Exploring the Problem Solving Cycle in Computer Science – Strategies, Techniques, and Tools

  • Post author By bicycle-u
  • Post date 08.12.2023

The world of computer science is built on the foundation of problem solving. Whether it’s finding a solution to a complex algorithm or analyzing data to make informed decisions, the problem solving cycle is at the core of every computer science endeavor.

At its essence, problem solving in computer science involves breaking down a complex problem into smaller, more manageable parts. This allows for a systematic approach to finding a solution by analyzing each part individually. The process typically starts with gathering and understanding the data or information related to the problem at hand.

Once the data is collected, computer scientists use various techniques and algorithms to analyze and explore possible solutions. This involves evaluating different approaches and considering factors such as efficiency, accuracy, and scalability. During this analysis phase, it is crucial to think critically and creatively to come up with innovative solutions.

After a thorough analysis, the next step in the problem solving cycle is designing and implementing a solution. This involves creating a detailed plan of action, selecting the appropriate tools and technologies, and writing the necessary code to bring the solution to life. Attention to detail and precision are key in this stage to ensure that the solution functions as intended.

The final step in the problem solving cycle is evaluating the solution and its effectiveness. This includes testing the solution against different scenarios and data sets to ensure its reliability and performance. If any issues or limitations are discovered, adjustments and optimizations are made to improve the solution.

In conclusion, the problem solving cycle is a fundamental process in computer science, involving analysis, data exploration, algorithm development, solution implementation, and evaluation. It is through this cycle that computer scientists are able to tackle complex problems and create innovative solutions that drive progress in the field of computer science.

Understanding the Importance

In computer science, problem solving is a crucial skill that is at the core of the problem solving cycle. The problem solving cycle is a systematic approach to analyzing and solving problems, involving various stages such as problem identification, analysis, algorithm design, implementation, and evaluation. Understanding the importance of this cycle is essential for any computer scientist or programmer.

Data Analysis and Algorithm Design

The first step in the problem solving cycle is problem identification, which involves recognizing and defining the issue at hand. Once the problem is identified, the next crucial step is data analysis. This involves gathering and examining relevant data to gain insights and understand the problem better. Data analysis helps in identifying patterns, trends, and potential solutions.

After data analysis, the next step is algorithm design. An algorithm is a step-by-step procedure or set of rules to solve a problem. Designing an efficient algorithm is crucial as it determines the effectiveness and efficiency of the solution. A well-designed algorithm takes into consideration the constraints, resources, and desired outcomes while implementing the solution.

Implementation and Evaluation

Once the algorithm is designed, the next step in the problem solving cycle is implementation. This involves translating the algorithm into a computer program using a programming language. The implementation phase requires coding skills and expertise in a specific programming language.

After implementation, the solution needs to be evaluated to ensure that it solves the problem effectively. Evaluation involves testing the program and verifying its correctness and efficiency. This step is critical to identify any errors or issues and to make necessary improvements or adjustments.

In conclusion, understanding the importance of the problem solving cycle in computer science is essential for any computer scientist or programmer. It provides a systematic and structured approach to analyze and solve problems, ensuring efficient and effective solutions. By following the problem solving cycle, computer scientists can develop robust algorithms, implement them in efficient programs, and evaluate their solutions to ensure their correctness and efficiency.

Identifying the Problem

In the problem solving cycle in computer science, the first step is to identify the problem that needs to be solved. This step is crucial because without a clear understanding of the problem, it is impossible to find a solution.

Identification of the problem involves a thorough analysis of the given data and understanding the goals of the task at hand. It requires careful examination of the problem statement and any constraints or limitations that may affect the solution.

During the identification phase, the problem is broken down into smaller, more manageable parts. This can involve breaking the problem down into sub-problems or identifying the different aspects or components that need to be addressed.

Identifying the problem also involves considering the resources and tools available for solving it. This may include considering the specific tools and programming languages that are best suited for the problem at hand.

By properly identifying the problem, computer scientists can ensure that they are focused on the right goals and are better equipped to find an effective and efficient solution. It sets the stage for the rest of the problem solving cycle, including the analysis, design, implementation, and evaluation phases.

Gathering the Necessary Data

Before finding a solution to a computer science problem, it is essential to gather the necessary data. Whether it’s writing a program or developing an algorithm, data serves as the backbone of any solution. Without proper data collection and analysis, the problem-solving process can become inefficient and ineffective.

The Importance of Data

In computer science, data is crucial for a variety of reasons. First and foremost, it provides the information needed to understand and define the problem at hand. By analyzing the available data, developers and programmers can gain insights into the nature of the problem and determine the most efficient approach for solving it.

Additionally, data allows for the evaluation of potential solutions. By collecting and organizing relevant data, it becomes possible to compare different algorithms or strategies and select the most suitable one. Data also helps in tracking progress and measuring the effectiveness of the chosen solution.

Data Gathering Process

The process of gathering data involves several steps. Firstly, it is necessary to identify the type of data needed for the particular problem. This may include numerical values, textual information, or other types of data. It is important to determine the sources of data and assess their reliability.

Once the required data has been identified, it needs to be collected. This can be done through various methods, such as surveys, experiments, observations, or by accessing existing data sets. The collected data should be properly organized, ensuring its accuracy and validity.

Data cleaning and preprocessing are vital steps in the data gathering process. This involves removing any irrelevant or erroneous data and transforming it into a suitable format for analysis. Properly cleaned and preprocessed data will help in generating reliable and meaningful insights.

Data Analysis and Interpretation

After gathering and preprocessing the data, the next step is data analysis and interpretation. This involves applying various statistical and analytical methods to uncover patterns, trends, and relationships within the data. By analyzing the data, programmers can gain valuable insights that can inform the development of an effective solution.

During the data analysis process, it is crucial to remain objective and unbiased. The analysis should be based on sound reasoning and logical thinking. It is also important to communicate the findings effectively, using visualizations or summaries to convey the information to stakeholders or fellow developers.

In conclusion, gathering the necessary data is a fundamental step in solving computer science problems. It provides the foundation for understanding the problem, evaluating potential solutions, and tracking progress. By following a systematic and rigorous approach to data gathering and analysis, developers can ensure that their solutions are efficient, effective, and well-informed.

Analyzing the Data

Once you have collected the necessary data, the next step in the problem-solving cycle is to analyze it. Data analysis is a crucial component of computer science, as it helps us understand the problem at hand and develop effective solutions.

To analyze the data, you need to break it down into manageable pieces and examine each piece closely. This process involves identifying patterns, trends, and outliers that may be present in the data. By doing so, you can gain insights into the problem and make informed decisions about the best course of action.

There are several techniques and tools available for data analysis in computer science. Some common methods include statistical analysis, data visualization, and machine learning algorithms. Each approach has its own strengths and limitations, so it’s essential to choose the most appropriate method for the problem you are solving.

Statistical Analysis

Statistical analysis involves using mathematical models and techniques to analyze data. It helps in identifying correlations, distributions, and other statistical properties of the data. By applying statistical tests, you can determine the significance and validity of your findings.

Data Visualization

Data visualization is the process of presenting data in a visual format, such as charts, graphs, or maps. It allows for a better understanding of complex data sets and facilitates the communication of findings. Through data visualization, patterns and trends can become more apparent, making it easier to derive meaningful insights.

Machine Learning Algorithms

Machine learning algorithms are powerful tools for analyzing large and complex data sets. These algorithms can automatically detect patterns and relationships in the data, leading to the development of predictive models and solutions. By training the algorithm on a labeled dataset, it can learn from the data and make accurate predictions or classifications.

In conclusion, analyzing the data is a critical step in the problem-solving cycle in computer science. It helps us gain a deeper understanding of the problem and develop effective solutions. Whether through statistical analysis, data visualization, or machine learning algorithms, data analysis plays a vital role in transforming raw data into actionable insights.

Exploring Possible Solutions

Once you have gathered data and completed the analysis, the next step in the problem-solving cycle is to explore possible solutions. This is where the true power of computer science comes into play. With the use of algorithms and the application of scientific principles, computer scientists can develop innovative solutions to complex problems.

During this stage, it is important to consider a variety of potential solutions. This involves brainstorming different ideas and considering their feasibility and potential effectiveness. It may be helpful to consult with colleagues or experts in the field to gather additional insights and perspectives.

Developing an Algorithm

One key aspect of exploring possible solutions is the development of an algorithm. An algorithm is a step-by-step set of instructions that outlines a specific process or procedure. In the context of problem solving in computer science, an algorithm provides a clear roadmap for implementing a solution.

The development of an algorithm requires careful thought and consideration. It is important to break down the problem into smaller, manageable steps and clearly define the inputs and outputs of each step. This allows for the creation of a logical and efficient solution.

Evaluating the Solutions

Once you have developed potential solutions and corresponding algorithms, the next step is to evaluate them. This involves analyzing each solution to determine its strengths, weaknesses, and potential impact. Consider factors such as efficiency, scalability, and resource requirements.

It may be helpful to conduct experiments or simulations to further assess the effectiveness of each solution. This can provide valuable insights and data to support the decision-making process.

Ultimately, the goal of exploring possible solutions is to find the most effective and efficient solution to the problem at hand. By leveraging the power of data, analysis, algorithms, and scientific principles, computer scientists can develop innovative solutions that drive progress and solve complex problems in the world of technology.

Evaluating the Options

Once you have identified potential solutions and algorithms for a problem, the next step in the problem-solving cycle in computer science is to evaluate the options. This evaluation process involves analyzing the potential solutions and algorithms based on various criteria to determine the best course of action.

Consider the Problem

Before evaluating the options, it is important to take a step back and consider the problem at hand. Understand the requirements, constraints, and desired outcomes of the problem. This analysis will help guide the evaluation process.

Analyze the Options

Next, it is crucial to analyze each solution or algorithm option individually. Look at factors such as efficiency, accuracy, ease of implementation, and scalability. Consider whether the solution or algorithm meets the specific requirements of the problem, and if it can be applied to related problems in the future.

Additionally, evaluate the potential risks and drawbacks associated with each option. Consider factors such as cost, time, and resources required for implementation. Assess any potential limitations or trade-offs that may impact the overall effectiveness of the solution or algorithm.

Select the Best Option

Based on the analysis, select the best option that aligns with the specific problem-solving goals. This may involve prioritizing certain criteria or making compromises based on the limitations identified during the evaluation process.

Remember that the best option may not always be the most technically complex or advanced solution. Consider the practicality and feasibility of implementation, as well as the potential impact on the overall system or project.

In conclusion, evaluating the options is a critical step in the problem-solving cycle in computer science. By carefully analyzing the potential solutions and algorithms, considering the problem requirements, and considering the limitations and trade-offs, you can select the best option to solve the problem at hand.

Making a Decision

Decision-making is a critical component in the problem-solving process in computer science. Once you have analyzed the problem, identified the relevant data, and generated a potential solution, it is important to evaluate your options and choose the best course of action.

Consider All Factors

When making a decision, it is important to consider all relevant factors. This includes evaluating the potential benefits and drawbacks of each option, as well as understanding any constraints or limitations that may impact your choice.

In computer science, this may involve analyzing the efficiency of different algorithms or considering the scalability of a proposed solution. It is important to take into account both the short-term and long-term impacts of your decision.

Weigh the Options

Once you have considered all the factors, it is important to weigh the options and determine the best approach. This may involve assigning weights or priorities to different factors based on their importance.

Using techniques such as decision matrices or cost-benefit analysis can help you systematically compare and evaluate different options. By quantifying and assessing the potential risks and rewards, you can make a more informed decision.

Remember: Decision-making in computer science is not purely subjective or based on personal preference. It is crucial to use analytical and logical thinking to select the most optimal solution.

In conclusion, making a decision is a crucial step in the problem-solving process in computer science. By considering all relevant factors and weighing the options using logical analysis, you can choose the best possible solution to a given problem.

Implementing the Solution

Once the problem has been analyzed and a solution has been proposed, the next step in the problem-solving cycle in computer science is implementing the solution. This involves turning the proposed solution into an actual computer program or algorithm that can solve the problem.

In order to implement the solution, computer science professionals need to have a strong understanding of various programming languages and data structures. They need to be able to write code that can manipulate and process data in order to solve the problem at hand.

During the implementation phase, the proposed solution is translated into a series of steps or instructions that a computer can understand and execute. This involves breaking down the problem into smaller sub-problems and designing algorithms to solve each sub-problem.

Computer scientists also need to consider the efficiency of their solution during the implementation phase. They need to ensure that the algorithm they design is able to handle large amounts of data and solve the problem in a reasonable amount of time. This often requires optimization techniques and careful consideration of the data structures used.

Once the code has been written and the algorithm has been implemented, it is important to test and debug the solution. This involves running test cases and checking the output to ensure that the program is working correctly. If any errors or bugs are found, they need to be fixed before the solution can be considered complete.

In conclusion, implementing the solution is a crucial step in the problem-solving cycle in computer science. It requires strong programming skills and a deep understanding of algorithms and data structures. By carefully designing and implementing the solution, computer scientists can solve problems efficiently and effectively.

Testing and Debugging

In computer science, testing and debugging are critical steps in the problem-solving cycle. Testing helps ensure that a program or algorithm is functioning correctly, while debugging analyzes and resolves any issues or bugs that may arise.

Testing involves running a program with specific input data to evaluate its output. This process helps verify that the program produces the expected results and handles different scenarios correctly. It is important to test both the normal and edge cases to ensure the program’s reliability.

Debugging is the process of identifying and fixing errors or bugs in a program. When a program does not produce the expected results or crashes, it is necessary to go through the code to find and fix the problem. This can involve analyzing the program’s logic, checking for syntax errors, and using debugging tools to trace the flow of data and identify the source of the issue.

Data analysis plays a crucial role in both testing and debugging. It helps to identify patterns, anomalies, or inconsistencies in the program’s behavior. By analyzing the data, developers can gain insights into potential issues and make informed decisions on how to improve the program’s performance.

In conclusion, testing and debugging are integral parts of the problem-solving cycle in computer science. Through testing and data analysis, developers can verify the correctness of their programs and identify and resolve any issues that may arise. This ensures that the algorithms and programs developed in computer science are robust, reliable, and efficient.

Iterating for Improvement

In computer science, problem solving often involves iterating through multiple cycles of analysis, solution development, and evaluation. This iterative process allows for continuous improvement in finding the most effective solution to a given problem.

The problem solving cycle starts with problem analysis, where the specific problem is identified and its requirements are understood. This step involves examining the problem from various angles and gathering all relevant information.

Once the problem is properly understood, the next step is to develop an algorithm or a step-by-step plan to solve the problem. This algorithm is a set of instructions that, when followed correctly, will lead to the solution.

After the algorithm is developed, it is implemented in a computer program. This step involves translating the algorithm into a programming language that a computer can understand and execute.

Once the program is implemented, it is then tested and evaluated to ensure that it produces the correct solution. This evaluation step is crucial in identifying any errors or inefficiencies in the program and allows for further improvement.

If any issues or problems are found during testing, the cycle iterates, starting from problem analysis again. This iterative process allows for refinement and improvement of the solution until the desired results are achieved.

Iterating for improvement is a fundamental concept in computer science problem solving. By continually analyzing, developing, and evaluating solutions, computer scientists are able to find the most optimal and efficient approaches to solving problems.

Documenting the Process

Documenting the problem-solving process in computer science is an essential step to ensure that the cycle is repeated successfully. The process involves gathering information, analyzing the problem, and designing a solution.

During the analysis phase, it is crucial to identify the specific problem at hand and break it down into smaller components. This allows for a more targeted approach to finding the solution. Additionally, analyzing the data involved in the problem can provide valuable insights and help in designing an effective solution.

Once the analysis is complete, it is important to document the findings. This documentation can take various forms, such as written reports, diagrams, or even code comments. The goal is to create a record that captures the problem, the analysis, and the proposed solution.

Documenting the process serves several purposes. Firstly, it allows for easy communication and collaboration between team members or future developers. By documenting the problem, analysis, and solution, others can easily understand the thought process behind the solution and potentially build upon it.

Secondly, documenting the process provides an opportunity for reflection and improvement. By reviewing the documentation, developers can identify areas where the problem-solving cycle can be strengthened or optimized. This continuous improvement is crucial in the field of computer science, as new challenges and technologies emerge rapidly.

In conclusion, documenting the problem-solving process is an integral part of the computer science cycle. It allows for effective communication, collaboration, and reflection on the solutions devised. By taking the time to document the process, developers can ensure a more efficient and successful problem-solving experience.

Communicating the Solution

Once the problem solving cycle is complete, it is important to effectively communicate the solution. This involves explaining the analysis, data, and steps taken to arrive at the solution.

Analyzing the Problem

During the problem solving cycle, a thorough analysis of the problem is conducted. This includes understanding the problem statement, gathering relevant data, and identifying any constraints or limitations. It is important to clearly communicate this analysis to ensure that others understand the problem at hand.

Presenting the Solution

The next step in communicating the solution is presenting the actual solution. This should include a detailed explanation of the steps taken to solve the problem, as well as any algorithms or data structures used. It is important to provide clear and concise descriptions of the solution, so that others can understand and reproduce the results.

Overall, effective communication of the solution in computer science is essential to ensure that others can understand and replicate the problem solving process. By clearly explaining the analysis, data, and steps taken, the solution can be communicated in a way that promotes understanding and collaboration within the field of computer science.

Reflecting and Learning

Reflecting and learning are crucial steps in the problem solving cycle in computer science. Once a problem has been solved, it is essential to reflect on the entire process and learn from the experience. This allows for continuous improvement and growth in the field of computer science.

During the reflecting phase, one must analyze and evaluate the problem solving process. This involves reviewing the initial problem statement, understanding the constraints and requirements, and assessing the effectiveness of the chosen algorithm and solution. It is important to consider the efficiency and accuracy of the solution, as well as any potential limitations or areas for optimization.

By reflecting on the problem solving cycle, computer scientists can gain valuable insights into their own strengths and weaknesses. They can identify areas where they excelled and areas where improvement is needed. This self-analysis helps in honing problem solving skills and becoming a better problem solver.

Learning from Mistakes

Mistakes are an integral part of the problem solving cycle, and they provide valuable learning opportunities. When a problem is not successfully solved, it is essential to analyze the reasons behind the failure and learn from them. This involves identifying errors in the algorithm or solution, understanding the underlying concepts or principles that were misunderstood, and finding alternative approaches or strategies.

Failure should not be seen as a setback, but rather as an opportunity for growth. By learning from mistakes, computer scientists can improve their problem solving abilities and expand their knowledge and understanding of computer science. It is through these failures and the subsequent learning process that new ideas and innovations are often born.

Continuous Improvement

Reflecting and learning should not be limited to individual problem solving experiences, but should be an ongoing practice. As computer science is a rapidly evolving field, it is crucial to stay updated with new technologies, algorithms, and problem solving techniques. Continuous learning and improvement contribute to staying competitive and relevant in the field.

Computer scientists can engage in continuous improvement by seeking feedback from peers, participating in research and development activities, attending conferences and workshops, and actively seeking new challenges and problem solving opportunities. This dedication to learning and improvement ensures that one’s problem solving skills remain sharp and effective.

In conclusion, reflecting and learning are integral parts of the problem solving cycle in computer science. They enable computer scientists to refine their problem solving abilities, learn from mistakes, and continuously improve their skills and knowledge. By embracing these steps, computer scientists can stay at the forefront of the ever-changing world of computer science and contribute to its advancements.

Applying Problem Solving in Real Life

In computer science, problem solving is not limited to the realm of programming and algorithms. It is a skill that can be applied to various aspects of our daily lives, helping us to solve problems efficiently and effectively. By using the problem-solving cycle and applying the principles of analysis, data, solution, algorithm, and cycle, we can tackle real-life challenges with confidence and success.

The first step in problem-solving is to analyze the problem at hand. This involves breaking it down into smaller, more manageable parts and identifying the key issues or goals. By understanding the problem thoroughly, we can gain insights into its root causes and potential solutions.

For example, let’s say you’re facing a recurring issue in your daily commute – traffic congestion. By analyzing the problem, you may discover that the main causes are a lack of alternative routes and a lack of communication between drivers. This analysis helps you identify potential solutions such as using navigation apps to find alternate routes or promoting carpooling to reduce the number of vehicles on the road.

Gathering and Analyzing Data

Once we have identified the problem, it is important to gather relevant data to support our analysis. This may involve conducting surveys, collecting statistics, or reviewing existing research. By gathering data, we can make informed decisions and prioritize potential solutions based on their impact and feasibility.

Continuing with the traffic congestion example, you may gather data on the average commute time, the number of vehicles on the road, and the impact of carpooling on congestion levels. This data can help you analyze the problem more accurately and determine the most effective solutions.

Generating and Evaluating Solutions

After analyzing the problem and gathering data, the next step is to generate potential solutions. This can be done through brainstorming, researching best practices, or seeking input from experts. It is important to consider multiple options and think outside the box to find innovative and effective solutions.

For our traffic congestion problem, potential solutions can include implementing a smart traffic management system that optimizes traffic flow or investing in public transportation to incentivize people to leave their cars at home. By evaluating each solution’s potential impact, cost, and feasibility, you can make an informed decision on the best course of action.

Implementing and Iterating

Once a solution has been chosen, it is time to implement it in real life. This may involve developing a plan, allocating resources, and executing the solution. It is important to monitor the progress and collect feedback to learn from the implementation and make necessary adjustments.

For example, if the chosen solution to address traffic congestion is implementing a smart traffic management system, you would work with engineers and transportation authorities to develop and deploy the system. Regular evaluation and iteration of the system’s performance would ensure that it is effective and making a positive impact on reducing congestion.

By applying the problem-solving cycle derived from computer science to real-life situations, we can approach challenges with a systematic and analytical mindset. This can help us make better decisions, improve our problem-solving skills, and ultimately achieve more efficient and effective solutions.

Building Problem Solving Skills

In the field of computer science, problem-solving is a fundamental skill that is crucial for success. Whether you are a computer scientist, programmer, or student, developing strong problem-solving skills will greatly benefit your work and studies. It allows you to approach challenges with a logical and systematic approach, leading to efficient and effective problem resolution.

The Problem Solving Cycle

Problem-solving in computer science involves a cyclical process known as the problem-solving cycle. This cycle consists of several stages, including problem identification, data analysis, solution development, implementation, and evaluation. By following this cycle, computer scientists are able to tackle complex problems and arrive at optimal solutions.

Importance of Data Analysis

Data analysis is a critical step in the problem-solving cycle. It involves gathering and examining relevant data to gain insights and identify patterns that can inform the development of a solution. Without proper data analysis, computer scientists may overlook important information or make unfounded assumptions, leading to subpar solutions.

To effectively analyze data, computer scientists can employ various techniques such as data visualization, statistical analysis, and machine learning algorithms. These tools enable them to extract meaningful information from large datasets and make informed decisions during the problem-solving process.

Developing Effective Solutions

Developing effective solutions requires creativity, critical thinking, and logical reasoning. Computer scientists must evaluate multiple approaches, consider various factors, and assess the feasibility of different solutions. They should also consider potential limitations and trade-offs to ensure that the chosen solution addresses the problem effectively.

