download research papers on artificial intelligence

The Journal of Artificial Intelligence Research (JAIR) is dedicated to the rapid dissemination of important research results to the global artificial intelligence (AI) community. The journal’s scope encompasses all areas of AI, including agents and multi-agent systems, automated reasoning, constraint processing and search, knowledge representation, machine learning, natural language, planning and scheduling, robotics and vision, and uncertainty in AI.

Current Issue

Vol. 79 (2024)

Published: 2024-01-10

Bt-GAN: Generating Fair Synthetic Healthdata via Bias-transforming Generative Adversarial Networks

Collision avoiding max-sum for mobile sensor teams, usn: a robust imitation learning method against diverse action noise, structure in deep reinforcement learning: a survey and open problems, a map of diverse synthetic stable matching instances, digcn: a dynamic interaction graph convolutional network based on learnable proposals for object detection, iterative train scheduling under disruption with maximum satisfiability, removing bias and incentivizing precision in peer-grading, cultural bias in explainable ai research: a systematic analysis, learning to resolve social dilemmas: a survey, a principled distributional approach to trajectory similarity measurement and its application to anomaly detection, multi-modal attentive prompt learning for few-shot emotion recognition in conversations, condense: conditional density estimation for time series anomaly detection, performative ethics from within the ivory tower: how cs practitioners uphold systems of oppression, learning logic specifications for policy guidance in pomdps: an inductive logic programming approach, multi-objective reinforcement learning based on decomposition: a taxonomy and framework, can fairness be automated guidelines and opportunities for fairness-aware automl, practical and parallelizable algorithms for non-monotone submodular maximization with size constraint, exploring the tradeoff between system profit and income equality among ride-hailing drivers, on mitigating the utility-loss in differentially private learning: a new perspective by a geometrically inspired kernel approach, an algorithm with improved complexity for pebble motion/multi-agent path finding on trees, weighted, circular and semi-algebraic proofs, reinforcement learning for generative ai: state of the art, opportunities and open research challenges, human-in-the-loop reinforcement learning: a survey and position on requirements, challenges, and opportunities, boolean observation games, detecting change intervals with isolation distributional kernel, query-driven qualitative constraint acquisition, visually grounded language learning: a review of language games, datasets, tasks, and models, right place, right time: proactive multi-robot task allocation under spatiotemporal uncertainty, principles and their computational consequences for argumentation frameworks with collective attacks, the ai race: why current neural network-based architectures are a poor basis for artificial general intelligence, undesirable biases in nlp: addressing challenges of measurement.

Advertisement

Advertisement

Artificial intelligence and machine learning research: towards digital transformation at a global scale

  • Published: 17 April 2021
  • Volume 13 , pages 3319–3321, ( 2022 )

Cite this article

download research papers on artificial intelligence

  • Akila Sarirete 1 ,
  • Zain Balfagih 1 ,
  • Tayeb Brahimi 1 ,
  • Miltiadis D. Lytras 1 , 2 &
  • Anna Visvizi 3 , 4  

9615 Accesses

12 Citations

Explore all metrics

Avoid common mistakes on your manuscript.

Artificial intelligence (AI) is reshaping how we live, learn, and work. Until recently, AI used to be a fanciful concept, more closely associated with science fiction rather than with anything else. However, driven by unprecedented advances in sophisticated information and communication technology (ICT), AI today is synonymous technological progress already attained and the one yet to come in all spheres of our lives (Chui et al. 2018 ; Lytras et al. 2018 , 2019 ).

Considering that Machine Learning (ML) and AI are apt to reach unforeseen levels of accuracy and efficiency, this special issue sought to promote research on AI and ML seen as functions of data-driven innovation and digital transformation. The combination of expanding ICT-driven capabilities and capacities identifiable across our socio-economic systems along with growing consumer expectations vis-a-vis technology and its value-added for our societies, requires multidisciplinary research and research agenda on AI and ML (Lytras et al. 2021 ; Visvizi et al. 2020 ; Chui et al. 2020 ). Such a research agenda should oscilate around the following five defining issues (Fig. 1 ):

figure 1

Source: The Authors

An AI-Driven Digital Transformation in all aspects of human activity/

Integration of diverse data-warehouses to unified ecosystems of AI and ML value-based services

Deployment of robust AI and ML processing capabilities for enhanced decision making and generation of value our of data.

Design of innovative novel AI and ML applications for predictive and analytical capabilities

Design of sophisticated AI and ML-enabled intelligence components with critical social impact

Promotion of the Digital Transformation in all the aspects of human activity including business, healthcare, government, commerce, social intelligence etc.

Such development will also have a critical impact on government, policies, regulations and initiatives aiming to interpret the value of the AI-driven digital transformation to the sustainable economic development of our planet. Additionally the disruptive character of AI and ML technology and research will required further research on business models and management of innovation capabilities.

This special issue is based on submissions invited from the 17th Annual Learning and Technology Conference 2019 that was held at Effat University and open call jointly. Several very good submissions were received. All of them were subjected a rigorous peer review process specific to the Ambient Intelligence and Humanized Computing Journal.

A variety of innovative topics are included in the agenda of the published papers in this special issue including topics such as:

Stock market Prediction using Machine learning

Detection of Apple Diseases and Pests based on Multi-Model LSTM-based Convolutional Neural Networks

ML for Searching

Machine Learning for Learning Automata

Entity recognition & Relation Extraction

Intelligent Surveillance Systems

Activity Recognition and K-Means Clustering

Distributed Mobility Management

Review Rating Prediction with Deep Learning

Cybersecurity: Botnet detection with Deep learning

Self-Training methods

Neuro-Fuzzy Inference systems

Fuzzy Controllers

Monarch Butterfly Optimized Control with Robustness Analysis

GMM methods for speaker age and gender classification

Regression methods for Permeability Prediction of Petroleum Reservoirs

Surface EMG Signal Classification

Pattern Mining

Human Activity Recognition in Smart Environments

Teaching–Learning based Optimization Algorithm

Big Data Analytics

Diagnosis based on Event-Driven Processing and Machine Learning for Mobile Healthcare

Over a decade ago, Effat University envisioned a timely platform that brings together educators, researchers and tech enthusiasts under one roof and functions as a fount for creativity and innovation. It was a dream that such platform bridges the existing gap and becomes a leading hub for innovators across disciplines to share their knowledge and exchange novel ideas. It was in 2003 that this dream was realized and the first Learning & Technology Conference was held. Up until today, the conference has covered a variety of cutting-edge themes such as Digital Literacy, Cyber Citizenship, Edutainment, Massive Open Online Courses, and many, many others. The conference has also attracted key, prominent figures in the fields of sciences and technology such as Farouq El Baz from NASA, Queen Rania Al-Abdullah of Jordan, and many others who addressed large, eager-to-learn audiences and inspired many with unique stories.

While emerging innovations, such as Artificial Intelligence technologies, are seen today as promising instruments that could pave our way to the future, these were also the focal points around which fruitful discussions have always taken place here at the L&T. The (AI) was selected for this conference due to its great impact. The Saudi government realized this impact of AI and already started actual steps to invest in AI. It is stated in the Kingdome Vision 2030: "In technology, we will increase our investments in, and lead, the digital economy." Dr. Ahmed Al Theneyan, Deputy Minister of Technology, Industry and Digital Capabilities, stated that: "The Government has invested around USD 3 billion in building the infrastructure so that the country is AI-ready and can become a leader in AI use." Vision 2030 programs also promote innovation in technologies. Another great step that our country made is establishing NEOM city (the model smart city).

Effat University realized this ambition and started working to make it a reality by offering academic programs that support the different sectors needed in such projects. For example, the master program in Energy Engineering was launched four years ago to support the energy sector. Also, the bachelor program of Computer Science has tracks in Artificial Intelligence and Cyber Security which was launched in Fall 2020 semester. Additionally, Energy & Technology and Smart Building Research Centers were established to support innovation in the technology and energy sectors. In general, Effat University works effectively in supporting the KSA to achieve its vision in this time of national transformation by graduating skilled citizen in different fields of technology.

The guest editors would like to take this opportunity to thank all the authors for the efforts they put in the preparation of their manuscripts and for their valuable contributions. We wish to express our deepest gratitude to the referees, who provided instrumental and constructive feedback to the authors. We also extend our sincere thanks and appreciation for the organizing team under the leadership of the Chair of L&T 2019 Conference Steering Committee, Dr. Haifa Jamal Al-Lail, University President, for her support and dedication.

Our sincere thanks go to the Editor-in-Chief for his kind help and support.

Chui KT, Lytras MD, Visvizi A (2018) Energy sustainability in smart cities: artificial intelligence, smart monitoring, and optimization of energy consumption. Energies 11(11):2869

Article   Google Scholar  

Chui KT, Fung DCL, Lytras MD, Lam TM (2020) Predicting at-risk university students in a virtual learning environment via a machine learning algorithm. Comput Human Behav 107:105584

Lytras MD, Visvizi A, Daniela L, Sarirete A, De Pablos PO (2018) Social networks research for sustainable smart education. Sustainability 10(9):2974

Lytras MD, Visvizi A, Sarirete A (2019) Clustering smart city services: perceptions, expectations, responses. Sustainability 11(6):1669

Lytras MD, Visvizi A, Chopdar PK, Sarirete A, Alhalabi W (2021) Information management in smart cities: turning end users’ views into multi-item scale development, validation, and policy-making recommendations. Int J Inf Manag 56:102146

Visvizi A, Jussila J, Lytras MD, Ijäs M (2020) Tweeting and mining OECD-related microcontent in the post-truth era: A cloud-based app. Comput Human Behav 107:105958

Download references

Author information

Authors and affiliations.

