U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Springer Nature - PMC COVID-19 Collection

Logo of phenaturepg

The potential of working hypotheses for deductive exploratory research

Mattia casula.

1 Department of Political and Social Sciences, University of Bologna, Strada Maggiore 45, 40125 Bologna, Italy

Nandhini Rangarajan

2 Texas State University, San Marcos, TX USA

Patricia Shields

While hypotheses frame explanatory studies and provide guidance for measurement and statistical tests, deductive, exploratory research does not have a framing device like the hypothesis. To this purpose, this article examines the landscape of deductive, exploratory research and offers the working hypothesis as a flexible, useful framework that can guide and bring coherence across the steps in the research process. The working hypothesis conceptual framework is introduced, placed in a philosophical context, defined, and applied to public administration and comparative public policy. Doing so, this article explains: the philosophical underpinning of exploratory, deductive research; how the working hypothesis informs the methodologies and evidence collection of deductive, explorative research; the nature of micro-conceptual frameworks for deductive exploratory research; and, how the working hypothesis informs data analysis when exploratory research is deductive.

Introduction

Exploratory research is generally considered to be inductive and qualitative (Stebbins 2001 ). Exploratory qualitative studies adopting an inductive approach do not lend themselves to a priori theorizing and building upon prior bodies of knowledge (Reiter 2013 ; Bryman 2004 as cited in Pearse 2019 ). Juxtaposed against quantitative studies that employ deductive confirmatory approaches, exploratory qualitative research is often criticized for lack of methodological rigor and tentativeness in results (Thomas and Magilvy 2011 ). This paper focuses on the neglected topic of deductive, exploratory research and proposes working hypotheses as a useful framework for these studies.

To emphasize that certain types of applied research lend themselves more easily to deductive approaches, to address the downsides of exploratory qualitative research, and to ensure qualitative rigor in exploratory research, a significant body of work on deductive qualitative approaches has emerged (see for example, Gilgun 2005 , 2015 ; Hyde 2000 ; Pearse 2019 ). According to Gilgun ( 2015 , p. 3) the use of conceptual frameworks derived from comprehensive reviews of literature and a priori theorizing were common practices in qualitative research prior to the publication of Glaser and Strauss’s ( 1967 ) The Discovery of Grounded Theory . Gilgun ( 2015 ) coined the terms Deductive Qualitative Analysis (DQA) to arrive at some sort of “middle-ground” such that the benefits of a priori theorizing (structure) and allowing room for new theory to emerge (flexibility) are reaped simultaneously. According to Gilgun ( 2015 , p. 14) “in DQA, the initial conceptual framework and hypotheses are preliminary. The purpose of DQA is to come up with a better theory than researchers had constructed at the outset (Gilgun 2005 , 2009 ). Indeed, the production of new, more useful hypotheses is the goal of DQA”.

DQA provides greater level of structure for both the experienced and novice qualitative researcher (see for example Pearse 2019 ; Gilgun 2005 ). According to Gilgun ( 2015 , p. 4) “conceptual frameworks are the sources of hypotheses and sensitizing concepts”. Sensitizing concepts frame the exploratory research process and guide the researcher’s data collection and reporting efforts. Pearse ( 2019 ) discusses the usefulness for deductive thematic analysis and pattern matching to help guide DQA in business research. Gilgun ( 2005 ) discusses the usefulness of DQA for family research.

Given these rationales for DQA in exploratory research, the overarching purpose of this paper is to contribute to that growing corpus of work on deductive qualitative research. This paper is specifically aimed at guiding novice researchers and student scholars to the working hypothesis as a useful a priori framing tool. The applicability of the working hypothesis as a tool that provides more structure during the design and implementation phases of exploratory research is discussed in detail. Examples of research projects in public administration that use the working hypothesis as a framing tool for deductive exploratory research are provided.

In the next section, we introduce the three types of research purposes. Second, we examine the nature of the exploratory research purpose. Third, we provide a definition of working hypothesis. Fourth, we explore the philosophical roots of methodology to see where exploratory research fits. Fifth, we connect the discussion to the dominant research approaches (quantitative, qualitative and mixed methods) to see where deductive exploratory research fits. Sixth, we examine the nature of theory and the role of the hypothesis in theory. We contrast formal hypotheses and working hypotheses. Seven, we provide examples of student and scholarly work that illustrates how working hypotheses are developed and operationalized. Lastly, this paper synthesizes previous discussion with concluding remarks.

Three types of research purposes

The literature identifies three basic types of research purposes—explanation, description and exploration (Babbie 2007 ; Adler and Clark 2008 ; Strydom 2013 ; Shields and Whetsell 2017 ). Research purposes are similar to research questions; however, they focus on project goals or aims instead of questions.

Explanatory research answers the “why” question (Babbie 2007 , pp. 89–90), by explaining “why things are the way they are”, and by looking “for causes and reasons” (Adler and Clark 2008 , p. 14). Explanatory research is closely tied to hypothesis testing. Theory is tested using deductive reasoning, which goes from the general to the specific (Hyde 2000 , p. 83). Hypotheses provide a frame for explanatory research connecting the research purpose to other parts of the research process (variable construction, choice of data, statistical tests). They help provide alignment or coherence across stages in the research process and provide ways to critique the strengths and weakness of the study. For example, were the hypotheses grounded in the appropriate arguments and evidence in the literature? Are the concepts imbedded in the hypotheses appropriately measured? Was the best statistical test used? When the analysis is complete (hypothesis is tested), the results generally answer the research question (the evidence supported or failed to support the hypothesis) (Shields and Rangarajan 2013 ).

Descriptive research addresses the “What” question and is not primarily concerned with causes (Strydom 2013 ; Shields and Tajalli 2006 ). It lies at the “midpoint of the knowledge continuum” (Grinnell 2001 , p. 248) between exploration and explanation. Descriptive research is used in both quantitative and qualitative research. A field researcher might want to “have a more highly developed idea of social phenomena” (Strydom 2013 , p. 154) and develop thick descriptions using inductive logic. In science, categorization and classification systems such as the periodic table of chemistry or the taxonomies of biology inform descriptive research. These baseline classification systems are a type of theorizing and allow researchers to answer questions like “what kind” of plants and animals inhabit a forest. The answer to this question would usually be displayed in graphs and frequency distributions. This is also the data presentation system used in the social sciences (Ritchie and Lewis 2003 ; Strydom 2013 ). For example, if a scholar asked, what are the needs of homeless people? A quantitative approach would include a survey that incorporated a “needs” classification system (preferably based on a literature review). The data would be displayed as frequency distributions or as charts. Description can also be guided by inductive reasoning, which draws “inferences from specific observable phenomena to general rules or knowledge expansion” (Worster 2013 , p. 448). Theory and hypotheses are generated using inductive reasoning, which begins with data and the intention of making sense of it by theorizing. Inductive descriptive approaches would use a qualitative, naturalistic design (open ended interview questions with the homeless population). The data could provide a thick description of the homeless context. For deductive descriptive research, categories, serve a purpose similar to hypotheses for explanatory research. If developed with thought and a connection to the literature, categories can serve as a framework that inform measurement, link to data collection mechanisms and to data analysis. Like hypotheses they can provide horizontal coherence across the steps in the research process.

Table  1 demonstrated these connections for deductive, descriptive and explanatory research. The arrow at the top emphasizes the horizontal or across the research process view we emphasize. This article makes the case that the working hypothesis can serve the same purpose as the hypothesis for deductive, explanatory research and categories for deductive descriptive research. The cells for exploratory research are filled in with question marks.

Table 1

Connecting research purpose and frameworks for deductive inquiry

The remainder of this paper focuses on exploratory research and the answers to questions found in the table:

  • What is the philosophical underpinning of exploratory, deductive research?
  • What is the Micro-conceptual framework for deductive exploratory research? [ As is clear from the article title we introduce the working hypothesis as the answer .]
  • How does the working hypothesis inform the methodologies and evidence collection of deductive exploratory research?
  • How does the working hypothesis inform data analysis of deductive exploratory research?

The nature of exploratory research purpose

Explorers enter the unknown to discover something new. The process can be fraught with struggle and surprises. Effective explorers creatively resolve unexpected problems. While we typically think of explorers as pioneers or mountain climbers, exploration is very much linked to the experience and intention of the explorer. Babies explore as they take their first steps. The exploratory purpose resonates with these insights. Exploratory research, like reconnaissance, is a type of inquiry that is in the preliminary or early stages (Babbie 2007 ). It is associated with discovery, creativity and serendipity (Stebbins 2001 ). But the person doing the discovery, also defines the activity or claims the act of exploration. It “typically occurs when a researcher examines a new interest or when the subject of study itself is relatively new” (Babbie 2007 , p. 88). Hence, exploration has an open character that emphasizes “flexibility, pragmatism, and the particular, biographically specific interests of an investigator” (Maanen et al. 2001 , p. v). These three purposes form a type of hierarchy. An area of inquiry is initially explored . This early work lays the ground for, description which in turn becomes the basis for explanation . Quantitative, explanatory studies dominate contemporary high impact journals (Twining et al. 2017 ).

Stebbins ( 2001 ) makes the point that exploration is often seen as something like a poor stepsister to confirmatory or hypothesis testing research. He has a problem with this because we live in a changing world and what is settled today will very likely be unsettled in the near future and in need of exploration. Further, exploratory research “generates initial insights into the nature of an issue and develops questions to be investigated by more extensive studies” (Marlow 2005 , p. 334). Exploration is widely applicable because all research topics were once “new.” Further, all research topics have the possibility of “innovation” or ongoing “newness”. Exploratory research may be appropriate to establish whether a phenomenon exists (Strydom 2013 ). The point here, of course, is that the exploratory purpose is far from trivial.

Stebbins’ Exploratory Research in the Social Sciences ( 2001 ), is the only book devoted to the nature of exploratory research as a form of social science inquiry. He views it as a “broad-ranging, purposive, systematic prearranged undertaking designed to maximize the discovery of generalizations leading to description and understanding of an area of social or psychological life” (p. 3). It is science conducted in a way distinct from confirmation. According to Stebbins ( 2001 , p. 6) the goal is discovery of potential generalizations, which can become future hypotheses and eventually theories that emerge from the data. He focuses on inductive logic (which stimulates creativity) and qualitative methods. He does not want exploratory research limited to the restrictive formulas and models he finds in confirmatory research. He links exploratory research to Glaser and Strauss’s ( 1967 ) flexible, immersive, Grounded Theory. Strydom’s ( 2013 ) analysis of contemporary social work research methods books echoes Stebbins’ ( 2001 ) position. Stebbins’s book is an important contribution, but it limits the potential scope of this flexible and versatile research purpose. If we accepted his conclusion, we would delete the “Exploratory” row from Table  1 .

Note that explanatory research can yield new questions, which lead to exploration. Inquiry is a process where inductive and deductive activities can occur simultaneously or in a back and forth manner, particularly as the literature is reviewed and the research design emerges. 1 Strict typologies such as explanation, description and exploration or inductive/deductive can obscures these larger connections and processes. We draw insight from Dewey’s ( 1896 ) vision of inquiry as depicted in his seminal “Reflex Arc” article. He notes that “stimulus” and “response” like other dualities (inductive/deductive) exist within a larger unifying system. Yet the terms have value. “We need not abandon terms like stimulus and response, so long as we remember that they are attached to events based upon their function in a wider dynamic context, one that includes interests and aims” (Hildebrand 2008 , p. 16). So too, in methodology typologies such as deductive/inductive capture useful distinctions with practical value and are widely used in the methodology literature.

We argue that there is a role for exploratory, deductive, and confirmatory research. We maintain all types of research logics and methods should be in the toolbox of exploratory research. First, as stated above, it makes no sense on its face to identify an extremely flexible purpose that is idiosyncratic to the researcher and then basically restrict its use to qualitative, inductive, non-confirmatory methods. Second, Stebbins’s ( 2001 ) work focused on social science ignoring the policy sciences. Exploratory research can be ideal for immediate practical problems faced by policy makers, who could find a framework of some kind useful. Third, deductive, exploratory research is more intentionally connected to previous research. Some kind of initial framing device is located or designed using the literature. This may be very important for new scholars who are developing research skills and exploring their field and profession. Stebbins’s insights are most pertinent for experienced scholars. Fourth, frameworks and deductive logic are useful for comparative work because some degree of consistency across cases is built into the design.

As we have seen, the hypotheses of explanatory and categories of descriptive research are the dominate frames of social science and policy science. We certainly concur that neither of these frames makes a lot of sense for exploratory research. They would tend to tie it down. We see the problem as a missing framework or missing way to frame deductive, exploratory research in the methodology literature. Inductive exploratory research would not work for many case studies that are trying to use evidence to make an argument. What exploratory deductive case studies need is a framework that incorporates flexibility. This is even more true for comparative case studies. A framework of this sort could be usefully applied to policy research (Casula 2020a ), particularly evaluative policy research, and applied research generally. We propose the Working Hypothesis as a flexible conceptual framework and as a useful tool for doing exploratory studies. It can be used as an evaluative criterion particularly for process evaluation and is useful for student research because students can develop theorizing skills using the literature.

Table  1 included a column specifying the philosophical basis for each research purpose. Shifting gears to the philosophical underpinning of methodology provides useful additional context for examination of deductive, exploratory research.

What is a working hypothesis

The working hypothesis is first and foremost a hypothesis or a statement of expectation that is tested in action. The term “working” suggest that these hypotheses are subject to change, are provisional and the possibility of finding contradictory evidence is real. In addition, a “working” hypothesis is active, it is a tool in an ongoing process of inquiry. If one begins with a research question, the working hypothesis could be viewed as a statement or group of statements that answer the question. It “works” to move purposeful inquiry forward. “Working” also implies some sort of community, mostly we work together in relationship to achieve some goal.

Working Hypothesis is a term found in earlier literature. Indeed, both pioneering pragmatists, John Dewey and George Herbert Mead use the term working hypothesis in important nineteenth century works. For both Dewey and Mead, the notion of a working hypothesis has a self-evident quality and it is applied in a big picture context. 2

Most notably, Dewey ( 1896 ), in one of his most pivotal early works (“Reflex Arc”), used “working hypothesis” to describe a key concept in psychology. “The idea of the reflex arc has upon the whole come nearer to meeting this demand for a general working hypothesis than any other single concept (Italics added)” (p. 357). The notion of a working hypothesis was developed more fully 42 years later, in Logic the Theory of Inquiry , where Dewey developed the notion of a working hypothesis that operated on a smaller scale. He defines working hypotheses as a “provisional, working means of advancing investigation” (Dewey 1938 , pp. 142). Dewey’s definition suggests that working hypotheses would be useful toward the beginning of a research project (e.g., exploratory research).

Mead ( 1899 ) used working hypothesis in a title of an American Journal of Sociology article “The Working Hypothesis and Social Reform” (italics added). He notes that a scientist’s foresight goes beyond testing a hypothesis.

Given its success, he may restate his world from this standpoint and get the basis for further investigation that again always takes the form of a problem. The solution of this problem is found over again in the possibility of fitting his hypothetical proposition into the whole within which it arises. And he must recognize that this statement is only a working hypothesis at the best, i.e., he knows that further investigation will show that the former statement of his world is only provisionally true, and must be false from the standpoint of a larger knowledge, as every partial truth is necessarily false over against the fuller knowledge which he will gain later (Mead 1899 , p. 370).

Cronbach ( 1975 ) developed a notion of working hypothesis consistent with inductive reasoning, but for him, the working hypothesis is a product or result of naturalistic inquiry. He makes the case that naturalistic inquiry is highly context dependent and therefore results or seeming generalizations that may come from a study and should be viewed as “working hypotheses”, which “are tentative both for the situation in which they first uncovered and for other situations” (as cited in Gobo 2008 , p. 196).

A quick Google scholar search using the term “working hypothesis” show that it is widely used in twentieth and twenty-first century science, particularly in titles. In these articles, the working hypothesis is treated as a conceptual tool that furthers investigation in its early or transitioning phases. We could find no explicit links to exploratory research. The exploratory nature of the problem is expressed implicitly. Terms such as “speculative” (Habib 2000 , p. 2391) or “rapidly evolving field” (Prater et al. 2007 , p. 1141) capture the exploratory nature of the study. The authors might describe how a topic is “new” or reference “change”. “As a working hypothesis, the picture is only new, however, in its interpretation” (Milnes 1974 , p. 1731). In a study of soil genesis, Arnold ( 1965 , p. 718) notes “Sequential models, formulated as working hypotheses, are subject to further investigation and change”. Any 2020 article dealing with COVID-19 and respiratory distress would be preliminary almost by definition (Ciceri et al. 2020 ).

Philosophical roots of methodology

According to Kaplan ( 1964 , p. 23) “the aim of methodology is to help us understand, in the broadest sense not the products of scientific inquiry but the process itself”. Methods contain philosophical principles that distinguish them from other “human enterprises and interests” (Kaplan 1964 , p. 23). Contemporary research methodology is generally classified as quantitative, qualitative and mixed methods. Leading scholars of methodology have associated each with a philosophical underpinning—positivism (or post-positivism), interpretivism or constructivist and pragmatism, respectively (Guba 1987 ; Guba and Lincoln 1981 ; Schrag 1992 ; Stebbins 2001 ; Mackenzi and Knipe 2006 ; Atieno 2009 ; Levers 2013 ; Morgan 2007 ; O’Connor et al. 2008 ; Johnson and Onwuegbuzie 2004 ; Twining et al. 2017 ). This section summarizes how the literature often describes these philosophies and informs contemporary methodology and its literature.

Positivism and its more contemporary version, post-positivism, maintains an objectivist ontology or assumes an objective reality, which can be uncovered (Levers 2013 ; Twining et al. 2017 ). 3 Time and context free generalizations are possible and “real causes of social scientific outcomes can be determined reliably and validly (Johnson and Onwuegbunzie 2004 , p. 14). Further, “explanation of the social world is possible through a logical reduction of social phenomena to physical terms”. It uses an empiricist epistemology which “implies testability against observation, experimentation, or comparison” (Whetsell and Shields 2015 , pp. 420–421). Correspondence theory, a tenet of positivism, asserts that “to each concept there corresponds a set of operations involved in its scientific use” (Kaplan 1964 , p. 40).

The interpretivist, constructivists or post-modernist approach is a reaction to positivism. It uses a relativist ontology and a subjectivist epistemology (Levers 2013 ). In this world of multiple realities, context free generalities are impossible as is the separation of facts and values. Causality, explanation, prediction, experimentation depend on assumptions about the correspondence between concepts and reality, which in the absence of an objective reality is impossible. Empirical research can yield “contextualized emergent understanding rather than the creation of testable theoretical structures” (O’Connor et al. 2008 , p. 30). The distinctively different world views of positivist/post positivist and interpretivist philosophy is at the core of many controversies in methodology, social and policy science literature (Casula 2020b ).

With its focus on dissolving dualisms, pragmatism steps outside the objective/subjective debate. Instead, it asks, “what difference would it make to us if the statement were true” (Kaplan 1964 , p. 42). Its epistemology is connected to purposeful inquiry. Pragmatism has a “transformative, experimental notion of inquiry” anchored in pluralism and a focus on constructing conceptual and practical tools to resolve “problematic situations” (Shields 1998 ; Shields and Rangarajan 2013 ). Exploration and working hypotheses are most comfortably situated within the pragmatic philosophical perspective.

Research approaches

Empirical investigation relies on three types of methodology—quantitative, qualitative and mixed methods.

Quantitative methods

Quantitative methods uses deductive logic and formal hypotheses or models to explain, predict, and eventually establish causation (Hyde 2000 ; Kaplan 1964 ; Johnson and Onwuegbunzie 2004 ; Morgan 2007 ). 4 The correspondence between the conceptual and empirical world make measures possible. Measurement assigns numbers to objects, events or situations and allows for standardization and subtle discrimination. It also allows researchers to draw on the power of mathematics and statistics (Kaplan 1964 , pp. 172–174). Using the power of inferential statistics, quantitative research employs research designs, which eliminate competing hypotheses. It is high in external validity or the ability to generalize to the whole. The research results are relatively independent of the researcher (Johnson & Onwuegbunzie 2004 ).

Quantitative methods depend on the quality of measurement and a priori conceptualization, and adherence to the underlying assumptions of inferential statistics. Critics charge that hypotheses and frameworks needlessly constrain inquiry (Johnson and Onwuegbunzie 2004 , p. 19). Hypothesis testing quantitative methods support the explanatory purpose.

Qualitative methods

Qualitative researchers who embrace the post-modern, interpretivist view, 5 question everything about the nature of quantitative methods (Willis et al. 2007 ). Rejecting the possibility of objectivity, correspondence between ideas and measures, and the constraints of a priori theorizing they focus on “unique impressions and understandings of events rather than to generalize the findings” (Kolb 2012 , p. 85). Characteristics of traditional qualitative research include “induction, discovery, exploration, theory/hypothesis generation and the researcher as the primary ‘instrument’ of data collection” (Johnson and Onwuegbunzie 2004 , p. 18). It also concerns itself with forming “unique impressions and understandings of events rather than to generalize findings” (Kolb 2012 , p. 85). The data of qualitative methods are generated via interviews, direct observation, focus groups and analysis of written records or artifacts.

Qualitative methods provide for understanding and “description of people’s personal experiences of phenomena”. They enable descriptions of detailed “phenomena as they are situated and embedded in local contexts.” Researchers use naturalistic settings to “study dynamic processes” and explore how participants interpret experiences. Qualitative methods have an inherent flexibility, allowing researchers to respond to changes in the research setting. They are particularly good at narrowing to the particular and on the flipside have limited external validity (Johnson and Onwuegbunzie 2004 , p. 20). Instead of specifying a suitable sample size to draw conclusions, qualitative research uses the notion of saturation (Morse 1995 ).

Saturation is used in grounded theory—a widely used and respected form of qualitative research, and a well-known interpretivist qualitative research method. Introduced by Glaser and Strauss ( 1967 ), this “grounded on observation” (Patten and Newhart 2000 , p. 27) methodology, focuses on “the creation of emergent understanding” (O’Connor et al. 2008 , p. 30). It uses the Constant Comparative method, whereby researchers develop theory from data as they code and analyze at the same time. Data collection, coding and analysis along with theoretical sampling are systematically combined to generate theory (Kolb 2012 , p. 83). The qualitative methods discussed here support exploratory research.

A close look at the two philosophies and assumptions of quantitative and qualitative research suggests two contradictory world views. The literature has labeled these contradictory views the Incompatibility Theory, which sets up a quantitative versus qualitative tension similar to the seeming separation of art and science or fact and values (Smith 1983a , b ; Guba 1987 ; Smith and Heshusius 1986 ; Howe 1988 ). The incompatibility theory does not make sense in practice. Yin ( 1981 , 1992 , 2011 , 2017 ), a prominent case study scholar, showcases a deductive research methodology that crosses boundaries using both quantaitive and qualitative evidence when appropriate.