Furthermore, collaboration and communication skills are vital when building problem-solving skills. Computer scientists often work in teams and need to effectively communicate their ideas, propose solutions, and address any challenges that arise during the problem-solving process. Strong interpersonal skills facilitate collaboration and enhance problem-solving outcomes.

  • Mastering programming languages and algorithms
  • Staying updated with technological advancements in the field
  • Practicing problem solving through coding challenges and projects
  • Seeking feedback and learning from mistakes
  • Continuing to learn and improve problem-solving skills

By following these strategies, individuals can strengthen their problem-solving abilities and become more effective computer scientists or programmers. Problem-solving is an essential skill in computer science and plays a central role in driving innovation and advancing the field.

Questions and answers:

What is the problem solving cycle in computer science.

The problem solving cycle in computer science refers to a systematic approach that programmers use to solve problems. It involves several steps, including problem definition, algorithm design, implementation, testing, and debugging.

How important is the problem solving cycle in computer science?

The problem solving cycle is extremely important in computer science as it allows programmers to effectively tackle complex problems and develop efficient solutions. It helps in organizing the thought process and ensures that the problem is approached in a logical and systematic manner.

What are the steps involved in the problem solving cycle?

The problem solving cycle typically consists of the following steps: problem definition and analysis, algorithm design, implementation, testing, and debugging. These steps are repeated as necessary until a satisfactory solution is achieved.

Can you explain the problem definition and analysis step in the problem solving cycle?

During the problem definition and analysis step, the programmer identifies and thoroughly understands the problem that needs to be solved. This involves analyzing the requirements, constraints, and possible inputs and outputs. It is important to have a clear understanding of the problem before proceeding to the next steps.

Why is testing and debugging an important step in the problem solving cycle?

Testing and debugging are important steps in the problem solving cycle because they ensure that the implemented solution functions as intended and is free from errors. Through testing, the programmer can identify and fix any issues or bugs in the code, thereby improving the quality and reliability of the solution.

What is the problem-solving cycle in computer science?

The problem-solving cycle in computer science refers to the systematic approach that computer scientists use to solve problems. It involves various steps, including problem analysis, algorithm design, coding, testing, and debugging.

Related posts:

  • The Stages of the Problem Solving Cycle in Cognitive Psychology – Understanding, Planning, Execution, Evaluation, and Reflection
  • A Comprehensive Guide to the Problem Solving Cycle in Psychology – Strategies, Techniques, and Applications
  • The Step-by-Step Problem Solving Cycle for Effective Solutions
  • The Importance of Implementing the Problem Solving Cycle in Education to Foster Critical Thinking and Problem-Solving Skills in Students
  • The Importance of the Problem Solving Cycle in Business Studies – Strategies for Success
  • The Comprehensive Guide to the Problem Solving Cycle in PDF Format
  • A Comprehensive Guide on the Problem Solving Cycle – Step-by-Step Approach with Real-Life Example
  • The Seven Essential Steps of the Problem Solving Cycle
  • Python Programming
  • C Programming
  • Numerical Methods
  • Dart Language
  • Computer Basics
  • Deep Learning
  • C Programming Examples
  • Python Programming Examples

Problem Solving Using Computer (Steps)

Computer based problem solving is a systematic process of designing, implementing and using programming tools during the problem solving stage. This method enables the computer system to be more intuitive with human logic than machine logic. Final outcome of this process is software tools which is dedicated to solve the problem under consideration. Software is just a collection of computer programs and programs are a set of instructions which guides computer’s hardware. These instructions need to be well specified for solving the problem. After its creation, the software should be error free and well documented. Software development is the process of creating such software, which satisfies end user’s requirements and needs.

The following six steps must be followed to solve a problem using computer.

  • Problem Analysis
  • Program Design - Algorithm, Flowchart and Pseudocode
  • Compilation and Execution
  • Debugging and Testing
  • Program Documentation

Popular Searches

Next generation science.

  • Designing Challenge Based Science Learning
  • Unit Library

What is Computational Thinking?

  • Inclusive Integration of Computational Thinking
  • Data Practices
  • Creating Algorithms
  • Understanding Systems with Computational Models

Computational thinking is an interrelated set of skills and practices for solving complex problems, a way to learn topics in many disciplines, and a necessity for fully participating in a computational world.

Many different terms are used when talking about computing, computer science, computational thinking, and programming. Computing encompasses the skills and practices in both computer science and computational thinking. While computer science is an individual academic discipline, computational thinking is a problem-solving approach that integrates across activities, and programming is the practice of developing a set of instructions that a computer can understand and execute, as well as debugging, organizing, and applying that code to appropriate problem-solving contexts. The skills and practices requiring computational thinking are broader, leveraging concepts and skills from computer science and applying them to other contexts, such as core academic disciplines (e.g. arts, English language arts, math, science, social studies) and everyday problem solving. For educators integrating computational thinking into their classrooms, we believe computational thinking is best understood as a series of interrelated skills and competencies.

A Venn diagram showing the relationship between computer science (CS), computational thinking (CT), programming and computing.

Figure 1. The relationship between computer science (CS), computational thinking (CT), programming and computing.

In order to integrate computational thinking into K-12 teaching and learning, educators must define what students need to know and be able to do to be successful computational thinkers. Our recommended framework has three concentric circles.

  • Computational thinking skills , in the outermost circle, are the cognitive processes necessary to engage with computational tools to solve problems. These skills are the foundation to engage in any computational problem solving and should be integrated into early learning opportunities in K-3.
  • Computational thinking practices , in the middle circle, combine multiple computational skills to solve an applied problem. Students in the older grades (4-12) may use these practices to develop artifacts such as a computer program, data visualization, or computational model.
  • Inclusive pedagogies , in the innermost circle, are strategies for engaging all learners in computing, connecting applications to students’ interests and experiences, and providing opportunities to acknowledge, and combat biases and stereotypes within the computing field.

A pie chart extruding from a Venn diagram to illustrate a framework for computational thinking integration.

Figure 2. A framework for computational thinking integration.

What does inclusive computational thinking look like in a classroom? In the image below, we provide examples of inclusive computing pedagogies in the classroom. The pedagogies are divided into three categories to emphasize different pedagogical approaches to inclusivity. Designing Accessible Instruction refers to strategies teachers should use to engage all learners in computing. Connecting to Students’ Interests, Homes, and Communities refers to drawing on the experiences of students to design learning experiences that are connected with their homes, communities, interests and experiences to highlight the relevance of computing in their lives. Acknowledging and Combating Inequity refers to a teacher supporting students to recognize and take a stand against the oppression of marginalized groups in society broadly and specifically in computing. Together these pedagogical approaches promote a more inclusive computational thinking classroom environment, life-relevant learning, and opportunities to critique and counter inequalities. Educators should attend to each of the three approaches as they plan and teach lessons, especially related to computing.

Examples of inclusive pedagogies for teaching computing

Figure 3. Examples of inclusive pedagogies for teaching computing in the classroom adapted from Israel et al., 2017; Kapor Center, 2021; Madkins et al., 2020; National Center for Women & Information Technology, 2021b; Paris & Alim, 2017; Ryoo, 2019; CSTeachingTips, 2021

Micro-credentials for computational thinking

A micro-credential is a digital certificate that verifies an individual’s competence in a specific skill or set of skills. To earn a micro-credential, teachers submit evidence of student work from classroom activities, as well as documentation of lesson planning and reflection.

Because the integration of computational thinking is new to most teachers, micro-credentials can be a useful tool for professional learning and/or credentialing pathways. Digital Promise has created micro-credentials for Computational Thinking Practices . These micro-credentials are framed around practices because the degree to which students have built foundational skills cannot be assessed until they are manifested through the applied practices.

Visit Digital Promise’s micro-credential platform to find out more and start earning micro-credentials today!

Sign up for updates!

  • Admiral “Amazing Grace” Hopper

Exploring the Intricacies of NP-Completeness in Computer Science

Understanding p vs np problems in computer science: a primer for beginners, understanding key theoretical frameworks in computer science: a beginner’s guide.

Learn Computer Science with Python

Learn Computer Science with Python

CS is a journey, not a destination

  • Foundations

Understanding Algorithms: The Key to Problem-Solving Mastery

computer problem solving concept

The world of computer science is a fascinating realm, where intricate concepts and technologies continuously shape the way we interact with machines. Among the vast array of ideas and principles, few are as fundamental and essential as algorithms. These powerful tools serve as the building blocks of computation, enabling computers to solve problems, make decisions, and process vast amounts of data efficiently.

An algorithm can be thought of as a step-by-step procedure or a set of instructions designed to solve a specific problem or accomplish a particular task. It represents a systematic approach to finding solutions and provides a structured way to tackle complex computational challenges. Algorithms are at the heart of various applications, from simple calculations to sophisticated machine learning models and complex data analysis.

Understanding algorithms and their inner workings is crucial for anyone interested in computer science. They serve as the backbone of software development, powering the creation of innovative applications across numerous domains. By comprehending the concept of algorithms, aspiring computer science enthusiasts gain a powerful toolset to approach problem-solving and gain insight into the efficiency and performance of different computational methods.

In this article, we aim to provide a clear and accessible introduction to algorithms, focusing on their importance in problem-solving and exploring common types such as searching, sorting, and recursion. By delving into these topics, readers will gain a solid foundation in algorithmic thinking and discover the underlying principles that drive the functioning of modern computing systems. Whether you’re a beginner in the world of computer science or seeking to deepen your understanding, this article will equip you with the knowledge to navigate the fascinating world of algorithms.

What are Algorithms?

At its core, an algorithm is a systematic, step-by-step procedure or set of rules designed to solve a problem or perform a specific task. It provides clear instructions that, when followed meticulously, lead to the desired outcome.

Consider an algorithm to be akin to a recipe for your favorite dish. When you decide to cook, the recipe is your go-to guide. It lists out the ingredients you need, their exact quantities, and a detailed, step-by-step explanation of the process, from how to prepare the ingredients to how to mix them, and finally, the cooking process. It even provides an order for adding the ingredients and specific times for cooking to ensure the dish turns out perfect.

In the same vein, an algorithm, within the realm of computer science, provides an explicit series of instructions to accomplish a goal. This could be a simple goal like sorting a list of numbers in ascending order, a more complex task such as searching for a specific data point in a massive dataset, or even a highly complicated task like determining the shortest path between two points on a map (think Google Maps). No matter the complexity of the problem at hand, there’s always an algorithm working tirelessly behind the scenes to solve it.

Furthermore, algorithms aren’t limited to specific programming languages. They are universal and can be implemented in any language. This is why understanding the fundamental concept of algorithms can empower you to solve problems across various programming languages.

The Importance of Algorithms

Algorithms are indisputably the backbone of all computational operations. They’re a fundamental part of the digital world that we interact with daily. When you search for something on the web, an algorithm is tirelessly working behind the scenes to sift through millions, possibly billions, of web pages to bring you the most relevant results. When you use a GPS to find the fastest route to a location, an algorithm is computing all possible paths, factoring in variables like traffic and road conditions, to provide you the optimal route.

Consider the world of social media, where algorithms curate personalized feeds based on our previous interactions, or in streaming platforms where they recommend shows and movies based on our viewing habits. Every click, every like, every search, and every interaction is processed by algorithms to serve you a seamless digital experience.

In the realm of computer science and beyond, everything revolves around problem-solving, and algorithms are our most reliable problem-solving tools. They provide a structured approach to problem-solving, breaking down complex problems into manageable steps and ensuring that every eventuality is accounted for.

Moreover, an algorithm’s efficiency is not just a matter of preference but a necessity. Given that computers have finite resources — time, memory, and computational power — the algorithms we use need to be optimized to make the best possible use of these resources. Efficient algorithms are the ones that can perform tasks more quickly, using less memory, and provide solutions to complex problems that might be infeasible with less efficient alternatives.

In the context of massive datasets (the likes of which are common in our data-driven world), the difference between a poorly designed algorithm and an efficient one could be the difference between a solution that takes years to compute and one that takes mere seconds. Therefore, understanding, designing, and implementing efficient algorithms is a critical skill for any computer scientist or software engineer.

Hence, as a computer science beginner, you are starting a journey where algorithms will be your best allies — universal keys capable of unlocking solutions to a myriad of problems, big or small.

Common Types of Algorithms: Searching and Sorting

Two of the most ubiquitous types of algorithms that beginners often encounter are searching and sorting algorithms.

Searching algorithms are designed to retrieve specific information from a data structure, like an array or a database. A simple example is the linear search, which works by checking each element in the array until it finds the one it’s looking for. Although easy to understand, this method isn’t efficient for large datasets, which is where more complex algorithms like binary search come in.

Binary search, on the other hand, is like looking up a word in the dictionary. Instead of checking each word from beginning to end, you open the dictionary in the middle and see if the word you’re looking for should be on the left or right side, thereby reducing the search space by half with each step.

Sorting algorithms, meanwhile, are designed to arrange elements in a particular order. A simple sorting algorithm is bubble sort, which works by repeatedly swapping adjacent elements if they’re in the wrong order. Again, while straightforward, it’s not efficient for larger datasets. More advanced sorting algorithms, such as quicksort or mergesort, have been designed to sort large data collections more efficiently.

Diving Deeper: Graph and Dynamic Programming Algorithms

Building upon our understanding of searching and sorting algorithms, let’s delve into two other families of algorithms often encountered in computer science: graph algorithms and dynamic programming algorithms.

A graph is a mathematical structure that models the relationship between pairs of objects. Graphs consist of vertices (or nodes) and edges (where each edge connects a pair of vertices). Graphs are commonly used to represent real-world systems such as social networks, web pages, biological networks, and more.

Graph algorithms are designed to solve problems centered around these structures. Some common graph algorithms include:

Dynamic programming is a powerful method used in optimization problems, where the main problem is broken down into simpler, overlapping subproblems. The solutions to these subproblems are stored and reused to build up the solution to the main problem, saving computational effort.

Here are two common dynamic programming problems:

Understanding these algorithm families — searching, sorting, graph, and dynamic programming algorithms — not only equips you with powerful tools to solve a variety of complex problems but also serves as a springboard to dive deeper into the rich ocean of algorithms and computer science.

Recursion: A Powerful Technique

While searching and sorting represent specific problem domains, recursion is a broad technique used in a wide range of algorithms. Recursion involves breaking down a problem into smaller, more manageable parts, and a function calling itself to solve these smaller parts.

To visualize recursion, consider the task of calculating factorial of a number. The factorial of a number n (denoted as n! ) is the product of all positive integers less than or equal to n . For instance, the factorial of 5 ( 5! ) is 5 x 4 x 3 x 2 x 1 = 120 . A recursive algorithm for finding factorial of n would involve multiplying n by the factorial of n-1 . The function keeps calling itself with a smaller value of n each time until it reaches a point where n is equal to 1, at which point it starts returning values back up the chain.

Algorithms are truly the heart of computer science, transforming raw data into valuable information and insight. Understanding their functionality and purpose is key to progressing in your computer science journey. As you continue your exploration, remember that each algorithm you encounter, no matter how complex it may seem, is simply a step-by-step procedure to solve a problem.

We’ve just scratched the surface of the fascinating world of algorithms. With time, patience, and practice, you will learn to create your own algorithms and start solving problems with confidence and efficiency.

Related Articles

computer problem solving concept

Three Elegant Algorithms Every Computer Science Beginner Should Know

Browse Course Material

Course info.

  • Prof. John Guttag

Departments

  • Electrical Engineering and Computer Science

As Taught In

  • Computer Science

Introduction to Computer Science and Programming

Lecture 3: problem solving.

  • Download video
  • Download transcript

facebook

You are leaving MIT OpenCourseWare

computer problem solving concept

2.2 Computer Science Fundamentals

Wrap your mind around computational thinking, from everyday tasks to algorithms.

Making Decisions

Computers use decision trees to turn many simple decisions into one big decision.

Searching for Solutions

Sometimes, the right way to solve a computational problem is by “brute force.”

  • Parallelism

When Pierre the baker wants to get lots of things done, it helps to do many things at once.

End of Unit 1

Complete all lessons above to reach this milestone.

0 of 3 lessons complete

Resource Tradeoffs

Computer scientists deal with tradeoffs all the time. So does Farhad when he does his chores.

Order and Search

Information needs to be organized for use by humans or computers, as Tiye the librarian knows well.

Computer systems and people need to be able to reliably find and access people and resources.

Abstraction

Mayor Jing uses abstraction—a critical tool in computer science—to help her run City Hall.

Abstractions have interfaces that explain what they can and cannot do.

End of Unit 2

0 of 5 lessons complete

Algorithms and Implementations

Algorithms are step-by-step processes for achieving an outcome. They can be very specific or quite general.

Divide and Conquer

Problems often get easier when you split them in half, as the 20 Questions guessing game shows.

  • Binary Search

Binary search is a more algorithm-friendly version of the 20 Questions game.

Thinking with Graphs

Graphs are a powerful tool for understanding problems and solving them in clever ways.

Representing Games and Puzzles

Graphs can help us plan solutions to complex problems, like this classic river-crossing puzzle.

Graph Search

Some of the most fundamental algorithms on graphs are designed to get you from point A to point B.

End of Unit 3

0 of 6 lessons complete

Course description

Learn the key ideas of computer science with this interactive course – no coding required! This course is ideal for a high school or college student who wants to learn the fundamentals, or an early professional who wants to strengthen their knowledge of core computer science concepts. Whether you're exploring computer science for the first time or looking to deepen your understanding, this course will allow you to develop the problem-solving techniques you need to think like a computer scientist. Follow librarians, cooks, and mayors to see how computer science problem solving techniques affect their daily lives. Get hands-on with a few specific algorithms, and learn the general principles demonstrated by these algorithms.

Topics covered

  • Brute-Force Search
  • Concurrency
  • Decision Trees
  • Graph Abstractions
  • Greedy Algorithms
  • Programming

Prerequisites and next steps

You don’t need any previous computer science experience to take this course! This course is for anyone excited to actively learn more about how computer scientists think and understand our world.

3.1 Next Steps in Python

Boost your proficiency in Python by learning how to access social media data with public functions.

Read the new OECD publication on supporting teachers to use digital tools for developing and assessing 21st century competences.

computer problem solving concept

  • Applications
  • Karel the Turtle
  • Betty's Brain
  • Game Creator by Cand.li
  • Competences
  • PILA for Research

Competency framework

Conceptual framework of the PILA Computational Problem Solving module

What is computational problem solving.

‘Computational problem solving’  is the iterative process of developing  computational solutions to problems. Computational solutions are expressed as logical sequences of steps (i.e. algorithms), where each step is precisely defined so that it can be expressed in a form that can be executed by a computer. Much of the process of computational problem solving is thus oriented towards finding ways to use the power of computers to design new solutions or execute existing solutions more efficiently.

Using computation to solve problems requires the ability to think in a certain way, which is often referred to as ‘computational thinking’. The term originally referred to the capacity to formulate problems as a defined set of inputs (or rules) producing a defined set of outputs. Today, computational thinking has been expanded to include thinking with many levels of abstractions (e.g. reducing complexity by removing unnecessary information), simplifying problems by decomposing them into parts and identifying repeated patterns, and examining how well a solution scales across problems.

Why is computational problem solving important and useful?

Computers and the technologies they enable play an increasingly central role in jobs and everyday life. Being able to use computers to solve problems is thus an important competence for students to develop in order to thrive in today’s digital world. Even people who do not plan a career in computing can benefit from developing computational problem solving skills because these skills enhance how people understand and solve a wide range of problems beyond computer science.

This skillset can be connected to multiple domains of education, and particularly to subjects like science, technology, engineering or mathematics (STEM) and the social sciences. Computing has revolutionised the practices of science, and the ability to use computational tools to carry out scientific inquiry is quickly becoming a required skillset in the modern scientific landscape. As a consequence, teachers who are tasked with preparing students for careers in these fields must understand how this competence develops and can be nurtured. At school, developing computational problem solving skills should be an interdisciplinary activity that involves creating media and other digital artefacts to design, execute, and communicate solutions, as well as to learn about the social and natural world through the exploration, development and use of computational models.

Is computational problem solving the same as knowing a programming language?

A programming language is an artificial language used to write instructions (i.e. code) that can be executed by a computer. However, writing computer code requires many skills beyond knowing the syntax of a specific programming language. Effective programmers must be able to apply the general practices and concepts involved in computational thinking and problem solving. For example, programmers have to understand the problem at hand, explore how it can be simplified, and identify how it relates to other problems they have already solved. Thus, computational problem solving is a skillset that can be employed in different human endeavours, including programming. When employed in the context of programming, computational problem solving ensures that programmers can use their knowledge of a programming language to solve problems effectively and efficiently. 

Students can develop computational problem solving skills without the use of a technical programming language (e.g. JavaScript, Python). In the PILA module, the focus is not on whether students can read or use a certain programming language, but rather on how well students can use computational problem solving skills and practices to solve problems (i.e. to “think” like a computer scientist).

How is computational problem solving assessed in PILA?

Computational problem solving is assessed in PILA by asking students to work through dynamic problems in open-ended digital environments where they have to interpret, design, or debug computer programs (i.e. sequences of code in a visual format). PILA provides ‘learning assessments’, which are assessment experiences that include resources and structured support (i.e. scaffolds) for learning. During these experiences, students iteratively develop programs using various forms of support, such as tutorials, automated feedback, hints and worked examples. The assessments are cumulative, asking students to use what they practiced in earlier tasks when completing successive, more complex tasks.

To ensure that the PILA module focuses on foundational computational problem solving skills and that the material is accessible to all secondary school students no matter their knowledge of programming languages, the module includes an assessment application, ‘Karel World’, that employs an accessible block-based visual programming language. Block-based environments prevent syntax errors while still retaining the concepts and practices that are foundational to programming. These environments work well to introduce novices to programming and help develop their computational problem solving skills, and can be used to generate a wide spectrum of problems from very easy to very hard.

What is assessed in the PILA module on computational problem solving?

Computational problem solving skills.

The module assesses the following set of complementary problem solving skills, which are distinct yet are often used together in order to create effective and efficient solutions to complex problems:

• Decompose problems

Decomposition is the act of breaking down a problem goal into a set of smaller, more manageable sub-goals that can be addressed individually. The sub-goals can be further broken down into more fine-grained sub-goals to reach the granularity necessary for solving the entire problem.

• Recognise and address patterns

Pattern recognition refers to the ability to identify elements that repeat within a problem and can thus be solved through the same operations. Adressing repeating patterns means instructing a computer to iterate given operations until the desired result is achieved. This requires identifying the repeating instructions and defining the conditions governing the duration of the repetition.

• Generalise solutions

Generalisation is the thinking process that results in identifying similarities or common differences across problems to define problem categories. Generalising solution results in producing programs that work across similar problems through the use of ‘abstractions’, such as blocks of organised, reusable sequence(s) of instructions.

• Systematically test and debug

Solving a complex computational problem is an adaptive process that follows iterative cycles of ideation, testing, debugging, and further development. Computational problem solving involves systematically evaluating the state of one’s own work, identifying when and how a given operation requires fixing, and implementing the needed corrections.

