This is the Difference Between a Hypothesis and a Theory

What to Know A hypothesis is an assumption made before any research has been done. It is formed so that it can be tested to see if it might be true. A theory is a principle formed to explain the things already shown in data. Because of the rigors of experiment and control, it is much more likely that a theory will be true than a hypothesis.

As anyone who has worked in a laboratory or out in the field can tell you, science is about process: that of observing, making inferences about those observations, and then performing tests to see if the truth value of those inferences holds up. The scientific method is designed to be a rigorous procedure for acquiring knowledge about the world around us.

hypothesis

In scientific reasoning, a hypothesis is constructed before any applicable research has been done. A theory, on the other hand, is supported by evidence: it's a principle formed as an attempt to explain things that have already been substantiated by data.

Toward that end, science employs a particular vocabulary for describing how ideas are proposed, tested, and supported or disproven. And that's where we see the difference between a hypothesis and a theory .

A hypothesis is an assumption, something proposed for the sake of argument so that it can be tested to see if it might be true.

In the scientific method, the hypothesis is constructed before any applicable research has been done, apart from a basic background review. You ask a question, read up on what has been studied before, and then form a hypothesis.

What is a Hypothesis?

A hypothesis is usually tentative, an assumption or suggestion made strictly for the objective of being tested.

When a character which has been lost in a breed, reappears after a great number of generations, the most probable hypothesis is, not that the offspring suddenly takes after an ancestor some hundred generations distant, but that in each successive generation there has been a tendency to reproduce the character in question, which at last, under unknown favourable conditions, gains an ascendancy. Charles Darwin, On the Origin of Species , 1859 According to one widely reported hypothesis , cell-phone transmissions were disrupting the bees' navigational abilities. (Few experts took the cell-phone conjecture seriously; as one scientist said to me, "If that were the case, Dave Hackenberg's hives would have been dead a long time ago.") Elizabeth Kolbert, The New Yorker , 6 Aug. 2007

What is a Theory?

A theory , in contrast, is a principle that has been formed as an attempt to explain things that have already been substantiated by data. It is used in the names of a number of principles accepted in the scientific community, such as the Big Bang Theory . Because of the rigors of experimentation and control, its likelihood as truth is much higher than that of a hypothesis.

It is evident, on our theory , that coasts merely fringed by reefs cannot have subsided to any perceptible amount; and therefore they must, since the growth of their corals, either have remained stationary or have been upheaved. Now, it is remarkable how generally it can be shown, by the presence of upraised organic remains, that the fringed islands have been elevated: and so far, this is indirect evidence in favour of our theory . Charles Darwin, The Voyage of the Beagle , 1839 An example of a fundamental principle in physics, first proposed by Galileo in 1632 and extended by Einstein in 1905, is the following: All observers traveling at constant velocity relative to one another, should witness identical laws of nature. From this principle, Einstein derived his theory of special relativity. Alan Lightman, Harper's , December 2011

Non-Scientific Use

In non-scientific use, however, hypothesis and theory are often used interchangeably to mean simply an idea, speculation, or hunch (though theory is more common in this regard):

The theory of the teacher with all these immigrant kids was that if you spoke English loudly enough they would eventually understand. E. L. Doctorow, Loon Lake , 1979 Chicago is famous for asking questions for which there can be no boilerplate answers. Example: given the probability that the federal tax code, nondairy creamer, Dennis Rodman and the art of mime all came from outer space, name something else that has extraterrestrial origins and defend your hypothesis . John McCormick, Newsweek , 5 Apr. 1999 In his mind's eye, Miller saw his case suddenly taking form: Richard Bailey had Helen Brach killed because she was threatening to sue him over the horses she had purchased. It was, he realized, only a theory , but it was one he felt certain he could, in time, prove. Full of urgency, a man with a mission now that he had a hypothesis to guide him, he issued new orders to his troops: Find out everything you can about Richard Bailey and his crowd. Howard Blum, Vanity Fair , January 1995

And sometimes one term is used as a genus, or a means for defining the other:

Laplace's popular version of his astronomy, the Système du monde , was famous for introducing what came to be known as the nebular hypothesis , the theory that the solar system was formed by the condensation, through gradual cooling, of the gaseous atmosphere (the nebulae) surrounding the sun. Louis Menand, The Metaphysical Club , 2001 Researchers use this information to support the gateway drug theory — the hypothesis that using one intoxicating substance leads to future use of another. Jordy Byrd, The Pacific Northwest Inlander , 6 May 2015 Fox, the business and economics columnist for Time magazine, tells the story of the professors who enabled those abuses under the banner of the financial theory known as the efficient market hypothesis . Paul Krugman, The New York Times Book Review , 9 Aug. 2009

Incorrect Interpretations of "Theory"

Since this casual use does away with the distinctions upheld by the scientific community, hypothesis and theory are prone to being wrongly interpreted even when they are encountered in scientific contexts—or at least, contexts that allude to scientific study without making the critical distinction that scientists employ when weighing hypotheses and theories.

The most common occurrence is when theory is interpreted—and sometimes even gleefully seized upon—to mean something having less truth value than other scientific principles. (The word law applies to principles so firmly established that they are almost never questioned, such as the law of gravity.)

This mistake is one of projection: since we use theory in general use to mean something lightly speculated, then it's implied that scientists must be talking about the same level of uncertainty when they use theory to refer to their well-tested and reasoned principles.

The distinction has come to the forefront particularly on occasions when the content of science curricula in schools has been challenged—notably, when a school board in Georgia put stickers on textbooks stating that evolution was "a theory, not a fact, regarding the origin of living things." As Kenneth R. Miller, a cell biologist at Brown University, has said , a theory "doesn’t mean a hunch or a guess. A theory is a system of explanations that ties together a whole bunch of facts. It not only explains those facts, but predicts what you ought to find from other observations and experiments.”

While theories are never completely infallible, they form the basis of scientific reasoning because, as Miller said "to the best of our ability, we’ve tested them, and they’ve held up."

More Differences Explained

  • Epidemic vs. Pandemic
  • Diagnosis vs. Prognosis
  • Treatment vs. Cure

Word of the Day

See Definitions and Examples »

Get Word of the Day daily email!

Games & Quizzes

Play Quordle: Guess all four words in a limited number of tries.  Each of your guesses must be a real 5-letter word.

Commonly Confused

'canceled' or 'cancelled', what’s the difference between ‘hillbilly’ and ‘redneck’, is it 'home in' or 'hone in', the difference between 'race' and 'ethnicity', homophones, homographs, and homonyms, grammar & usage, primary and caucus: what is the difference, words commonly mispronounced, merriam-webster’s great big list of words you love to hate, more commonly misspelled words, commonly misspelled words, 12 words for signs of spring, 12 more bird names that sound like insults (and sometimes are), 13 unusually long english words, 12 star wars words, the words of the week - may 3.

Hypothesis vs. Theory

A hypothesis is either a suggested explanation for an observable phenomenon, or a reasoned prediction of a possible causal correlation among multiple phenomena. In science , a theory is a tested, well-substantiated, unifying explanation for a set of verified, proven factors. A theory is always backed by evidence; a hypothesis is only a suggested possible outcome, and is testable and falsifiable.

Comparison chart

Examples of theory and hypothesis.

Theory: Einstein's theory of relativity is a theory because it has been tested and verified innumerable times, with results consistently verifying Einstein's conclusion. However, simply because Einstein's conclusion has become a theory does not mean testing of this theory has stopped; all science is ongoing. See also the Big Bang theory , germ theory , and climate change .

Hypothesis: One might think that a prisoner who learns a work skill while in prison will be less likely to commit a crime when released. This is a hypothesis, an "educated guess." The scientific method can be used to test this hypothesis, to either prove it is false or prove that it warrants further study. (Note: Simply because a hypothesis is not found to be false does not mean it is true all or even most of the time. If it is consistently true after considerable time and research, it may be on its way to becoming a theory.)

This video further explains the difference between a theory and a hypothesis:

Common Misconception

People often tend to say "theory" when what they're actually talking about is a hypothesis. For instance, "Migraines are caused by drinking coffee after 2 p.m. — well, it's just a theory, not a rule."

This is actually a logically reasoned proposal based on an observation — say 2 instances of drinking coffee after 2 p.m. caused a migraine — but even if this were true, the migraine could have actually been caused by some other factors.

Because this observation is merely a reasoned possibility, it is testable and can be falsified — which makes it a hypothesis, not a theory.

  • What is a Scientific Hypothesis? - LiveScience
  • Wikipedia:Scientific theory

Related Comparisons

Accuracy vs Precision

Share this comparison via:

If you read this far, you should follow us:

"Hypothesis vs Theory." Diffen.com. Diffen LLC, n.d. Web. 3 May 2024. < >

Comments: Hypothesis vs Theory

Anonymous comments (2).

October 11, 2013, 1:11pm "In science, a theory is a well-substantiated, unifying explanation for a set of verified, proven hypotheses." But there's no such thing as "proven hypotheses". Hypotheses can be tested/falsified, they can't be "proven". That's just not how science works. Logical deductions based on axioms can be proven, but not scientific hypotheses. On top of that I find it somewhat strange to claim that a theory doesn't have to be testable, if it's built up from hypotheses, which DO have to be testable... — 80.✗.✗.139
May 6, 2014, 11:45pm "Evolution is a theory, not a fact, regarding the origin of living things." this statement is poorly formed because it implies that a thing is a theory until it gets proven and then it is somehow promoted to fact. this is just a misunderstanding of what the words mean, and of how science progresses generally. to say that a theory is inherently dubious because "it isn't a fact" is pretty much a meaningless statement. no expression which qualified as a mere fact could do a very good job of explaining the complicated process by which species have arisen on Earth over the last billion years. in fact, if you claimed that you could come up with such a single fact, now THAT would be dubious! everything we observe in nature supports the theory of evolution, and nothing we observe contradicts it. when you can say this about a theory, it's a pretty fair bet that the theory is correct. — 71.✗.✗.151
  • Accuracy vs Precision
  • Deductive vs Inductive
  • Subjective vs Objective
  • Subconscious vs Unconscious mind
  • Qualitative vs Quantitative
  • Creationism vs Evolution

Edit or create new comparisons in your area of expertise.

Stay connected

© All rights reserved.

If you're seeing this message, it means we're having trouble loading external resources on our website.

If you're behind a web filter, please make sure that the domains *.kastatic.org and *.kasandbox.org are unblocked.

To log in and use all the features of Khan Academy, please enable JavaScript in your browser.

Biology library

Course: biology library   >   unit 1, the scientific method.

  • Controlled experiments
  • The scientific method and experimental design

Introduction

  • Make an observation.
  • Ask a question.
  • Form a hypothesis , or testable explanation.
  • Make a prediction based on the hypothesis.
  • Test the prediction.
  • Iterate: use the results to make new hypotheses or predictions.

Scientific method example: Failure to toast

1. make an observation..

  • Observation: the toaster won't toast.

2. Ask a question.

  • Question: Why won't my toaster toast?

3. Propose a hypothesis.

  • Hypothesis: Maybe the outlet is broken.

4. Make predictions.

  • Prediction: If I plug the toaster into a different outlet, then it will toast the bread.

5. Test the predictions.

  • Test of prediction: Plug the toaster into a different outlet and try again.
  • If the toaster does toast, then the hypothesis is supported—likely correct.
  • If the toaster doesn't toast, then the hypothesis is not supported—likely wrong.

Logical possibility

Practical possibility, building a body of evidence, 6. iterate..

  • Iteration time!
  • If the hypothesis was supported, we might do additional tests to confirm it, or revise it to be more specific. For instance, we might investigate why the outlet is broken.
  • If the hypothesis was not supported, we would come up with a new hypothesis. For instance, the next hypothesis might be that there's a broken wire in the toaster.

Want to join the conversation?

  • Upvote Button navigates to signup page
  • Downvote Button navigates to signup page
  • Flag Button navigates to signup page

Incredible Answer

Library homepage

  • school Campus Bookshelves
  • menu_book Bookshelves
  • perm_media Learning Objects
  • login Login
  • how_to_reg Request Instructor Account
  • hub Instructor Commons
  • Download Page (PDF)
  • Download Full Book (PDF)
  • Periodic Table
  • Physics Constants
  • Scientific Calculator
  • Reference & Cite
  • Tools expand_more
  • Readability

selected template will load here

This action is not available.

Chemistry LibreTexts

1.3: Hypothesis, Theories, and Laws

  • Last updated
  • Save as PDF
  • Page ID 97964

  Learning Objectives

  • Describe the difference between hypothesis and theory as scientific terms.
  • Describe the difference between a theory and scientific law.