Mixed methods

Turning the “Incompatibility Theory” on its head, Mixed Methods research “combines elements of qualitative and quantitative research approaches … for the broad purposes of breadth and depth of understanding and corroboration” (Johnson et al. 2007 , p. 123). It does this by partnering with philosophical pragmatism. 6 Pragmatism is productive because “it offers an immediate and useful middle position philosophically and methodologically; it offers a practical and outcome-oriented method of inquiry that is based on action and leads, iteratively, to further action and the elimination of doubt; it offers a method for selecting methodological mixes that can help researchers better answer many of their research questions” (Johnson and Onwuegbunzie 2004 , p. 17). What is theory for the pragmatist “any theoretical model is for the pragmatist, nothing more than a framework through which problems are perceived and subsequently organized ” (Hothersall 2019 , p. 5).

Brendel ( 2009 ) constructed a simple framework to capture the core elements of pragmatism. Brendel’s four “p”’s—practical, pluralism, participatory and provisional help to show the relevance of pragmatism to mixed methods. Pragmatism is purposeful and concerned with the practical consequences. The pluralism of pragmatism overcomes quantitative/qualitative dualism. Instead, it allows for multiple perspectives (including positivism and interpretivism) and, thus, gets around the incompatibility problem. Inquiry should be participatory or inclusive of the many views of participants, hence, it is consistent with multiple realities and is also tied to the common concern of a problematic situation. Finally, all inquiry is provisional . This is compatible with experimental methods, hypothesis testing and consistent with the back and forth of inductive and deductive reasoning. Mixed methods support exploratory research.

Advocates of mixed methods research note that it overcomes the weaknesses and employs the strengths of quantitative and qualitative methods. Quantitative methods provide precision. The pictures and narrative of qualitative techniques add meaning to the numbers. Quantitative analysis can provide a big picture, establish relationships and its results have great generalizability. On the other hand, the “why” behind the explanation is often missing and can be filled in through in-depth interviews. A deeper and more satisfying explanation is possible. Mixed-methods brings the benefits of triangulation or multiple sources of evidence that converge to support a conclusion. It can entertain a “broader and more complete range of research questions” (Johnson and Onwuegbunzie 2004 , p. 21) and can move between inductive and deductive methods. Case studies use multiple forms of evidence and are a natural context for mixed methods.

One thing that seems to be missing from mixed method literature and explicit design is a place for conceptual frameworks. For example, Heyvaert et al. ( 2013 ) examined nine mixed methods studies and found an explicit framework in only two studies (transformative and pragmatic) (p. 663).

Theory and hypotheses: where is and what is theory?

Theory is key to deductive research. In essence, empirical deductive methods test theory. Hence, we shift our attention to theory and the role and functions of the hypotheses in theory. Oppenheim and Putnam ( 1958 ) note that “by a ‘theory’ (in the widest sense) we mean any hypothesis, generalization or law (whether deterministic or statistical) or any conjunction of these” (p. 25). Van Evera ( 1997 ) uses a similar and more complex definition “theories are general statements that describe and explain the causes of effects of classes of phenomena. They are composed of causal laws or hypotheses, explanations, and antecedent conditions” (p. 8). Sutton and Staw ( 1995 , p. 376) in a highly cited article “What Theory is Not” assert the that hypotheses should contain logical arguments for “why” the hypothesis is expected. Hypotheses need an underlying causal argument before they can be considered theory. The point of this discussion is not to define theory but to establish the importance of hypotheses in theory.

Explanatory research is implicitly relational (A explains B). The hypotheses of explanatory research lay bare these relationships. Popular definitions of hypotheses capture this relational component. For example, the Cambridge Dictionary defines a hypothesis a “an idea or explanation for something that is based on known facts but has not yet been proven”. Vocabulary.Com’s definition emphasizes explanation, a hypothesis is “an idea or explanation that you then test through study and experimentation”. According to Wikipedia a hypothesis is “a proposed explanation for a phenomenon”. Other definitions remove the relational or explanatory reference. The Oxford English Dictionary defines a hypothesis as a “supposition or conjecture put forth to account for known facts.” Science Buddies defines a hypothesis as a “tentative, testable answer to a scientific question”. According to the Longman Dictionary the hypothesis is “an idea that can be tested to see if it is true or not”. The Urban Dictionary states a hypothesis is “a prediction or educated-guess based on current evidence that is yet be tested”. We argue that the hypotheses of exploratory research— working hypothesis — are not bound by relational expectations. It is this flexibility that distinguishes the working hypothesis.

Sutton and Staw (1995) maintain that hypotheses “serve as crucial bridges between theory and data, making explicit how the variables and relationships that follow from a logical argument will be operationalized” (p. 376, italics added). The highly rated journal, Computers and Education , Twining et al. ( 2017 ) created guidelines for qualitative research as a way to improve soundness and rigor. They identified the lack of alignment between theoretical stance and methodology as a common problem in qualitative research. In addition, they identified a lack of alignment between methodology, design, instruments of data collection and analysis. The authors created a guidance summary, which emphasized the need to enhance coherence throughout elements of research design (Twining et al. 2017 p. 12). Perhaps the bridging function of the hypothesis mentioned by Sutton and Staw (1995) is obscured and often missing in qualitative methods. Working hypotheses can be a tool to overcome this problem.

For reasons, similar to those used by mixed methods scholars, we look to classical pragmatism and the ideas of John Dewey to inform our discussion of theory and working hypotheses. Dewey ( 1938 ) treats theory as a tool of empirical inquiry and uses a map metaphor (p. 136). Theory is like a map that helps a traveler navigate the terrain—and should be judged by its usefulness. “There is no expectation that a map is a true representation of reality. Rather, it is a representation that allows a traveler to reach a destination (achieve a purpose). Hence, theories should be judged by how well they help resolve the problem or achieve a purpose ” (Shields and Rangarajan 2013 , p. 23). Note that we explicitly link theory to the research purpose. Theory is never treated as an unimpeachable Truth, rather it is a helpful tool that organizes inquiry connecting data and problem. Dewey’s approach also expands the definition of theory to include abstractions (categories) outside of causation and explanation. The micro-conceptual frameworks 7 introduced in Table  1 are a type of theory. We define conceptual frameworks as the “way the ideas are organized to achieve the project’s purpose” (Shields and Rangarajan 2013 p. 24). Micro-conceptual frameworks do this at the very close to the data level of analysis. Micro-conceptual frameworks can direct operationalization and ways to assess measurement or evidence at the individual research study level. Again, the research purpose plays a pivotal role in the functioning of theory (Shields and Tajalli 2006 ).

Working hypothesis: methods and data analysis

We move on to answer the remaining questions in the Table  1 . We have established that exploratory research is extremely flexible and idiosyncratic. Given this, we will proceed with a few examples and draw out lessons for developing an exploratory purpose, building a framework and from there identifying data collection techniques and the logics of hypotheses testing and analysis. Early on we noted the value of the Working Hypothesis framework for student empirical research and applied research. The next section uses a masters level student’s work to illustrate the usefulness of working hypotheses as a way to incorporate the literature and structure inquiry. This graduate student was also a mature professional with a research question that emerged from his job and is thus an example of applied research.

Master of Public Administration student, Swift ( 2010 ) worked for a public agency and was responsible for that agency’s sexual harassment training. The agency needed to evaluate its training but had never done so before. He also had never attempted a significant empirical research project. Both of these conditions suggest exploration as a possible approach. He was interested in evaluating the training program and hence the project had a normative sense. Given his job, he already knew a lot about the problem of sexual harassment and sexual harassment training. What he did not know much about was doing empirical research, reviewing the literature or building a framework to evaluate the training (working hypotheses). He wanted a framework that was flexible and comprehensive. In his research, he discovered Lundvall’s ( 2006 ) knowledge taxonomy summarized with four simple ways of knowing ( Know - what, Know - how, Know - why, Know - who ). He asked whether his agency’s training provided the participants with these kinds of knowledge? Lundvall’s categories of knowing became the basis of his working hypotheses. Lundvall’s knowledge taxonomy is well suited for working hypotheses because it is so simple and is easy to understand intuitively. It can also be tailored to the unique problematic situation of the researcher. Swift ( 2010 , pp. 38–39) developed four basic working hypotheses:

  • WH1: Capital Metro provides adequate know - what knowledge in its sexual harassment training
  • WH2: Capital Metro provides adequate know - how knowledge in its sexual harassment training
  • WH3: Capital Metro provides adequate know - why knowledge in its sexual harassment training
  • WH4: Capital Metro provides adequate know - who knowledge in its sexual harassment training

From here he needed to determine what would determine the different kinds of knowledge. For example, what constitutes “know what” knowledge for sexual harassment training. This is where his knowledge and experience working in the field as well as the literature come into play. According to Lundvall et al. ( 1988 , p. 12) “know what” knowledge is about facts and raw information. Swift ( 2010 ) learned through the literature that laws and rules were the basis for the mandated sexual harassment training. He read about specific anti-discrimination laws and the subsequent rules and regulations derived from the laws. These laws and rules used specific definitions and were enacted within a historical context. Laws, rules, definitions and history became the “facts” of Know-What knowledge for his working hypothesis. To make this clear, he created sub-hypotheses that explicitly took these into account. See how Swift ( 2010 , p. 38) constructed the sub-hypotheses below. Each sub-hypothesis was defended using material from the literature (Swift 2010 , pp. 22–26). The sub-hypotheses can also be easily tied to evidence. For example, he could document that the training covered anti-discrimination laws.

WH1: Capital Metro provides adequate know - what knowledge in its sexual Harassment training

  • WH1a: The sexual harassment training includes information on anti-discrimination laws (Title VII).
  • WH1b: The sexual harassment training includes information on key definitions.
  • WH1c: The sexual harassment training includes information on Capital Metro’s Equal Employment Opportunity and Harassment policy.
  • WH1d: Capital Metro provides training on sexual harassment history.

Know-How knowledge refers to the ability to do something and involves skills (Lundvall and Johnson 1994 , p. 12). It is a kind of expertise in action. The literature and his experience allowed James Smith to identify skills such as how to file a claim or how to document incidents of sexual harassment as important “know-how” knowledge that should be included in sexual harassment training. Again, these were depicted as sub-hypotheses.

WH2: Capital Metro provides adequate know - how knowledge in its sexual Harassment training

  • WH2a: Training is provided on how to file and report a claim of harassment
  • WH2b: Training is provided on how to document sexual harassment situations.
  • WH2c: Training is provided on how to investigate sexual harassment complaints.
  • WH2d: Training is provided on how to follow additional harassment policy procedures protocol

Note that the working hypotheses do not specify a relationship but rather are simple declarative sentences. If “know-how” knowledge was found in the sexual harassment training, he would be able to find evidence that participants learned about how to file a claim (WH2a). The working hypothesis provides the bridge between theory and data that Sutton and Staw (1995) found missing in exploratory work. The sub-hypotheses are designed to be refined enough that the researchers would know what to look for and tailor their hunt for evidence. Figure  1 captures the generic sub-hypothesis design.

An external file that holds a picture, illustration, etc.
Object name is 11135_2020_1072_Fig1_HTML.jpg

A Common structure used in the development of working hypotheses

When expected evidence is linked to the sub-hypotheses, data, framework and research purpose are aligned. This can be laid out in a planning document that operationalizes the data collection in something akin to an architect’s blueprint. This is where the scholar explicitly develops the alignment between purpose, framework and method (Shields and Rangarajan 2013 ; Shields et al. 2019b ).

Table  2 operationalizes Swift’s working hypotheses (and sub-hypotheses). The table provide clues as to what kind of evidence is needed to determine whether the hypotheses are supported. In this case, Smith used interviews with participants and trainers as well as a review of program documents. Column one repeats the sub-hypothesis, column two specifies the data collection method (here interviews with participants/managers and review of program documents) and column three specifies the unique questions that focus the investigation. For example, the interview questions are provided. In the less precise world of qualitative data, evidence supporting a hypothesis could have varying degrees of strength. This too can be specified.

Table 2

Operationalization of the working hypotheses: an example

For Swift’s example, neither the statistics of explanatory research nor the open-ended questions of interpretivist, inductive exploratory research is used. The deductive logic of inquiry here is somewhat intuitive and similar to a detective (Ulriksen and Dadalauri 2016 ). It is also a logic used in international law (Worster 2013 ). It should be noted that the working hypothesis and the corresponding data collection protocol does not stop inquiry and fieldwork outside the framework. The interviews could reveal an unexpected problem with Smith’s training program. The framework provides a very loose and perhaps useful ways to identify and make sense of the data that does not fit the expectations. Researchers using working hypotheses should be sensitive to interesting findings that fall outside their framework. These could be used in future studies, to refine theory or even in this case provide suggestions to improve sexual harassment training. The sensitizing concepts mentioned by Gilgun ( 2015 ) are free to emerge and should be encouraged.

Something akin to working hypotheses are hidden in plain sight in the professional literature. Take for example Kerry Crawford’s ( 2017 ) book Wartime Sexual Violence. Here she explores how basic changes in the way “advocates and decision makers think about and discuss conflict-related sexual violence” (p. 2). She focused on a subsequent shift from silence to action. The shift occurred as wartime sexual violence was reframed as a “weapon of war”. The new frame captured the attention of powerful members of the security community who demanded, initiated, and paid for institutional and policy change. Crawford ( 2017 ) examines the legacy of this key reframing. She develops a six-stage model of potential international responses to incidents of wartime violence. This model is fairly easily converted to working hypotheses and sub-hypotheses. Table  3 shows her model as a set of (non-relational) working hypotheses. She applied this model as a way to gather evidence among cases (e.g., the US response to sexual violence in the Democratic Republic of the Congo) to show the official level of response to sexual violence. Each case study chapter examined evidence to establish whether the case fit the pattern formalized in the working hypotheses. The framework was very useful in her comparative context. The framework allowed for consistent comparative analysis across cases. Her analysis of the three cases went well beyond the material covered in the framework. She freely incorporated useful inductively informed data in her analysis and discussion. The framework, however, allowed for alignment within and across cases.

Table 3

Example illustrating a set of working hypotheses as a framework for comparative case studies

Source : Adaptation from Table 1.1 of Crawford’s ( 2017 ) book Wartime Sexual Violence

In this article we argued that the exploratory research is also well suited for deductive approaches. By examining the landscape of deductive, exploratory research, we proposed the working hypothesis as a flexible conceptual framework and a useful tool for doing exploratory studies. It has the potential to guide and bring coherence across the steps in the research process. After presenting the nature of exploratory research purpose and how it differs from two types of research purposes identified in the literature—explanation, and description. We focused on answering four different questions in order to show the link between micro-conceptual frameworks and research purposes in a deductive setting. The answers to the four questions are summarized in Table  4 .

Table 4

Linking micro-conceptual frameworks and research purposes in deductive research

Firstly, we argued that working hypothesis and exploration are situated within the pragmatic philosophical perspective. Pragmatism allows for pluralism in theory and data collection techniques, which is compatible with the flexible exploratory purpose. Secondly, after introducing and discussing the four core elements of pragmatism (practical, pluralism, participatory, and provisional), we explained how the working hypothesis informs the methodologies and evidence collection of deductive exploratory research through a presentation of the benefits of triangulation provided by mixed methods research. Thirdly, as is clear from the article title, we introduced the working hypothesis as the micro-conceptual framework for deductive explorative research. We argued that the hypotheses of explorative research, which we call working hypotheses are distinguished from those of the explanatory research, since they do not require a relational component and are not bound by relational expectations. A working hypothesis is extremely flexible and idiosyncratic, and it could be viewed as a statement or group of statements of expectations tested in action depending on the research question. Using examples, we concluded by explaining how working hypotheses inform data collection and analysis for deductive exploratory research.

Crawford’s ( 2017 ) example showed how the structure of working hypotheses provide a framework for comparative case studies. Her criteria for analysis were specified ahead of time and used to frame each case. Thus, her comparisons were systemized across cases. Further, the framework ensured a connection between the data analysis and the literature review. Yet the flexible, working nature of the hypotheses allowed for unexpected findings to be discovered.

The evidence required to test working hypotheses is directed by the research purpose and potentially includes both quantitative and qualitative sources. Thus, all types of evidence, including quantitative methods should be part of the toolbox of deductive, explorative research. We show how the working hypotheses, as a flexible exploratory framework, resolves many seeming dualisms pervasive in the research methods literature.

To conclude, this article has provided an in-depth examination of working hypotheses taking into account philosophical questions and the larger formal research methods literature. By discussing working hypotheses as applied, theoretical tools, we demonstrated that working hypotheses fill a unique niche in the methods literature, since they provide a way to enhance alignment in deductive, explorative studies.

Acknowledgements

The authors contributed equally to this work. The authors would like to thank Quality & Quantity’ s editors and the anonymous reviewers for their valuable advice and comments on previous versions of this paper.

Open access funding provided by Alma Mater Studiorum - Università di Bologna within the CRUI-CARE Agreement. There are no funders to report for this submission.

Compliance with ethical standards

No potential conflict of interest was reported by the author.

1 In practice, quantitative scholars often run multivariate analysis on data bases to find out if there are correlations. Hypotheses are tested because the statistical software does the math, not because the scholar has an a priori, relational expectation (hypothesis) well-grounded in the literature and supported by cogent arguments. Hunches are just fine. This is clearly an inductive approach to research and part of the large process of inquiry.

2 In 1958 , Philosophers of Science, Oppenheim and Putnam use the notion of Working Hypothesis in their title “Unity of Science as Working Hypothesis.” They too, use it as a big picture concept, “unity of science in this sense, can be fully realized constitutes an over-arching meta-scientific hypothesis, which enables one to see a unity in scientific activities that might otherwise appear disconnected or unrelated” (p. 4).

3 It should be noted that the positivism described in the research methods literature does not resemble philosophical positivism as developed by philosophers like Comte (Whetsell and Shields 2015 ). In the research methods literature “positivism means different things to different people….The term has long been emptied of any precise denotation …and is sometimes affixed to positions actually opposed to those espoused by the philosophers from whom the name derives” (Schrag 1992 , p. 5). For purposes of this paper, we are capturing a few essential ways positivism is presented in the research methods literature. This helps us to position the “working hypothesis” and “exploratory” research within the larger context in contemporary research methods. We are not arguing that the positivism presented here is anything more. The incompatibility theory discussed later, is an outgrowth of this research methods literature…

4 It should be noted that quantitative researchers often use inductive reasoning. They do this with existing data sets when they run correlations or regression analysis as a way to find relationships. They ask, what does the data tell us?

5 Qualitative researchers are also associated with phenomenology, hermeneutics, naturalistic inquiry and constructivism.

6 See Feilzer ( 2010 ), Howe ( 1988 ), Johnson and Onwuegbunzie ( 2004 ), Morgan ( 2007 ), Onwuegbuzie and Leech ( 2005 ), Biddle and Schafft ( 2015 ).

7 The term conceptual framework is applicable in a broad context (see Ravitch and Riggan 2012 ). The micro-conceptual framework narrows to the specific study and informs data collection (Shields and Rangarajan 2013 ; Shields et al. 2019a ) .

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Contributor Information

Mattia Casula, Email: [email protected] .

Nandhini Rangarajan, Email: ude.etatsxt@11rn .

Patricia Shields, Email: ude.etatsxt@70sp .