Programming concepts

In order to apply these skills to the programming tasks presented in the module, students have to master the below set of programming concepts. These concepts can be isolated but are more often used in concert to solve computational problems:

• Sequences

Sequences are lists of step-by-step instructions that are carried out consecutively and specify the behavior or action that should be produced. In Karel World, for example, students learn to build a sequence of block commands to instruct a turtle to move around the world, avoiding barriers (e.g. walls) and performing certain actions (e.g. pick up or place stones).

• Conditionals

Conditional statements allow a specific set of commands to be carried out only if certain criteria are met. For example, in Karel World, the turtle can be instructed to pick up stones ‘if stones are present’.

To create more concise and efficient instructions, loops can communicate an action or set of actions that are repeated under a certain condition. The repeat command indicates that a given action (i.e. place stone) should be repeated through a real value (i.e. 9 times). A loop could also include a set of commands that repeat as long as a Boolean condition is true, such as ‘while stones are present’.

• Functions

Creating a function helps organise a program by abstracting longer, more complex pieces of code into one single step. By removing repetitive areas of code and assigning higher-level steps, functions make it easier to understand and reason about the various steps of the program, as well as facilitate its use by others. A simple example in Karel World is the function that instructs the turtle to ‘turn around’, which consists of turning left twice.

How is student performance evaluated in the PILA module?

Student performance in the module is evaluated through rubrics. The rubrics are structured in levels, that succinctly describe how students progress in their mastery of the computational problem solving skills and associated concepts. The levels in the rubric (see Table 1) are defined by the complexity of the problems that are presented to the students (simple, relatively complex or complex) and by the behaviours students are expected to exhibit while solving the problem (e.g., using functions, conducting tests). Each problem in the module is mapped to one or more skills (the rows in the rubric) and classified according to its complexity (the columns in the rubric). Solving a problem in the module and performing a set of expected programming operations thus provide evidence that supports the claims about the student presented in the rubric. The more problems at a given cell of the rubric the student solves, the more conclusive is the evidence that the student has reached the level corresponding to that cell. 

Please note: the rubric is updated as feedback is received from teachers on the clarity and usefulness of the descriptions.

computer problem solving concept

Table 1 . Rubric for computational problem solving skills

Learning management skills

The performance of students on the PILA module depends not just on their mastery of computational problem solving skills and concepts, but also on their capacity to effectively manage their work in the digital learning environment. The complex tasks included in the module invite students to monitor, adapt and reflect on their understanding and progress. The assessment will capture data on students’ ability to regulate these aspects of their own work and will communicate to teachers the extent to which their students can:

• Use resources

PILA tasks provide resources such as worked examples that students can refer to as they build their own solution. Students use resources effectively when they recognise that they have a knowledge gap or need help after repeated failures and proceed to accessing a learning resource.

• Adapt to feedback

As students work through a PILA assessment, they receive different types of automated feedback (e.g.: ‘not there yet’, ‘error: front is blocked’, ‘try using fewer blocks’). Students who can successfully adapt are able to perform actions that are consistent with the feedback, for example inserting a repetition block in their program after the feedback ‘try using fewer blocks’.

• Evaluate own performance

In the assessment experiences designed by experts in PILA, the final task is a complex, open challenge. Upon completion of this task, students are asked to evaluate their own performance and this self-assessment is compared with their actual performance on the task.

• Stay engaged

The assessment will also collect information on the extent to which students are engaged throughout the assessment experience. Evidence on engagement is collected through questions that are included in a survey at the end of the assessment, and through information on students’ use of time and number of attempts.  

Learn about computational problem solving-related learning trajectories:

  • Rich, K. M., Strickland, C., Binkowski, T. A., Moran, C., & Franklin, D. (2017). K-8 Learning Trajectories Derived from Research Literature: Sequence, Repetition, Conditionals. Proceedings of the 2017 ACM Conference on International Computing Education Research, 182–190.
  • Rich, K. M., Strickland, C., Binkowski, T. A., & Franklin, D. (2019). A K-8 Debugging Learning Trajectory Derived from Research Literature. Proceedings of the 50th ACM Technical Symposium on Computer Science Education, 745–751. https://doi.org/10.1145/3287324.3287396
  • Rich, K. M., Binkowski, T. A., Strickland, C., & Franklin, D. (2018). Decomposition: A K-8 Computational Thinking Learning Trajectory. Proceedings of the 2018 ACM Conference on International Computing Education Research  - ICER ’18, 124–132. https://doi.org/10.1145/3230977.3230979

Learn about the connection between computational thinking and STEM education:

  • Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, L., & Wilensky, U. (2015). Defining Computational Thinking for Mathematics and Science Classrooms. Journal of Science Education and Technology, 25(1), 127–147. doi:10.1007/s10956-015-9581-5

Learn how students apply computational problem solving to Scratch:

  • Brennan, K., & Resnick, M. (2012). Using artifact-based interviews to study the development of computational thinking in interactive media design. Paper presented at annual American Educational Research Association meeting, Vancouver, BC, Canada.

Associated Content

computer problem solving concept

Take a step further

© Organisation for Economic Co-operation and Development

What is Programming? A Handbook for Beginners

Estefania Cassingena Navone

Welcome to the amazing world of programming. This is one of the most useful and powerful skills that you can learn and use to make your visions come true.

In this handbook, we will dive into why programming is important, its applications, its basic concepts, and the skills you need to become a successful programmer.

You will learn:

  • What programming is and why it is important .
  • What a programming language is and why it is important .
  • How programming is related to binary numbers .
  • Real-world applications of programming .
  • Skills you need to succeed as a programmer .
  • Tips for learning how to code .
  • Basic programming concepts .
  • Types of programming languages .
  • How to contribute to open source projects .
  • And more...

Are you ready? Let's begin! ✨  

🔹 What is Programming?

main-image

Did you know that computer programming is already a fundamental part of your everyday lives? Let's see why. I'm sure that you will be greatly surprised.

Every time you turn on your smartphone, laptop, tablet, smart TV, or any other electronic device, you are running code that was planned, developed, and written by developers. This code creates the final and interactive result that you can see on your screen.

That is exactly what programming is all about. It is the process of writing code to solve a particular problem or to implement a particular task.

Programming is what allows your computer to run the programs you use every day and your smartphone to run the apps that you love. It is an essential part of our world as we know it.

Whenever you check your calendar, attend virtual conferences, browse the web, or edit a document, you are using code that has been written by developers.

"And what is code?" you may ask.

Code is a sequence of instructions that a programmer writes to tell a device (like a computer) what to do.

The device cannot know by itself how to handle a particular situation or how to perform a task. So developers are in charge of analyzing the situation and writing explicit instructions to implement what is needed.

To do this, they follow a particular syntax (a set of rules for writing the code).

A developer (or programmer) is the person who analyzes a problem and implements a solution in code.

Sounds amazing, right? It's very powerful and you can be part this wonderful world too by learning how to code. Let's see how.

You, as a developer.

Let's put you in a developer's shoes for a moment. Imagine that you are developing a mobile app, like the ones that you probably have installed on your smartphone right now.

What is the first thing that you would do?

Think about this for a moment.

The answer is...

Analyzing the problem. What are you trying to build?

As a developer, you would start by designing the layout of the app, how it will work, its different screens and functionality, and all the small details that will make your app an awesome tool for users around the world.

Only after you have everything carefully planned out, you can start to write your code. To do that, you will need to choose a programming language to work with. Let's see what a programming language is and why they are super important.

🔸 What is a Programing Language?

what-is-a-programming-language

A programming language is a language that computers can understand.

We cannot just write English words in our program like this:

"Computer, solve this task!"

and hope that our computer can understand what we mean. We need to follow certain rules to write the instructions.

Every programming language has its own set of rules that determine if a line of code is valid or not. Because of this, the code you write in one programming language will be slightly different from others.

💡 Tip: Some programming languages are more complex than others but most of them share core concepts and functionality. If you learn how to code in one programming language, you will likely be able to learn another one faster.

Before you can start writing awesome programs and apps, you need to learn the basic rules of the programming language you chose for the task.

💡 Tip: a program is a set of instructions written in a programming language for the computer to execute. We usually write the code for our program in one or multiple files.

For example, this is a line of code in Python (a very popular programming language) that shows the message "Hello, World!" :

But if we write the same line of code in JavaScript (a programming language mainly used for web development), we will get an error because it will not be valid.

To do something very similar in JavaScript, we would write this line of code instead:

Visually, they look very different, right? This is because Python and JavaScript have a different syntax and a different set of built-in functions .

💡 Tip : built-in functions are basically tasks that are already defined in the programming language. This lets us use them directly in our code by writing their names and by specifying the values they need.  

In our examples, print() is a built-in function in Python while console.log() is a function that we can use in JavaScript to see the message in the console (an interactive tool) if we run our code in the browser.

Examples of programming languages include Python, JavaScript, TypeScript, Java, C, C#, C++, PHP, Go, Swift, SQL, and R. There are many programming languages and most of them can be used for many different purposes.

💡 Tip: These were the most popular programming languages on the Stack Overflow Developer Survey 2022 :

Screen-Shot-2022-12-02-at-9.06.50-PM

There are many other programming languages (hundreds or even thousands!) but usually, you will learn and work with some of the most popular ones. Some of them have broader applications like Python and JavaScript while others (like R) have more specific (and even scientific) purposes.

This sounds very interesting, right? And we are only starting to talk about programming languages. There is a lot to learn about them and I promise you that if you dive deeper into programming, your time and effort will be totally worth it.

Awesome! Now that you know what programming is and what programming languages are all about, let's see how programming is related to binary numbers.

🔹 Programming and Binary Numbers

When you think about programming, perhaps the first thing that comes to your mind is something like the below image, right? A sequence of 0 s and 1 s on your computer.

binary

Programming is indeed related to binary numbers ( 0 and 1 ) but in an indirect way. Developers do not actually write their code using zeros and ones.

We usually write programs in a high-level programming language, a programming language with a syntax that recognizes specific words (called keywords), symbols, and values of different data types.

Basically, we write code in a way that humans can understand.

For example, these are the keywords that we can use in Python:

Every programming language has its own set of keywords (words written in English). These keywords are part of the syntax and core functionality of the programming language.

But keywords are just common words in English, almost like the ones that we would find in a book.

That leads us to two very important questions:

  • How does the computer understand and interpret what we are trying to say?
  • Where does the binary number system come into play here?

The computer does not understand these words, symbols, or values directly.

When a program runs, the code that we write in a high-level programming language that humans can understand is automatically transformed into binary code that the computer can understand.

11---binary-diagram

This transformation of source code that humans can understand into binary code that the computer can understand is called compilation .

According to Britannica , a compiler is defined as:

Computer software that translates (compiles) source code written in a high-level language (e.g., C++) into a set of machine-language instructions that can be understood by a digital computer’s CPU.

Britannica also mentions that:

The term compiler was coined by American computer scientist Grace Hopper , who designed one of the first compilers in the early 1950s.

Some programming languages can be classified as compiled programming languages while others can be classified as interpreted programming languages based on how to they are transformed into machine-language instructions.

However, they all have to go through a process that converts them into instructions that the computer can understand.

Awesome. Now you know why binary code is so important for computer science. Without it, basically programming would not exist because computers would not be able to understand our instructions.

Now let's dive into the applications of programming and the different areas that you can explore.

🔸 Real-World Applications of Programming

applications

Programming has many different applications in many different industries. This is truly amazing because you can apply your knowledge in virtually any industry that you are interested in.

From engineering to farming, from game development to physics, the possibilities are endless if you learn how to code.  

Let's see some of them. (I promise you. They are amazing! ⭐) .

Front-End Web Development

1---frontend

If you learn how to code, you can use your programming skills to design and develop websites and online platforms. Front-End Web Developers create the parts of the websites that users can see and interact with directly.

For example, right now you are reading an article on freeCodeCamp 's publication. The publication looks like this and it works like this thanks to code that front-end web developers wrote line by line.

💡 Tip: If you learn front-end web development, you can do this too.

Screen-Shot-2022-12-02-at-9.56.43-PM

Front-End Web Developers use HTML and CSS to create the structure of the website (these are markup languages, which are used to present information) and they write JavaScript code to add functionality and interactivity.

If you are interested in learning front-end web development, you can learn HTML and CSS with these free courses on freeCodeCamp's YouTube Channel:

  • Learn HTML5 and CSS3 From Scratch - Full Course
  • Learn HTML & CSS – Full Course for Beginners
  • Frontend Web Development Bootcamp Course (JavaScript, HTML, CSS)
  • Introduction To Responsive Web Design - HTML & CSS Tutorial

You can also learn JavaScript for free with these free online courses:

  • Learn JavaScript - Full Course for Beginners
  • JavaScript Programming - Full Course
  • JavaScript DOM Manipulation – Full Course for Beginners
  • Learn JavaScript by Building 7 Games - Full Course

💡 Tip: You can also earn a Responsive Web Design Certification while you learn with interactive exercises on freeCodeCamp.

Back-End Web Development

2---backend

More complex and dynamic web applications that work with user data also require a server . This is a computer program that receives requests and sends appropriate responses. They also need a database , a collection of values stored in a structured way.

Back-End Web Developers are in charge of developing the code for these servers. They decide how to handle the different requests, how to send appropriate resources, how to store the information, and basically how to make everything that runs behind the scenes work smoothly and efficiently.

A real-world example of back-end web development is what happens when you create an account on freeCodeCamp and complete a challenge. Your information is stored on a database and you can access it later when you sign in with your email and password.

Screen-Shot-2022-12-02-at-10.07.41-PM

This amazing interactive functionality was implemented by back-end web developers.

💡 Tip: Full-stack Web Developers are in charge of both Front-End and Back-End Web Development. They have specialized knowledge on both areas.

All the complex platforms that you use every day, like social media platforms, online shopping platforms, and educational platforms, use servers and back-end web development to power their amazing functionality.

Python is an example of a powerful programming language used for this purpose. This is one of the most popular programming languages out there, and its popularity continues to rise every year. This is partly because it is simple and easy to learn and yet powerful and versatile enough to be used in real-world applications.

💡 Tip: if you are curious about the specific applications of Python, this is an article I wrote on this topic .

JavaScript can also be used for back-end web development thanks to Node.js.

Other programming languages used to develop web servers are PHP, Ruby, C#, and Java.

If you would like to learn Back-End Web Development, these are free courses on freeCodeCamp's YouTube channel:

  • Python Backend Web Development Course (with Django)
  • Node.js and Express.js - Full Course
  • Full Stack Web Development for Beginners (Full Course on HTML, CSS, JavaScript, Node.js, MongoDB)
  • Node.js / Express Course - Build 4 Projects

💡 Tip: freeCodeCamp also has a free Back End Development and APIs certification.

Mobile App Development

3---mobile-apps

Mobile apps have become part of our everyday lives. I'm sure that you could not imagine life without them.

Think about your favorite mobile app. What do you love about it?

Our favorite apps help us with our daily tasks, they entertain us, they solve a problem, and they help us to achieve our goals. They are always there for us.

That is the power of mobile apps and you can be part of this amazing world too if you learn mobile app development.

Developers focused on mobile app development are in charge of planning, designing, and developing the user interface and functionality of these apps. They identify a gap in the existing apps and they try to create a working product to make people's lives better.

💡 Tip: regardless of the field you choose, your goal as a developer should always be making people's lives better. Apps are not just apps, they have the potential to change our lives. You should always remember this when you are planning your projects. Your code can make someone's life better and that is a very important responsibility.

Mobile app developers use programming languages like JavaScript, Java, Swift, Kotlin, and Dart. Frameworks like Flutter and React Native are super helpful to build cross-platform mobile apps (that is, apps that run smoothly on multiple different operating systems like Android and iOS).

According to Flutter 's official documentation:

Flutter is an open source framework by Google for building beautiful, natively compiled, multi-platform applications from a single codebase.

If you would like to learn mobile app development, these are free courses that you can take on freeCodeCamp's YouTube channel:

  • Flutter Course for Beginners – 37-hour Cross Platform App Development Tutorial
  • Flutter Course - Full Tutorial for Beginners (Build iOS and Android Apps)
  • React Native - Intro Course for Beginners
  • Learn React Native Gestures and Animations - Tutorial

Game Development

4---games

Games create long-lasting memories. I'm sure that you still remember your favorite games and why you love (or loved) them so much. Being a game developer means having the opportunity of bringing joy and entertainment to players around the world.

Game developers envision, design, plan, and implement the functionality of a game. They also need to find or create assets such as characters, obstacles, backgrounds, music, sound effects, and more.

💡 Tip: if you learn how to code, you can create your own games. Imagine creating an awesome and engaging game that users around the world will love. That is what I personally love about programming. You only need your computer, your knowledge, and some basic tools to create something amazing.

Popular programming languages used for game development include JavaScript, C++, Python, and C#.

If you are interested in learning game development, you can take these free courses on freeCodeCamp's YouTube channel:

  • JavaScript Game Development Course for Beginners
  • Learn Unity - Beginner's Game Development Tutorial
  • Learn Python by Building Five Games - Full Course
  • Code a 2D Game Using JavaScript, HTML, and CSS (w/ Free Game Assets) – Tutorial
  • 2D Game Development with GDevelop - Crash Course
  • Pokémon Coding Tutorial - CS50's Intro to Game Development

Biology, Physics, and Chemistry

5---biology-and-science

Programming can be applied in every scientific field that you can imagine, including biology, physics, chemistry, and even astronomy. Yes! Scientists use programming all the time to collect and analyze data. They can even run simulations to test hypotheses.

In biology, computer programs can simulate population genetics and population dynamics. There is even an entire field called bioinformatics .

According to this article "Bioinformatics" by Ardeshir Bayat, member of the Centre for Integrated Genomic Medical Research at the University of Manchester:

Bioinformatics is defined as the application of tools of computation and analysis to the capture and interpretation of biological data.

Dr. Bayat mentions that bioinformatics can be used for genome sequencing. He also mentions that its discoveries may lead to drug discoveries and individualized therapies.

Frequently used programming languages for bioinformatics include Python, R, PHP, PERL, and Java.

💡 Tip: R is a programming "language and environment for statistical computing and graphics" ( source ).

An example of a great tool that scientists can use for biology is Biopython . This is a Python framework with "freely available tools for biological computation."

If you would like to learn more about how you can apply your programming skills in science, these are free courses that you can take on freeCodeCamp's YouTube channel:

  • Python for Bioinformatics - Drug Discovery Using Machine Learning and Data Analysis
  • R Programming Tutorial - Learn the Basics of Statistical Computing
  • Learn Python - Full Course for Beginners [Tutorial]

Physics requires running many simulations and programming is perfect for doing exactly that. With programming, scientists can program and run simulations based on specific scenarios that would be hard to replicate in real life. This is much more efficient.

Programming languages that are commonly used for physics simulations include C, Java, Python, MATLAB, and JavaScript.  

Chemistry also relies on simulations and data analysis, so it's a field where programming can be a very helpful tool.

In this scientific article by Dr. Ivar Ugi and his colleagues from Organisch-chemisches Institut der Technischen Universität München, they mention that:

The design of entirely new syntheses, and the classification and documentation of structures, substructures, and reactons are examples of new applications of computers to chemistry.

Scientific experiments also generate detailed data and results that can be analyzed with computer programs developed by scientists.  

Think about it: writing a program to generate a box plot or a scatter plot or any other type of plot to visualize trends in thousands of measurements can save researchers a lot of time and effort. This lets them focus on the most important part of their work: analyzing the results.

Screen-Shot-2022-12-04-at-10.40.43-AM

💡 Tips: if you are interested in diving deeper into this, this is a list of chemistry simulations by the American Chemical Society. These simulations were programmed by developers and they are helping thousands of students and teachers around the world.

Think about it...You could build the next great simulation. If you are interested in a scientific field, I totally recommend learning how to code. Your work will be much more productive and your results will be easier to analyze.

If you are interested in learning programming for scientific applications, these are free courses on freeCodeCamp's YouTube channel:

  • Python for Data Science - Course for Beginners (Learn Python, Pandas, NumPy, Matplotlib)

Data Science and Engineering

6---engineering-2

Talking about data...programming is also essential for a field called Data Science . If you are interested in answering questions through data and statistics, this field might be exactly what you are looking for and having programming skills will help you to achieve your goals.

Data scientists collect and analyze data in order to answer questions in many different fields. According to UC Berkeley in the article " What is Data Science? ":

Effective data scientists are able to identify relevant questions, collect data from a multitude of different data sources, organize the information, translate results into solutions, and communicate their findings in a way that positively affects business decisions.

There are many powerful programming languages for analyzing and visualizing data, but perhaps one of the most frequently used ones for this purpose is Python.

This is an example of the type of data visualizations that you can create with Python. They are very helpful to analyze data visually and you can customize them to your fit needs.

image-6

If you are interested in learning programming for data science, these are free courses on freeCodeCamp's YouTube channel:

  • Learn Data Science Tutorial - Full Course for Beginners
  • Intro to Data Science - Crash Course for Beginners
  • Build 12 Data Science Apps with Python and Streamlit - Full Course
  • Data Analysis with Python - Full Course for Beginners (Numpy, Pandas, Matplotlib, Seaborn)

💡 Tip: you can also earn these free certifications on freeCodeCamp:

  • Data Visualization
  • Data Analysis with Python

Engineering

Engineering is another field where programming can help you to succeed. Being able to write your own computer programs can make your work much more efficient.

There are many tools created specifically for engineers. For example, the R programming language is specialized in statistical applications and Python is very popular in this field too.

Another great tool for programming in engineering is MATLAB . According to its official website:

MATLAB is a programming and numeric computing platform used by millions of engineers and scientists to analyze data, develop algorithms, and create models.

Really, the possibilities are endless.

You can learn MATLAB with this crash course on the freeCodeCamp YouTube channel .

If you are interested in learning engineering tools related to programming, this is a free course on freeCodeCamp's YouTube channel that covers AutoCAD, a 2D and 3D computer-aided design software used by engineers:

  • AutoCAD for Beginners - Full University Course

Medicine and Pharmacology

7---medicine-an-pharmachology

Medicine and pharmacology are constantly evolving by finding new treatments and procedures. Let's see how you can apply your programming skills in these fields.

Programming is really everywhere. If you are interested in the field of medicine, learning how to code can be very helpful for you too. Even if you would like to focus on computer science and software development, you can apply your knowledge in both fields.

Specialized developers are in charge of developing and writing the code that powers and controls the devices and machines that are used by modern medicine.

Think about it...all these machines and devices are controlled by software and someone has to write that software. Medical records are also stored and tracked by specialized systems created by developers. That could be you if you decide to follow this path. Sounds exciting, right?

According to the scientific article Application of Computer Techniques in Medicine :

Major uses of computers in medicine include hospital information system, data analysis in medicine, medical imaging laboratory computing, computer assisted medical decision making, care of critically ill patients, computer assisted therapy and so on.

Pharmacology

Programming and computer science can also be applied to develop new drugs in the field of pharmacology.

A remarkable example of what you can achieve in this field by learning how to code is presented in this article by MIT News. It describes how an MIT senior, Kristy Carpenter, was using computer science in 2019 to develop "new, more affordable drugs." Kristy mentions that:

Artificial intelligence, which can help compute the combinations of compounds that would be better for a particular drug, can reduce trial-and-error time and ideally quicken the process of designing new medicines.