Although many have taken science classes throughout the course of their studies, people often have incorrect or misleading ideas about some of the most important and basic principles in science. Most students have heard of hypotheses, theories, and laws, but what do these terms really mean? Prior to reading this section, consider what you have learned about these terms before. What do these terms mean to you? What do you read that contradicts or supports what you thought?

What is a Fact?

A fact is a basic statement established by experiment or observation. All facts are true under the specific conditions of the observation.

What is a Hypothesis?

One of the most common terms used in science classes is a "hypothesis". The word can have many different definitions, depending on the context in which it is being used:

  • An educated guess: a scientific hypothesis provides a suggested solution based on evidence.
  • Prediction: if you have ever carried out a science experiment, you probably made this type of hypothesis when you predicted the outcome of your experiment.
  • Tentative or proposed explanation: hypotheses can be suggestions about why something is observed. In order for it to be scientific, however, a scientist must be able to test the explanation to see if it works and if it is able to correctly predict what will happen in a situation. For example, "if my hypothesis is correct, we should see ___ result when we perform ___ test."
A hypothesis is very tentative; it can be easily changed.

What is a Theory?

The United States National Academy of Sciences describes what a theory is as follows:

"Some scientific explanations are so well established that no new evidence is likely to alter them. The explanation becomes a scientific theory. In everyday language a theory means a hunch or speculation. Not so in science. In science, the word theory refers to a comprehensive explanation of an important feature of nature supported by facts gathered over time. Theories also allow scientists to make predictions about as yet unobserved phenomena."

"A scientific theory is a well-substantiated explanation of some aspect of the natural world, based on a body of facts that have been repeatedly confirmed through observation and experimentation. Such fact-supported theories are not "guesses" but reliable accounts of the real world. The theory of biological evolution is more than "just a theory." It is as factual an explanation of the universe as the atomic theory of matter (stating that everything is made of atoms) or the germ theory of disease (which states that many diseases are caused by germs). Our understanding of gravity is still a work in progress. But the phenomenon of gravity, like evolution, is an accepted fact.

Note some key features of theories that are important to understand from this description:

  • Theories are explanations of natural phenomena. They aren't predictions (although we may use theories to make predictions). They are explanations as to why we observe something.
  • Theories aren't likely to change. They have a large amount of support and are able to satisfactorily explain numerous observations. Theories can, indeed, be facts. Theories can change, but it is a long and difficult process. In order for a theory to change, there must be many observations or pieces of evidence that the theory cannot explain.
  • Theories are not guesses. The phrase "just a theory" has no room in science. To be a scientific theory carries a lot of weight; it is not just one person's idea about something
Theories aren't likely to change.

What is a Law?

Scientific laws are similar to scientific theories in that they are principles that can be used to predict the behavior of the natural world. Both scientific laws and scientific theories are typically well-supported by observations and/or experimental evidence. Usually scientific laws refer to rules for how nature will behave under certain conditions, frequently written as an equation. Scientific theories are more overarching explanations of how nature works and why it exhibits certain characteristics. As a comparison, theories explain why we observe what we do and laws describe what happens.

For example, around the year 1800, Jacques Charles and other scientists were working with gases to, among other reasons, improve the design of the hot air balloon. These scientists found, after many, many tests, that certain patterns existed in the observations on gas behavior. If the temperature of the gas is increased, the volume of the gas increased. This is known as a natural law. A law is a relationship that exists between variables in a group of data. Laws describe the patterns we see in large amounts of data, but do not describe why the patterns exist.

What is a Belief?

A belief is a statement that is not scientifically provable. Beliefs may or may not be incorrect; they just are outside the realm of science to explore.

Laws vs. Theories

A common misconception is that scientific theories are rudimentary ideas that will eventually graduate into scientific laws when enough data and evidence has accumulated. A theory does not change into a scientific law with the accumulation of new or better evidence. Remember, theories are explanations and laws are patterns we see in large amounts of data, frequently written as an equation. A theory will always remain a theory; a law will always remain a law.

Video \(\PageIndex{1}\): What’s the difference between a scientific law and theory?

  • A hypothesis is a tentative explanation that can be tested by further investigation.
  • A theory is a well-supported explanation of observations.
  • A scientific law is a statement that summarizes the relationship between variables.
  • An experiment is a controlled method of testing a hypothesis.

Contributions & Attributions

Marisa Alviar-Agnew  ( Sacramento City College )

Henry Agnew (UC Davis)

Library homepage

  • school Campus Bookshelves
  • menu_book Bookshelves
  • perm_media Learning Objects
  • login Login
  • how_to_reg Request Instructor Account
  • hub Instructor Commons
  • Download Page (PDF)
  • Download Full Book (PDF)
  • Periodic Table
  • Physics Constants
  • Scientific Calculator
  • Reference & Cite
  • Tools expand_more
  • Readability

selected template will load here

This action is not available.

Social Sci LibreTexts

Developing Theories & Hypotheses

  • Last updated
  • Save as PDF
  • Page ID 40843

2.5: Developing a Hypothesis

Learning objectives.

  • Distinguish between a theory and a hypothesis.
  • Discover how theories are used to generate hypotheses and how the results of studies can be used to further inform theories.
  • Understand the characteristics of a good hypothesis.

Theories and Hypotheses

Before describing how to develop a hypothesis, it is important to distinguish between a theory and a hypothesis. A theory is a coherent explanation or interpretation of one or more phenomena. Although theories can take a variety of forms, one thing they have in common is that they go beyond the phenomena they explain by including variables, structures, processes, functions, or organizing principles that have not been observed directly. Consider, for example, Zajonc’s theory of social facilitation and social inhibition (1965) [1] . He proposed that being watched by others while performing a task creates a general state of physiological arousal, which increases the likelihood of the dominant (most likely) response. So for highly practiced tasks, being watched increases the tendency to make correct responses, but for relatively unpracticed tasks, being watched increases the tendency to make incorrect responses. Notice that this theory—which has come to be called drive theory—provides an explanation of both social facilitation and social inhibition that goes beyond the phenomena themselves by including concepts such as “arousal” and “dominant response,” along with processes such as the effect of arousal on the dominant response.

Outside of science, referring to an idea as a theory often implies that it is untested—perhaps no more than a wild guess. In science, however, the term theory has no such implication. A theory is simply an explanation or interpretation of a set of phenomena. It can be untested, but it can also be extensively tested, well supported, and accepted as an accurate description of the world by the scientific community. The theory of evolution by natural selection, for example, is a theory because it is an explanation of the diversity of life on earth—not because it is untested or unsupported by scientific research. On the contrary, the evidence for this theory is overwhelmingly positive and nearly all scientists accept its basic assumptions as accurate. Similarly, the “germ theory” of disease is a theory because it is an explanation of the origin of various diseases, not because there is any doubt that many diseases are caused by microorganisms that infect the body.

A hypothesis , on the other hand, is a specific prediction about a new phenomenon that should be observed if a particular theory is accurate. It is an explanation that relies on just a few key concepts. Hypotheses are often specific predictions about what will happen in a particular study. They are developed by considering existing evidence and using reasoning to infer what will happen in the specific context of interest. Hypotheses are often but not always derived from theories. So a hypothesis is often a prediction based on a theory but some hypotheses are a-theoretical and only after a set of observations have been made, is a theory developed. This is because theories are broad in nature and they explain larger bodies of data. So if our research question is really original then we may need to collect some data and make some observations before we can develop a broader theory.

Theories and hypotheses always have this if-then relationship. “ If drive theory is correct, then cockroaches should run through a straight runway faster, and a branching runway more slowly, when other cockroaches are present.” Although hypotheses are usually expressed as statements, they can always be rephrased as questions. “Do cockroaches run through a straight runway faster when other cockroaches are present?” Thus deriving hypotheses from theories is an excellent way of generating interesting research questions.

But how do researchers derive hypotheses from theories? One way is to generate a research question using the techniques discussed in this chapter and then ask whether any theory implies an answer to that question. For example, you might wonder whether expressive writing about positive experiences improves health as much as expressive writing about traumatic experiences. Although this question is an interesting one on its own, you might then ask whether the habituation theory—the idea that expressive writing causes people to habituate to negative thoughts and feelings—implies an answer. In this case, it seems clear that if the habituation theory is correct, then expressive writing about positive experiences should not be effective because it would not cause people to habituate to negative thoughts and feelings. A second way to derive hypotheses from theories is to focus on some component of the theory that has not yet been directly observed. For example, a researcher could focus on the process of habituation—perhaps hypothesizing that people should show fewer signs of emotional distress with each new writing session.

Among the very best hypotheses are those that distinguish between competing theories. For example, Norbert Schwarz and his colleagues considered two theories of how people make judgments about themselves, such as how assertive they are (Schwarz et al., 1991) [2] . Both theories held that such judgments are based on relevant examples that people bring to mind. However, one theory was that people base their judgments on the number of examples they bring to mind and the other was that people base their judgments on how easily they bring those examples to mind. To test these theories, the researchers asked people to recall either six times when they were assertive (which is easy for most people) or 12 times (which is difficult for most people). Then they asked them to judge their own assertiveness. Note that the number-of-examples theory implies that people who recalled 12 examples should judge themselves to be more assertive because they recalled more examples, but the ease-of-examples theory implies that participants who recalled six examples should judge themselves as more assertive because recalling the examples was easier. Thus the two theories made opposite predictions so that only one of the predictions could be confirmed. The surprising result was that participants who recalled fewer examples judged themselves to be more assertive—providing particularly convincing evidence in favor of the ease-of-retrieval theory over the number-of-examples theory.

Theory Testing

The primary way that scientific researchers use theories is sometimes called the hypothetico-deductive method (although this term is much more likely to be used by philosophers of science than by scientists themselves). Researchers begin with a set of phenomena and either construct a theory to explain or interpret them or choose an existing theory to work with. They then make a prediction about some new phenomenon that should be observed if the theory is correct. Again, this prediction is called a hypothesis. The researchers then conduct an empirical study to test the hypothesis. Finally, they reevaluate the theory in light of the new results and revise it if necessary. This process is usually conceptualized as a cycle because the researchers can then derive a new hypothesis from the revised theory, conduct a new empirical study to test the hypothesis, and so on. As Figure \(\PageIndex{1}\) shows, this approach meshes nicely with the model of scientific research in psychology presented earlier in the textbook—creating a more detailed model of “theoretically motivated” or “theory-driven” research.

4.4.png

As an example, let us consider Zajonc’s research on social facilitation and inhibition. He started with a somewhat contradictory pattern of results from the research literature. He then constructed his drive theory, according to which being watched by others while performing a task causes physiological arousal, which increases an organism’s tendency to make the dominant response. This theory predicts social facilitation for well-learned tasks and social inhibition for poorly learned tasks. He now had a theory that organized previous results in a meaningful way—but he still needed to test it. He hypothesized that if his theory was correct, he should observe that the presence of others improves performance in a simple laboratory task but inhibits performance in a difficult version of the very same laboratory task. To test this hypothesis, one of the studies he conducted used cockroaches as subjects (Zajonc, Heingartner, & Herman, 1969) [3] . The cockroaches ran either down a straight runway (an easy task for a cockroach) or through a cross-shaped maze (a difficult task for a cockroach) to escape into a dark chamber when a light was shined on them. They did this either while alone or in the presence of other cockroaches in clear plastic “audience boxes.” Zajonc found that cockroaches in the straight runway reached their goal more quickly in the presence of other cockroaches, but cockroaches in the cross-shaped maze reached their goal more slowly when they were in the presence of other cockroaches. Thus he confirmed his hypothesis and provided support for his drive theory. (Zajonc also showed that drive theory existed in humans [Zajonc & Sales, 1966] [4] in many other studies afterward).

Incorporating Theory into Your Research

When you write your research report or plan your presentation, be aware that there are two basic ways that researchers usually include theory. The first is to raise a research question, answer that question by conducting a new study, and then offer one or more theories (usually more) to explain or interpret the results. This format works well for applied research questions and for research questions that existing theories do not address. The second way is to describe one or more existing theories, derive a hypothesis from one of those theories, test the hypothesis in a new study, and finally reevaluate the theory. This format works well when there is an existing theory that addresses the research question—especially if the resulting hypothesis is surprising or conflicts with a hypothesis derived from a different theory.

To use theories in your research will not only give you guidance in coming up with experiment ideas and possible projects, but it lends legitimacy to your work. Psychologists have been interested in a variety of human behaviors and have developed many theories along the way. Using established theories will help you break new ground as a researcher, not limit you from developing your own ideas.

