected by other means. (5-PS1-1)

PS2.B: Types of Interactions: Objects in contact exert forces on each other. (3-PS2-1) The gravitational force of Earth acting on an object near Earth’s surface pulls that object toward the planet’s center. (5-PS2-1)

Patterns can be used as evidence to support an explanation. (4-ESS1-1, 4-ESS2-2) *Science assumes consistent patterns in natural systems. (4-ESS1-1)

Big Ideas: The Solar system formed through condensation from a big cloud of gas and dust. The solar system consists of Earth and seven other planets all orbiting around the Sun. The Sun, moon, and planets all move in predictable patterns called orbits. Many of these orbits are observable from Earth. The entire solar system orbits around the Milky Way galaxy.

Boundaries: In this grade band, students are learning about the different positions of the Sun, moon, and stars as observable from Earth at different times of the day, month, and year. Students are not yet defining the unseen particles or explaining the atomic-scale mechanism of condensation.

3-5 SpaceMath Problem 543: Timeline for Planet Formation. Students calculate time intervals in millions and billions of years from a timeline of events [Topics: time calculations; integers] https://spacemath.gsfc.nasa.gov/Grade35/10Page6.pdf

3-5 SpaceMath Problem 541: How to Build a Planet. Students study planet growth by using a clay model of planetessimals combining to form a planet by investigating volume addition with spheres. [Topics: graphing; counting] https://spacemath.gsfc.nasa.gov/Grade35/10Page4.pdf

3-5, 6-8, 9-12 Marsbound! In this NGSS aligned activity (three 45-minute sessions), students in grades become NASA project managers and design their own NASA mission to Mars. Mars is significant in astrobiology and more needs to be learned about this planet and its potential for life. Students create a mission that must balance the return of science data with mission limitations such as power, mass and budget. Risk factors play a role and add to the excitement in this interactive mission planning activity. Arizona State University/NASA. http://marsed.asu.edu/lesson_plans/marsbound

3-5 or 6-8 Strange New Planet. This 5E hands-on lesson (2-3 hours) engages students in how scientists gain information from looking at things from different perspectives. Students gain knowledge about simulated planetary surfaces through a variety of missions such as Earth-based telescopes to landed missions. They learn the importance of remote sensing techniques for exploration and observation. NASA /Arizona State University. http://marsed.asu.edu/strange-new-planet

4-8 SpaceMath Problem 300: Does Anybody Really Know What Time It Is? Students use tabulated data for the number of days in a year from 900 million years ago to the present, to estimate the rate at which an Earth day has changed using a linear model. [Topics: graphing; finding slopes; forecasting] https://spacemath.gsfc.nasa.gov/earth/6Page58.pdf

4-12 Meet the Planets. In this activity, kids identify the planets in the solar system, observe and describe their characteristics and features, and build a scale model out of everyday materials. They are also introduced to moons, comets, and asteroids. (Finding life Beyond Earth, page 13) NOVA . https://d43fweuh3sg51.cloudfront.net/media/assets/wgbh/nvfl/nvfl_doc_collection/nvfl_doc_collection.pdf

5-12 Exploring Meteorite Mysteries: The Meteorite Asteroid Connection (4.1). In this lesson, students build an exact-scale model of the inner solar system; the scale allows the model to fit within a normal classroom and also allows the representation of Earth to be visible without magnification. Students chart where most asteroids are, compared to the Earth, and see that a few asteroids come close to the Earth. Students see that the solar system is mostly empty space unlike the way it appears on most charts and maps. NASA . https://er.jsc.nasa.gov/seh/Exploring_Meteorite_Mysteries.pdf

5-12 Exploring Meteorite Mysteries: Building Blocks of Planets (10.1). Chondrites are the most primitive type of rock available for study. The chondrules that make up chondrites are considered the building blocks of planets. In this lesson, students experiment with balloons and static electricity to illustrate the theories about how dust particles collected into larger clusters. Students also manipulate magnetic marbles and steel balls to illustrate the accretion of chondritic material into larger bodies like planets and asteroids. NASA . https://er.jsc.nasa.gov/seh/Exploring_Meteorite_Mysteries.pdf

5-12 Exploring Meteorite Mysteries: Exploration Proposal (17.1). Exploration of the outer Solar System provides clues to the beginnings of the solar system. This is a group-participation simulation based on the premise that water and other resources from the asteroid belt are required for deep space exploration. Students brainstorm or investigate to identify useful resources, including water, that might be found on an asteroid. NASA . https://er.jsc.nasa.gov/seh/Exploring_Meteorite_Mysteries.pdf

5-12 Big Explosions and Strong Gravity. In this one-two day activity, students work in groups to examine the crushing ability of gravity, equilibrium, and a model for the creation of heavy elements through a supernova. This active lesson helps students visualize the variation and life cycle of stars. NASA http://imagine.gsfc.nasa.gov/educators/programs/bigexplosions/activities/supernova_demos.html

Grades 6-8 or Adult Building Learner

Earth is the only world that we know of that has life. All of the plants and animals and microbes and other living things on Earth have evolved here. So, for us to understand where life as we know it came from, we need to understand where our planet came from.

The Sun and the planets and all of the other stuff in our solar system all formed from a really big cloud of gas and dust in space. We call such a cloud a “nebula” and more than one of them we refer to as “nebulae.” There are nebulae all around our galaxy, and it’s from these nebulae that stars and planets form. Nebulae are massive clouds of dust and debris in space and have all the ingredients to form stars and planets. When enough material is available, it begins to stick together forming a large mass. In time, the mass can grow large enough to form a planet or even a new star.

We currently think that our solar system formed from a large nebula, perhaps after the explosion of a nearby star. Some big stars can explode, something called a supernova, and that explosion has enough energy to make the gas and dust in nearby nebulae start swirling and spinning about. As this happened, it caused a lot of the material in the nebula to fall into its center, and that’s where the Sun started forming. Meanwhile, the rest of the gas and dust in the nebula began colliding and sticking together, making little pieces of metal and rock. Those small pieces then collided with each other, forming larger pieces, which then collided with each other to form even larger ones. These were young planets, and eventually, over a long time and through many, many collisions, our eight planets were formed – Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, and Neptune.

We call the pattern that the planets make when they go around the Sun an “orbit.” Well, when the planets were first forming from that cloud in space, the cloud itself was spinning in the same direction as the orbits of the planets today, with the Sun forming in the middle and also spinning in the same direction. That’s why we see the planets moving around the Sun the way that they do today!

You might also know that the Moon orbits around Earth. For something to be a moon, it needs to be in orbit around a planet. One thing that makes a planet is that a planet has to be orbiting a star. But star systems also have orbits. They orbit around their entire galaxy. So, orbits are really important for us to learn about if we want to know where we came from.

ESS1.A: The Universe and Its Stars: - Patterns of the apparent motion of the Sun, the Moon, and stars in the sky can be observed, described, predicted, and explained with models. (MS-ESS1-1) - Earth and its solar system are part of the Milky Way galaxy, which is one of many galaxies in the universe. (MS-ESS1-2)

ESS1.B: Earth and the Solar System: - The solar system consists of the Sun and a collection of objects, including planets, their moons, and asteroids that are held in orbit around the Sun by its gravitational pull on them. (MS-ESS1-2, MS-ESS1-3) - This model of the solar system can explain eclipses of the Sun and the Moon. Earth’s spin axis is fixed in direction over the short-term but tilted relative to its orbit around the Sun. The seasons are a result of that tilt and are caused by the differential intensity of sunlight on different areas of Earth across the year. (MS-ESS1-1) - The solar system appears to have formed from a disk of dust and gas, drawn together by gravity. (MS-ESS1-2)

PS1.A: Structure and Properties of Matter: All substances are made from some 100 different types of atoms, which combine with one another in various ways. Atoms form molecules that range in size from two to thousands of atoms. Pure substances are made from a single type of atom or molecule; each pure substance has characteristic physical and chemical properties that can be used to identify it. (MS-PS1-1)

Cause and effect relationships may be used to predict phenomena in natural or designed systems. (MS-PS1-4)

Big Ideas: Condensation causes rain drops to form inside of clouds, and sometimes can cause entire star systems to form inside of clouds. The Solar system formed through condensation from big clouds of gas and dust called nebulae after a supernova, or the explosion of a large star. Planets move around the Sun in an orbit, and the Solar system orbits around the entire galaxy.

Boundaries: Emphasis is on gravity as the force that holds together the solar system and Milky Way galaxy and controls orbital motions within them. (MS-ESS1-2) Does not include Kepler’s Laws of orbital motion or the apparent retrograde motion of the planets as viewed from Earth. (MS-ESS1-2)

6-8 SpaceMath Problem 542: The Late Heavy Bombardment Era. Students estimate the average arrival time of large asteroids that impacted the moon. They work with the formula for the volume of a sphere to estimate how much additional mass was added to the moon and Earth during this era. [Topics: volume of spheres; proportions] https://spacemath.gsfc.nasa.gov/earth/10Page5.pdf

6-8 SpaceMath Problem 60: When is a planet not a planet? In 2003, Dr. Michael Brown and his colleagues at CalTech discovered an object nearly 30% larger than Pluto, which is designated as 2003UB313. Is 2003UB313 really a planet? In this activity, students examine this topic by surveying various internet resources that attempt to define the astronomical term ‘planet’. [Topics: non-mathematical essay; reading to be informed] https://spacemath.gsfc.nasa.gov/astrob/2page17.pdf

6-8 SpaceMath Problem 59: Getting A Round in the Solar System! How big does a body have to be before it becomes round? In this activity, students examine images of asteroids and planetary moons to determine the critical size for an object to become round under the action of its own gravitational field. [Topics: data analysis; decimals; ratios; graphing] https://spacemath.gsfc.nasa.gov/astrob/2page20.pdf