Another example of a real-world application of programming in pharmacology is related to Python (yes, Python has many applications!). Among its success stories , we find that Python was selected by AstraZeneca to develop techniques and programs that can help scientists to discover new drugs faster and more efficiently.

The documentation explains that:

To save time and money on laboratory work, experimental chemists use computational models to narrow the field of good drug candidates, while also verifying that the candidates to be tested are not simple variations of each other's basic chemical structure.

If you are interested in learning programming for medicine or health-related fields, this is a free course on freeCodeCamp's YouTube channel on programming for healthcare imaging:

  • PyTorch and Monai for AI Healthcare Imaging - Python Machine Learning Course

8---education

Have you ever thought that programming could be helpful for education? Well, let me tell you that it is and it is very important. Why? Because the digital learning tools that students and teachers use nowadays are programmed by developers.

Every time a student opens an educational app, browses an educational platform like freeCodeCamp, writes on a digital whiteboard, or attends a class through an online meeting platform, programming is making that possible.

As a programmer or as a teacher who knows how to code, you can create the next great app that will enhance the learning experience of students around the world.

Perhaps it will be a note-taking app, an online learning platform, a presentation app, an educational game, or any other app that could be helpful for students.

The important thing is to create it with students in mind if your goal is to make something amazing that will create long-lasting memories.

If you envision it, then you can create it with code.  

Teachers can also teach their students how to code to develop their problem-solving skills and to teach them important skills for their future.

💡 Tip: if you are teaching students how to code, Scratch is a great programming language to teach the basics of programming. It is particularly focused on teaching children how to code in an interactive way.

According to the official Scratch website:

Scratch is the world’s largest coding community for children and a coding language with a simple visual interface that allows young people to create digital stories, games, and animations.

If you are interested in learning how to code for educational purposes, these are courses that you may find helpful on freeCodeCamp's YouTube channel:

  • Scratch Tutorial for Beginners - Make a Flappy Bird Game
  • Computational Thinking & Scratch - Intro to Computer Science - Harvard's CS50 (2018)
  • Android Development for Beginners - Full Course

Machine Learning, Artificial Intelligence, and Robotics

9---robotics

Some of the most amazing fields that are directly related to programming are Machine Learning, Artificial Intelligence, and Robotics. Let's see why.

Artificial Intelligence is defined by Britannica as:

The project of developing systems endowed with the intellectual processes characteristic of humans, such as the ability to reason, discover meaning, generalize, or learn from past experience.

Machine learning is a branch or a subset of the field of Artificial Intelligence in which systems can learn on their own based on data. The goal of this learning process is to predict the expected output. These models continuously learn how to "think" and how to analyze situations based on their previous training.

The most commonly used programming languages in these fields are Python, C, C#, C++, and MATLAB.

Artificial intelligence and Machine Learning have amazing applications in various industries, such as:

  • Image and object detection.
  • Making predictions based on patterns.
  • Text recognition.
  • Recommendation engines (like when an online shopping platform shows you products that you may like or when YouTube shows you videos that you may like).
  • Spam detection for emails.
  • Fraud detection.
  • Social media features like personalized feeds.
  • Many more... there are literally millions of applications in virtually every industry.

If you are interested in learning how to code for Artificial Intelligence and Machine Learning, these are free courses on freeCodeCamp's YouTube channel:

  • Machine Learning for Everybody – Full Course
  • Machine Learning Course for Beginners
  • PyTorch for Deep Learning & Machine Learning – Full Course
  • TensorFlow 2.0 Complete Course - Python Neural Networks for Beginners Tutorial
  • Self-Driving Car with JavaScript Course – Neural Networks and Machine Learning
  • Python TensorFlow for Machine Learning – Neural Network Text Classification Tutorial
  • Practical Deep Learning for Coders - Full Course from fast.ai and Jeremy Howard
  • Deep Learning Crash Course for Beginners
  • Advanced Computer Vision with Python - Full Course

💡 Tip: you can also earn a Machine Learning with Python Certification on freeCodeCamp.

Programming is also very important for robotics. Yes, robots are programmed too!

Robotics is defined by Britannica as the:

Design, construction, and use of machines (robots) to perform tasks done traditionally by human beings.

Robots are just like computers. They do not know what to do until you tell them what to do by writing instructions in your programs. If you learn how to code, you can program robots and industrial machinery found in manufacturing facilities.

If you are interested in learning how to code for robotics, electronics, and related fields, this is a free course on Arduino on freeCodeCamp's YouTube channel:

  • Arduino Course for Beginners - Open-Source Electronics Platform

Other Applications

There are many other fascinating applications of programming in almost every field. These are some highlights:

  • Agriculture: in this article by MIT News, a farmer developed an autonomous tractor app after learning how to code.
  • Self-driving cars: autonomous cars rely on software to analyze their surroundings and to make quick and accurate decisions on the road. If you are interested in this area, this is a course on this topic on freeCodeCamp's YouTube channel.
  • Finance: programming can also be helpful to develop programs and models that predict financial indicators and trends. For example, this is a course on algorithmic trading on freeCodeCamp's YouTube channel.

The possibilities are endless. I hope that this section will give you a notion of why learning how to code is so important for your present and for your future. It will be a valuable skill to have in any field you choose.

Awesome. Now let's dive into the soft skills that you need to become a successful programmer.

🔹 Skills of a Successful Programmer

skills

After going through the diverse range of applications of programming, you must be curious to know what skills are needed to succeed in this field.

A programmer should be curious. Whether you are just starting to learn how to code or you already have 20 years of experience, coding projects will always present you with new challenges and learning opportunities. If you take these opportunities, you will continously improve your skills and succeed.

Enthusiasm is a key trait of a successful programmer but this applies in general to any field if you want to succeed. Enthusiasm will keep you happy and curious about what you are creating and learning.

💡 Tip: If you ever feel like you are not as enthusiastic as you used to be, it's time to find or learn something new that can light the spark in you again and fill you with hope and dreams.

A programmer must be patient because transforming an initial idea into a working product can take time, effort, and many different steps. Patience will keep you focused on your final goal.  

Programming can be challenging. That is true. But what defines you is not how many challenges you face, it's how you face them. If you thrive despite these challenges, you will become a better programmer and you could create something that could change the world.

Programmers must be creative because even though every programming language has a particular set of rules for writing the code, coding is like using LEGOs. You have the building-blocks but you need to decide what to create and how to create it. The process of writing the code requires creativity while following the established best practices.

Problem-solving and Analysis

Programming is basically analyzing and solving problems with code. Depending on your field of choice, those problems will be simpler or more complex but they will all require some level of problem-solving skills and a thorough analysis of the situation.

Questions like:

  • What should I build?
  • How can I build it?
  • What is the best way to build this?

Are part of the everyday routine of a programmer.

Ability to Focus for Long Periods of Time

When you are working on a coding project, you will need to focus on a task for long periods of time. From creating the design, to planning and writing the code, to testing the result, and to fixing bugs (issues with the code), you will dedicate many hours to a particular task. This is why it's essential to be able to focus and to keep your final goal in mind.

Taking Detailed Notes

This skill is very important for programmers, particularly when you are learning how to code. Taking detailed notes can be help you to understand and remember the concepts and tools you learn. This also applies for experienced programmers, since being a programmer involves life-long learning.

Communication

Initially, you might think that programming is a solitary activity and imagine that a programmer spends hundreds of hours alone sitting on a desk.

But the reality is that when you find your first job, you will see that communication is super important to coordinate tasks with other team members and to exchange ideas and feedback.

Open to Feedback

In programming, there is usually more than one way to implement the same functionality. Different alternatives may work similarly, but some may be easier to read or more efficient in terms of time or resource consumption.

When you are learning how to code, you should always take constructive feedback as a tool for learning. Similarly, when you are working on a team, take your colleagues' feedback positively and always try to improve.

Life-long Learning

Programming equals life-long learning. If you are interested in learning how to code, you must know that you will always need to be learning new things as new technologies emerge and existing technologies are updated. Think about it... that is great because there is always something interesting and new to learn!

Open to Trying New Things

Finally, an essential skill to be a successful programmer is to be open to trying new things. Step out of your comfort zone and be open to new technologies and products. In the technology industry, things evolve very quickly and adapting to change is essential.

🔸 Tips for Learning How to Code

tips

Now that you know more about programming, programming languages, and the skills you need to be a successful programmer, let's see some tips for learning how to code.

💡 Tip: these tips are based on my personal experience and opinions.

  • Choose one programming language to learn first. When you are learning how to code, it's easy to feel overwhelmed with the number of options and entry paths. My advice would be to focus on understanding the essential computer science concepts and one programming language first. Python and JavaScript are great options to start learning the fundamentals.
  • Take detailed notes. Note-taking skills are essential to record and to analyze the topics you are learning. You can add custom comments and annotations to explain what you are learning.
  • Practice constantly. You can only improve your problem-solving skills by practicing and by learning new techniques and tools. Try to practice every day.

💡 Tip: There is a challenge called the #100DaysOfCode challenge that you can join to practice every day.  

  • Always try again. If you can't solve a problem on your first try, take a break and come back again and again until you solve it. That is the only way to learn. Learn from your mistakes and learn new approaches.
  • Learn how to research and how to find answers. Programming languages, libraries, and frameworks usually have official documentations that explain their built-in elements and tools and how you can use them. This is a precious resource that you should definitely refer to.
  • Browse Stack Overflow . This is an amazing platform. It is like an online encyclopedia of answers to common programming questions. You can find answers to existing questions and ask new questions to get help from the community.
  • Set goals. Motivation is one of the most important factors for success. Setting goals is very important to keep you focused, motivated, and enthusiastic. Once you reach your goals, set new ones that you find challenging and exciting.
  • Create projects. When you are learning how to code, applying your skills will help you to expand your knowledge and remember things better. Creating projects is the perfect way to practice and to create a portfolio that you can show to potential employers.

🔹 Basic Programming Concepts

basic-concepts

Great. If reading this article has helped you confirm that you want to learn programming, let's take your first steps.

These are some basic programming concepts that you should know:

  • Variable: a variable is a name that we assign to a value in a computer program. When we define a variable, we assign a value to a name and we allocate a space in memory to store that value. The value of a variable can be updated during the program.
  • Constant: a constant is similar to a variable. It stores a value but it cannot be modified. Once you assign a value to a constant, you cannot change it during the entire program.
  • Conditional: a conditional is a programming structure that lets developers choose what the computer should do based on a condition. If the condition is True, something will happen but if the condition is False, something different can happen.
  • Loop: a loop is a programming structure that let us run a code block (a sequence of instructions) multiple times. They are super helpful to avoid code repetition and to implement more complex functionality.
  • Function: a function helps us to avoid code repetition and to reuse our code. It is like a code block to which we assign a name but it also has some special characteristics. We can write the name of the function to run that sequence of instructions without writing them again.

💡 Tip: Functions can communicate with main programs and main programs can communicate with functions through parameters , arguments , and return statements.

  • Class: a class is used as a blueprint to define the characteristics and functionality of a type of object. Just like we have objects in our real world, we can represent objects in our programs.
  • Bug: a bug is an error in the logic or implementation of a program that results in an unexpected or incorrect output.
  • Debugging: debugging is the process of finding and fixing bugs in a program.
  • IDE: this acronym stands for Integrated Development Environment. It is a software development environment that has the most helpful tools that you will need to write computer programs such as a file editor, an explorer, a terminal, and helpful menu options.

💡 Tip: a commonly used and free IDE is Visual Studio Code , created by Microsoft.

Awesome! Now you know some of the fundamental concepts in programming. Like you learned, each programming language has a different syntax, but they all share most of these programming structures and concepts.  

🔸 Types of Programming Languages

types-of-programming-languages

Programming languages can be classified based on different criteria. If you want to learn how to code, it's important for you to learn these basic classifications:

  • High-level programming languages: they are designed to be understood by humans and they have to be converted into machine code before the computer can understand them. They are the programming languages that we commonly use. For example: JavaScript, Python, Java, C#, C++, and Kotlin.
  • Low-level programming languages: they are more difficult to understand because they are not designed for humans. They are designed to be understood and processed efficiently by machines.

Conversion into Machine Code

  • Compiled programming languages: programs written with this type of programming language are converted directly into machine code by a compiler. Examples include C, C++, Haskell, and Go.
  • Interpreted programming languages: programs written with this type of programming language rely on another program called the interpreter, which is in charge of running the code line by line. Examples include Python, JavaScript, PHP, and Ruby.

💡 Tip: according to this article on freeCodeCamp's publication:

Most programming languages can have both compiled and interpreted implementations – the language itself is not necessarily compiled or interpreted. However, for simplicity’s sake, they’re typically referred to as such.

There are other types of programming languages based on different criteria, such as:

  • Procedural programming languages
  • Functional programming languages
  • Object-oriented programming languages
  • Scripting languages
  • Logic programming languages

And the list of types of programming languages continues. This is very interesting because you can analyze the characteristics of a programming language to help you choose the right one for your project.

🔹 How to Contribute to Open Source Projects

Screen-Shot-2022-12-04-at-4.53.42-PM

Finally, you might think that coding implies sitting at a desk for many hours looking at your code without any human interaction. But let me tell you that this does not have to be true at all. You can be part of a learning community or a developer community.

Initially, when you are learning how to code, you can participate in a learning community like freeCodeCamp. This way, you will share your journey with others who are learning how to code, just like you.

Then, when you have enough skills and confidence in your knowledge, you can practice by contributing to open source projects and join developer communities.

Open source software is defined by Opensource.com as:

Software with source code that anyone can inspect, modify, and enhance.

GitHub is an online platform for hosting projects with version control. There, you can find many open source projects (like freeCodeCamp ) that you can contribute to and practice your skills.

💡 Tip: many open source projects welcome first-time contributions and contributions from all skill levels. These are great opportunities to practice your skills and to contribute to real-world projects.  

Screen-Shot-2022-12-04-at-5.01.58-PM

Contributing to open source projects on GitHub is great to acquire new experience working and communicating with other developers. This is another important skill for finding a job in this field.

Screen-Shot-2022-12-04-at-5.06.54-PM

Working on a team is a great experience. I totally recommend it once you feel comfortable enough with your skills and knowledge.

You did it! You reached the end of this article. Great work. Now you know what programming is all about. Let's see a brief summary.

🔸 In Summary

  • Programming is a very powerful skill. If you learn how to code, you can make your vision come true.
  • Programming has many different applications in many different fields. You can find an application for programming in basically any field you choose.
  • Programming languages can be classified based on different criteria and they share basic concepts such as variables, conditionals, loops, and functions.
  • Always set goals and take detailed notes. To succeed as a programmer, you need to be enthusiastic and consistent.

Thank you very much for reading my article. I hope you liked it and found it helpful. Now you know why you should learn how to code.

🔅 I invite you to follow me on Twitter ( @EstefaniaCassN ) and YouTube ( Coding with Estefania ) to find coding tutorials.

Developer, technical writer, and content creator @freeCodeCamp. I run the freeCodeCamp.org Español YouTube channel.

If you read this far, thank the author to show them you care. Say Thanks

Learn to code for free. freeCodeCamp's open source curriculum has helped more than 40,000 people get jobs as developers. Get started

Your browser is not supported. Please upgrade your browser to one of our supported browsers . You can try viewing the page, but expect functionality to be broken.

Computer Science Fundamentals

Free set of elementary curricula that introduces students to the foundational concepts of computer science and challenges them to explore how computing and technology can impact the world.

computer problem solving concept

Free, and fun, elementary courses for each grade

  • Six courses, one for each elementary grade
  • Equitable introductory CS courses
  • Use the same course for all students in the same grade, regardless of their experience
  • All courses make suitable entry points for students

Curricula at a glance

Grades: K-5

Level: Beginner

Duration: Month or Quarter

Devices: Laptop, Chromebook, Tablet

Topics: Programming, Internet, Games and Animation, Art and Design, App Design

Programming Tools: Sprite Lab, Play Lab

Professional Learning: Facilitator-led Workshops, Self-paced Modules

Accessibility: Text-to-speech, Closed captioning, Immersive reader

Languages Supported: Arabic, Bahasa Indonesian, Catalán, Chinese Simplified, Chinese Traditional, Czech, French, German, Hindi, Italian, Japanese, Korean, Kannada, Malay, Marathi, Mongolian, Polish, Portuguese-BR, Romanian, Russian, Slovak, Tagalog, Tamil, Thai, Turkish, Ukrainian, Spanish Latam, Urdu, Spanish-ES, Uzbek, Vietnamese

I've been teaching the course since the Monday after the workshop. The students and I LOVE it (and so do their classroom teachers!!!)

CS Fundamentals Teacher

Picking the right CS Fundamentals course for your classroom

With the diverse set of options offered for CS Fundamentals, there is a course for all different needs.

How will your students engage with the content?

Courses specifically designed for your elementary classroom.

Find the course for the grade you teach. Each course is approximately a month long.

Kindergarten

computer problem solving concept

Program using commands like loops and events. Teach students to collaborate with others, investigate different problem-solving techniques, persist in the face of challenging tasks, and learn about internet safety.

computer problem solving concept

Through unplugged activities and a variety of puzzles, students will learn the basics of programming, collaboration techniques, investigation and critical thinking skills, persistence in the face of difficulty, and internet safety.

computer problem solving concept

Create programs with sequencing, loops, and events. Investigate problem-solving techniques and develop strategies for building positive communities both online and offline. Create interactive games that students can share.

computer problem solving concept

Review of the concepts found in earlier courses, including loops and events. Afterward, students will develop their understanding of algorithms, nested loops, while loops, conditionals, and more.

computer problem solving concept

Make fun, interactive projects that reinforce learning about online safety. Engage in more complex coding such as nested loops, functions, and conditionals.

computer problem solving concept

Look at how users make choices in the apps they use. Make a variety of Sprite Lab apps that also offer choices for the user. Learn more advanced concepts, including variables and “for” loops.

Self-paced elementary curriculums

Teachers play a critical role in student learning by teaching our unplugged activities and leading whole class discussions, however, we recognize that CS Fundamentals isn't always taught in a traditional classroom setting. We provide two self-paced express courses alongside Courses A-F. These express courses are designed for situations where teachers allow each student to work at their own pace independently.

Grades: K-1

Pre-Reader Express

computer problem solving concept

Learn the basics of drag-and-drop block coding by solving puzzles and creating animated scenes. Make art and simple games to share with friends, family, and teachers.

Grades: 2-5

computer problem solving concept

Learn to create computer programs, develop problem-solving skills, and work through fun challenges! Make games and creative projects to share with friends, family, and teachers.

No devices? We have you covered

computer problem solving concept

Go ahead, cut the cord (for a while)!

CS education does not always need to be in front of a screen and device access shouldn't be a barrier to learning computer science concepts.

Resources that support you every step of the way

Sign up for a Code.org account to get access to materials that will help you teach computer science with confidence. Code.org has extensive resources designed to support educators, even those without prior CS teaching experience.

Lesson Plans

Get step-by-step guidance, learning objectives, and assessment strategies for effective teaching.

Helpful resources include slide decks, activity guides, rubrics, and more — all organized in one place. Each lesson plan is accompanied by tips for classroom implementation, differentiation ideas, and extension activities to cater to students of all abilities.

Instructional Videos

Watch easy-to-understand overviews of computer science and programming concepts.

Code.org video series are designed specifically to support your classroom and are engaging and fun to watch.

Slide Decks

We offer educators an organized, visually engaging, and pedagogically sound framework to deliver computer science lessons.

Code.org slide decks provide step-by-step instructions, examples, and interactive activities that align with curricular objectives.

computer problem solving concept

Assessments

Our curricula includes a comprehensive system of formative and summative assessment resources.

These include rubrics, checklists, mini-projects, end-of-chapter projects, student-facing rubrics, sample projects, and post-project tests — all designed to support teachers in measuring student growth, providing feedback, and evaluating student understanding.

computer problem solving concept

Programming Tools

Code.org's integrated development environments (IDEs) cater to students of all skill levels.

We offer a versatile and user-friendly platform that supports a variety of programming paradigms. This enables learners to seamlessly transition from block-based coding to text-based languages, and fosters creativity and innovation.

Professional learning that meets your needs

Get the support you need as you prepare to teach. Teachers love it, with over 90% ranking it the best professional development ever!

Facilitator-led Workshops

computer problem solving concept

Join local teachers for inspiring and hands-on support to implement computer science in your classroom. Our Regional Partners offer high-quality, one-day Code.org workshops for individual teachers or for schoolwide PD. Sign up for a professional development workshop near you!

Self-Paced Online Modules

computer problem solving concept

Through reading, viewing videos, completing interactive puzzles, and reflecting on your learning, you will develop your own understanding while preparing to teach computer science in your classroom.

Frequently asked questions

CS Fundamentals was written using both the K-12 Framework for Computer Science and the CSTA standards as guidance. Currently, every lesson in CS Fundamentals contains mappings to the relevant CSTA standards. The summary of all CSTA mappings for each course can be found at:

  • Course A Standards
  • Course B Standards
  • Course C Standards
  • Course D Standards
  • Course E Standards
  • Course F Standards

A Google Sheets version of the standards can be found at CSF Standards .

The leading K-12 CS curriculum in the United States, our elementary program has been proven effective in major urban school districts like Dallas, as well as small rural districts in Iowa. There is no need to hire specialists to teach CS. Our program is uniquely designed to support teachers new to CS while offering the flexibility to evolve lessons to fit student needs. Share this brochure with your school and district administrators, or suggest they take a look at our administrators page specially designed to answer administrators' most common questions.

Our curriculum and platform are available at no cost for anyone, anywhere, to teach!

New to teaching computer science? No worries! Most of our teachers have never taught computer science before. Join local teachers for inspiring and hands-on support to implement computer science in your classroom. Our Regional Partners offer high-quality, one-day Code.org workshops for individual teachers or for schoolwide PD. Sign up for a professional development workshop near you !

Join over 100,000 teachers who have participated in our workshops. The majority of our workshop attendees say, 'It's the best professional development I've ever attended.' In fact, 90% of attendees would recommend our program to other teachers !

Each CSF course includes 13-17 lessons designed for 45-minute periods. We recommend all students move from lesson to lesson at a pace set by the teacher. There are many teacher-led project levels designed to be experienced in unison while the skill-building lessons can be completed by students at their own pace.

Many lessons have handouts that guide students through activities. These resources can be printed or assigned digitally. Some lessons call for typical classroom supplies and manipulatives. Visit the CSF Syllabus to learn more .

Support and questions

computer problem solving concept

Still have questions? Reach out to us! We are here to help.

Our support team is here to answer any questions you may have about starting teaching with Code.org. You can also ask other teachers about their experience on our teacher forums.

Subscribe for updates

Sign up to receive monthly emails about Code.org's Computer Science Fundamentals and get helpful reminders, tips, and updates sent right to your inbox.

You can unsubscribe at any time.

computer problem solving concept

Please select your language

  • Trending Now
  • Foundational Courses
  • Data Science
  • Practice Problem
  • Machine Learning
  • System Design
  • DevOps Tutorial

Computer Fundamental Tutorial

What is computer, introduction to computer fundamentals, history and evolution of computers, components of a computer system, computer hardware, computer software, data storage and memory.