Effat College of Engineering, Effat Energy and Technology Research Center, Effat University, P.O. Box 34689, Jeddah, Saudi Arabia

Akila Sarirete, Zain Balfagih, Tayeb Brahimi & Miltiadis D. Lytras

King Abdulaziz University, Jeddah, 21589, Saudi Arabia

Miltiadis D. Lytras

Effat College of Business, Effat University, P.O. Box 34689, Jeddah, Saudi Arabia

Anna Visvizi

Institute of International Studies (ISM), SGH Warsaw School of Economics, Aleja Niepodległości 162, 02-554, Warsaw, Poland

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Akila Sarirete .

Additional information

Publisher's note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Sarirete, A., Balfagih, Z., Brahimi, T. et al. Artificial intelligence and machine learning research: towards digital transformation at a global scale. J Ambient Intell Human Comput 13 , 3319–3321 (2022). https://doi.org/10.1007/s12652-021-03168-y

Download citation

Published : 17 April 2021

Issue Date : July 2022

DOI : https://doi.org/10.1007/s12652-021-03168-y

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Find a journal
  • Publish with us
  • Track your research

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Tzu Chi Med J
  • v.32(4); Oct-Dec 2020

Logo of tcmj

The impact of artificial intelligence on human society and bioethics

Michael cheng-tek tai.

Department of Medical Sociology and Social Work, College of Medicine, Chung Shan Medical University, Taichung, Taiwan

Artificial intelligence (AI), known by some as the industrial revolution (IR) 4.0, is going to change not only the way we do things, how we relate to others, but also what we know about ourselves. This article will first examine what AI is, discuss its impact on industrial, social, and economic changes on humankind in the 21 st century, and then propose a set of principles for AI bioethics. The IR1.0, the IR of the 18 th century, impelled a huge social change without directly complicating human relationships. Modern AI, however, has a tremendous impact on how we do things and also the ways we relate to one another. Facing this challenge, new principles of AI bioethics must be considered and developed to provide guidelines for the AI technology to observe so that the world will be benefited by the progress of this new intelligence.

W HAT IS ARTIFICIAL INTELLIGENCE ?

Artificial intelligence (AI) has many different definitions; some see it as the created technology that allows computers and machines to function intelligently. Some see it as the machine that replaces human labor to work for men a more effective and speedier result. Others see it as “a system” with the ability to correctly interpret external data, to learn from such data, and to use those learnings to achieve specific goals and tasks through flexible adaptation [ 1 ].

Despite the different definitions, the common understanding of AI is that it is associated with machines and computers to help humankind solve problems and facilitate working processes. In short, it is an intelligence designed by humans and demonstrated by machines. The term AI is used to describe these functions of human-made tool that emulates the “cognitive” abilities of the natural intelligence of human minds [ 2 ].

Along with the rapid development of cybernetic technology in recent years, AI has been seen almost in all our life circles, and some of that may no longer be regarded as AI because it is so common in daily life that we are much used to it such as optical character recognition or the Siri (speech interpretation and recognition interface) of information searching equipment on computer [ 3 ].

D IFFERENT TYPES OF ARTIFICIAL INTELLIGENCE

From the functions and abilities provided by AI, we can distinguish two different types. The first is weak AI, also known as narrow AI that is designed to perform a narrow task, such as facial recognition or Internet Siri search or self-driving car. Many currently existing systems that claim to use “AI” are likely operating as a weak AI focusing on a narrowly defined specific function. Although this weak AI seems to be helpful to human living, there are still some think weak AI could be dangerous because weak AI could cause disruptions in the electric grid or may damage nuclear power plants when malfunctioned.

The new development of the long-term goal of many researchers is to create strong AI or artificial general intelligence (AGI) which is the speculative intelligence of a machine that has the capacity to understand or learn any intelligent task human being can, thus assisting human to unravel the confronted problem. While narrow AI may outperform humans such as playing chess or solving equations, but its effect is still weak. AGI, however, could outperform humans at nearly every cognitive task.

Strong AI is a different perception of AI that it can be programmed to actually be a human mind, to be intelligent in whatever it is commanded to attempt, even to have perception, beliefs and other cognitive capacities that are normally only ascribed to humans [ 4 ].

In summary, we can see these different functions of AI [ 5 , 6 ]:

  • Automation: What makes a system or process to function automatically
  • Machine learning and vision: The science of getting a computer to act through deep learning to predict and analyze, and to see through a camera, analog-to-digital conversion and digital signal processing
  • Natural language processing: The processing of human language by a computer program, such as spam detection and converting instantly a language to another to help humans communicate
  • Robotics: A field of engineering focusing on the design and manufacturing of cyborgs, the so-called machine man. They are used to perform tasks for human's convenience or something too difficult or dangerous for human to perform and can operate without stopping such as in assembly lines
  • Self-driving car: Use a combination of computer vision, image recognition amid deep learning to build automated control in a vehicle.

D O HUMAN-BEINGS REALLY NEED ARTIFICIAL INTELLIGENCE ?

Is AI really needed in human society? It depends. If human opts for a faster and effective way to complete their work and to work constantly without taking a break, yes, it is. However if humankind is satisfied with a natural way of living without excessive desires to conquer the order of nature, it is not. History tells us that human is always looking for something faster, easier, more effective, and convenient to finish the task they work on; therefore, the pressure for further development motivates humankind to look for a new and better way of doing things. Humankind as the homo-sapiens discovered that tools could facilitate many hardships for daily livings and through tools they invented, human could complete the work better, faster, smarter and more effectively. The invention to create new things becomes the incentive of human progress. We enjoy a much easier and more leisurely life today all because of the contribution of technology. The human society has been using the tools since the beginning of civilization, and human progress depends on it. The human kind living in the 21 st century did not have to work as hard as their forefathers in previous times because they have new machines to work for them. It is all good and should be all right for these AI but a warning came in early 20 th century as the human-technology kept developing that Aldous Huxley warned in his book Brave New World that human might step into a world in which we are creating a monster or a super human with the development of genetic technology.

Besides, up-to-dated AI is breaking into healthcare industry too by assisting doctors to diagnose, finding the sources of diseases, suggesting various ways of treatment performing surgery and also predicting if the illness is life-threatening [ 7 ]. A recent study by surgeons at the Children's National Medical Center in Washington successfully demonstrated surgery with an autonomous robot. The team supervised the robot to perform soft-tissue surgery, stitch together a pig's bowel, and the robot finished the job better than a human surgeon, the team claimed [ 8 , 9 ]. It demonstrates robotically-assisted surgery can overcome the limitations of pre-existing minimally-invasive surgical procedures and to enhance the capacities of surgeons performing open surgery.

Above all, we see the high-profile examples of AI including autonomous vehicles (such as drones and self-driving cars), medical diagnosis, creating art, playing games (such as Chess or Go), search engines (such as Google search), online assistants (such as Siri), image recognition in photographs, spam filtering, predicting flight delays…etc. All these have made human life much easier and convenient that we are so used to them and take them for granted. AI has become indispensable, although it is not absolutely needed without it our world will be in chaos in many ways today.

T HE IMPACT OF ARTIFICIAL INTELLIGENCE ON HUMAN SOCIETY

Negative impact.

Questions have been asked: With the progressive development of AI, human labor will no longer be needed as everything can be done mechanically. Will humans become lazier and eventually degrade to the stage that we return to our primitive form of being? The process of evolution takes eons to develop, so we will not notice the backsliding of humankind. However how about if the AI becomes so powerful that it can program itself to be in charge and disobey the order given by its master, the humankind?

Let us see the negative impact the AI will have on human society [ 10 , 11 ]:

  • A huge social change that disrupts the way we live in the human community will occur. Humankind has to be industrious to make their living, but with the service of AI, we can just program the machine to do a thing for us without even lifting a tool. Human closeness will be gradually diminishing as AI will replace the need for people to meet face to face for idea exchange. AI will stand in between people as the personal gathering will no longer be needed for communication
  • Unemployment is the next because many works will be replaced by machinery. Today, many automobile assembly lines have been filled with machineries and robots, forcing traditional workers to lose their jobs. Even in supermarket, the store clerks will not be needed anymore as the digital device can take over human labor
  • Wealth inequality will be created as the investors of AI will take up the major share of the earnings. The gap between the rich and the poor will be widened. The so-called “M” shape wealth distribution will be more obvious
  • New issues surface not only in a social sense but also in AI itself as the AI being trained and learned how to operate the given task can eventually take off to the stage that human has no control, thus creating un-anticipated problems and consequences. It refers to AI's capacity after being loaded with all needed algorithm may automatically function on its own course ignoring the command given by the human controller
  • The human masters who create AI may invent something that is racial bias or egocentrically oriented to harm certain people or things. For instance, the United Nations has voted to limit the spread of nucleus power in fear of its indiscriminative use to destroying humankind or targeting on certain races or region to achieve the goal of domination. AI is possible to target certain race or some programmed objects to accomplish the command of destruction by the programmers, thus creating world disaster.

P OSITIVE IMPACT

There are, however, many positive impacts on humans as well, especially in the field of healthcare. AI gives computers the capacity to learn, reason, and apply logic. Scientists, medical researchers, clinicians, mathematicians, and engineers, when working together, can design an AI that is aimed at medical diagnosis and treatments, thus offering reliable and safe systems of health-care delivery. As health professors and medical researchers endeavor to find new and efficient ways of treating diseases, not only the digital computer can assist in analyzing, robotic systems can also be created to do some delicate medical procedures with precision. Here, we see the contribution of AI to health care [ 7 , 11 ]:

Fast and accurate diagnostics

IBM's Watson computer has been used to diagnose with the fascinating result. Loading the data to the computer will instantly get AI's diagnosis. AI can also provide various ways of treatment for physicians to consider. The procedure is something like this: To load the digital results of physical examination to the computer that will consider all possibilities and automatically diagnose whether or not the patient suffers from some deficiencies and illness and even suggest various kinds of available treatment.

