Essay on Greenhouse Effect for Students and Children

500 words essay on greenhouse effect.

The past month, July of 2019, has been the hottest month in the records of human history. This means on a global scale, the average climate and temperatures are now seen a steady rise year-on-year. The culprits of this climate change phenomenon are mainly pollution , overpopulation and general disregard for the environment by the human race. However, we can specifically point to two phenomenons that contribute to the rising temperatures – global warming and the greenhouse effect. Let us see more about them in this essay on the greenhouse effect.

The earth’s surface is surrounded by an envelope of the air we call the atmosphere. Gasses in this atmosphere trap the infrared radiation of the sun which generates heat on the surface of the earth. In an ideal scenario, this effect causes the temperature on the earth to be around 15c. And without such a phenomenon life could not sustain on earth.

However, due to rapid industrialization and rising pollution, the emission of greenhouse gases has increased multifold over the last few centuries. This, in turn, causes more radiation to be trapped in the earth’s atmosphere. And as a consequence, the temperature on the surface of the planet steadily rises. This is what we refer to when we talk about the man-made greenhouse effect.

Essay on Greenhouse Effect

Causes of Greenhouse Effect

As we saw earlier in this essay on the greenhouse effect, the phenomenon itself is naturally occurring and an important one to sustain life on our planet. However, there is an anthropogenic part of this effect. This is caused due to the activities of man.

The most prominent among this is the burning of fossil fuels . Our industries, vehicles, factories, etc are overly reliant on fossil fuels for their energy and power. This has caused an immense increase in emissions of harmful greenhouse gasses such as carbon dioxide, carbon monoxide, sulfides, etc. This has multiplied the greenhouse effect and we have seen a steady rise in surface temperatures.

Other harmful activities such as deforestation, excessive urbanization, harmful agricultural practices, etc. have also led to the release of excess carbon dioxide and made the greenhouse effect more prominent. Another harmful element that causes harm to the environment is CFC (chlorofluorocarbon).

Get the huge list of more than 500 Essay Topics and Ideas

Some Effects of Greenhouse Effect

Even after overwhelming proof, there are still people who deny the existence of climate change and its devastating pitfalls. However, there are so many effects and pieces of evidence of climate change it is now undeniable. The surface temperature of the planet has risen by 1c since the 19th century. This change is largely due to the increased emissions of carbon dioxide. The most harm has been seen in the past 35 years in particular.

The oceans and the seas have absorbed a lot of this increased heat. The surfaces of these oceans have seen a rise in temperatures of 0.4c. The ice sheets and glaciers are also rapidly shrinking. The rate at which the ice caps melt in Antartica has tripled in the last decade itself. These alarming statistics and facts are proof of the major disaster we face in the form of climate change.

600 Words Essay on Greenhouse Effect

A Greenhouse , as the term suggests, is a structure made of glass which is designed to trap heat inside. Thus, even on cold chilling winter days, there is warmth inside it. Similarly, Earth also traps energy from the Sun and prevents it from escaping back. The greenhouse gases or the molecules present in the atmosphere of the Earth trap the heat of the Sun. This is what we know as the Greenhouse effect.

greenhouse effect essay

Greenhouse Gases

These gases or molecules are naturally present in the atmosphere of the Earth. However, they are also released due to human activities. These gases play a vital role in trapping the heat of the Sun and thereby gradually warming the temperature of Earth. The Earth is habitable for humans due to the equilibrium of the energy it receives and the energy that it reflects back to space.

Global Warming and the Greenhouse Effect

The trapping and emission of radiation by the greenhouse gases present in the atmosphere is known as the Greenhouse effect. Without this process, Earth will either be very cold or very hot, which will make life impossible on Earth.

The greenhouse effect is a natural phenomenon. Due to wrong human activities such as clearing forests, burning fossil fuels, releasing industrial gas in the atmosphere, etc., the emission of greenhouse gases is increasing.

Thus, this has, in turn, resulted in global warming . We can see the effects due to these like extreme droughts, floods, hurricanes, landslides, rise in sea levels, etc. Global warming is adversely affecting our biodiversity, ecosystem and the life of the people. Also, the Himalayan glaciers are melting due to this.

There are broadly two causes of the greenhouse effect:

I. Natural Causes

  • Some components that are present on the Earth naturally produce greenhouse gases. For example, carbon dioxide is present in the oceans, decaying of plants due to forest fires and the manure of some animals produces methane , and nitrogen oxide is present in water and soil.
  • Water Vapour raises the temperature by absorbing energy when there is a rise in the humidity.
  • Humans and animals breathe oxygen and release carbon dioxide in the atmosphere.

II. Man-made Causes

  • Burning of fossil fuels such as oil and coal emits carbon dioxide in the atmosphere which causes an excessive greenhouse effect. Also, while digging a coal mine or an oil well, methane is released from the Earth, which pollutes it.
  • Trees with the help of the process of photosynthesis absorb the carbon dioxide and release oxygen. Due to deforestation the carbon dioxide level is continuously increasing. This is also a major cause of the increase in the greenhouse effect.
  • In order to get maximum yield, the farmers use artificial nitrogen in their fields. This releases nitrogen oxide in the atmosphere.
  • Industries release harmful gases in the atmosphere like methane, carbon dioxide , and fluorine gas. These also enhance global warming.

All the countries of the world are facing the ill effects of global warming. The Government and non-governmental organizations need to take appropriate and concrete measures to control the emission of toxic greenhouse gases. They need to promote the greater use of renewable energy and forestation. Also, it is the duty of every individual to protect the environment and not use such means that harm the atmosphere. It is the need of the hour to protect our environment else that day is not far away when life on Earth will also become difficult.

Customize your course in 30 seconds

Which class are you in.

tutor

  • Travelling Essay
  • Picnic Essay
  • Our Country Essay
  • My Parents Essay
  • Essay on Favourite Personality
  • Essay on Memorable Day of My Life
  • Essay on Knowledge is Power
  • Essay on Gurpurab
  • Essay on My Favourite Season
  • Essay on Types of Sports

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Download the App

Google Play

Greenhouse Effect

Global warming describes the current rise in the average temperature of Earth’s air and oceans. Global warming is often described as the most recent example of climate change.

Earth Science, Meteorology, Geography

Loading ...