There are three general characteristics of a good hypothesis. First, a good hypothesis must be testable and falsifiable . We must be able to test the hypothesis using the methods of science and if you’ll recall Popper’s falsifiability criterion, it must be possible to gather evidence that will disconfirm the hypothesis if it is indeed false. Second, a good hypothesis must be logical. As described above, hypotheses are more than just a random guess. Hypotheses should be informed by previous theories or observations and logical reasoning. Typically, we begin with a broad and general theory and use deductive reasoning to generate a more specific hypothesis to test based on that theory. Occasionally, however, when there is no theory to inform our hypothesis, we use inductive reasoning which involves using specific observations or research findings to form a more general hypothesis. Finally, the hypothesis should be positive. That is, the hypothesis should make a positive statement about the existence of a relationship or effect, rather than a statement that a relationship or effect does not exist. As scientists, we don’t set out to show that relationships do not exist or that effects do not occur so our hypotheses should not be worded in a way to suggest that an effect or relationship does not exist. The nature of science is to assume that something does not exist and then seek to find evidence to prove this wrong, to show that it really does exist. That may seem backward to you but that is the nature of the scientific method. The underlying reason for this is beyond the scope of this chapter but it has to do with statistical theory.

  • Zajonc, R. B. (1965). Social facilitation. Science, 149 , 269–274 ↵
  • Schwarz, N., Bless, H., Strack, F., Klumpp, G., Rittenauer-Schatka, H., & Simons, A. (1991). Ease of retrieval as information: Another look at the availability heuristic. Journal of Personality and Social Psychology, 61 , 195–202. ↵
  • Zajonc, R. B., Heingartner, A., & Herman, E. M. (1969). Social enhancement and impairment of performance in the cockroach. Journal of Personality and Social Psychology, 13 , 83–92. ↵
  • Zajonc, R.B. & Sales, S.M. (1966). Social facilitation of dominant and subordinate responses. Journal of Experimental Social Psychology, 2 , 160-168. ↵

Back Home

  • Science Notes Posts
  • Contact Science Notes
  • Todd Helmenstine Biography
  • Anne Helmenstine Biography
  • Free Printable Periodic Tables (PDF and PNG)
  • Periodic Table Wallpapers
  • Interactive Periodic Table
  • Periodic Table Posters
  • How to Grow Crystals
  • Chemistry Projects
  • Fire and Flames Projects
  • Holiday Science
  • Chemistry Problems With Answers
  • Physics Problems
  • Unit Conversion Example Problems
  • Chemistry Worksheets
  • Biology Worksheets
  • Periodic Table Worksheets
  • Physical Science Worksheets
  • Science Lab Worksheets
  • My Amazon Books

Scientific Theory Definition and Examples

Scientific Theory Definition

A scientific theory is a well-established explanation of some aspect of the natural world. Theories come from scientific data and multiple experiments. While it is not possible to prove a theory, a single contrary result using the scientific method can disprove it. In other words, a theory is testable and falsifiable.

Examples of Scientific Theories

There are many scientific theory in different disciplines:

  • Astronomy : theory of stellar nucleosynthesis , theory of stellar evolution
  • Biology : cell theory, theory of evolution, germ theory, dual inheritance theory
  • Chemistry : atomic theory, Bronsted Lowry acid-base theory , kinetic molecular theory of gases , Lewis acid-base theory , molecular theory, valence bond theory
  • Geology : climate change theory, plate tectonics theory
  • Physics : Big Bang theory, perturbation theory, theory of relativity, quantum field theory

Criteria for a Theory

In order for an explanation of the natural world to be a theory, it meets certain criteria:

  • A theory is falsifiable. At some point, a theory withstands testing and experimentation using the scientific method.
  • A theory is supported by lots of independent evidence.
  • A theory explains existing experimental results and predicts outcomes of new experiments at least as well as other theories.

Difference Between a Scientific Theory and Theory

Usually, a scientific theory is just called a theory. However, a theory in science means something different from the way most people use the word. For example, if frogs rain down from the sky, a person might observe the frogs and say, “I have a theory about why that happened.” While that theory might be an explanation, it is not based on multiple observations and experiments. It might not be testable and falsifiable. It’s not a scientific theory (although it could eventually become one).

Value of Disproven Theories

Even though some theories are incorrect, they often retain value.

For example, Arrhenius acid-base theory does not explain the behavior of chemicals lacking hydrogen that behave as acids. The Bronsted Lowry and Lewis theories do a better job of explaining this behavior. Yet, the Arrhenius theory predicts the behavior of most acids and is easier for people to understand.

Another example is the theory of Newtonian mechanics. The theory of relativity is much more inclusive than Newtonian mechanics, which breaks down in certain frames of reference or at speeds close to the speed of light . But, Newtonian mechanics is much simpler to understand and its equations apply to everyday behavior.

Difference Between a Scientific Theory and a Scientific Law

The scientific method leads to the formulation of both scientific theories and laws . Both theories and laws are falsifiable. Both theories and laws help with making predictions about the natural world. However, there is a key difference.

A theory explains why or how something works, while a law describes what happens without explaining it. Often, you see laws written in the form of equations or formulas.

Theories and laws are related, but theories never become laws or vice versa.

Theory vs Hypothesis

A hypothesis is a proposition that is tested via an experiment. A theory results from many, many tested hypotheses.

Theory vs Fact

Theories depend on facts, but the two words mean different things. A fact is an irrefutable piece of evidence or data. Facts never change. A theory, on the other hand, may be modified or disproven.

Difference Between a Theory and a Model

Both theories and models allow a scientist to form a hypothesis and make predictions about future outcomes. However, a theory both describes and explains, while a model only describes. For example, a model of the solar system shows the arrangement of planets and asteroids in a plane around the Sun, but it does not explain how or why they got into their positions.

  • Frigg, Roman (2006). “ Scientific Representation and the Semantic View of Theories .”  Theoria . 55 (2): 183–206. 
  • Halvorson, Hans (2012). “What Scientific Theories Could Not Be.”  Philosophy of Science . 79 (2): 183–206. doi: 10.1086/664745
  • McComas, William F. (December 30, 2013).  The Language of Science Education: An Expanded Glossary of Key Terms and Concepts in Science Teaching and Learning . Springer Science & Business Media. ISBN 978-94-6209-497-0.
  • National Academy of Sciences (US) (1999). Science and Creationism: A View from the National Academy of Sciences (2nd ed.). National Academies Press. doi: 10.17226/6024  ISBN 978-0-309-06406-4. 
  • Suppe, Frederick (1998). “Understanding Scientific Theories: An Assessment of Developments, 1969–1998.”  Philosophy of Science . 67: S102–S115. doi: 10.1086/392812

Related Posts

“Theory” vs. “Hypothesis”: What Is The Difference?

Chances are you’ve heard of the TV show The Big Bang Theory . Lots of people love this lighthearted sitcom for its quirky characters and their relationships, but others haven’t even given the series a chance for one reason: they don’t like science and assume the show is boring.

However, it only takes a few seconds with Sheldon and Penny to disprove this assumption and realize that this theory ab0ut The Big Bang Theory is wrong—it isn’t a scientific snoozefest.

But wait: is it a theory or a  hypothesis about the show that leads people astray? And would the actual big bang theory— the one that refers to the beginning of the universe—mean the same thing as a big bang hypothesis ?

Let’s take a closer look at theory and hypothesis to nail down what they mean.

What does theory mean?

As a noun, a theory is a group of tested general propositions “commonly regarded as correct, that can be used as principles of explanation and prediction for a class of phenomena .” This is what is known as a scientific   theory , which by definition is “an understanding that is based on already tested data or results .” Einstein’s theory of relativity and the  theory of evolution are both examples of such tested propositions .

Theory is also defined as a proposed explanation you might make about your own life and observations, and it’s one “whose status is still conjectural and subject to experimentation .” For example:  I’ve got my own theories about why he’s missing his deadlines all the time.  This example refers to an idea that has not yet been proven.

There are other uses of the word theory as well.

  • In this example,  theory is “a body of principles or theorems belonging to one subject.” It can be a branch of science or art that deals with its principles or methods .
  • For example: when she started to follow a new parenting theory based on a trendy book, it caused a conflict with her mother, who kept offering differing opinions .

First recorded in 1590–1600, theory originates from the Late Latin theōria , which stems from the Greek theōría. Synonyms for theory include approach , assumption , doctrine , ideology , method , philosophy , speculation , thesis , and understanding .

What does hypothesis mean?

Hypothesis is a noun that means “a proposition , or set of propositions, set forth as an explanation” that describe “some specified group of phenomena.” Sounds familiar to theory , no?

But, unlike a theory , a scientific  hypothesis is made before testing is done and isn’t based on results. Instead, it is the basis for further investigation . For example: her working hypothesis is that this new drug also has an unintended effect on the heart, and she is curious what the clinical trials  will show .

Hypothesis also refers to “a proposition assumed as a premise in an argument,” or “mere assumption or guess.” For example:

  • She decided to drink more water for a week to test out her hypothesis that dehydration was causing her terrible headaches.
  • After a night of her spouse’s maddening snoring, she came up with the hypothesis that sleeping on his back was exacerbating the problem.

Hypothesis was first recorded around 1590–1600 and originates from the Greek word hypóthesis (“basis, supposition”). Synonyms for hypothesis include: assumption , conclusion , conjecture , guess , inference , premise , theorem , and thesis .

How to use each

Although theory in terms of science is used to express something based on extensive research and experimentation, typically in everyday life, theory is used more casually to express an educated guess.

So in casual language,  theory and hypothesis are more likely to be used interchangeably to express an idea or speculation .

In most everyday uses, theory and hypothesis convey the same meaning. For example:

  • Her opinion is just a theory , of course. She’s just guessing.
  • Her opinion is just a hypothesis , of course. She’s just guessing.

It’s important to remember that a scientific   theory is different. It is based on tested results that support or substantiate it, whereas a hypothesis is formed before the research.

For example:

  • His  hypothesis  for the class science project is that this brand of plant food is better than the rest for helping grass grow.
  • After testing his hypothesis , he developed a new theory based on the experiment results: plant food B is actually more effective than plant food A in helping grass grow.

In these examples, theory “doesn’t mean a hunch or a guess,” according to Kenneth R. Miller, a cell biologist at Brown University. “A theory is a system of explanations that ties together a whole bunch of facts. It not only explains those facts, but predicts what you ought to find from other observations and experiments.”

So if you have a concept that is based on substantiated research, it’s a theory .

But if you’re working off of an assumption that you still need to test, it’s a hypothesis .

So remember, first comes a hypothesis , then comes theory . Now who’s ready for a  Big Bang Theory marathon?

Now that you’ve theorized and hypothesized through this whole article … keep testing your judgment (Or is it judgement?). Find out the correct spelling here!

Or find out the difference between these two common issues below!

WATCH: "Lethologica" vs. "Lethonomia": What's The Difference?

Go Behind The Words!

  • By clicking "Sign Up", you are accepting Dictionary.com Terms & Conditions and Privacy policies.
  • Phone This field is for validation purposes and should be left unchanged.

Commonly Confused

how is hypothesis different from scientific theory

Trending Words

[ skip -lag-ing ]

  • Email This field is for validation purposes and should be left unchanged.

Theories, Hypotheses, and Laws: Definitions, examples, and their roles in science

by Anthony Carpi, Ph.D., Anne E. Egger, Ph.D.

Listen to this reading

Did you know that the idea of evolution had been part of Western thought for more than 2,000 years before Charles Darwin was born? Like many theories, the theory of evolution was the result of the work of many different scientists working in different disciplines over a period of time.

A scientific theory is an explanation inferred from multiple lines of evidence for some broad aspect of the natural world and is logical, testable, and predictive.

As new evidence comes to light, or new interpretations of existing data are proposed, theories may be revised and even change; however, they are not tenuous or speculative.

A scientific hypothesis is an inferred explanation of an observation or research finding; while more exploratory in nature than a theory, it is based on existing scientific knowledge.

A scientific law is an expression of a mathematical or descriptive relationship observed in nature.

Imagine yourself shopping in a grocery store with a good friend who happens to be a chemist. Struggling to choose between the many different types of tomatoes in front of you, you pick one up, turn to your friend, and ask her if she thinks the tomato is organic . Your friend simply chuckles and replies, "Of course it's organic!" without even looking at how the fruit was grown. Why the amused reaction? Your friend is highlighting a simple difference in vocabulary. To a chemist, the term organic refers to any compound in which hydrogen is bonded to carbon. Tomatoes (like all plants) are abundant in organic compounds – thus your friend's laughter. In modern agriculture, however, organic has come to mean food items grown or raised without the use of chemical fertilizers, pesticides, or other additives.

So who is correct? You both are. Both uses of the word are correct, though they mean different things in different contexts. There are, of course, lots of words that have more than one meaning (like bat , for example), but multiple meanings can be especially confusing when two meanings convey very different ideas and are specific to one field of study.