6-8 Explore! Jupiter’s Family Secrets. This one-hour lesson for formal or informal education settings has students connecting their own life story to a cultural creation story and then to the “life” story of Jupiter, including the Big Bang as the beginning of the universe, the creation of elements through stars and the creation of the solar system. JPL /NASA. http://www.lpi.usra.edu/education/explore/solar_system/activities/birthday/

6-9 Rising Stargirls Teaching and Activity Handbook. 1.2. Art & the Cosmic Connection: (page 19). This activity engages students in space and science education by becoming explorers. Using the elements of art: line, color, texture, shape, and value: students learn to analyze the mysterious surfaces of our rocky celestial neighbors; planets, moons, comets and asteroids, as well as the Earth. Name That Planet (page 25) Students communicate their knowledge about the solar system using different modes of communication—visual, verbal, and kinesthetic. Distance Calculation (page 27) Students calculate the distances between planets using a unit of measurement that is personal to them—themselves! Rising Stargirls activities fuse science and the arts to create enlightened future scientists and imaginative thinkers. Rising Stargirls. https://static1.squarespace.com/static/54d01d6be4b07f8719d7f29e/t/5748c58ec2ea517f705c7cc6/1464386959806/Rising_Stargirls_Teaching_Handbook.compressed.pdf

6-12 Science Fiction Stories with Good Astronomy & Physics: A Topical List: Cosmology. 1.2. The Astronomical Society of the Pacific created this list of short stories and novels that use more or less accurate science and can be used for teaching or reinforcing astronomy or physics concepts including the origin of the universe. https://astrosociety.org/file_download/inline/621a63fc-04d5-4794-8d2b-38e7195056e9

6-12 Where are the Small Worlds? Through an immersive digital experience (1-2 hours), students use a simulation/model of the solar system in order to investigate small worlds in order to learn more about the solar system and its origin. The experience can be standalone or has options to track student tasks or modify the simulation as needed by the teacher. Arizona State University. https://infiniscope.org/lesson/where-are-the-small-worlds/

6-12 Astrobiology Math. This collection of math problems provides an authentic glimpse of modern astrobiology science and engineering issues, often involving actual research data. Students explore concepts in astrobiology through calculations. Relevant topics include Habitable Zones and Stellar Luminosity (page 57) and Ice or Water? (page 49). NASA . https://www.nasa.gov/pdf/637832main_Astrobiology_Math.pdf

6-12 Pocket Solar System. This activity involves making a simple model to give students an overview of the distances between the orbits of the planets and other objects in our solar system. It is also a good tool for reviewing fractions. https://astrosociety.org/file_download/inline/5c27818a-e947-46ad-a9dc-f4af157af7d8

6-12 Origins: The Universe. In this web interactive, scientists use a giant eye in the southern sky to unravel how galaxies are born. Video, pictures, and print weave information for the learner as they more deeply understand the scientific pursuit of astrobiology. UW-Madison. https://origins.wisc.edu/

7-9 SpaceMath Problem 8: Making a Model Planet. Students use the formula for a sphere, and the concept of density, to make a mathematical model of a planet based on its mass, radius and the density of several possible materials (ice, silicate rock, iron, basalt). [Topics: volume of sphere; mass = density x volume; decimal math; scientific notation] https://spacemath.gsfc.nasa.gov/astrob/Week14.pdf

Grades 9-12 or Adult Sophisticated Learner

As the physical context for life as we know it, it is important to learn about Earth’s origins so we can understand life’s origins. Although life may exist in situations other than that of a planet orbiting a star, it makes sense to explore the phenomenon of planetary system formation as a context for the emergence and evolution of life.

The story of the formation of our solar system begins in a region of space of called a “giant molecular cloud”. You might have heard before that a cloud of gas and dust in space is also called a “nebula,” so the scientific theory for how stars and planets form from molecular clouds is also sometimes called the Nebular Theory. Nebular Theory tells us that a process known as “gravitational contraction” occurred, causing parts of the cloud to clump together, which would allow for the Sun and planets to form from it.

Before gravitational contraction, the majority of the material within the giant molecular cloud that formed our solar system consisted of hydrogen and helium produced at the time of the big bang, with small amounts of heavier elements such as carbon and oxygen which were made via nucleosynthesis in prior generations of stars (see 1.1 above). The material in this giant cloud was not uniformly distributed – there were regions of higher density (more dust and gas within a specific volume of space) and regions of lower density (less gas and dust within that same volume).

Evidence from meteorites suggests that the energy produced by a nearby exploding star (a supernova) passed through a higher density region in the cloud and caused it to begin to swirl and twist about. This area of the cloud is sometimes called the pre-solar nebula (“pre” = before; “solar” = star or Sun). As molecules in the pre-solar nebula were swirling about, some of them started bumping into each other and sometimes would even stick together. As more and more of these clumps formed, gravity caused them to start sticking together and to fall into the center of the pre-solar nebula, which only caused gravity to pull even more of the material into the center of the cloud, and this is the process that’s referred to as gravitational contraction.

While all of this was happening, the action of molecules bumping into each other over and over slowly caused the pre-solar nebula to flatten into a spinning disk of dust and gas. This is sometimes called a circumstellar disk (“circum” = around; “stellar” = star) or protoplanetary disk (“proto” = first or before). Almost all of the material in the disk collected in the center, giving rise to the young Sun. However, some of the particles in the spinning disk began colliding with each other and sticking together, forming larger and larger fragments. The larger a fragment became, the more mass it had and therefore the more gravitational pull it exerted. Which in turn drew more and more material to it, and the larger it became, and so on. This process is called “accretion,” and resulted in the production of many planetesimals (small objects that build up into planets), and eventually, the planets themselves.

While the young Sun was starting to heat up in the middle of the protoplanetary disk, it warmed up the disk so much that nothing could stay solid really close to the Sun (it all melted). A little further out from the Sun, stuff like metal and rock was able to cool enough to make solid materials for forming the planets. But it was still so hot there that molecules that are often liquids or gases here on Earth (like water, ammonia, carbon dioxide and methane) couldn’t easily stick to the solid planet-forming materials. Those molecules could only really be added to planets that were a lot further from the Sun, where it was cold enough for them to clump together with the other solid stuff. This is why we have gas giant planets like Jupiter and Saturn which are very different from the rocky planets like Earth and Venus.

ESS1.A: The universe and its Stars: Nearly all observable matter in the universe is hydrogen or helium, which formed in the first minutes after the big bang. Elements other than these remnants of the big bang continue to form within the cores of stars. (HS-ESS1-2) *Nuclear fusion within stars produces all atomic nuclei lighter than and including iron, and the process releases the energy seen as starlight. Heavier elements are produced when certain massive stars achieve a supernova stage and explode. (HS-ESS1-2, HS-ESS1-3) *Stars go through a sequence of developmental stages — they are formed; evolve in size, mass, and brightness; and eventually burn out. Material from earlier stars that exploded as supernovas is recycled to form younger stars and their planetary systems.

ESS1.B: Earth and the Solar System: Kepler’s laws describe common features of the motions of orbiting objects, including their elliptical paths around the Sun. (HS-ESS1-4) *The solar system consists of the Sun and a collection of objects of varying sizes and conditions — including planets and their moons — that are held in orbit around the Sun by its gravitational pull on them. This system appears to have formed from a disk of dust and gas, drawn together by gravity.

PS1.C: Nuclear Processes: Nuclear processes, including fusion, fission, and radioactive decays of unstable nuclei, involve release or absorption of energy. The total number of neutrons plus protons does not change in any nuclear process. (HS-PS1-8)

Scientific knowledge is based on the assumption that natural laws operate today as they did in the past and they will continue to doe so in the future (HS-ESS1-2). Science assumes the universe is a vast single system in which basic laws are consistent. (HS-ESS1-2)

Big Ideas: The phenomenon of planetary system formation serves as a context for the emergence and evolution of life. A cloud of gas and dust in space is called a “nebula”. The Nebular Theory is the scientific theory for how stars and planets form from molecular clouds and their own gravity. The majority of the material within the giant molecular cloud that formed our solar system consisted of hydrogen and helium produced at the time of the big bang. Nuclear fusion within stars forms heavier elements under extreme pressure and temperature. The larger the star, the heavier the elements that can be produced through fusion and Supernova. Heavier elements were also made via nucleosynthesis. The circumstellar disk gave rise to the young Sun.

Boundaries: Emphasis is on the way nucleosynthesis, and therefore the different elements created, varies as a function of the mass of a star and the stage of its lifetime.(HS-ESS1-3) Does not include details of the atomic and subatomic processes involved with the Sun’s nuclear fusion. (HS-ESS1-1)

9-10 Voyages through Time: Cosmic Evolution. This comprehensive integrated curriculum includes the universe, the totality of all things that exist, origins (beginning with an explosion of space and time and the expansion of a hot, dense mass of elementary particles and photons), and how it has evolved over billions of years into the stars and galaxies we observe today. Sample lesson on the website and the curriculum is available for purchase. SETI . http://www.voyagesthroughtime.org/cosmic/index.html

9-11 SpaceMath Problem 302: How to Build a Planet from the Inside Out. Students model a planet using a spherical core and shell with different densities. The goal is to create a planet of the right size, and with the correct mass using common planet building materials. [Topics: geometry; volume; scientific notation; mass=density x volume] https://spacemath.gsfc.nasa.gov/astrob/6Page72.pdf

9-12 Genesis Science Modules: Cosmic Chemistry: Planetary Diversity. The goal of this module is to acquaint students with the planets of the solar system and some current models for their origin and evolution. The lessons in the Genesis Science Modules challenge students to look for patterns in data, to generate observations, and critically analyze where the data does not fit with the current nebular model. This mini-unit reveals the essence of scientific research and argument within the context of the formation of solar systems. JPL /NASA http://genesismission.jpl.nasa.gov/educate/scimodule/PlanetaryDiversity/index.html

9-12 A101 Slide Set: From Supernovae to Planets. This slide set explains the discoveries of the SOFIA mission and the implications of the new data explaining how supernovae and dust push planet formation and how this is the physical context for life. SOFIA /NASA https://slideplayer.com/slide/8679314/ Teacher’s Guide:

https://www.astrosociety.org/edu/higher-ed/files/A101ss.SOFIA_SupernovaePlanets.v3.pdf

11-12 SpaceMath Problem 305: From Asteroids to Planets. Students explore how long it takes to form a small planet from a collection of asteroids in a planet-forming disk of matter orbiting a star based on a very simple physical model. [Topics: integral calculus] https://spacemath.gsfc.nasa.gov/astrob/6Page82.pdf

11-12 SpaceMath Problem 304: From Dust Balls to Asteroids. Students calculate how long it takes to form an asteroid-sized body using a simple differential equation based on a very simple physical model. [Topics: integral calculus] https://spacemath.gsfc.nasa.gov/astrob/6Page81.pdf

11-12 SpaceMath Problem 303: From Dust Grains to Dust Balls. Students create a model of how dust grains grow to centimeter-sized dust balls as part of forming a planet based on a very simple physical model. [Topics: integral calculus] https://spacemath.gsfc.nasa.gov/astrob/6Page80.pdf

Storyline Extensions

The planets are named after stories from long ago:.