Global warming describes the current rise in the average temperature of Earth’s air and oceans. Global warming is often described as the most recent example of climate change . Earth’s climate has changed many times. Our planet has gone through multiple ice ages , in which ice sheets and glaciers covered large portions of Earth. It has also gone through warm periods when temperatures were higher than they are today. Past changes in Earth’s temperature happened very slowly, over hundreds of thousands of years. However, the recent warming trend is happening much faster than it ever has. Natural cycles of warming and cooling are not enough to explain the amount of warming we have experienced in such a short time—only human activities can account for it. Scientists worry that the climate is changing faster than some living things can adapt to it. In 1988, the World Meteorological Organization and the United Nations Environment Programme established a committee of climatologists , meteorologists , geographers , and other scientists from around the world. This Intergovernmental Panel on Climate Change (IPCC) includes thousands of scientists who review the most up-to-date research available related to global warming and climate change. The IPCC evaluates the risk of climate change caused by human activities. According to the IPCC’s most recent report (in 2007), Earth’s average surface temperatures have risen about 0.74 degrees Celsius (1.33 degrees Fahrenheit) during the past 100 years. The increase is greater in northern latitudes . The IPCC also found that land regions are warming faster than oceans. The IPCC states that most of the temperature increase since the mid-20th century is likely due to human activities. The Greenhouse Effect Human activities contribute to global warming by increasing the greenhouse effect. The greenhouse effect happens when certain gases—known as greenhouse gases —collect in Earth’s atmosphere . These gases, which occur naturally in the atmosphere, include carbon dioxide , methane , nitrogen oxide, and fluorinated gases sometimes known as chlorofluorocarbons (CFCs). Greenhouse gases let the sun’s light shine onto Earth’s surface, but they trap the heat that reflects back up into the atmosphere. In this way, they act like the insulating glass walls of a greenhouse. The greenhouse effect keeps Earth’s climate comfortable. Without it, surface temperatures would be cooler by about 33 degrees Celsius (60 degrees Fahrenheit), and many life forms would freeze . Since the Industrial Revolution in the late 1700s and early 1800s, people have been releasing large quantities of greenhouse gases into the atmosphere. That amount has skyrocketed in the past century. Greenhouse gas emissions increased 70 percent between 1970 and 2004. Emissions of carbon dioxide, the most important greenhouse gas, rose by about 80 percent during that time. The amount of carbon dioxide in the atmosphere today far exceeds the natural range seen over the last 650,000 years. Most of the carbon dioxide that people put into the atmosphere comes from burning fossil fuels such as oil , coal , and natural gas . Cars, trucks, trains, and planes all burn fossil fuels. Many electric power plants also burn fossil fuels. Another way people release carbon dioxide into the atmosphere is by cutting down forests . This happens for two reasons. Decaying plant material, including trees, releases tons of carbon dioxide into the atmosphere. Living trees absorb carbon dioxide. By diminishing the number of trees to absorb carbon dioxide, the gas remains in the atmosphere. Most methane in the atmosphere comes from livestock farming , landfills , and fossil fuel production such as coal mining and natural gas processing. Nitrous oxide comes from agricultural technology and fossil fuel burning. Fluorinated gases include chlorofluorocarbons, hydrochlorofluorocarbons , and hydrofluorocarbons. These greenhouse gases are used in aerosol cans and refrigeration. All of these human activities add greenhouse gases to the atmosphere, trapping more heat than usual and contributing to global warming. Effects of Global Warming Even slight rises in average global temperatures can have huge effects. Perhaps the biggest, most obvious effect is that glaciers and ice caps melt faster than usual. The meltwater drains into the oceans, causing sea levels to rise and oceans to become less salty. Ice sheets and glaciers advance and retreat naturally. As Earth’s temperature has changed, the ice sheets have grown and shrunk, and sea levels have fallen and risen. Ancient corals found on land in Florida, Bermuda, and the Bahamas show that the sea level must have been five to six meters (16-20 feet) higher 130,000 years ago than it is today. Earth doesn’t need to become oven-hot to melt the glaciers. Northern summers were just three to five degrees Celsius (five to nine degrees Fahrenheit) warmer during the time of those ancient fossils than they are today. However, the speed at which global warming is taking place is unprecedented . The effects are unknown. Glaciers and ice caps cover about 10 percent of the world’s landmass today. They hold about 75 percent of the world’s fresh water. If all of this ice melted, sea levels would rise by about 70 meters (230 feet). The IPCC reported that the global sea level rose about 1.8 millimeters (0.07 inches) per year from 1961 to 1993, and 3.1 millimeters (0.12 inches) per year since 1993. Rising sea levels could flood coastal communities, displacing millions of people in areas such as Bangladesh, the Netherlands, and the U.S. state of Florida. Forced migration would impact not only those areas, but the regions to which the “ climate refugees ” flee . Millions more people in countries like Bolivia, Peru, and India depend on glacial meltwater for drinking, irrigation , and hydroelectric power . Rapid loss of these glaciers would devastate those countries. Glacial melt has already raised the global sea level slightly. However, scientists are discovering ways the sea level could increase even faster. For example, the melting of the Chacaltaya Glacier in Bolivia has exposed dark rocks beneath it. The rocks absorb heat from the sun, speeding up the melting process. Many scientists use the term “climate change” instead of “global warming.” This is because greenhouse gas emissions affect more than just temperature. Another effect involves changes in precipitation like rain and snow . Patterns in precipitation may change or become more extreme. Over the course of the 20th century, precipitation increased in eastern parts of North and South America, northern Europe, and northern and central Asia. However, it has decreased in parts of Africa, the Mediterranean, and parts of southern Asia. Future Changes Nobody can look into a crystal ball and predict the future with certainty. However, scientists can make estimates about future population growth, greenhouse gas emissions, and other factors that affect climate. They can enter those estimates into computer models to find out the most likely effects of global warming. The IPCC predicts that greenhouse gas emissions will continue to increase over the next few decades . As a result, they predict the average global temperature will increase by about 0.2 degrees Celsius (0.36 degrees Fahrenheit) per decade. Even if we reduce greenhouse gas and aerosol emissions to their 2000 levels, we can still expect a warming of about 0.1 degree Celsius (0.18 degrees Fahrenheit) per decade. The panel also predicts global warming will contribute to some serious changes in water supplies around the world. By the middle of the 21st century, the IPCC predicts, river runoff and water availability will most likely increase at high latitudes and in some tropical areas. However, many dry regions in the mid-latitudes and tropics will experience a decrease in water resources. As a result, millions of people may be exposed to water shortages . Water shortages decrease the amount of water available for drinking, electricity , and hygiene . Shortages also reduce water used for irrigation. Agricultural output would slow and food prices would climb. Consistent years of drought in the Great Plains of the United States and Canada would have this effect. IPCC data also suggest that the frequency of heat waves and extreme precipitation will increase. Weather patterns such as storms and tropical cyclones will become more intense. Storms themselves may be stronger, more frequent, and longer-lasting. They would be followed by stronger storm surges , the immediate rise in sea level following storms. Storm surges are particularly damaging to coastal areas because their effects (flooding, erosion , damage to buildings and crops) are lasting. What We Can Do Reducing our greenhouse gas emissions is a critical step in slowing the global warming trend. Many governments around the world are working toward this goal. The biggest effort so far has been the Kyoto Protocol , which was adopted in 1997 and went into effect in 2005. By the end of 2009, 187 countries had signed and ratified the agreement. Under the protocol , 37 industrialized countries and the European Union have committed to reducing their greenhouse gas emissions. There are several ways that governments, industries, and individuals can reduce greenhouse gases. We can improve energy efficiency in homes and businesses. We can improve the fuel efficiency of cars and other vehicles. We can also support development of alternative energy sources, such as solar power and biofuels , that don’t involve burning fossil fuels. Some scientists are working to capture carbon dioxide and store it underground, rather than let it go into the atmosphere. This process is called carbon sequestration . Trees and other plants absorb carbon dioxide as they grow. Protecting existing forests and planting new ones can help balance greenhouse gases in the atmosphere. Changes in farming practices could also reduce greenhouse gas emissions. For example, farms use large amounts of nitrogen-based fertilizers , which increase nitrogen oxide emissions from the soil. Reducing the use of these fertilizers would reduce the amount of this greenhouse gas in the atmosphere. The way farmers handle animal manure can also have an effect on global warming. When manure is stored as liquid or slurry in ponds or tanks, it releases methane. When it dries as a solid, however, it does not. Reducing greenhouse gas emissions is vitally important. However, the global temperature has already changed and will most likely continue to change for years to come. The IPCC suggests that people explore ways to adapt to global warming as well as try to slow or stop it. Some of the suggestions for adapting include:

  • Expanding water supplies through rain catchment , conservation , reuse, and desalination .
  • Adjusting crop locations, variety, and planting dates.
  • Building seawalls and storm surge barriers and creating marshes and wetlands as buffers against rising sea levels .
  • Creating heat-health action plans , boosting emergency medical services, and improving disease surveillance and control.
  • Diversifying tourism attractions, because existing attractions like ski resorts and coral reefs may disappear.
  • Planning for roads and rail lines to cope with warming and/or flooding.
  • Strengthening energy infrastructure , improving energy efficiency, and reducing dependence on single sources of energy.