  • Scientific theories

The term theory also has two meanings, and this double meaning often leads to confusion. In common language, the term theory generally refers to speculation or a hunch or guess. You might have a theory about why your favorite sports team isn't playing well, or who ate the last cookie from the cookie jar. But these theories do not fit the scientific use of the term. In science, a theory is a well-substantiated and comprehensive set of ideas that explains a phenomenon in nature. A scientific theory is based on large amounts of data and observations that have been collected over time. Scientific theories can be tested and refined by additional research , and they allow scientists to make predictions. Though you may be correct in your hunch, your cookie jar conjecture doesn't fit this more rigorous definition.

All scientific disciplines have well-established, fundamental theories . For example, atomic theory describes the nature of matter and is supported by multiple lines of evidence from the way substances behave and react in the world around us (see our series on Atomic Theory ). Plate tectonic theory describes the large scale movement of the outer layer of the Earth and is supported by evidence from studies about earthquakes , magnetic properties of the rocks that make up the seafloor , and the distribution of volcanoes on Earth (see our series on Plate Tectonic Theory ). The theory of evolution by natural selection , which describes the mechanism by which inherited traits that affect survivability or reproductive success can cause changes in living organisms over generations , is supported by extensive studies of DNA , fossils , and other types of scientific evidence (see our Charles Darwin series for more information). Each of these major theories guides and informs modern research in those fields, integrating a broad, comprehensive set of ideas.

So how are these fundamental theories developed, and why are they considered so well supported? Let's take a closer look at some of the data and research supporting the theory of natural selection to better see how a theory develops.

Comprehension Checkpoint

  • The development of a scientific theory: Evolution and natural selection

The theory of evolution by natural selection is sometimes maligned as Charles Darwin 's speculation on the origin of modern life forms. However, evolutionary theory is not speculation. While Darwin is rightly credited with first articulating the theory of natural selection, his ideas built on more than a century of scientific research that came before him, and are supported by over a century and a half of research since.

  • The Fixity Notion: Linnaeus

Figure 1: Cover of the 1760 edition of Systema Naturae.

Figure 1: Cover of the 1760 edition of Systema Naturae .

Research about the origins and diversity of life proliferated in the 18th and 19th centuries. Carolus Linnaeus , a Swedish botanist and the father of modern taxonomy (see our module Taxonomy I for more information), was a devout Christian who believed in the concept of Fixity of Species , an idea based on the biblical story of creation. The Fixity of Species concept said that each species is based on an ideal form that has not changed over time. In the early stages of his career, Linnaeus traveled extensively and collected data on the structural similarities and differences between different species of plants. Noting that some very different plants had similar structures, he began to piece together his landmark work, Systema Naturae, in 1735 (Figure 1). In Systema , Linnaeus classified organisms into related groups based on similarities in their physical features. He developed a hierarchical classification system , even drawing relationships between seemingly disparate species (for example, humans, orangutans, and chimpanzees) based on the physical similarities that he observed between these organisms. Linnaeus did not explicitly discuss change in organisms or propose a reason for his hierarchy, but by grouping organisms based on physical characteristics, he suggested that species are related, unintentionally challenging the Fixity notion that each species is created in a unique, ideal form.

  • The age of Earth: Leclerc and Hutton

Also in the early 1700s, Georges-Louis Leclerc, a French naturalist, and James Hutton , a Scottish geologist, began to develop new ideas about the age of the Earth. At the time, many people thought of the Earth as 6,000 years old, based on a strict interpretation of the events detailed in the Christian Old Testament by the influential Scottish Archbishop Ussher. By observing other planets and comets in the solar system , Leclerc hypothesized that Earth began as a hot, fiery ball of molten rock, mostly consisting of iron. Using the cooling rate of iron, Leclerc calculated that Earth must therefore be at least 70,000 years old in order to have reached its present temperature.

Hutton approached the same topic from a different perspective, gathering observations of the relationships between different rock formations and the rates of modern geological processes near his home in Scotland. He recognized that the relatively slow processes of erosion and sedimentation could not create all of the exposed rock layers in only a few thousand years (see our module The Rock Cycle ). Based on his extensive collection of data (just one of his many publications ran to 2,138 pages), Hutton suggested that the Earth was far older than human history – hundreds of millions of years old.

While we now know that both Leclerc and Hutton significantly underestimated the age of the Earth (by about 4 billion years), their work shattered long-held beliefs and opened a window into research on how life can change over these very long timescales.

  • Fossil studies lead to the development of a theory of evolution: Cuvier

Figure 2: Illustration of an Indian elephant jaw and a mammoth jaw from Cuvier's 1796 paper.

Figure 2: Illustration of an Indian elephant jaw and a mammoth jaw from Cuvier's 1796 paper.

With the age of Earth now extended by Leclerc and Hutton, more researchers began to turn their attention to studying past life. Fossils are the main way to study past life forms, and several key studies on fossils helped in the development of a theory of evolution . In 1795, Georges Cuvier began to work at the National Museum in Paris as a naturalist and anatomist. Through his work, Cuvier became interested in fossils found near Paris, which some claimed were the remains of the elephants that Hannibal rode over the Alps when he invaded Rome in 218 BCE . In studying both the fossils and living species , Cuvier documented different patterns in the dental structure and number of teeth between the fossils and modern elephants (Figure 2) (Horner, 1843). Based on these data , Cuvier hypothesized that the fossil remains were not left by Hannibal, but were from a distinct species of animal that once roamed through Europe and had gone extinct thousands of years earlier: the mammoth. The concept of species extinction had been discussed by a few individuals before Cuvier, but it was in direct opposition to the Fixity of Species concept – if every organism were based on a perfectly adapted, ideal form, how could any cease to exist? That would suggest it was no longer ideal.

While his work provided critical evidence of extinction , a key component of evolution , Cuvier was highly critical of the idea that species could change over time. As a result of his extensive studies of animal anatomy, Cuvier had developed a holistic view of organisms , stating that the

number, direction, and shape of the bones that compose each part of an animal's body are always in a necessary relation to all the other parts, in such a way that ... one can infer the whole from any one of them ...

In other words, Cuvier viewed each part of an organism as a unique, essential component of the whole organism. If one part were to change, he believed, the organism could not survive. His skepticism about the ability of organisms to change led him to criticize the whole idea of evolution , and his prominence in France as a scientist played a large role in discouraging the acceptance of the idea in the scientific community.

  • Studies of invertebrates support a theory of change in species: Lamarck

Jean Baptiste Lamarck, a contemporary of Cuvier's at the National Museum in Paris, studied invertebrates like insects and worms. As Lamarck worked through the museum's large collection of invertebrates, he was impressed by the number and variety of organisms . He became convinced that organisms could, in fact, change through time, stating that

... time and favorable conditions are the two principal means which nature has employed in giving existence to all her productions. We know that for her time has no limit, and that consequently she always has it at her disposal.

This was a radical departure from both the fixity concept and Cuvier's ideas, and it built on the long timescale that geologists had recently established. Lamarck proposed that changes that occurred during an organism 's lifetime could be passed on to their offspring, suggesting, for example, that a body builder's muscles would be inherited by their children.

As it turned out, the mechanism by which Lamarck proposed that organisms change over time was wrong, and he is now often referred to disparagingly for his "inheritance of acquired characteristics" idea. Yet despite the fact that some of his ideas were discredited, Lamarck established a support for evolutionary theory that others would build on and improve.

  • Rock layers as evidence for evolution: Smith

In the early 1800s, a British geologist and canal surveyor named William Smith added another component to the accumulating evidence for evolution . Smith observed that rock layers exposed in different parts of England bore similarities to one another: These layers (or strata) were arranged in a predictable order, and each layer contained distinct groups of fossils . From this series of observations , he developed a hypothesis that specific groups of animals followed one another in a definite sequence through Earth's history, and this sequence could be seen in the rock layers. Smith's hypothesis was based on his knowledge of geological principles , including the Law of Superposition.

The Law of Superposition states that sediments are deposited in a time sequence, with the oldest sediments deposited first, or at the bottom, and newer layers deposited on top. The concept was first expressed by the Persian scientist Avicenna in the 11th century, but was popularized by the Danish scientist Nicolas Steno in the 17th century. Note that the law does not state how sediments are deposited; it simply describes the relationship between the ages of deposited sediments.

Figure 3: Engraving from William Smith's 1815 monograph on identifying strata by fossils.

Figure 3: Engraving from William Smith's 1815 monograph on identifying strata by fossils.

Smith backed up his hypothesis with extensive drawings of fossils uncovered during his research (Figure 3), thus allowing other scientists to confirm or dispute his findings. His hypothesis has, in fact, been confirmed by many other scientists and has come to be referred to as the Law of Faunal Succession. His work was critical to the formation of evolutionary theory as it not only confirmed Cuvier's work that organisms have gone extinct , but it also showed that the appearance of life does not date to the birth of the planet. Instead, the fossil record preserves a timeline of the appearance and disappearance of different organisms in the past, and in doing so offers evidence for change in organisms over time.

  • The theory of evolution by natural selection: Darwin and Wallace

It was into this world that Charles Darwin entered: Linnaeus had developed a taxonomy of organisms based on their physical relationships, Leclerc and Hutton demonstrated that there was sufficient time in Earth's history for organisms to change, Cuvier showed that species of organisms have gone extinct , Lamarck proposed that organisms change over time, and Smith established a timeline of the appearance and disappearance of different organisms in the geological record .

Figure 4: Title page of the 1859 Murray edition of the Origin of Species by Charles Darwin.

Figure 4: Title page of the 1859 Murray edition of the Origin of Species by Charles Darwin.

Charles Darwin collected data during his work as a naturalist on the HMS Beagle starting in 1831. He took extensive notes on the geology of the places he visited; he made a major find of fossils of extinct animals in Patagonia and identified an extinct giant ground sloth named Megatherium . He experienced an earthquake in Chile that stranded beds of living mussels above water, where they would be preserved for years to come.

Perhaps most famously, he conducted extensive studies of animals on the Galápagos Islands, noting subtle differences in species of mockingbird, tortoise, and finch that were isolated on different islands with different environmental conditions. These subtle differences made the animals highly adapted to their environments .

This broad spectrum of data led Darwin to propose an idea about how organisms change "by means of natural selection" (Figure 4). But this idea was not based only on his work, it was also based on the accumulation of evidence and ideas of many others before him. Because his proposal encompassed and explained many different lines of evidence and previous work, they formed the basis of a new and robust scientific theory regarding change in organisms – the theory of evolution by natural selection .

Darwin's ideas were grounded in evidence and data so compelling that if he had not conceived them, someone else would have. In fact, someone else did. Between 1858 and 1859, Alfred Russel Wallace , a British naturalist, wrote a series of letters to Darwin that independently proposed natural selection as the means for evolutionary change. The letters were presented to the Linnean Society of London, a prominent scientific society at the time (see our module on Scientific Institutions and Societies ). This long chain of research highlights that theories are not just the work of one individual. At the same time, however, it often takes the insight and creativity of individuals to put together all of the pieces and propose a new theory . Both Darwin and Wallace were experienced naturalists who were familiar with the work of others. While all of the work leading up to 1830 contributed to the theory of evolution , Darwin's and Wallace's theory changed the way that future research was focused by presenting a comprehensive, well-substantiated set of ideas, thus becoming a fundamental theory of biological research.

  • Expanding, testing, and refining scientific theories
  • Genetics and evolution: Mendel and Dobzhansky

Since Darwin and Wallace first published their ideas, extensive research has tested and expanded the theory of evolution by natural selection . Darwin had no concept of genes or DNA or the mechanism by which characteristics were inherited within a species . A contemporary of Darwin's, the Austrian monk Gregor Mendel , first presented his own landmark study, Experiments in Plant Hybridization, in 1865 in which he provided the basic patterns of genetic inheritance , describing which characteristics (and evolutionary changes) can be passed on in organisms (see our Genetics I module for more information). Still, it wasn't until much later that a "gene" was defined as the heritable unit.

In 1937, the Ukrainian born geneticist Theodosius Dobzhansky published Genetics and the Origin of Species , a seminal work in which he described genes themselves and demonstrated that it is through mutations in genes that change occurs. The work defined evolution as "a change in the frequency of an allele within a gene pool" ( Dobzhansky, 1982 ). These studies and others in the field of genetics have added to Darwin's work, expanding the scope of the theory .

  • Evolution under a microscope: Lenski

More recently, Dr. Richard Lenski, a scientist at Michigan State University, isolated a single Escherichia coli bacterium in 1989 as the first step of the longest running experimental test of evolutionary theory to date – a true test meant to replicate evolution and natural selection in the lab.