Our planets are named Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, and Neptune. Seven of the planets are named after gods from Roman mythology. These are Mercury, Venus, Mars, Jupiter, Saturn, and Neptune. However, Uranus is a name from Greek mythology (Uranus was the god of the sky). Also, the name for our planet, Earth, comes from Old English, and appears to have come from people who lived in Northern Europe long ago.

Our location in the galaxy:

Our Milky Way galaxy is really big! If we could travel outside of the galaxy and look back at it, it would look like a big disk of dust and gas and stars, with a big bulging sphere of stars near the middle. The disk of the galaxy is about 100,000 lightyears in diameter. That means that it takes light about 100,000 years to travel from one side to the other. Our little solar system (little in comparison to the galaxy, that is) lies about 30,000 lightyears from the center of the galaxy. Just as moons orbit around planets, and planets orbit around stars, star systems also orbit around the center of the galaxy. Our own solar system is traveling through the galaxy at over 500,000 miles per hour! And our very long orbit around the galaxy takes almost 250 million years! But we’re not alone out here. There are lots of other stars and other worlds in the galaxy. Our best estimates right now are that there are about 100-400 billion stars in the Milky Way. And, even though we’ve only just begun finding exoplanets, some astronomers believe there is evidence for more planets than stars in the milky way and other galaxies. That’s an awful lot of worlds!

Historical Geology

A free online textbook for Historical Geology courses

Nebular theory and the formation of the solar system

In the beginning….

How and when does the story of Earth begin? A logical place to start is with the formation of the planet, but as you’ll soon see, the formation of the planet is part of a larger story, and that story implies some backstory before the story, too. The purpose of this case study is to present our best scientific understanding of the formation of our solar system from a presolar nebula, and to put that nebula in context too.

Nebular theory

The prevailing scientific explanation for the origin of the Earth does a good job of not only explaining the Earth’s formation, but the Sun and all the other planets too. Really, it’s not “the Earth’s origin story” alone so much as it is the origin story of the whole solar system . Not only that, but our Sun is but one star among a hundred million in our galaxy, and our galaxy is one of perhaps a hundred million in the universe. So the lessons we learn by studying our own solar system can likely be applied more generally to the formation of other solar systems elsewhere, including those long ago, in galaxies far, far away. The vice versa is also true: Our understanding of our own solar system’s origin story is being refined as we learn more about exoplanets, some of which defy what we see in our own system; “ hot Jupiters ” and “ super-Earths ,” for instance, are features we see in other star systems but not our own.

When we use powerful telescopes to stare out into the galaxy, we observe plenty of other stars, but we observe other things too, including fuzzy looking features called nebulae. A nebula is a big cloud of gas and dust in space. It’s not as bright as a star because it’s not undergoing thermonuclear fusion, with the tremendous release of energy that accompanies that process. An example of a nebula that you are likely to be able to see is in the constellation Orion. Orion’s “belt,” three stars in a row, is a readily identifiable feature in the northern hemisphere’s night sky in winter. A smaller trio of light spots “dangle” from the belt; this is Orion’s sword scabbard. A cheap pair of binoculars will let you examine these objects for yourself; you will discover that the middle point of light in this smaller trio is not a star. It is a nebula called Messier 42.

The Messier 42 nebula, shown in the context of the "scabbard" of the constellation Orion. Graphic art by Callan Bentley, reworking material from several OER sources.

Nebulae like Messier 42 are common features of the galaxy, but not as common as stars. Nebulae appear to be short-lived features, as matter is often attracted to other matter. All that stuff distributed in that tremendous volume of space is not as stable as it would be if it were all to be drawn together into a few big clumps. Particles pull together with their neighboring particles under the influence of various forces, including “static cling” or electrostatic attraction. This is the same force that makes tiny dust motes clump up into dust bunnies under your couch!

Three dust bunnies and a pencil tip to provide a sense of scale. The dust bunnies are each about 3 cm across and 1.5 cm tall. Photo by Callan Bentley, 2019.

Now, electrostatic force is quite strong for pulling together small particles over small distances, but if you want to make big things like planets and stars out from a nebula, you’re going to need gravity to take over at some point. Gravity is a rather weak force. After all: every time you take a step, you’ve overcoming the gravitational pull of the entire Earth. But gravity can work very efficiently over distance, if the masses involved are large enough. So static cling was the initial organizer, until the “space dust bunnies” got large enough, then gravity was able to take over, attracting mass to mass. The net result is that the gajillions of tiny pieces of the nebula were drawn together, swirling into a denser and denser amalgamation. The nebula began to spin, flattening out from top to bottom, and flattening out into a spinning disk, something between a Frisbee and a fried egg in shape:

An artist's conception of an oblique view of the protoplantary disk HL Tauri, using imagery originally gathered by the European Southern Observatory.

Once a star forms in the center, astronomers call the ring of debris around it a protoplanetary disk. Two important processes that helped organize the protoplanetary disk further were condensation and accretion.

Chondrules in the Grassland meteorite, with a scale showing a scale in mm. Sources: Zimbres on Wikimedia, CC-BY license.

Condensation is the process where gaseous matter sticks together to make liquid or solid matter. We have evidence of condensation in the form of small spherical objects with internal layering, kind of like “space hailstones.” These are chondrules, and they represent the earliest objects formed in our solar system. (Occasionally, we are lucky enough to find chondrules that have survived until the present day, entombed inside certain meteorites of the variety called chondrites.)

Chondrules glommed onto other chondrules, and stuck themselves together into primordial “rocks,” building up larger and larger objects. Eventually, these objects got to be big enough to pull their mass into an round shape, and we would be justified to dub them “planetesimals.” Planetesimals gobbled up nearby asteroids, and smashed into other planetesimals, merging and growing through time through the process of accretion. The kinetic force of these collisions heated the rocky and metallic material of the planetesimals, and their temperature also went up as radioactive decay heated them from within. Once warm, denser material could sink to their middles, and lighter-weight elements and compounds rose up to their surface. So not only were they maturing into spheroidal shapes, but they were also differentiating internally, separating into layers organized by density.

A cartoon model showing the evolution of our solar system from a pre-solar nebula, in four stages. In the first stage, a diffuse nebula is shown. In the second stage, most of the material has moved to the center, and it has started to rotate. Little flecks of solid material have accumulated. In stage 3, the flecks have grown into chunks, and there is much less diffuse fuzzy stuff in the background. The sun has formed as a discrete entity. In the fourth and final stage, the sun is a fat blob, surrounded by discrete planets. The space between them is mostly clear and clean.

Meteorites that show metallic compositions represent “core” material from these planetesimals; core material that we would never get to glimpse had not their surrounding rocky material been blasted off. Iron meteorites such as the Canyon Diablo meteorite below (responsible for Arizona’s celebrated Meteor Crater) therefore are evidence of differentiation of planetesimals into layered bodies, followed by disaggregation: a polite way of saying they were later violently ripped apart by energetic collisions.

If you were to somehow weigh the nebula before condensation and accretion, and again 4.6 billion years later, we’d find the mass to be the same. Rather than being dispersed in a diffuse cloud of uncountable atoms, the condensation and accretion of the nebula resulted in exactly the same amount of stuff, but organized into a smaller and smaller number of bigger and bigger objects. The biggest of these was the Sun, comprising about 99.86% of all the mass in the solar system. Four-fifths of the remaining 0.14% makes up the planet Jupiter.  Saturn, Neptune, and Uranus are huge gas giants as well. The inner rocky planets (including Earth) make up a tiny, tiny fraction of the total mass of the whole solar system – but of course, just because they are relatively small, that doesn’t mean they are unimportant!

The process of accretion continues into the present day, though at a slower pace than the earliest days of the solar system. One place you can observe this is in the asteroid belt, where there are certain asteroids that are basically nothing more than a big 3D pile of space rocks, held together under their own gravity. Consider the asteroid called Itokawa 25143, for instance:

The asteroid 25143 Itokawa, imaged by the Japanese Space Agency (JAXA) during the Hayabusa mission. Labels and scale added by Callan Bentley.

Only about half a kilometer long, and only a few hundred meters wide, Itokawa doesn’t even have enough gravity to pull itself into a sphere. If you were to land on the surface of Itokawa and kick a soccer-ball-sized boulder, it would readily fly off into space, as the force of your kick would be much higher than the force of gravity causing it to stay put.

Another example of accretion continuing to this day is meteorite impacts. Every time a chunk of rock in space intersects the Earth, its mass is added to that of the planet. In that instant, the solar system gets a little bit cleaner (fewer leftover bits rattling around) and the planet gets a little more massive. A spectacular example of this occurred in 1994 with Comet Shoemaker-Levy 9, a  comet which had only been discovered the previous year. Jupiter’s immense gravity broke the comet into chunks, and then swallowed them up one after another. Astronomers on Earth watched with fascination as the comet chunks, some more than a kilometer across, slammed into Jupiter’s atmosphere at 60 km/second (~134,000 mph), creating a 23,700°C fireball and enormous impact scars that were as large as the entire Earth. These scars lasted for months.