Barking up the Wrong Tree Spruce bark beetles in the U.S. state of Alaska have had a population boom thanks to 20 years of warmer-than-average summers. The insects have managed to chew their way through 1.6 million hectares (four million acres) of spruce trees.

Disappearing Penguins Emperor penguins ( Aptenodytes forsteri ) made a showbiz splash in the 2005 film March of the Penguins . Sadly, their encore might include a disappearing act. In the 1970s, an abnormally long warm spell caused these Antarctic birds' population to drop by 50 percent. Some scientists worry that continued global warming will push the creatures to extinction by changing their habitat and food supply.

Shell Shock A sudden increase in the amount of carbon dioxide in the atmosphere does more than change Earth's temperature. A lot of the carbon dioxide in the air dissolves into seawater. There, it forms carbonic acid in a process called ocean acidification. Ocean acidification is making it hard for some sea creatures to build shells and skeletal structures. This could alter the ecological balance in the oceans and cause problems for fishing and tourism industries.

Audio & Video

Worksheets & handouts, media credits.

The audio, illustrations, photos, and videos are credited beneath the media asset, except for promotional images, which generally link to another page that contains the media credit. The Rights Holder for media is the person or group credited.

Illustrators

Educator reviewer, last updated.

October 19, 2023

User Permissions

For information on user permissions, please read our Terms of Service. If you have questions about how to cite anything on our website in your project or classroom presentation, please contact your teacher. They will best know the preferred format. When you reach out to them, you will need the page title, URL, and the date you accessed the resource.

If a media asset is downloadable, a download button appears in the corner of the media viewer. If no button appears, you cannot download or save the media.

Text on this page is printable and can be used according to our Terms of Service .

Interactives

Any interactives on this page can only be played while you are visiting our website. You cannot download interactives.

Related Resources

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • Published: 08 December 2004

Warming the world

  • Raymond T. Pierrehumbert 1  

Nature volume  432 ,  page 677 ( 2004 ) Cite this article

1825 Accesses

17 Citations

6 Altmetric

Metrics details

Greenhouse effect: Fourier's concept of planetary energy balance is still relevant today.

essay on greenhouse effect pdf

Jean-Baptiste Joseph Fourier is generally credited with the discovery of the greenhouse effect, whereby the presence of an atmosphere acts to increase a planet's surface temperature. Written in 1827, nearly three-quarters of a century before science advanced to the point where Arrhenius could quantify the phenomenon, how well does Fourier's concept measure up against our current understanding of the greenhouse effect?

First, it is important to recognize what Fourier did not do in his 1827 essay. He did not say that the operation of the atmosphere is analogous to that of a greenhouse — the French word serre (greenhouse) does not appear anywhere in the essay — so he should not be blamed for the well known shortcomings of the analogy. Neither did he write down any equations describing the greenhouse effect, nor compute any estimate of planetary temperature.

“In the present work, I have set myself another goal, that of calling attention to one of the greatest objects of natural philosophy,” Fourier writes, referring to the problem of planetary temperatures. Thus, the main contribution of the article is the introduction of planetary temperature as a proper object of study in physics. Fourier established the framework of energy balance still in use today: a planet obtains energy at a certain rate from various sources, and warms up until it loses heat at the same rate. Fourier correctly deduced that a planet loses heat almost exclusively by infrared radiation (“ chaleur obscure ” or ‘dark heat’) and can do so in a vacuum. Infrared had been discovered by Frederick Herschel only 25 years earlier, and the study of its properties occupied much of the attention of nineteenth-century physicists, including Fourier himself — the long gestation culminated in the birth of quantum theory at the dawn of the twentieth century.

Concerning the Earth's heat source, Fourier first made use of his earlier work on heat diffusion to correctly deduce that the internal heat remaining from the formation of the Earth no longer has a significant influence on surface temperature. He recognized that sunlight carries heat, that the atmosphere is essentially transparent to sunlight, that the light is converted to infrared on being absorbed by the surface, and that the atmosphere is relatively opaque to the infrared that serves to carry the received heat away to space. In consequence, Fourier reasoned, the temperature has to increase (compared with the no-atmosphere case) to allow sufficient infrared radiation to bring the heat budget into balance. Fourier knew that infrared flux increases with temperature, but had no notion of the form of the increase. Another fifty years were to pass before the discovery of the crucial Stefan–Boltzmann fourth-power law.

Recognizing the inadequate state of infrared theory, Fourier turned to an experiment by the geologist Horace Bénédict de Saussure. The apparatus for de Saussure's experiment consisted of an insulated box lined with black cork, to which sunlight is admitted at the top through one or more sheets of clear glass. He found that on exposure to sunlight, the interior temperature of the box is greatly elevated, as compared with that found when the glass is removed. De Saussure had built his apparatus as a means of measuring the intensity of solar radiation, but Fourier recognized the implications of the results for the problem of planetary temperatures, in that glass — like the atmosphere — is transparent to sunlight but opaque to infrared. In his discussion of the device, Fourier shows a thorough understanding of the extraneous effects at play, and makes quite clear that it is only the part of the interior warming due to infrared effects that is relevant to the Earth.

Fourier got the essence of the greenhouse effect right — the principle of energy balance and the asymmetric effect of the atmosphere on incoming light versus outgoing infrared. The remaining physics took almost two more centuries to sort out, and the job is still not yet done. As well as the Stefan–Boltzman black-body radiation law, other phenomena not understood at Fourier's time include the role of convection in causing atmospheric temperature to decrease with height, the importance of this decrease in reducing the mean temperature at which the planet radiates to space, the role of minor atmospheric constitutents (notably carbon dioxide and water vapour) in determining the infrared opacity, quantum theory relating to infrared absorption and emission, the dynamic nature of water vapour and its consequent radiative feedback, and both optical and microphysical properties of clouds. Fourier's essay set the agenda for much of this work. Inadequate understanding of vertical temperature gradient, water vapour and clouds continues to plague our theories of climate.

Just as important as what Fourier got right is what he got spectacularly wrong. Fourier believed that the Earth receives a significant amount of heat directly from interplanetary space, which he supposed to have a temperature comparable to that of the polar winter. The idea is not in itself preposterous, but what is remarkable is that, in coming to this conclusion, Fourier dismissed without cause alternative explanations he knew about, and indeed refers to in the same essay: thermal inertia and atmosphere–ocean heat transport, which keep the poles and the night warm without any need to invoke an influx of heat from interplanetary space. Fourier's problem was that he fell in love with an idea, and was thus blinded to things he knew. An object lesson for today?

What will future generations think of our present fumbling attempts to understand climate and predict its future course? I myself am left with a disconcerting feeling that some future Nature essayist may look back and wonder how we managed to ignore so much evidence that the Earth's climate can change more dramatically and catastrophically than our present models predict.