After the single microbe had multiplied, Lenski isolated the offspring into 12 different strains , each in their own glucose-supplied culture, predicting that the genetic make-up of each strain would change over time to become more adapted to their specific culture as predicted by evolutionary theory . These 12 lines have been nurtured for over 40,000 bacterial generations (luckily bacterial generations are much shorter than human generations) and exposed to different selective pressures such as heat , cold, antibiotics, and infection with other microorganisms. Lenski and colleagues have studied dozens of aspects of evolutionary theory with these genetically isolated populations . In 1999, they published a paper that demonstrated that random genetic mutations were common within the populations and highly diverse across different individual bacteria . However, "pivotal" mutations that are associated with beneficial changes in the group are shared by all descendants in a population and are much rarer than random mutations, as predicted by the theory of evolution by natural selection (Papadopoulos et al., 1999).

  • Punctuated equilibrium: Gould and Eldredge

While established scientific theories like evolution have a wealth of research and evidence supporting them, this does not mean that they cannot be refined as new information or new perspectives on existing data become available. For example, in 1972, biologist Stephen Jay Gould and paleontologist Niles Eldredge took a fresh look at the existing data regarding the timing by which evolutionary change takes place. Gould and Eldredge did not set out to challenge the theory of evolution; rather they used it as a guiding principle and asked more specific questions to add detail and nuance to the theory. This is true of all theories in science: they provide a framework for additional research. At the time, many biologists viewed evolution as occurring gradually, causing small incremental changes in organisms at a relatively steady rate. The idea is referred to as phyletic gradualism , and is rooted in the geological concept of uniformitarianism . After reexamining the available data, Gould and Eldredge came to a different explanation, suggesting that evolution consists of long periods of stability that are punctuated by occasional instances of dramatic change – a process they called punctuated equilibrium .

Like Darwin before them, their proposal is rooted in evidence and research on evolutionary change, and has been supported by multiple lines of evidence. In fact, punctuated equilibrium is now considered its own theory in evolutionary biology. Punctuated equilibrium is not as broad of a theory as natural selection . In science, some theories are broad and overarching of many concepts, such as the theory of evolution by natural selection; others focus on concepts at a smaller, or more targeted, scale such as punctuated equilibrium. And punctuated equilibrium does not challenge or weaken the concept of natural selection; rather, it represents a change in our understanding of the timing by which change occurs in organisms , and a theory within a theory. The theory of evolution by natural selection now includes both gradualism and punctuated equilibrium to describe the rate at which change proceeds.

  • Hypotheses and laws: Other scientific concepts

One of the challenges in understanding scientific terms like theory is that there is not a precise definition even within the scientific community. Some scientists debate over whether certain proposals merit designation as a hypothesis or theory , and others mistakenly use the terms interchangeably. But there are differences in these terms. A hypothesis is a proposed explanation for an observable phenomenon. Hypotheses , just like theories , are based on observations from research . For example, LeClerc did not hypothesize that Earth had cooled from a molten ball of iron as a random guess; rather, he developed this hypothesis based on his observations of information from meteorites.

A scientist often proposes a hypothesis before research confirms it as a way of predicting the outcome of study to help better define the parameters of the research. LeClerc's hypothesis allowed him to use known parameters (the cooling rate of iron) to do additional work. A key component of a formal scientific hypothesis is that it is testable and falsifiable. For example, when Richard Lenski first isolated his 12 strains of bacteria , he likely hypothesized that random mutations would cause differences to appear within a period of time in the different strains of bacteria. But when a hypothesis is generated in science, a scientist will also make an alternative hypothesis , an explanation that explains a study if the data do not support the original hypothesis. If the different strains of bacteria in Lenski's work did not diverge over the indicated period of time, perhaps the rate of mutation was slower than first thought.

So you might ask, if theories are so well supported, do they eventually become laws? The answer is no – not because they aren't well-supported, but because theories and laws are two very different things. Laws describe phenomena, often mathematically. Theories, however, explain phenomena. For example, in 1687 Isaac Newton proposed a Theory of Gravitation, describing gravity as a force of attraction between two objects. As part of this theory, Newton developed a Law of Universal Gravitation that explains how this force operates. This law states that the force of gravity between two objects is inversely proportional to the square of the distance between those objects. Newton 's Law does not explain why this is true, but it describes how gravity functions (see our Gravity: Newtonian Relationships module for more detail). In 1916, Albert Einstein developed his theory of general relativity to explain the mechanism by which gravity has its effect. Einstein's work challenges Newton's theory, and has been found after extensive testing and research to more accurately describe the phenomenon of gravity. While Einstein's work has replaced Newton's as the dominant explanation of gravity in modern science, Newton's Law of Universal Gravitation is still used as it reasonably (and more simply) describes the force of gravity under many conditions. Similarly, the Law of Faunal Succession developed by William Smith does not explain why organisms follow each other in distinct, predictable ways in the rock layers, but it accurately describes the phenomenon.

Theories, hypotheses , and laws drive scientific progress

Theories, hypotheses , and laws are not simply important components of science, they drive scientific progress. For example, evolutionary biology now stands as a distinct field of science that focuses on the origins and descent of species . Geologists now rely on plate tectonics as a conceptual model and guiding theory when they are studying processes at work in Earth's crust . And physicists refer to atomic theory when they are predicting the existence of subatomic particles yet to be discovered. This does not mean that science is "finished," or that all of the important theories have been discovered already. Like evolution , progress in science happens both gradually and in short, dramatic bursts. Both types of progress are critical for creating a robust knowledge base with data as the foundation and scientific theories giving structure to that knowledge.

Table of Contents

  • Theories, hypotheses, and laws drive scientific progress

Activate glossary term highlighting to easily identify key terms within the module. Once highlighted, you can click on these terms to view their definitions.

Activate NGSS annotations to easily identify NGSS standards within the module. Once highlighted, you can click on them to view these standards.

Incorporate STEM journalism in your classroom

  • Exercise type: Discussion
  • Topic: Earth
  • Category: Research & Design

How a scientific theory is born

  • Download Student Worksheet

Directions for teachers:

Use the online Science News article “ How the Earth-shaking theory of plate tectonics was born ,” and the prompts below to have students explore scientific theories and determine the process behind creating theories. A version of the story, “Shaking up Earth,” appears in the January 16, 2021 issue of Science News . As a final exercise, have students discuss the definition of a scientific theory and compare it with hypotheses and scientific laws.

This story is the first installment in a series that celebrates Science News ’ upcoming 100th anniversary by highlighting some of the biggest advancements in science over the last century. For more on the story of plate tectonics, and to see the rest of series as it appears, visit Science News ’ Century of Science site at www.sciencenews.org/century .

Want to make it a virtual lesson? Post the online Science News article“ How the Earth-shaking theory of plate tectonics was born ,” to your learning management system. Pair up students and allow them to connect via virtual breakout rooms in a video conference, over the phone, in a shared document or using another chat system. Have each pair submit its answers to the second set of questions to you.

Thinking about theories

Discuss the following questions with a partner before reading the Science News article.

1. What does it mean to say that you have a theory about something? Think of a theory you’ve had about something outside of science.

Typically, when people say that they have theory, it means that they have an idea or philosophy. Student examples of theories will vary.

2. What is one scientific theory you have learned about this year in science? Explain what you remember about it.

Student answers will vary, but may include the general theory of relativity, evolution, etc.

3. How does the general use of the term theory differ from its use in a scientific context?    

Theories in science are explanations rooted in data. Having a theory outside of the scientific context may be based on observations or data, or the term may be used to state a logical idea.

The theory of plate tectonics

Read the online Science News article “How plate tectonics upended our understanding of Earth,” and answer the following questions individually before discussing them as a class.

1. What is the theory of plate tectonics? Over how many years was it developed?

The theory of plate tectonics states that the Earth’s surface is broken up into various pieces (plates) and describes how and why they are constantly in motion and how that motion is linked to features seen on Earth. The theory was developed over about 50 years.

2. Who helped develop the theory and what did they contribute to it? What types of scientists were they and where were they from?

Meteorologist Alfred Wegner proposed the idea of continental drift in 1912, and geologist Arthur Holmes added to that proposal years later with an explanation for how the continents might drift. These ideas were the precursors to the development of the theory of plate tectonics. From there, seismologists, geophysicists, mathematicians and physicists established the ideas, such as seafloor spreading, and found the data necessary to develop the theory. Notable scientists include Lynn Sykes, Harry Hess, Robert S. Dietz, Robert Parker, W. Jason Morgan and Dan McKenzie.  The researchers were from England and the United States.

3. Before the theory’s development, what were the conflicting lines of thought?

Wegner’s proposal sparked debates between mobilists, who supported the idea that the Earth’s surface was in motion, and fixists, who thought the Earth’s surface was static.

4. What did scientists need to resolve the conflict? Why did the conflict take so long to resolve?

In order to resolve the debate, scientists needed evidence. Wegner made his proposal in the early 1900s, but scientific evidence for why the continents move and how didn’t become available until after World War II, when technological advancements allowed scientists to study Earth’s surface and interior, and particularly the bottom of the oceans, in unprecedented detail.

5. How was evidence communicated to other members of the scientific community? Why was the communication important?

Evidence was communicated at conferences attended by scientists including geologists and geophysicists. By building on each other’s ideas and using each other’s data, the scientists were able to go beyond the idea of continental drift and come up with the unified theory of plate tectonics.

Defining a scientific theory

Discuss the following questions with a classmate.

1. Based on your answers to the questions above, how would you define a scientific theory?

A scientific theory is an explanation for how and why a natural phenomenon occurs based on evidence.

2. Think about a scientific hypothesis that you have written or look up an example of a hypothesis. How would you define a hypothesis? How is it different than a theory?

A hypothesis is a proposed explanation for a scientific question that hasn’t been validated with evidence. A theory relies on evidence to explain phenomena, whereas a hypothesis is proposed before the gathering of evidence. A hypothesis can become a theory once it is proven or disproven with supporting evidence.

Possible Extension

What is a scientific law that you have learned about in school? Explain how a scientific law is different than a scientific theory. For more information, watch this Ted-Ed video called “ What’s the difference between a scientific law and a theory? ” by educator Matt Anticole.

Student answers will vary, but could include Newton’s three laws of motion, Bernoulli’s principle, etc. A scientific law is different than a scientific theory in that it describes and predicts the relationships among variables, whereas a scientific theory describes how or why something happens.

Hypothesis, Model, Theory, and Law

Dorling Kindersley / Getty Images

  • Physics Laws, Concepts, and Principles
  • Quantum Physics
  • Important Physicists
  • Thermodynamics
  • Cosmology & Astrophysics
  • Weather & Climate

how is hypothesis different from scientific theory

  • M.S., Mathematics Education, Indiana University
  • B.A., Physics, Wabash College

In common usage, the words hypothesis, model, theory, and law have different interpretations and are at times used without precision, but in science they have very exact meanings.

Perhaps the most difficult and intriguing step is the development of a specific, testable hypothesis. A useful hypothesis enables predictions by applying deductive reasoning, often in the form of mathematical analysis. It is a limited statement regarding the cause and effect in a specific situation, which can be tested by experimentation and observation or by statistical analysis of the probabilities from the data obtained. The outcome of the test hypothesis should be currently unknown, so that the results can provide useful data regarding the validity of the hypothesis.

Sometimes a hypothesis is developed that must wait for new knowledge or technology to be testable. The concept of atoms was proposed by the ancient Greeks , who had no means of testing it. Centuries later, when more knowledge became available, the hypothesis gained support and was eventually accepted by the scientific community, though it has had to be amended many times over the year. Atoms are not indivisible, as the Greeks supposed.

A model is used for situations when it is known that the hypothesis has a limitation on its validity. The Bohr model of the atom , for example, depicts electrons circling the atomic nucleus in a fashion similar to planets in the solar system. This model is useful in determining the energies of the quantum states of the electron in the simple hydrogen atom, but it is by no means represents the true nature of the atom. Scientists (and science students) often use such idealized models  to get an initial grasp on analyzing complex situations.

Theory and Law

A scientific theory or law represents a hypothesis (or group of related hypotheses) which has been confirmed through repeated testing, almost always conducted over a span of many years. Generally, a theory is an explanation for a set of related phenomena, like the theory of evolution or the big bang theory . 

The word "law" is often invoked in reference to a specific mathematical equation that relates the different elements within a theory. Pascal's Law refers an equation that describes differences in pressure based on height. In the overall theory of universal gravitation developed by Sir Isaac Newton , the key equation that describes the gravitational attraction between two objects is called the law of gravity .

These days, physicists rarely apply the word "law" to their ideas. In part, this is because so many of the previous "laws of nature" were found to be not so much laws as guidelines, that work well within certain parameters but not within others.

Scientific Paradigms

Once a scientific theory is established, it is very hard to get the scientific community to discard it. In physics, the concept of ether as a medium for light wave transmission ran into serious opposition in the late 1800s, but it was not disregarded until the early 1900s, when Albert Einstein proposed alternate explanations for the wave nature of light that did not rely upon a medium for transmission.