A photograph (through a telescope) showing a prominent red/brown concentric-ring shaped "scar" on Jupiter's atmosphere where Comet Shoemaker-Levy 9 impacted it.

This incredibly dramatic event perhaps raises the hair on our necks, seeing the violence and power of cosmic collisions. It’s a reminder that Earthlings are not safe from accretionary impacts even today – as the dinosaurs found out. For the purposes of our current discussion, though, bear in mind that the collision was really a merger between the masses of Comet Shoemaker-Levy 9 and the planet Jupiter, and after the dust settled, the solar system had one fewer object left off by itself, and Jupiter gained a bit more mass. This is the overall trend of the accretion of our solar system from the presolar nebula: under gravity’s influence, the available mass becomes more and more concentrated through time.

Did I get it?

Your answer:

Correct answer:

Your Answers

A star is born

Because the Sun is so massive, it is able to achieve tremendous pressures in its interior. These pressures are so high, they can actually force two atoms into the same space , overcoming their immense repulsion for one another, and causing their two nuclei to merge. As two atoms combine to make one more massive atom, energy is released. This process is thermonuclear fusion. Once it begins, stars begin to give off light.

In the Hertzprung-Russell diagram the temperatures of stars are plotted against their luminosities. The position of a star in the diagram provides information about its present stage and its mass. Stars that burn hydrogen into helium lie on the diagonal branch, the so-called main sequence. Our Sun is an example of a main sequence star, about halfway through its "life" expectancy. Red dwarfs lie in the cool and faint lower right corner. When a star exhausts all the hydrogen, it leaves the main sequence and becomes a red giant or a supergiant, depending on its mass (upper right corner). Stars with the mass of the Sun which have burnt all their fuel finally develop into a white dwarf (lower left corner).

The ability of stars to make big atoms from small ones is key to understanding the history of our solar system and our planet. Planet Earth is made of a wide variety of chemical elements, both lightweight and heavy. All of these elements must have been present in the nebula, in order for them to be included in Earth’s “starting mixture.” Elements formed in the Sun today stay in the Sun, fusing low-weight atoms into heavier atoms. So all the elements on Earth today came from a pre-Sun star. We can go outside on a spring day and enjoy the Sun’s warmth, but the carbon that makes up the skin that basks in that warmth was forged in the heart of another star, a star that’s gone now, a star that blew up.

This exploding star was the source of the nebula where we began this case study: it’s the backstory that occurred before the opening scene. Our solar system is like a “haunted house,” where billions of years ago, there was a vibrant, healthy main-sequence star right here, in this part of the galaxy. Perhaps it had planets orbiting it. Perhaps some of those planets harbored life. We’ll never know: the explosion wiped the slate clean, and “reset” the solar system for the iteration in which we live. The ghostly remnants of this time before our own still linger, in the very stuff we’re made from. This long-dead star fused hydrogen to build the carbon in our bodies, the iron in our blood, the oxygen we breathe, and the silicon in the rocks of our planet.

This is an incredible realization to embrace: everything you know, everything you trust, everything you are , is stardust.

Age of the solar system

So just when did all this happen? An estimate for the age of the solar system can be made using isotopes of the element lead (Pb). There are several isotopes of lead, but for the purposes of figuring out the age of the solar system, consider these four: 208 Pb, 207 Pb, 206 Pb, and 204 Pb.

208 Pb, 207 Pb, 206 Pb are all radiogenic: that is to say, they stable “daughter” isotopes that are produced from the radioactive “parent” isotopes. Each is produced from a different parent, at a different rate:

204 Pb is, as far as we know, non-radiogenic. It’s relevant to this discussion because it can serve as a ‘standard’ that can allow us to compare the other lead isotopes to one another. Just as if we wanted to compare the currencies of Namibia, Indonesia, and Chile, we might reference all three to the U.S. dollar. The dollar would serve as a standard of comparison, allowing us to better see the value of the Namibian currency relative to the Indonesian currency and the Chilean currency. That’s what 204 Pb is doing for us here.

Lead (Pb) isotope ratio evolution: 206Pb, 207Pb, and 208Pb ratioed by 204Pb, over the past 5 billion years, including both terrestrial (Earth rock) measurements and projections of primordial evolution, though no Earth rocks of that age persist. Redrawn by Callan Bentley (2019) from an original in SOME TEXTBOOK *** FIND THIS OUT.

This is a plot showing the modeled evolution of our three radiogenic lead isotopes relative to 204 Pb. It is constrained by terrestrial lead samples at the young end, and projected back in time in accordance with our measurements of how quickly these three isotopes of lead are produced by their radioactive parents. Of course, if we go back far enough in time, we run out of samples to evaluate. The Earth’s rock cycle has destroyed all its earliest rocks. They’ve been metamorphosed, or weathered, or melted – perhaps many times over! What would be really nice is to find some rocks from the early end of these curves – some samples that could verify these projections back in time are accurate.

Such samples do exist! But they are not from the Earth so much as “from the Earth’s starting materials.” If the nebular theory is correct, then a few leftover scraps of the planet’s starting materials are found in the solar system’s asteroids. Every now and again, bits of these space rocks fall to earth, and if they survive their passage through the atmosphere, we may be lucky enough to collect them, and analyze them. We call these space rocks “meteors” as they streak through the atmosphere, heating through friction and oxidizing as they fall. Those that make it all the way to Earth’s surface are known as “meteorites.” They can be often be distinguished by their scalloped fusion crust, as with this sample:

Lead (Pb) isotope ratio evolution: 206Pb, 207Pb, and 208Pb ratioed by 204Pb, over the past 5 billion years, including terrestrial (Earth rock) measurements and projections of primordial evolution, and values derived from measurement of meteorites. All three radiogenic isotopes of lead give the same answer for the starting date of the solar system's lead isotope system: 4.6 billion years ago. Redrawn and modified by Callan Bentley (2019) from an original in SOME TEXTBOOK *** FIND THIS OUT.

Meteorites come in several varieties, including rocky and metallic versions. It is very satisfying that when measurements of these meteorites’ lead isotopes are added to the plot above, they all fall exactly where our understanding of lead isotope production would have them: at the start of each of these model evolution curves. Each lead isotope system tells the same answer for the age of the Earth, acting like three independent witnesses corroborating one another’s testimony. And the answer they all give is 4.6 billion years ago (4.6 Ga). That’s what 208 Pb says. That’s what 207 Pb says. And that’s what 206 Pb says. They all agree, and they agree with the predicted curves based on terrestrial (Earth rock) measurements. This agreement gives us great confidence in this number. The Earth, and meteorites (former asteroids), and the solar system of which they are all a part, began about 4.6 billion years ago…

…But what came before that?

The implications of meteorites

In 1969, a meteorite fell through Earth’s atmosphere and broke up over Mexico. A great many pieces of this meteorite were recovered and made available for scientific analysis. It turned out to be a carbonaceous chondrite, the largest of its kind ever documented. It was named the Allende ( “eye-YEN-day” ) meteorite, for the tiny Chihuahuan village closest to the center of the area over which its fragments were scattered.

One of the materials making up Allende’s chondrules was the calcium feldspar called anorthite. Anorthite is an extraordinarily common mineral in Earth’s crust, but the Allende anorthite was different. For some reason, it has a large amount of magnesium in it. When geochemists determined what kind of magnesium this was, they were surprised to find that it was mostly 26 Mg, an uncommon isotope. The abundances of 25 Mg and 24 Mg were found to be about the same level as Earth rocks, but 26 Mg was elevated by about 1.3%.  And after all, magnesium doesn’t even “belong” in a feldspar. The chemical formula of anorthite is CaAl 2 Si 2 O 8 – there’s no “Mg” spot in there. Why was this odd 26 Mg in this chondritic anorthite?

One way to make 26 Mg is the break-down of radioactive 26 Al. The problem with this idea is that there is no 26 Al around today . It’s an example of an extinct isotope: an atom of aluminum so unstable that it falls apart extremely rapidly. The half-life is only 717,000 years. But because these chondrules condensed in the earliest days of the solar system, there may well have been plenty of 26 Al around at that point for them to incorporate. And Al, of course, is a key part of anorthite’s Ca Al 2 Si 2 O 8 crystal structure.

So the idea is that weird extra 26 Mg in the chondrule’s anorthite could be explained by suggesting it wasn’t always 26 Mg: Instead, it started off as 26 Al ,and it belonged in that crystal’s structure. However, over a short amount of time, it all fell apart, and that left the 26 Mg behind to mark where it had once been. If this interpretation is true, it has shocking implications for the story of our solar system.

To understand why, we first need to ask, what came before the nebula? What was the ‘pre-nebula’ situation? Where did the nebula come from, anyhow?

It turns out that nebulae are generated when old stars of a certain size explode.

These explosions are called supernovae (the plural of supernova). The “nova” part of the name comes from the fact that they are very bright in the night sky – an indication of how energetic the explosion is. They look like “new” stars to the casual observer. Supernovae occur when a star has exhausted its supply of lightweight fuel, and it runs out of small atoms that can be fused together under normal conditions. The outward-directed force ceases, and gravitationally-driven inward-directed forces suddenly dominate, collapsing the star in upon itself. This jacks up the pressures to unbelievably high levels, and is responsible for the nuclear fusion of big atoms – every atom heavier than iron is made instantaneously in the fires of the supernova.

That suite of freshly-minted atoms included a bunch of unstable isotopes, including 26 Al.

And here’s the kicker: If the 26 Al was made in a supernova, started decaying immediately, and yet enough was around that a significant portion of it could be woven into the Allende chondrules’ anorthite, that implies a very short amount of time between the obliteration of our Sun’s predecessor, and the first moments of our own. Specifically, the 717,000 year half-life of 26 Al suggests that this “transition between solar systems” played out in less than 5 million years, conceivably in only 2 million years.