FURTHER READING  Fourier, J. -B.J. Mémoires d l'Académie Royale des Sciences de l'Institute de France VII , 570-604 (1827); a translation of this essay accompanies this article on Nature 's website. Bard, E. C. R. Geosci . 336 , 603-638 (2004).

Author information

Authors and affiliations.

Department of the Geophysical Sciences, the University of Chicago, 5734 S. Ellis Avenue, Chicago, 60637, Illinois, USA

  • Raymond T. Pierrehumbert

You can also search for this author in PubMed   Google Scholar

Supplementary information

Supplementary information (pdf 147 kb), rights and permissions.

Reprints and permissions

About this article

Cite this article.

Pierrehumbert, R. Warming the world. Nature 432 , 677 (2004). https://doi.org/10.1038/432677a

Download citation

Published : 08 December 2004

Issue Date : 09 December 2004

DOI : https://doi.org/10.1038/432677a

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

This article is cited by

A golden circle in the sky.

Nature (2007)

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

essay on greenhouse effect pdf

Library homepage

  • school Campus Bookshelves
  • menu_book Bookshelves
  • perm_media Learning Objects
  • login Login
  • how_to_reg Request Instructor Account
  • hub Instructor Commons
  • Download Page (PDF)
  • Download Full Book (PDF)
  • Periodic Table
  • Physics Constants
  • Scientific Calculator
  • Reference & Cite
  • Tools expand_more
  • Readability

selected template will load here

This action is not available.

Biology LibreTexts

21.1: The Greenhouse Effect and Climate Change

  • Last updated
  • Save as PDF
  • Page ID 47008

  • Melissa Ha and Rachel Schleiger
  • Yuba College & Butte College via ASCCC Open Educational Resources Initiative

Earth’s Temperature is a Balancing Act

Earth’s temperature depends on the balance between energy entering and leaving the planet. When incoming energy from the sun is absorbed, Earth warms. When the sun’s energy is reflected back into space, Earth avoids warming. When energy is released from Earth into space, the planet cools. Many factors, both natural and human, can cause changes in Earth’s energy balance, including:

  • Changes in the greenhouse effect, which affects the amount of heat retained by Earth’s atmosphere;
  • Variations in the sun’s energy reaching Earth;
  • Changes in the reflectivity of Earth’s atmosphere and surface.

Scientists have pieced together a picture of Earth’s climate, dating back hundreds of thousands of years, by analyzing a number of indirect measures of climate such as ice cores, tree rings, glacier size, pollen counts, and ocean sediments. Scientists have also studied changes in Earth’s orbit around the sun and the activity of the sun itself.

The historical record shows that the climate varies naturally over a wide range of time scales. In general, climate changes prior to the Industrial Revolution in the 1700s can be explained by natural causes, such as changes in solar energy, volcanic eruptions, and natural changes in greenhouse gas (GHG) concentrations. Recent changes in climate , however, cannot be explained by natural causes alone. Research indicates that natural causes are very unlikely to explain most observed warming, especially warming since the mid-20th century. Rather, human activities, especially our combustion of fossil fuels, explains the current warming (figure \(\PageIndex{a}\)). The scientific consensus is clear: through alterations of the carbon cycle, humans are changing the global climate by increasing the effects of something known as the greenhouse effect.

The Greenhouse Effect Causes the Atmosphere to Retain Heat

Gardeners that live in moderate or cool environments use greenhouses because they trap heat and create an environment that is warmer than outside temperatures. This is great for plants that like heat, or are sensitive to cold temperatures, such as tomato and pepper plants. Greenhouses contain glass or plastic that allow visible light from the sun to pass. This light, which is a form of energy, is absorbed by plants, soil, and surfaces and heats them. Some of that heat energy is then radiated outwards in the form of infrared radiation, a different form of energy. Unlike with visible light, the glass of the greenhouse blocks the infrared radiation, thereby trapping the heat energy, causing the temperature within the greenhouse to increase.

The same phenomenon happens inside a car on a sunny day. Have you ever noticed how much hotter a car can get compared to the outside temperature? Light energy from the sun passes through the windows and is absorbed by the surfaces in the car such as seats and the dashboard. Those warm surfaces then radiate infrared radiation, which cannot pass through the glass. This trapped infrared energy causes the air temperatures in the car to increase. This process is commonly known as the greenhouse effect .

The video below made for kids, but provides a clear and simple introduction to the greenhouse effect.

The greenhouse effect also happens with the entire Earth. Of course, our planet is not surrounded by glass windows. Instead, the Earth is wrapped with an atmosphere that contains greenhouse gases (GHGs). Much like the glass in a greenhouse, GHGs allow incoming visible light energy from the sun to pass, but they block infrared radiation that is radiated from the Earth towards space (figure \(\PageIndex{b}\)). In this way, they help trap heat energy that subsequently raises air temperature. Being a greenhouse gas is a physical property of certain types of gases; because of their molecular structure they absorb wavelengths of infrared radiation, but are transparent to visible light. Some notable greenhouse gases are water vapor (H 2 O), carbon dioxide (CO 2 ), and methane (CH 4 ). GHGs act like a blanket, making Earth significantly warmer than it would otherwise be. Scientists estimate that average temperature on Earth would be -18º C without naturally-occurring GHGs.

 Heat from solar radiation is trapped by the atmosphere. Human activities increase greenhouse gases resulting in an enhanced greenhouse effect.

What is Global Warming?

Global warming refers to the recent and ongoing rise in global average temperature near Earth’s surface. It is caused mostly by increasing concentrations of greenhouse gases in the atmosphere. Global warming is causing climate patterns to change. However, global warming itself represents only one aspect of climate change.

What is Climate Change?

Climate change refers to any significant change in the measures of climate lasting for an extended period of time. In other words, climate change includes major changes in temperature, precipitation, or wind patterns, among other effects, that occur over several decades or longer.

The Main Greenhouse Gasses

The most important GHGs directly emitted by humans include CO 2 and methane. Carbon dioxide  (CO 2 ) is the primary greenhouse gas that is contributing to recent global climate change. CO 2 is a natural component of the carbon cycle, involved in such activities as photosynthesis, respiration, volcanic eruptions, and ocean-atmosphere exchange. Human activities, primarily the burning of fossil fuels and changes in land use, release very large amounts of CO 2 to the atmosphere, causing its concentration in the atmosphere to rise.

Atmospheric CO 2 concentrations have increased by 45% since pre-industrial times, from approximately 280 parts per million (ppm) in the 18th century to 409.8 ppm in 2019 (figure \(\PageIndex{c}\)). The current CO 2 level is higher than it has been in at least 800,000 years, based on evidence from ice cores that preserve ancient atmospheric gases (figure \(\PageIndex{d-f}\)). Human activities currently release over 30 billion tons of CO 2 into the atmosphere every year. While some volcanic eruptions released large quantities of CO 2 in the distant past, the U.S. Geological Survey (USGS) reports that human activities now emit more than 135 times as much CO 2 as volcanoes each year. This human-caused build-up of CO 2 in the atmosphere is like a tub filling with water, where more water flows from the faucet than the drain can take away.