The science philosopher Thomas Kuhn developed the term scientific paradigm to explain the working set of theories under which science operates. He did extensive work on the scientific revolutions that take place when one paradigm is overturned in favor of a new set of theories. His work suggests that the very nature of science changes when these paradigms are significantly different. The nature of physics prior to relativity and quantum mechanics is fundamentally different from that after their discovery, just as biology prior to Darwin’s Theory of Evolution is fundamentally different from the biology that followed it. The very nature of the inquiry changes.

One consequence of the scientific method is to try to maintain consistency in the inquiry when these revolutions occur and to avoid attempts to overthrow existing paradigms on ideological grounds.

Occam’s Razor

One principle of note in regards to the scientific method is Occam’s Razor (alternately spelled Ockham's Razor), which is named after the 14th century English logician and Franciscan friar William of Ockham. Occam did not create the concept—the work of Thomas Aquinas and even Aristotle referred to some form of it. The name was first attributed to him (to our knowledge) in the 1800s, indicating that he must have espoused the philosophy enough that his name became associated with it.

The Razor is often stated in Latin as:

entia non sunt multiplicanda praeter necessitatem
or, translated to English:
entities should not be multiplied beyond necessity

Occam's Razor indicates that the most simple explanation that fits the available data is the one which is preferable. Assuming that two hypotheses presented have equal predictive power, the one which makes the fewest assumptions and hypothetical entities takes precedence. This appeal to simplicity has been adopted by most of science, and is invoked in this popular quote by Albert Einstein:

Everything should be made as simple as possible, but not simpler.

It is significant to note that Occam's Razor does not prove that the simpler hypothesis is, indeed, the true explanation of how nature behaves. Scientific principles should be as simple as possible, but that's no proof that nature itself is simple.

However, it is generally the case that when a more complex system is at work there is some element of the evidence which doesn't fit the simpler hypothesis, so Occam's Razor is rarely wrong as it deals only with hypotheses of purely equal predictive power. The predictive power is more important than the simplicity.

Edited by Anne Marie Helmenstine, Ph.D.

  • Scientific Hypothesis, Model, Theory, and Law
  • Theory Definition in Science
  • The Basics of Physics in Scientific Study
  • A Brief History of Atomic Theory
  • Einstein's Theory of Relativity
  • What Is a Paradigm Shift?
  • Wave Particle Duality and How It Works
  • Oversimplification and Exaggeration Fallacies
  • Hypothesis Definition (Science)
  • Kinetic Molecular Theory of Gases
  • Scientific Method
  • Understanding Cosmology and Its Impact
  • The History of Gravity
  • Tips on Winning the Debate on Evolution
  • The Copenhagen Interpretation of Quantum Mechanics
  • Geological Thinking: Method of Multiple Working Hypotheses

All The Differences

Hypothesis VS A Scientific Theory: A Comparison

Categories Philosophy

Hypothesis VS A Scientific Theory: A Comparison

A hypothesis is an explanation that is proposed for a phenomenon. If a hypothesis has to be scientific, the scientific way needs that it can be tested. Scientists basically base their hypotheses on prior observations that the available scientific theories can’t explain .

A scientific theory on the other hand, is an explanation of an aspect of the natural world or the universe which is tested and corroborated according to scientific ways. In situations where theories aren’t amenable to experimental testing, those theories will be evaluated through the principles of abductive reasoning.

One must keep in mind that even though ‘hypothesis’ and ‘theory’ are usually used interchangeably, both aren’t the same.

The difference between a hypothesis and a scientific theory is that a hypothesis is an assumption that is made prior to any research which has to be done. The hypothesis is tested in order to see if it is true or not. A theory is a principle that has to be formed in order to explain the things that are shown in data.

Here is a table for the differences between hypothesis and scientific theory:

Keep reading to know more.

Page Contents

What is a scientific theory?

lab samples being held by a person

A scientific theory explains an aspect of the natural world or the universe, the explanation is tested and corroborated according to the methods of science. In everyday speech, theory refers to an explanation that is a representation of an unsubstantiated and speculative guess. However, in science, the theory describes an explanation that is tested and is accepted as valid.

A scientific theory is different from a scientific fact and scientific law. A fact is merely a basic observation, while a law is a statement. Stephen Jay Gould  wrote that “Facts are the world’s data, while theories are structures of ideas which explain and interpret the facts.”

Learn the differences between fact, theory, hypothesis, and laws through this video.

A scientific theory can be rejected if it’s unfit for the new findings. Many well-established theories are unlikely to be ever changed, such as evolution and cell theory.

Scientific theories are very much testable and can form falsifiable predictions. Theories explain the cause of a certain natural phenomenon, they are also used to describe as well as predict particular aspects of the universe. Like other types of scientific knowledge, a scientific theory is deductive as well as inductive, which aims for predictive and explanatory power. Moreover, Scientists often utilize theories for further scientific information, and also to provide advancements to technology or medicine.

Furthermore, two types of scientific theories were described by Albert Einstein: “ Constructive theories” and “ Principle theories”. Constructive theories are the constructive representation of phenomena, such as kinetic theory. Principle theories, on the other hand, are empirical generalizations, for example, Newton’s laws of motion.

What is an example of a theory in science?

the earth as seen from space

The world is full of theories, and some unbelievable theories are true as a theory is formed to explain the things that exist.

Here are some popular examples of theories in science:

  • Big Bang Theory
  • Theory of Evolution
  • Quantum Field Theory
  • Hubble’s Law of Cosmic Expansion
  • Universal Law of Gravitation
  • Newton’s Laws of Motion
  • Laws of Thermodynamics
  • Archimedes’ Buoyancy Principle

What does a hypothesis mean?

a statue of Einstein

A hypothesis is often tentative, an assumption or suggestion that is formed strictly for the sole objective of being tested. A hypothesis is an explanation for a phenomenon. A hypothesis is based on prior observations that couldn’t be explained with the scientific theories already available.

The meaning of the adjective “hypothetical” is “Possessing the nature of a hypothesis” or “Assuming to exist as an immediate result of a hypothesis”.

People often refer to a hypothesis as an “educated guess” as it provides an outcome that is based on the evidence. Although, there are several scientists who reject the term “educated guess”. Moreover, experimenters have the right to test and reject the hypothesis prior to solving the problem.

Researchers, while weighing up alternative hypotheses, will take into consideration:

  • Testability.
  • Scope: The evident application of the hypothesis to several cases of phenomena.
  • Fruitfulness: the likelihood of a hypothesis to explain phenomena.
  • Conservatism: It’s the degree of “fit” with the existing known knowledge systems.

How do I write a hypothesis?

two scientists looking through a microscope

There are 6 steps that one has to follow to write a plausible hypothesis. Here is all the information that you would need.

  • Ask a question

Curiosity has been the inspiration for many of history’s greatest scientific achievements, so the best place to begin is to ask yourself questions about the world as well as the universe. Why are things the way they are? You must choose a research topic that is interesting to you, and your curiosity will come naturally. 

  • Conduct preliminary research

Gather all the background information on your research topic. How much background information you require depends on what you are attempting and what topic you chose. You might need to read several books, or it could be as simple as doing a web search to get quick answers. At this stage, you don’t necessarily need to prove or disprove your hypothesis, you merely need to gather the information that you require in order to prove or disprove it yourself. You must know first if you are right in proving or disproving this hypothesis.

  • Define your variables

Once you have decided what your hypothesis will be, you will have to select variables that are independent and which are dependent. Always keep in mind that independent variables are the factors that you have absolute control over. Therefore, consider the limits of your experiment before you finalize your hypothesis. 

  • Phrase it as an if-then statement

While you write your hypothesis, phrase it by using an if-then format, for example, “ If  I water a plant every day,  then  it will grow better.” This format may be tricky while dealing with multiple variables, however, generally, it’s a reliable way of expressing the cause-and-effect relationship that you’re testing. 

  • Collect data to support your hypothesis

A hypothesis is a means to an end. The prime concern of any scientific research is the conclusion. Once you are done with all 4 steps, you can start with your experiments. You will be gathering data to support your hypothesis. However, if your research turns out to prove it wrong, then don’t worry, as all this is a part of the scientific method. 

  • Write with confidence

Lastly, you would want a record of your findings in a research paper for other people to read. Write the research paper and be proud that you made it to the last step.

a person sitting in front of a laptop

To Conclude

  • The hypothesis is a tentative explanation needing scientific testing.
  • Scientific Theory is backed by evidence. It is an extensively tested explanation.
  • The hypothesis is untested. On the other hand, the Theory is based on existing data.
  • Hypotheses need more testing. And theories encompass broad data.
  • Scientific theories change, e.g., the Big Bang and the Theory of Evolution.
  • The hypothesis can be defined as an “educated guess” to be tested.
  • Constructing a hypothesis involves questioning, researching, defining variables, and gathering data.
  • Hypotheses explain your predictions. And the theories explain natural aspects.

Other Articles

  • Fahrenheit and Celsius: Differences Explained
  • Digital vs. Electronic (What’s the Difference?)
  • What Is the Difference Between Sciatica and Meralgia Paresthetica? (Explained)
  • Magnetic & Electric Fields’ Phase Difference

What is a scientific theory?

A scientific theory is based on careful examination of facts.

scientific theory: a chalkboard being drawn on

  • The process
  • Good theory characteristics

The difference between theories, facts and laws

Additional resources, bibliography.

A scientific theory is a structured explanation to explain a group of facts or phenomena in the natural world that often incorporates a scientific hypothesis and scientific laws . The scientific definition of a theory contrasts with the definition most people use in casual language.

"The way that scientists use the word 'theory' is a little different than how it is commonly used in the lay public," said Jaime Tanner, a professor of biology at Emerson College in Boston. "Most people use the word 'theory' to mean an idea or hunch that someone has, but in science the word 'theory' refers to the way that we interpret facts."

Related: 5 sci-fi concepts that are possible (in theory)

The process of becoming a scientific theory

Every scientific theory relies on the scientific method . A scientist may make an observation and devise a hypothesis to explain that observation, then design an experiment to test that hypothesis. If the hypothesis is shown to be incorrect, the scientist will develop a new hypothesis and begin the process again. If the hypothesis is supported by the results of the experiment, it will go on to be tested again. If the hypothesis isn't disproven or surpassed by a better explanation, the scientist may incorporate it into a larger theory that helps to explain the observed phenomenon and relates it to other phenomena, according to the Field Museum . 

A scientific theory is not the end result of the scientific method; theories can be proven or rejected, just like hypotheses . And theories are continually improved or modified as more information is gathered, so that the accuracy of the prediction becomes greater over time.

Theories are foundations for furthering scientific knowledge and for putting the information gathered to practical use. Scientists use theories to develop inventions or find a cure for a disease.

Furthermore, a scientific theory is the framework for observations and facts, Tanner said. Theories may change, or the way that they are interpreted may change, but the facts themselves don't change. Tanner likens theories to a basket in which scientists keep facts and observations that they find. The shape of that basket may change as the scientists learn more and include more facts. "For example, we have ample evidence of traits in populations becoming more or less common over time (evolution), so evolution is a fact, but the overarching theories about evolution, the way that we think all of the facts go together might change as new observations of evolution are made," Tanner told Live Science.

Characteristics of a good theory

The University of California, Berkeley , defines a theory as "a broad, natural explanation for a wide range of phenomena. Theories are concise, coherent, systematic, predictive, and broadly applicable, often integrating and generalizing many hypotheses." 

According to Columbia University emeritus professor of philosophy Philip Kitcher, a good scientific theory has three characteristics. First, it has unity, which means it consists of a limited number of problem-solving strategies that can be applied to a wide range of scientific circumstances. Second, a good scientific theory leads to new questions and new areas of research. This means that a theory doesn't need to explain everything in order to be useful. And finally, a good theory is formed from a number of hypotheses that can be tested independently from the theory itself.

Any scientific theory must be based on a careful and rational examination of the facts. Facts and theories are two different things. In the scientific method, there is a clear distinction between facts, which can be observed and/or measured, and theories, which are scientists' explanations and interpretations of the facts. 

Some think that theories become laws, but theories and laws have separate and distinct roles in the scientific method. A law is a description of an observed phenomenon in the natural world that holds true every time it is tested. It doesn't explain why something is true; it just states that it is true. A theory, on the other hand, explains observations that are gathered during the scientific process. So, while law and theory are part of the scientific process, they are two different aspects, according to the National Center for Science Education . 