  • Computer Memory

Basics of Operating System

Computer networks and internet, introduction to programming, computer security and privacy, functionalities of computer, the evolution of computers, applications of computer fundamentals, faqs on computer fundamentals.

This Computer Fundamental Tutorial covers everything from basic to advanced concepts, including computer hardware, software, operating systems, peripherals, etc. Whether you’re a beginner or an experienced professional, this tutorial is designed to enhance your computer skills and take them to the next level.

Computer Fundamental Tutorial

The computer is a super-intelligent electronic device that can perform tasks, process information, and store data. It takes the data as an input and processes that data to perform tasks under the control of a program and produces the output. A computer is like a personal assistant that follows instructions to get things done quickly and accurately. It has memory to store information temporarily so that the computer can quickly access it when needed.

Prerequisites: No prerequisites or prior knowledge required. This article on Computer Fundamentals is designed for absolute beginners.

Computer Fundamentals Index

  • What are Computer Fundamentals?
  • Importance of Computer Fundamentals in Digital Age
  • Advantages and Disadvantages of Computer
  • Classification of Computers
  • Application area of Computer
  • History of Computers
  • The Origins of Computing
  • Generations of Computer
  • Central Processing Unit (CPU)
  • Memory Units
  • Input Devices
  • Output Devices
  • Motherboard
  • Random Access Memory (RAM)
  • Hard Disk Drives (HDD)
  • Solid State Drives (SSD)
  • Graphics Processing Unit (GPU)
  • Power Supply Unit (PSU)
  • Computer Peripherals (Keyboard, Mouse, Monitor, etc.)
  • Introduction to Software
  • Types of Software
  • Application Software
  • System Software
  • What is a Storage Device?
  • Types of Data Storage
  • Optical Storage ( CDs , DVDs, Blu-rays )
  • Flash Drives and Memory Cards
  • Cloud Storage
  • Register Memory
  • Cache Memory
  • Primary Memory
  • Secondary Memory
  • What is Operating System?
  • Evolution of Operating System
  • Types of Operating Systems
  • Operating System Services
  • Functions of Operating System
  • Introduction to Computer Networks
  • Types of Networks (LAN, WAN, MAN)
  • Network Topologies (Star, Bus, Ring)
  • Network Protocols (TCP/IP, HTTP, FTP)
  • Network Devices (Hub, Repeater, Bridge, Switch, Router, Gateways and Brouter)
  • World Wide Web
  • What is Programming?
  • A Categorical List of programming languages
  • Language Processors: Assembler, Compiler and Interpreter
  • Variables ( C , C++ , Java )
  • Data Types ( C , C++ , Java )
  • Operators ( C , C++ , Java )
  • Control Structures (Conditionals, Loops)
  • Functions and Procedures
  • Importance of Computer Security
  • Common Security Threats
  • Malware (Viruses, Worms, Trojans)
  • Network Security Measures (Firewalls, Encryption)
  • Access Control
  • User Authentication
  • Privacy Concerns and Data Protection

Any digital computer performs the following five operations:

  • Step 1 − Accepts data as input.
  • Step 2 − Saves the data/instructions in its memory and utilizes them as and when required.
  • Step 3 − Execute the data and convert it into useful information.
  • Step 4 − Provides the output.
  • Step 5 − Have control over all the above four steps

A journey through the history of computers. We’ll start with the origins of computing and explore the milestones that led to the development of electronic computers.

  • Software Development: Computer fundamentals are fundamental to software development. Understanding programming languages, algorithms, data structures, and software design principles are crucial for developing applications, websites, and software systems. It forms the basis for creating efficient and functional software solutions.
  • Network Administration : Computer fundamentals are essential for network administrators. They help set up and manage computer networks, configure routers and switches, troubleshoot network issues, and ensure reliable connectivity. Knowledge of computer fundamentals enables network administrators to maintain and optimize network performance.
  • Cybersecurity : Computer fundamentals are at the core of cybersecurity. Understanding the basics of computer networks, operating systems, encryption techniques, and security protocols helps professionals protect systems from cyber threats. It enables them to identify vulnerabilities, implement security measures, and respond effectively to security incidents.
  • Data Analysis : Computer fundamentals are necessary for data analysis and data science. Knowledge of programming, statistical analysis, and database management is essential to extract insights from large datasets. Understanding computer fundamentals helps in processing and analyzing data efficiently, enabling data-driven decision-making.
  • Artificial Intelligence and Machine Learning : Computer fundamentals provide the foundation for AI and machine learning. Concepts such as algorithms, data structures, and statistical modelling are vital in training and developing intelligent systems. Understanding computer fundamentals allows professionals to create AI models, train them on large datasets, and apply machine learning techniques to solve complex problems.

Q.1 How long does it take to learn computer fundamentals? 

The time required to learn computer fundamentals can vary depending on your prior knowledge and the depth of understanding you aim to achieve. With consistent effort and dedication, one can grasp the basics within a few weeks or months. However, mastering computer fundamentals is an ongoing process as technology evolves.

Q.2 Are computer fundamentals only for technical professionals? 

No, computer fundamentals are not limited to technical professionals. They are beneficial for anyone who uses computers in their personal or professional life. Basic computer skills are increasingly essential in various careers and everyday tasks.

Q.3 Can I learn computer fundamentals without any prior technical knowledge? 

Absolutely! Computer fundamentals are designed to be beginner-friendly. You can start learning without any prior technical knowledge. There are numerous online tutorials, courses, and resources available that cater to beginners.

Q.4 How can computer fundamentals improve my job prospects? 

Computer skills are highly sought after in today’s job market. Proficiency in computer fundamentals can enhance your employability by opening up job opportunities in various industries. It demonstrates your adaptability, problem-solving abilities, and ability to work with digital tools.

Please Login to comment...

Similar reads.

  • Computer Subject

advertisewithusBannerImg

Improve your Coding Skills with Practice

 alt=

What kind of Experience do you want to share?

B.C.A study

Bca full study material for mgkvp university, unit-4:introduction to problem solving concept.

Problem solving is a critical skill in computer science and programming. It refers to the process of finding solutions to problems or challenges by applying logic and critical thinking.

Here are some key concepts in problem solving:

  • Understanding the problem: This involves carefully reading and comprehending the problem statement and defining the problem in your own words.
  • Analyzing the problem: This involves breaking down the problem into smaller, more manageable parts and identifying the information and data required to solve the problem.
  • Formulating a plan: This involves creating a step-by-step plan for solving the problem, including the methods and algorithms that will be used.
  • Implementing the plan: This involves coding the solution and testing it to ensure that it works as expected.
  • Evaluating the solution: This involves analyzing the solution to ensure that it’s correct, efficient, and meets the requirements of the problem.

It’s important to note that problem solving is an iterative process and may require multiple iterations of the above steps. The goal is to find a solution that works and meets the requirements of the problem. Effective problem solving skills require patience, persistence, and a willingness to try different approaches until the right solution is found

Problem solving in programming requires critical thinking, creativity, and a deep understanding of the programming concepts and algorithms. It’s important to be able to identify patterns and use abstraction and decomposition to break down complex problems into simpler parts. Effective problem solving skills also require patience, persistence, and a willingness to try different approaches until the right solution is found.

Problem solving techniques

There are several techniques that can be used to solve problems in programming. Here are some of the most common problem solving techniques along with examples:

  • Brute Force: This involves trying all possible combinations or solutions to find the correct answer. For example, you can use brute force to solve a problem by trying every possible password combination until the correct one is found.
  • Divide and Conquer: This involves breaking down a complex problem into smaller, more manageable sub-problems and solving each sub-problem individually. For example, you can use divide and conquer to solve a problem by breaking down a large data set into smaller chunks, sorting each chunk individually, and then merging the sorted chunks back together.
  • Greedy Algorithm: This involves making the best choice at each step, with the hope of finding an optimal solution. For example, you can use a greedy algorithm to solve a problem by selecting the highest-value item at each step until you have a complete solution.
  • Backtracking: This involves trying out different solutions and undoing the steps if they lead to an incorrect solution. For example, you can use backtracking to solve a problem by trying out different combinations of numbers and undoing the steps if they don’t lead to the correct solution.
  • Dynamic Programming: This involves breaking down a problem into sub-problems and storing the solutions to those sub-problems in a table for later reuse. For example, you can use dynamic programming to solve a problem by breaking down a large data set into smaller chunks and storing the solutions to each chunk in a table for later reuse.
  • Recursion: This involves breaking down a problem into smaller sub-problems and solving each sub-problem recursively. For example, you can use recursion to solve a problem by breaking down a large data set into smaller chunks and solving each chunk recursively until you have the final solution.

It’s important to note that different problems may require different problem solving techniques, and that a single problem may have multiple solutions using different techniques. Effective problem solving skills require being able to identify the right technique for the problem at hand and using it to find the optimal solution.

trial & error

Trial and error is a problem solving technique in programming where you test various solutions to a problem and evaluate their results to determine the best solution. This technique involves trying out different solutions and evaluating their results until you find the correct solution.

Here’s an example of trial and error in programming:

Suppose you have to write a program to find the square root of a number. You can start by trying out different solutions using the trial and error technique. For example, you can try dividing the number by 2, then by 3, then by 4, and so on, until you find a number that, when multiplied by itself, is close to the original number. You can then use this number as an approximation of the square root.

With trial and error, you can iteratively test different solutions until you find the correct one. This technique is often used when there is no clear or known solution to a problem. It’s important to note that trial and error can be time-consuming and may not always produce the most efficient solution, but it can still be an effective technique for finding a solution to a complex problem

brainstorming

Brainstorming is a problem solving technique in programming where a group of people generate a large number of ideas or solutions to a problem. This technique involves generating as many ideas as possible in a short period of time without evaluating them. The goal is to generate a large number of ideas that can later be evaluated and refined.

Here’s an example of brainstorming in programming:

Suppose you have to write a program to manage a library’s inventory. You and your team decide to use brainstorming to generate as many ideas as possible for the program’s features. During the brainstorming session, you and your team generate a large number of ideas, such as:

  • A search function to find books by author, title, or ISBN
  • A check-in/check-out function to keep track of which books are checked out
  • A notification system to remind users when a book they have checked out is due
  • A rating system to allow users to rate books they have read
  • A recommendation system to suggest books to users based on their reading history

After the brainstorming session, you and your team evaluate the ideas generated and refine them to come up with the final solution for the program. Brainstorming can be an effective technique for generating a large number of ideas and can be especially useful in a team setting where multiple perspectives can be brought to bear on a problem

Divide and Conquer

Divide and Conquer is a problem solving technique that involves breaking down a complex problem into smaller, more manageable sub-problems, and then solving each sub-problem individually. This technique is often used to solve problems that are too complex to be solved in one step, or to find solutions to problems where a brute force approach is too time-consuming or infeasible.

Here’s an example of divide and conquer in programming:

Suppose you have to sort a large array of numbers. One way to sort the array is to use a divide and conquer approach by dividing the array into smaller sub-arrays, sorting each sub-array individually, and then merging the sorted sub-arrays back together to form the final sorted array.

The divide and conquer approach can be implemented using a sorting algorithm such as merge sort, where the array is recursively divided into smaller sub-arrays until each sub-array contains only one element, at which point the sub-arrays are merged back together in sorted order. This approach can be more efficient than a brute force approach, as it allows you to solve the problem in smaller, more manageable steps.

Divide and conquer can be a useful technique for solving complex problems, as it allows you to break down the problem into smaller, more manageable sub-problems that can be solved individually. By solving each sub-problem separately, you can find solutions to the larger problem that would otherwise be difficult or impossible to find

Steps in problem solving

  • Define the problem: Clearly identify and understand the problem that needs to be solved.
  • Gather information: Collect data and information related to the problem.
  • Develop potential solutions: Generate multiple possible solutions to the problem.
  • Evaluate potential solutions: Assess each solution based on its potential effectiveness, feasibility, and impact.
  • Select a solution: Choose the best solution based on the evaluation.
  • Implement the solution: Put the chosen solution into action.
  • Monitor progress: Continuously monitor and evaluate the solution to ensure it is solving the problem effectively.
  • Refine the solution: Make necessary adjustments to the solution if it is not working as intended.

Algorithms and Flowcharts

The  algorithm and flowchart  are two types of tools to explain the process of a program. In this page, we discuss the differences between an algorithm and a flowchart and how to create a flowchart to illustrate the algorithm visually.  Algorithms and flowcharts  are two different tools that are helpful for creating new programs, especially in computer programming. An algorithm is a step-by-step analysis of the process, while a flowchart explains the steps of a program in a graphical way.

Definition of Algorithm

Writing a logical step-by-step method to solve the problem is called the  algorithm . In other words, an algorithm is a procedure for solving problems. In order to solve a mathematical or computer problem, this is the first step in the process.

An algorithm includes calculations, reasoning, and data processing. Algorithms can be presented by natural languages, pseudocode, and flowcharts, etc.

Definition of Flowchart

A flowchart is the graphical or pictorial representation of an algorithm with the help of different symbols, shapes, and arrows to demonstrate a process or a program. With algorithms, we can easily understand a program. The main purpose of using a flowchart is to analyze different methods. Several standard symbols are applied in a flowchart:

Common Abbreviations Used in P&ID

The symbols above represent different parts of a flowchart. The process in a flowchart can be expressed through boxes and arrows with different sizes and colors. In a flowchart, we can easily highlight certain elements and the relationships between each part.

Difference between Algorithm and Flowchart

If you compare a flowchart to a movie, then an algorithm is the story of that movie. In other words,  an algorithm is the core of a flowchart . Actually, in the field of computer programming, there are many differences between algorithm and flowchart regarding various aspects, such as the accuracy, the way they display, and the way people feel about them. Below is a table illustrating the differences between them in detail.Algorithm

  • It is a procedure for solving problems.
  • The process is shown in step-by-step instruction.
  • It is complex and difficult to understand.
  • It is convenient to debug errors.
  • The solution is showcased in natural language.
  • It is somewhat easier to solve complex problem.
  • It costs more time to create an algorithm.
  • It is a graphic representation of a process.
  • The process is shown in block-by-block information diagram.
  • It is intuitive and easy to understand.
  • It is hard to debug errors.
  • The solution is showcased in pictorial format.
  • It is hard to solve complex problem.
  • It costs less time to create a flowchart.

types of algorithm

#1 recursive algorithm.

It refers to a way to solve problems by repeatedly breaking down the problem into sub-problems of the same kind. The classic example of using a recursive algorithm to solve problems is the Tower of Hanoi.

#2 Divide and Conquer Algorithm

Traditionally, the divide and conquer algorithm consists of two parts: 1. breaking down a problem into some smaller independent sub-problems of the same type; 2. finding the final solution of the original issues after solving these more minor problems separately. The key points of the divide and conquer algorithm are:

  • If you can find the repeated sub-problems and the loop substructure of the original problem, you may quickly turn the original problem into a small, simple issue.
  • Try to break down the whole solution into various steps (different steps need different solutions) to make the process easier.
  • Are sub-problems easy to solve? If not, the original problem may cost lots of time.

#3 Dynamic Programming Algorithm

Developed by Richard Bellman in the 1950s, the dynamic programming algorithm is generally used for optimization problems. In this type of algorithm, past results are collected for future use. Like the divide and conquer algorithm, a dynamic programming algorithm simplifies a complex problem by breaking it down into some simple sub-problems. However, the most significant difference between them is that the latter requires overlapping sub-problems, while the former doesn’t need to.

#4 Greedy Algorithm

This is another way of solving optimization problems – greedy algorithm. It refers to always finding the best solution in every step instead of considering the overall optimality. That is to say, what he has done is just at a local optimum. Due to the limitations of the greedy algorithm, it has to be noted that the key to choosing a greedy algorithm is whether to consider any consequences in the future.

#5 Brute Force Algorithm

The brute force algorithm is a simple and straightforward solution to the problem, generally based on the description of the problem and the definition of the concept involved. You can also use “just do it!” to describe the strategy of brute force. In short, a brute force algorithm is considered as one of the simplest algorithms, which iterates all possibilities and ends up with a satisfactory solution.

#6 Backtracking Algorithm

Based on a depth-first recursive search, the backtracking algorithm focusing on finding the solution to the problem during the enumeration-like searching process. When it cannot satisfy the condition, it will return “backtracking” and tries another path. It is suitable for solving large and complicated problems, which gains the reputation of the “general solution method”. One of the most famous backtracking algorithm example it the eight queens puzzle.

Use Flowcharts to Represent Algorithms

Example 1: print 1 to 20:.

  • Step 1: Initialize X as 0,
  • Step 2: Increment X by 1,
  • Step 3: Print X,
  • Step 4: If X is less than 20 then go back to step 2.

Flowchart Algorithm

Example 2: Convert Temperature from Fahrenheit (℉) to Celsius (℃)

  • Step 1: Read temperature in Fahrenheit,
  • Step 2: Calculate temperature with formula C=5/9*(F-32),
  • Step 3: Print C.

Flowchart Algorithm 2

Characteristics of an algorithm

  • Input: An algorithm must have zero or more inputs that define the problem to be solved or the data to be processed. The input can be in the form of values, variables, or any other data structures.
  • Output: An algorithm must have a well-defined output, which can be a single value, multiple values, or a set of values. The output must be related to the problem that the algorithm is trying to solve.
  • Definiteness: An algorithm must have a well-defined set of steps or instructions that are executed in a specific order. These steps must be clear and unambiguous.
  • Finiteness: The algorithm must terminate after a finite number of steps. It must not run indefinitely or get stuck in an infinite loop.
  • Feasibility: An algorithm must be implementable, meaning that it can be translated into a program that can be executed on a computer.
  • Effectiveness: The algorithm must be efficient and solve the problem in a reasonable amount of time and with a reasonable amount of resources, such as memory and computational power.
  • Generality: The algorithm must be able to solve a wide range of problems or process a wide range of data, not just specific cases.
  • Optimality: An algorithm can be optimal if it produces the best possible solution for a given problem, or if it produces the solution in the minimum amount of time or with the minimum amount of resources.

In summary, an algorithm is a set of well-defined, finite, and effective steps or instructions for solving a problem or processing data, which must have inputs and outputs, be feasible and implementable, and have a level of generality and optimality.

Conditionals in pseudo-code

Conditional statements allow the execution of code to be dependent on certain conditions being met. In pseudo-code, conditionals are typically expressed using the keywords “if” and “else”.

The basic syntax of an “if” statement in pseudo-code is as follows:

if (condition) then (action to be taken if condition is true)

For example, consider a program that checks whether a number is positive or negative:

input x if (x > 0) then print “x is positive”

If the condition is true, the code inside the “if” statement will be executed. If the condition is false, the code inside the “if” statement will be skipped.

An “if-else” statement allows for two different actions to be taken, depending on whether the condition is true or false. The syntax of an “if-else” statement in pseudo-code is as follows:

if (condition) then (action to be taken if condition is true) else then (action to be taken if condition is false)

For example, consider a program that checks whether a number is positive, negative, or zero:

input x if (x > 0) then print “x is positive” else if (x < 0) then print “x is negative” else then print “x is zero”

In this example, if the condition “x > 0” is true, the code inside the first “if” statement will be executed. If the condition “x > 0” is false, the program will move on to the next condition, “x < 0”. If this condition is true, the code inside the second “if” statement will be executed. If both conditions are false, the code inside the “else” statement will be executed.

These are the basic concepts of conditionals in pseudo-code. The use of conditionals is essential in programming for controlling the flow of a program and making decisions based on the input data.

loops in pseudo code

Loops are a powerful programming construct that allow the repetition of a set of instructions multiple times, until a certain condition is met. In pseudo-code, loops are typically expressed using the keywords “for” or “while”.

A “for” loop is used to repeat a set of instructions a specific number of times. The basic syntax of a “for” loop in pseudo-code is as follows:

for i = 1 to n do (action to be repeated n times)

For example, consider a program that prints the first 10 positive integers:

for i = 1 to 10 do print i

In this example, the “for” loop will repeat the instruction “print i” 10 times, and each time the value of “i” will be incremented by 1.

A “while” loop is used to repeat a set of instructions as long as a certain condition is true. The basic syntax of a “while” loop in pseudo-code is as follows:

while (condition) do (action to be repeated while condition is true)

For example, consider a program that prints the positive integers until a certain number is reached:

input max i = 1 while (i <= max) do print i i = i + 1

In this example, the “while” loop will repeat the instructions “print i” and “i = i + 1” as long as the condition “i <= max” is true. The loop will terminate when “i” is no longer less than or equal to “max”.

These are the basic concepts of loops in pseudo-code. The use of loops is essential in programming for repeating actions, processing large amounts of data, and automating tasks.

Time complexity

Time complexity is a measure of the amount of time an algorithm takes to complete, as a function of the size of the input data. It provides a way to compare the performance of different algorithms and to evaluate the efficiency of a particular algorithm.

The time complexity of an algorithm is typically expressed using big O notation, which provides an upper bound on the number of operations performed by the algorithm as a function of the size of the input. For example, an algorithm with a time complexity of O(n) is said to have a linear time complexity, meaning that the number of operations performed is proportional to the size of the input data.

A common example of a linear time complexity algorithm is a linear search. In a linear search, an algorithm checks each element in an array one by one until it finds the target element. The time complexity of this algorithm is O(n), because the number of operations required to find the target element increases linearly with the size of the array.

Another example is a binary search, which is an algorithm for finding an element in a sorted array. The time complexity of binary search is O(log n), because the number of operations required to find the target element decreases logarithmically with the size of the array. This makes binary search a much faster algorithm than linear search for large arrays.

In summary, time complexity is a critical aspect of algorithm design and analysis. Understanding the time complexity of an algorithm is important for evaluating its performance, comparing it to other algorithms, and optimizing its efficienc

Big-Oh notation

Big-Oh notation, also known as big O notation, is a mathematical notation used to describe the upper bound on the growth rate of the time complexity of an algorithm. It provides a way to compare the performance of different algorithms and to evaluate the efficiency of a particular algorithm.

Big-Oh notation is expressed as O(f(n)), where “f(n)” is a function of the size of the input data. For example, an algorithm with a time complexity of O(n) is said to have a linear time complexity, meaning that the number of operations performed by the algorithm is proportional to the size of the input data.

Big-Oh notation only provides an upper bound on the growth rate of the time complexity, and does not provide an exact measure of the running time of an algorithm. For example, an algorithm with a time complexity of O(n) may take 100 operations for an input of size 100, but only 10 operations for an input of size 10. The big O notation only indicates that the number of operations will not grow faster than linearly with the size of the input.

Big-Oh notation is a useful tool for comparing the performance of different algorithms and for evaluating the efficiency of a particular algorithm. Some common time complexities expressed using big O notation include O(1) for constant time, O(log n) for logarithmic time, O(n) for linear time, O(n log n) for log-linear time, and O(n^2) for quadratic time.