Line graph shows an increase in atmospheric carbon dioxide over time with fluctuations between seasons each year

Other Greenhouse Gasses

Although this concentration is far less than that of CO 2 , methane (CH 4 ) is 28 times as potent a greenhouse gas. Methane is produced when bacteria break down organic matter under anaerobic conditions and can be released due to natural or anthropogenic processes. Anaerobic conditions can happen when organic matter is trapped underwater (such as in rice paddies) or in the intestines of herbivores. Anthropogenic causes now account for 60% of total methane release. Examples include agriculture, fossil fuel extraction and transport, mining, landfill use, and burning of forests. Specifically, raising cattle releases methane due to fermentation in their rumens produces methane that is expelled from their GI tract. Methane is more abundant in Earth’s atmosphere now than at any time in at least the past 650,000 years, and CH 4 concentrations increased sharply during most of the 20th century. They are now more than two and-a-half times pre-industrial levels (1.9 ppm), but the rate of increase has slowed considerably in recent decades.

Water vapor is the most abundant greenhouse gas and also the most important in terms of its contribution to the natural greenhouse effect, despite having a short atmospheric lifetime. Some human activities can influence local water vapor levels. However, on a global scale, the concentration of water vapor is controlled by temperature, which influences overall rates of evaporation and precipitation. Therefore, the global concentration of water vapor is not substantially affected by direct human emissions.

Ground-level ozone (O 3 ), which also has a short atmospheric lifetime, is a potent greenhouse gas. Chemical reactions create ozone from emissions of nitrogen oxides and volatile organic compounds from automobiles, power plants, and other industrial and commercial sources in the presence of sunlight (as discussed in section 10.1). In addition to trapping heat, ozone is a pollutant that can cause respiratory health problems and damage crops and ecosystems.

Changes in the Sun’s Energy Affect how Much Energy Reaches Earth

Climate can be influenced by natural changes that affect how much solar energy reaches Earth. These changes include changes within the sun and changes in Earth’s orbit. Changes occurring in the sun itself can affect the intensity of the sunlight that reaches Earth’s surface. The intensity of the sunlight can cause either warming (during periods of stronger solar intensity) or cooling (during periods of weaker solar intensity). The sun follows a natural 11-year cycle of small ups and downs in intensity, but the effect on Earth’s climate is small. Changes in the shape of Earth’s orbit as well as the tilt and position of Earth’s axis can also affect the amount of sunlight reaching Earth’s surface.

Changes in the sun’s intensity have influenced Earth’s climate in the past. For example, the so-called “ Little Ice Age ” between the 17th and 19th centuries may have been partially caused by a low solar activity phase from 1645 to 1715, which coincided with cooler temperatures. The Little Ice Age refers to a slight cooling of North America, Europe, and probably other areas around the globe. Changes in Earth’s orbit have had a big impact on climate over tens of thousands of years. These changes appear to be the primary cause of past cycles of ice ages, in which Earth has experienced long periods of cold temperatures (ice ages), as well as shorter interglacial periods (periods between ice ages) of relatively warmer temperatures.

Changes in solar energy continue to affect climate. However, solar activity has been relatively constant, aside from the 11-year cycle, since the mid-20th century and therefore does not explain the recent warming of Earth. Similarly, changes in the shape of Earth’s orbit as well as the tilt and position of Earth’s axis affect temperature on relatively long timescales (tens of thousands of years), and therefore cannot explain the recent warming.

Changes in Reflectivity Affect How Much Energy Enters Earth’s System

When sunlight energy reaches Earth it can be reflected or absorbed. The amount that is reflected or absorbed depends on Earth’s surface and atmosphere. Light-colored objects and surfaces, like snow and clouds, tend to reflect most sunlight, while darker objects and surfaces, like the ocean and forests, tend to absorb more sunlight. The term albedo refers to the amount of solar radiation reflected from an object or surface, often expressed as a percentage. Earth as a whole has an albedo of about 30%, meaning that 70% of the sunlight that reaches the planet is absorbed. Sunlight that is absorbed warms Earth’s land, water, and atmosphere.

Albedo is also affected by aerosols. Aerosols are small particles or liquid droplets in the atmosphere that can absorb or reflect sunlight. Unlike greenhouse gases (GHGs), the climate effects of aerosols vary depending on what they are made of and where they are emitted. Those aerosols that reflect sunlight, such as particles from volcanic eruptions or sulfur emissions from burning coal, have a cooling effect. Those that absorb sunlight, such as black carbon (a part of soot), have a warming effect.

Natural changes in albedo, like the melting of sea ice or increases in cloud cover, have contributed to climate change in the past, often acting as feedbacks to other processes. Volcanoes have played a noticeable role in climate. Volcanic particles that reach the upper atmosphere can reflect enough sunlight back to space to cool the surface of the planet by a few tenths of a degree for several years. Volcanic particles from a single eruption do not produce long-term change because they remain in the atmosphere for a much shorter time than GHGs.

Human changes in land use and land cover have changed Earth’s albedo. Processes such as deforestation, reforestation, desertification, and urbanization often contribute to changes in climate in the places they occur. These effects may be significant regionally, but are smaller when averaged over the entire globe.

Scientific Consensus: Global Climate Change is Real

The Intergovernmental Panel on Climate Change (IPCC) was created in 1988 by the United Nations Environment Programme and the World Meteorological Organization. It is charged with the task of evaluating and synthesizing the scientific evidence surrounding global climate change. The IPCC uses this information to evaluate current impacts and future risks, in addition to providing policymakers with assessments. These assessments are released about once every every six years. The most recent report, the 5th Assessment, was released in 2013. Hundreds of leading scientists from around the world are chosen to author these reports. Over the history of the IPCC, these scientists have reviewed thousands of peer-reviewed, publicly available studies. The scientific consensus is clear: global climate change is real and humans are very likely the cause for this change.

Additionally, the major scientific agencies of the United States, including the National Aeronautics and Space Administration (NASA) and the National Oceanic and Atmospheric Administration (NOAA), also agree that climate change is occurring and that humans are driving it. In 2010, the US National Research Council concluded that “Climate change is occurring, is very likely caused by human activities, and poses significant risks for a broad range of human and natural systems”. Many independent scientific organizations have released similar statements, both in the United States and abroad. This doesn’t necessarily mean that every scientist sees eye to eye on each component of the climate change problem, but broad agreement exists that climate change is happening and is primarily caused by excess greenhouse gases from human activities. Critics of climate change, driven by ideology instead of evidence, try to suggest to the public that there is no scientific consensus on global climate change. Such an assertion is patently false.

Current Status of Global Climate Change and Future Changes

Greenhouse gas concentrations in the atmosphere will continue to increase unless the billions of tons of anthropogenic emissions each year decrease substantially. Increased concentrations are expected to do the following:

  • Increase Earth’s average temperature (figure \(\PageIndex{g}\)),
  • Influence the patterns and amounts of precipitation,
  • Reduce ice and snow cover, as well as permafrost,
  • Raise sea level (figure \(\PageIndex{h}\)),
  • Increase the acidity of the oceans.

Line graph shows overall increases in sea height from 1993 to 2020

Figure \(\PageIndex{h}\):  Sea height variation (mm) over time. Sea height has increased about 3.3 millimeters per year on average since 1993. Data is from satellite sea level observations by the NASA Goddard Space Flight Center. Image by NASA (public domain).