A good example of the difference between a theory and a law is the case of Gregor Mendel . In his research, Mendel discovered that two separate genetic traits would appear independently of each other in different offspring. "Yet, Mendel knew nothing of DNA or chromosomes . It wasn't until a century later that scientists discovered DNA and chromosomes — the biochemical explanation of Mendel's laws," said Peter Coppinger, an associate professor of biology and biomedical engineering at the Rose-Hulman Institute of Technology. "It was only then that scientists, such as T.H. Morgan working with fruit flies, explained the Law of Independent Assortment using the theory of chromosomal inheritance. Still today, this is the universally accepted explanation [theory] for Mendel's Law."

  • When does a theory become a fact? This article from Arizona State University says you're asking the wrong question! 
  • Learn the difference between the casual and scientific uses of "theory" and "law" from the cartoony stars of the Amoeba Sisters on Youtube.
  • Can a scientific theory be falsified? This article from Scientific American says no. 

Kenneth Angielczyk, "What Do We Mean by "Theory" in Science?" Field Museum, March 10, 2017. https://www.fieldmuseum.org/blog/what-do-we-mean-theory-science

University of California, Berkeley, "Science at multiple levels." https://undsci.berkeley.edu/article/0_0_0/howscienceworks_19  

Philip Kitcher, "Abusing Science: The Case Against Creationism," MIT Press, 1982. 

National Center for Science Education, "Definitions of Fact, Theory, and Law in Scientific Work," March 16, 2016 https://ncse.ngo/definitions-fact-theory-and-law-scientific-work  

Sign up for the Live Science daily newsletter now

Get the world’s most fascinating discoveries delivered straight to your inbox.

Alina Bradford

Why do people feel like they're being watched, even when no one is there?

Why do babies rub their eyes when they're tired?

China launches Chang'e 6 sample-return mission to moon's far side

Most Popular

  • 2 2 plants randomly mated up to 1 million years ago to give rise to one of the world's most popular drinks
  • 3 Deepest blue hole in the world discovered, with hidden caves and tunnels believed to be inside
  • 4 'You certainly don't see this every day': Ultra-rare backward-spinning tornado formed over Oklahoma
  • 5 DARPA's autonomous 'Manta Ray' drone can glide through ocean depths undetected
  • 2 Deepest blue hole in the world discovered, with hidden caves and tunnels believed to be inside
  • 3 Asteroid that exploded over Berlin was fastest-spinning space rock ever recorded
  • 4 Hundreds of black 'spiders' spotted in mysterious 'Inca City' on Mars in new satellite photos
  • 5 See up to 50 'shooting stars' per hour as the Eta Aquarid meteor shower peaks this weekend

how is hypothesis different from scientific theory

  • Biology Difference Between
  • Difference Between Hypothesis And Theory

Difference Between Theory and Hypothesis

Many of them belittle evolution because “it is just a theory.” Gravity, on the other hand, must be real because it is a law. The words “theory,” “facts,” “laws” and “hypothesis” have a very specific meaning in the scientific world that doesn’t quite match the ones we use in everyday language. A hypothesis is a tentative explanation of an observation that can be tested. It acts as a starting point for further explanation. Theory, on the other hand, is an explanation of some aspect of the natural world that’s well-justified by facts, tested hypotheses, and laws. Let us look at more differences between hypothesis and theory given in a tabular column below.

Theory vs Hypothesis

From the above differences, we can infer that a hypothesis might change significantly as the testing occurs. A hypothesis can either be right or wrong. When a hypothesis is tested and proved true, it becomes a theory. At BYJU’S, learn more differences like the difference between asteroid and comet.

Quiz Image

Put your understanding of this concept to test by answering a few MCQs. Click ‘Start Quiz’ to begin!

Select the correct answer and click on the “Finish” button Check your score and answers at the end of the quiz

Visit BYJU’S for all Biology related queries and study materials

Your result is as below

Request OTP on Voice Call

Leave a Comment Cancel reply

Your Mobile number and Email id will not be published. Required fields are marked *

Post My Comment

how is hypothesis different from scientific theory

  • Share Share

Register with BYJU'S & Download Free PDFs

Register with byju's & watch live videos.

close

Get science-backed answers as you write with Paperpal's Research feature

How to Write a Hypothesis? Types and Examples 

how to write a hypothesis for research

All research studies involve the use of the scientific method, which is a mathematical and experimental technique used to conduct experiments by developing and testing a hypothesis or a prediction about an outcome. Simply put, a hypothesis is a suggested solution to a problem. It includes elements that are expressed in terms of relationships with each other to explain a condition or an assumption that hasn’t been verified using facts. 1 The typical steps in a scientific method include developing such a hypothesis, testing it through various methods, and then modifying it based on the outcomes of the experiments.  

A research hypothesis can be defined as a specific, testable prediction about the anticipated results of a study. 2 Hypotheses help guide the research process and supplement the aim of the study. After several rounds of testing, hypotheses can help develop scientific theories. 3 Hypotheses are often written as if-then statements. 

Here are two hypothesis examples: 

Dandelions growing in nitrogen-rich soils for two weeks develop larger leaves than those in nitrogen-poor soils because nitrogen stimulates vegetative growth. 4  

If a company offers flexible work hours, then their employees will be happier at work. 5  

Table of Contents

  • What is a hypothesis? 
  • Types of hypotheses 
  • Characteristics of a hypothesis 
  • Functions of a hypothesis 
  • How to write a hypothesis 
  • Hypothesis examples 
  • Frequently asked questions 

What is a hypothesis?

Figure 1. Steps in research design

A hypothesis expresses an expected relationship between variables in a study and is developed before conducting any research. Hypotheses are not opinions but rather are expected relationships based on facts and observations. They help support scientific research and expand existing knowledge. An incorrectly formulated hypothesis can affect the entire experiment leading to errors in the results so it’s important to know how to formulate a hypothesis and develop it carefully.

A few sources of a hypothesis include observations from prior studies, current research and experiences, competitors, scientific theories, and general conditions that can influence people. Figure 1 depicts the different steps in a research design and shows where exactly in the process a hypothesis is developed. 4  

There are seven different types of hypotheses—simple, complex, directional, nondirectional, associative and causal, null, and alternative. 

Types of hypotheses

The seven types of hypotheses are listed below: 5 , 6,7  

  • Simple : Predicts the relationship between a single dependent variable and a single independent variable. 

Example: Exercising in the morning every day will increase your productivity.  

  • Complex : Predicts the relationship between two or more variables. 

Example: Spending three hours or more on social media daily will negatively affect children’s mental health and productivity, more than that of adults.  

  • Directional : Specifies the expected direction to be followed and uses terms like increase, decrease, positive, negative, more, or less. 

Example: The inclusion of intervention X decreases infant mortality compared to the original treatment.  

  • Non-directional : Does not predict the exact direction, nature, or magnitude of the relationship between two variables but rather states the existence of a relationship. This hypothesis may be used when there is no underlying theory or if findings contradict prior research. 

Example: Cats and dogs differ in the amount of affection they express.  

  • Associative and causal : An associative hypothesis suggests an interdependency between variables, that is, how a change in one variable changes the other.  

Example: There is a positive association between physical activity levels and overall health.  

A causal hypothesis, on the other hand, expresses a cause-and-effect association between variables. 

Example: Long-term alcohol use causes liver damage.  

  • Null : Claims that the original hypothesis is false by showing that there is no relationship between the variables. 

Example: Sleep duration does not have any effect on productivity.  

  • Alternative : States the opposite of the null hypothesis, that is, a relationship exists between two variables. 

Example: Sleep duration affects productivity.  

how is hypothesis different from scientific theory

Characteristics of a hypothesis

So, what makes a good hypothesis? Here are some important characteristics of a hypothesis. 8,9  

  • Testable : You must be able to test the hypothesis using scientific methods to either accept or reject the prediction. 
  • Falsifiable : It should be possible to collect data that reject rather than support the hypothesis. 
  • Logical : Hypotheses shouldn’t be a random guess but rather should be based on previous theories, observations, prior research, and logical reasoning. 
  • Positive : The hypothesis statement about the existence of an association should be positive, that is, it should not suggest that an association does not exist. Therefore, the language used and knowing how to phrase a hypothesis is very important. 
  • Clear and accurate : The language used should be easily comprehensible and use correct terminology. 
  • Relevant : The hypothesis should be relevant and specific to the research question. 
  • Structure : Should include all the elements that make a good hypothesis: variables, relationship, and outcome. 

Functions of a hypothesis

The following list mentions some important functions of a hypothesis: 1  

  • Maintains the direction and progress of the research. 
  • Expresses the important assumptions underlying the proposition in a single statement. 
  • Establishes a suitable context for researchers to begin their investigation and for readers who are referring to the final report. 
  • Provides an explanation for the occurrence of a specific phenomenon. 
  • Ensures selection of appropriate and accurate facts necessary and relevant to the research subject. 

To summarize, a hypothesis provides the conceptual elements that complete the known data, conceptual relationships that systematize unordered elements, and conceptual meanings and interpretations that explain the unknown phenomena. 1  

how is hypothesis different from scientific theory

How to write a hypothesis

Listed below are the main steps explaining how to write a hypothesis. 2,4,5  

  • Make an observation and identify variables : Observe the subject in question and try to recognize a pattern or a relationship between the variables involved. This step provides essential background information to begin your research.  

For example, if you notice that an office’s vending machine frequently runs out of a specific snack, you may predict that more people in the office choose that snack over another. 

  • Identify the main research question : After identifying a subject and recognizing a pattern, the next step is to ask a question that your hypothesis will answer.  

For example, after observing employees’ break times at work, you could ask “why do more employees take breaks in the morning rather than in the afternoon?” 

  • Conduct some preliminary research to ensure originality and novelty : Your initial answer, which is your hypothesis, to the question is based on some pre-existing information about the subject. However, to ensure that your hypothesis has not been asked before or that it has been asked but rejected by other researchers you would need to gather additional information.  

For example, based on your observations you might state a hypothesis that employees work more efficiently when the air conditioning in the office is set at a lower temperature. However, during your preliminary research you find that this hypothesis was proven incorrect by a prior study. 

  • Develop a general statement : After your preliminary research has confirmed the originality of your proposed answer, draft a general statement that includes all variables, subjects, and predicted outcome. The statement could be if/then or declarative.  
  • Finalize the hypothesis statement : Use the PICOT model, which clarifies how to word a hypothesis effectively, when finalizing the statement. This model lists the important components required to write a hypothesis. 

P opulation: The specific group or individual who is the main subject of the research 

I nterest: The main concern of the study/research question 

C omparison: The main alternative group 

O utcome: The expected results  

T ime: Duration of the experiment 

Once you’ve finalized your hypothesis statement you would need to conduct experiments to test whether the hypothesis is true or false. 

Hypothesis examples

The following table provides examples of different types of hypotheses. 10 ,11  

how is hypothesis different from scientific theory

Key takeaways  

Here’s a summary of all the key points discussed in this article about how to write a hypothesis. 

  • A hypothesis is an assumption about an association between variables made based on limited evidence, which should be tested. 
  • A hypothesis has four parts—the research question, independent variable, dependent variable, and the proposed relationship between the variables.   
  • The statement should be clear, concise, testable, logical, and falsifiable. 
  • There are seven types of hypotheses—simple, complex, directional, non-directional, associative and causal, null, and alternative. 
  • A hypothesis provides a focus and direction for the research to progress. 
  • A hypothesis plays an important role in the scientific method by helping to create an appropriate experimental design. 

Frequently asked questions

Hypotheses and research questions have different objectives and structure. The following table lists some major differences between the two. 9  

Here are a few examples to differentiate between a research question and hypothesis. 

Yes, here’s a simple checklist to help you gauge the effectiveness of your hypothesis. 9   1. When writing a hypothesis statement, check if it:  2. Predicts the relationship between the stated variables and the expected outcome.  3. Uses simple and concise language and is not wordy.  4. Does not assume readers’ knowledge about the subject.  5. Has observable, falsifiable, and testable results. 

As mentioned earlier in this article, a hypothesis is an assumption or prediction about an association between variables based on observations and simple evidence. These statements are usually generic. Research objectives, on the other hand, are more specific and dictated by hypotheses. The same hypothesis can be tested using different methods and the research objectives could be different in each case.     For example, Louis Pasteur observed that food lasts longer at higher altitudes, reasoned that it could be because the air at higher altitudes is cleaner (with fewer or no germs), and tested the hypothesis by exposing food to air cleaned in the laboratory. 12 Thus, a hypothesis is predictive—if the reasoning is correct, X will lead to Y—and research objectives are developed to test these predictions. 