Socially therapeutic robots

Pets are recommended to senior citizens to ease their tension and reduce blood pressure, anxiety, loneliness, and increase social interaction. Now cyborgs have been suggested to accompany those lonely old folks, even to help do some house chores. Therapeutic robots and the socially assistive robot technology help improve the quality of life for seniors and physically challenged [ 12 ].

Reduce errors related to human fatigue

Human error at workforce is inevitable and often costly, the greater the level of fatigue, the higher the risk of errors occurring. Al technology, however, does not suffer from fatigue or emotional distraction. It saves errors and can accomplish the duty faster and more accurately.

Artificial intelligence-based surgical contribution

AI-based surgical procedures have been available for people to choose. Although this AI still needs to be operated by the health professionals, it can complete the work with less damage to the body. The da Vinci surgical system, a robotic technology allowing surgeons to perform minimally invasive procedures, is available in most of the hospitals now. These systems enable a degree of precision and accuracy far greater than the procedures done manually. The less invasive the surgery, the less trauma it will occur and less blood loss, less anxiety of the patients.

Improved radiology

The first computed tomography scanners were introduced in 1971. The first magnetic resonance imaging (MRI) scan of the human body took place in 1977. By the early 2000s, cardiac MRI, body MRI, and fetal imaging, became routine. The search continues for new algorithms to detect specific diseases as well as to analyze the results of scans [ 9 ]. All those are the contribution of the technology of AI.

Virtual presence

The virtual presence technology can enable a distant diagnosis of the diseases. The patient does not have to leave his/her bed but using a remote presence robot, doctors can check the patients without actually being there. Health professionals can move around and interact almost as effectively as if they were present. This allows specialists to assist patients who are unable to travel.

S OME CAUTIONS TO BE REMINDED

Despite all the positive promises that AI provides, human experts, however, are still essential and necessary to design, program, and operate the AI from any unpredictable error from occurring. Beth Kindig, a San Francisco-based technology analyst with more than a decade of experience in analyzing private and public technology companies, published a free newsletter indicating that although AI has a potential promise for better medical diagnosis, human experts are still needed to avoid the misclassification of unknown diseases because AI is not omnipotent to solve all problems for human kinds. There are times when AI meets an impasse, and to carry on its mission, it may just proceed indiscriminately, ending in creating more problems. Thus vigilant watch of AI's function cannot be neglected. This reminder is known as physician-in-the-loop [ 13 ].

The question of an ethical AI consequently was brought up by Elizabeth Gibney in her article published in Nature to caution any bias and possible societal harm [ 14 ]. The Neural Information processing Systems (NeurIPS) conference in Vancouver Canada in 2020 brought up the ethical controversies of the application of AI technology, such as in predictive policing or facial recognition, that due to bias algorithms can result in hurting the vulnerable population [ 14 ]. For instance, the NeurIPS can be programmed to target certain race or decree as the probable suspect of crime or trouble makers.

T HE CHALLENGE OF ARTIFICIAL INTELLIGENCE TO BIOETHICS

Artificial intelligence ethics must be developed.

Bioethics is a discipline that focuses on the relationship among living beings. Bioethics accentuates the good and the right in biospheres and can be categorized into at least three areas, the bioethics in health settings that is the relationship between physicians and patients, the bioethics in social settings that is the relationship among humankind and the bioethics in environmental settings that is the relationship between man and nature including animal ethics, land ethics, ecological ethics…etc. All these are concerned about relationships within and among natural existences.

As AI arises, human has a new challenge in terms of establishing a relationship toward something that is not natural in its own right. Bioethics normally discusses the relationship within natural existences, either humankind or his environment, that are parts of natural phenomena. But now men have to deal with something that is human-made, artificial and unnatural, namely AI. Human has created many things yet never has human had to think of how to ethically relate to his own creation. AI by itself is without feeling or personality. AI engineers have realized the importance of giving the AI ability to discern so that it will avoid any deviated activities causing unintended harm. From this perspective, we understand that AI can have a negative impact on humans and society; thus, a bioethics of AI becomes important to make sure that AI will not take off on its own by deviating from its originally designated purpose.

Stephen Hawking warned early in 2014 that the development of full AI could spell the end of the human race. He said that once humans develop AI, it may take off on its own and redesign itself at an ever-increasing rate [ 15 ]. Humans, who are limited by slow biological evolution, could not compete and would be superseded. In his book Superintelligence, Nick Bostrom gives an argument that AI will pose a threat to humankind. He argues that sufficiently intelligent AI can exhibit convergent behavior such as acquiring resources or protecting itself from being shut down, and it might harm humanity [ 16 ].

The question is–do we have to think of bioethics for the human's own created product that bears no bio-vitality? Can a machine have a mind, consciousness, and mental state in exactly the same sense that human beings do? Can a machine be sentient and thus deserve certain rights? Can a machine intentionally cause harm? Regulations must be contemplated as a bioethical mandate for AI production.

Studies have shown that AI can reflect the very prejudices humans have tried to overcome. As AI becomes “truly ubiquitous,” it has a tremendous potential to positively impact all manner of life, from industry to employment to health care and even security. Addressing the risks associated with the technology, Janosch Delcker, Politico Europe's AI correspondent, said: “I don't think AI will ever be free of bias, at least not as long as we stick to machine learning as we know it today,”…. “What's crucially important, I believe, is to recognize that those biases exist and that policymakers try to mitigate them” [ 17 ]. The High-Level Expert Group on AI of the European Union presented Ethics Guidelines for Trustworthy AI in 2019 that suggested AI systems must be accountable, explainable, and unbiased. Three emphases are given:

  • Lawful-respecting all applicable laws and regulations
  • Ethical-respecting ethical principles and values
  • Robust-being adaptive, reliable, fair, and trustworthy from a technical perspective while taking into account its social environment [ 18 ].

Seven requirements are recommended [ 18 ]:

  • AI should not trample on human autonomy. People should not be manipulated or coerced by AI systems, and humans should be able to intervene or oversee every decision that the software makes
  • AI should be secure and accurate. It should not be easily compromised by external attacks, and it should be reasonably reliable
  • Personal data collected by AI systems should be secure and private. It should not be accessible to just anyone, and it should not be easily stolen
  • Data and algorithms used to create an AI system should be accessible, and the decisions made by the software should be “understood and traced by human beings.” In other words, operators should be able to explain the decisions their AI systems make
  • Services provided by AI should be available to all, regardless of age, gender, race, or other characteristics. Similarly, systems should not be biased along these lines
  • AI systems should be sustainable (i.e., they should be ecologically responsible) and “enhance positive social change”
  • AI systems should be auditable and covered by existing protections for corporate whistleblowers. The negative impacts of systems should be acknowledged and reported in advance.

From these guidelines, we can suggest that future AI must be equipped with human sensibility or “AI humanities.” To accomplish this, AI researchers, manufacturers, and all industries must bear in mind that technology is to serve not to manipulate humans and his society. Bostrom and Judkowsky listed responsibility, transparency, auditability, incorruptibility, and predictability [ 19 ] as criteria for the computerized society to think about.

S UGGESTED PRINCIPLES FOR ARTIFICIAL INTELLIGENCE BIOETHICS

Nathan Strout, a reporter at Space and Intelligence System at Easter University, USA, reported just recently that the intelligence community is developing its own AI ethics. The Pentagon made announced in February 2020 that it is in the process of adopting principles for using AI as the guidelines for the department to follow while developing new AI tools and AI-enabled technologies. Ben Huebner, chief of the Office of Director of National Intelligence's Civil Liberties, Privacy, and Transparency Office, said that “We're going to need to ensure that we have transparency and accountability in these structures as we use them. They have to be secure and resilient” [ 20 ]. Two themes have been suggested for the AI community to think more about: Explainability and interpretability. Explainability is the concept of understanding how the analytic works, while interpretability is being able to understand a particular result produced by an analytic [ 20 ].

All the principles suggested by scholars for AI bioethics are well-brought-up. I gather from different bioethical principles in all the related fields of bioethics to suggest four principles here for consideration to guide the future development of the AI technology. We however must bear in mind that the main attention should still be placed on human because AI after all has been designed and manufactured by human. AI proceeds to its work according to its algorithm. AI itself cannot empathize nor have the ability to discern good from evil and may commit mistakes in processes. All the ethical quality of AI depends on the human designers; therefore, it is an AI bioethics and at the same time, a trans-bioethics that abridge human and material worlds. Here are the principles:

  • Beneficence: Beneficence means doing good, and here it refers to the purpose and functions of AI should benefit the whole human life, society and universe. Any AI that will perform any destructive work on bio-universe, including all life forms, must be avoided and forbidden. The AI scientists must understand that reason of developing this technology has no other purpose but to benefit human society as a whole not for any individual personal gain. It should be altruistic, not egocentric in nature
  • Value-upholding: This refers to AI's congruence to social values, in other words, universal values that govern the order of the natural world must be observed. AI cannot elevate to the height above social and moral norms and must be bias-free. The scientific and technological developments must be for the enhancement of human well-being that is the chief value AI must hold dearly as it progresses further
  • Lucidity: AI must be transparent without hiding any secret agenda. It has to be easily comprehensible, detectable, incorruptible, and perceivable. AI technology should be made available for public auditing, testing and review, and subject to accountability standards … In high-stakes settings like diagnosing cancer from radiologic images, an algorithm that can't “explain its work” may pose an unacceptable risk. Thus, explainability and interpretability are absolutely required
  • Accountability: AI designers and developers must bear in mind they carry a heavy responsibility on their shoulders of the outcome and impact of AI on whole human society and the universe. They must be accountable for whatever they manufacture and create.