In summary, big O notation is a mathematical notation used to describe the upper bound on the growth rate of the time complexity of an algorithm. It provides a way to compare the performance of different algorithms and to evaluate the efficiency of a particular algorithm

Algorithms and flowcharts (Real Life Examples)

Algorithms and flowcharts are tools that are commonly used in a variety of real-life situations to represent and solve problems in a structured and efficient manner. Here are a few examples of how algorithms and flowcharts are used in real life:

  • Cooking recipes: Cooking recipes are often written as algorithms, with each step represented in a clear and sequential manner. For example, a recipe for making cookies might include steps such as: preheat oven, mix ingredients, roll dough, cut into shapes, bake for a specified time, and cool on a wire rack.
  • Banking transactions: Banks use algorithms and flowcharts to process transactions and manage customer accounts. For example, a flowchart might represent the steps involved in processing a customer deposit, including verifying the customer’s identity, verifying the deposit amount, updating the customer’s account balance, and printing a receipt.
  • GPS navigation: GPS navigation systems use algorithms and flowcharts to determine the most efficient route to a destination. For example, a flowchart might represent the steps involved in calculating the shortest route, including determining the starting and ending points, considering factors such as traffic and road conditions, and providing turn-by-turn instructions.
  • Sorting and searching algorithms: Sorting and searching algorithms are commonly used in real life to organize and find information. For example, a search algorithm might be used to find a specific item in a large database, while a sorting algorithm might be used to sort a list of names alphabetically.
  • Manufacturing processes: Manufacturing processes often use algorithms and flowcharts to represent the steps involved in producing a product. For example, a flowchart might represent the steps involved in making a car, including assembling the engine, installing the transmission, adding the wheels and body, and painting the car.

These are just a few examples of how algorithms and flowcharts are used in real life to solve problems and automate processes

Share this:

' src=

  • Already have a WordPress.com account? Log in now.
  • Subscribe Subscribed
  • Copy shortlink
  • Report this content
  • View post in Reader
  • Manage subscriptions
  • Collapse this bar

35 problem-solving techniques and methods for solving complex problems

Problem solving workshop

Design your next session with SessionLab

Join the 150,000+ facilitators 
using SessionLab.

Recommended Articles

A step-by-step guide to planning a workshop, how to create an unforgettable training session in 8 simple steps, 47 useful online tools for workshop planning and meeting facilitation.

All teams and organizations encounter challenges as they grow. There are problems that might occur for teams when it comes to miscommunication or resolving business-critical issues . You may face challenges around growth , design , user engagement, and even team culture and happiness. In short, problem-solving techniques should be part of every team’s skillset.

Problem-solving methods are primarily designed to help a group or team through a process of first identifying problems and challenges , ideating possible solutions , and then evaluating the most suitable .

Finding effective solutions to complex problems isn’t easy, but by using the right process and techniques, you can help your team be more efficient in the process.

So how do you develop strategies that are engaging, and empower your team to solve problems effectively?

In this blog post, we share a series of problem-solving tools you can use in your next workshop or team meeting. You’ll also find some tips for facilitating the process and how to enable others to solve complex problems.

Let’s get started! 

How do you identify problems?

How do you identify the right solution.

  • Tips for more effective problem-solving

Complete problem-solving methods

  • Problem-solving techniques to identify and analyze problems
  • Problem-solving techniques for developing solutions

Problem-solving warm-up activities

Closing activities for a problem-solving process.

Before you can move towards finding the right solution for a given problem, you first need to identify and define the problem you wish to solve. 

Here, you want to clearly articulate what the problem is and allow your group to do the same. Remember that everyone in a group is likely to have differing perspectives and alignment is necessary in order to help the group move forward. 

Identifying a problem accurately also requires that all members of a group are able to contribute their views in an open and safe manner. It can be scary for people to stand up and contribute, especially if the problems or challenges are emotive or personal in nature. Be sure to try and create a psychologically safe space for these kinds of discussions.

Remember that problem analysis and further discussion are also important. Not taking the time to fully analyze and discuss a challenge can result in the development of solutions that are not fit for purpose or do not address the underlying issue.

Successfully identifying and then analyzing a problem means facilitating a group through activities designed to help them clearly and honestly articulate their thoughts and produce usable insight.

With this data, you might then produce a problem statement that clearly describes the problem you wish to be addressed and also state the goal of any process you undertake to tackle this issue.  

Finding solutions is the end goal of any process. Complex organizational challenges can only be solved with an appropriate solution but discovering them requires using the right problem-solving tool.

After you’ve explored a problem and discussed ideas, you need to help a team discuss and choose the right solution. Consensus tools and methods such as those below help a group explore possible solutions before then voting for the best. They’re a great way to tap into the collective intelligence of the group for great results!

Remember that the process is often iterative. Great problem solvers often roadtest a viable solution in a measured way to see what works too. While you might not get the right solution on your first try, the methods below help teams land on the most likely to succeed solution while also holding space for improvement.

Every effective problem solving process begins with an agenda . A well-structured workshop is one of the best methods for successfully guiding a group from exploring a problem to implementing a solution.

In SessionLab, it’s easy to go from an idea to a complete agenda . Start by dragging and dropping your core problem solving activities into place . Add timings, breaks and necessary materials before sharing your agenda with your colleagues.

The resulting agenda will be your guide to an effective and productive problem solving session that will also help you stay organized on the day!

computer problem solving concept

Tips for more effective problem solving

Problem-solving activities are only one part of the puzzle. While a great method can help unlock your team’s ability to solve problems, without a thoughtful approach and strong facilitation the solutions may not be fit for purpose.

Let’s take a look at some problem-solving tips you can apply to any process to help it be a success!

Clearly define the problem

Jumping straight to solutions can be tempting, though without first clearly articulating a problem, the solution might not be the right one. Many of the problem-solving activities below include sections where the problem is explored and clearly defined before moving on.

This is a vital part of the problem-solving process and taking the time to fully define an issue can save time and effort later. A clear definition helps identify irrelevant information and it also ensures that your team sets off on the right track.

Don’t jump to conclusions

It’s easy for groups to exhibit cognitive bias or have preconceived ideas about both problems and potential solutions. Be sure to back up any problem statements or potential solutions with facts, research, and adequate forethought.

The best techniques ask participants to be methodical and challenge preconceived notions. Make sure you give the group enough time and space to collect relevant information and consider the problem in a new way. By approaching the process with a clear, rational mindset, you’ll often find that better solutions are more forthcoming.  

Try different approaches  

Problems come in all shapes and sizes and so too should the methods you use to solve them. If you find that one approach isn’t yielding results and your team isn’t finding different solutions, try mixing it up. You’ll be surprised at how using a new creative activity can unblock your team and generate great solutions.

Don’t take it personally 

Depending on the nature of your team or organizational problems, it’s easy for conversations to get heated. While it’s good for participants to be engaged in the discussions, ensure that emotions don’t run too high and that blame isn’t thrown around while finding solutions.

You’re all in it together, and even if your team or area is seeing problems, that isn’t necessarily a disparagement of you personally. Using facilitation skills to manage group dynamics is one effective method of helping conversations be more constructive.

Get the right people in the room

Your problem-solving method is often only as effective as the group using it. Getting the right people on the job and managing the number of people present is important too!

If the group is too small, you may not get enough different perspectives to effectively solve a problem. If the group is too large, you can go round and round during the ideation stages.

Creating the right group makeup is also important in ensuring you have the necessary expertise and skillset to both identify and follow up on potential solutions. Carefully consider who to include at each stage to help ensure your problem-solving method is followed and positioned for success.

Document everything

The best solutions can take refinement, iteration, and reflection to come out. Get into a habit of documenting your process in order to keep all the learnings from the session and to allow ideas to mature and develop. Many of the methods below involve the creation of documents or shared resources. Be sure to keep and share these so everyone can benefit from the work done!

Bring a facilitator 

Facilitation is all about making group processes easier. With a subject as potentially emotive and important as problem-solving, having an impartial third party in the form of a facilitator can make all the difference in finding great solutions and keeping the process moving. Consider bringing a facilitator to your problem-solving session to get better results and generate meaningful solutions!

Develop your problem-solving skills

It takes time and practice to be an effective problem solver. While some roles or participants might more naturally gravitate towards problem-solving, it can take development and planning to help everyone create better solutions.

You might develop a training program, run a problem-solving workshop or simply ask your team to practice using the techniques below. Check out our post on problem-solving skills to see how you and your group can develop the right mental process and be more resilient to issues too!

Design a great agenda

Workshops are a great format for solving problems. With the right approach, you can focus a group and help them find the solutions to their own problems. But designing a process can be time-consuming and finding the right activities can be difficult.

Check out our workshop planning guide to level-up your agenda design and start running more effective workshops. Need inspiration? Check out templates designed by expert facilitators to help you kickstart your process!

In this section, we’ll look at in-depth problem-solving methods that provide a complete end-to-end process for developing effective solutions. These will help guide your team from the discovery and definition of a problem through to delivering the right solution.

If you’re looking for an all-encompassing method or problem-solving model, these processes are a great place to start. They’ll ask your team to challenge preconceived ideas and adopt a mindset for solving problems more effectively.

  • Six Thinking Hats
  • Lightning Decision Jam
  • Problem Definition Process
  • Discovery & Action Dialogue
Design Sprint 2.0
  • Open Space Technology

1. Six Thinking Hats

Individual approaches to solving a problem can be very different based on what team or role an individual holds. It can be easy for existing biases or perspectives to find their way into the mix, or for internal politics to direct a conversation.

Six Thinking Hats is a classic method for identifying the problems that need to be solved and enables your team to consider them from different angles, whether that is by focusing on facts and data, creative solutions, or by considering why a particular solution might not work.

Like all problem-solving frameworks, Six Thinking Hats is effective at helping teams remove roadblocks from a conversation or discussion and come to terms with all the aspects necessary to solve complex problems.

2. Lightning Decision Jam

Featured courtesy of Jonathan Courtney of AJ&Smart Berlin, Lightning Decision Jam is one of those strategies that should be in every facilitation toolbox. Exploring problems and finding solutions is often creative in nature, though as with any creative process, there is the potential to lose focus and get lost.

Unstructured discussions might get you there in the end, but it’s much more effective to use a method that creates a clear process and team focus.

In Lightning Decision Jam, participants are invited to begin by writing challenges, concerns, or mistakes on post-its without discussing them before then being invited by the moderator to present them to the group.

From there, the team vote on which problems to solve and are guided through steps that will allow them to reframe those problems, create solutions and then decide what to execute on. 

By deciding the problems that need to be solved as a team before moving on, this group process is great for ensuring the whole team is aligned and can take ownership over the next stages. 

Lightning Decision Jam (LDJ)   #action   #decision making   #problem solving   #issue analysis   #innovation   #design   #remote-friendly   The problem with anything that requires creative thinking is that it’s easy to get lost—lose focus and fall into the trap of having useless, open-ended, unstructured discussions. Here’s the most effective solution I’ve found: Replace all open, unstructured discussion with a clear process. What to use this exercise for: Anything which requires a group of people to make decisions, solve problems or discuss challenges. It’s always good to frame an LDJ session with a broad topic, here are some examples: The conversion flow of our checkout Our internal design process How we organise events Keeping up with our competition Improving sales flow

3. Problem Definition Process

While problems can be complex, the problem-solving methods you use to identify and solve those problems can often be simple in design. 

By taking the time to truly identify and define a problem before asking the group to reframe the challenge as an opportunity, this method is a great way to enable change.

Begin by identifying a focus question and exploring the ways in which it manifests before splitting into five teams who will each consider the problem using a different method: escape, reversal, exaggeration, distortion or wishful. Teams develop a problem objective and create ideas in line with their method before then feeding them back to the group.

This method is great for enabling in-depth discussions while also creating space for finding creative solutions too!

Problem Definition   #problem solving   #idea generation   #creativity   #online   #remote-friendly   A problem solving technique to define a problem, challenge or opportunity and to generate ideas.

4. The 5 Whys 

Sometimes, a group needs to go further with their strategies and analyze the root cause at the heart of organizational issues. An RCA or root cause analysis is the process of identifying what is at the heart of business problems or recurring challenges. 

The 5 Whys is a simple and effective method of helping a group go find the root cause of any problem or challenge and conduct analysis that will deliver results. 

By beginning with the creation of a problem statement and going through five stages to refine it, The 5 Whys provides everything you need to truly discover the cause of an issue.

The 5 Whys   #hyperisland   #innovation   This simple and powerful method is useful for getting to the core of a problem or challenge. As the title suggests, the group defines a problems, then asks the question “why” five times, often using the resulting explanation as a starting point for creative problem solving.

5. World Cafe

World Cafe is a simple but powerful facilitation technique to help bigger groups to focus their energy and attention on solving complex problems.

World Cafe enables this approach by creating a relaxed atmosphere where participants are able to self-organize and explore topics relevant and important to them which are themed around a central problem-solving purpose. Create the right atmosphere by modeling your space after a cafe and after guiding the group through the method, let them take the lead!

Making problem-solving a part of your organization’s culture in the long term can be a difficult undertaking. More approachable formats like World Cafe can be especially effective in bringing people unfamiliar with workshops into the fold. 

World Cafe   #hyperisland   #innovation   #issue analysis   World Café is a simple yet powerful method, originated by Juanita Brown, for enabling meaningful conversations driven completely by participants and the topics that are relevant and important to them. Facilitators create a cafe-style space and provide simple guidelines. Participants then self-organize and explore a set of relevant topics or questions for conversation.

6. Discovery & Action Dialogue (DAD)

One of the best approaches is to create a safe space for a group to share and discover practices and behaviors that can help them find their own solutions.

With DAD, you can help a group choose which problems they wish to solve and which approaches they will take to do so. It’s great at helping remove resistance to change and can help get buy-in at every level too!

This process of enabling frontline ownership is great in ensuring follow-through and is one of the methods you will want in your toolbox as a facilitator.

Discovery & Action Dialogue (DAD)   #idea generation   #liberating structures   #action   #issue analysis   #remote-friendly   DADs make it easy for a group or community to discover practices and behaviors that enable some individuals (without access to special resources and facing the same constraints) to find better solutions than their peers to common problems. These are called positive deviant (PD) behaviors and practices. DADs make it possible for people in the group, unit, or community to discover by themselves these PD practices. DADs also create favorable conditions for stimulating participants’ creativity in spaces where they can feel safe to invent new and more effective practices. Resistance to change evaporates as participants are unleashed to choose freely which practices they will adopt or try and which problems they will tackle. DADs make it possible to achieve frontline ownership of solutions.

7. Design Sprint 2.0

Want to see how a team can solve big problems and move forward with prototyping and testing solutions in a few days? The Design Sprint 2.0 template from Jake Knapp, author of Sprint, is a complete agenda for a with proven results.

Developing the right agenda can involve difficult but necessary planning. Ensuring all the correct steps are followed can also be stressful or time-consuming depending on your level of experience.

Use this complete 4-day workshop template if you are finding there is no obvious solution to your challenge and want to focus your team around a specific problem that might require a shortcut to launching a minimum viable product or waiting for the organization-wide implementation of a solution.

8. Open space technology

Open space technology- developed by Harrison Owen – creates a space where large groups are invited to take ownership of their problem solving and lead individual sessions. Open space technology is a great format when you have a great deal of expertise and insight in the room and want to allow for different takes and approaches on a particular theme or problem you need to be solved.

Start by bringing your participants together to align around a central theme and focus their efforts. Explain the ground rules to help guide the problem-solving process and then invite members to identify any issue connecting to the central theme that they are interested in and are prepared to take responsibility for.

Once participants have decided on their approach to the core theme, they write their issue on a piece of paper, announce it to the group, pick a session time and place, and post the paper on the wall. As the wall fills up with sessions, the group is then invited to join the sessions that interest them the most and which they can contribute to, then you’re ready to begin!

Everyone joins the problem-solving group they’ve signed up to, record the discussion and if appropriate, findings can then be shared with the rest of the group afterward.

Open Space Technology   #action plan   #idea generation   #problem solving   #issue analysis   #large group   #online   #remote-friendly   Open Space is a methodology for large groups to create their agenda discerning important topics for discussion, suitable for conferences, community gatherings and whole system facilitation

Techniques to identify and analyze problems

Using a problem-solving method to help a team identify and analyze a problem can be a quick and effective addition to any workshop or meeting.

While further actions are always necessary, you can generate momentum and alignment easily, and these activities are a great place to get started.

We’ve put together this list of techniques to help you and your team with problem identification, analysis, and discussion that sets the foundation for developing effective solutions.

Let’s take a look!

  • The Creativity Dice
  • Fishbone Analysis
  • Problem Tree
  • SWOT Analysis
  • Agreement-Certainty Matrix
  • The Journalistic Six
  • LEGO Challenge
  • What, So What, Now What?
  • Journalists

Individual and group perspectives are incredibly important, but what happens if people are set in their minds and need a change of perspective in order to approach a problem more effectively?

Flip It is a method we love because it is both simple to understand and run, and allows groups to understand how their perspectives and biases are formed. 

Participants in Flip It are first invited to consider concerns, issues, or problems from a perspective of fear and write them on a flip chart. Then, the group is asked to consider those same issues from a perspective of hope and flip their understanding.  

No problem and solution is free from existing bias and by changing perspectives with Flip It, you can then develop a problem solving model quickly and effectively.

Flip It!   #gamestorming   #problem solving   #action   Often, a change in a problem or situation comes simply from a change in our perspectives. Flip It! is a quick game designed to show players that perspectives are made, not born.

10. The Creativity Dice

One of the most useful problem solving skills you can teach your team is of approaching challenges with creativity, flexibility, and openness. Games like The Creativity Dice allow teams to overcome the potential hurdle of too much linear thinking and approach the process with a sense of fun and speed. 

In The Creativity Dice, participants are organized around a topic and roll a dice to determine what they will work on for a period of 3 minutes at a time. They might roll a 3 and work on investigating factual information on the chosen topic. They might roll a 1 and work on identifying the specific goals, standards, or criteria for the session.

Encouraging rapid work and iteration while asking participants to be flexible are great skills to cultivate. Having a stage for idea incubation in this game is also important. Moments of pause can help ensure the ideas that are put forward are the most suitable. 

The Creativity Dice   #creativity   #problem solving   #thiagi   #issue analysis   Too much linear thinking is hazardous to creative problem solving. To be creative, you should approach the problem (or the opportunity) from different points of view. You should leave a thought hanging in mid-air and move to another. This skipping around prevents premature closure and lets your brain incubate one line of thought while you consciously pursue another.

11. Fishbone Analysis

Organizational or team challenges are rarely simple, and it’s important to remember that one problem can be an indication of something that goes deeper and may require further consideration to be solved.

Fishbone Analysis helps groups to dig deeper and understand the origins of a problem. It’s a great example of a root cause analysis method that is simple for everyone on a team to get their head around. 

Participants in this activity are asked to annotate a diagram of a fish, first adding the problem or issue to be worked on at the head of a fish before then brainstorming the root causes of the problem and adding them as bones on the fish. 

Using abstractions such as a diagram of a fish can really help a team break out of their regular thinking and develop a creative approach.

Fishbone Analysis   #problem solving   ##root cause analysis   #decision making   #online facilitation   A process to help identify and understand the origins of problems, issues or observations.

12. Problem Tree 

Encouraging visual thinking can be an essential part of many strategies. By simply reframing and clarifying problems, a group can move towards developing a problem solving model that works for them. 

In Problem Tree, groups are asked to first brainstorm a list of problems – these can be design problems, team problems or larger business problems – and then organize them into a hierarchy. The hierarchy could be from most important to least important or abstract to practical, though the key thing with problem solving games that involve this aspect is that your group has some way of managing and sorting all the issues that are raised.

Once you have a list of problems that need to be solved and have organized them accordingly, you’re then well-positioned for the next problem solving steps.

Problem tree   #define intentions   #create   #design   #issue analysis   A problem tree is a tool to clarify the hierarchy of problems addressed by the team within a design project; it represents high level problems or related sublevel problems.

13. SWOT Analysis

Chances are you’ve heard of the SWOT Analysis before. This problem-solving method focuses on identifying strengths, weaknesses, opportunities, and threats is a tried and tested method for both individuals and teams.

Start by creating a desired end state or outcome and bare this in mind – any process solving model is made more effective by knowing what you are moving towards. Create a quadrant made up of the four categories of a SWOT analysis and ask participants to generate ideas based on each of those quadrants.

Once you have those ideas assembled in their quadrants, cluster them together based on their affinity with other ideas. These clusters are then used to facilitate group conversations and move things forward. 

SWOT analysis   #gamestorming   #problem solving   #action   #meeting facilitation   The SWOT Analysis is a long-standing technique of looking at what we have, with respect to the desired end state, as well as what we could improve on. It gives us an opportunity to gauge approaching opportunities and dangers, and assess the seriousness of the conditions that affect our future. When we understand those conditions, we can influence what comes next.

14. Agreement-Certainty Matrix

Not every problem-solving approach is right for every challenge, and deciding on the right method for the challenge at hand is a key part of being an effective team.

The Agreement Certainty matrix helps teams align on the nature of the challenges facing them. By sorting problems from simple to chaotic, your team can understand what methods are suitable for each problem and what they can do to ensure effective results. 

If you are already using Liberating Structures techniques as part of your problem-solving strategy, the Agreement-Certainty Matrix can be an invaluable addition to your process. We’ve found it particularly if you are having issues with recurring problems in your organization and want to go deeper in understanding the root cause. 

Agreement-Certainty Matrix   #issue analysis   #liberating structures   #problem solving   You can help individuals or groups avoid the frequent mistake of trying to solve a problem with methods that are not adapted to the nature of their challenge. The combination of two questions makes it possible to easily sort challenges into four categories: simple, complicated, complex , and chaotic .  A problem is simple when it can be solved reliably with practices that are easy to duplicate.  It is complicated when experts are required to devise a sophisticated solution that will yield the desired results predictably.  A problem is complex when there are several valid ways to proceed but outcomes are not predictable in detail.  Chaotic is when the context is too turbulent to identify a path forward.  A loose analogy may be used to describe these differences: simple is like following a recipe, complicated like sending a rocket to the moon, complex like raising a child, and chaotic is like the game “Pin the Tail on the Donkey.”  The Liberating Structures Matching Matrix in Chapter 5 can be used as the first step to clarify the nature of a challenge and avoid the mismatches between problems and solutions that are frequently at the root of chronic, recurring problems.

Organizing and charting a team’s progress can be important in ensuring its success. SQUID (Sequential Question and Insight Diagram) is a great model that allows a team to effectively switch between giving questions and answers and develop the skills they need to stay on track throughout the process. 

Begin with two different colored sticky notes – one for questions and one for answers – and with your central topic (the head of the squid) on the board. Ask the group to first come up with a series of questions connected to their best guess of how to approach the topic. Ask the group to come up with answers to those questions, fix them to the board and connect them with a line. After some discussion, go back to question mode by responding to the generated answers or other points on the board.

It’s rewarding to see a diagram grow throughout the exercise, and a completed SQUID can provide a visual resource for future effort and as an example for other teams.

SQUID   #gamestorming   #project planning   #issue analysis   #problem solving   When exploring an information space, it’s important for a group to know where they are at any given time. By using SQUID, a group charts out the territory as they go and can navigate accordingly. SQUID stands for Sequential Question and Insight Diagram.