  • Adler E, Clark R. How It’s Done: An Invitation to Social Research. 3. Belmont: Thompson-Wadsworth; 2008. [ Google Scholar ]
  • Arnold RW. Multiple working hypothesis in soil genesis. Soil Sci. Soc. Am. J. 1965; 29 (6):717–724. doi: 10.2136/sssaj1965.03615995002900060034x. [ CrossRef ] [ Google Scholar ]
  • Atieno O. An analysis of the strengths and limitation of qualitative and quantitative research paradigms. Probl. Educ. 21st Century. 2009; 13 :13–18. [ Google Scholar ]
  • Babbie E. The Practice of Social Research. 11. Belmont: Thompson-Wadsworth; 2007. [ Google Scholar ]
  • Biddle C, Schafft KA. Axiology and anomaly in the practice of mixed methods work: pragmatism, valuation, and the transformative paradigm. J. Mixed Methods Res. 2015; 9 (4):320–334. doi: 10.1177/1558689814533157. [ CrossRef ] [ Google Scholar ]
  • Brendel DH. Healing Psychiatry: Bridging the Science/Humanism Divide. Cambridge: MIT Press; 2009. [ Google Scholar ]
  • Bryman A. Qualitative Research on Leadership: A Critical but Appreciative Review. Leadersh. Q. 2004; 15 (6):729–769. doi: 10.1016/j.leaqua.2004.09.007. [ CrossRef ] [ Google Scholar ]
  • Casula, M.: Under which conditions is cohesion policy effective: proposing an Hirschmanian approach to EU structural funds, Regional & Federal Studies, 10.1080/13597566.2020.1713110 (2020a)
  • Casula, M.: Economic gowth and cohesion policy implementation in Italy and Spain, Palgrave Macmillan, Cham (2020b)
  • Ciceri F, et al. Microvascular COVID-19 lung vessels obstructive thromboinflammatory syndrome (MicroCLOTS): an atypical acute respiratory distress syndrome working hypothesis. Crit. Care Resusc. 2020; 15 :1–3. [ PubMed ] [ Google Scholar ]
  • Crawford, K.F.: Wartime sexual violence: From silence to condemnation of a weapon of war. Georgetown University Press (2017)
  • Cronbach, L.: Beyond the two disciplines of scientific psychology American Psychologist. 30 116–127 (1975)
  • Dewey J. The reflex arc concept in psychology. Psychol. Rev. 1896; 3 (4):357. doi: 10.1037/h0070405. [ CrossRef ] [ Google Scholar ]
  • Dewey J. Logic: The Theory of Inquiry. New York: Henry Holt & Co; 1938. [ Google Scholar ]
  • Feilzer Y. Doing mixed methods research pragmatically: implications for the rediscovery of pragmatism as a research paradigm. J. Mixed Methods Res. 2010; 4 (1):6–16. doi: 10.1177/1558689809349691. [ CrossRef ] [ Google Scholar ]
  • Gilgun JF. Qualitative research and family psychology. J. Fam. Psychol. 2005; 19 (1):40–50. doi: 10.1037/0893-3200.19.1.40. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Gilgun, J.F.: Methods for enhancing theory and knowledge about problems, policies, and practice. In: Katherine Briar, Joan Orme., Roy Ruckdeschel., Ian Shaw. (eds.) The Sage handbook of social work research pp. 281–297. Thousand Oaks, CA: Sage (2009)
  • Gilgun JF. Deductive Qualitative Analysis as Middle Ground: Theory-Guided Qualitative Research. Seattle: Amazon Digital Services LLC; 2015. [ Google Scholar ]
  • Glaser BG, Strauss AL. The Discovery of Grounded Theory: Strategies for Qualitative Research. Chicago: Aldine; 1967. [ Google Scholar ]
  • Gobo G. Re-Conceptualizing Generalization: Old Issues in a New Frame. In: Alasuutari P, Bickman L, Brannen J, editors. The Sage Handbook of Social Research Methods. Los Angeles: Sage; 2008. pp. 193–213. [ Google Scholar ]
  • Grinnell, R.M.: Social work research and evaluation: quantitative and qualitative approaches. New York: F.E. Peacock Publishers (2001)
  • Guba EG. What have we learned about naturalistic evaluation? Eval. Pract. 1987; 8 (1):23–43. doi: 10.1177/109821408700800102. [ CrossRef ] [ Google Scholar ]
  • Guba E, Lincoln Y. Effective Evaluation: Improving the Usefulness of Evaluation Results Through Responsive and Naturalistic Approaches. San Francisco: Jossey-Bass Publishers; 1981. [ Google Scholar ]
  • Habib M. The neurological basis of developmental dyslexia: an overview and working hypothesis. Brain. 2000; 123 (12):2373–2399. doi: 10.1093/brain/123.12.2373. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Heyvaert M, Maes B, Onghena P. Mixed methods research synthesis: definition, framework, and potential. Qual. Quant. 2013; 47 (2):659–676. doi: 10.1007/s11135-011-9538-6. [ CrossRef ] [ Google Scholar ]
  • Hildebrand D. Dewey: A Beginners Guide. Oxford: Oneworld Oxford; 2008. [ Google Scholar ]
  • Howe, K.R.: Against the quantitative-qualitative incompatibility thesis or dogmas die hard. Edu. Res. 17 (8), 10–16 (1988)
  • Hothersall, S.J.: Epistemology and social work: enhancing the integration of theory, practice and research through philosophical pragmatism. Eur. J. Social Work 22 (5), 860–870 (2019)
  • Hyde KF. Recognising deductive processes in qualitative research. Qual. Market Res. Int. J. 2000; 3 (2):82–90. doi: 10.1108/13522750010322089. [ CrossRef ] [ Google Scholar ]
  • Johnson RB, Onwuegbuzie AJ. Mixed methods research: a research paradigm whose time has come. Educ. Res. 2004; 33 (7):14–26. doi: 10.3102/0013189X033007014. [ CrossRef ] [ Google Scholar ]
  • Johnson RB, Onwuegbuzie AJ, Turner LA. Toward a definition of mixed methods research. J. Mixed Methods Res. 2007; 1 (2):112–133. doi: 10.1177/1558689806298224. [ CrossRef ] [ Google Scholar ]
  • Kaplan A. The Conduct of Inquiry. Scranton: Chandler; 1964. [ Google Scholar ]
  • Kolb SM. Grounded theory and the constant comparative method: valid research strategies for educators. J. Emerg. Trends Educ. Res. Policy Stud. 2012; 3 (1):83–86. [ Google Scholar ]
  • Levers, M.J.D.: Philosophical paradigms, grounded theory, and perspectives on emergence. Sage Open 3 (4), 2158244013517243 (2013)
  • Lundvall, B.A.: Knowledge management in the learning economy. In: Danish Research Unit for Industrial Dynamics Working Paper Working Paper, vol. 6, pp. 3–5 (2006)
  • Lundvall B-Å, Johnson B. Knowledge management in the learning economy. J. Ind. Stud. 1994; 1 (2):23–42. doi: 10.1080/13662719400000002. [ CrossRef ] [ Google Scholar ]
  • Lundvall B-Å, Jenson MB, Johnson B, Lorenz E, et al. Forms of Knowledge and Modes of Innovation—From User-Producer Interaction to the National System of Innovation. In: Dosi G, et al., editors. Technical Change and Economic Theory. London: Pinter Publishers; 1988. [ Google Scholar ]
  • Maanen, J., Manning, P., Miller, M.: Series editors’ introduction. In: Stebbins, R. (ed.) Exploratory research in the social sciences. pp. v–vi. Thousands Oak, CA: SAGE (2001)
  • Mackenzie N, Knipe S. Research dilemmas: paradigms, methods and methodology. Issues Educ. Res. 2006; 16 (2):193–205. [ Google Scholar ]
  • Marlow CR. Research Methods for Generalist Social Work. New York: Thomson Brooks/Cole; 2005. [ Google Scholar ]
  • Mead GH. The working hypothesis in social reform. Am. J. Sociol. 1899; 5 (3):367–371. doi: 10.1086/210897. [ CrossRef ] [ Google Scholar ]
  • Milnes AG. Structure of the Pennine Zone (Central Alps): a new working hypothesis. Geol. Soc. Am. Bull. 1974; 85 (11):1727–1732. doi: 10.1130/0016-7606(1974)85<1727:SOTPZC>2.0.CO;2. [ CrossRef ] [ Google Scholar ]
  • Morgan DL. Paradigms lost and pragmatism regained: methodological implications of combining qualitative and quantitative methods. J. Mixed Methods Res. 2007; 1 (1):48–76. doi: 10.1177/2345678906292462. [ CrossRef ] [ Google Scholar ]
  • Morse J. The significance of saturation. Qual. Health Res. 1995; 5 (2):147–149. doi: 10.1177/104973239500500201. [ CrossRef ] [ Google Scholar ]
  • O’Connor MK, Netting FE, Thomas ML. Grounded theory: managing the challenge for those facing institutional review board oversight. Qual. Inq. 2008; 14 (1):28–45. doi: 10.1177/1077800407308907. [ CrossRef ] [ Google Scholar ]
  • Onwuegbuzie, A.J., Leech, N.L.: On becoming a pragmatic researcher: The importance of combining quantitative and qualitative research methodologies. Int. J. Soc. Res. Methodol. 8 (5), 375–387 (2005)
  • Oppenheim, P., Putnam, H.: Unity of science as a working hypothesis. In: Minnesota Studies in the Philosophy of Science, vol. II, pp. 3–36 (1958)
  • Patten ML, Newhart M. Understanding Research Methods: An Overview of the Essentials. 2. New York: Routledge; 2000. [ Google Scholar ]
  • Pearse, N.: An illustration of deductive analysis in qualitative research. In: European Conference on Research Methodology for Business and Management Studies, pp. 264–VII. Academic Conferences International Limited (2019)
  • Prater DN, Case J, Ingram DA, Yoder MC. Working hypothesis to redefine endothelial progenitor cells. Leukemia. 2007; 21 (6):1141–1149. doi: 10.1038/sj.leu.2404676. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Ravitch B, Riggan M. Reason and Rigor: How Conceptual Frameworks Guide Research. Beverley Hills: Sage; 2012. [ Google Scholar ]
  • Reiter, B.: The epistemology and methodology of exploratory social science research: Crossing Popper with Marcuse. In: Government and International Affairs Faculty Publications. Paper 99. http://scholarcommons.usf.edu/gia_facpub/99 (2013)
  • Ritchie J, Lewis J. Qualitative Research Practice: A Guide for Social Science Students and Researchers. London: Sage; 2003. [ Google Scholar ]
  • Schrag F. In defense of positivist research paradigms. Educ. Res. 1992; 21 (5):5–8. doi: 10.3102/0013189X021005005. [ CrossRef ] [ Google Scholar ]
  • Shields, P.M.: Pragmatism as a philosophy of science: A tool for public administration. Res. Pub. Admin. 41995-225 (1998)
  • Shields, P.M., Rangarajan, N.: A Playbook for Research Methods: Integrating Conceptual Frameworks and Project Management. New Forums Press (2013)
  • Shields PM, Tajalli H. Intermediate theory: the missing link in successful student scholarship. J. Public Aff. Educ. 2006; 12 (3):313–334. doi: 10.1080/15236803.2006.12001438. [ CrossRef ] [ Google Scholar ]
  • Shields, P., & Whetsell, T.: Public administration methodology: A pragmatic perspective. In: Raadshelders, J., Stillman, R., (eds). Foundations of Public Administration, pp. 75–92. New York: Melvin and Leigh (2017)
  • Shields P, Rangarajan N, Casula M. It is a Working Hypothesis: Searching for Truth in a Post-Truth World (part I) Sotsiologicheskie issledovaniya. 2019; 10 :39–47. doi: 10.31857/S013216250007107-0. [ CrossRef ] [ Google Scholar ]
  • Shields P, Rangarajan N, Casula M. It is a Working Hypothesis: Searching for Truth in a Post-Truth World (part 2) Sotsiologicheskie issledovaniya. 2019; 11 :40–51. doi: 10.31857/S013216250007459-7. [ CrossRef ] [ Google Scholar ]
  • Smith JK. Quantitative versus qualitative research: an attempt to clarify the issue. Educ. Res. 1983; 12 (3):6–13. doi: 10.3102/0013189X012003006. [ CrossRef ] [ Google Scholar ]
  • Smith JK. Quantitative versus interpretive: the problem of conducting social inquiry. In: House E, editor. Philosophy of Evaluation. San Francisco: Jossey-Bass; 1983. pp. 27–52. [ Google Scholar ]
  • Smith JK, Heshusius L. Closing down the conversation: the end of the quantitative-qualitative debate among educational inquirers. Educ. Res. 1986; 15 (1):4–12. doi: 10.3102/0013189X015001004. [ CrossRef ] [ Google Scholar ]
  • Stebbins RA. Exploratory Research in the Social Sciences. Thousand Oaks: Sage; 2001. [ Google Scholar ]
  • Strydom H. An evaluation of the purposes of research in social work. Soc. Work/Maatskaplike Werk. 2013; 49 (2):149–164. [ Google Scholar ]
  • Sutton, R. I., Staw, B.M.: What theory is not. Administrative science quarterly. 371–384 (1995)
  • Swift, III, J.: Exploring Capital Metro’s Sexual Harassment Training using Dr. Bengt-Ake Lundvall’s taxonomy of knowledge principles. Applied Research Project, Texas State University https://digital.library.txstate.edu/handle/10877/3671 (2010)
  • Thomas E, Magilvy JK. Qualitative rigor or research validity in qualitative research. J. Spec. Pediatric Nurs. 2011; 16 (2):151–155. doi: 10.1111/j.1744-6155.2011.00283.x. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Twining P, Heller RS, Nussbaum M, Tsai CC. Some guidance on conducting and reporting qualitative studies. Comput. Educ. 2017; 107 :A1–A9. doi: 10.1016/j.compedu.2016.12.002. [ CrossRef ] [ Google Scholar ]
  • Ulriksen M, Dadalauri N. Single case studies and theory-testing: the knots and dots of the process-tracing method. Int. J. Soc. Res. Methodol. 2016; 19 (2):223–239. doi: 10.1080/13645579.2014.979718. [ CrossRef ] [ Google Scholar ]
  • Van Evera S. Guide to Methods for Students of Political Science. Ithaca: Cornell University Press; 1997. [ Google Scholar ]
  • Whetsell TA, Shields PM. The dynamics of positivism in the study of public administration: a brief intellectual history and reappraisal. Adm. Soc. 2015; 47 (4):416–446. doi: 10.1177/0095399713490157. [ CrossRef ] [ Google Scholar ]
  • Willis JW, Jost M, Nilakanta R. Foundations of Qualitative Research: Interpretive and Critical Approaches. Beverley Hills: Sage; 2007. [ Google Scholar ]
  • Worster WT. The inductive and deductive methods in customary international law analysis: traditional and modern approaches. Georget. J. Int. Law. 2013; 45 :445. [ Google Scholar ]
  • Yin RK. The case study as a serious research strategy. Knowledge. 1981; 3 (1):97–114. doi: 10.1177/107554708100300106. [ CrossRef ] [ Google Scholar ]
  • Yin RK. The case study method as a tool for doing evaluation. Curr. Sociol. 1992; 40 (1):121–137. doi: 10.1177/001139292040001009. [ CrossRef ] [ Google Scholar ]
  • Yin RK. Applications of Case Study Research. Beverley Hills: Sage; 2011. [ Google Scholar ]
  • Yin RK. Case Study Research and Applications: Design and Methods. Beverley Hills: Sage Publications; 2017. [ Google Scholar ]
  • Bipolar Disorder
  • Therapy Center
  • When To See a Therapist
  • Types of Therapy
  • Best Online Therapy
  • Best Couples Therapy
  • Best Family Therapy
  • Managing Stress
  • Sleep and Dreaming
  • Understanding Emotions
  • Self-Improvement
  • Healthy Relationships
  • Student Resources
  • Personality Types
  • Guided Meditations
  • Verywell Mind Insights
  • 2023 Verywell Mind 25
  • Mental Health in the Classroom
  • Editorial Process
  • Meet Our Review Board
  • Crisis Support

How to Write a Great Hypothesis

Hypothesis Format, Examples, and Tips

Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

working hypothesis psychology

Amy Morin, LCSW, is a psychotherapist and international bestselling author. Her books, including "13 Things Mentally Strong People Don't Do," have been translated into more than 40 languages. Her TEDx talk,  "The Secret of Becoming Mentally Strong," is one of the most viewed talks of all time.

working hypothesis psychology

Verywell / Alex Dos Diaz

  • The Scientific Method

Hypothesis Format

Falsifiability of a hypothesis, operational definitions, types of hypotheses, hypotheses examples.

  • Collecting Data

Frequently Asked Questions

A hypothesis is a tentative statement about the relationship between two or more  variables. It is a specific, testable prediction about what you expect to happen in a study.

One hypothesis example would be a study designed to look at the relationship between sleep deprivation and test performance might have a hypothesis that states: "This study is designed to assess the hypothesis that sleep-deprived people will perform worse on a test than individuals who are not sleep-deprived."

This article explores how a hypothesis is used in psychology research, how to write a good hypothesis, and the different types of hypotheses you might use.

The Hypothesis in the Scientific Method

In the scientific method , whether it involves research in psychology, biology, or some other area, a hypothesis represents what the researchers think will happen in an experiment. The scientific method involves the following steps:

  • Forming a question
  • Performing background research
  • Creating a hypothesis
  • Designing an experiment
  • Collecting data
  • Analyzing the results
  • Drawing conclusions
  • Communicating the results

The hypothesis is a prediction, but it involves more than a guess. Most of the time, the hypothesis begins with a question which is then explored through background research. It is only at this point that researchers begin to develop a testable hypothesis. Unless you are creating an exploratory study, your hypothesis should always explain what you  expect  to happen.

In a study exploring the effects of a particular drug, the hypothesis might be that researchers expect the drug to have some type of effect on the symptoms of a specific illness. In psychology, the hypothesis might focus on how a certain aspect of the environment might influence a particular behavior.

Remember, a hypothesis does not have to be correct. While the hypothesis predicts what the researchers expect to see, the goal of the research is to determine whether this guess is right or wrong. When conducting an experiment, researchers might explore a number of factors to determine which ones might contribute to the ultimate outcome.

In many cases, researchers may find that the results of an experiment  do not  support the original hypothesis. When writing up these results, the researchers might suggest other options that should be explored in future studies.

In many cases, researchers might draw a hypothesis from a specific theory or build on previous research. For example, prior research has shown that stress can impact the immune system. So a researcher might hypothesize: "People with high-stress levels will be more likely to contract a common cold after being exposed to the virus than people who have low-stress levels."

In other instances, researchers might look at commonly held beliefs or folk wisdom. "Birds of a feather flock together" is one example of folk wisdom that a psychologist might try to investigate. The researcher might pose a specific hypothesis that "People tend to select romantic partners who are similar to them in interests and educational level."

Elements of a Good Hypothesis

So how do you write a good hypothesis? When trying to come up with a hypothesis for your research or experiments, ask yourself the following questions:

  • Is your hypothesis based on your research on a topic?
  • Can your hypothesis be tested?
  • Does your hypothesis include independent and dependent variables?

Before you come up with a specific hypothesis, spend some time doing background research. Once you have completed a literature review, start thinking about potential questions you still have. Pay attention to the discussion section in the  journal articles you read . Many authors will suggest questions that still need to be explored.

To form a hypothesis, you should take these steps:

  • Collect as many observations about a topic or problem as you can.
  • Evaluate these observations and look for possible causes of the problem.
  • Create a list of possible explanations that you might want to explore.
  • After you have developed some possible hypotheses, think of ways that you could confirm or disprove each hypothesis through experimentation. This is known as falsifiability.

In the scientific method ,  falsifiability is an important part of any valid hypothesis.   In order to test a claim scientifically, it must be possible that the claim could be proven false.

Students sometimes confuse the idea of falsifiability with the idea that it means that something is false, which is not the case. What falsifiability means is that  if  something was false, then it is possible to demonstrate that it is false.

One of the hallmarks of pseudoscience is that it makes claims that cannot be refuted or proven false.

A variable is a factor or element that can be changed and manipulated in ways that are observable and measurable. However, the researcher must also define how the variable will be manipulated and measured in the study.

For example, a researcher might operationally define the variable " test anxiety " as the results of a self-report measure of anxiety experienced during an exam. A "study habits" variable might be defined by the amount of studying that actually occurs as measured by time.

These precise descriptions are important because many things can be measured in a number of different ways. One of the basic principles of any type of scientific research is that the results must be replicable.   By clearly detailing the specifics of how the variables were measured and manipulated, other researchers can better understand the results and repeat the study if needed.

Some variables are more difficult than others to define. How would you operationally define a variable such as aggression ? For obvious ethical reasons, researchers cannot create a situation in which a person behaves aggressively toward others.

In order to measure this variable, the researcher must devise a measurement that assesses aggressive behavior without harming other people. In this situation, the researcher might utilize a simulated task to measure aggressiveness.

Hypothesis Checklist

  • Does your hypothesis focus on something that you can actually test?
  • Does your hypothesis include both an independent and dependent variable?
  • Can you manipulate the variables?
  • Can your hypothesis be tested without violating ethical standards?

The hypothesis you use will depend on what you are investigating and hoping to find. Some of the main types of hypotheses that you might use include:

  • Simple hypothesis : This type of hypothesis suggests that there is a relationship between one independent variable and one dependent variable.
  • Complex hypothesis : This type of hypothesis suggests a relationship between three or more variables, such as two independent variables and a dependent variable.
  • Null hypothesis : This hypothesis suggests no relationship exists between two or more variables.
  • Alternative hypothesis : This hypothesis states the opposite of the null hypothesis.
  • Statistical hypothesis : This hypothesis uses statistical analysis to evaluate a representative sample of the population and then generalizes the findings to the larger group.
  • Logical hypothesis : This hypothesis assumes a relationship between variables without collecting data or evidence.

A hypothesis often follows a basic format of "If {this happens} then {this will happen}." One way to structure your hypothesis is to describe what will happen to the  dependent variable  if you change the  independent variable .

The basic format might be: "If {these changes are made to a certain independent variable}, then we will observe {a change in a specific dependent variable}."

A few examples of simple hypotheses:

  • "Students who eat breakfast will perform better on a math exam than students who do not eat breakfast."
  • Complex hypothesis: "Students who experience test anxiety before an English exam will get lower scores than students who do not experience test anxiety."​
  • "Motorists who talk on the phone while driving will be more likely to make errors on a driving course than those who do not talk on the phone."

Examples of a complex hypothesis include:

  • "People with high-sugar diets and sedentary activity levels are more likely to develop depression."
  • "Younger people who are regularly exposed to green, outdoor areas have better subjective well-being than older adults who have limited exposure to green spaces."

Examples of a null hypothesis include:

  • "Children who receive a new reading intervention will have scores different than students who do not receive the intervention."
  • "There will be no difference in scores on a memory recall task between children and adults."

Examples of an alternative hypothesis:

  • "Children who receive a new reading intervention will perform better than students who did not receive the intervention."
  • "Adults will perform better on a memory task than children." 

Collecting Data on Your Hypothesis

Once a researcher has formed a testable hypothesis, the next step is to select a research design and start collecting data. The research method depends largely on exactly what they are studying. There are two basic types of research methods: descriptive research and experimental research.

Descriptive Research Methods

Descriptive research such as  case studies ,  naturalistic observations , and surveys are often used when it would be impossible or difficult to  conduct an experiment . These methods are best used to describe different aspects of a behavior or psychological phenomenon.

Once a researcher has collected data using descriptive methods, a correlational study can then be used to look at how the variables are related. This type of research method might be used to investigate a hypothesis that is difficult to test experimentally.

Experimental Research Methods

Experimental methods  are used to demonstrate causal relationships between variables. In an experiment, the researcher systematically manipulates a variable of interest (known as the independent variable) and measures the effect on another variable (known as the dependent variable).

Unlike correlational studies, which can only be used to determine if there is a relationship between two variables, experimental methods can be used to determine the actual nature of the relationship—whether changes in one variable actually  cause  another to change.

A Word From Verywell

The hypothesis is a critical part of any scientific exploration. It represents what researchers expect to find in a study or experiment. In situations where the hypothesis is unsupported by the research, the research still has value. Such research helps us better understand how different aspects of the natural world relate to one another. It also helps us develop new hypotheses that can then be tested in the future.

Some examples of how to write a hypothesis include:

  • "Staying up late will lead to worse test performance the next day."
  • "People who consume one apple each day will visit the doctor fewer times each year."
  • "Breaking study sessions up into three 20-minute sessions will lead to better test results than a single 60-minute study session."

The four parts of a hypothesis are:

  • The research question
  • The independent variable (IV)
  • The dependent variable (DV)
  • The proposed relationship between the IV and DV

Castillo M. The scientific method: a need for something better? . AJNR Am J Neuroradiol. 2013;34(9):1669-71. doi:10.3174/ajnr.A3401

Nevid J. Psychology: Concepts and Applications. Wadworth, 2013.

By Kendra Cherry, MSEd Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

2.4 Developing a Hypothesis

Learning objectives.

  • Distinguish between a theory and a hypothesis.
  • Discover how theories are used to generate hypotheses and how the results of studies can be used to further inform theories.
  • Understand the characteristics of a good hypothesis.

Theories and Hypotheses

Before describing how to develop a hypothesis it is imporant to distinguish betwee a theory and a hypothesis. A  theory  is a coherent explanation or interpretation of one or more phenomena. Although theories can take a variety of forms, one thing they have in common is that they go beyond the phenomena they explain by including variables, structures, processes, functions, or organizing principles that have not been observed directly. Consider, for example, Zajonc’s theory of social facilitation and social inhibition. He proposed that being watched by others while performing a task creates a general state of physiological arousal, which increases the likelihood of the dominant (most likely) response. So for highly practiced tasks, being watched increases the tendency to make correct responses, but for relatively unpracticed tasks, being watched increases the tendency to make incorrect responses. Notice that this theory—which has come to be called drive theory—provides an explanation of both social facilitation and social inhibition that goes beyond the phenomena themselves by including concepts such as “arousal” and “dominant response,” along with processes such as the effect of arousal on the dominant response.