C ONCLUSION

AI is here to stay in our world and we must try to enforce the AI bioethics of beneficence, value upholding, lucidity and accountability. Since AI is without a soul as it is, its bioethics must be transcendental to bridge the shortcoming of AI's inability to empathize. AI is a reality of the world. We must take note of what Joseph Weizenbaum, a pioneer of AI, said that we must not let computers make important decisions for us because AI as a machine will never possess human qualities such as compassion and wisdom to morally discern and judge [ 10 ]. Bioethics is not a matter of calculation but a process of conscientization. Although AI designers can up-load all information, data, and programmed to AI to function as a human being, it is still a machine and a tool. AI will always remain as AI without having authentic human feelings and the capacity to commiserate. Therefore, AI technology must be progressed with extreme caution. As Von der Leyen said in White Paper on AI – A European approach to excellence and trust : “AI must serve people, and therefore, AI must always comply with people's rights…. High-risk AI. That potentially interferes with people's rights has to be tested and certified before it reaches our single market” [ 21 ].

Financial support and sponsorship

Conflicts of interest.

There are no conflicts of interest.

R EFERENCES

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals
  • My Account Login
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • Perspective
  • Open access
  • Published: 09 April 2024

The potential for artificial intelligence to transform healthcare: perspectives from international health leaders

  • Christina Silcox 1 ,
  • Eyal Zimlichmann 2 , 3 ,
  • Katie Huber   ORCID: orcid.org/0000-0003-2519-8714 1 ,
  • Neil Rowen 1 ,
  • Robert Saunders 1 ,
  • Mark McClellan 1 ,
  • Charles N. Kahn III 3 , 4 ,
  • Claudia A. Salzberg 3 &
  • David W. Bates   ORCID: orcid.org/0000-0001-6268-1540 5 , 6 , 7  

npj Digital Medicine volume  7 , Article number:  88 ( 2024 ) Cite this article

2718 Accesses

39 Altmetric

Metrics details

  • Health policy
  • Health services

Artificial intelligence (AI) has the potential to transform care delivery by improving health outcomes, patient safety, and the affordability and accessibility of high-quality care. AI will be critical to building an infrastructure capable of caring for an increasingly aging population, utilizing an ever-increasing knowledge of disease and options for precision treatments, and combatting workforce shortages and burnout of medical professionals. However, we are not currently on track to create this future. This is in part because the health data needed to train, test, use, and surveil these tools are generally neither standardized nor accessible. There is also universal concern about the ability to monitor health AI tools for changes in performance as they are implemented in new places, used with diverse populations, and over time as health data may change. The Future of Health (FOH), an international community of senior health care leaders, collaborated with the Duke-Margolis Institute for Health Policy to conduct a literature review, expert convening, and consensus-building exercise around this topic. This commentary summarizes the four priority action areas and recommendations for health care organizations and policymakers across the globe that FOH members identified as important for fully realizing AI’s potential in health care: improving data quality to power AI, building infrastructure to encourage efficient and trustworthy development and evaluations, sharing data for better AI, and providing incentives to accelerate the progress and impact of AI.

Similar content being viewed by others

download research papers on artificial intelligence

Guiding principles for the responsible development of artificial intelligence tools for healthcare

download research papers on artificial intelligence

A short guide for medical professionals in the era of artificial intelligence

download research papers on artificial intelligence

Reporting guidelines in medical artificial intelligence: a systematic review and meta-analysis

Introduction.

Artificial intelligence (AI), supported by timely and accurate data and evidence, has the potential to transform health care delivery by improving health outcomes, patient safety, and the affordability and accessibility of high-quality care 1 , 2 . AI integration is critical to building an infrastructure capable of caring for an increasingly aging population, utilizing an ever-increasing knowledge of disease and options for precision treatments, and combatting workforce shortages and burnout of medical professionals. However, we are not currently on track to create this future. This is in part because the health data needed to train, test, use, and surveil these tools are generally neither standardized nor accessible. This is true across the international community, although there is variable progress within individual countries. There is also universal concern about monitoring health AI tools for changes in performance as they are implemented in new places, used with diverse populations, and over time as health data may change.

The Future of Health (FOH) is an international community of senior health care leaders representing health systems, health policy, health care technology, venture funding, insurance, and risk management. FOH collaborated with the Duke-Margolis Institute for Health Policy to conduct a literature review, expert convening, and consensus-building exercise. In total, 46 senior health care leaders were engaged in this work, from eleven countries in Europe, North America, Africa, Asia, and Australia. This commentary summarizes the four priority action areas and recommendations for health care organizations and policymakers that FOH members identified as important for fully realizing AI’s potential in health care: improving data quality to power AI, building infrastructure to encourage efficient and trustworthy development and evaluations, sharing data for better AI, and providing incentives to accelerate the progress and impact of AI.

Powering AI through high-quality data

“Going forward, data are going to be the most valuable commodity in health care. Organizations need robust plans about how to mobilize and use their data.”

AI algorithms will only perform as well as the accuracy and completeness of key underlying data, and data quality is dependent on actions and workflows that encourage trust.

To begin to improve data quality, FOH members agreed that an initial priority is identifying and assuring reliable availability of high-priority data elements for promising AI applications: those with the most predictive value, those of the highest value to patients, and those most important for analyses of performance, including subgroup analyses to detect bias.

Leaders should also advocate for aligned policy incentives to improve the availability and reliability of these priority data elements. There are several examples of efforts across the world to identify and standardize high-priority data elements for AI applications and beyond, such as the multinational project STANDING Together, which is developing standards to improve the quality and representativeness of data used to build and test AI tools 3 .

Policy incentives that would further encourage high-quality data collection include (1) aligned payment incentives for measures of health care quality and safety, and ensuring the reliability of the underlying data, and (2) quality measures and performance standards focused on the reliability, completeness, and timeliness of collection and sharing of high-priority data itself.

Trust and verify

“Your AI algorithms are only going to be as good as the data and the real-world evidence used to validate them, and the data are only going to be as good as the trust and privacy and supporting policies.”

FOH members stressed the importance of showing that AI tools are both effective and safe within their specific patient populations.

This is a particular challenge with AI tools, whose performance can differ dramatically across sites and over time, as health data patterns and population characteristics vary. For example, several studies of the Epic Sepsis Model found both location-based differences in performance and degradation in performance over time due to data drift 4 , 5 . However, real-world evaluations are often much more difficult for algorithms that are used for longer-term predictions, or to avert long-term complications from occurring, particularly in the absence of connected, longitudinal data infrastructure. As such, health systems must prioritize implementing data standards and data infrastructure that can facilitate the retraining or tuning of algorithms, test for local performance and bias, and ensure scalability across the organization and longer-term applications 6 .

There are efforts to help leaders and health systems develop consensus-based evaluation techniques and infrastructure for AI tools, including HealthAI: The Global Agency for Responsible AI in Health, which aims to build and certify validation mechanisms for nations and regions to adopt; and the Coalition for Health AI (CHAI), which recently announced plans to build a US-wide health AI assurance labs network 7 , 8 . These efforts, if successful, will assist manufacturers and health systems in complying with new laws, rules, and regulations being proposed and released that seek to ensure AI tools are trustworthy, such as the EU AI Act and the 2023 US Executive Order on AI.

Sharing data for better AI

“Underlying these challenges is the investment required to standardize business processes so that you actually get data that’s usable between institutions and even within an institution.”

While high-quality internal data may enable some types of AI-tool development and testing, this is insufficient to power and evaluate all AI applications. To build truly effective AI-enabled predictive software for clinical care and predictive supports, data often need to be interoperable across health systems to build a diverse picture of patients’ health across geographies, and reliably shared.

FOH members recommended that health care leaders work with researchers and policymakers to connect detailed encounter data with longitudinal outcomes, and pilot opportunities across diverse populations and systems to help assure valid outcome evaluations as well as address potential confounding and population subgroup differences—the ability to aggregate data is a clear rate-limiting step. The South African National Digital Health Strategy outlined interventions to improve the adoption of digital technologies while complying with the 2013 Protection of Personal Information Act 9 . Although challenges remain, the country has made progress on multiple fronts, including building out a Health Patient Registration System as a first step towards a portable, longitudinal patient record system and releasing a Health Normative Standards Framework to improve data flow across institutional and geographic boundaries 10 .

Leaders should adopt policies in their organizations, and encourage adoption in their province and country, that simplify data governance and sharing while providing appropriate privacy protections – including building foundations of trust with patients and the public as previously discussed. Privacy-preserving innovations include ways to “share” data without movement from protected systems using approaches like federated analyses, data sandboxes, or synthetic data. In addition to exploring privacy-preserving approaches to data sharing, countries and health systems may need to consider broad and dynamic approaches to consent 11 , 12 . As we look to a future where a patient may have thousands of algorithms churning away at their data, efforts to improve data quality and sharing should include enabling patients’ access to and engagement with their own data to encourage them to actively partner in their health and provide transparency on how their data are being used to improve health care. For example, the Understanding Patient Data program in the United Kingdom produces research and resources to explain how the National Health Service uses patients’ data 13 . Community engagement efforts can further assist with these efforts by building trust and expanding understanding.

FOH members also stressed the importance of timely data access. Health systems should work together to establish re-usable governance and privacy frameworks that allow stakeholders to clearly understand what data will be shared and how it will be protected to reduce the time needed for data use agreements. Trusted third-party data coordinating centers could also be used to set up “precertification” systems around data quality, testing, and cybersecurity to support health organizations with appropriate data stewardship to form partnerships and access data rapidly.