16. Speed Boat

To continue with our nautical theme, Speed Boat is a short and sweet activity that can help a team quickly identify what employees, clients or service users might have a problem with and analyze what might be standing in the way of achieving a solution.

Methods that allow for a group to make observations, have insights and obtain those eureka moments quickly are invaluable when trying to solve complex problems.

In Speed Boat, the approach is to first consider what anchors and challenges might be holding an organization (or boat) back. Bonus points if you are able to identify any sharks in the water and develop ideas that can also deal with competitors!   

Speed Boat   #gamestorming   #problem solving   #action   Speedboat is a short and sweet way to identify what your employees or clients don’t like about your product/service or what’s standing in the way of a desired goal.

17. The Journalistic Six

Some of the most effective ways of solving problems is by encouraging teams to be more inclusive and diverse in their thinking.

Based on the six key questions journalism students are taught to answer in articles and news stories, The Journalistic Six helps create teams to see the whole picture. By using who, what, when, where, why, and how to facilitate the conversation and encourage creative thinking, your team can make sure that the problem identification and problem analysis stages of the are covered exhaustively and thoughtfully. Reporter’s notebook and dictaphone optional.

The Journalistic Six – Who What When Where Why How   #idea generation   #issue analysis   #problem solving   #online   #creative thinking   #remote-friendly   A questioning method for generating, explaining, investigating ideas.

18. LEGO Challenge

Now for an activity that is a little out of the (toy) box. LEGO Serious Play is a facilitation methodology that can be used to improve creative thinking and problem-solving skills. 

The LEGO Challenge includes giving each member of the team an assignment that is hidden from the rest of the group while they create a structure without speaking.

What the LEGO challenge brings to the table is a fun working example of working with stakeholders who might not be on the same page to solve problems. Also, it’s LEGO! Who doesn’t love LEGO! 

LEGO Challenge   #hyperisland   #team   A team-building activity in which groups must work together to build a structure out of LEGO, but each individual has a secret “assignment” which makes the collaborative process more challenging. It emphasizes group communication, leadership dynamics, conflict, cooperation, patience and problem solving strategy.

19. What, So What, Now What?

If not carefully managed, the problem identification and problem analysis stages of the problem-solving process can actually create more problems and misunderstandings.

The What, So What, Now What? problem-solving activity is designed to help collect insights and move forward while also eliminating the possibility of disagreement when it comes to identifying, clarifying, and analyzing organizational or work problems. 

Facilitation is all about bringing groups together so that might work on a shared goal and the best problem-solving strategies ensure that teams are aligned in purpose, if not initially in opinion or insight.

Throughout the three steps of this game, you give everyone on a team to reflect on a problem by asking what happened, why it is important, and what actions should then be taken. 

This can be a great activity for bringing our individual perceptions about a problem or challenge and contextualizing it in a larger group setting. This is one of the most important problem-solving skills you can bring to your organization.

W³ – What, So What, Now What?   #issue analysis   #innovation   #liberating structures   You can help groups reflect on a shared experience in a way that builds understanding and spurs coordinated action while avoiding unproductive conflict. It is possible for every voice to be heard while simultaneously sifting for insights and shaping new direction. Progressing in stages makes this practical—from collecting facts about What Happened to making sense of these facts with So What and finally to what actions logically follow with Now What . The shared progression eliminates most of the misunderstandings that otherwise fuel disagreements about what to do. Voila!

20. Journalists  

Problem analysis can be one of the most important and decisive stages of all problem-solving tools. Sometimes, a team can become bogged down in the details and are unable to move forward.

Journalists is an activity that can avoid a group from getting stuck in the problem identification or problem analysis stages of the process.

In Journalists, the group is invited to draft the front page of a fictional newspaper and figure out what stories deserve to be on the cover and what headlines those stories will have. By reframing how your problems and challenges are approached, you can help a team move productively through the process and be better prepared for the steps to follow.

Journalists   #vision   #big picture   #issue analysis   #remote-friendly   This is an exercise to use when the group gets stuck in details and struggles to see the big picture. Also good for defining a vision.

Problem-solving techniques for developing solutions 

The success of any problem-solving process can be measured by the solutions it produces. After you’ve defined the issue, explored existing ideas, and ideated, it’s time to narrow down to the correct solution.

Use these problem-solving techniques when you want to help your team find consensus, compare possible solutions, and move towards taking action on a particular problem.

  • Improved Solutions
  • Four-Step Sketch
  • 15% Solutions
  • How-Now-Wow matrix
  • Impact Effort Matrix

21. Mindspin  

Brainstorming is part of the bread and butter of the problem-solving process and all problem-solving strategies benefit from getting ideas out and challenging a team to generate solutions quickly. 

With Mindspin, participants are encouraged not only to generate ideas but to do so under time constraints and by slamming down cards and passing them on. By doing multiple rounds, your team can begin with a free generation of possible solutions before moving on to developing those solutions and encouraging further ideation. 

This is one of our favorite problem-solving activities and can be great for keeping the energy up throughout the workshop. Remember the importance of helping people become engaged in the process – energizing problem-solving techniques like Mindspin can help ensure your team stays engaged and happy, even when the problems they’re coming together to solve are complex. 

MindSpin   #teampedia   #idea generation   #problem solving   #action   A fast and loud method to enhance brainstorming within a team. Since this activity has more than round ideas that are repetitive can be ruled out leaving more creative and innovative answers to the challenge.

22. Improved Solutions

After a team has successfully identified a problem and come up with a few solutions, it can be tempting to call the work of the problem-solving process complete. That said, the first solution is not necessarily the best, and by including a further review and reflection activity into your problem-solving model, you can ensure your group reaches the best possible result. 

One of a number of problem-solving games from Thiagi Group, Improved Solutions helps you go the extra mile and develop suggested solutions with close consideration and peer review. By supporting the discussion of several problems at once and by shifting team roles throughout, this problem-solving technique is a dynamic way of finding the best solution. 

Improved Solutions   #creativity   #thiagi   #problem solving   #action   #team   You can improve any solution by objectively reviewing its strengths and weaknesses and making suitable adjustments. In this creativity framegame, you improve the solutions to several problems. To maintain objective detachment, you deal with a different problem during each of six rounds and assume different roles (problem owner, consultant, basher, booster, enhancer, and evaluator) during each round. At the conclusion of the activity, each player ends up with two solutions to her problem.

23. Four Step Sketch

Creative thinking and visual ideation does not need to be confined to the opening stages of your problem-solving strategies. Exercises that include sketching and prototyping on paper can be effective at the solution finding and development stage of the process, and can be great for keeping a team engaged. 

By going from simple notes to a crazy 8s round that involves rapidly sketching 8 variations on their ideas before then producing a final solution sketch, the group is able to iterate quickly and visually. Problem-solving techniques like Four-Step Sketch are great if you have a group of different thinkers and want to change things up from a more textual or discussion-based approach.

Four-Step Sketch   #design sprint   #innovation   #idea generation   #remote-friendly   The four-step sketch is an exercise that helps people to create well-formed concepts through a structured process that includes: Review key information Start design work on paper,  Consider multiple variations , Create a detailed solution . This exercise is preceded by a set of other activities allowing the group to clarify the challenge they want to solve. See how the Four Step Sketch exercise fits into a Design Sprint

24. 15% Solutions

Some problems are simpler than others and with the right problem-solving activities, you can empower people to take immediate actions that can help create organizational change. 

Part of the liberating structures toolkit, 15% solutions is a problem-solving technique that focuses on finding and implementing solutions quickly. A process of iterating and making small changes quickly can help generate momentum and an appetite for solving complex problems.

Problem-solving strategies can live and die on whether people are onboard. Getting some quick wins is a great way of getting people behind the process.   

It can be extremely empowering for a team to realize that problem-solving techniques can be deployed quickly and easily and delineate between things they can positively impact and those things they cannot change. 

15% Solutions   #action   #liberating structures   #remote-friendly   You can reveal the actions, however small, that everyone can do immediately. At a minimum, these will create momentum, and that may make a BIG difference.  15% Solutions show that there is no reason to wait around, feel powerless, or fearful. They help people pick it up a level. They get individuals and the group to focus on what is within their discretion instead of what they cannot change.  With a very simple question, you can flip the conversation to what can be done and find solutions to big problems that are often distributed widely in places not known in advance. Shifting a few grains of sand may trigger a landslide and change the whole landscape.

25. How-Now-Wow Matrix

The problem-solving process is often creative, as complex problems usually require a change of thinking and creative response in order to find the best solutions. While it’s common for the first stages to encourage creative thinking, groups can often gravitate to familiar solutions when it comes to the end of the process. 

When selecting solutions, you don’t want to lose your creative energy! The How-Now-Wow Matrix from Gamestorming is a great problem-solving activity that enables a group to stay creative and think out of the box when it comes to selecting the right solution for a given problem.

Problem-solving techniques that encourage creative thinking and the ideation and selection of new solutions can be the most effective in organisational change. Give the How-Now-Wow Matrix a go, and not just for how pleasant it is to say out loud. 

How-Now-Wow Matrix   #gamestorming   #idea generation   #remote-friendly   When people want to develop new ideas, they most often think out of the box in the brainstorming or divergent phase. However, when it comes to convergence, people often end up picking ideas that are most familiar to them. This is called a ‘creative paradox’ or a ‘creadox’. The How-Now-Wow matrix is an idea selection tool that breaks the creadox by forcing people to weigh each idea on 2 parameters.

26. Impact and Effort Matrix

All problem-solving techniques hope to not only find solutions to a given problem or challenge but to find the best solution. When it comes to finding a solution, groups are invited to put on their decision-making hats and really think about how a proposed idea would work in practice. 

The Impact and Effort Matrix is one of the problem-solving techniques that fall into this camp, empowering participants to first generate ideas and then categorize them into a 2×2 matrix based on impact and effort.

Activities that invite critical thinking while remaining simple are invaluable. Use the Impact and Effort Matrix to move from ideation and towards evaluating potential solutions before then committing to them. 

Impact and Effort Matrix   #gamestorming   #decision making   #action   #remote-friendly   In this decision-making exercise, possible actions are mapped based on two factors: effort required to implement and potential impact. Categorizing ideas along these lines is a useful technique in decision making, as it obliges contributors to balance and evaluate suggested actions before committing to them.

27. Dotmocracy

If you’ve followed each of the problem-solving steps with your group successfully, you should move towards the end of your process with heaps of possible solutions developed with a specific problem in mind. But how do you help a group go from ideation to putting a solution into action? 

Dotmocracy – or Dot Voting -is a tried and tested method of helping a team in the problem-solving process make decisions and put actions in place with a degree of oversight and consensus. 

One of the problem-solving techniques that should be in every facilitator’s toolbox, Dot Voting is fast and effective and can help identify the most popular and best solutions and help bring a group to a decision effectively. 

Dotmocracy   #action   #decision making   #group prioritization   #hyperisland   #remote-friendly   Dotmocracy is a simple method for group prioritization or decision-making. It is not an activity on its own, but a method to use in processes where prioritization or decision-making is the aim. The method supports a group to quickly see which options are most popular or relevant. The options or ideas are written on post-its and stuck up on a wall for the whole group to see. Each person votes for the options they think are the strongest, and that information is used to inform a decision.

All facilitators know that warm-ups and icebreakers are useful for any workshop or group process. Problem-solving workshops are no different.

Use these problem-solving techniques to warm up a group and prepare them for the rest of the process. Activating your group by tapping into some of the top problem-solving skills can be one of the best ways to see great outcomes from your session.

  • Check-in/Check-out
  • Doodling Together
  • Show and Tell
  • Constellations
  • Draw a Tree

28. Check-in / Check-out

Solid processes are planned from beginning to end, and the best facilitators know that setting the tone and establishing a safe, open environment can be integral to a successful problem-solving process.

Check-in / Check-out is a great way to begin and/or bookend a problem-solving workshop. Checking in to a session emphasizes that everyone will be seen, heard, and expected to contribute. 

If you are running a series of meetings, setting a consistent pattern of checking in and checking out can really help your team get into a groove. We recommend this opening-closing activity for small to medium-sized groups though it can work with large groups if they’re disciplined!

Check-in / Check-out   #team   #opening   #closing   #hyperisland   #remote-friendly   Either checking-in or checking-out is a simple way for a team to open or close a process, symbolically and in a collaborative way. Checking-in/out invites each member in a group to be present, seen and heard, and to express a reflection or a feeling. Checking-in emphasizes presence, focus and group commitment; checking-out emphasizes reflection and symbolic closure.

29. Doodling Together  

Thinking creatively and not being afraid to make suggestions are important problem-solving skills for any group or team, and warming up by encouraging these behaviors is a great way to start. 

Doodling Together is one of our favorite creative ice breaker games – it’s quick, effective, and fun and can make all following problem-solving steps easier by encouraging a group to collaborate visually. By passing cards and adding additional items as they go, the workshop group gets into a groove of co-creation and idea development that is crucial to finding solutions to problems. 

Doodling Together   #collaboration   #creativity   #teamwork   #fun   #team   #visual methods   #energiser   #icebreaker   #remote-friendly   Create wild, weird and often funny postcards together & establish a group’s creative confidence.

30. Show and Tell

You might remember some version of Show and Tell from being a kid in school and it’s a great problem-solving activity to kick off a session.

Asking participants to prepare a little something before a workshop by bringing an object for show and tell can help them warm up before the session has even begun! Games that include a physical object can also help encourage early engagement before moving onto more big-picture thinking.

By asking your participants to tell stories about why they chose to bring a particular item to the group, you can help teams see things from new perspectives and see both differences and similarities in the way they approach a topic. Great groundwork for approaching a problem-solving process as a team! 

Show and Tell   #gamestorming   #action   #opening   #meeting facilitation   Show and Tell taps into the power of metaphors to reveal players’ underlying assumptions and associations around a topic The aim of the game is to get a deeper understanding of stakeholders’ perspectives on anything—a new project, an organizational restructuring, a shift in the company’s vision or team dynamic.

31. Constellations

Who doesn’t love stars? Constellations is a great warm-up activity for any workshop as it gets people up off their feet, energized, and ready to engage in new ways with established topics. It’s also great for showing existing beliefs, biases, and patterns that can come into play as part of your session.

Using warm-up games that help build trust and connection while also allowing for non-verbal responses can be great for easing people into the problem-solving process and encouraging engagement from everyone in the group. Constellations is great in large spaces that allow for movement and is definitely a practical exercise to allow the group to see patterns that are otherwise invisible. 

Constellations   #trust   #connection   #opening   #coaching   #patterns   #system   Individuals express their response to a statement or idea by standing closer or further from a central object. Used with teams to reveal system, hidden patterns, perspectives.

32. Draw a Tree

Problem-solving games that help raise group awareness through a central, unifying metaphor can be effective ways to warm-up a group in any problem-solving model.

Draw a Tree is a simple warm-up activity you can use in any group and which can provide a quick jolt of energy. Start by asking your participants to draw a tree in just 45 seconds – they can choose whether it will be abstract or realistic. 

Once the timer is up, ask the group how many people included the roots of the tree and use this as a means to discuss how we can ignore important parts of any system simply because they are not visible.

All problem-solving strategies are made more effective by thinking of problems critically and by exposing things that may not normally come to light. Warm-up games like Draw a Tree are great in that they quickly demonstrate some key problem-solving skills in an accessible and effective way.

Draw a Tree   #thiagi   #opening   #perspectives   #remote-friendly   With this game you can raise awarness about being more mindful, and aware of the environment we live in.

Each step of the problem-solving workshop benefits from an intelligent deployment of activities, games, and techniques. Bringing your session to an effective close helps ensure that solutions are followed through on and that you also celebrate what has been achieved.

Here are some problem-solving activities you can use to effectively close a workshop or meeting and ensure the great work you’ve done can continue afterward.

  • One Breath Feedback
  • Who What When Matrix
  • Response Cards

How do I conclude a problem-solving process?

All good things must come to an end. With the bulk of the work done, it can be tempting to conclude your workshop swiftly and without a moment to debrief and align. This can be problematic in that it doesn’t allow your team to fully process the results or reflect on the process.

At the end of an effective session, your team will have gone through a process that, while productive, can be exhausting. It’s important to give your group a moment to take a breath, ensure that they are clear on future actions, and provide short feedback before leaving the space. 

The primary purpose of any problem-solving method is to generate solutions and then implement them. Be sure to take the opportunity to ensure everyone is aligned and ready to effectively implement the solutions you produced in the workshop.

Remember that every process can be improved and by giving a short moment to collect feedback in the session, you can further refine your problem-solving methods and see further success in the future too.

33. One Breath Feedback

Maintaining attention and focus during the closing stages of a problem-solving workshop can be tricky and so being concise when giving feedback can be important. It’s easy to incur “death by feedback” should some team members go on for too long sharing their perspectives in a quick feedback round. 

One Breath Feedback is a great closing activity for workshops. You give everyone an opportunity to provide feedback on what they’ve done but only in the space of a single breath. This keeps feedback short and to the point and means that everyone is encouraged to provide the most important piece of feedback to them. 

One breath feedback   #closing   #feedback   #action   This is a feedback round in just one breath that excels in maintaining attention: each participants is able to speak during just one breath … for most people that’s around 20 to 25 seconds … unless of course you’ve been a deep sea diver in which case you’ll be able to do it for longer.

34. Who What When Matrix 

Matrices feature as part of many effective problem-solving strategies and with good reason. They are easily recognizable, simple to use, and generate results.

The Who What When Matrix is a great tool to use when closing your problem-solving session by attributing a who, what and when to the actions and solutions you have decided upon. The resulting matrix is a simple, easy-to-follow way of ensuring your team can move forward. 

Great solutions can’t be enacted without action and ownership. Your problem-solving process should include a stage for allocating tasks to individuals or teams and creating a realistic timeframe for those solutions to be implemented or checked out. Use this method to keep the solution implementation process clear and simple for all involved. 

Who/What/When Matrix   #gamestorming   #action   #project planning   With Who/What/When matrix, you can connect people with clear actions they have defined and have committed to.

35. Response cards

Group discussion can comprise the bulk of most problem-solving activities and by the end of the process, you might find that your team is talked out! 

Providing a means for your team to give feedback with short written notes can ensure everyone is head and can contribute without the need to stand up and talk. Depending on the needs of the group, giving an alternative can help ensure everyone can contribute to your problem-solving model in the way that makes the most sense for them.

Response Cards is a great way to close a workshop if you are looking for a gentle warm-down and want to get some swift discussion around some of the feedback that is raised. 

Response Cards   #debriefing   #closing   #structured sharing   #questions and answers   #thiagi   #action   It can be hard to involve everyone during a closing of a session. Some might stay in the background or get unheard because of louder participants. However, with the use of Response Cards, everyone will be involved in providing feedback or clarify questions at the end of a session.

Save time and effort discovering the right solutions

A structured problem solving process is a surefire way of solving tough problems, discovering creative solutions and driving organizational change. But how can you design for successful outcomes?

With SessionLab, it’s easy to design engaging workshops that deliver results. Drag, drop and reorder blocks  to build your agenda. When you make changes or update your agenda, your session  timing   adjusts automatically , saving you time on manual adjustments.

Collaborating with stakeholders or clients? Share your agenda with a single click and collaborate in real-time. No more sending documents back and forth over email.

Explore  how to use SessionLab  to design effective problem solving workshops or  watch this five minute video  to see the planner in action!

computer problem solving concept

Over to you

The problem-solving process can often be as complicated and multifaceted as the problems they are set-up to solve. With the right problem-solving techniques and a mix of creative exercises designed to guide discussion and generate purposeful ideas, we hope we’ve given you the tools to find the best solutions as simply and easily as possible.

Is there a problem-solving technique that you are missing here? Do you have a favorite activity or method you use when facilitating? Let us know in the comments below, we’d love to hear from you! 

' src=

thank you very much for these excellent techniques

' src=

Certainly wonderful article, very detailed. Shared!

Leave a Comment Cancel reply

Your email address will not be published. Required fields are marked *

cycle of workshop planning steps

Going from a mere idea to a workshop that delivers results for your clients can feel like a daunting task. In this piece, we will shine a light on all the work behind the scenes and help you learn how to plan a workshop from start to finish. On a good day, facilitation can feel like effortless magic, but that is mostly the result of backstage work, foresight, and a lot of careful planning. Read on to learn a step-by-step approach to breaking the process of planning a workshop into small, manageable chunks.  The flow starts with the first meeting with a client to define the purposes of a workshop.…

computer problem solving concept

How does learning work? A clever 9-year-old once told me: “I know I am learning something new when I am surprised.” The science of adult learning tells us that, in order to learn new skills (which, unsurprisingly, is harder for adults to do than kids) grown-ups need to first get into a specific headspace.  In a business, this approach is often employed in a training session where employees learn new skills or work on professional development. But how do you ensure your training is effective? In this guide, we'll explore how to create an effective training session plan and run engaging training sessions. As team leader, project manager, or consultant,…

computer problem solving concept

Effective online tools are a necessity for smooth and engaging virtual workshops and meetings. But how do you choose the right ones? Do you sometimes feel that the good old pen and paper or MS Office toolkit and email leaves you struggling to stay on top of managing and delivering your workshop? Fortunately, there are plenty of online tools to make your life easier when you need to facilitate a meeting and lead workshops. In this post, we’ll share our favorite online tools you can use to make your job as a facilitator easier. In fact, there are plenty of free online workshop tools and meeting facilitation software you can…

Design your next workshop with SessionLab

Join the 150,000 facilitators using SessionLab

Sign up for free

Computer-based assessment of Complex Problem Solving: concept, implementation, and application

  • Development Article
  • Published: 26 April 2013
  • Volume 61 , pages 407–421, ( 2013 )

Cite this article

  • Samuel Greiff 1 ,
  • Sascha Wüstenberg 1 ,
  • Daniel V. Holt 2 ,
  • Frank Goldhammer 3 &
  • Joachim Funke 2  

2024 Accesses

45 Citations

Explore all metrics

Complex Problem Solving (CPS) skills are essential to successfully deal with environments that change dynamically and involve a large number of interconnected and partially unknown causal influences. The increasing importance of such skills in the 21st century requires appropriate assessment and intervention methods, which in turn rely on adequate item construction, delivery, and scoring. The lack of assessment tools, however, has slowed down research on and understanding of CPS. This paper first presents the MicroDYN framework for assessing CPS, which is based on linear structural equation systems with input and output variables and opaque relations among them. Second, a versatile assessment platform, the CBA Item Builder, which allows the authoring, delivery, and scoring of CPS tasks for scientific and educational purposes is introduced. Third, we demonstrate the potential of such a tool for research by reporting an experimental study illustrating the effect of domain specific content knowledge on performance in CPS tasks both on an overall performance and on a process level. The importance of accessible and versatile technical platforms not only for assessment and research but also for intervention and learning are discussed with a particular focus on educational contexts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Russian Federation)

Instant access to the full article PDF.