Outside of science, referring to an idea as a theory often implies that it is untested—perhaps no more than a wild guess. In science, however, the term theory has no such implication. A theory is simply an explanation or interpretation of a set of phenomena. It can be untested, but it can also be extensively tested, well supported, and accepted as an accurate description of the world by the scientific community. The theory of evolution by natural selection, for example, is a theory because it is an explanation of the diversity of life on earth—not because it is untested or unsupported by scientific research. On the contrary, the evidence for this theory is overwhelmingly positive and nearly all scientists accept its basic assumptions as accurate. Similarly, the “germ theory” of disease is a theory because it is an explanation of the origin of various diseases, not because there is any doubt that many diseases are caused by microorganisms that infect the body.

A  hypothesis , on the other hand, is a specific prediction about a new phenomenon that should be observed if a particular theory is accurate. It is an explanation that relies on just a few key concepts. Hypotheses are often specific predictions about what will happen in a particular study. They are developed by considering existing evidence and using reasoning to infer what will happen in the specific context of interest. Hypotheses are often but not always derived from theories. So a hypothesis is often a prediction based on a theory but some hypotheses are a-theoretical and only after a set of observations have been made, is a theory developed. This is because theories are broad in nature and they explain larger bodies of data. So if our research question is really original then we may need to collect some data and make some observation before we can develop a broader theory.

Theories and hypotheses always have this  if-then  relationship. “ If   drive theory is correct,  then  cockroaches should run through a straight runway faster, and a branching runway more slowly, when other cockroaches are present.” Although hypotheses are usually expressed as statements, they can always be rephrased as questions. “Do cockroaches run through a straight runway faster when other cockroaches are present?” Thus deriving hypotheses from theories is an excellent way of generating interesting research questions.

But how do researchers derive hypotheses from theories? One way is to generate a research question using the techniques discussed in this chapter  and then ask whether any theory implies an answer to that question. For example, you might wonder whether expressive writing about positive experiences improves health as much as expressive writing about traumatic experiences. Although this  question  is an interesting one  on its own, you might then ask whether the habituation theory—the idea that expressive writing causes people to habituate to negative thoughts and feelings—implies an answer. In this case, it seems clear that if the habituation theory is correct, then expressive writing about positive experiences should not be effective because it would not cause people to habituate to negative thoughts and feelings. A second way to derive hypotheses from theories is to focus on some component of the theory that has not yet been directly observed. For example, a researcher could focus on the process of habituation—perhaps hypothesizing that people should show fewer signs of emotional distress with each new writing session.

Among the very best hypotheses are those that distinguish between competing theories. For example, Norbert Schwarz and his colleagues considered two theories of how people make judgments about themselves, such as how assertive they are (Schwarz et al., 1991) [1] . Both theories held that such judgments are based on relevant examples that people bring to mind. However, one theory was that people base their judgments on the  number  of examples they bring to mind and the other was that people base their judgments on how  easily  they bring those examples to mind. To test these theories, the researchers asked people to recall either six times when they were assertive (which is easy for most people) or 12 times (which is difficult for most people). Then they asked them to judge their own assertiveness. Note that the number-of-examples theory implies that people who recalled 12 examples should judge themselves to be more assertive because they recalled more examples, but the ease-of-examples theory implies that participants who recalled six examples should judge themselves as more assertive because recalling the examples was easier. Thus the two theories made opposite predictions so that only one of the predictions could be confirmed. The surprising result was that participants who recalled fewer examples judged themselves to be more assertive—providing particularly convincing evidence in favor of the ease-of-retrieval theory over the number-of-examples theory.

Theory Testing

The primary way that scientific researchers use theories is sometimes called the hypothetico-deductive method  (although this term is much more likely to be used by philosophers of science than by scientists themselves). A researcher begins with a set of phenomena and either constructs a theory to explain or interpret them or chooses an existing theory to work with. He or she then makes a prediction about some new phenomenon that should be observed if the theory is correct. Again, this prediction is called a hypothesis. The researcher then conducts an empirical study to test the hypothesis. Finally, he or she reevaluates the theory in light of the new results and revises it if necessary. This process is usually conceptualized as a cycle because the researcher can then derive a new hypothesis from the revised theory, conduct a new empirical study to test the hypothesis, and so on. As  Figure 2.2  shows, this approach meshes nicely with the model of scientific research in psychology presented earlier in the textbook—creating a more detailed model of “theoretically motivated” or “theory-driven” research.

Figure 4.4 Hypothetico-Deductive Method Combined With the General Model of Scientific Research in Psychology Together they form a model of theoretically motivated research.

Figure 2.2 Hypothetico-Deductive Method Combined With the General Model of Scientific Research in Psychology Together they form a model of theoretically motivated research.

As an example, let us consider Zajonc’s research on social facilitation and inhibition. He started with a somewhat contradictory pattern of results from the research literature. He then constructed his drive theory, according to which being watched by others while performing a task causes physiological arousal, which increases an organism’s tendency to make the dominant response. This theory predicts social facilitation for well-learned tasks and social inhibition for poorly learned tasks. He now had a theory that organized previous results in a meaningful way—but he still needed to test it. He hypothesized that if his theory was correct, he should observe that the presence of others improves performance in a simple laboratory task but inhibits performance in a difficult version of the very same laboratory task. To test this hypothesis, one of the studies he conducted used cockroaches as subjects (Zajonc, Heingartner, & Herman, 1969) [2] . The cockroaches ran either down a straight runway (an easy task for a cockroach) or through a cross-shaped maze (a difficult task for a cockroach) to escape into a dark chamber when a light was shined on them. They did this either while alone or in the presence of other cockroaches in clear plastic “audience boxes.” Zajonc found that cockroaches in the straight runway reached their goal more quickly in the presence of other cockroaches, but cockroaches in the cross-shaped maze reached their goal more slowly when they were in the presence of other cockroaches. Thus he confirmed his hypothesis and provided support for his drive theory. (Zajonc also showed that drive theory existed in humans (Zajonc & Sales, 1966) [3] in many other studies afterward).

Incorporating Theory into Your Research

When you write your research report or plan your presentation, be aware that there are two basic ways that researchers usually include theory. The first is to raise a research question, answer that question by conducting a new study, and then offer one or more theories (usually more) to explain or interpret the results. This format works well for applied research questions and for research questions that existing theories do not address. The second way is to describe one or more existing theories, derive a hypothesis from one of those theories, test the hypothesis in a new study, and finally reevaluate the theory. This format works well when there is an existing theory that addresses the research question—especially if the resulting hypothesis is surprising or conflicts with a hypothesis derived from a different theory.

To use theories in your research will not only give you guidance in coming up with experiment ideas and possible projects, but it lends legitimacy to your work. Psychologists have been interested in a variety of human behaviors and have developed many theories along the way. Using established theories will help you break new ground as a researcher, not limit you from developing your own ideas.

Characteristics of a Good Hypothesis

There are three general characteristics of a good hypothesis. First, a good hypothesis must be testable and falsifiable . We must be able to test the hypothesis using the methods of science and if you’ll recall Popper’s falsifiability criterion, it must be possible to gather evidence that will disconfirm the hypothesis if it is indeed false. Second, a good hypothesis must be  logical. As described above, hypotheses are more than just a random guess. Hypotheses should be informed by previous theories or observations and logical reasoning. Typically, we begin with a broad and general theory and use  deductive reasoning to generate a more specific hypothesis to test based on that theory. Occasionally, however, when there is no theory to inform our hypothesis, we use  inductive reasoning  which involves using specific observations or research findings to form a more general hypothesis. Finally, the hypothesis should be  positive.  That is, the hypothesis should make a positive statement about the existence of a relationship or effect, rather than a statement that a relationship or effect does not exist. As scientists, we don’t set out to show that relationships do not exist or that effects do not occur so our hypotheses should not be worded in a way to suggest that an effect or relationship does not exist. The nature of science is to assume that something does not exist and then seek to find evidence to prove this wrong, to show that really it does exist. That may seem backward to you but that is the nature of the scientific method. The underlying reason for this is beyond the scope of this chapter but it has to do with statistical theory.

Key Takeaways

  • A theory is broad in nature and explains larger bodies of data. A hypothesis is more specific and makes a prediction about the outcome of a particular study.
  • Working with theories is not “icing on the cake.” It is a basic ingredient of psychological research.
  • Like other scientists, psychologists use the hypothetico-deductive method. They construct theories to explain or interpret phenomena (or work with existing theories), derive hypotheses from their theories, test the hypotheses, and then reevaluate the theories in light of the new results.
  • Practice: Find a recent empirical research report in a professional journal. Read the introduction and highlight in different colors descriptions of theories and hypotheses.
  • Schwarz, N., Bless, H., Strack, F., Klumpp, G., Rittenauer-Schatka, H., & Simons, A. (1991). Ease of retrieval as information: Another look at the availability heuristic.  Journal of Personality and Social Psychology, 61 , 195–202. ↵
  • Zajonc, R. B., Heingartner, A., & Herman, E. M. (1969). Social enhancement and impairment of performance in the cockroach.  Journal of Personality and Social Psychology, 13 , 83–92. ↵
  • Zajonc, R.B. & Sales, S.M. (1966). Social facilitation of dominant and subordinate responses. Journal of Experimental Social Psychology, 2 , 160-168. ↵

Creative Commons License

Share This Book

  • Increase Font Size

Logo for Portland State University Pressbooks

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

Developing a Hypothesis

Rajiv S. Jhangiani; I-Chant A. Chiang; Carrie Cuttler; and Dana C. Leighton

Learning Objectives

  • Distinguish between a theory and a hypothesis.
  • Discover how theories are used to generate hypotheses and how the results of studies can be used to further inform theories.
  • Understand the characteristics of a good hypothesis.

Theories and Hypotheses

Before describing how to develop a hypothesis, it is important to distinguish between a theory and a hypothesis. A  theory  is a coherent explanation or interpretation of one or more phenomena. Although theories can take a variety of forms, one thing they have in common is that they go beyond the phenomena they explain by including variables, structures, processes, functions, or organizing principles that have not been observed directly. Consider, for example, Zajonc’s theory of social facilitation and social inhibition (1965) [1] . He proposed that being watched by others while performing a task creates a general state of physiological arousal, which increases the likelihood of the dominant (most likely) response. So for highly practiced tasks, being watched increases the tendency to make correct responses, but for relatively unpracticed tasks, being watched increases the tendency to make incorrect responses. Notice that this theory—which has come to be called drive theory—provides an explanation of both social facilitation and social inhibition that goes beyond the phenomena themselves by including concepts such as “arousal” and “dominant response,” along with processes such as the effect of arousal on the dominant response.

Outside of science, referring to an idea as a theory often implies that it is untested—perhaps no more than a wild guess. In science, however, the term theory has no such implication. A theory is simply an explanation or interpretation of a set of phenomena. It can be untested, but it can also be extensively tested, well supported, and accepted as an accurate description of the world by the scientific community. The theory of evolution by natural selection, for example, is a theory because it is an explanation of the diversity of life on earth—not because it is untested or unsupported by scientific research. On the contrary, the evidence for this theory is overwhelmingly positive and nearly all scientists accept its basic assumptions as accurate. Similarly, the “germ theory” of disease is a theory because it is an explanation of the origin of various diseases, not because there is any doubt that many diseases are caused by microorganisms that infect the body.

A  hypothesis , on the other hand, is a specific prediction about a new phenomenon that should be observed if a particular theory is accurate. It is an explanation that relies on just a few key concepts. Hypotheses are often specific predictions about what will happen in a particular study. They are developed by considering existing evidence and using reasoning to infer what will happen in the specific context of interest. Hypotheses are often but not always derived from theories. So a hypothesis is often a prediction based on a theory but some hypotheses are a-theoretical and only after a set of observations have been made, is a theory developed. This is because theories are broad in nature and they explain larger bodies of data. So if our research question is really original then we may need to collect some data and make some observations before we can develop a broader theory.

Theories and hypotheses always have this  if-then  relationship. “ If   drive theory is correct,  then  cockroaches should run through a straight runway faster, and a branching runway more slowly, when other cockroaches are present.” Although hypotheses are usually expressed as statements, they can always be rephrased as questions. “Do cockroaches run through a straight runway faster when other cockroaches are present?” Thus deriving hypotheses from theories is an excellent way of generating interesting research questions.

But how do researchers derive hypotheses from theories? One way is to generate a research question using the techniques discussed in this chapter  and then ask whether any theory implies an answer to that question. For example, you might wonder whether expressive writing about positive experiences improves health as much as expressive writing about traumatic experiences. Although this  question  is an interesting one  on its own, you might then ask whether the habituation theory—the idea that expressive writing causes people to habituate to negative thoughts and feelings—implies an answer. In this case, it seems clear that if the habituation theory is correct, then expressive writing about positive experiences should not be effective because it would not cause people to habituate to negative thoughts and feelings. A second way to derive hypotheses from theories is to focus on some component of the theory that has not yet been directly observed. For example, a researcher could focus on the process of habituation—perhaps hypothesizing that people should show fewer signs of emotional distress with each new writing session.

Among the very best hypotheses are those that distinguish between competing theories. For example, Norbert Schwarz and his colleagues considered two theories of how people make judgments about themselves, such as how assertive they are (Schwarz et al., 1991) [2] . Both theories held that such judgments are based on relevant examples that people bring to mind. However, one theory was that people base their judgments on the  number  of examples they bring to mind and the other was that people base their judgments on how  easily  they bring those examples to mind. To test these theories, the researchers asked people to recall either six times when they were assertive (which is easy for most people) or 12 times (which is difficult for most people). Then they asked them to judge their own assertiveness. Note that the number-of-examples theory implies that people who recalled 12 examples should judge themselves to be more assertive because they recalled more examples, but the ease-of-examples theory implies that participants who recalled six examples should judge themselves as more assertive because recalling the examples was easier. Thus the two theories made opposite predictions so that only one of the predictions could be confirmed. The surprising result was that participants who recalled fewer examples judged themselves to be more assertive—providing particularly convincing evidence in favor of the ease-of-retrieval theory over the number-of-examples theory.

Theory Testing

The primary way that scientific researchers use theories is sometimes called the hypothetico-deductive method  (although this term is much more likely to be used by philosophers of science than by scientists themselves). Researchers begin with a set of phenomena and either construct a theory to explain or interpret them or choose an existing theory to work with. They then make a prediction about some new phenomenon that should be observed if the theory is correct. Again, this prediction is called a hypothesis. The researchers then conduct an empirical study to test the hypothesis. Finally, they reevaluate the theory in light of the new results and revise it if necessary. This process is usually conceptualized as a cycle because the researchers can then derive a new hypothesis from the revised theory, conduct a new empirical study to test the hypothesis, and so on. As  Figure 2.3  shows, this approach meshes nicely with the model of scientific research in psychology presented earlier in the textbook—creating a more detailed model of “theoretically motivated” or “theory-driven” research.

working hypothesis psychology

As an example, let us consider Zajonc’s research on social facilitation and inhibition. He started with a somewhat contradictory pattern of results from the research literature. He then constructed his drive theory, according to which being watched by others while performing a task causes physiological arousal, which increases an organism’s tendency to make the dominant response. This theory predicts social facilitation for well-learned tasks and social inhibition for poorly learned tasks. He now had a theory that organized previous results in a meaningful way—but he still needed to test it. He hypothesized that if his theory was correct, he should observe that the presence of others improves performance in a simple laboratory task but inhibits performance in a difficult version of the very same laboratory task. To test this hypothesis, one of the studies he conducted used cockroaches as subjects (Zajonc, Heingartner, & Herman, 1969) [3] . The cockroaches ran either down a straight runway (an easy task for a cockroach) or through a cross-shaped maze (a difficult task for a cockroach) to escape into a dark chamber when a light was shined on them. They did this either while alone or in the presence of other cockroaches in clear plastic “audience boxes.” Zajonc found that cockroaches in the straight runway reached their goal more quickly in the presence of other cockroaches, but cockroaches in the cross-shaped maze reached their goal more slowly when they were in the presence of other cockroaches. Thus he confirmed his hypothesis and provided support for his drive theory. (Zajonc also showed that drive theory existed in humans [Zajonc & Sales, 1966] [4] in many other studies afterward).

Incorporating Theory into Your Research

When you write your research report or plan your presentation, be aware that there are two basic ways that researchers usually include theory. The first is to raise a research question, answer that question by conducting a new study, and then offer one or more theories (usually more) to explain or interpret the results. This format works well for applied research questions and for research questions that existing theories do not address. The second way is to describe one or more existing theories, derive a hypothesis from one of those theories, test the hypothesis in a new study, and finally reevaluate the theory. This format works well when there is an existing theory that addresses the research question—especially if the resulting hypothesis is surprising or conflicts with a hypothesis derived from a different theory.

To use theories in your research will not only give you guidance in coming up with experiment ideas and possible projects, but it lends legitimacy to your work. Psychologists have been interested in a variety of human behaviors and have developed many theories along the way. Using established theories will help you break new ground as a researcher, not limit you from developing your own ideas.

Characteristics of a Good Hypothesis

There are three general characteristics of a good hypothesis. First, a good hypothesis must be testable and falsifiable . We must be able to test the hypothesis using the methods of science and if you’ll recall Popper’s falsifiability criterion, it must be possible to gather evidence that will disconfirm the hypothesis if it is indeed false. Second, a good hypothesis must be logical. As described above, hypotheses are more than just a random guess. Hypotheses should be informed by previous theories or observations and logical reasoning. Typically, we begin with a broad and general theory and use  deductive reasoning to generate a more specific hypothesis to test based on that theory. Occasionally, however, when there is no theory to inform our hypothesis, we use  inductive reasoning  which involves using specific observations or research findings to form a more general hypothesis. Finally, the hypothesis should be positive. That is, the hypothesis should make a positive statement about the existence of a relationship or effect, rather than a statement that a relationship or effect does not exist. As scientists, we don’t set out to show that relationships do not exist or that effects do not occur so our hypotheses should not be worded in a way to suggest that an effect or relationship does not exist. The nature of science is to assume that something does not exist and then seek to find evidence to prove this wrong, to show that it really does exist. That may seem backward to you but that is the nature of the scientific method. The underlying reason for this is beyond the scope of this chapter but it has to do with statistical theory.

  • Zajonc, R. B. (1965). Social facilitation.  Science, 149 , 269–274 ↵
  • Schwarz, N., Bless, H., Strack, F., Klumpp, G., Rittenauer-Schatka, H., & Simons, A. (1991). Ease of retrieval as information: Another look at the availability heuristic.  Journal of Personality and Social Psychology, 61 , 195–202. ↵
  • Zajonc, R. B., Heingartner, A., & Herman, E. M. (1969). Social enhancement and impairment of performance in the cockroach.  Journal of Personality and Social Psychology, 13 , 83–92. ↵
  • Zajonc, R.B. & Sales, S.M. (1966). Social facilitation of dominant and subordinate responses. Journal of Experimental Social Psychology, 2 , 160-168. ↵

A coherent explanation or interpretation of one or more phenomena.

A specific prediction about a new phenomenon that should be observed if a particular theory is accurate.

A cyclical process of theory development, starting with an observed phenomenon, then developing or using a theory to make a specific prediction of what should happen if that theory is correct, testing that prediction, refining the theory in light of the findings, and using that refined theory to develop new hypotheses, and so on.

The ability to test the hypothesis using the methods of science and the possibility to gather evidence that will disconfirm the hypothesis if it is indeed false.

Developing a Hypothesis Copyright © 2022 by Rajiv S. Jhangiani; I-Chant A. Chiang; Carrie Cuttler; and Dana C. Leighton is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.

Share This Book

  • Increase Font Size

Logo for Digital Editions

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

3 Chapter 3: From Theory to Hypothesis

From theory to hypothesis, 3.1  phenomena and theories.

A phenomenon (plural, phenomena) is a general result that has been observed reliably in systematic empirical research. In essence, it is an established answer to a research question. Some phenomena we have encountered in this book are that expressive writing improves health, women do not talk more than men, and cell phone usage impairs driving ability. Some others are that dissociative identity disorder (formerly called multiple personality disorder) increased greatly in prevalence during the late 20th century, people perform better on easy tasks when they are being watched by others (and worse on difficult tasks), and people recall items presented at the beginning and end of a list better than items presented in the middle.

Some Famous Psychological Phenomena

Phenomena are often given names by their discoverers or other researchers, and these names can catch on and become widely known. The following list is a small sample of famous phenomena in psychology.

·         Blindsight. People with damage to their visual cortex are often able to respond to visual stimuli that they do not consciously see.

·         Bystander effect. The more people who are present at an emergency situation, the less likely it is that any one of them will help.

·         Fundamental attribution error. People tend to explain others’ behavior in terms of their personal characteristics as opposed to the situation they are in.

·         McGurk effect. When audio of a basic speech sound is combined with video of a person making mouth movements for a different speech sound, people often perceive a sound that is intermediate between the two.

·         Own-race effect. People recognize faces of people of their own race more accurately than faces of people of other races.

·         Placebo effect. Placebos (fake psychological or medical treatments) often lead to improvements in people’s symptoms and functioning.

·         Mere exposure effect. The more often people have been exposed to a stimulus, the more they like it—even when the stimulus is presented subliminally.

·         Serial position effect. Stimuli presented near the beginning and end of a list are remembered better than stimuli presented in the middle.

·         Spontaneous recovery. A conditioned response that has been extinguished often returns with no further training after the passage of time.

Although an empirical result might be referred to as a phenomenon after being observed only once, this term is more likely to be used for results that have been replicated. Replication means conducting a study again—either exactly as it was originally conducted or with modifications—to be sure that it produces the same results. Individual researchers usually replicate their own studies before publishing them. Many empirical research reports include an initial study and then one or more follow-up studies that replicate the initial study with minor modifications. Particularly interesting results come to the attention of other researchers who conduct their own replications. The positive effect of expressive writing on health and the negative effect of cell phone usage on driving ability are examples of phenomena that have been replicated many times by many different researchers.

Sometimes a replication of a study produces results that differ from the results of the initial study. This could mean that the results of the initial study or the results of the replication were a fluke—they occurred by chance and do not reflect something that is generally true. In either case, additional replications would be likely to resolve this. A failure to produce the same results could also mean that the replication differed in some important way from the initial study. For example, early studies showed that people performed a variety of tasks better and faster when they were watched by others than when they were alone. Some later replications, however, showed that people performed worse when they were watched by others. Eventually researcher Robert Zajonc identified a key difference between the two types of studies. People seemed to perform better when being watched on highly practiced tasks but worse when being watched on relatively unpracticed tasks (Zajonc, 1965). These two phenomena have now come to be called social facilitation and social inhibition.

What Is a Theory?