Incentivizing progress for AI impact

“Unless it’s tied to some kind of compensation to the organization, the drive to help implement those tools and overcome that risk aversion is going to be very high… I do think that business driver needs to be there.”

AI tools and data quality initiatives have not moved as quickly in health care due to the lack of direct payment, and often, misalignment of financial incentives and supports for high-quality data collection and predictive analytics. This affects both the ability to purchase and safely implement commercial AI products as well as the development of “homegrown” AI tools.

FOH members recommended that leaders should advocate for paying for value in health – quality, safety, better health, and lower costs for patients. This better aligns the financial incentives for accelerating the development, evaluation, and adoption of AI as well as other tools designed to either keep patients healthy or quickly diagnose and treat them with the most effective therapies when they do become ill. Effective personalized health care requires high-quality, standardized, interoperable datasets from diverse sources 14 . Within value-based payments themselves, data are critical to measuring quality of care and patient outcomes, adjusted or contextualized for factors outside of clinical control. Value-based payments therefore align incentives for (1) high-quality data collection and trusted use, (2) building effective AI tools, and (3) ensuring that those tools are improving patient outcomes and/or health system operations.

Data have become the most valuable commodity in health care, but questions remain about whether there will be an AI “revolution” or “evolution” in health care delivery. Early AI applications in certain clinical areas have been promising, but more advanced AI tools will require higher quality, real-world data that is interoperable and secure. The steps health care organization leaders and policymakers take in the coming years, starting with short-term opportunities to develop meaningful AI applications that achieve measurable improvements in outcomes and costs, will be critical in enabling this future that can improve health outcomes, safety, affordability, and equity.

Data availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

Abernethy, A. et al. The promise of digital health: then, now, and the future. NAM Perspect. 6 (2022).

Akpakwu, E. Four ways AI can make healthcare more efficient and affordable. World Economic Forum https://www.weforum.org/agenda/2018/05/four-ways-ai-is-bringing-down-the-cost-of-healthcare/ (2018).

STANDING Together. https://www.datadiversity.org/home .

Wong, A. et al. External validation of a widely implemented proprietary sepsis prediction model in hospitalized patients. JAMA Intern Med 181 , 1065–1070 (2021).

Article   PubMed   Google Scholar  

Ross, C. STAT and MIT rooted out the weaknesses in health care algorithms. Here’s how we did it. STAT https://www.statnews.com/2022/02/28/data-drift-machine-learning/ (2022).

Locke, T., Parker, V., Thoumi, A., Goldstein, B. & Silcox, C. Preventing bias and inequities in AI-enabled health tools . https://healthpolicy.duke.edu/publications/preventing-bias-and-inequities-ai-enabled-health-tools (2022).

Introducing HealthAI. The International Digital Health and AI Research Collaborative (I-DAIR) https://www.i-dair.org/news/introducing-healthai (2023).

Shah, N. H. et al. A nationwide network of health AI assurance laboratories. JAMA 331 , 245 (2024).

Singh, V. AI & Data in South Africa’s Health Sector . https://policyaction.org.za/sites/default/files/PAN_TopicalGuide_AIData6_Health_Elec.pdf (2020).

Zharima, C., Griffiths, F. & Goudge, J. Exploring the barriers and facilitators to implementing electronic health records in a middle-income country: a qualitative study from South Africa. Front. Digit. Health 5 , 1207602 (2023).

Article   PubMed   PubMed Central   Google Scholar  

Lee, A. R. et al. Identifying facilitators of and barriers to the adoption of dynamic consent in digital health ecosystems: a scoping review. BMC Med. Ethics 24 , 107 (2023).

Article   CAS   PubMed   PubMed Central   Google Scholar  

Stoeklé, H. C., Hulier-Ammar, E. & Hervé, C. Data medicine: ‘broad’ or ‘dynamic’ consent? Public Health Ethics 15 , 181–185 (2022).

Article   Google Scholar  

Understanding Patient Data. Understanding Patient Data http://understandingpatientdata.org.uk/ .

Chén, O. Y. & Roberts, B. Personalized health care and public health in the digital age. Front. Digit. Health 3 , 595704 (2021).

Download references

Acknowledgements

The authors acknowledge Oranit Ido and Jonathan Gonzalez-Smith for their contributions to this work. This study was funded by The Future of Health, LLC. The Future of Health, LLC, was involved in all stages of this research, including study design, data collection, analysis and interpretation of data, and the preparation of this manuscript.

Author information

Authors and affiliations.

Duke-Margolis Institute for Health Policy, Duke University, Washington, DC, USA &, Durham, NC, USA

Christina Silcox, Katie Huber, Neil Rowen, Robert Saunders & Mark McClellan

Sheba Medical Center, Ramat Gan, Israel

Eyal Zimlichmann

Future of Health, Washington, DC, USA

Eyal Zimlichmann, Charles N. Kahn III & Claudia A. Salzberg

Federation of American Hospitals, Washington, DC, USA

Charles N. Kahn III

Division of General Internal Medicine, Brigham and Women’s Hospital, Boston, MA, USA

David W. Bates

Harvard Medical School, Boston, MA, USA

Department of Health Policy and Management, Harvard T. H. Chan School of Public Health, Boston, MA, USA

You can also search for this author in PubMed   Google Scholar

Contributions

C.S., K.H., N.R., and R.S. conducted initial background research and analyzed qualitative data from stakeholders. All authors (C.S., E.Z., K.H., N.R., R.S., M.M., C.K., C.A.S., and D.B.) assisted with conceptualization of the project and strategic guidance. C.S., K.H., and N.R. wrote initial drafts of the manuscript. All authors contributed to critical revisions of the manuscript and read and approved the final manuscript.

Corresponding author

Correspondence to David W. Bates .

Ethics declarations

Competing interests.

C.S., K.H., N.R., and C.A.S. declare no competing interests. E.Z. reports personal fees from Arkin Holdings, personal fees from Statista and equity from Valera Health, Profility and Hello Heart. R.S. has been an external reviewer for The John A. Hartford Foundation, and is a co-chair for the Health Evolution Summit Roundtable on Value-Based Care for Specialized Populations. M.M. is an independent director on the boards of Johnson & Johnson, Cigna, Alignment Healthcare, and PrognomIQ; co-chairs the Guiding Committee for the Health Care Payment Learning and Action Network; and reports fees for serving as an adviser for Arsenal Capital Partners, Blackstone Life Sciences, and MITRE. C.K. is a Profility Board member and additionally reports equity from Valera Health and MDClone. D.W.B. reports grants and personal fees from EarlySense, personal fees from CDI Negev, equity from Valera Health, equity from Clew, equity from MDClone, personal fees and equity from AESOP, personal fees and equity from Feelbetter, equity from Guided Clinical Solutions, and grants from IBM Watson Health, outside the submitted work. D.W.B. has a patent pending (PHC-028564 US PCT), on intraoperative clinical decision support.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ .

Reprints and permissions

About this article

Cite this article.

Silcox, C., Zimlichmann, E., Huber, K. et al. The potential for artificial intelligence to transform healthcare: perspectives from international health leaders. npj Digit. Med. 7 , 88 (2024). https://doi.org/10.1038/s41746-024-01097-6

Download citation

Received : 30 October 2023

Accepted : 29 March 2024

Published : 09 April 2024

DOI : https://doi.org/10.1038/s41746-024-01097-6

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

download research papers on artificial intelligence

THE AI INDEX REPORT

Measuring trends in AI

ai iNDEX anNUAL rEPORT

Welcome to the 2024 AI Index Report

Welcome to the seventh edition of the AI Index report. The 2024 Index is our most comprehensive to date and arrives at an important moment when AI’s influence on society has never been more pronounced. This year, we have broadened our scope to more extensively cover essential trends such as technical advancements in AI, public perceptions of the technology, and the geopolitical dynamics surrounding its development. Featuring more original data than ever before, this edition introduces new estimates on AI training costs, detailed analyses of the responsible AI landscape, and an entirely new chapter dedicated to AI’s impact on science and medicine. The AI Index report tracks, collates, distills, and visualizes data related to artificial intelligence (AI). Our mission is to provide unbiased, rigorously vetted, broadly sourced data in order for policymakers, researchers, executives, journalists, and the general public to develop a more thorough and nuanced understanding of the complex field of AI.

TOP TAKEAWAYS

1. a i beats humans on some tasks, but not on all..

AI has surpassed human performance on several benchmarks, including some in image classification, visual reasoning, and English understanding. Yet it trails behind on more complex tasks like competition-level mathematics, visual commonsense reasoning and planning.

2. Industry continues to dominate frontier AI research .

 In 2023, industry produced 51 notable machine learning models, while academia contributed only 15. There were also 21 notable models resulting from industry-academia collaborations in 2023, a new high.

3. Frontier models get way more expensive .

According to AI Index estimates, the training costs of state-of-the-art AI models have reached unprecedented levels. For example, OpenAI’s GPT-4 used an estimated $78 million worth of compute to train, while Google’s Gemini Ultra cost $191 million for compute.

  • 4. The United States leads China, the EU, and the U.K. as the leading source of top AI models.

 In 2023, 61 notable AI models originated from U.S.-based institutions, far outpacing the European Union’s 21 and China’s 15.

5. Robust and standardized evaluations for LLM responsibility are seriously lacking.

New research from the AI Index reveals a significant lack of standardization in responsible AI reporting. Leading developers, including OpenAI, Google, and Anthropic, primarily test their models against different responsible AI benchmarks. This practice complicates efforts to systematically compare the risks and limitations of top AI models.