Rent this article via DeepDyve

Institutional subscriptions

Similar content being viewed by others

computer problem solving concept

Competencies for Complexity: Problem Solving in the Twenty-First Century

computer problem solving concept

Students’ Complex Problem Solving Profiles

Michela Gnaldi, Silvia Bacci, … Samuel Greiff

computer problem solving concept

Dynamic Problem Solving: Multiple-Item Testing Based on Minimally Complex Systems

Abele, S., Greiff, S., Gschwendtner, T., Wüstenberg, S., Nickolaus, R., Nitschke, A., et al. (2012). Die Bedeutung übergreifender kognitiver Determinanten für die Bewältigung beruflicher Anforderungen. Untersuchung am Beispiel dynamischen und technischen Problemlösens [The importance of general cognitive determinants in mastering job demands. Some research on the example of dynamic and technical problem solving]. Zeitschrift für Erziehungswissenschaft, 15 , 363–391.

Article   Google Scholar  

Autor, D., & Dorn, D. (2009). This job is “Getting Old”: Measuring changes in job opportunities using occupational age structure. American Economic Review, 99 , 45–51.

Autor, D. H., Levy, F., & Murnane, R. J. (2003). The skill content of recent technological change: An empirical exploration. Quarterly Journal of Economics, 118 , 1279–1333.

Buchner, A. (1995). Basic topics and approaches to the study of complex problem solving. In P. A. Frensch & J. Funke (Eds.), Complex problem solving: The European perspective (pp. 27–63). Hillsdale, NJ: Erlbaum.

Google Scholar  

Bunderson, C. V., Inouye, D. K., & Olsen, J. B. (1989). The four generations of computerized educational measurement. In R. L. Linn (Ed.), Educational Measurement (pp. 367–407). New York, NY: Macmillan Publishing.

Chen, Z., & Klahr, D. (1999). All other things being equal: Acquisition and transfer of the Control of Variables Strategy. Child Development, 70 , 1098–1120.

Danner, D., Hagemann, D., Holt, D. V., Hager, M., Schankin, A., Wüstenberg, S., et al. (2011). Measuring performance in a complex problem solving task: Reliability and validity of the Tailorshop simulation. Journal of Individual Differences, 32 , 225–233.

Dörner, D. (1986). Diagnostik der operativen Intelligenz [Assessment of operative intelligence]. Diagnostica, 32 (4), 290–308.

Fischer, A., Greiff, S., & Funke, J. (2012). The process of solving complex problems. Journal of Problem Solving, 4 (1), 19–42.

Frensch, P. A., & Funke, J. (Eds.). (1995). Complex problem solving: The European perspective . Hillsdale, NJ: Lawrence Erlbaum Associates.

Funke, J. (1992). Dealing with dynamic systems: Research strategy, diagnostic approach and experimental results. German Journal of Psychology, 16 , 24–43.

Funke, J. (2001). Dynamic systems as tools for analysing human judgement. Thinking and Reasoning, 7 (1), 69–89.

Funke, J. (2003). Problemlösendes Denken [Problem solving] . Stuttgart: Kohlhammer.

Funke, J. (2010). Complex problem solving: A case for complex cognition? Cognitive Processing, 11 (2), 133–142.

Fyfe, E. R., Rittle-Johnson, B., & DeCaro, M. S. (2012). The effects of feedback during exploratory mathematics problem solving: Prior knowledge matters. Journal of Educational Psychology, 104 , 1094–1108.

Gonzalez, C., Thomas, R. P., & Vanyukov, P. (2005). The relationships between cognitive ability and dynamic decision making. Intelligence, 33 (2), 169–186.

Graesser, A. C., Jeon, M., & Dufty, D. (2008). Agent technologies designed to facilitate interactive knowledge construction. Discourse Processes, 45 , 298–322.

Greiff, S., & Fischer, A. (2013). Der Nutzen einer Komplexen Problemlösekompetenz: Theoretische Überlegungen und empirische Befunde [Usefulness of Complex Problem Solving competency: Theoretical considerations and empirical results]. Zeitschrift für Pädagogische Psychologie, 27 (1), 1–13.

Greiff, S., Wüstenberg, S., & Funke, J. (2012). Dynamic Problem Solving: A new measurement perspective. Applied Psychological Measurement, 36 , 189–213.

Greiff, S., Wüstenberg, S., Molnar, G., Fischer, A., Funke, J., & Csapo, B. (in press). Complex Problem Solving in educational settings—something beyond g: Concept, assessment, measurement invariance, and construct validity. Journal of Educational Psychology . doi: 10.1037/a0031856 .

Holyoak, K. J. (1985). The pragmatics of analogical transfer. In G. H. Bower (Ed.), The psychology of learning and motivation (pp. 59–87). New York, NJ: Academic Press.

Kalyuga, S. (2009). Knowledge elaboration: A cognitive load perspective. Learning and Instruction, 19 , 402–410.

Klahr, D. (2000). Exploring science: The cognition and development of discovery processes . Cambridge, MA: MIT Press.

Kluge, A. (2008). Performance assessment with microworlds and their difficulty. Applied Psychological Measurement, 32 (2), 156–180.

Kröner, S., Plass, J. L., & Leutner, D. (2005). Intelligence assessment with computer simulations. Intelligence, 33 , 347–368.

Kyllonen, P. C. (2009). New constructs, methods, and directions for computer-based assessment. In F. Scheuermann & J. Björnsson (Eds.), The transition to computer-based assessment (pp. 151–156). Luxembourg: Office for Official Publications of the European Communities.

Leutner, D. (2002). The fuzzy relationship of intelligence and problem solving in computer simulations. Computers in Human Behavior, 18 , 685–697.

Mayer, R. E. (2003). Learning and instruction . Upper Saddle River, NJ: Prentice Hall.

Mayer, R. E., & Wittrock, M. C. (2006). Problem solving. In P. A. Alexander & P. H. Winne (Eds.), Handbook of educational psychology (pp. 287–303). Mahwah, NJ: Lawrence Erlbaum.

Novick, L. R., & Bassok, M. (2005). Problem solving. In K. J. Holyoak & R. G. Morrison (Eds.), The Cambridge handbook of thinking and reasoning (pp. 321–349). Cambridge, NY: University Press.

OECD (2010). PISA 2012 field trial problem solving framework . Accessed at: http://www.oecd.org/dataoecd/8/42/46962005.pdf .

OECD (2012). Better skills, better jobs, better lives. Highlights of the OECD skills strategy . Accessed at: http://www.oecd-ilibrary.org/docserver/download/fulltext/9112165e5.pdf .

Perkins, D. N., & Salomon, G. (1989). Are cognitive skills context-bound? Educational Researcher, 18 (10), 16–25.

Raven, J. (2000). Psychometrics, cognitive ability, and occupational performance. Review of Psychology, 7 , 51–74.

Rölke, H. (2012). The item builder: A graphical authoring system for complex item development. in Proceedings of World Conference on E - Learning in Corporate, Government, Healthcare, and Higher Education (pp. 344–353). Chesapeake, VA: AACE.

Scheuermann, F., & Björnsson, J. (2009). The transition to computer-based assessment . Luxembourg: Office for Official Publications of the European Communities.

Smith, M. C., & Reio, T. G. (2006). Adult development, schooling, and the transition to work. In P. A. Alexander & P. H. Winne (Eds.), Handbook of educational psychology (pp. 115–138). Mahwah, NJ: Lawrence Erlbaum.

Spitz-Oener, A. (2006). Technical change, job tasks, and rising educational demands: Looking outside the wage structure. Journal of Labor Economics, 24 (2), 235–270.

Sternberg, R. J. (1995). Expertise in complex problem solving: A comparison of alternative concepts. In P. A. Frensch & J. Funke (Eds.), Complex problem solving. The European perspective (pp. 295–321). Hillsdale, NJ: Lawrence Erlbaum.

Süß, H.-M. (1996). Intelligenz, Wissen und Problemlösen . Göttingen: Hogrefe.

Triona, L. M., & Klahr, D. (2003). Point and click or grab and heft: Comparing the influence of physical and virtual instructional materials on elementary school students’ ability to design experiments. Cognition and Instruction, 21 , 149–173.

Tschirgi, J. E. (1980). Sensible reasoning: A hypothesis about hypotheses. Child Development, 51 , 1–10.

Vollmeyer, R., Burns, B. D., & Holyoak, K. J. (1996). The impact of goal specificity on strategy use and the acquisition of problem structure. Cognitive Science, 20 , 75–100.

Williamson, D. M., Bejar, I. I., & Mislevy, R. J. (2006). Automated scoring of complex tasks in computer-based testing: An introduction . Mahwah, NJ: Lawrence Erlbaum.

Wirth, J., & Klieme, E. (2003). Computer-based assessment of problem solving competence. Assessment in Education: Principles, Policy & Practice, 10 (3), 329–345.

Wittmann, W. W., & Süß, H. M. (1999). Investigating the paths between working memory, intelligence, knowledge and complex problem solving: Performances via Brunswik-symmetry. In P. L. Ackermann, P. C. Kyllonen, & R. D. Roberts (Eds.), Learning and individual differences: Process, trait and content (pp. 77–108). Washington, DC: American Psychological Association.

Chapter   Google Scholar  

Wüstenberg, S., Greiff, S., & Funke, J. (2012). Complex problem solving. More than reasoning? Intelligence, 40 , 1–14.

Download references

Acknowledgments

This research was funded by a Grant of the German Research Foundation (DFG Fu 173/14-2), by the European Union (290683; LLLight'in'Europe), and by the German Federal Ministry of Education and Research (LSA004). We are grateful to the TBA group at DIPF ( http://tba.dipf.de ) for providing the authoring tool CBA Item Builder and technical support.

Author information

Authors and affiliations.

EMACS Unit, University of Luxembourg, 6, rue Richard Coudenhove Kalergi, 1359, Luxembourg-Kirchberg, Luxembourg

Samuel Greiff & Sascha Wüstenberg

University of Heidelberg, Heidelberg, Germany

Daniel V. Holt & Joachim Funke

German Institute for International Educational Research (DIPF) and Centre for International Student Assessment (ZIB), Frankfurt, Germany

Frank Goldhammer

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Samuel Greiff .

Rights and permissions

Reprints and permissions

About this article

Greiff, S., Wüstenberg, S., Holt, D.V. et al. Computer-based assessment of Complex Problem Solving: concept, implementation, and application. Education Tech Research Dev 61 , 407–421 (2013). https://doi.org/10.1007/s11423-013-9301-x

Download citation

Published : 26 April 2013

Issue Date : June 2013

DOI : https://doi.org/10.1007/s11423-013-9301-x

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Complex Problem Solving
  • Technical platform
  • Process data
  • CBA Item Builder
  • Content knowledge
  • Find a journal
  • Publish with us
  • Track your research
  • Skip to primary navigation
  • Skip to main content
  • Skip to footer

logo

Eduinput- Online tutoring platform for Math, chemistry, Biology Physics

An online learning platform for Mcat, JEE, NEET and UPSC students

Problem Solving Techniques in Computer Science

computer problem solving concept

Problem-solving is the process of identifying a problem and finding the best solution for it. Problem-solving is a technique that can be developed by following a well-organized approach. Every day we encounter many problems and solve them.

Every problem is different. Some problems are very difficult and are needed more attention to recognize the solution.

A problem may be solved by multiple methods. One solution may be faster, cheaper, and more reliable than others. It is important to choose a suitable worthy solution.

Different strategies, techniques, and tools are used to solve a problem. Computers are used as a tool to solve complex problems by developing computer programs.

Computer programs contain different instructions for computers. A programmer writes instructions and the computer executes these instructions to solve a problem. A person can be a good programmer if he has the skill of solving problems.

Table of Contents

Problem-Solving Techniques.

There are three different types of problem-solving techniques.

A set of instructions given to a computer to solve a problem is called a program.

A computer works according to the given instructions in the program. Computer programs are written in programming languages. A person who develops a program is called a programmer.

The programmer develops programs to instruct the computer on how to process data into information. The programmer uses programming languages or tools to write programs.

 Advantages of Computer Program

Different advantages of computer programs are as follows:

  • A computer program can solve many problems by giving instructions to the computer.
  • A computer program can be used to perform a task again and again and fastly.
  • A program can process a large amount of data easily.
  • It can display the results in different styles.
  • The processing of a program is more efficient and less time-consuming.
  • Different types of programs are used in different fields to perform certain tasks.

   Algorithms & Pseudo Code

An algorithm is a step-by-step procedure to solve a problem. The process of solving

problem becomes simpler and easier with help of algorithm. It is better to write an algorithm

before writing the actual computer program.

Properties of Algorithm

Following are some properties of an algorithm:

  • The given problem should be broken down into simple and meaningful steps.
  • The steps should be numbered sequentially.
  • The steps should be descriptive and written in simple English. 

Algorithms are written in a language that is similar to simple English called pseudocode. There is no standard to write pseudo code. It is used to specify program logic in an English-like manner that is independent of any particular programming language.

Pseudocode simplifies program development by separating it into two main parts.

Logic Design

In this part, the logic of the program is designed. We specify different steps required to solve the problem and the sequence of these steps.

In this part, the algorithm is converted into a program. The steps of the algorithm are

translated into instructions of any programming language.

The use of pseudo-code allows the programmer to focus on the planning of the program. After the planning is final, it can be written in any programming language.

The following algorithm inputs two numbers calculate the sum and then displays the result on the screen.

4. Total A+B

5. Display Total

The following algorithm inputs the radius from the user and calculates the area of a circle.

Hint: Area 3.14* radius* radius)

2. Input radius in r

3. area = 3.14* r* r

4. Print area

Advantages of Algorithm

There are many advantages of an algorithm

Reduce complexity

Writing algorithm and program separately simplifies the overall task by dividing it into two simpler tasks. While writing the algorithm, we can focus on solving the problem instead of concentrating on a particular language.

Increased Flexibility

An algorithm is written so that the code may be written in any language. Using an algorithm, the program could be written in Visual Basic, Java or C++, etc.

Ease of Understanding

It is not necessary to understand a particular programming language to understand an algorithm. It is written in an English-like manner.

A flowchart is a combination of two words flow and chart. A chart consists of different symbols to display information about any program. Flow indicates the direction processing that takes place in the program.

Flowchart is a graphical representation of an algorithm. It is a way of visually presenting the flow of data, operations performed on data, and the sequence of these operations.

Flowchart is similar to the layout plan of a building. A designer draws the layout plan of the building before constructing it. Similarly, a programmer prefers to design the flowchart before writing the computer program. Flowchart is designed according to the defined rule.

Uses of Logic Flowchart

Flowchart is used for the following reasons

  • Flowchart is used to represent an algorithm in a simple graphical manner.
  • Flowchart is used to show the steps of an algorithm easily.
  • Flowchart is used to understand the flow of the program.
  • Flowchart is used to improve the logic for solving a problem.
  • Programs can be reviewed and debugged easily.
  • Chapter-Getting Started with C

Related Articles

computer problem solving concept

History of C Language – Advantages and Disadvantages of C Language

computer problem solving concept

Scripting Languages-Different Types of Scripting Languages

computer problem solving concept

High-Level Programming Language-Popular High-level languages

computer problem solving concept

Structured Programming Technique-Advantages and Disadvantages

Leave a reply cancel reply.

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

Get updates about new courses

NCERT solutions

footer-logo

9th Class 10th Class 11 Class 12 Class

Join the groups below to get updates.

IMAGES

  1. 8 Steps For Effective Problem Solving

    computer problem solving concept

  2. FUNDAMENTAL OF COMPUTER PROBLEM SOLVING

    computer problem solving concept

  3. Problem Solving Concept on a Laptop Screen Stock Image

    computer problem solving concept

  4. Introduction to Problem Solving| Steps of Problem Solving-Computer

    computer problem solving concept

  5. 6 Ways to Improve Your Programming Problem Solving

    computer problem solving concept

  6. Problem Solving Concept on a Laptop Screen Stock Photo

    computer problem solving concept

VIDEO

  1. Equation solving concept.@Shortstudy141 .#likeandsubscribe

  2. What is Lean six sigma? (Introduction for lean six sigma) (Explained with examples)

  3. CSC126 ASSESMENT #4: GROUP PROJECT

  4. top 4 pc problems with solution

  5. 1732. Find the Highest Altitude

  6. 1.Introduction To Computer-Problem Solving and Python Programming

COMMENTS

  1. The Problem Solving Cycle in Computer Science: A Complete Guide

    At its essence, problem solving in computer science involves breaking down a complex problem into smaller, more manageable parts. This allows for a systematic approach to finding a solution by analyzing each part individually. ... Iterating for improvement is a fundamental concept in computer science problem solving. By continually analyzing ...

  2. Computational Thinking for Problem Solving

    Computational thinking is a problem-solving process in which the last step is expressing the solution so that it can be executed on a computer. However, before we are able to write a program to implement an algorithm, we must understand what the computer is capable of doing -- in particular, how it executes instructions and how it uses data.

  3. PDF An Introduction to Computer Science and Problem Solving

    as a basis for the manner in which they solve the problem at hand. In mathematics, a solution is often expressed in terms of formulas and equations. In computer science, the solution is expressed in terms of a program: A program is a sequence of instructions that can be executed by a computer to solve some problem or perform a specified task.

  4. How to think like a programmer

    Simplest means you know the answer (or are closer to that answer). After that, simplest means this sub-problem being solved doesn't depend on others being solved. Once you solved every sub-problem, connect the dots. Connecting all your "sub-solutions" will give you the solution to the original problem. Congratulations!

  5. Problem Solving Using Computer (Steps)

    The following six steps must be followed to solve a problem using computer. Problem Analysis. Program Design - Algorithm, Flowchart and Pseudocode. Coding. Compilation and Execution. Debugging and Testing. Program Documentation. Computer based problem solving is a systematic process of designing, implementing and using programming tools during ...

  6. Problem Solving Using Computational Thinking

    Computational Thinking allows us to take complex problems, understand what the problem is, and develop solutions. We can present these solutions in a way that both computers and people can understand. The course includes an introduction to computational thinking and a broad definition of each concept, a series of real-world cases that ...

  7. What is Computational Thinking?

    Computational thinking is an interrelated set of skills and practices for solving complex problems, a way to learn topics in many disciplines, and a necessity for fully participating in a computational world. Many different terms are used when talking about computing, computer science, computational thinking, and programming.

  8. Understanding Algorithms: The Key to Problem-Solving Mastery

    The world of computer science is a fascinating realm, where intricate concepts and technologies continuously shape the way we interact with machines. ... By comprehending the concept of algorithms, aspiring computer science enthusiasts gain a powerful toolset to approach problem-solving and gain insight into the efficiency and performance of ...

  9. Computational thinking

    Computational thinking (CT) refers to the thought processes involved in formulating problems so their solutions can be represented as computational steps and algorithms. In education, CT is a set of problem-solving methods that involve expressing problems and their solutions in ways that a computer could also execute. It involves automation of processes, but also using computing to explore ...

  10. Lecture 3: Problem Solving

    MIT OpenCourseWare is a web based publication of virtually all MIT course content. OCW is open and available to the world and is a permanent MIT activity

  11. Practice Computer Science Fundamentals

    Whether you're exploring computer science for the first time or looking to deepen your understanding, this course will allow you to develop the problem-solving techniques you need to think like a computer scientist. Follow librarians, cooks, and mayors to see how computer science problem solving techniques affect their daily lives.

  12. PDF Unit 2: Problem Solving

    Introduction. In order for students to become "computational thinkers" they need experience solving a wide range of problems and the opportunity to experiment with a variety of solution strategies. This unit begins with an introduction to the problem solving process. Students are asked to solve new problems by planning a strategy, designing ...

  13. Computational Problem Solving Conceptual Framework

    Solving a complex computational problem is an adaptive process that follows iterative cycles of ideation, testing, debugging, and further development. Computational problem solving involves systematically evaluating the state of one's own work, identifying when and how a given operation requires fixing, and implementing the needed corrections.

  14. Problem Solving and Programming Concepts, 9th edition

    Revised to reflect the most current issues in the programming industry, this widely adopted text emphasizes that problem solving is the same in all computer languages, regardless of syntax. Sprankle and Hubbard use a generic, non-language-specific approach to present the tools and concepts required when using any programming language to develop ...

  15. CBSE Class 11

    The several steps of this cycle are as follows : Step by step solution for a problem (Software Life Cycle) 1. Problem Definition/Specification: A computer program is basically a machine language solution to a real-life problem. Because programs are generally made to solve the pragmatic problems of the outside world.

  16. What is Programming? A Handbook for Beginners

    That is exactly what programming is all about. It is the process of writing code to solve a particular problem or to implement a particular task. Programming is what allows your computer to run the programs you use every day and your smartphone to run the apps that you love.

  17. Problem solving

    Problem solving is the process of achieving a goal by overcoming obstacles, a frequent part of most activities. Problems in need of solutions range from simple personal tasks (e.g. how to turn on an appliance) to complex issues in business and technical fields. The former is an example of simple problem solving (SPS) addressing one issue ...

  18. Computer Science Fundamentals

    Free set of elementary curricula that introduces students to the foundational concepts of computer science and challenges them to explore how computing and technology can impact the world. ... Learn to create computer programs, develop problem-solving skills, and work through fun challenges! Make games and creative projects to share with ...

  19. Steps of Problem Solving in Computer Science

    In more general terms, problem solving is. part of a larger process that encompasses problem determination, de-. duplication, analysis, diagnosis, repair, and other steps. 3. Other problem solving ...

  20. Computer Fundamentals Tutorial

    Concepts such as algorithms, data structures, and statistical modelling are vital in training and developing intelligent systems. Understanding computer fundamentals allows professionals to create AI models, train them on large datasets, and apply machine learning techniques to solve complex problems. FAQS on Computer Fundamentals

  21. Unit-4:Introduction to problem solving Concept

    Problem solving is a critical skill in computer science and programming. It refers to the process of finding solutions to problems or challenges by applying logic and critical thinking. Here are some key concepts in problem solving: Understanding the problem: This involves carefully reading and comprehending the problem statement and defining the problem in your…

  22. 35 problem-solving techniques and methods for solving complex problems

    6. Discovery & Action Dialogue (DAD) One of the best approaches is to create a safe space for a group to share and discover practices and behaviors that can help them find their own solutions. With DAD, you can help a group choose which problems they wish to solve and which approaches they will take to do so.

  23. Computer-based assessment of Complex Problem Solving: concept

    Complex Problem Solving (CPS) skills are essential to successfully deal with environments that change dynamically and involve a large number of interconnected and partially unknown causal influences. The increasing importance of such skills in the 21st century requires appropriate assessment and intervention methods, which in turn rely on adequate item construction, delivery, and scoring. The ...

  24. Problem Solving and Programming Concepts

    Find step-by-step solutions and answers to Problem Solving and Programming Concepts - 9780133001785, as well as thousands of textbooks so you can move forward with confidence. ... Beginning Problem-Solving Concepts for the Computer. Page 35: Questions. Page 37: Problems. Exercise 1. Exercise 2. Exercise 3. Exercise 4. Exercise 5. Exercise 6 ...

  25. Problem Solving Techniques in Computer Science

    Problem-solving is the process of identifying a problem and finding the best solution for it. Problem-solving is a technique that can be developed by ... A set of instructions given to a computer to solve a problem is called a program. A computer works according to the given instructions in the program. Computer programs are written in ...