That is very, very quickly.

In summary, the planet Earth is part of a solar system centered on the Sun. This solar system, with its star, its classical planets, its dwarf planets, and its “leftover” comets and asteroids, formed from a nebula full of elements in the form of gas and dust. Over time, these many very small pieces stuck together to make bigger concentrations of mass, eventually culminating in a star and a bunch of planets that orbit it. Asteroids (and asteroids that fall to Earth, called meteorites), are leftovers from this process. The starting nebula itself formed from the destruction of a previous star that had exploded in a supernova. The transition from the pre-Sun star to our solar system took place shockingly rapidly.

Further reading

Marcia Bjornerud’s book Reading the Rocks . Basic Books, 2005: 226 pages.

Jennifer A. Johnson (2019), “ Populating the periodic table: Nucleosynthesis of the elements ,” Science. 01 Feb 2019 : 474-478.

Lee, T., D. A. Papanastassiou, and G. J. Wasserburg (1976), Demonstration of 26 Mg excess in Allende and evidence for 26 Al , Geophysical Research Letters , 3(1), 41-44.

______________

PDF of this page

Chapter Contents

  • 1 In the beginning…
  • 2 Nebular theory
  • 3 A star is born
  • 4 Age of the solar system
  • 5 The implications of meteorites
  • 7 Further reading

css.php

Library homepage

  • school Campus Bookshelves
  • menu_book Bookshelves
  • perm_media Learning Objects
  • login Login
  • how_to_reg Request Instructor Account
  • hub Instructor Commons
  • Download Page (PDF)
  • Download Full Book (PDF)
  • Periodic Table
  • Physics Constants
  • Scientific Calculator
  • Reference & Cite
  • Tools expand_more
  • Readability

selected template will load here

This action is not available.

Geosciences LibreTexts

15.2: Origin of the Solar System—The Nebular Hypothesis

  • Last updated
  • Save as PDF
  • Page ID 11289

  • Chris Johnson, Matthew D. Affolter, Paul Inkenbrandt, & Cam Mosher
  • Salt Lake Community College via OpenGeology

Our solar system formed at the same time as our Sun as described in the nebular hypothesis. The nebular hypothesis is the idea that a spinning cloud of dust made of mostly light elements, called a nebula, flattened into a protoplanetary disk, and became a solar system consisting of a star with orbiting planets [ 12 ]. The spinning nebula collected the vast majority of material in its center, which is why the sun Accounts for over 99% of the mass in our solar system.

M42proplyds.jpg

Planet Arrangement and Segregation

Fomalhaut_Circumstellar_Disk.jpg

As our solar system formed, the nebular cloud of dispersed particles developed distinct temperature zones. Temperatures were very high close to the center, only allowing condensation of metals and silicate minerals with high melting points. Farther from the Sun, the temperatures were lower, allowing the condensation of lighter gaseous molecules such as methane, ammonia, carbon dioxide, and water [ 13 ]. This temperature differentiation resulted in the inner four planets of the solar system becoming rocky, and the outer four planets becoming gas giants.

Both rocky and gaseous planets have a similar growth model. Particles of dust, floating in the disc were attracted to each other by static charges and eventually, gravity. As the clumps of dust became bigger, they interacted with each other—colliding, sticking, and forming proto-planets. The planets continued to grow over the course of many thousands or millions of years, as material from the protoplanetary disc was added. Both rocky and gaseous planets started with a solid core. Rocky planets built more rock on that core, while gas planets added gas and ice. Ice giants formed later and on the furthest edges of the disc, accumulating less gas and more ice. That is why the gas-giant planets Jupiter and Saturn are composed of mostly hydrogen and helium gas, more than 90%. The ice giants Uranus and Neptune are composed of mostly methane ices and only about 20% hydrogen and helium gases.

The planetary composition of the gas giants is clearly different from the rocky planets. Their size is also dramatically different for two reasons: First, the original planetary nebula contained more gases and ices than metals and rocks. There was abundant hydrogen, carbon, oxygen, nitrogen, and less silicon and iron, giving the outer planets more building material. Second, the stronger gravitational pull of these giant planets allowed them to collect large quantities of hydrogen and helium, which could not be collected by the weaker gravity of the smaller planets.

Jupiter’s massive gravity further shaped the solar system and growth of the inner rocky planets. As the nebula started to coalesce into planets, Jupiter’s gravity accelerated the movement of nearby materials, generating destructive collisions rather than constructively gluing material together [ 14 ]. These collisions created the asteroid belt, an unfinished planet, located between Mars and Jupiter. This asteroid belt is the source of most meteorites that currently impact the Earth. Study of asteroids and meteorites help geologist to determine the age of Earth and the composition of its core, mantle, and crust. Jupiter’s gravity may also explain Mars’ smaller mass, with the larger planet consuming material as it migrated from the inner to the outer edge of the solar system [ 15 ].

Pluto and Planet Definition

EightTNOs.png

The outermost part of the solar system is known as the Kuiper belt, which is a scattering of rocky and icy bodies. Beyond that is the Oort cloud, a zone filled with small and dispersed ice traces. These two locations are where most comets form and continue to orbit, and objects found here have relatively irregular orbits compared to the rest of the solar system. Pluto, formerly the ninth planet, is located in this region of space. The XXVIth General Assembly of the International Astronomical Union (IAU) stripped Pluto of planetary status in 2006 because scientists discovered an object more massive than Pluto, which they named Eris. The IAU decided against including Eris as a planet, and therefore, excluded Pluto as well. The IAU narrowed the definition of a planet to three criteria:

  • Enough mass to have gravitational forces that force it to be rounded
  • Not massive enough to create a fusion
  • Large enough to be in a cleared orbit, free of other planetesimals that should have been incorporated at the time the planet formed. Pluto passed the first two parts of the definition, but not the third. Pluto and Eris are currently classified as dwarf planets

12. Montmerle T, Augereau J-C, Chaussidon M, et al (2006) Solar System Formation and Early Evolution: the First 100 Million Years. In: From Suns to Life: A Chronological Approach to the History of Life on Earth. Springer New York, pp 39–95

13. Martin RG, Livio M (2012) On the evolution of the snow line in protoplanetary discs. Mon Not R Aston Soc Lett 425:L6–L9

14. Petit J-M, Morbidelli A, Chambers J (2001) The Primordial Excitation and Clearing of the Asteroid Belt. Icarus 153:338–347. https://doi.org/10.1006/icar.2001.6702

15. Walsh KJ, Morbidelli A, Raymond SN, et al (2011) A low mass for Mars from Jupiter’s early gas-driven migration. Nature 475:206–209

Logo for Florida State College at Jacksonville Pressbooks

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

44 The Nebular Theory

A protostar is an object in which no nuclear fusion has occurred, unlike a star that is undergoing nuclear fusion. A protostar becomes a star when nuclear fusion begins. Most likely the next step was that the nebula flattened into a disk called the  Protoplanetary Disk  ; planets eventually formed from and in this disk.

Three processes occurred with the nebular collapse:

  • Temperatures continued to increase
  • The solar nebula spun faster and faster
  • The solar nebula disk flattened

The orderly motions of the solar system today are a direct result of the solar system’s beginnings in a spinning, flattened cloud of gas and dust.

Introduction to Astronomy Copyright © by Lumen Learning is licensed under a Creative Commons Attribution 4.0 International License , except where otherwise noted.