6. Generative AI investment skyrockets.

Despite a decline in overall AI private investment last year, funding for generative AI surged, nearly octupling from 2022 to reach $25.2 billion. Major players in the generative AI space, including OpenAI, Anthropic, Hugging Face, and Inflection, reported substantial fundraising rounds.

7. The data is in: AI makes workers more productive and leads to higher quality work.

In 2023, several studies assessed AI’s impact on labor, suggesting that AI enables workers to complete tasks more quickly and to improve the quality of their output. These studies also demonstrated AI’s potential to bridge the skill gap between low- and high-skilled workers. Still other studies caution that using AI without proper oversight can lead to diminished performance.

8. Scientific progress accelerates even further, thanks to AI.

In 2022, AI began to advance scientific discovery. 2023, however, saw the launch of even more significant science-related AI applications—from AlphaDev, which makes algorithmic sorting more efficient, to GNoME, which facilitates the process of materials discovery.

9. The number of AI regulations in the United States sharply increases.

The number of AI-related regulations in the U.S. has risen significantly in the past year and over the last five years. In 2023, there were 25 AI-related regulations, up from just one in 2016. Last year alone, the total number of AI-related regulations grew by 56.3%.

10. People across the globe are more cognizant of AI’s potential impact—and more nervous.

A survey from Ipsos shows that, over the last year, the proportion of those who think AI will dramatically affect their lives in the next three to five years has increased from 60% to 66%. Moreover, 52% express nervousness toward AI products and services, marking a 13 percentage point rise from 2022. In America, Pew data suggests that 52% of Americans report feeling more concerned than excited about AI, rising from 38% in 2022.

Chapter 1: Research and Development

This chapter studies trends in AI research and development. It begins by examining trends in AI publications and patents, and then examines trends in notable AI systems and foundation models. It concludes by analyzing AI conference attendance and open-source AI software projects.

  • 1. Industry continues to dominate frontier AI research.
  • 2. More foundation models and more open foundation models.
  • 3. Frontier models get way more expensive.
  • 5. The number of AI patents skyrockets.
  • 6. China dominates AI patents.
  • 7. Open-source AI research explodes.
  • 8. The number of AI publications continues to rise.

download research papers on artificial intelligence

Chapter 2: Technical Performance

The technical performance section of this year’s AI Index offers a comprehensive overview of AI advancements in 2023. It starts with a high-level overview of AI technical performance, tracing its broad evolution over time. The chapter then examines the current state of a wide range of AI capabilities, including language processing, coding, computer vision (image and video analysis), reasoning, audio processing, autonomous agents, robotics, and reinforcement learning. It also shines a spotlight on notable AI research breakthroughs from the past year, exploring methods for improving LLMs through prompting, optimization, and fine-tuning, and wraps up with an exploration of AI systems’ environmental footprint.

  • 1. AI beats humans on some tasks, but not on all.
  • 2. Here comes multimodal AI.
  • 3. Harder benchmarks emerge.
  • 4. Better AI means better data which means … even better AI.
  • 5. Human evaluation is in.
  • 6. Thanks to LLMs, robots have become more flexible.
  • 7. More technical research in agentic AI.
  • 8. Closed LLMs significantly outperform open ones.

download research papers on artificial intelligence

Chapter 3: Responsible AI

AI is increasingly woven into nearly every facet of our lives. This integration is occurring in sectors such as education, finance, and healthcare, where critical decisions are often based on algorithmic insights. This trend promises to bring many advantages; however, it also introduces potential risks. Consequently, in the past year, there has been a significant focus on the responsible development and deployment of AI systems. The AI community has also become more concerned with assessing the impact of AI systems and mitigating risks for those affected. This chapter explores key trends in responsible AI by examining metrics, research, and benchmarks in four key responsible AI areas: privacy and data governance, transparency and explainability, security and safety, and fairness. Given that 4 billion people are expected to vote globally in 2024, this chapter also features a special section on AI and elections and more broadly explores the potential impact of AI on political processes.

  • 1. Robust and standardized evaluations for LLM responsibility are seriously lacking.
  • 2. Political deepfakes are easy to generate and difficult to detect.
  • 3. Researchers discover more complex vulnerabilities in LLMs.
  • 4. Risks from AI are a concern for businesses across the globe.
  • 5. LLMs can output copyrighted material.
  • 6. AI developers score low on transparency, with consequences for research.
  • 7. Extreme AI risks are difficult to analyze.
  • 8. The number of AI incidents continues to rise.
  • 9. ChatGPT is politically biased.

download research papers on artificial intelligence

Chapter 4: Economy

The integration of AI into the economy raises many compelling questions. Some predict that AI will drive productivity improvements, but the extent of its impact remains uncertain. A major concern is the potential for massive labor displacement—to what degree will jobs be automated versus augmented by AI? Companies are already utilizing AI in various ways across industries, but some regions of the world are witnessing greater investment inflows into this transformative technology. Moreover, investor interest appears to be gravitating toward specific AI subfields like natural language processing and data management. This chapter examines AI-related economic trends using data from Lightcast, LinkedIn, Quid, McKinsey, Stack Overflow, and the International Federation of Robotics (IFR). It begins by analyzing AI-related occupations, covering labor demand, hiring trends, skill penetration, and talent availability. The chapter then explores corporate investment in AI, introducing a new section focused specifically on generative AI. It further examines corporate adoption of AI, assessing current usage and how developers adopt these technologies. Finally, it assesses AI’s current and projected economic impact and robot installations across various sectors.

  • 1. Generative AI investment skyrockets.
  • 2. Already a leader, the United States pulls even further ahead in AI private investment.
  • 3. Fewer AI jobs, in the United States and across the globe.
  • 4. AI decreases costs and increases revenues.
  • 5. Total AI private investment declines again, while the number of newly funded AI companies increases.
  • 6. AI organizational adoption ticks up.
  • 7. China dominates industrial robotics.
  • 8. Greater diversity in robot installations.
  • 9. The data is in: AI makes workers more productive and leads to higher quality work.
  • 10. Fortune 500 companies start talking a lot about AI, especially generative AI.

download research papers on artificial intelligence

Chapter 5: Science and Medicine

This year’s AI Index introduces a new chapter on AI in science and medicine in recognition of AI’s growing role in scientific and medical discovery. It explores 2023’s standout AI-facilitated scientific achievements, including advanced weather forecasting systems like GraphCast and improved material discovery algorithms like GNoME. The chapter also examines medical AI system performance, important 2023 AI-driven medical innovations like SynthSR and ImmunoSEIRA, and trends in the approval of FDA AI-related medical devices.

  • 1. Scientific progress accelerates even further, thanks to AI.
  • 2. AI helps medicine take significant strides forward.
  • 3. Highly knowledgeable medical AI has arrived.
  • 4. The FDA approves more and more AI-related medical devices.

download research papers on artificial intelligence

Chapter 6: Education

This chapter examines trends in AI and computer science (CS) education, focusing on who is learning, where they are learning, and how these trends have evolved over time. Amid growing concerns about AI’s impact on education, it also investigates the use of new AI tools like ChatGPT by teachers and students. The analysis begins with an overview of the state of postsecondary CS and AI education in the United States and Canada, based on the Computing Research Association’s annual Taulbee Survey. It then reviews data from Informatics Europe regarding CS education in Europe. This year introduces a new section with data from Studyportals on the global count of AI-related English-language study programs.  The chapter wraps up with insights into K–12 CS education in the United States from Code.org and findings from the Walton Foundation survey on ChatGPT’s use in schools.

  • 1. The number of American and Canadian CS bachelor’s graduates continues to rise, new CS master’s graduates stay relatively flat, and PhD graduates modestly grow.
  • 2. The migration of AI PhDs to industry continues at an accelerating pace.
  • 3. Less transition of academic talent from industry to academia.
  • 4. CS education in the United States and Canada becomes less international.
  • 5. More American high school students take CS courses, but access problems remain.
  • 6. AI-related degree programs are on the rise internationally.
  • 7. The United Kingdom and Germany lead in European informatics, CS, CE, and IT graduate production.

download research papers on artificial intelligence

Chapter 7: Policy and Governance

AI’s increasing capabilities have captured policymakers’ attention. Over the past year, several nations and political bodies, such as the United States and the European Union, have enacted significant AI-related policies. The proliferation of these policies reflect policymakers’ growing awareness of the need to regulate AI and improve their respective countries’ ability to capitalize on its transformative potential. This chapter begins examining global AI governance starting with a timeline of significant AI policymaking events in 2023. It then analyzes global and U.S. AI legislative efforts, studies AI legislative mentions, and explores how lawmakers across the globe perceive and discuss AI. Next, the chapter profiles national AI strategies and regulatory efforts in the United States and the European Union. Finally, it concludes with a study of public investment in AI within the United States.

  • 1. The number of AI regulations in the United States sharply increases.
  • 2. The United States and the European Union advance landmark AI policy action.
  • 3. AI captures U.S. policymaker attention.
  • 4. Policymakers across the globe cannot stop talking about AI.
  • 5. More regulatory agencies turn their attention toward AI.

download research papers on artificial intelligence

Chapter 8: Diversity

The demographics of AI developers often differ from those of users. For instance, a considerable number of prominent AI companies and the datasets utilized for model training originate from Western nations, thereby reflecting Western perspectives. The lack of diversity can perpetuate or even exacerbate societal inequalities and biases. This chapter delves into diversity trends in AI. The chapter begins by drawing on data from the Computing Research Association (CRA) to provide insights into the state of diversity in American and Canadian computer science (CS) departments. A notable addition to this year’s analysis is data sourced from Informatics Europe, which sheds light on diversity trends within European CS education. Next, the chapter examines participation rates at the Women in Machine Learning (WiML) workshop held annually at NeurIPS. Finally, the chapter analyzes data from Code.org, offering insights into the current state of diversity in secondary CS education across the United States.  The AI Index is dedicated to enhancing the coverage of data shared in this chapter. Demographic data regarding AI trends, particularly in areas such as sexual orientation, remains scarce. The AI Index urges other stakeholders in the AI domain to intensify their endeavors to track diversity trends associated with AI and hopes to comprehensively cover such trends in future reports.