Null hypothesis testing is a method to decide between two assumptions or predictions between variables (null and alternative hypotheses) in a statistical relationship in a sample. The null hypothesis, denoted as H 0 , claims that no relationship exists between variables in a population and any relationship in the sample reflects a sampling error or occurrence by chance. The alternative hypothesis, denoted as H 1 , claims that there is a relationship in the population. In every study, researchers need to decide whether the relationship in a sample occurred by chance or reflects a relationship in the population. This is done by hypothesis testing using the following steps: 13   1. Assume that the null hypothesis is true.  2. Determine how likely the sample relationship would be if the null hypothesis were true. This probability is called the p value.  3. If the sample relationship would be extremely unlikely, reject the null hypothesis and accept the alternative hypothesis. If the relationship would not be unlikely, accept the null hypothesis. 

how is hypothesis different from scientific theory

To summarize, researchers should know how to write a good hypothesis to ensure that their research progresses in the required direction. A hypothesis is a testable prediction about any behavior or relationship between variables, usually based on facts and observation, and states an expected outcome.  

We hope this article has provided you with essential insight into the different types of hypotheses and their functions so that you can use them appropriately in your next research project. 

References  

  • Dalen, DVV. The function of hypotheses in research. Proquest website. Accessed April 8, 2024. https://www.proquest.com/docview/1437933010?pq-origsite=gscholar&fromopenview=true&sourcetype=Scholarly%20Journals&imgSeq=1  
  • McLeod S. Research hypothesis in psychology: Types & examples. SimplyPsychology website. Updated December 13, 2023. Accessed April 9, 2024. https://www.simplypsychology.org/what-is-a-hypotheses.html  
  • Scientific method. Britannica website. Updated March 14, 2024. Accessed April 9, 2024. https://www.britannica.com/science/scientific-method  
  • The hypothesis in science writing. Accessed April 10, 2024. https://berks.psu.edu/sites/berks/files/campus/HypothesisHandout_Final.pdf  
  • How to develop a hypothesis (with elements, types, and examples). Indeed.com website. Updated February 3, 2023. Accessed April 10, 2024. https://www.indeed.com/career-advice/career-development/how-to-write-a-hypothesis  
  • Types of research hypotheses. Excelsior online writing lab. Accessed April 11, 2024. https://owl.excelsior.edu/research/research-hypotheses/types-of-research-hypotheses/  
  • What is a research hypothesis: how to write it, types, and examples. Researcher.life website. Published February 8, 2023. Accessed April 11, 2024. https://researcher.life/blog/article/how-to-write-a-research-hypothesis-definition-types-examples/  
  • Developing a hypothesis. Pressbooks website. Accessed April 12, 2024. https://opentext.wsu.edu/carriecuttler/chapter/developing-a-hypothesis/  
  • What is and how to write a good hypothesis in research. Elsevier author services website. Accessed April 12, 2024. https://scientific-publishing.webshop.elsevier.com/manuscript-preparation/what-how-write-good-hypothesis-research/  
  • How to write a great hypothesis. Verywellmind website. Updated March 12, 2023. Accessed April 13, 2024. https://www.verywellmind.com/what-is-a-hypothesis-2795239  
  • 15 Hypothesis examples. Helpfulprofessor.com Published September 8, 2023. Accessed March 14, 2024. https://helpfulprofessor.com/hypothesis-examples/ 
  • Editage insights. What is the interconnectivity between research objectives and hypothesis? Published February 24, 2021. Accessed April 13, 2024. https://www.editage.com/insights/what-is-the-interconnectivity-between-research-objectives-and-hypothesis  
  • Understanding null hypothesis testing. BCCampus open publishing. Accessed April 16, 2024. https://opentextbc.ca/researchmethods/chapter/understanding-null-hypothesis-testing/#:~:text=In%20null%20hypothesis%20testing%2C%20this,said%20to%20be%20statistically%20significant  

Paperpal is a comprehensive AI writing toolkit that helps students and researchers achieve 2x the writing in half the time. It leverages 21+ years of STM experience and insights from millions of research articles to provide in-depth academic writing, language editing, and submission readiness support to help you write better, faster.  

Get accurate academic translations, rewriting support, grammar checks, vocabulary suggestions, and generative AI assistance that delivers human precision at machine speed. Try for free or upgrade to Paperpal Prime starting at US$19 a month to access premium features, including consistency, plagiarism, and 30+ submission readiness checks to help you succeed.  

Experience the future of academic writing – Sign up to Paperpal and start writing for free!  

Related Reads:

  • Empirical Research: A Comprehensive Guide for Academics 
  • How to Write a Scientific Paper in 10 Steps 
  • What is a Literature Review? How to Write It (with Examples)
  • What are Journal Guidelines on Using Generative AI Tools

Measuring Academic Success: Definition & Strategies for Excellence

What are scholarly sources and where can you find them , you may also like, 4 ways paperpal encourages responsible writing with ai, what are scholarly sources and where can you..., what is academic writing: tips for students, why traditional editorial process needs an upgrade, paperpal’s new ai research finder empowers authors to..., what is hedging in academic writing  , how to use ai to enhance your college..., ai + human expertise – a paradigm shift..., how to use paperpal to generate emails &....

IMAGES

  1. 13 Different Types of Hypothesis (2024)

    how is hypothesis different from scientific theory

  2. Primary Difference Between Hypothesis and Theory

    how is hypothesis different from scientific theory

  3. Scientific Law Definition and Examples

    how is hypothesis different from scientific theory

  4. How to Write a Hypothesis: The Ultimate Guide with Examples

    how is hypothesis different from scientific theory

  5. Scientific hypothesis

    how is hypothesis different from scientific theory

  6. How to Write a Hypothesis

    how is hypothesis different from scientific theory

VIDEO

  1. What Is A Hypothesis?

  2. Research Hypothesis and its Types with examples /urdu/hindi

  3. Testing of Hypothesis||Types of Hypothesis

  4. How Scientists make Theories?

  5. Four of the most MISUNDERSTOOD words in science: Hypothesis, Theory, Law, Fact

  6. Difference between Hypothesis and Theory

COMMENTS

  1. Theory vs. Hypothesis: Basics of the Scientific Method

    Theory vs. Hypothesis: Basics of the Scientific Method. Written by MasterClass. Last updated: Jun 7, 2021 • 2 min read. Though you may hear the terms "theory" and "hypothesis" used interchangeably, these two scientific terms have drastically different meanings in the world of science.

  2. Hypothesis vs. Theory: The Difference Explained

    Toward that end, science employs a particular vocabulary for describing how ideas are proposed, tested, and supported or disproven. And that's where we see the difference between a hypothesis and a theory.. A hypothesis is an assumption, something proposed for the sake of argument so that it can be tested to see if it might be true.. In the scientific method, the hypothesis is constructed ...

  3. Hypothesis vs Theory

    A hypothesis is either a suggested explanation for an observable phenomenon, or a reasoned prediction of a possible causal correlation among multiple phenomena. In science, a theory is a tested, well-substantiated, unifying explanation for a set of verified, proven factors. A theory is always backed by evidence; a hypothesis is only a suggested possible outcome, and is testable and falsifiable.

  4. Scientific Hypothesis, Theory, Law Definitions

    A hypothesis is an educated guess, based on observation. It's a prediction of cause and effect. Usually, a hypothesis can be supported or refuted through experimentation or more observation. A hypothesis can be disproven but not proven to be true. Example: If you see no difference in the cleaning ability of various laundry detergents, you might ...

  5. 1.6: Hypothesis, Theories, and Laws

    The explanation becomes a scientific theory. In everyday language a theory means a hunch or speculation. Not so in science. In science, the word theory refers to a comprehensive explanation of an important feature of nature supported by facts gathered over time. Theories also allow scientists to make predictions about as yet unobserved phenomena."

  6. Scientific hypothesis

    scientific hypothesis, an idea that proposes a tentative explanation about a phenomenon or a narrow set of phenomena observed in the natural world.The two primary features of a scientific hypothesis are falsifiability and testability, which are reflected in an "If…then" statement summarizing the idea and in the ability to be supported or refuted through observation and experimentation.

  7. The scientific method (article)

    A theory is different from a hypothesis, though they're certainly related. A hypothesis is a potential answer to a relatively small, specific question. A theory, on the other hand, addresses a broader question and is supported by a large amount of data from multiple sources 1, 2 ‍ .

  8. 1.3: Hypothesis, Theories, and Laws

    Henry Agnew (UC Davis) 1.3: Hypothesis, Theories, and Laws is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by LibreTexts. Although all of us have taken science classes throughout the course of our study, many people have incorrect or misleading ideas about some of the most important and basic principles in ...

  9. Scientific hypothesis, theory, and model explained

    Scientific model is used to test the scientific hypothesis or to provide a representation of a scientific theory. In the case of plate tectonics, scientists came up with a hypothesis, an idea that Earth's crust was divided into plates that can move or shift. And then models were developed to simulate, or represent, the plates on Earth's crust.

  10. Developing Theories & Hypotheses

    Theories and Hypotheses. Before describing how to develop a hypothesis, it is important to distinguish between a theory and a hypothesis. A theory is a coherent explanation or interpretation of one or more phenomena. Although theories can take a variety of forms, one thing they have in common is that they go beyond the phenomena they explain by including variables, structures, processes ...

  11. Scientific Theory Definition and Examples

    Difference Between a Scientific Theory and a Scientific Law. ... Theory vs Hypothesis. A hypothesis is a proposition that is tested via an experiment. A theory results from many, many tested hypotheses. Theory vs Fact. Theories depend on facts, but the two words mean different things. A fact is an irrefutable piece of evidence or data.

  12. Hypothesis

    Even though the words "hypothesis" and "theory" are often used interchangeably, a scientific hypothesis is not the same as a scientific theory. A working hypothesis is a provisionally accepted hypothesis proposed for further research in a process beginning with an educated guess or thought. A different meaning of the term hypothesis is used in ...

  13. "Theory" vs. "Hypothesis": What Is The Difference?

    How to use each. Although theory in terms of science is used to express something based on extensive research and experimentation, typically in everyday life, theory is used more casually to express an educated guess. So in casual language, theory and hypothesis are more likely to be used interchangeably to express an idea or speculation.

  14. Theories, Hypotheses, and Laws

    A scientific hypothesis is an inferred explanation of an observation or research finding; while more exploratory in nature than a theory, it is based on existing scientific knowledge. ... The answer is no - not because they aren't well-supported, but because theories and laws are two very different things. Laws describe phenomena, often ...

  15. What is a scientific hypothesis?

    A scientific hypothesis is a tentative, testable explanation for a phenomenon in the natural world. It's the initial building block in the scientific method. Many describe it as an "educated guess ...

  16. Primary Difference Between Hypothesis and Theory

    Hypothesis & theory have one main difference. Use these definitions & examples to explore how these terms differ from each other and similar science terms. ... Non-Scientific Use of Theory and Hypothesis. In common speech, people use theory and hypothesis as synonyms referring to something they speculate. You might say, "I have a theory about ...

  17. How a scientific theory is born

    The theory of plate tectonics states that the Earth's surface is broken up into various pieces (plates) and describes how and why they are constantly in motion and how that motion is linked to ...

  18. Hypothesis, Model, Theory, and Law

    A scientific theory or law represents a hypothesis (or group of related hypotheses) which has been confirmed through repeated testing, almost always conducted over a span of many years. Generally, a theory is an explanation for a set of related phenomena, like the theory of evolution or the big bang theory . The word "law" is often invoked in ...

  19. The Difference Between a Scientific Hypothesis, Theory, and Law

    Hypothesis: the core of the scientific method. The scientific method is an empirical procedure that consists of systematic observation, measurement, and experiment, and the formulation, testing ...

  20. Hypothesis VS A Scientific Theory: A Comparison

    The difference between a hypothesis and a scientific theory is that a hypothesis is an assumption that is made prior to any research which has to be done. The hypothesis is tested in order to see if it is true or not. A theory is a principle that has to be formed in order to explain the things that are shown in data.

  21. What is a scientific theory?

    A scientific theory is a structured explanation to explain a group of facts or phenomena in the natural world that often incorporates a scientific hypothesis and scientific laws. The scientific ...

  22. Scientific theory

    A scientific theory is a well-substantiated explanation of some aspect of the natural world, based on a body of facts that have been repeatedly confirmed through observation and experiment. Such fact-supported theories are not "guesses" but reliable accounts of the real world. The theory of biological evolution is more than "just a theory".

  23. Difference Between Theory and Hypothesis -A Comparison Chart

    A hypothesis is an educated guess based on certain data that acts as a foundation for further investigation. It is based on extensive data. It is based on limited data. A theory is proven and tested scientifically. A hypothesis is not proven scientifically. The results are certain. The results are uncertain. It relies on evidence and verification.

  24. How to Write a Hypothesis? Types and Examples

    A few sources of a hypothesis include observations from prior studies, current research and experiences, competitors, scientific theories, and general conditions that can influence people. Figure 1 depicts the different steps in a research design and shows where exactly in the process a hypothesis is developed. 4