These changes will impact our food supply, water resources, infrastructure, ecosystems, and even our own health. The magnitude and rate of future climate change will primarily depend on the following factors:

  • The rate at which levels of greenhouse gas concentrations in our atmosphere continue to increase,
  • How strongly features of the climate (e.g., temperature, precipitation, and sea level) respond to the expected increase in greenhouse gas concentrations,
  • Natural influences on climate (e.g., from volcanic activity and changes in the sun’s intensity) and natural processes within the climate system (e.g., changes in ocean circulation patterns).

Past and Present-day GHG Emissions Will Affect Climate Far into the Future

Many greenhouse gases stay in the atmosphere for long periods of time. As a result, even if emissions stopped increasing, atmospheric greenhouse gas concentrations would continue to remain elevated for hundreds of years. Moreover, if we stabilized concentrations and the composition of today’s atmosphere remained steady (which would require a dramatic reduction in current greenhouse gas emissions), surface air temperatures would continue to warm. This is because the oceans, which store heat, take many decades to fully respond to higher greenhouse gas concentrations. The ocean’s response to higher greenhouse gas concentrations and higher temperatures will continue to impact climate over the next several decades to hundreds of years.

Future Temperature Changes

Climate models project the following key temperature-related changes:

  • Average global temperatures are expected to increase by 2°F to 11.5°F by 2100, depending on the level of future greenhouse gas emissions, and the outcomes from various climate models.
  • By 2100, global average temperature is expected to warm at least twice as much as it has during the last 100 years.
  • Ground-level air temperatures are expected to continue to warm more rapidly over land than oceans.
  • Some parts of the world are projected to see larger temperature increases than the global average.

Future Precipitation and Storm Events

Patterns of precipitation and storm events, including both rain and snowfall are likely to change. However, some of these changes are less certain than the changes associated with temperature. Projections show that future precipitation and storm changes will vary by season and region. Some regions may have less precipitation, some may have more precipitation, and some may have little or no change. The amount of rain falling in heavy precipitation events is likely to increase in most regions, while storm tracks are projected to shift towards the poles. Climate models project the following precipitation and storm changes:

  • Global average annual precipitation through the end of the century is expected to increase, although changes in the amount and intensity of precipitation will vary by region.
  • The intensity of precipitation events will likely increase on average. This will be particularly pronounced in tropical and high-latitude regions, which are also expected to experience overall increases in precipitation.
  • The strength of the winds associated with tropical storms is likely to increase. The amount of precipitation falling in tropical storms is also likely to increase.
  • Annual average precipitation is projected to increase in some areas and decrease in others.

Future Ice, Snowpack, and Permafrost

Arctic sea ice is already declining drastically. The area of snow cover in the Northern Hemisphere has decreased since 1970. Permafrost temperature has increased over the last century, making it more susceptible to thawing. Over the next century, it is expected that sea ice will continue to decline, glaciers will continue to shrink, snow cover will continue to decrease, and permafrost will continue to thaw.

For every 2°F of warming, models project about a 15% decrease in the extent of annually averaged sea ice and a 25% decrease in September Arctic sea ice. The coastal sections of the Greenland and Antarctic ice sheets are expected to continue to melt or slide into the ocean. If the rate of this ice melting increases in the 21st century, the ice sheets could add significantly to global sea level rise. Glaciers are expected to continue to decrease in size. The rate of melting is expected to continue to increase, which will contribute to sea level rise.

Future Sea Level Change

Warming temperatures contribute to sea level rise by expanding ocean water, melting mountain glaciers and ice caps, and causing portions of the Greenland and Antarctic ice sheets to melt or flow into the ocean. Since 1870, global sea level has risen by about 8 inches. Estimates of future sea level rise vary for different regions, but global sea level for the next century is expected to rise at a greater rate than during the past 50 years. The contribution of thermal expansion, ice caps, and small glaciers to sea level rise is relatively well-studied, but the impacts of climate change on ice sheets are less understood and represent an active area of research. Thus, it is more difficult to predict how much changes in ice sheets will contribute to sea level rise. Greenland and Antarctic ice sheets could contribute an additional 1 foot of sea level rise, depending on how the ice sheets respond.

Regional and local factors will influence future relative sea level rise for specific coastlines around the world (figure \(\PageIndex{i}\)). For example, relative sea level rise depends on land elevation changes that occur as a result of subsidence (sinking) or uplift (rising), in addition to things such as local currents, winds, salinity, water temperatures, and proximity to thinning ice sheets. Assuming that these historical geological forces continue, a 2-foot rise in global sea level by 2100 would result in the following relative sea level rise:

  • 2.3 feet at New York City
  • 2.9 feet at Hampton Roads, Virginia
  • 3.5 feet at Galveston, Texas
  • 1 foot at Neah Bay in Washington state

The yard of a damaged house is flooded, and a tree stump is submerged

Future Ocean Acidification

Ocean acidification is the process of ocean waters decreasing in pH. Oceans become more acidic as carbon dioxide (CO 2 ) emissions in the atmosphere dissolve in the ocean. This change is measured on the pH scale, with lower values being more acidic. The pH level of the oceans has decreased by approximately 0.1 pH units since pre-industrial times, which is equivalent to a 25% increase in acidity. The pH level of the oceans is projected to decrease even more by the end of the century as CO 2 concentrations are expected to increase for the foreseeable future. Ocean acidification adversely affects many marine species, including plankton, mollusks, shellfish, and corals. As ocean acidification increases, the availability of calcium carbonate will decline. Calcium carbonate is a key building block for the shells and skeletons of many marine organisms. If atmospheric CO 2 concentrations double, coral calcification rates are projected to decline by more than 30%. If CO 2 concentrations continue to rise at their current rate, corals could become rare on tropical and subtropical reefs by 2050.

Mismatched Interactions

Climate change also affects phenology, the study of the effects of climatic conditions on the timing of periodic lifecycle events, such as flowering in plants or migration in birds. Researchers have shown that 385 plant species in Great Britain are flowering 4.5 days sooner than was recorded earlier during the previous 40 years. In addition, insect-pollinated species were more likely to flower earlier than wind-pollinated species. The impact of changes in flowering date would be mitigated if the insect pollinators emerged earlier. This mismatched timing of plants and pollinators could result in injurious ecosystem effects because, for continued survival, insect-pollinated plants must flower when their pollinators are present.

Likewise, migratory birds rely on daylength cues, which are not influenced by climate change. Their insect food sources, however, emerge earlier in the year in response to warmer temperatures. As a result, climate change decreases food availability for migratory bird species.

Spread of Disease

This rise in global temperatures will increase the range of disease-carrying insects and the viruses and pathogenic parasites they harbor. Thus, diseases will spread to new regions of the globe. This spread has already been documented with dengue fever, a disease the affects hundreds of millions per year, according to the World Health Organization. Colder temperatures typically limit the distribution of certain species, such as the mosquitoes that transmit malaria, because freezing temperatures destroy their eggs.

Not only will the range of some disease-causing insects expand, the increasing temperatures will also accelerate their lifecycles, which allows them to breed and multiply quicker, and perhaps evolve pesticide resistance faster. In addition to dengue fever, other diseases are expected to spread to new portions of the world as the global climate warms. These include malaria, yellow fever, West Nile virus, zika virus, and chikungunya.

Climate change does not only increase the spread of diseases in humans. Rising temperatures are associated with greater amphibian mortality due to chytridiomycosis (see Invasive Species ). Similarly, warmer temperatures have exacerbated bark beetle infestations of coniferous trees, such as pine an spruce.