  • 1. U.S. and Canadian bachelor’s, master’s, and PhD CS students continue to grow more ethnically diverse.
  • 2. Substantial gender gaps persist in European informatics, CS, CE, and IT graduates at all educational levels.
  • 3. U.S. K–12 CS education is growing more diverse, reflecting changes in both gender and ethnic representation.

download research papers on artificial intelligence

Chapter 9: Public Opinion

As AI becomes increasingly ubiquitous, it is important to understand how public perceptions regarding the technology evolve. Understanding this public opinion is vital in better anticipating AI’s societal impacts and how the integration of the technology may differ across countries and demographic groups. This chapter examines public opinion on AI through global, national, demographic, and ethnic perspectives. It draws upon several data sources: longitudinal survey data from Ipsos profiling global AI attitudes over time, survey data from the University of Toronto exploring public perception of ChatGPT, and data from Pew examining American attitudes regarding AI. The chapter concludes by analyzing mentions of significant AI models on Twitter, using data from Quid.

  • 1. People across the globe are more cognizant of AI’s potential impact—and more nervous.
  • 2. AI sentiment in Western nations continues to be low, but is slowly improving.
  • 3. The public is pessimistic about AI’s economic impact.
  • 4. Demographic differences emerge regarding AI optimism.
  • 5. ChatGPT is widely known and widely used.

download research papers on artificial intelligence

Past Reports

2021 annual report

  • Stanford Home
  • Maps & Directions
  • Search Stanford
  • Emergency Info
  • Terms of Use
  • Non-Discrimination
  • Accessibility

AI Index Report

Welcome to the seventh edition of the AI Index report. The 2024 Index is our most comprehensive to date and arrives at an important moment when AI’s influence on society has never been more pronounced. This year, we have broadened our scope to more extensively cover essential trends such as technical advancements in AI, public perceptions of the technology, and the geopolitical dynamics surrounding its development. Featuring more original data than ever before, this edition introduces new estimates on AI training costs, detailed analyses of the responsible AI landscape, and an entirely new chapter dedicated to AI’s impact on science and medicine.

Read the 2024 AI Index Report

The AI Index report tracks, collates, distills, and visualizes data related to artificial intelligence (AI). Our mission is to provide unbiased, rigorously vetted, broadly sourced data in order for policymakers, researchers, executives, journalists, and the general public to develop a more thorough and nuanced understanding of the complex field of AI.

The AI Index is recognized globally as one of the most credible and authoritative sources for data and insights on artificial intelligence. Previous editions have been cited in major newspapers, including the The New York Times, Bloomberg, and The Guardian, have amassed hundreds of academic citations, and been referenced by high-level policymakers in the United States, the United Kingdom, and the European Union, among other places. This year’s edition surpasses all previous ones in size, scale, and scope, reflecting the growing significance that AI is coming to hold in all of our lives.

Steering Committee Co-Directors

Jack Clark

Ray Perrault

Steering committee members.

Erik Brynjolfsson

Erik Brynjolfsson

John Etchemendy

John Etchemendy

Katrina light

Katrina Ligett

Terah Lyons

Terah Lyons

James Manyika

James Manyika

Juan Carlos Niebles

Juan Carlos Niebles

Vanessa Parli

Vanessa Parli

Yoav Shoham

Yoav Shoham

Russell Wald

Russell Wald

Staff members.

Loredana Fattorini

Loredana Fattorini

Nestor Maslej

Nestor Maslej

Letter from the co-directors.

A decade ago, the best AI systems in the world were unable to classify objects in images at a human level. AI struggled with language comprehension and could not solve math problems. Today, AI systems routinely exceed human performance on standard benchmarks.

Progress accelerated in 2023. New state-of-the-art systems like GPT-4, Gemini, and Claude 3 are impressively multimodal: They can generate fluent text in dozens of languages, process audio, and even explain memes. As AI has improved, it has increasingly forced its way into our lives. Companies are racing to build AI-based products, and AI is increasingly being used by the general public. But current AI technology still has significant problems. It cannot reliably deal with facts, perform complex reasoning, or explain its conclusions.

AI faces two interrelated futures. First, technology continues to improve and is increasingly used, having major consequences for productivity and employment. It can be put to both good and bad uses. In the second future, the adoption of AI is constrained by the limitations of the technology. Regardless of which future unfolds, governments are increasingly concerned. They are stepping in to encourage the upside, such as funding university R&D and incentivizing private investment. Governments are also aiming to manage the potential downsides, such as impacts on employment, privacy concerns, misinformation, and intellectual property rights.

As AI rapidly evolves, the AI Index aims to help the AI community, policymakers, business leaders, journalists, and the general public navigate this complex landscape. It provides ongoing, objective snapshots tracking several key areas: technical progress in AI capabilities, the community and investments driving AI development and deployment, public opinion on current and potential future impacts, and policy measures taken to stimulate AI innovation while managing its risks and challenges. By comprehensively monitoring the AI ecosystem, the Index serves as an important resource for understanding this transformative technological force.

On the technical front, this year’s AI Index reports that the number of new large language models released worldwide in 2023 doubled over the previous year. Two-thirds were open-source, but the highest-performing models came from industry players with closed systems. Gemini Ultra became the first LLM to reach human-level performance on the Massive Multitask Language Understanding (MMLU) benchmark; performance on the benchmark has improved by 15 percentage points since last year. Additionally, GPT-4 achieved an impressive 0.97 mean win rate score on the comprehensive Holistic Evaluation of Language Models (HELM) benchmark, which includes MMLU among other evaluations.

Although global private investment in AI decreased for the second consecutive year, investment in generative AI skyrocketed. More Fortune 500 earnings calls mentioned AI than ever before, and new studies show that AI tangibly boosts worker productivity. On the policymaking front, global mentions of AI in legislative proceedings have never been higher. U.S. regulators passed more AI-related regulations in 2023 than ever before. Still, many expressed concerns about AI’s ability to generate deepfakes and impact elections. The public became more aware of AI, and studies suggest that they responded with nervousness.

Ray Perrault Co-director, AI Index

Our Supporting Partners

Supporting Partner Logos

Analytics & Research Partners

download research papers on artificial intelligence

Stay up to date on the AI Index by subscribing to the  Stanford HAI newsletter.

Artificial Intelligence (Generative) Resources

Ai research tools, additional ai tools.

  • How to Craft Prompts
  • Research Resources on AI
  • Latest News on AI
  • Ethics & AI
  • Citing Generative AI
  • AI, Authorship, & Copyright
  • Campus Resources and Policies

About This Table

The resources described in the table represent an incomplete list of tools specifically geared towards exploring and synthesizing research. As generative AI becomes more integrated in online search tools , even the very early stages of research and topic development could incorporate AI. If you have any questions about using these tools for your research, please Email a Librarian .

AI tools for research can help you to discover new sources for your literature review or research assignment. These tools will synthesize information from large databases of scholarly output with the aim of finding the most relevant articles and saving researchers' time. As with our research databases or any other search tool, however, it's important not to rely on one tool for all of your research, as you will risk missing important information on your topic of interest.

Georgetown University's Center for New Designs in Learning and Scholarship (CNDLS) offers a list of additional AI tools with a range of different purposes including visual design, writing, time management, and more.

  • << Previous: Home
  • Next: How to Craft Prompts >>
  • Last Updated: Apr 22, 2024 2:36 PM
  • URL: https://guides.library.georgetown.edu/ai

Creative Commons

NTRS - NASA Technical Reports Server

Available downloads, related records.

  • All Research Labs
  • 3D Deep Learning
  • Applied Research
  • Autonomous Vehicles
  • Deep Imagination
  • New and Featured
  • AI Art Gallery
  • AI & Machine Learning
  • Computer Vision
  • Academic Collaborations
  • Government Collaborations
  • Graduate Fellowship
  • Internships
  • Research Openings
  • Research Scientists
  • Meet the Team
  • Publications

Stateful Conformer with Cache-based Inference for Streaming Automatic Speech Recognition

Publication image

In this paper, we propose an efficient and accurate streaming speech recognition model based on the FastConformer architecture. We adapted the FastConformer architecture for streaming applications through: (1) constraining both the look-ahead and past contexts in the encoder, and (2) introducing an activation caching mechanism to enable the non-autoregressive encoder to operate autoregressively during inference. The proposed model is thoughtfully designed in a way to eliminate the accuracy disparity between the train and inference time which is common for many streaming models. Furthermore, our proposed encoder works with various decoder configurations including Connectionist Temporal Classification (CTC) and RNN-Transducer (RNNT) decoders. Additionally, we introduced a hybrid CTC/RNNT architecture which utilizes a shared encoder with both a CTC and RNNT decoder to boost the accuracy and save computation. We evaluate the proposed model on LibriSpeech dataset and a multi-domain large scale dataset and demonstrate that it can achieve better accuracy with lower latency and inference time compared to a conventional buffered streaming model baseline. We also showed that training a model with multiple latencies can achieve better accuracy than single latency models while it enables us to support multiple latencies with a single model. Our experiments also showed the hybrid architecture would not only speedup the convergence of the CTC decoder but also improves the accuracy of streaming models compared to single decoder models.

Publication Date

Research area, external links.