Share This Book

  • Search Menu
  • Browse content in Arts and Humanities
  • Browse content in Archaeology
  • Anglo-Saxon and Medieval Archaeology
  • Archaeological Methodology and Techniques
  • Archaeology by Region
  • Archaeology of Religion
  • Archaeology of Trade and Exchange
  • Biblical Archaeology
  • Contemporary and Public Archaeology
  • Environmental Archaeology
  • Historical Archaeology
  • History and Theory of Archaeology
  • Industrial Archaeology
  • Landscape Archaeology
  • Mortuary Archaeology
  • Prehistoric Archaeology
  • Underwater Archaeology
  • Urban Archaeology
  • Zooarchaeology
  • Browse content in Architecture
  • Architectural Structure and Design
  • History of Architecture
  • Residential and Domestic Buildings
  • Theory of Architecture
  • Browse content in Art
  • Art Subjects and Themes
  • History of Art
  • Industrial and Commercial Art
  • Theory of Art
  • Biographical Studies
  • Byzantine Studies
  • Browse content in Classical Studies
  • Classical History
  • Classical Philosophy
  • Classical Mythology
  • Classical Literature
  • Classical Reception
  • Classical Art and Architecture
  • Classical Oratory and Rhetoric
  • Greek and Roman Papyrology
  • Greek and Roman Epigraphy
  • Greek and Roman Law
  • Greek and Roman Archaeology
  • Late Antiquity
  • Religion in the Ancient World
  • Digital Humanities
  • Browse content in History
  • Colonialism and Imperialism
  • Diplomatic History
  • Environmental History
  • Genealogy, Heraldry, Names, and Honours
  • Genocide and Ethnic Cleansing
  • Historical Geography
  • History by Period
  • History of Emotions
  • History of Agriculture
  • History of Education
  • History of Gender and Sexuality
  • Industrial History
  • Intellectual History
  • International History
  • Labour History
  • Legal and Constitutional History
  • Local and Family History
  • Maritime History
  • Military History
  • National Liberation and Post-Colonialism
  • Oral History
  • Political History
  • Public History
  • Regional and National History
  • Revolutions and Rebellions
  • Slavery and Abolition of Slavery
  • Social and Cultural History
  • Theory, Methods, and Historiography
  • Urban History
  • World History
  • Browse content in Language Teaching and Learning
  • Language Learning (Specific Skills)
  • Language Teaching Theory and Methods
  • Browse content in Linguistics
  • Applied Linguistics
  • Cognitive Linguistics
  • Computational Linguistics
  • Forensic Linguistics
  • Grammar, Syntax and Morphology
  • Historical and Diachronic Linguistics
  • History of English
  • Language Evolution
  • Language Reference
  • Language Acquisition
  • Language Variation
  • Language Families
  • Lexicography
  • Linguistic Anthropology
  • Linguistic Theories
  • Linguistic Typology
  • Phonetics and Phonology
  • Psycholinguistics
  • Sociolinguistics
  • Translation and Interpretation
  • Writing Systems
  • Browse content in Literature
  • Bibliography
  • Children's Literature Studies
  • Literary Studies (Romanticism)
  • Literary Studies (American)
  • Literary Studies (Asian)
  • Literary Studies (European)
  • Literary Studies (Eco-criticism)
  • Literary Studies (Modernism)
  • Literary Studies - World
  • Literary Studies (1500 to 1800)
  • Literary Studies (19th Century)
  • Literary Studies (20th Century onwards)
  • Literary Studies (African American Literature)
  • Literary Studies (British and Irish)
  • Literary Studies (Early and Medieval)
  • Literary Studies (Fiction, Novelists, and Prose Writers)
  • Literary Studies (Gender Studies)
  • Literary Studies (Graphic Novels)
  • Literary Studies (History of the Book)
  • Literary Studies (Plays and Playwrights)
  • Literary Studies (Poetry and Poets)
  • Literary Studies (Postcolonial Literature)
  • Literary Studies (Queer Studies)
  • Literary Studies (Science Fiction)
  • Literary Studies (Travel Literature)
  • Literary Studies (War Literature)
  • Literary Studies (Women's Writing)
  • Literary Theory and Cultural Studies
  • Mythology and Folklore
  • Shakespeare Studies and Criticism
  • Browse content in Media Studies
  • Browse content in Music
  • Applied Music
  • Dance and Music
  • Ethics in Music
  • Ethnomusicology
  • Gender and Sexuality in Music
  • Medicine and Music
  • Music Cultures
  • Music and Media
  • Music and Religion
  • Music and Culture
  • Music Education and Pedagogy
  • Music Theory and Analysis
  • Musical Scores, Lyrics, and Libretti
  • Musical Structures, Styles, and Techniques
  • Musicology and Music History
  • Performance Practice and Studies
  • Race and Ethnicity in Music
  • Sound Studies
  • Browse content in Performing Arts
  • Browse content in Philosophy
  • Aesthetics and Philosophy of Art
  • Epistemology
  • Feminist Philosophy
  • History of Western Philosophy
  • Metaphysics
  • Moral Philosophy
  • Non-Western Philosophy
  • Philosophy of Language
  • Philosophy of Mind
  • Philosophy of Perception
  • Philosophy of Science
  • Philosophy of Action
  • Philosophy of Law
  • Philosophy of Religion
  • Philosophy of Mathematics and Logic
  • Practical Ethics
  • Social and Political Philosophy
  • Browse content in Religion
  • Biblical Studies
  • Christianity
  • East Asian Religions
  • History of Religion
  • Judaism and Jewish Studies
  • Qumran Studies
  • Religion and Education
  • Religion and Health
  • Religion and Politics
  • Religion and Science
  • Religion and Law
  • Religion and Art, Literature, and Music
  • Religious Studies
  • Browse content in Society and Culture
  • Cookery, Food, and Drink
  • Cultural Studies
  • Customs and Traditions
  • Ethical Issues and Debates
  • Hobbies, Games, Arts and Crafts
  • Lifestyle, Home, and Garden
  • Natural world, Country Life, and Pets
  • Popular Beliefs and Controversial Knowledge
  • Sports and Outdoor Recreation
  • Technology and Society
  • Travel and Holiday
  • Visual Culture
  • Browse content in Law
  • Arbitration
  • Browse content in Company and Commercial Law
  • Commercial Law
  • Company Law
  • Browse content in Comparative Law
  • Systems of Law
  • Competition Law
  • Browse content in Constitutional and Administrative Law
  • Government Powers
  • Judicial Review
  • Local Government Law
  • Military and Defence Law
  • Parliamentary and Legislative Practice
  • Construction Law
  • Contract Law
  • Browse content in Criminal Law
  • Criminal Procedure
  • Criminal Evidence Law
  • Sentencing and Punishment
  • Employment and Labour Law
  • Environment and Energy Law
  • Browse content in Financial Law
  • Banking Law
  • Insolvency Law
  • History of Law
  • Human Rights and Immigration
  • Intellectual Property Law
  • Browse content in International Law
  • Private International Law and Conflict of Laws
  • Public International Law
  • IT and Communications Law
  • Jurisprudence and Philosophy of Law
  • Law and Politics
  • Law and Society
  • Browse content in Legal System and Practice
  • Courts and Procedure
  • Legal Skills and Practice
  • Primary Sources of Law
  • Regulation of Legal Profession
  • Medical and Healthcare Law
  • Browse content in Policing
  • Criminal Investigation and Detection
  • Police and Security Services
  • Police Procedure and Law
  • Police Regional Planning
  • Browse content in Property Law
  • Personal Property Law
  • Study and Revision
  • Terrorism and National Security Law
  • Browse content in Trusts Law
  • Wills and Probate or Succession
  • Browse content in Medicine and Health
  • Browse content in Allied Health Professions
  • Arts Therapies
  • Clinical Science
  • Dietetics and Nutrition
  • Occupational Therapy
  • Operating Department Practice
  • Physiotherapy
  • Radiography
  • Speech and Language Therapy
  • Browse content in Anaesthetics
  • General Anaesthesia
  • Neuroanaesthesia
  • Clinical Neuroscience
  • Browse content in Clinical Medicine
  • Acute Medicine
  • Cardiovascular Medicine
  • Clinical Genetics
  • Clinical Pharmacology and Therapeutics
  • Dermatology
  • Endocrinology and Diabetes
  • Gastroenterology
  • Genito-urinary Medicine
  • Geriatric Medicine
  • Infectious Diseases
  • Medical Toxicology
  • Medical Oncology
  • Pain Medicine
  • Palliative Medicine
  • Rehabilitation Medicine
  • Respiratory Medicine and Pulmonology
  • Rheumatology
  • Sleep Medicine
  • Sports and Exercise Medicine
  • Community Medical Services
  • Critical Care
  • Emergency Medicine
  • Forensic Medicine
  • Haematology
  • History of Medicine
  • Browse content in Medical Skills
  • Clinical Skills
  • Communication Skills
  • Nursing Skills
  • Surgical Skills
  • Browse content in Medical Dentistry
  • Oral and Maxillofacial Surgery
  • Paediatric Dentistry
  • Restorative Dentistry and Orthodontics
  • Surgical Dentistry
  • Medical Ethics
  • Medical Statistics and Methodology
  • Browse content in Neurology
  • Clinical Neurophysiology
  • Neuropathology
  • Nursing Studies
  • Browse content in Obstetrics and Gynaecology
  • Gynaecology
  • Occupational Medicine
  • Ophthalmology
  • Otolaryngology (ENT)
  • Browse content in Paediatrics
  • Neonatology
  • Browse content in Pathology
  • Chemical Pathology
  • Clinical Cytogenetics and Molecular Genetics
  • Histopathology
  • Medical Microbiology and Virology
  • Patient Education and Information
  • Browse content in Pharmacology
  • Psychopharmacology
  • Browse content in Popular Health
  • Caring for Others
  • Complementary and Alternative Medicine
  • Self-help and Personal Development
  • Browse content in Preclinical Medicine
  • Cell Biology
  • Molecular Biology and Genetics
  • Reproduction, Growth and Development
  • Primary Care
  • Professional Development in Medicine
  • Browse content in Psychiatry
  • Addiction Medicine
  • Child and Adolescent Psychiatry
  • Forensic Psychiatry
  • Learning Disabilities
  • Old Age Psychiatry
  • Psychotherapy
  • Browse content in Public Health and Epidemiology
  • Epidemiology
  • Public Health
  • Browse content in Radiology
  • Clinical Radiology
  • Interventional Radiology
  • Nuclear Medicine
  • Radiation Oncology
  • Reproductive Medicine
  • Browse content in Surgery
  • Cardiothoracic Surgery
  • Gastro-intestinal and Colorectal Surgery
  • General Surgery
  • Neurosurgery
  • Paediatric Surgery
  • Peri-operative Care
  • Plastic and Reconstructive Surgery
  • Surgical Oncology
  • Transplant Surgery
  • Trauma and Orthopaedic Surgery
  • Vascular Surgery
  • Browse content in Science and Mathematics