Climate Change Affects Everyone

Our lives are connected to the climate . Human societies have adapted to the relatively stable climate we have enjoyed since the last ice age which ended several thousand years ago. A warming climate will bring changes that can affect our water supplies, agriculture, power and transportation systems, the natural environment, and even our own health and safety.

Carbon dioxide can stay in the atmosphere for nearly a century, on average, so Earth will continue to warm in the coming decades. The warmer it gets, the greater the risk for more severe changes to the climate and Earth’s system. Although it’s difficult to predict the exact impacts of climate change, what’s clear is that the climate we are accustomed to is no longer a reliable guide for what to expect in the future.

We can reduce the risks we will face from climate change . By making choices that reduce greenhouse gas pollution, and preparing for the changes that are already underway, we can reduce risks from climate change. Our decisions today will shape the world our children and grandchildren will live in.

You can take steps at home, on the road, and in your office to reduce greenhouse gas emissions and the risks associated with climate change. Many of these steps can save you money. Some, such as walking or biking to work, can even improve your health! You can also get involved on a local or state level to support energy efficiency, clean energy programs, or other climate programs.

Suggested Supplementary Reading

Intergovernmental Panel on Climate Change. 2013. 5th Assessment: Summary for Policymakers .

NASA. 2018. Global Climate Change: Vital Signs of the Planet . This website by NASA provides a multi-media smorgasbord of engaging content. Learn about climate change using data collected by NASA satellites and more.

Attributions

Modified by Melissa Ha from the following sources:

  • Climate and the Effects of Global Climate Change  from  General Biology  by OpenStax (licensed under  CC-BY )
  • Climate Change  from  Environmental Biology  by Matthew R. Fisher (licensed under  CC-BY )
  • Carbon Cycle from  Biology  by John W. Kimball (licensed under  CC-BY )

Understanding Global Change

Discover why the climate and environment changes, your place in the Earth system, and paths to a resilient future.

Greenhouse effect

closeup image of storyboard

Life as we know it would be impossible if not for the greenhouse effect, the process through which heat is absorbed and re-radiated in that atmosphere. The intensity of a planet’s greenhouse effect is determined by the relative abundance of greenhouse gases in its atmosphere. Without greenhouse gases, most of Earth’s heat would be lost to outer space, and our planet would quickly turn into a giant ball of ice. Increase the amount of greenhouse gases to the levels found on the planet Venus, and the Earth would be as hot as a pizza oven! Fortunately, the strength of Earth’s greenhouse effect keeps our planet within a temperature range that supports life

On this page

What is the greenhouse effect, earth system models about the greenhouse effect, how human activities influence the greenhouse effect, explore the earth system, investigate, links to learn more.

For the classroom:

  • Teaching Resources

essay on greenhouse effect pdf

Global Change Infographic

The greenhouse effect occurs in the atmosphere, and is an essential part of How the Earth System Works. Click the image on the left to open the Understanding Global Change Infographic . Locate the greenhouse effect icon and identify other topics that cause changes to, or are affected by, the greenhouse effect.

essay on greenhouse effect pdf

Adapted from the Environmental Protection Agency greenhouse effect file

Greenhouse gases such as methane, carbon dioxide, nitrous oxide, and water vapor  significantly affect the amount of energy in the Earth system, even though they make up a tiny percentage of Earth’s atmosphere.  Solar radiation that passes through the atmosphere and reaches Earth’s surface is either reflected or absorbed . Reflected sunlight doesn’t add any heat to the Earth system because this energy bounces back into space.

However, absorbed sunlight increases the temperature of Earth’s surface, and the warmed surface re-radiates as long-wave radiation (also known as infrared radiation). Infrared radiation is invisible to the eye, but we feel it as heat.

If there were not any greenhouse gases in the atmosphere, all that heat would pass directly back into space. With greenhouse gases present, however, most of the long-wave radiation coming from Earth’s surface is absorbed and then re-radiated in all directions many times before passing back into space. Heat that is re-radiated downward, toward the Earth, is absorbed by the surface and re-radiated again.

Clouds also influence the greenhouse effect. A thick, low cloud cover can enhance the reflectivity of the atmosphere, reducing the amount of solar radiation reaching Earth’s surface, but clouds high in the atmosphere can intensify the greenhouse effect by re-radiating heat from the Earth’s surface.

Altogether, this cycle of absorption and re-radiation by greenhouse gases impedes the loss of heat from our atmosphere to space, creating the greenhouse effect. Increases in the amount of greenhouses gases will mean that more heat is trapped, increasing the amount of energy in the Earth system (Earth’s energy budget), and raising Earth’s temperature. This increase in Earth’s average temperature is also known as global warming.

This Earth system model is one way to represent the essential processes and interactions related to the greenhouse effect. Hover over the icons for brief explanations; click on the icons to learn more about each topic. Download the Earth system models on this page. There are a few ways that the relationships among these topics can be represented and explained using the Understanding Global Change icons ( download examples ).  

The greenhouse effect, which influences Earth’s average temperature, affects many of the processes that shape global climate and ecosystems.  This model shows some of the other parts of the Earth system that the greenhouse effect influences, including the water cycle and water temperature .

Humans directly affect the greenhouse effect through activities that result in greenhouse gas emissions. The Earth system model below includes some of the ways that human activities increase the amount of greenhouse gases in the atmosphere. Releasing greenhouse gases intensifies the greenhouse effect, and increases Earth’s average air temperatures (also known as global warming). Hover over or click on the icons to learn more about these human causes of change and how they influence the greenhouse effect.

Click the scene icons and bolded terms on this page to learn more about these process and phenomena.

Learn more in these real-world examples, and challenge yourself to  construct a model  that explains the Earth system relationships.

  • Ancient fossils and modern climate change
  • How Global Warming Works
  • NASA:  Global Climate Change:  A Blanket Around the Earth
  • UCAR Center for Science Education: The Greenhouse Effect
  • IPCC:  What is the Greenhouse Effect?
  • Indicators of Change (NCA.2014)
  • Human influence on the greenhouse effect
  • The Carbon Cycle and Earth’s Climate

IMAGES

  1. Greenhouse effect

    essay on greenhouse effect pdf

  2. Global Warming

    essay on greenhouse effect pdf

  3. Global Warming and the Greenhouse Effect

    essay on greenhouse effect pdf

  4. greenhouse effect

    essay on greenhouse effect pdf

  5. Greenhouse Effect Paragraph

    essay on greenhouse effect pdf

  6. The Greenhouse effect and Global warming

    essay on greenhouse effect pdf

VIDEO

  1. Enhanced Greenhouse Effect

  2. Green House Effects Essay In English

  3. essay on greenhouse effect in english || Greenhouse gas emissions || 150-200 words essay ||

  4. Chlorofluorocarbons CFCs, Global warming esaay in gujarati language,Greenhouse effect gases Material

  5. 2050 तक मुंबई दुनिया के नक्शे से मिट जाएगा।।😱😱#shorts#mumbai#climatechange#2050#facts#globalwarming

  6. Essay/Paragraph writing on Greenhouse Effects || What is Greenhouse Effects? Global Warming

COMMENTS

  1. Essay on Greenhouse Effect for Students

    600 Words Essay on Greenhouse Effect. A Greenhouse, as the term suggests, is a structure made of glass which is designed to trap heat inside. Thus, even on cold chilling winter days, there is warmth inside it. Similarly, Earth also traps energy from the Sun and prevents it from escaping back. The greenhouse gases or the molecules present in the ...