IMAGES

  1. Top 3 Artificial Intelligence Research Papers

    download research papers on artificial intelligence

  2. A Complete Page For Sample Papers Artificial Intelligence 2021

    download research papers on artificial intelligence

  3. ️ Artificial intelligence papers. Artificial Intelligence Research Paper. 2019-02-04

    download research papers on artificial intelligence

  4. Top 3 Artificial Intelligence Research Papers

    download research papers on artificial intelligence

  5. Top 3 Artificial Intelligence Research Papers

    download research papers on artificial intelligence

  6. Latest Research Papers in Artificial Intelligence

    download research papers on artificial intelligence

VIDEO

  1. Using OpenVPN to access and download research papers from KKU network

  2. How to download research papers online #education

  3. How to download research papers

  4. How to download research papers using sci-hub#science

  5. How to Download Research Papers for Free-2023

  6. Download research article and scientific papers || Download free from Google scholar ||

COMMENTS

  1. PDF The Impact of Artificial Intelligence on Innovation

    ABSTRACT. Artificial intelligence may greatly increase the efficiency of the existing economy. But it may have an even larger impact by serving as a new general-purpose "method of invention" that can reshape the nature of the innovation process and the organization of R&D.

  2. (PDF) The Impact of Artificial Intelligence on Academics: A Concise

    Abstract. Artificial intelligence (AI) has developed into a powerful tool that Academics can exploit for their research, writing, and cooperation in recent years. AI can speed up the writing and ...

  3. 578339 PDFs

    Artificial Intelligence | Explore the latest full-text research PDFs, articles, conference papers, preprints and more on ARTIFICIAL INTELLIGENCE. Find methods information, sources, references or ...

  4. Journal of Artificial Intelligence Research

    The Journal of Artificial Intelligence Research (JAIR) is dedicated to the rapid dissemination of important research results to the global artificial intelligence (AI) community. The journal's scope encompasses all areas of AI, including agents and multi-agent systems, automated reasoning, constraint processing and search, knowledge ...

  5. Journal of Artificial Intelligence Research

    The Journal of Artificial Intelligence Research (www.jair.org) covers all areas of artificial intelligence, publishing refereed research articles, survey articles, and technical notes. JAIR was established in 1993 as one of the very first open access scientific journals on the Web. Since it began publication in 1993, JAIR has had a major impact on the field, and has been continuously ranked as ...

  6. Artificial intelligence and machine learning research: towards digital

    Also, the bachelor program of Computer Science has tracks in Artificial Intelligence and Cyber Security which was launched in Fall 2020 semester. Additionally, Energy & Technology and Smart Building Research Centers were established to support innovation in the technology and energy sectors.

  7. AIJ

    The journal of Artificial Intelligence (AIJ) welcomes papers on broad aspects of AI that constitute advances in the overall field including, but not limited to, cognition and AI, automated reasoning and inference, case-based reasoning, commonsense reasoning, computer vision, constraint …. View full aims & scope.

  8. Artificial Intelligence in the 21st Century

    The field of artificial intelligence (AI) has shown an upward trend of growth in the 21st century (from 2000 to 2015). The evolution in AI has advanced the development of human society in our own time, with dramatic revolutions shaped by both theories and techniques. However, the multidisciplinary and fast-growing features make AI a field in which it is difficult to be well understood. In this ...

  9. Scientific discovery in the age of artificial intelligence

    Artificial intelligence (AI) is being increasingly integrated into scientific discovery to augment and accelerate research, helping scientists to generate hypotheses, design experiments, collect ...

  10. Artificial intelligence: A powerful paradigm for scientific research

    Artificial intelligence (AI) is a rapidly evolving field that has transformed various domains of scientific research. This article provides an overview of the history, applications, challenges, and opportunities of AI in science. It also discusses how AI can enhance scientific creativity, collaboration, and communication. Learn more about the potential and impact of AI in science by reading ...

  11. PDF The Impact of Artificial Intelligence on Higher Education: An Empirical

    discovering AI, it took ages for a teacher to assess and grade papers and check for plagiarism. Thanks to AI, checking for academic integrity and language issues takes minutes or less. Indeed, using artificial intelligence, a lecturer submits the work to Turnitin, Grammarly, or other software.

  12. Forecasting the future of artificial intelligence with machine learning

    The corpus of scientific literature grows at an ever-increasing speed. Specifically, in the field of artificial intelligence (AI) and machine learning (ML), the number of papers every month is ...

  13. [2305.04532] Latest Trends in Artificial Intelligence Technology: A

    Download a PDF of the paper titled Latest Trends in Artificial Intelligence Technology: A Scoping Review, by Teemu Niskanen and 2 other authors. ... The goal was to find the most advanced technologies used in different domains of artificial intelligence technology research. Three recognized journals were used from artificial intelligence and ...

  14. (PDF) Recent Advancements in Artificial Intelligence Technology: Trends

    Recent years have witnessed unprecedented advancements in artificial intelligence (AI) technology, reshaping industries, economies, and daily interactions. This paper delves into the forefront of ...

  15. The impact of artificial intelligence on human society and bioethics

    Bioethics is not a matter of calculation but a process of conscientization. Although AI designers can up-load all information, data, and programmed to AI to function as a human being, it is still a machine and a tool. AI will always remain as AI without having authentic human feelings and the capacity to commiserate.

  16. PDF Artificial Intelligence in Software Testing : Impact, Problems

    Artificial Intelligence is gradually changing the landscape of software engineering in general [5] and software testing in particular [6] both in research and industry as well. In the last two decades, AI has been found to have made a considerable impact on the way we are approach-ing software testing.

  17. Artificial intelligence for cybersecurity: Literature review and future

    Artificial intelligence (AI) is a powerful technology that helps cybersecurity teams automate repetitive tasks, accelerate threat detection and response, and improve the accuracy of their actions to strengthen the security posture against various security issues and cyberattacks. ... Download : Download high-res image (420KB) Download ...

  18. The potential for artificial intelligence to transform healthcare

    Artificial intelligence (AI) has the potential to transform care delivery by improving health outcomes, patient safety, and the affordability and accessibility of high-quality care. AI will be ...

  19. AI Index Report 2024

    1. Industry continues to dominate frontier AI research. 2. More foundation models and more open foundation models. 3. Frontier models get way more expensive. 4. The United States leads China, the EU, and the U.K. as the leading source of top AI models. 5. The number of AI patents skyrockets. 6. China dominates AI patents. 7. Open-source AI ...

  20. PDF Research Paper on Artificial Intelligence & Its Applications

    Artificial intelligence forms the basis for all computer learning and is the future of all complex decision making. This paper examines features of artificial Intelligence, introduction, definitions of AI, history, applications, growth and achievements. KEYWORDS-machine learning,deep learning,neural networks,Natural Language Processing and ...

  21. AI Index Report

    Mission. The AI Index report tracks, collates, distills, and visualizes data related to artificial intelligence (AI). Our mission is to provide unbiased, rigorously vetted, broadly sourced data in order for policymakers, researchers, executives, journalists, and the general public to develop a more thorough and nuanced understanding of the complex field of AI.

  22. Industry 4.0 Transformation: Analysing the Impact of Artificial ...

    The importance of artificial intelligence in the banking industry is reflected in the speed at which financial institutions are adopting and implementing AI solutions to improve their services and adapt to new market demands. The aim of this research is to conduct a bibliometric analysis of the involvement of artificial intelligence in the banking sector to provide a comprehensive overview of ...

  23. Full article: Applications of artificial intelligence in the AEC

    This paper aims to achieve the following objectives: (1) Identify the publication trends over the past two decades in research related to artificial intelligence in the AEC industry, including the volume of publications, key research authors, their affiliations, countries of origin, collaborative relationships, and prominent publishing journals.

  24. (PDF) Artificial Intelligence

    Abstract and Figures. This paper focus on the History of A.I. and how it begun as an idea and, the definition of artificial intelligence and gives a detailed description of Artificial Intelligence ...

  25. The Ethics of Artificial Intelligence: exacerbated problems ...

    Download This Paper. Open PDF in Browser. Share: ... Floridi, Luciano, The Ethics of Artificial Intelligence: exacerbated problems, renewed problems, unprecedented problems - Introduction to the Special Issue of the American Philosophical Quarterly dedicated to The Ethics of AI (April 20, 2024). ... Research Paper Series. Subscribe to this free ...

  26. AI Tools for Research

    The resources described in the table represent an incomplete list of tools specifically geared towards exploring and synthesizing research. As generative AI becomes more integrated in online search tools, even the very early stages of research and topic development could incorporate AI.If you have any questions about using these tools for your research, please Email a Librarian.

  27. research.ibm.com

    /topics/artificial-intelligence

  28. The Application of Artificial Intelligence Deep Learning to Visually

    Recent advances in Artificial Intelligence (AI) are changing the World. Novel approaches to training AI systems have led to dramatic reductions in the amount of time required. Training an AI system could take years and teams of people using traditional methods, but with the advancements of Deep Learning (DL) models this training can now be accomplished by an individual in a matter of minutes.

  29. Design of highly functional genome editors by modeling the ...

    Gene editing has the potential to solve fundamental challenges in agriculture, biotechnology, and human health. CRISPR-based gene editors derived from microbes, while powerful, often show significant functional tradeoffs when ported into non-native environments, such as human cells. Artificial intelligence (AI) enabled design provides a powerful alternative with potential to bypass ...

  30. Stateful Conformer with Cache-based Inference for Streaming Automatic

    In this paper, we propose an efficient and accurate streaming speech recognition model based on the FastConformer architecture. We adapted the FastConformer architecture for streaming applications through: (1) constraining both the look-ahead and past contexts in the encoder, and (2) introducing an activation caching mechanism to enable the non-autoregressive encoder to operate ...