A theory is a coherent explanation or interpretation of one or more phenomena. Although theories can take a variety of forms, one thing they have in common is that they go beyond the phenomena they explain by including variables, structures, processes, functions, or organizing principles that have not been observed directly. Consider, for example, Zajonc’s theory of social facilitation and social inhibition. He proposed that being watched by others while performing a task creates a general state of physiological arousal, which increases the likelihood of the dominant (most likely) response. So for highly practiced tasks, being watched increases the tendency to make correct responses, but for relatively unpracticed tasks, being watched increases the tendency to make incorrect responses. Notice that this theory—which has come to be called drive theory—provides an explanation of both social facilitation and social inhibition that goes beyond the phenomena themselves by including concepts such as “arousal” and “dominant response,” along with processes such as the effect of arousal on the dominant response.

Outside of science, referring to an idea as a theory often implies that it is untested—perhaps no more than a wild guess. In science, however, the term theory has no such implication. A theory is simply an explanation or interpretation of a set of phenomena. It can be untested, but it can also be extensively tested, well supported, and accepted as an accurate description of the world by the scientific community. The theory of evolution by natural selection, for example, is a theory because it is an explanation of the diversity of life on earth—not because it is untested or unsupported by scientific research. On the contrary, the evidence for this theory is overwhelmingly positive and nearly all scientists accept its basic assumptions as accurate. Similarly, the “germ theory” of disease is a theory because it is an explanation of the origin of various diseases, not because there is any doubt that many diseases are caused by microorganisms that infect the body.

In addition to theory, researchers in psychology use several related terms to refer to their explanations and interpretations of phenomena. A perspective is a broad approach—more general than a theory—to explaining and interpreting phenomena. For example, researchers who take a biological perspective tend to explain phenomena in terms of genetics or nervous and endocrine system structures and processes, while researchers who take a behavioral perspective tend to explain phenomena in terms of reinforcement, punishment, and other external events. A model is a precise explanation or interpretation of a specific phenomenon—often expressed in terms of equations, computer programs, or biological structures and processes. A hypothesis can be an explanation that relies on just a few key concepts—although this term more commonly refers to a prediction about a new phenomenon based on a theory. Adding to the confusion is the fact that researchers often use these terms interchangeably. It would not be considered wrong to refer to the drive theory as the drive model or even the drive hypothesis. And the biopsychosocial model of health psychology—the general idea that health is determined by an interaction of biological, psychological, and social factors—is really more like a perspective as defined here. Keep in mind, however, that the most important distinction remains that between observations and interpretations.

What Are Theories For?

Of course, scientific theories are meant to provide accurate explanations or interpretations of phenomena. But there must be more to it than this. Consider that a theory can be accurate without being very useful. To say that expressive writing helps people “deal with their emotions” might be accurate as far as it goes, but it seems too vague to be of much use. Consider also that a theory can be useful without being entirely accurate.

3.2  Additional Purposes of Theories

Here we look at three additional purposes of theories: the organization of known phenomena, the prediction of outcomes in new situations, and the generation of new research.

Organization

One important purpose of scientific theories is to organize phenomena in ways that help people think about them clearly and efficiently. The drive theory of social facilitation and social inhibition, for example, helps to organize and make sense of a large number of seemingly contradictory results. The multistore model of human memory efficiently summarizes many important phenomena: the limited capacity and short retention time of information that is attended to but not rehearsed, the importance of rehearsing information for long-term retention, the serial-position effect, and so on.

Thus theories are good or useful to the extent that they organize more phenomena with greater clarity and efficiency. Scientists generally follow the principle of parsimony, which holds that a theory should include only as many concepts as are necessary to explain or interpret the phenomena of interest. Simpler, more parsimonious theories organize phenomena more efficiently than more complex, less parsimonious theories.

A second purpose of theories is to allow researchers and others to make predictions about what will happen in new situations. For example, a gymnastics coach might wonder whether a student’s performance is likely to be better or worse during a competition than when practicing alone. Even if this particular question has never been studied empirically, Zajonc’s drive theory suggests an answer. If the student generally performs with no mistakes, she is likely to perform better during competition. If she generally performs with many mistakes, she is likely to perform worse.

In clinical psychology, treatment decisions are often guided by theories. Consider, for example, dissociative identity disorder (formerly called multiple personality disorder). The prevailing scientific theory of dissociative identity disorder is that people develop multiple personalities (also called alters) because they are familiar with this idea from popular portrayals (e.g., the movie Sybil) and because they are unintentionally encouraged to do so by their clinicians (e.g., by asking to “meet” an alter). This theory implies that rather than encouraging patients to act out multiple personalities, treatment should involve discouraging them from doing this (Lilienfeld & Lynn, 2003).

Generation of New Research

A third purpose of theories is to generate new research by raising new questions. Consider, for example, the theory that people engage in self-injurious behavior such as cutting because it reduces negative emotions such as sadness, anxiety, and anger. This theory immediately suggests several new and interesting questions. Is there, in fact, a statistical relationship between cutting and the amount of negative emotions experienced? Is it causal? If so, what is it about cutting that has this effect? Is it the pain, the sight of the injury, or something else? Does cutting affect all negative emotions equally?

Notice that a theory does not have to be accurate to serve this purpose. Even an inaccurate theory can generate new and interesting research questions. Of course, if the theory is inaccurate, the answers to the new questions will tend to be inconsistent with the theory. This will lead researchers to reevaluate the theory and either revise it or abandon it for a new one. And this is how scientific theories become more detailed and accurate over time.

Multiple Theories

At any point in time, researchers are usually considering multiple theories for any set of phenomena. One reason is that because human behavior is extremely complex, it is always possible to look at it from different perspectives. For example, a biological theory of sexual orientation might focus on the role of sex hormones during critical periods of brain development, while a sociocultural theory might focus on cultural factors that influence how underlying biological tendencies are expressed. A second reason is that—even from the same perspective—there are usually different ways to “go beyond” the phenomena of interest. For example, in addition to the drive theory of social facilitation and social inhibition, there is another theory that explains them in terms of a construct called “evaluation apprehension”—anxiety about being evaluated by the audience. Both theories go beyond the phenomena to be interpreted, but they do so by proposing somewhat different underlying processes.

Different theories of the same set of phenomena can be complementary—with each one supplying one piece of a larger puzzle. A biological theory of sexual orientation and a sociocultural theory of sexual orientation might accurately describe different aspects of the same complex phenomenon. Similarly, social facilitation could be the result of both general physiological arousal and evaluation apprehension. But different theories of the same phenomena can also be competing in the sense that if one is accurate, the other is probably not. For example, an alternative theory of dissociative identity disorder—the posttraumatic theory—holds that alters are created unconsciously by the patient as a means of coping with sexual abuse or some other traumatic experience. Because the sociocognitive theory and the posttraumatic theories attribute dissociative identity disorder to fundamentally different processes, it seems unlikely that both can be accurate.

The fact that there are multiple theories for any set of phenomena does not mean that any theory is as good as any other or that it is impossible to know whether a theory provides an accurate explanation or interpretation. On the contrary, scientists are continually comparing theories in terms of their ability to organize phenomena, predict outcomes in new situations, and generate research. Those that fare poorly are assumed to be less accurate and are abandoned, while those that fare well are assumed to be more accurate and are retained and compared with newer—and hopefully better—theories. Although scientists generally do not believe that their theories ever provide perfectly accurate descriptions of the world, they do assume that this process produces theories that come closer and closer to that ideal.

Key Takeaways

·         Scientists distinguish between phenomena, which are their systematic observations, and theories, which are their explanations or interpretations of phenomena.

·         In addition to providing accurate explanations or interpretations, scientific theories have three basic purposes. They organize phenomena, allow people to predict what will happen in new situations, and help generate new research.

·         Researchers generally consider multiple theories for any set of phenomena. Different theories of the same set of phenomena can be complementary or competing.

3.3  Using Theories in Psychological Research

We have now seen what theories are, what they are for, and the variety of forms that they take in psychological research. In this section we look more closely at how researchers actually use them. We begin with a general description of how researchers test and revise their theories, and we end with some practical advice for beginning researchers who want to incorporate theory into their research.

Theory Testing and Revision

The primary way that scientific researchers use theories is sometimes called the hypothetico-deductive method (although this term is much more likely to be used by philosophers of science than by scientists themselves). A researcher begins with a set of phenomena and either constructs a theory to explain or interpret them or chooses an existing theory to work with. He or she then makes a prediction about some new phenomenon that should be observed if the theory is correct. Again, this prediction is called a hypothesis. The researcher then conducts an empirical study to test the hypothesis. Finally, he or she reevaluates the theory in light of the new results and revises it if necessary. This process is usually conceptualized as a cycle because the researcher can then derive a new hypothesis from the revised theory, conduct a new empirical study to test the hypothesis, and so on.  Together they form a model of theoretically motivated research.

As an example, let us return to Zajonc’s research on social facilitation and inhibition. He started with a somewhat contradictory pattern of results from the research literature. He then constructed his drive theory, according to which being watched by others while performing a task causes physiological arousal, which increases an organism’s tendency to make the dominant response. This leads to social facilitation for well-learned tasks and social inhibition for poorly learned tasks. He now had a theory that organized previous results in a meaningful way—but he still needed to test it. He hypothesized that if his theory was correct, he should observe that the presence of others improves performance in a simple laboratory task but inhibits performance in a difficult version of the very same laboratory task. To test this hypothesis, one of the studies he conducted used cockroaches as subjects (Zajonc, Heingartner, & Herman, 1969). The cockroaches ran either down a straight runway (an easy task for a cockroach) or through a cross-shaped maze (a difficult task for a cockroach) to escape into a dark chamber when a light was shined on them. They did this either while alone or in the presence of other cockroaches in clear plastic “audience boxes.” Zajonc found that cockroaches in the straight runway reached their goal more quickly in the presence of other cockroaches, but cockroaches in the cross-shaped maze reached their goal more slowly when they were in the presence of other cockroaches. Thus he confirmed his hypothesis and provided support for his drive theory.

Constructing or Choosing a Theory

Along with generating research questions, constructing theories is one of the more creative parts of scientific research. But as with all creative activities, success requires preparation and hard work more than anything else. To construct a good theory, a researcher must know in detail about the phenomena of interest and about any existing theories based on a thorough review of the literature. The new theory must provide a coherent explanation or interpretation of the phenomena of interest and have some advantage over existing theories. It could be more formal and therefore more precise, broader in scope, more parsimonious, or it could take a new perspective or theoretical approach. If there is no existing theory, then almost any theory can be a step in the right direction.

As we have seen, formality, scope, and theoretical approach are determined in part by the nature of the phenomena to be interpreted. But the researcher’s interests and abilities play a role too. For example, constructing a theory that specifies the neural structures and processes underlying a set of phenomena requires specialized knowledge and experience in neuroscience (which most professional researchers would acquire in college and then graduate school). But again, many theories in psychology are relatively informal, narrow in scope, and expressed in terms that even a beginning researcher can understand and even use to construct his or her own new theory.

It is probably more common, however, for a researcher to start with a theory that was originally constructed by someone else—giving due credit to the originator of the theory. This is another example of how researchers work collectively to advance scientific knowledge. Once they have identified an existing theory, they might derive a hypothesis from the theory and test it or modify the theory to account for some new phenomenon and then test the modified theory.

Deriving Hypotheses

Again, a hypothesis is a prediction about a new phenomenon that should be observed if a particular theory is accurate. Theories and hypotheses always have this if-then relationship. “If drive theory is correct, then cockroaches should run through a straight runway faster, and a branching runway more slowly, when other cockroaches are present.” Although hypotheses are usually expressed as statements, they can always be rephrased as questions. “Do cockroaches run through a straight runway faster when other cockroaches are present?” Thus deriving hypotheses from theories is an excellent way of generating interesting research questions.

But how do researchers derive hypotheses from theories? One way is to generate a research question using the techniques discussed in Chapter 2 and then ask whether any theory implies an answer to that question. For example, you might wonder whether expressive writing about positive experiences improves health as much as expressive writing about traumatic experiences. Although this is an interesting question on its own, you might then ask whether the habituation theory—the idea that expressive writing causes people to habituate to negative thoughts and feelings—implies an answer. In this case, it seems clear that if the habituation theory is correct, then expressive writing about positive experiences should not be effective because it would not cause people to habituate to negative thoughts and feelings. A second way to derive hypotheses from theories is to focus on some component of the theory that has not yet been directly observed. For example, a researcher could focus on the process of habituation—perhaps hypothesizing that people should show fewer signs of emotional distress with each new writing session.

Among the very best hypotheses are those that distinguish between competing theories. For example, Norbert Schwarz and his colleagues considered two theories of how people make judgments about themselves, such as how assertive they are (Schwarz et al., 1991). Both theories held that such judgments are based on relevant examples that people bring to mind. However, one theory was that people base their judgments on the number of examples they bring to mind and the other was that people base their judgments on how easily they bring those examples to mind. To test these theories, the researchers asked people to recall either six times when they were assertive (which is easy for most people) or 12 times (which is difficult for most people). Then they asked them to judge their own assertiveness. Note that the number-of-examples theory implies that people who recalled 12 examples should judge themselves to be more assertive because they recalled more examples, but the ease-of-examples theory implies that participants who recalled six examples should judge themselves as more assertive because recalling the examples was easier. Thus the two theories made opposite predictions so that only one of the predictions could be confirmed. The surprising result was that participants who recalled fewer examples judged themselves to be more assertive—providing particularly convincing evidence in favor of the ease-of-retrieval theory over the number-of-examples theory.

Evaluating and Revising Theories

If a hypothesis is confirmed in a systematic empirical study, then the theory has been strengthened. Not only did the theory make an accurate prediction, but there is now a new phenomenon that the theory accounts for. If a hypothesis is disconfirmed in a systematic empirical study, then the theory has been weakened. It made an inaccurate prediction, and there is now a new phenomenon that it does not account for.

Although this seems straightforward, there are some complications. First, confirming a hypothesis can strengthen a theory but it can never prove a theory. In fact, scientists tend to avoid the word “prove” when talking and writing about theories. One reason for this is that there may be other plausible theories that imply the same hypothesis, which means that confirming the hypothesis strengthens all those theories equally. A second reason is that it is always possible that another test of the hypothesis or a test of a new hypothesis derived from the theory will be disconfirmed. This is a version of the famous philosophical “problem of induction.” One cannot definitively prove a general principle (e.g., “All swans are white.”) just by observing confirming cases (e.g., white swans)—no matter how many. It is always possible that a disconfirming case (e.g., a black swan) will eventually come along. For these reasons, scientists tend to think of theories—even highly successful ones—as subject to revision based on new and unexpected observations.

A second complication has to do with what it means when a hypothesis is disconfirmed. According to the strictest version of the hypothetico-deductive method, disconfirming a hypothesis disproves the theory it was derived from. In formal logic, the premises “if A then B” and “not B” necessarily lead to the conclusion “not A.” If A is the theory and B is the hypothesis (“if A then B”), then disconfirming the hypothesis (“not B”) must mean that the theory is incorrect (“not A”). In practice, however, scientists do not give up on their theories so easily. One reason is that one disconfirmed hypothesis could be a fluke or it could be the result of a faulty research design. Perhaps the researcher did not successfully manipulate the independent variable or measure the dependent variable. A disconfirmed hypothesis could also mean that some unstated but relatively minor assumption of the theory was not met. For example, if Zajonc had failed to find social facilitation in cockroaches, he could have concluded that drive theory is still correct but it applies only to animals with sufficiently complex nervous systems.

This does not mean that researchers are free to ignore disconfirmations of their theories. If they cannot improve their research designs or modify their theories to account for repeated disconfirmations, then they eventually abandon their theories and replace them with ones that are more successful.

Incorporating Theory Into Your Research

It should be clear from this chapter that theories are not just “icing on the cake” of scientific research; they are a basic ingredient. If you can understand and use them, you will be much more successful at reading and understanding the research literature, generating interesting research questions, and writing and conversing about research. Of course, your ability to understand and use theories will improve with practice. But there are several things that you can do to incorporate theory into your research right from the start.

The first thing is to distinguish the phenomena you are interested in from any theories of those phenomena. Beware especially of the tendency to “fuse” a phenomenon to a commonsense theory of it. For example, it might be tempting to describe the negative effect of cell phone usage on driving ability by saying, “Cell phone usage distracts people from driving.” Or it might be tempting to describe the positive effect of expressive writing on health by saying, “Dealing with your emotions through writing makes you healthier.” In both of these examples, however, a vague commonsense explanation (distraction, “dealing with” emotions) has been fused to the phenomenon itself. The problem is that this gives the impression that the phenomenon has already been adequately explained and closes off further inquiry into precisely why or how it happens.

As another example, researcher Jerry Burger and his colleagues were interested in the phenomenon that people are more willing to comply with a simple request from someone with whom they are familiar (Burger, Soroka, Gonzago, Murphy, & Somervell, 1999). A beginning researcher who is asked to explain why this is the case might be at a complete loss or say something like, “Well, because they are familiar with them.” But digging just a bit deeper, Burger and his colleagues realized that there are several possible explanations. Among them are that complying with people we know creates positive feelings, that we anticipate needing something from them in the future, and that we like them more and follow an automatic rule that says to help people we like.

The next thing to do is turn to the research literature to identify existing theories of the phenomena you are interested in. Remember that there will usually be more than one plausible theory. Existing theories may be complementary or competing, but it is essential to know what they are. If there are no existing theories, you should come up with two or three of your own—even if they are informal and limited in scope. Then get in the habit of describing the phenomena you are interested in, followed by the two or three best theories of it. Do this whether you are speaking or writing about your research. When asked what their research was about, for example, Burger and his colleagues could have said something like the following:

It’s about the fact that we’re more likely to comply with requests from people we know [the phenomenon]. This is interesting because it could be because it makes us feel good [Theory 1], because we think we might get something in return [Theory 2], or because we like them more and have an automatic tendency to comply with people we like [Theory 3].

At this point, you may be able to derive a hypothesis from one of the theories. At the very least, for each research question you generate, you should ask what each plausible theory implies about the answer to that question. If one of them implies a particular answer, then you may have an interesting hypothesis to test. Burger and colleagues, for example, asked what would happen if a request came from a stranger whom participants had sat next to only briefly, did not interact with, and had no expectation of interacting with in the future. They reasoned that if familiarity created liking, and liking increased people’s tendency to comply (Theory 3), then this situation should still result in increased rates of compliance (which it did). If the question is interesting but no theory implies an answer to it, this might suggest that a new theory needs to be constructed or that existing theories need to be modified in some way. These would make excellent points of discussion in the introduction or discussion of an American Psychological Association (APA) style research report or research presentation.

When you do write your research report or plan your presentation, be aware that there are two basic ways that researchers usually include theory. The first is to raise a research question, answer that question by conducting a new study, and then offer one or more theories (usually more) to explain or interpret the results. This format works well for applied research questions and for research questions that existing theories do not address. The second way is to describe one or more existing theories, derive a hypothesis from one of those theories, test the hypothesis in a new study, and finally reevaluate the theory. This format works well when there is an existing theory that addresses the research question—especially if the resulting hypothesis is surprising or conflicts with a hypothesis derived from a different theory.

·         Working with theories is not “icing on the cake.” It is a basic ingredient of psychological research.

·         Like other scientists, psychologists use the hypothetico-deductive method. They construct theories to explain or interpret phenomena (or work with existing theories), derive hypotheses from their theories, test the hypotheses, and then reevaluate the theories in light of the new results.

·         There are several things that even beginning researchers can do to incorporate theory into their research. These include clearly distinguishing phenomena from theories, knowing about existing theories, constructing one’s own simple theories, using theories to make predictions about the answers to research questions, and incorporating theories into one’s writing and speaking.

3.4  Understanding Null Hypothesis Testing

The Purpose of Null Hypothesis Testing

As we have seen, psychological research typically involves measuring one or more variables for a sample and computing descriptive statistics for that sample. In general, however, the researcher’s goal is not to draw conclusions about that sample but to draw conclusions about the population that the sample was selected from. Thus researchers must use sample statistics to draw conclusions about the corresponding values in the population. These corresponding values in the population are called parameters. Imagine, for example, that a researcher measures the number of depressive symptoms exhibited by each of 50 clinically depressed adults and computes the mean number of symptoms. The researcher probably wants to use this sample statistic (the mean number of symptoms for the sample) to draw conclusions about the corresponding population parameter (the mean number of symptoms for clinically depressed adults).

Unfortunately, sample statistics are not perfect estimates of their corresponding population parameters. This is because there is a certain amount of random variability in any statistic from sample to sample. This random variability in a statistic from sample to sample is called sampling error.

One implication of this is that when there is a statistical relationship in a sample, it is not always clear that there is a statistical relationship in the population. A small difference between two group means in a sample might indicate that there is a small difference between the two group means in the population. But it could also be that there is no difference between the means in the population and that the difference in the sample is just a matter of sampling error. Similarly, a Pearson’s r value of −.29 in a sample might mean that there is a negative relationship in the population. But it could also be that there is no relationship in the population and that the relationship in the sample is just a matter of sampling error.

In fact, any statistical relationship in a sample can be interpreted in two ways:

  • There is a relationship in the population, and the relationship in the sample reflects this.
  • There is no relationship in the population, and the relationship in the sample reflects only sampling error.

The purpose of null hypothesis testing is simply to help researchers decide between these two interpretations.

The Logic of Null Hypothesis Testing

Null hypothesis testing is a formal approach to deciding between two interpretations of a statistical relationship in a sample. One interpretation is called the null hypothesis (often symbolized H0 and read as “H-naught”). This is the idea that there is no relationship in the population and that the relationship in the sample reflects only sampling error. Informally, the null hypothesis is that the sample relationship “occurred by chance.” The other interpretation is called the alternative hypothesis (often symbolized as H1). This is the idea that there is a relationship in the population and that the relationship in the sample reflects this relationship in the population.

Again, every statistical relationship in a sample can be interpreted in either of these two ways: It might have occurred by chance, or it might reflect a relationship in the population. So researchers need a way to decide between them. Although there are many specific null hypothesis testing techniques, they are all based on the same general logic. The steps are as follows:

  • Assume for the moment that the null hypothesis is true. There is no relationship between the variables in the population.
  • Determine how likely the sample relationship would be if the null hypothesis were true.
  • If the sample relationship would be extremely unlikely, then reject the null hypothesis in favor of the alternative hypothesis. If it would not be extremely unlikely, then retain the null hypothesis.

Following this logic, we can begin to understand why Mehl and his colleagues concluded that there is no difference in talkativeness between women and men in the population. In essence, they asked the following question: “If there were no difference in the population, how likely is it that we would find a small difference of d = 0.06 in our sample?” Their answer to this question was that this sample relationship would be fairly likely if the null hypothesis were true. Therefore, they retained the null hypothesis—concluding that there is no evidence of a sex difference in the population. We can also see why Kanner and his colleagues concluded that there is a correlation between hassles and symptoms in the population. They asked, “If the null hypothesis were true, how likely is it that we would find a strong correlation of +.60 in our sample?” Their answer to this question was that this sample relationship would be fairly unlikely if the null hypothesis were true. Therefore, they rejected the null hypothesis in favor of the alternative hypothesis—concluding that there is a positive correlation between these variables in the population.