  • Browse content in Biological Sciences
  • Aquatic Biology
  • Biochemistry
  • Bioinformatics and Computational Biology
  • Developmental Biology
  • Ecology and Conservation
  • Evolutionary Biology
  • Genetics and Genomics
  • Microbiology
  • Molecular and Cell Biology
  • Natural History
  • Plant Sciences and Forestry
  • Research Methods in Life Sciences
  • Structural Biology
  • Systems Biology
  • Zoology and Animal Sciences
  • Browse content in Chemistry
  • Analytical Chemistry
  • Computational Chemistry
  • Crystallography
  • Environmental Chemistry
  • Industrial Chemistry
  • Inorganic Chemistry
  • Materials Chemistry
  • Medicinal Chemistry
  • Mineralogy and Gems
  • Organic Chemistry
  • Physical Chemistry
  • Polymer Chemistry
  • Study and Communication Skills in Chemistry
  • Theoretical Chemistry
  • Browse content in Computer Science
  • Artificial Intelligence
  • Computer Architecture and Logic Design
  • Game Studies
  • Human-Computer Interaction
  • Mathematical Theory of Computation
  • Programming Languages
  • Software Engineering
  • Systems Analysis and Design
  • Virtual Reality
  • Browse content in Computing
  • Business Applications
  • Computer Security
  • Computer Games
  • Computer Networking and Communications
  • Digital Lifestyle
  • Graphical and Digital Media Applications
  • Operating Systems
  • Browse content in Earth Sciences and Geography
  • Atmospheric Sciences
  • Environmental Geography
  • Geology and the Lithosphere
  • Maps and Map-making
  • Meteorology and Climatology
  • Oceanography and Hydrology
  • Palaeontology
  • Physical Geography and Topography
  • Regional Geography
  • Soil Science
  • Urban Geography
  • Browse content in Engineering and Technology
  • Agriculture and Farming
  • Biological Engineering
  • Civil Engineering, Surveying, and Building
  • Electronics and Communications Engineering
  • Energy Technology
  • Engineering (General)
  • Environmental Science, Engineering, and Technology
  • History of Engineering and Technology
  • Mechanical Engineering and Materials
  • Technology of Industrial Chemistry
  • Transport Technology and Trades
  • Browse content in Environmental Science
  • Applied Ecology (Environmental Science)
  • Conservation of the Environment (Environmental Science)
  • Environmental Sustainability
  • Environmentalist Thought and Ideology (Environmental Science)
  • Management of Land and Natural Resources (Environmental Science)
  • Natural Disasters (Environmental Science)
  • Nuclear Issues (Environmental Science)
  • Pollution and Threats to the Environment (Environmental Science)
  • Social Impact of Environmental Issues (Environmental Science)
  • History of Science and Technology
  • Browse content in Materials Science
  • Ceramics and Glasses
  • Composite Materials
  • Metals, Alloying, and Corrosion
  • Nanotechnology
  • Browse content in Mathematics
  • Applied Mathematics
  • Biomathematics and Statistics
  • History of Mathematics
  • Mathematical Education
  • Mathematical Finance
  • Mathematical Analysis
  • Numerical and Computational Mathematics
  • Probability and Statistics
  • Pure Mathematics
  • Browse content in Neuroscience
  • Cognition and Behavioural Neuroscience
  • Development of the Nervous System
  • Disorders of the Nervous System
  • History of Neuroscience
  • Invertebrate Neurobiology
  • Molecular and Cellular Systems
  • Neuroendocrinology and Autonomic Nervous System
  • Neuroscientific Techniques
  • Sensory and Motor Systems
  • Browse content in Physics
  • Astronomy and Astrophysics
  • Atomic, Molecular, and Optical Physics
  • Biological and Medical Physics
  • Classical Mechanics
  • Computational Physics
  • Condensed Matter Physics
  • Electromagnetism, Optics, and Acoustics
  • History of Physics
  • Mathematical and Statistical Physics
  • Measurement Science
  • Nuclear Physics
  • Particles and Fields
  • Plasma Physics
  • Quantum Physics
  • Relativity and Gravitation
  • Semiconductor and Mesoscopic Physics
  • Browse content in Psychology
  • Affective Sciences
  • Clinical Psychology
  • Cognitive Psychology
  • Cognitive Neuroscience
  • Criminal and Forensic Psychology
  • Developmental Psychology
  • Educational Psychology
  • Evolutionary Psychology
  • Health Psychology
  • History and Systems in Psychology
  • Music Psychology
  • Neuropsychology
  • Organizational Psychology
  • Psychological Assessment and Testing
  • Psychology of Human-Technology Interaction
  • Psychology Professional Development and Training
  • Research Methods in Psychology
  • Social Psychology
  • Browse content in Social Sciences
  • Browse content in Anthropology
  • Anthropology of Religion
  • Human Evolution
  • Medical Anthropology
  • Physical Anthropology
  • Regional Anthropology
  • Social and Cultural Anthropology
  • Theory and Practice of Anthropology
  • Browse content in Business and Management
  • Business Ethics
  • Business Strategy
  • Business History
  • Business and Technology
  • Business and Government
  • Business and the Environment
  • Comparative Management
  • Corporate Governance
  • Corporate Social Responsibility
  • Entrepreneurship
  • Health Management
  • Human Resource Management
  • Industrial and Employment Relations
  • Industry Studies
  • Information and Communication Technologies
  • International Business
  • Knowledge Management
  • Management and Management Techniques
  • Operations Management
  • Organizational Theory and Behaviour
  • Pensions and Pension Management
  • Public and Nonprofit Management
  • Strategic Management
  • Supply Chain Management
  • Browse content in Criminology and Criminal Justice
  • Criminal Justice
  • Criminology
  • Forms of Crime
  • International and Comparative Criminology
  • Youth Violence and Juvenile Justice
  • Development Studies
  • Browse content in Economics
  • Agricultural, Environmental, and Natural Resource Economics
  • Asian Economics
  • Behavioural Finance
  • Behavioural Economics and Neuroeconomics
  • Econometrics and Mathematical Economics
  • Economic History
  • Economic Systems
  • Economic Methodology
  • Economic Development and Growth
  • Financial Markets
  • Financial Institutions and Services
  • General Economics and Teaching
  • Health, Education, and Welfare
  • History of Economic Thought
  • International Economics
  • Labour and Demographic Economics
  • Law and Economics
  • Macroeconomics and Monetary Economics
  • Microeconomics
  • Public Economics
  • Urban, Rural, and Regional Economics
  • Welfare Economics
  • Browse content in Education
  • Adult Education and Continuous Learning
  • Care and Counselling of Students
  • Early Childhood and Elementary Education
  • Educational Equipment and Technology
  • Educational Strategies and Policy
  • Higher and Further Education
  • Organization and Management of Education
  • Philosophy and Theory of Education
  • Schools Studies
  • Secondary Education
  • Teaching of a Specific Subject
  • Teaching of Specific Groups and Special Educational Needs
  • Teaching Skills and Techniques
  • Browse content in Environment
  • Applied Ecology (Social Science)
  • Climate Change
  • Conservation of the Environment (Social Science)
  • Environmentalist Thought and Ideology (Social Science)
  • Natural Disasters (Environment)
  • Social Impact of Environmental Issues (Social Science)
  • Browse content in Human Geography
  • Cultural Geography
  • Economic Geography
  • Political Geography
  • Browse content in Interdisciplinary Studies
  • Communication Studies
  • Museums, Libraries, and Information Sciences
  • Browse content in Politics
  • African Politics
  • Asian Politics
  • Chinese Politics
  • Comparative Politics
  • Conflict Politics
  • Elections and Electoral Studies
  • Environmental Politics
  • European Union
  • Foreign Policy
  • Gender and Politics
  • Human Rights and Politics
  • Indian Politics
  • International Relations
  • International Organization (Politics)
  • International Political Economy
  • Irish Politics
  • Latin American Politics
  • Middle Eastern Politics
  • Political Behaviour
  • Political Economy
  • Political Institutions
  • Political Methodology
  • Political Communication
  • Political Philosophy
  • Political Sociology
  • Political Theory
  • Politics and Law
  • Public Policy
  • Public Administration
  • Quantitative Political Methodology
  • Regional Political Studies
  • Russian Politics
  • Security Studies
  • State and Local Government
  • UK Politics
  • US Politics
  • Browse content in Regional and Area Studies
  • African Studies
  • Asian Studies
  • East Asian Studies
  • Japanese Studies
  • Latin American Studies
  • Middle Eastern Studies
  • Native American Studies
  • Scottish Studies
  • Browse content in Research and Information
  • Research Methods
  • Browse content in Social Work
  • Addictions and Substance Misuse
  • Adoption and Fostering
  • Care of the Elderly
  • Child and Adolescent Social Work
  • Couple and Family Social Work
  • Developmental and Physical Disabilities Social Work
  • Direct Practice and Clinical Social Work
  • Emergency Services
  • Human Behaviour and the Social Environment
  • International and Global Issues in Social Work
  • Mental and Behavioural Health
  • Social Justice and Human Rights
  • Social Policy and Advocacy
  • Social Work and Crime and Justice
  • Social Work Macro Practice
  • Social Work Practice Settings
  • Social Work Research and Evidence-based Practice
  • Welfare and Benefit Systems
  • Browse content in Sociology
  • Childhood Studies
  • Community Development
  • Comparative and Historical Sociology
  • Economic Sociology
  • Gender and Sexuality
  • Gerontology and Ageing
  • Health, Illness, and Medicine
  • Marriage and the Family
  • Migration Studies
  • Occupations, Professions, and Work
  • Organizations
  • Population and Demography
  • Race and Ethnicity
  • Social Theory
  • Social Movements and Social Change
  • Social Research and Statistics
  • Social Stratification, Inequality, and Mobility
  • Sociology of Religion
  • Sociology of Education
  • Sport and Leisure
  • Urban and Rural Studies
  • Browse content in Warfare and Defence
  • Defence Strategy, Planning, and Research
  • Land Forces and Warfare
  • Military Administration
  • Military Life and Institutions
  • Naval Forces and Warfare
  • Other Warfare and Defence Issues
  • Peace Studies and Conflict Resolution
  • Weapons and Equipment