  2. PDF Human Activity and the Greenhouse Effect

    the Earth's natural greenhouse effect and account for about 90% of the total heat-retaining capacity of the atmosphere. Greenhouse gases can also reabsorb solar radiation reflected or reemitted from Earth's surface, trapping the heat in our atmosphere instead of letting it escape to space. The Greenhouse Effect is a natural process essential

  3. PDF The Greenhouse Effect

    The greenhouse effect is the rise in temperature that the Earth experiences because certain gases in the atmosphere (water vapor, carbon dioxide, nitrous oxide, ozone, methane, for example) trap energy that comes from the sun. These gases are usually called greenhouse gases since they behave much like the glass panes in a greenhouse.

  4. (PDF) Greenhouse Effect: Greenhouse Gases and Their Impact on Global

    The clear effect of the greenhouse gases is the. stable heating of Earth's atmosphere and surface, thus, global warming. The abi lity of certain gases, greenhouse gases, to be transparent to ...

  5. PDF The Carbon Dioxide Greenhouse Effect

    climate change, so that the rising level could gravely affect our future. (This essay covers only developments relating directly to carbon dioxide, with a separate essay for Other Greenhouse Gases. Theories are discussed in the essay on Simple Models of Climate. To get an overview, start with Summary: the Story in a Nutshell and then come back ...

  6. PDF CHAPTER 7. THE GREENHOUSE EFFECT

    Figure 7-10.eps. CHAPTER 7. THE GREENHOUSE EFFECT. We examine in this chapter the role played by atmospheric gases in controlling the temperature of the Earth. The main source of heat to the Earth is solar energy, which is transmitted from the Sun to the Earth by radiation and is converted to heat at the Earth's surface.

  7. PDF The Greenhouse Effect: Science and Policy

    The greenhouse effect, despite all the controversy that surrounds the term, is actually one of the most well-established theories in atmospheric science. For example, with its dense CO2 atmosphere, Venus has temperatures near 700 K at its surface. Mars, with its very thin CO2 atmosphere, has temperatures of only 220 K.

  8. PDF TEACHER BACKGROUND: THE GREENHOUSE EFFECT

    ( 21%), exert almost no greenhouse effect. Instead, the greenhouse effect comes from molecules that are more complex and much less common. Water vapor is the most important greenhouse gas, and carbon dioxide (CO 2) is the second-most important one. Methane, nitrous oxide, ozone and several other gases present in the atmosphere in small amounts ...

  9. PDF essay concepts Warming the world

    essay. He did not say that the opera-tion of the atmosphere is analogous to that of a greenhouse — the French word serre (greenhouse) does not appear anywhere in the essay — so he should not be blamed for the well known shortcomings of the analogy. Neither did he write down any equations describing the greenhouse effect, nor compute any ...

  10. PDF The greenhouse effect and global warming

    Gases produced by human activities can increase the natural greenhouse effect of the atmosphere. This is often known as the enhanced greenhouse effect. There are two types of these gases: Gases already present in the atmosphere but an increased amount is added by human activities. This includes carbon dioxide and methane.

  11. Greenhouse Effect

    greenhouse effect. phenomenon where gases allow sunlight to enter Earth's atmosphere but make it difficult for heat to escape. greenhouse gas. gas in the atmosphere, such as carbon dioxide, methane, water vapor, and ozone, that absorbs solar heat reflected by the surface of the Earth, warming the atmosphere.

  12. 3.2: The Greenhouse Effect

    3.2: The Greenhouse Effect. The process by which the atmosphere absorbs the sun's energy and prevents it from being radiated back out to space has often been compared to that of a greenhouse, leading to the nickname the greenhouse effect. It is the same process that occurs when you leave your car sitting in the sun with the windows rolled up.

  13. PDF OVERSIMPLIFYING THE GREENHOUSE An Editorial Essay

    EDITORIAL ESSAY 433 the next 50 years. They accomplish this by adding 1 Wm−2 for CO 2, a net decrease in radiative forcing for the greenhouse gases, and a balancing of the net cooling effect of sulfate aerosols and warming influence of carbon aerosols. While this is a worthy goal, little analysis is presented to justify such a scenario. Not ...

  14. Greenhouse effect

    greenhouse effect, a warming of Earth's surface and troposphere (the lowest layer of the atmosphere) caused by the presence of water vapour, carbon dioxide, methane, and certain other gases in the air. Of those gases, known as greenhouse gases, water vapour has the largest effect.. The origins of the term greenhouse effect are unclear. French mathematician Joseph Fourier is sometimes given ...

  15. PDF The Greenhouse Effect

    The greenhouse effect occurs when these gases in the atmosphere trap the sun's heat, warming the Earth. That's exactly what a greenhouse does for plants. When it's too cold for plants to grow outside, the glass of the greenhouse traps heat, enabling the plants to survive and grow. Without this greenhouse effect, the

  16. PDF GREENHOUSE EFFECT & GLOBAL WARMING

    Gases in the atmosphere can contribute to the greenhouse effect both directly and indirectly. Direct effects occur when the gas itself is a greenhouse gas. Indirect radiative forcing occurs when chemical transformations of the original gas produce a gas or gases that are greenhouse gases, when a gas influences the

  17. [PDF] Global climate change and greenhouse effect

    The climate has changed significantly under the influence of human behavior. And first of all, this is due to the change in the proportionality and concentration of greenhouse gases in the atmosphere (water vapor, carbon dioxide, methane, ozone, PFC (perfluorocarbons). This paper analyzes the dynamics of greenhouse gas emissions. Climate change has many consequences on human health throughout ...

  18. PDF Frequently Asked Questions

    This is called the greenhouse effect. The glass walls in a greenhouse reduce airflow and increase the temperature of the air inside. Analogously, but through a different physical process, the Earth's greenhouse effect warms the surface of the planet. Without the natural greenhouse effect, the average temperature at Earth's surface would be ...

  19. Warming the world

    Greenhouse effect: Fourier's concept of planetary energy balance is still relevant today. ... Download PDF. Download PDF. Essay; Published: 08 December 2004; ... First, it is important to ...

  20. 21.1: The Greenhouse Effect and Climate Change

    The scientific consensus is clear: through alterations of the carbon cycle, humans are changing the global climate by increasing the effects of something known as the greenhouse effect. Figure 21.1.a 21.1. a : This graph shows the predicted temperatures from two climate models and observed temperatures from 1880 to 2020.

  21. The Greenhouse Effect: Science and Policy

    Abstract. Global warming from the increase in greenhouse gases has become a major scientific and political issue during the past decade. That infrared radiation is trapped by greenhouse gases and particles in a planetary atmosphere and that the atmospheric CO 2 level has increased by some 25 percent since 1850 because of fossil fuel combustion ...

  22. The greenhouse effect: Damages, costs and abatement

    The buildup of so-called "greenhouse gases" in the atmosphere — CO2 in particular-appears to be having an adverse impact on the global climate. This paper briefly reviews current expectations with regard to physical and biological effects, their potential costs to society, and likely costs of abatement. For a "worst case" scenario it is impossible to assess, in economic terms, the ...

  23. Greenhouse effect

    The greenhouse effect occurs in the atmosphere, and is an essential part of How the Earth System Works. Click the image on the left to open the Understanding Global Change Infographic. Locate the greenhouse effect icon and identify other topics that cause changes to, or are affected by, the greenhouse effect.