A crucial step in null hypothesis testing is finding the likelihood of the sample result if the null hypothesis were true. This probability is called the p value. A low p value means that the sample result would be unlikely if the null hypothesis were true and leads to the rejection of the null hypothesis. A high p value means that the sample result would be likely if the null hypothesis were true and leads to the retention of the null hypothesis. But how low must the p value be before the sample result is considered unlikely enough to reject the null hypothesis? In null hypothesis testing, this criterion is called α (alpha) and is almost always set to .05. If there is less than a 5% chance of a result as extreme as the sample result if the null hypothesis were true, then the null hypothesis is rejected. When this happens, the result is said to be statistically significant. If there is greater than a 5% chance of a result as extreme as the sample result when the null hypothesis is true, then the null hypothesis is retained. This does not necessarily mean that the researcher accepts the null hypothesis as true—only that there is not currently enough evidence to conclude that it is true. Researchers often use the expression “fail to reject the null hypothesis” rather than “retain the null hypothesis,” but they never use the expression “accept the null hypothesis.”

The Misunderstood p Value

The p value is one of the most misunderstood quantities in psychological research (Cohen, 1994). Even professional researchers misinterpret it, and it is not unusual for such misinterpretations to appear in statistics textbooks!

The most common misinterpretation is that the p value is the probability that the null hypothesis is true—that the sample result occurred by chance. For example, a misguided researcher might say that because the p value is .02, there is only a 2% chance that the result is due to chance and a 98% chance that it reflects a real relationship in the population. But this is incorrect. The p value is really the probability of a result at least as extreme as the sample result if the null hypothesis were true. So a p value of .02 means that if the null hypothesis were true, a sample result this extreme would occur only 2% of the time.

You can avoid this misunderstanding by remembering that the p value is not the probability that any particular hypothesis is true or false. Instead, it is the probability of obtaining the sample result if the null hypothesis were true.

Role of Sample Size and Relationship Strength

Recall that null hypothesis testing involves answering the question, “If the null hypothesis were true, what is the probability of a sample result as extreme as this one?” In other words, “What is the p value?” It can be helpful to see that the answer to this question depends on just two considerations: the strength of the relationship and the size of the sample. Specifically, the stronger the sample relationship and the larger the sample, the less likely the result would be if the null hypothesis were true. That is, the lower the p value. This should make sense. Imagine a study in which a sample of 500 women is compared with a sample of 500 men in terms of some psychological characteristic, and Cohen’s d is a strong 0.50. If there were really no sex difference in the population, then a result this strong based on such a large sample should seem highly unlikely. Now imagine a similar study in which a sample of three women is compared with a sample of three men, and Cohen’s d is a weak 0.10. If there were no sex difference in the population, then a relationship this weak based on such a small sample should seem likely. And this is precisely why the null hypothesis would be rejected in the first example and retained in the second.

Of course, sometimes the result can be weak and the sample large, or the result can be strong and the sample small. In these cases, the two considerations trade off against each other so that a weak result can be statistically significant if the sample is large enough and a strong relationship can be statistically significant even if the sample is small.  Weak relationships based on medium or small samples are never statistically significant and that strong relationships based on medium or larger samples are always statistically significant. If you keep this in mind, you will often know whether a result is statistically significant based on the descriptive statistics alone. It is extremely useful to be able to develop this kind of intuitive judgment. One reason is that it allows you to develop expectations about how your formal null hypothesis tests are going to come out, which in turn allows you to detect problems in your analyses. For example, if your sample relationship is strong and your sample is medium, then you would expect to reject the null hypothesis. If for some reason your formal null hypothesis test indicates otherwise, then you need to double-check your computations and interpretations. A second reason is that the ability to make this kind of intuitive judgment is an indication that you understand the basic logic of this approach in addition to being able to do the computations.

Statistical Significance Versus Practical Significance

A statistically significant result is not necessarily a strong one. Even a very weak result can be statistically significant if it is based on a large enough sample. This is closely related to Janet Shibley Hyde’s argument about sex differences (Hyde, 2007). The differences between women and men in mathematical problem solving and leadership ability are statistically significant. But the word significant can cause people to interpret these differences as strong and important—perhaps even important enough to influence the college courses they take or even who they vote for. As we have seen, however, these statistically significant differences are actually quite weak—perhaps even “trivial.”

This is why it is important to distinguish between the statistical significance of a result and the practical significance of that result. Practical significance refers to the importance or usefulness of the result in some real-world context. Many sex differences are statistically significant—and may even be interesting for purely scientific reasons—but they are not practically significant. In clinical practice, this same concept is often referred to as “clinical significance.” For example, a study on a new treatment for social phobia might show that it produces a statistically significant positive effect. Yet this effect still might not be strong enough to justify the time, effort, and other costs of putting it into practice—especially if easier and cheaper treatments that work almost as well already exist. Although statistically significant, this result would be said to lack practical or clinical significance.

·         Null hypothesis testing is a formal approach to deciding whether a statistical relationship in a sample reflects a real relationship in the population or is just due to chance.

·         The logic of null hypothesis testing involves assuming that the null hypothesis is true, finding how likely the sample result would be if this assumption were correct, and then making a decision. If the sample result would be unlikely if the null hypothesis were true, then it is rejected in favor of the alternative hypothesis. If it would not be unlikely, then the null hypothesis is retained.

·         The probability of obtaining the sample result if the null hypothesis were true (the p value) is based on two considerations: relationship strength and sample size. Reasonable judgments about whether a sample relationship is statistically significant can often be made by quickly considering these two factors.

·         Statistical significance is not the same as relationship strength or importance. Even weak relationships can be statistically significant if the sample size is large enough. It is important to consider relationship strength and the practical significance of a result in addition to its statistical significance.

References from Chapter 3

Burger, J. M., Soroka, S., Gonzago, K., Murphy, E., Somervell, E. (1999). The effect of fleeting attraction on compliance to requests. Personality and Social Psychology Bulletin, 27, 1578–1586.

Cohen, J. (1994). The world is round: p .05. American Psychologist, 49, 997–1003.

Hyde, J. S. (2007). New directions in the study of gender similarities and differences. Current Directions in Psychological Science, 16, 259–263.

Izawa, C. (Ed.) (1999). On human memory: Evolution, progress, and reflections on the 30th anniversary of the Atkinson-Shiffrin model. Mahwah, NJ: Erlbaum.

Lilienfeld, S. O., Lynn, S. J. (2003). Dissociative identity disorder: Multiplepersonalities, multiple controversies. In S. O. Lilienfeld, S. J. Lynn, J. M. Lohr (Eds.), Science and pseudoscience in clinical psychology (pp. 109–142). New York, NY: Guilford Press.

Neisser, U., Boodoo, G., Bouchard, T. J., Boykin, A. W., Brody, N., Ceci,…Urbina, S. (1996). Intelligence: Knowns and unknowns. American Psychologist, 51, 77–101.

Schwarz, N., Bless, H., Strack, F., Klumpp, G., Rittenauer-Schatka, H., Simons, A. (1991). Ease of retrieval as information: Another look at the availability heuristic. Journal of Personality and Social Psychology, 61, 195–202.

Zajonc, R. B. (1965). Social facilitation. Science, 149, 269–274.

Zajonc, R. B., Heingartner, A., Herman, E. M. (1969). Social enhancement and impairment of performance in the cockroach. Journal of Personality and Social Psychology, 13, 83–92.

Research Methods in Psychology & Neuroscience Copyright © by Dalhousie University Introduction to Psychology and Neuroscience Team. All Rights Reserved.

Share This Book

Logo for Pressbooks

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

Overview of the Scientific Method

Learning Objectives

  • Distinguish between a theory and a hypothesis.
  • Discover how theories are used to generate hypotheses and how the results of studies can be used to further inform theories.
  • Understand the characteristics of a good hypothesis.

Theories and Hypotheses

Before describing how to develop a hypothesis, it is important to distinguish between a theory and a hypothesis. A  theory  is a coherent explanation or interpretation of one or more phenomena. Although theories can take a variety of forms, one thing they have in common is that they go beyond the phenomena they explain by including variables, structures, processes, functions, or organizing principles that have not been observed directly. Consider, for example, Zajonc’s theory of social facilitation and social inhibition (1965) [1] . He proposed that being watched by others while performing a task creates a general state of physiological arousal, which increases the likelihood of the dominant (most likely) response. So for highly practiced tasks, being watched increases the tendency to make correct responses, but for relatively unpracticed tasks, being watched increases the tendency to make incorrect responses. Notice that this theory—which has come to be called drive theory—provides an explanation of both social facilitation and social inhibition that goes beyond the phenomena themselves by including concepts such as “arousal” and “dominant response,” along with processes such as the effect of arousal on the dominant response.

Outside of science, referring to an idea as a theory often implies that it is untested—perhaps no more than a wild guess. In science, however, the term theory has no such implication. A theory is simply an explanation or interpretation of a set of phenomena. It can be untested, but it can also be extensively tested, well supported, and accepted as an accurate description of the world by the scientific community. The theory of evolution by natural selection, for example, is a theory because it is an explanation of the diversity of life on earth—not because it is untested or unsupported by scientific research. On the contrary, the evidence for this theory is overwhelmingly positive and nearly all scientists accept its basic assumptions as accurate. Similarly, the “germ theory” of disease is a theory because it is an explanation of the origin of various diseases, not because there is any doubt that many diseases are caused by microorganisms that infect the body.

A  hypothesis , on the other hand, is a specific prediction about a new phenomenon that should be observed if a particular theory is accurate. It is an explanation that relies on just a few key concepts. Hypotheses are often specific predictions about what will happen in a particular study. They are developed by considering existing evidence and using reasoning to infer what will happen in the specific context of interest. Hypotheses are often but not always derived from theories. So a hypothesis is often a prediction based on a theory but some hypotheses are a-theoretical and only after a set of observations have been made, is a theory developed. This is because theories are broad in nature and they explain larger bodies of data. So if our research question is really original then we may need to collect some data and make some observations before we can develop a broader theory.

Theories and hypotheses always have this  if-then  relationship. “ If   drive theory is correct,  then  cockroaches should run through a straight runway faster, and a branching runway more slowly, when other cockroaches are present.” Although hypotheses are usually expressed as statements, they can always be rephrased as questions. “Do cockroaches run through a straight runway faster when other cockroaches are present?” Thus deriving hypotheses from theories is an excellent way of generating interesting research questions.

But how do researchers derive hypotheses from theories? One way is to generate a research question using the techniques discussed in this chapter  and then ask whether any theory implies an answer to that question. For example, you might wonder whether expressive writing about positive experiences improves health as much as expressive writing about traumatic experiences. Although this  question  is an interesting one  on its own, you might then ask whether the habituation theory—the idea that expressive writing causes people to habituate to negative thoughts and feelings—implies an answer. In this case, it seems clear that if the habituation theory is correct, then expressive writing about positive experiences should not be effective because it would not cause people to habituate to negative thoughts and feelings. A second way to derive hypotheses from theories is to focus on some component of the theory that has not yet been directly observed. For example, a researcher could focus on the process of habituation—perhaps hypothesizing that people should show fewer signs of emotional distress with each new writing session.

Among the very best hypotheses are those that distinguish between competing theories. For example, Norbert Schwarz and his colleagues considered two theories of how people make judgments about themselves, such as how assertive they are (Schwarz et al., 1991) [2] . Both theories held that such judgments are based on relevant examples that people bring to mind. However, one theory was that people base their judgments on the  number  of examples they bring to mind and the other was that people base their judgments on how  easily  they bring those examples to mind. To test these theories, the researchers asked people to recall either six times when they were assertive (which is easy for most people) or 12 times (which is difficult for most people). Then they asked them to judge their own assertiveness. Note that the number-of-examples theory implies that people who recalled 12 examples should judge themselves to be more assertive because they recalled more examples, but the ease-of-examples theory implies that participants who recalled six examples should judge themselves as more assertive because recalling the examples was easier. Thus the two theories made opposite predictions so that only one of the predictions could be confirmed. The surprising result was that participants who recalled fewer examples judged themselves to be more assertive—providing particularly convincing evidence in favor of the ease-of-retrieval theory over the number-of-examples theory.

Theory Testing

The primary way that scientific researchers use theories is sometimes called the hypothetico-deductive method  (although this term is much more likely to be used by philosophers of science than by scientists themselves). Researchers begin with a set of phenomena and either construct a theory to explain or interpret them or choose an existing theory to work with. They then make a prediction about some new phenomenon that should be observed if the theory is correct. Again, this prediction is called a hypothesis. The researchers then conduct an empirical study to test the hypothesis. Finally, they reevaluate the theory in light of the new results and revise it if necessary. This process is usually conceptualized as a cycle because the researchers can then derive a new hypothesis from the revised theory, conduct a new empirical study to test the hypothesis, and so on. As  Figure 2.3  shows, this approach meshes nicely with the model of scientific research in psychology presented earlier in the textbook—creating a more detailed model of “theoretically motivated” or “theory-driven” research.

working hypothesis psychology

As an example, let us consider Zajonc’s research on social facilitation and inhibition. He started with a somewhat contradictory pattern of results from the research literature. He then constructed his drive theory, according to which being watched by others while performing a task causes physiological arousal, which increases an organism’s tendency to make the dominant response. This theory predicts social facilitation for well-learned tasks and social inhibition for poorly learned tasks. He now had a theory that organized previous results in a meaningful way—but he still needed to test it. He hypothesized that if his theory was correct, he should observe that the presence of others improves performance in a simple laboratory task but inhibits performance in a difficult version of the very same laboratory task. To test this hypothesis, one of the studies he conducted used cockroaches as subjects (Zajonc, Heingartner, & Herman, 1969) [3] . The cockroaches ran either down a straight runway (an easy task for a cockroach) or through a cross-shaped maze (a difficult task for a cockroach) to escape into a dark chamber when a light was shined on them. They did this either while alone or in the presence of other cockroaches in clear plastic “audience boxes.” Zajonc found that cockroaches in the straight runway reached their goal more quickly in the presence of other cockroaches, but cockroaches in the cross-shaped maze reached their goal more slowly when they were in the presence of other cockroaches. Thus he confirmed his hypothesis and provided support for his drive theory. (Zajonc also showed that drive theory existed in humans [Zajonc & Sales, 1966] [4] in many other studies afterward).

Incorporating Theory into Your Research

When you write your research report or plan your presentation, be aware that there are two basic ways that researchers usually include theory. The first is to raise a research question, answer that question by conducting a new study, and then offer one or more theories (usually more) to explain or interpret the results. This format works well for applied research questions and for research questions that existing theories do not address. The second way is to describe one or more existing theories, derive a hypothesis from one of those theories, test the hypothesis in a new study, and finally reevaluate the theory. This format works well when there is an existing theory that addresses the research question—especially if the resulting hypothesis is surprising or conflicts with a hypothesis derived from a different theory.

To use theories in your research will not only give you guidance in coming up with experiment ideas and possible projects, but it lends legitimacy to your work. Psychologists have been interested in a variety of human behaviors and have developed many theories along the way. Using established theories will help you break new ground as a researcher, not limit you from developing your own ideas.

Characteristics of a Good Hypothesis

There are three general characteristics of a good hypothesis. First, a good hypothesis must be testable and falsifiable . We must be able to test the hypothesis using the methods of science and if you’ll recall Popper’s falsifiability criterion, it must be possible to gather evidence that will disconfirm the hypothesis if it is indeed false. Second, a good hypothesis must be logical. As described above, hypotheses are more than just a random guess. Hypotheses should be informed by previous theories or observations and logical reasoning. Typically, we begin with a broad and general theory and use  deductive reasoning to generate a more specific hypothesis to test based on that theory. Occasionally, however, when there is no theory to inform our hypothesis, we use  inductive reasoning  which involves using specific observations or research findings to form a more general hypothesis. Finally, the hypothesis should be positive. That is, the hypothesis should make a positive statement about the existence of a relationship or effect, rather than a statement that a relationship or effect does not exist. As scientists, we don’t set out to show that relationships do not exist or that effects do not occur so our hypotheses should not be worded in a way to suggest that an effect or relationship does not exist. The nature of science is to assume that something does not exist and then seek to find evidence to prove this wrong, to show that it really does exist. That may seem backward to you but that is the nature of the scientific method. The underlying reason for this is beyond the scope of this chapter but it has to do with statistical theory.

  • Zajonc, R. B. (1965). Social facilitation.  Science, 149 , 269–274 ↵
  • Schwarz, N., Bless, H., Strack, F., Klumpp, G., Rittenauer-Schatka, H., & Simons, A. (1991). Ease of retrieval as information: Another look at the availability heuristic.  Journal of Personality and Social Psychology, 61 , 195–202. ↵
  • Zajonc, R. B., Heingartner, A., & Herman, E. M. (1969). Social enhancement and impairment of performance in the cockroach.  Journal of Personality and Social Psychology, 13 , 83–92. ↵
  • Zajonc, R.B. & Sales, S.M. (1966). Social facilitation of dominant and subordinate responses. Journal of Experimental Social Psychology, 2 , 160-168. ↵

A coherent explanation or interpretation of one or more phenomena.

A specific prediction about a new phenomenon that should be observed if a particular theory is accurate.

A cyclical process of theory development, starting with an observed phenomenon, then developing or using a theory to make a specific prediction of what should happen if that theory is correct, testing that prediction, refining the theory in light of the findings, and using that refined theory to develop new hypotheses, and so on.

The ability to test the hypothesis using the methods of science and the possibility to gather evidence that will disconfirm the hypothesis if it is indeed false.

Research Methods in Psychology Copyright © 2019 by Rajiv S. Jhangiani, I-Chant A. Chiang, Carrie Cuttler, & Dana C. Leighton is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.

Share This Book

Encyclopedia of psychology

WORKING HYPOTHESIS

Introduction

A working hypothesis is an assumption or a proposed explanation made on the basis of limited evidence as a starting point for further investigation. This concept is essential for the scientific method as it allows for further research and experimentation to support or reject the hypothesis. Working hypotheses are used to guide the research process and provide a framework for the interpretation of results. In this article, we discuss the role of the working hypothesis in science and provide examples of how it can be used in different areas of research.

The scientific method is a process of inquiry used to understand the underlying principles of a phenomenon. It involves making observations, forming a hypothesis, conducting an experiment, interpreting the results, and drawing a conclusion. A working hypothesis is an important part of this process, as it is a proposed explanation made on the basis of limited evidence. It serves as a starting point for further investigation and is used to guide the research process and provide a framework for the interpretation of results.

The role of the working hypothesis is to provide a potential explanation for a phenomenon that can be tested and verified. It is important to note that a working hypothesis is not a statement of fact and should not be accepted as true until it has been tested and validated. Working hypotheses can be used in a variety of fields, such as biology, chemistry, psychology, and sociology.

In biology, a working hypothesis is used to explain the cause and effect relationship between two or more variables. For example, a working hypothesis may be used to explain the relationship between temperature and the metabolic rate of an organism. An experiment can then be designed to test the hypothesis and determine whether it is true or false.

In chemistry, a working hypothesis can be used to explain the behavior of a chemical reaction. For example, a working hypothesis may be used to explain the reaction between two substances and the products that are formed. An experiment can then be designed to test the hypothesis and determine whether it is correct.

In psychology, a working hypothesis can be used to explain the cause and effect relationship between two or more variables. For example, a working hypothesis may be used to explain the relationship between stress and depression. An experiment can then be designed to test the hypothesis and determine whether it is true or false.

In sociology, a working hypothesis can be used to explain the relationship between two or more social phenomena. For example, a working hypothesis may be used to explain the relationship between poverty and crime. An experiment can then be designed to test the hypothesis and determine whether it is true or false.

In conclusion, a working hypothesis is an essential part of the scientific method. It is a proposed explanation made on the basis of limited evidence and is used to guide the research process and provide a framework for the interpretation of results. Working hypotheses can be used in a variety of fields, such as biology, chemistry, psychology, and sociology.

Baird, J. C., & North, M. (2019). Investigating the scientific method. Oxford University Press.

Booth, W. C., Colomb, G. G., & Williams, J. M. (2016). The craft of research. University of Chicago Press.

Crawford, M. (2018). Evidence-based practice in psychology. American Psychological Association.

Gill, M. J., & Johnson, P. O. (2020). Research methods in the social sciences. Sage.

Related terms

Waiting-list phenomenon, watson-glaser critical thinking appraisal, weighted kappa, warm-up effect.

The potential of working hypotheses for deductive exploratory research

  • Open access
  • Published: 08 December 2020
  • Volume 55 , pages 1703–1725, ( 2021 )

Cite this article

You have full access to this open access article

  • Mattia Casula   ORCID: orcid.org/0000-0002-7081-8153 1 ,
  • Nandhini Rangarajan 2 &
  • Patricia Shields   ORCID: orcid.org/0000-0002-0960-4869 2  

58k Accesses

78 Citations

4 Altmetric

Explore all metrics

While hypotheses frame explanatory studies and provide guidance for measurement and statistical tests, deductive, exploratory research does not have a framing device like the hypothesis. To this purpose, this article examines the landscape of deductive, exploratory research and offers the working hypothesis as a flexible, useful framework that can guide and bring coherence across the steps in the research process. The working hypothesis conceptual framework is introduced, placed in a philosophical context, defined, and applied to public administration and comparative public policy. Doing so, this article explains: the philosophical underpinning of exploratory, deductive research; how the working hypothesis informs the methodologies and evidence collection of deductive, explorative research; the nature of micro-conceptual frameworks for deductive exploratory research; and, how the working hypothesis informs data analysis when exploratory research is deductive.

Similar content being viewed by others

working hypothesis psychology

Reflections on Methodological Issues

working hypothesis psychology

Research: Meaning and Purpose

working hypothesis psychology

Research Design and Methodology

Avoid common mistakes on your manuscript.

1 Introduction

Exploratory research is generally considered to be inductive and qualitative (Stebbins 2001 ). Exploratory qualitative studies adopting an inductive approach do not lend themselves to a priori theorizing and building upon prior bodies of knowledge (Reiter 2013 ; Bryman 2004 as cited in Pearse 2019 ). Juxtaposed against quantitative studies that employ deductive confirmatory approaches, exploratory qualitative research is often criticized for lack of methodological rigor and tentativeness in results (Thomas and Magilvy 2011 ). This paper focuses on the neglected topic of deductive, exploratory research and proposes working hypotheses as a useful framework for these studies.