Unlocking the Moon's Secrets: From Galileo to Giant Impact

  • < Previous chapter
  • Next chapter >

Unlocking the Moon's Secrets: From Galileo to Giant Impact

8 The Rise and Fall of the Nebular Hypothesis

  • Published: August 2023
  • Cite Icon Cite
  • Permissions Icon Permissions

The first to explain the origin of the planets and moons was Pierre-Simon Laplace in his 1796 book, Exposition for the System of the World . His theory would dominate science throughout the next century and come to be accepted as a given. He held that the solar system had begun as a hot, rotating gas cloud. As it spun, centrifugal force threw off blobs of gas that coagulated into planets. The planets then repeated the process to create their moons. By the last few decades of the eighteenth century, enough evidence had come to light to call the nebular hypothesis into question, if not to falsify it. This opened the way for three different theories for the origin of the Moon. The fission theory resembled the nebular hypothesis in holding that the gravity of the Sun had pulled off a bulge in the proto-Earth which became the Moon. The co-accretion theory held that the Moon and the Earth had formed near each other and thus were like sister planets. The capture theory imagined that the Moon had started out in some distant region of the solar system but drew near enough to be captured into orbit by the Earth’s gravity.

Signed in as

Institutional accounts.

  • GoogleCrawler [DO NOT DELETE]
  • Google Scholar Indexing

Personal account

  • Sign in with email/username & password
  • Get email alerts
  • Save searches
  • Purchase content
  • Activate your purchase/trial code

Institutional access

  • Sign in with a library card Sign in with username/password Recommend to your librarian
  • Institutional account management
  • Get help with access

Access to content on Oxford Academic is often provided through institutional subscriptions and purchases. If you are a member of an institution with an active account, you may be able to access content in one of the following ways:

IP based access

Typically, access is provided across an institutional network to a range of IP addresses. This authentication occurs automatically, and it is not possible to sign out of an IP authenticated account.

Sign in through your institution

Choose this option to get remote access when outside your institution. Shibboleth/Open Athens technology is used to provide single sign-on between your institution’s website and Oxford Academic.

  • Click Sign in through your institution.
  • Select your institution from the list provided, which will take you to your institution's website to sign in.
  • When on the institution site, please use the credentials provided by your institution. Do not use an Oxford Academic personal account.
  • Following successful sign in, you will be returned to Oxford Academic.

If your institution is not listed or you cannot sign in to your institution’s website, please contact your librarian or administrator.

Sign in with a library card

Enter your library card number to sign in. If you cannot sign in, please contact your librarian.

Society Members

Society member access to a journal is achieved in one of the following ways:

Sign in through society site

Many societies offer single sign-on between the society website and Oxford Academic. If you see ‘Sign in through society site’ in the sign in pane within a journal:

  • Click Sign in through society site.
  • When on the society site, please use the credentials provided by that society. Do not use an Oxford Academic personal account.

If you do not have a society account or have forgotten your username or password, please contact your society.

Sign in using a personal account

Some societies use Oxford Academic personal accounts to provide access to their members. See below.

A personal account can be used to get email alerts, save searches, purchase content, and activate subscriptions.

Some societies use Oxford Academic personal accounts to provide access to their members.

Viewing your signed in accounts

Click the account icon in the top right to:

  • View your signed in personal account and access account management features.
  • View the institutional accounts that are providing access.

Signed in but can't access content

Oxford Academic is home to a wide variety of products. The institutional subscription may not cover the content that you are trying to access. If you believe you should have access to that content, please contact your librarian.

For librarians and administrators, your personal account also provides access to institutional account management. Here you will find options to view and activate subscriptions, manage institutional settings and access options, access usage statistics, and more.

Our books are available by subscription or purchase to libraries and institutions.

  • About Oxford Academic
  • Publish journals with us
  • University press partners
  • What we publish
  • New features  
  • Open access
  • Rights and permissions
  • Accessibility
  • Advertising
  • Media enquiries
  • Oxford University Press
  • Oxford Languages
  • University of Oxford

Oxford University Press is a department of the University of Oxford. It furthers the University's objective of excellence in research, scholarship, and education by publishing worldwide

  • Copyright © 2024 Oxford University Press
  • Cookie settings
  • Cookie policy
  • Privacy policy
  • Legal notice

This Feature Is Available To Subscribers Only

Sign In or Create an Account

This PDF is available to Subscribers Only

For full access to this pdf, sign in to an existing account, or purchase an annual subscription.

IMAGES

  1. Nebular Theory Diagram Diagram

    nebular hypothesis theory quizlet

  2. Nebular Theory Flow Map Diagram

    nebular hypothesis theory quizlet

  3. The Nebular Theory Diagram

    nebular hypothesis theory quizlet

  4. Our Solar System Formation (Nebular Theory) Diagram

    nebular hypothesis theory quizlet

  5. PPT

    nebular hypothesis theory quizlet

  6. Formation of the Solar System The Solar Nebular

    nebular hypothesis theory quizlet

VIDEO

  1. Giant Impect hypothesis Theory

  2. Nebular Hypothesis

  3. NEBULAR HYPOTHESIS DELUXE

  4. NEBULAR HYPOTHESIS OF LAPLACE |Origin of the universe| CLass XI Geography

  5. Nebular Hypothesis

  6. III ECE B SS UNIT V NEBULAR HYPOTHESIS & ROTATION AND REVOLUTION OF PLANETS 05 03 24

COMMENTS

  1. The Nebular Hypothesis Flashcards

    Theory that believes that all bodies in our solar system evolved from an enormous rotating cloud called the solar nebula. Explain the Nebular Hypothesis. 1) The solar system begins as a cloud of dust and gas (nebula) 2) Nebula rotates and collapses toward the center of the cloud. 3) Heat and pressure is generated at the center forming the Sun.

  2. Nebular Hypothesis Flashcards

    Study with Quizlet and memorize flashcards containing terms like asteroid belt, 5 billion years, 13.7 billion years and more. ... a theory that is not proven. our solar system. the nebular hypothesis describes the creation of. Students also viewed. Brain Pop Branches of Government. 15 terms. susiebl TEACHER. Science 8 - Moon Features.

  3. 8.2: Origin of the Solar System—The Nebular Hypothesis

    The nebular hypothesis is the idea that a spinning cloud of dust made of mostly light elements, called a nebula, flattened into a protoplanetary disk, and became a solar system consisting of a star with orbiting planets [ 12 ]. The spinning nebula collected the vast majority of material in its center, which is why the sun Accounts for over 99% ...

  4. 2.2: Origin of the Solar System

    Figure 2.2.1 2.2. 1: Small protoplanetary discs in the Orion Nebula. Our solar system formed as the same time as our Sun as described in the nebular hypothesis. The nebular hypothesis is the idea that a spinning cloud of dust made of mostly light elements, called a nebula, flattened into a protoplanetary disk, and became a solar system ...

  5. 7.6: The Nebular Theory

    This states that the solar system developed out of an interstellar cloud of dust and gas, called a nebula . This theory best accounts for the objects we currently find in the Solar System and the distribution of these objects.The Nebular Theory would have started with a cloud of gas and dust, most likely left over from a previous supernova.

  6. Nebular hypothesis

    The nebular hypothesis is the most widely accepted model in the field of cosmogony to explain the formation and evolution of the Solar System (as well as other planetary systems).It suggests the Solar System is formed from gas and dust orbiting the Sun which clumped up together to form the planets. The theory was developed by Immanuel Kant and published in his Universal Natural History and ...

  7. How Was the Solar System Formed?

    Nebular Hypothesis: According to this theory, the Sun and all the planets of our Solar System began as a giant cloud of molecular gas and dust. Then, about 4.57 billion years ago, something ...

  8. 1.2. How did our Solar System form?

    The Nebular Theory is the scientific theory for how stars and planets form from molecular clouds and their own gravity. The majority of the material within the giant molecular cloud that formed our solar system consisted of hydrogen and helium produced at the time of the big bang. Nuclear fusion within stars forms heavier elements under extreme ...

  9. 16.2: Nebular theory

    It is a nebula called Messier 42. Figure 16.2.1 16.2. 1: The Messier 42 nebula, shown in the context of the "scabbard" of the constellation Orion. Nebulae like Messier 42 are common features of the galaxy, but not as common as stars. Nebulae appear to be short-lived features, as matter is often attracted to other matter.

  10. History of Solar System formation and evolution hypotheses

    The most widely accepted model of planetary formation is known as the nebular hypothesis.This model posits that, 4.6 billion years ago, the Solar System was formed by the gravitational collapse of a giant molecular cloud spanning several light-years.Many stars, including the Sun, were formed within this collapsing cloud.The gas that formed the Solar System was slightly more massive than the ...

  11. Nebular theory and the formation of the solar system

    Nebular theory. The prevailing scientific explanation for the origin of the Earth does a good job of not only explaining the Earth's formation, but the Sun and all the other planets too. Really, it's not "the Earth's origin story" alone so much as it is the origin story of the whole solar system. Not only that, but our Sun is but one ...

  12. The Nebular Theory: Other Important Evidence

    46 The Nebular Theory: Other Important Evidence The types of objects found within the solar system provide significant clues and evidence to support the Nebular Theory. First, the types of Planets and their distributions: with the Rocky planets being close to the Sun, and Gas Giants planets being far from the Sun, Dwarf Planets or Plutoids, a class of Dwarf planets, are found far from the Sun ...

  13. 15.2: Origin of the Solar System—The Nebular Hypothesis

    The nebular hypothesis is the idea that a spinning cloud of dust made of mostly light elements, called a nebula, flattened into a protoplanetary disk, and became a solar system consisting of a star with orbiting planets [ 12 ]. The spinning nebula collected the vast majority of material in its center, which is why the sun Accounts for over 99% ...

  14. Solar nebula

    solar nebula, gaseous cloud from which, in the so-called nebular hypothesis of the origin of the solar system, the Sun and planets formed by condensation. Swedish philosopher Emanuel Swedenborg in 1734 proposed that the planets formed out of a nebular crust that had surrounded the Sun and then broken apart. In 1755 the German philosopher Immanuel Kant suggested that a nebula in slow rotation ...

  15. The Nebular Theory

    This states that the solar system developed out of an interstellar cloud of dust and gas, called a nebula . This theory best accounts for the objects we currently find in the Solar System and the distribution of these objects.The Nebular Theory would have started with a cloud of gas and dust, most likely left over from a previous supernova.

  16. The Rise and Fall of the Nebular Hypothesis

    The fission theory resembled the nebular hypothesis in holding that the gravity of the Sun had pulled off a bulge in the proto-Earth which became the Moon. The co-accretion theory held that the Moon and the Earth had formed near each other and thus were like sister planets. The capture theory imagined that the Moon had started out in some ...

  17. Solar system

    Another problem with the nebular hypothesis was the fact that, whereas the Sun contains 99.9 percent of the mass of the solar system, the planets (principally the four giant outer planets) carry more than 99 percent of the system's angular momentum. For the solar system to conform to this theory, either the Sun should be rotating more rapidly ...