To emphasize that certain types of applied research lend themselves more easily to deductive approaches, to address the downsides of exploratory qualitative research, and to ensure qualitative rigor in exploratory research, a significant body of work on deductive qualitative approaches has emerged (see for example, Gilgun 2005 , 2015 ; Hyde 2000 ; Pearse 2019 ). According to Gilgun ( 2015 , p. 3) the use of conceptual frameworks derived from comprehensive reviews of literature and a priori theorizing were common practices in qualitative research prior to the publication of Glaser and Strauss’s ( 1967 ) The Discovery of Grounded Theory . Gilgun ( 2015 ) coined the terms Deductive Qualitative Analysis (DQA) to arrive at some sort of “middle-ground” such that the benefits of a priori theorizing (structure) and allowing room for new theory to emerge (flexibility) are reaped simultaneously. According to Gilgun ( 2015 , p. 14) “in DQA, the initial conceptual framework and hypotheses are preliminary. The purpose of DQA is to come up with a better theory than researchers had constructed at the outset (Gilgun 2005 , 2009 ). Indeed, the production of new, more useful hypotheses is the goal of DQA”.

DQA provides greater level of structure for both the experienced and novice qualitative researcher (see for example Pearse 2019 ; Gilgun 2005 ). According to Gilgun ( 2015 , p. 4) “conceptual frameworks are the sources of hypotheses and sensitizing concepts”. Sensitizing concepts frame the exploratory research process and guide the researcher’s data collection and reporting efforts. Pearse ( 2019 ) discusses the usefulness for deductive thematic analysis and pattern matching to help guide DQA in business research. Gilgun ( 2005 ) discusses the usefulness of DQA for family research.

Given these rationales for DQA in exploratory research, the overarching purpose of this paper is to contribute to that growing corpus of work on deductive qualitative research. This paper is specifically aimed at guiding novice researchers and student scholars to the working hypothesis as a useful a priori framing tool. The applicability of the working hypothesis as a tool that provides more structure during the design and implementation phases of exploratory research is discussed in detail. Examples of research projects in public administration that use the working hypothesis as a framing tool for deductive exploratory research are provided.

In the next section, we introduce the three types of research purposes. Second, we examine the nature of the exploratory research purpose. Third, we provide a definition of working hypothesis. Fourth, we explore the philosophical roots of methodology to see where exploratory research fits. Fifth, we connect the discussion to the dominant research approaches (quantitative, qualitative and mixed methods) to see where deductive exploratory research fits. Sixth, we examine the nature of theory and the role of the hypothesis in theory. We contrast formal hypotheses and working hypotheses. Seven, we provide examples of student and scholarly work that illustrates how working hypotheses are developed and operationalized. Lastly, this paper synthesizes previous discussion with concluding remarks.

2 Three types of research purposes

The literature identifies three basic types of research purposes—explanation, description and exploration (Babbie 2007 ; Adler and Clark 2008 ; Strydom 2013 ; Shields and Whetsell 2017 ). Research purposes are similar to research questions; however, they focus on project goals or aims instead of questions.

Explanatory research answers the “why” question (Babbie 2007 , pp. 89–90), by explaining “why things are the way they are”, and by looking “for causes and reasons” (Adler and Clark 2008 , p. 14). Explanatory research is closely tied to hypothesis testing. Theory is tested using deductive reasoning, which goes from the general to the specific (Hyde 2000 , p. 83). Hypotheses provide a frame for explanatory research connecting the research purpose to other parts of the research process (variable construction, choice of data, statistical tests). They help provide alignment or coherence across stages in the research process and provide ways to critique the strengths and weakness of the study. For example, were the hypotheses grounded in the appropriate arguments and evidence in the literature? Are the concepts imbedded in the hypotheses appropriately measured? Was the best statistical test used? When the analysis is complete (hypothesis is tested), the results generally answer the research question (the evidence supported or failed to support the hypothesis) (Shields and Rangarajan 2013 ).

Descriptive research addresses the “What” question and is not primarily concerned with causes (Strydom 2013 ; Shields and Tajalli 2006 ). It lies at the “midpoint of the knowledge continuum” (Grinnell 2001 , p. 248) between exploration and explanation. Descriptive research is used in both quantitative and qualitative research. A field researcher might want to “have a more highly developed idea of social phenomena” (Strydom 2013 , p. 154) and develop thick descriptions using inductive logic. In science, categorization and classification systems such as the periodic table of chemistry or the taxonomies of biology inform descriptive research. These baseline classification systems are a type of theorizing and allow researchers to answer questions like “what kind” of plants and animals inhabit a forest. The answer to this question would usually be displayed in graphs and frequency distributions. This is also the data presentation system used in the social sciences (Ritchie and Lewis 2003 ; Strydom 2013 ). For example, if a scholar asked, what are the needs of homeless people? A quantitative approach would include a survey that incorporated a “needs” classification system (preferably based on a literature review). The data would be displayed as frequency distributions or as charts. Description can also be guided by inductive reasoning, which draws “inferences from specific observable phenomena to general rules or knowledge expansion” (Worster 2013 , p. 448). Theory and hypotheses are generated using inductive reasoning, which begins with data and the intention of making sense of it by theorizing. Inductive descriptive approaches would use a qualitative, naturalistic design (open ended interview questions with the homeless population). The data could provide a thick description of the homeless context. For deductive descriptive research, categories, serve a purpose similar to hypotheses for explanatory research. If developed with thought and a connection to the literature, categories can serve as a framework that inform measurement, link to data collection mechanisms and to data analysis. Like hypotheses they can provide horizontal coherence across the steps in the research process.

Table  1 demonstrated these connections for deductive, descriptive and explanatory research. The arrow at the top emphasizes the horizontal or across the research process view we emphasize. This article makes the case that the working hypothesis can serve the same purpose as the hypothesis for deductive, explanatory research and categories for deductive descriptive research. The cells for exploratory research are filled in with question marks.

The remainder of this paper focuses on exploratory research and the answers to questions found in the table:

What is the philosophical underpinning of exploratory, deductive research?

What is the Micro-conceptual framework for deductive exploratory research? [ As is clear from the article title we introduce the working hypothesis as the answer .]

How does the working hypothesis inform the methodologies and evidence collection of deductive exploratory research?

How does the working hypothesis inform data analysis of deductive exploratory research?

3 The nature of exploratory research purpose

Explorers enter the unknown to discover something new. The process can be fraught with struggle and surprises. Effective explorers creatively resolve unexpected problems. While we typically think of explorers as pioneers or mountain climbers, exploration is very much linked to the experience and intention of the explorer. Babies explore as they take their first steps. The exploratory purpose resonates with these insights. Exploratory research, like reconnaissance, is a type of inquiry that is in the preliminary or early stages (Babbie 2007 ). It is associated with discovery, creativity and serendipity (Stebbins 2001 ). But the person doing the discovery, also defines the activity or claims the act of exploration. It “typically occurs when a researcher examines a new interest or when the subject of study itself is relatively new” (Babbie 2007 , p. 88). Hence, exploration has an open character that emphasizes “flexibility, pragmatism, and the particular, biographically specific interests of an investigator” (Maanen et al. 2001 , p. v). These three purposes form a type of hierarchy. An area of inquiry is initially explored . This early work lays the ground for, description which in turn becomes the basis for explanation . Quantitative, explanatory studies dominate contemporary high impact journals (Twining et al. 2017 ).

Stebbins ( 2001 ) makes the point that exploration is often seen as something like a poor stepsister to confirmatory or hypothesis testing research. He has a problem with this because we live in a changing world and what is settled today will very likely be unsettled in the near future and in need of exploration. Further, exploratory research “generates initial insights into the nature of an issue and develops questions to be investigated by more extensive studies” (Marlow 2005 , p. 334). Exploration is widely applicable because all research topics were once “new.” Further, all research topics have the possibility of “innovation” or ongoing “newness”. Exploratory research may be appropriate to establish whether a phenomenon exists (Strydom 2013 ). The point here, of course, is that the exploratory purpose is far from trivial.

Stebbins’ Exploratory Research in the Social Sciences ( 2001 ), is the only book devoted to the nature of exploratory research as a form of social science inquiry. He views it as a “broad-ranging, purposive, systematic prearranged undertaking designed to maximize the discovery of generalizations leading to description and understanding of an area of social or psychological life” (p. 3). It is science conducted in a way distinct from confirmation. According to Stebbins ( 2001 , p. 6) the goal is discovery of potential generalizations, which can become future hypotheses and eventually theories that emerge from the data. He focuses on inductive logic (which stimulates creativity) and qualitative methods. He does not want exploratory research limited to the restrictive formulas and models he finds in confirmatory research. He links exploratory research to Glaser and Strauss’s ( 1967 ) flexible, immersive, Grounded Theory. Strydom’s ( 2013 ) analysis of contemporary social work research methods books echoes Stebbins’ ( 2001 ) position. Stebbins’s book is an important contribution, but it limits the potential scope of this flexible and versatile research purpose. If we accepted his conclusion, we would delete the “Exploratory” row from Table  1 .

Note that explanatory research can yield new questions, which lead to exploration. Inquiry is a process where inductive and deductive activities can occur simultaneously or in a back and forth manner, particularly as the literature is reviewed and the research design emerges. Footnote 1 Strict typologies such as explanation, description and exploration or inductive/deductive can obscures these larger connections and processes. We draw insight from Dewey’s ( 1896 ) vision of inquiry as depicted in his seminal “Reflex Arc” article. He notes that “stimulus” and “response” like other dualities (inductive/deductive) exist within a larger unifying system. Yet the terms have value. “We need not abandon terms like stimulus and response, so long as we remember that they are attached to events based upon their function in a wider dynamic context, one that includes interests and aims” (Hildebrand 2008 , p. 16). So too, in methodology typologies such as deductive/inductive capture useful distinctions with practical value and are widely used in the methodology literature.

We argue that there is a role for exploratory, deductive, and confirmatory research. We maintain all types of research logics and methods should be in the toolbox of exploratory research. First, as stated above, it makes no sense on its face to identify an extremely flexible purpose that is idiosyncratic to the researcher and then basically restrict its use to qualitative, inductive, non-confirmatory methods. Second, Stebbins’s ( 2001 ) work focused on social science ignoring the policy sciences. Exploratory research can be ideal for immediate practical problems faced by policy makers, who could find a framework of some kind useful. Third, deductive, exploratory research is more intentionally connected to previous research. Some kind of initial framing device is located or designed using the literature. This may be very important for new scholars who are developing research skills and exploring their field and profession. Stebbins’s insights are most pertinent for experienced scholars. Fourth, frameworks and deductive logic are useful for comparative work because some degree of consistency across cases is built into the design.

As we have seen, the hypotheses of explanatory and categories of descriptive research are the dominate frames of social science and policy science. We certainly concur that neither of these frames makes a lot of sense for exploratory research. They would tend to tie it down. We see the problem as a missing framework or missing way to frame deductive, exploratory research in the methodology literature. Inductive exploratory research would not work for many case studies that are trying to use evidence to make an argument. What exploratory deductive case studies need is a framework that incorporates flexibility. This is even more true for comparative case studies. A framework of this sort could be usefully applied to policy research (Casula 2020a ), particularly evaluative policy research, and applied research generally. We propose the Working Hypothesis as a flexible conceptual framework and as a useful tool for doing exploratory studies. It can be used as an evaluative criterion particularly for process evaluation and is useful for student research because students can develop theorizing skills using the literature.

Table  1 included a column specifying the philosophical basis for each research purpose. Shifting gears to the philosophical underpinning of methodology provides useful additional context for examination of deductive, exploratory research.

4 What is a working hypothesis

The working hypothesis is first and foremost a hypothesis or a statement of expectation that is tested in action. The term “working” suggest that these hypotheses are subject to change, are provisional and the possibility of finding contradictory evidence is real. In addition, a “working” hypothesis is active, it is a tool in an ongoing process of inquiry. If one begins with a research question, the working hypothesis could be viewed as a statement or group of statements that answer the question. It “works” to move purposeful inquiry forward. “Working” also implies some sort of community, mostly we work together in relationship to achieve some goal.

Working Hypothesis is a term found in earlier literature. Indeed, both pioneering pragmatists, John Dewey and George Herbert Mead use the term working hypothesis in important nineteenth century works. For both Dewey and Mead, the notion of a working hypothesis has a self-evident quality and it is applied in a big picture context. Footnote 2

Most notably, Dewey ( 1896 ), in one of his most pivotal early works (“Reflex Arc”), used “working hypothesis” to describe a key concept in psychology. “The idea of the reflex arc has upon the whole come nearer to meeting this demand for a general working hypothesis than any other single concept (Italics added)” (p. 357). The notion of a working hypothesis was developed more fully 42 years later, in Logic the Theory of Inquiry , where Dewey developed the notion of a working hypothesis that operated on a smaller scale. He defines working hypotheses as a “provisional, working means of advancing investigation” (Dewey 1938 , pp. 142). Dewey’s definition suggests that working hypotheses would be useful toward the beginning of a research project (e.g., exploratory research).

Mead ( 1899 ) used working hypothesis in a title of an American Journal of Sociology article “The Working Hypothesis and Social Reform” (italics added). He notes that a scientist’s foresight goes beyond testing a hypothesis.

Given its success, he may restate his world from this standpoint and get the basis for further investigation that again always takes the form of a problem. The solution of this problem is found over again in the possibility of fitting his hypothetical proposition into the whole within which it arises. And he must recognize that this statement is only a working hypothesis at the best, i.e., he knows that further investigation will show that the former statement of his world is only provisionally true, and must be false from the standpoint of a larger knowledge, as every partial truth is necessarily false over against the fuller knowledge which he will gain later (Mead 1899 , p. 370).

Cronbach ( 1975 ) developed a notion of working hypothesis consistent with inductive reasoning, but for him, the working hypothesis is a product or result of naturalistic inquiry. He makes the case that naturalistic inquiry is highly context dependent and therefore results or seeming generalizations that may come from a study and should be viewed as “working hypotheses”, which “are tentative both for the situation in which they first uncovered and for other situations” (as cited in Gobo 2008 , p. 196).

A quick Google scholar search using the term “working hypothesis” show that it is widely used in twentieth and twenty-first century science, particularly in titles. In these articles, the working hypothesis is treated as a conceptual tool that furthers investigation in its early or transitioning phases. We could find no explicit links to exploratory research. The exploratory nature of the problem is expressed implicitly. Terms such as “speculative” (Habib 2000 , p. 2391) or “rapidly evolving field” (Prater et al. 2007 , p. 1141) capture the exploratory nature of the study. The authors might describe how a topic is “new” or reference “change”. “As a working hypothesis, the picture is only new, however, in its interpretation” (Milnes 1974 , p. 1731). In a study of soil genesis, Arnold ( 1965 , p. 718) notes “Sequential models, formulated as working hypotheses, are subject to further investigation and change”. Any 2020 article dealing with COVID-19 and respiratory distress would be preliminary almost by definition (Ciceri et al. 2020 ).

5 Philosophical roots of methodology

According to Kaplan ( 1964 , p. 23) “the aim of methodology is to help us understand, in the broadest sense not the products of scientific inquiry but the process itself”. Methods contain philosophical principles that distinguish them from other “human enterprises and interests” (Kaplan 1964 , p. 23). Contemporary research methodology is generally classified as quantitative, qualitative and mixed methods. Leading scholars of methodology have associated each with a philosophical underpinning—positivism (or post-positivism), interpretivism or constructivist and pragmatism, respectively (Guba 1987 ; Guba and Lincoln 1981 ; Schrag 1992 ; Stebbins 2001 ; Mackenzi and Knipe 2006 ; Atieno 2009 ; Levers 2013 ; Morgan 2007 ; O’Connor et al. 2008 ; Johnson and Onwuegbuzie 2004 ; Twining et al. 2017 ). This section summarizes how the literature often describes these philosophies and informs contemporary methodology and its literature.

Positivism and its more contemporary version, post-positivism, maintains an objectivist ontology or assumes an objective reality, which can be uncovered (Levers 2013 ; Twining et al. 2017 ). Footnote 3 Time and context free generalizations are possible and “real causes of social scientific outcomes can be determined reliably and validly (Johnson and Onwuegbunzie 2004 , p. 14). Further, “explanation of the social world is possible through a logical reduction of social phenomena to physical terms”. It uses an empiricist epistemology which “implies testability against observation, experimentation, or comparison” (Whetsell and Shields 2015 , pp. 420–421). Correspondence theory, a tenet of positivism, asserts that “to each concept there corresponds a set of operations involved in its scientific use” (Kaplan 1964 , p. 40).

The interpretivist, constructivists or post-modernist approach is a reaction to positivism. It uses a relativist ontology and a subjectivist epistemology (Levers 2013 ). In this world of multiple realities, context free generalities are impossible as is the separation of facts and values. Causality, explanation, prediction, experimentation depend on assumptions about the correspondence between concepts and reality, which in the absence of an objective reality is impossible. Empirical research can yield “contextualized emergent understanding rather than the creation of testable theoretical structures” (O’Connor et al. 2008 , p. 30). The distinctively different world views of positivist/post positivist and interpretivist philosophy is at the core of many controversies in methodology, social and policy science literature (Casula 2020b ).

With its focus on dissolving dualisms, pragmatism steps outside the objective/subjective debate. Instead, it asks, “what difference would it make to us if the statement were true” (Kaplan 1964 , p. 42). Its epistemology is connected to purposeful inquiry. Pragmatism has a “transformative, experimental notion of inquiry” anchored in pluralism and a focus on constructing conceptual and practical tools to resolve “problematic situations” (Shields 1998 ; Shields and Rangarajan 2013 ). Exploration and working hypotheses are most comfortably situated within the pragmatic philosophical perspective.

6 Research approaches

Empirical investigation relies on three types of methodology—quantitative, qualitative and mixed methods.

6.1 Quantitative methods

Quantitative methods uses deductive logic and formal hypotheses or models to explain, predict, and eventually establish causation (Hyde 2000 ; Kaplan 1964 ; Johnson and Onwuegbunzie 2004 ; Morgan 2007 ). Footnote 4 The correspondence between the conceptual and empirical world make measures possible. Measurement assigns numbers to objects, events or situations and allows for standardization and subtle discrimination. It also allows researchers to draw on the power of mathematics and statistics (Kaplan 1964 , pp. 172–174). Using the power of inferential statistics, quantitative research employs research designs, which eliminate competing hypotheses. It is high in external validity or the ability to generalize to the whole. The research results are relatively independent of the researcher (Johnson & Onwuegbunzie 2004 ).

Quantitative methods depend on the quality of measurement and a priori conceptualization, and adherence to the underlying assumptions of inferential statistics. Critics charge that hypotheses and frameworks needlessly constrain inquiry (Johnson and Onwuegbunzie 2004 , p. 19). Hypothesis testing quantitative methods support the explanatory purpose.

6.2 Qualitative methods

Qualitative researchers who embrace the post-modern, interpretivist view, Footnote 5 question everything about the nature of quantitative methods (Willis et al. 2007 ). Rejecting the possibility of objectivity, correspondence between ideas and measures, and the constraints of a priori theorizing they focus on “unique impressions and understandings of events rather than to generalize the findings” (Kolb 2012 , p. 85). Characteristics of traditional qualitative research include “induction, discovery, exploration, theory/hypothesis generation and the researcher as the primary ‘instrument’ of data collection” (Johnson and Onwuegbunzie 2004 , p. 18). It also concerns itself with forming “unique impressions and understandings of events rather than to generalize findings” (Kolb 2012 , p. 85). The data of qualitative methods are generated via interviews, direct observation, focus groups and analysis of written records or artifacts.

Qualitative methods provide for understanding and “description of people’s personal experiences of phenomena”. They enable descriptions of detailed “phenomena as they are situated and embedded in local contexts.” Researchers use naturalistic settings to “study dynamic processes” and explore how participants interpret experiences. Qualitative methods have an inherent flexibility, allowing researchers to respond to changes in the research setting. They are particularly good at narrowing to the particular and on the flipside have limited external validity (Johnson and Onwuegbunzie 2004 , p. 20). Instead of specifying a suitable sample size to draw conclusions, qualitative research uses the notion of saturation (Morse 1995 ).

Saturation is used in grounded theory—a widely used and respected form of qualitative research, and a well-known interpretivist qualitative research method. Introduced by Glaser and Strauss ( 1967 ), this “grounded on observation” (Patten and Newhart 2000 , p. 27) methodology, focuses on “the creation of emergent understanding” (O’Connor et al. 2008 , p. 30). It uses the Constant Comparative method, whereby researchers develop theory from data as they code and analyze at the same time. Data collection, coding and analysis along with theoretical sampling are systematically combined to generate theory (Kolb 2012 , p. 83). The qualitative methods discussed here support exploratory research.

A close look at the two philosophies and assumptions of quantitative and qualitative research suggests two contradictory world views. The literature has labeled these contradictory views the Incompatibility Theory, which sets up a quantitative versus qualitative tension similar to the seeming separation of art and science or fact and values (Smith 1983a , b ; Guba 1987 ; Smith and Heshusius 1986 ; Howe 1988 ). The incompatibility theory does not make sense in practice. Yin ( 1981 , 1992 , 2011 , 2017 ), a prominent case study scholar, showcases a deductive research methodology that crosses boundaries using both quantaitive and qualitative evidence when appropriate.

6.3 Mixed methods

Turning the “Incompatibility Theory” on its head, Mixed Methods research “combines elements of qualitative and quantitative research approaches … for the broad purposes of breadth and depth of understanding and corroboration” (Johnson et al. 2007 , p. 123). It does this by partnering with philosophical pragmatism. Footnote 6 Pragmatism is productive because “it offers an immediate and useful middle position philosophically and methodologically; it offers a practical and outcome-oriented method of inquiry that is based on action and leads, iteratively, to further action and the elimination of doubt; it offers a method for selecting methodological mixes that can help researchers better answer many of their research questions” (Johnson and Onwuegbunzie 2004 , p. 17). What is theory for the pragmatist “any theoretical model is for the pragmatist, nothing more than a framework through which problems are perceived and subsequently organized ” (Hothersall 2019 , p. 5).

Brendel ( 2009 ) constructed a simple framework to capture the core elements of pragmatism. Brendel’s four “p”’s—practical, pluralism, participatory and provisional help to show the relevance of pragmatism to mixed methods. Pragmatism is purposeful and concerned with the practical consequences. The pluralism of pragmatism overcomes quantitative/qualitative dualism. Instead, it allows for multiple perspectives (including positivism and interpretivism) and, thus, gets around the incompatibility problem. Inquiry should be participatory or inclusive of the many views of participants, hence, it is consistent with multiple realities and is also tied to the common concern of a problematic situation. Finally, all inquiry is provisional . This is compatible with experimental methods, hypothesis testing and consistent with the back and forth of inductive and deductive reasoning. Mixed methods support exploratory research.

Advocates of mixed methods research note that it overcomes the weaknesses and employs the strengths of quantitative and qualitative methods. Quantitative methods provide precision. The pictures and narrative of qualitative techniques add meaning to the numbers. Quantitative analysis can provide a big picture, establish relationships and its results have great generalizability. On the other hand, the “why” behind the explanation is often missing and can be filled in through in-depth interviews. A deeper and more satisfying explanation is possible. Mixed-methods brings the benefits of triangulation or multiple sources of evidence that converge to support a conclusion. It can entertain a “broader and more complete range of research questions” (Johnson and Onwuegbunzie 2004 , p. 21) and can move between inductive and deductive methods. Case studies use multiple forms of evidence and are a natural context for mixed methods.

One thing that seems to be missing from mixed method literature and explicit design is a place for conceptual frameworks. For example, Heyvaert et al. ( 2013 ) examined nine mixed methods studies and found an explicit framework in only two studies (transformative and pragmatic) (p. 663).

7 Theory and hypotheses: where is and what is theory?

Theory is key to deductive research. In essence, empirical deductive methods test theory. Hence, we shift our attention to theory and the role and functions of the hypotheses in theory. Oppenheim and Putnam ( 1958 ) note that “by a ‘theory’ (in the widest sense) we mean any hypothesis, generalization or law (whether deterministic or statistical) or any conjunction of these” (p. 25). Van Evera ( 1997 ) uses a similar and more complex definition “theories are general statements that describe and explain the causes of effects of classes of phenomena. They are composed of causal laws or hypotheses, explanations, and antecedent conditions” (p. 8). Sutton and Staw ( 1995 , p. 376) in a highly cited article “What Theory is Not” assert the that hypotheses should contain logical arguments for “why” the hypothesis is expected. Hypotheses need an underlying causal argument before they can be considered theory. The point of this discussion is not to define theory but to establish the importance of hypotheses in theory.

Explanatory research is implicitly relational (A explains B). The hypotheses of explanatory research lay bare these relationships. Popular definitions of hypotheses capture this relational component. For example, the Cambridge Dictionary defines a hypothesis a “an idea or explanation for something that is based on known facts but has not yet been proven”. Vocabulary.Com’s definition emphasizes explanation, a hypothesis is “an idea or explanation that you then test through study and experimentation”. According to Wikipedia a hypothesis is “a proposed explanation for a phenomenon”. Other definitions remove the relational or explanatory reference. The Oxford English Dictionary defines a hypothesis as a “supposition or conjecture put forth to account for known facts.” Science Buddies defines a hypothesis as a “tentative, testable answer to a scientific question”. According to the Longman Dictionary the hypothesis is “an idea that can be tested to see if it is true or not”. The Urban Dictionary states a hypothesis is “a prediction or educated-guess based on current evidence that is yet be tested”. We argue that the hypotheses of exploratory research— working hypothesis — are not bound by relational expectations. It is this flexibility that distinguishes the working hypothesis.

Sutton and Staw (1995) maintain that hypotheses “serve as crucial bridges between theory and data, making explicit how the variables and relationships that follow from a logical argument will be operationalized” (p. 376, italics added). The highly rated journal, Computers and Education , Twining et al. ( 2017 ) created guidelines for qualitative research as a way to improve soundness and rigor. They identified the lack of alignment between theoretical stance and methodology as a common problem in qualitative research. In addition, they identified a lack of alignment between methodology, design, instruments of data collection and analysis. The authors created a guidance summary, which emphasized the need to enhance coherence throughout elements of research design (Twining et al. 2017 p. 12). Perhaps the bridging function of the hypothesis mentioned by Sutton and Staw (1995) is obscured and often missing in qualitative methods. Working hypotheses can be a tool to overcome this problem.

For reasons, similar to those used by mixed methods scholars, we look to classical pragmatism and the ideas of John Dewey to inform our discussion of theory and working hypotheses. Dewey ( 1938 ) treats theory as a tool of empirical inquiry and uses a map metaphor (p. 136). Theory is like a map that helps a traveler navigate the terrain—and should be judged by its usefulness. “There is no expectation that a map is a true representation of reality. Rather, it is a representation that allows a traveler to reach a destination (achieve a purpose). Hence, theories should be judged by how well they help resolve the problem or achieve a purpose ” (Shields and Rangarajan 2013 , p. 23). Note that we explicitly link theory to the research purpose. Theory is never treated as an unimpeachable Truth, rather it is a helpful tool that organizes inquiry connecting data and problem. Dewey’s approach also expands the definition of theory to include abstractions (categories) outside of causation and explanation. The micro-conceptual frameworks Footnote 7 introduced in Table  1 are a type of theory. We define conceptual frameworks as the “way the ideas are organized to achieve the project’s purpose” (Shields and Rangarajan 2013 p. 24). Micro-conceptual frameworks do this at the very close to the data level of analysis. Micro-conceptual frameworks can direct operationalization and ways to assess measurement or evidence at the individual research study level. Again, the research purpose plays a pivotal role in the functioning of theory (Shields and Tajalli 2006 ).

8 Working hypothesis: methods and data analysis

We move on to answer the remaining questions in the Table  1 . We have established that exploratory research is extremely flexible and idiosyncratic. Given this, we will proceed with a few examples and draw out lessons for developing an exploratory purpose, building a framework and from there identifying data collection techniques and the logics of hypotheses testing and analysis. Early on we noted the value of the Working Hypothesis framework for student empirical research and applied research. The next section uses a masters level student’s work to illustrate the usefulness of working hypotheses as a way to incorporate the literature and structure inquiry. This graduate student was also a mature professional with a research question that emerged from his job and is thus an example of applied research.

Master of Public Administration student, Swift ( 2010 ) worked for a public agency and was responsible for that agency’s sexual harassment training. The agency needed to evaluate its training but had never done so before. He also had never attempted a significant empirical research project. Both of these conditions suggest exploration as a possible approach. He was interested in evaluating the training program and hence the project had a normative sense. Given his job, he already knew a lot about the problem of sexual harassment and sexual harassment training. What he did not know much about was doing empirical research, reviewing the literature or building a framework to evaluate the training (working hypotheses). He wanted a framework that was flexible and comprehensive. In his research, he discovered Lundvall’s ( 2006 ) knowledge taxonomy summarized with four simple ways of knowing ( Know - what, Know - how, Know - why, Know - who ). He asked whether his agency’s training provided the participants with these kinds of knowledge? Lundvall’s categories of knowing became the basis of his working hypotheses. Lundvall’s knowledge taxonomy is well suited for working hypotheses because it is so simple and is easy to understand intuitively. It can also be tailored to the unique problematic situation of the researcher. Swift ( 2010 , pp. 38–39) developed four basic working hypotheses:

WH1: Capital Metro provides adequate know - what knowledge in its sexual harassment training

WH2: Capital Metro provides adequate know - how knowledge in its sexual harassment training

WH3: Capital Metro provides adequate know - why knowledge in its sexual harassment training

WH4: Capital Metro provides adequate know - who knowledge in its sexual harassment training

From here he needed to determine what would determine the different kinds of knowledge. For example, what constitutes “know what” knowledge for sexual harassment training. This is where his knowledge and experience working in the field as well as the literature come into play. According to Lundvall et al. ( 1988 , p. 12) “know what” knowledge is about facts and raw information. Swift ( 2010 ) learned through the literature that laws and rules were the basis for the mandated sexual harassment training. He read about specific anti-discrimination laws and the subsequent rules and regulations derived from the laws. These laws and rules used specific definitions and were enacted within a historical context. Laws, rules, definitions and history became the “facts” of Know-What knowledge for his working hypothesis. To make this clear, he created sub-hypotheses that explicitly took these into account. See how Swift ( 2010 , p. 38) constructed the sub-hypotheses below. Each sub-hypothesis was defended using material from the literature (Swift 2010 , pp. 22–26). The sub-hypotheses can also be easily tied to evidence. For example, he could document that the training covered anti-discrimination laws.

WH1: Capital Metro provides adequate know - what knowledge in its sexual Harassment training

WH1a: The sexual harassment training includes information on anti-discrimination laws (Title VII).

WH1b: The sexual harassment training includes information on key definitions.

WH1c: The sexual harassment training includes information on Capital Metro’s Equal Employment Opportunity and Harassment policy.

WH1d: Capital Metro provides training on sexual harassment history.

Know-How knowledge refers to the ability to do something and involves skills (Lundvall and Johnson 1994 , p. 12). It is a kind of expertise in action. The literature and his experience allowed James Smith to identify skills such as how to file a claim or how to document incidents of sexual harassment as important “know-how” knowledge that should be included in sexual harassment training. Again, these were depicted as sub-hypotheses.

WH2: Capital Metro provides adequate know - how knowledge in its sexual Harassment training

WH2a: Training is provided on how to file and report a claim of harassment

WH2b: Training is provided on how to document sexual harassment situations.

WH2c: Training is provided on how to investigate sexual harassment complaints.

WH2d: Training is provided on how to follow additional harassment policy procedures protocol

Note that the working hypotheses do not specify a relationship but rather are simple declarative sentences. If “know-how” knowledge was found in the sexual harassment training, he would be able to find evidence that participants learned about how to file a claim (WH2a). The working hypothesis provides the bridge between theory and data that Sutton and Staw (1995) found missing in exploratory work. The sub-hypotheses are designed to be refined enough that the researchers would know what to look for and tailor their hunt for evidence. Figure  1 captures the generic sub-hypothesis design.

figure 1

A Common structure used in the development of working hypotheses

When expected evidence is linked to the sub-hypotheses, data, framework and research purpose are aligned. This can be laid out in a planning document that operationalizes the data collection in something akin to an architect’s blueprint. This is where the scholar explicitly develops the alignment between purpose, framework and method (Shields and Rangarajan 2013 ; Shields et al. 2019b ).

Table  2 operationalizes Swift’s working hypotheses (and sub-hypotheses). The table provide clues as to what kind of evidence is needed to determine whether the hypotheses are supported. In this case, Smith used interviews with participants and trainers as well as a review of program documents. Column one repeats the sub-hypothesis, column two specifies the data collection method (here interviews with participants/managers and review of program documents) and column three specifies the unique questions that focus the investigation. For example, the interview questions are provided. In the less precise world of qualitative data, evidence supporting a hypothesis could have varying degrees of strength. This too can be specified.

For Swift’s example, neither the statistics of explanatory research nor the open-ended questions of interpretivist, inductive exploratory research is used. The deductive logic of inquiry here is somewhat intuitive and similar to a detective (Ulriksen and Dadalauri 2016 ). It is also a logic used in international law (Worster 2013 ). It should be noted that the working hypothesis and the corresponding data collection protocol does not stop inquiry and fieldwork outside the framework. The interviews could reveal an unexpected problem with Smith’s training program. The framework provides a very loose and perhaps useful ways to identify and make sense of the data that does not fit the expectations. Researchers using working hypotheses should be sensitive to interesting findings that fall outside their framework. These could be used in future studies, to refine theory or even in this case provide suggestions to improve sexual harassment training. The sensitizing concepts mentioned by Gilgun ( 2015 ) are free to emerge and should be encouraged.

Something akin to working hypotheses are hidden in plain sight in the professional literature. Take for example Kerry Crawford’s ( 2017 ) book Wartime Sexual Violence. Here she explores how basic changes in the way “advocates and decision makers think about and discuss conflict-related sexual violence” (p. 2). She focused on a subsequent shift from silence to action. The shift occurred as wartime sexual violence was reframed as a “weapon of war”. The new frame captured the attention of powerful members of the security community who demanded, initiated, and paid for institutional and policy change. Crawford ( 2017 ) examines the legacy of this key reframing. She develops a six-stage model of potential international responses to incidents of wartime violence. This model is fairly easily converted to working hypotheses and sub-hypotheses. Table  3 shows her model as a set of (non-relational) working hypotheses. She applied this model as a way to gather evidence among cases (e.g., the US response to sexual violence in the Democratic Republic of the Congo) to show the official level of response to sexual violence. Each case study chapter examined evidence to establish whether the case fit the pattern formalized in the working hypotheses. The framework was very useful in her comparative context. The framework allowed for consistent comparative analysis across cases. Her analysis of the three cases went well beyond the material covered in the framework. She freely incorporated useful inductively informed data in her analysis and discussion. The framework, however, allowed for alignment within and across cases.

9 Conclusion

In this article we argued that the exploratory research is also well suited for deductive approaches. By examining the landscape of deductive, exploratory research, we proposed the working hypothesis as a flexible conceptual framework and a useful tool for doing exploratory studies. It has the potential to guide and bring coherence across the steps in the research process. After presenting the nature of exploratory research purpose and how it differs from two types of research purposes identified in the literature—explanation, and description. We focused on answering four different questions in order to show the link between micro-conceptual frameworks and research purposes in a deductive setting. The answers to the four questions are summarized in Table  4 .

Firstly, we argued that working hypothesis and exploration are situated within the pragmatic philosophical perspective. Pragmatism allows for pluralism in theory and data collection techniques, which is compatible with the flexible exploratory purpose. Secondly, after introducing and discussing the four core elements of pragmatism (practical, pluralism, participatory, and provisional), we explained how the working hypothesis informs the methodologies and evidence collection of deductive exploratory research through a presentation of the benefits of triangulation provided by mixed methods research. Thirdly, as is clear from the article title, we introduced the working hypothesis as the micro-conceptual framework for deductive explorative research. We argued that the hypotheses of explorative research, which we call working hypotheses are distinguished from those of the explanatory research, since they do not require a relational component and are not bound by relational expectations. A working hypothesis is extremely flexible and idiosyncratic, and it could be viewed as a statement or group of statements of expectations tested in action depending on the research question. Using examples, we concluded by explaining how working hypotheses inform data collection and analysis for deductive exploratory research.

Crawford’s ( 2017 ) example showed how the structure of working hypotheses provide a framework for comparative case studies. Her criteria for analysis were specified ahead of time and used to frame each case. Thus, her comparisons were systemized across cases. Further, the framework ensured a connection between the data analysis and the literature review. Yet the flexible, working nature of the hypotheses allowed for unexpected findings to be discovered.

The evidence required to test working hypotheses is directed by the research purpose and potentially includes both quantitative and qualitative sources. Thus, all types of evidence, including quantitative methods should be part of the toolbox of deductive, explorative research. We show how the working hypotheses, as a flexible exploratory framework, resolves many seeming dualisms pervasive in the research methods literature.

To conclude, this article has provided an in-depth examination of working hypotheses taking into account philosophical questions and the larger formal research methods literature. By discussing working hypotheses as applied, theoretical tools, we demonstrated that working hypotheses fill a unique niche in the methods literature, since they provide a way to enhance alignment in deductive, explorative studies.

In practice, quantitative scholars often run multivariate analysis on data bases to find out if there are correlations. Hypotheses are tested because the statistical software does the math, not because the scholar has an a priori, relational expectation (hypothesis) well-grounded in the literature and supported by cogent arguments. Hunches are just fine. This is clearly an inductive approach to research and part of the large process of inquiry.

In 1958 , Philosophers of Science, Oppenheim and Putnam use the notion of Working Hypothesis in their title “Unity of Science as Working Hypothesis.” They too, use it as a big picture concept, “unity of science in this sense, can be fully realized constitutes an over-arching meta-scientific hypothesis, which enables one to see a unity in scientific activities that might otherwise appear disconnected or unrelated” (p. 4).

It should be noted that the positivism described in the research methods literature does not resemble philosophical positivism as developed by philosophers like Comte (Whetsell and Shields 2015 ). In the research methods literature “positivism means different things to different people….The term has long been emptied of any precise denotation …and is sometimes affixed to positions actually opposed to those espoused by the philosophers from whom the name derives” (Schrag 1992 , p. 5). For purposes of this paper, we are capturing a few essential ways positivism is presented in the research methods literature. This helps us to position the “working hypothesis” and “exploratory” research within the larger context in contemporary research methods. We are not arguing that the positivism presented here is anything more. The incompatibility theory discussed later, is an outgrowth of this research methods literature…

It should be noted that quantitative researchers often use inductive reasoning. They do this with existing data sets when they run correlations or regression analysis as a way to find relationships. They ask, what does the data tell us?

Qualitative researchers are also associated with phenomenology, hermeneutics, naturalistic inquiry and constructivism.

See Feilzer ( 2010 ), Howe ( 1988 ), Johnson and Onwuegbunzie ( 2004 ), Morgan ( 2007 ), Onwuegbuzie and Leech ( 2005 ), Biddle and Schafft ( 2015 ).

The term conceptual framework is applicable in a broad context (see Ravitch and Riggan 2012 ). The micro-conceptual framework narrows to the specific study and informs data collection (Shields and Rangarajan 2013 ; Shields et al. 2019a ) .

Adler, E., Clark, R.: How It’s Done: An Invitation to Social Research, 3rd edn. Thompson-Wadsworth, Belmont (2008)

Google Scholar  

Arnold, R.W.: Multiple working hypothesis in soil genesis. Soil Sci. Soc. Am. J. 29 (6), 717–724 (1965)

Article   Google Scholar  

Atieno, O.: An analysis of the strengths and limitation of qualitative and quantitative research paradigms. Probl. Educ. 21st Century 13 , 13–18 (2009)

Babbie, E.: The Practice of Social Research, 11th edn. Thompson-Wadsworth, Belmont (2007)

Biddle, C., Schafft, K.A.: Axiology and anomaly in the practice of mixed methods work: pragmatism, valuation, and the transformative paradigm. J. Mixed Methods Res. 9 (4), 320–334 (2015)

Brendel, D.H.: Healing Psychiatry: Bridging the Science/Humanism Divide. MIT Press, Cambridge (2009)

Bryman, A.: Qualitative research on leadership: a critical but appreciative review. Leadersh. Q. 15 (6), 729–769 (2004)

Casula, M.: Under which conditions is cohesion policy effective: proposing an Hirschmanian approach to EU structural funds, Regional & Federal Studies, https://doi.org/10.1080/13597566.2020.1713110 (2020a)

Casula, M.: Economic gowth and cohesion policy implementation in Italy and Spain, Palgrave Macmillan, Cham (2020b)

Ciceri, F., et al.: Microvascular COVID-19 lung vessels obstructive thromboinflammatory syndrome (MicroCLOTS): an atypical acute respiratory distress syndrome working hypothesis. Crit. Care Resusc. 15 , 1–3 (2020)

Crawford, K.F.: Wartime sexual violence: From silence to condemnation of a weapon of war. Georgetown University Press (2017)

Cronbach, L.: Beyond the two disciplines of scientific psychology American Psychologist. 30 116–127 (1975)

Dewey, J.: The reflex arc concept in psychology. Psychol. Rev. 3 (4), 357 (1896)

Dewey, J.: Logic: The Theory of Inquiry. Henry Holt & Co, New York (1938)

Feilzer, Y.: Doing mixed methods research pragmatically: implications for the rediscovery of pragmatism as a research paradigm. J. Mixed Methods Res. 4 (1), 6–16 (2010)

Gilgun, J.F.: Qualitative research and family psychology. J. Fam. Psychol. 19 (1), 40–50 (2005)

Gilgun, J.F.: Methods for enhancing theory and knowledge about problems, policies, and practice. In: Katherine Briar, Joan Orme., Roy Ruckdeschel., Ian Shaw. (eds.) The Sage handbook of social work research pp. 281–297. Thousand Oaks, CA: Sage (2009)

Gilgun, J.F.: Deductive Qualitative Analysis as Middle Ground: Theory-Guided Qualitative Research. Amazon Digital Services LLC, Seattle (2015)

Glaser, B.G., Strauss, A.L.: The Discovery of Grounded Theory: Strategies for Qualitative Research. Aldine, Chicago (1967)

Gobo, G.: Re-Conceptualizing Generalization: Old Issues in a New Frame. In: Alasuutari, P., Bickman, L., Brannen, J. (eds.) The Sage Handbook of Social Research Methods, pp. 193–213. Sage, Los Angeles (2008)

Chapter   Google Scholar  

Grinnell, R.M.: Social work research and evaluation: quantitative and qualitative approaches. New York: F.E. Peacock Publishers (2001)

Guba, E.G.: What have we learned about naturalistic evaluation? Eval. Pract. 8 (1), 23–43 (1987)

Guba, E., Lincoln, Y.: Effective Evaluation: Improving the Usefulness of Evaluation Results Through Responsive and Naturalistic Approaches. Jossey-Bass Publishers, San Francisco (1981)

Habib, M.: The neurological basis of developmental dyslexia: an overview and working hypothesis. Brain 123 (12), 2373–2399 (2000)

Heyvaert, M., Maes, B., Onghena, P.: Mixed methods research synthesis: definition, framework, and potential. Qual. Quant. 47 (2), 659–676 (2013)

Hildebrand, D.: Dewey: A Beginners Guide. Oneworld Oxford, Oxford (2008)

Howe, K.R.: Against the quantitative-qualitative incompatibility thesis or dogmas die hard. Edu. Res. 17 (8), 10–16 (1988)

Hothersall, S.J.: Epistemology and social work: enhancing the integration of theory, practice and research through philosophical pragmatism. Eur. J. Social Work 22 (5), 860–870 (2019)

Hyde, K.F.: Recognising deductive processes in qualitative research. Qual. Market Res. Int. J. 3 (2), 82–90 (2000)

Johnson, R.B., Onwuegbuzie, A.J.: Mixed methods research: a research paradigm whose time has come. Educ. Res. 33 (7), 14–26 (2004)

Johnson, R.B., Onwuegbuzie, A.J., Turner, L.A.: Toward a definition of mixed methods research. J. Mixed Methods Res. 1 (2), 112–133 (2007)

Kaplan, A.: The Conduct of Inquiry. Chandler, Scranton (1964)

Kolb, S.M.: Grounded theory and the constant comparative method: valid research strategies for educators. J. Emerg. Trends Educ. Res. Policy Stud. 3 (1), 83–86 (2012)

Levers, M.J.D.: Philosophical paradigms, grounded theory, and perspectives on emergence. Sage Open 3 (4), 2158244013517243 (2013)

Lundvall, B.A.: Knowledge management in the learning economy. In: Danish Research Unit for Industrial Dynamics Working Paper Working Paper, vol. 6, pp. 3–5 (2006)

Lundvall, B.-Å., Johnson, B.: Knowledge management in the learning economy. J. Ind. Stud. 1 (2), 23–42 (1994)

Lundvall, B.-Å., Jenson, M.B., Johnson, B., Lorenz, E.: Forms of Knowledge and Modes of Innovation—From User-Producer Interaction to the National System of Innovation. In: Dosi, G., et al. (eds.) Technical Change and Economic Theory. Pinter Publishers, London (1988)

Maanen, J., Manning, P., Miller, M.: Series editors’ introduction. In: Stebbins, R. (ed.) Exploratory research in the social sciences. pp. v–vi. Thousands Oak, CA: SAGE (2001)

Mackenzie, N., Knipe, S.: Research dilemmas: paradigms, methods and methodology. Issues Educ. Res. 16 (2), 193–205 (2006)

Marlow, C.R.: Research Methods for Generalist Social Work. Thomson Brooks/Cole, New York (2005)

Mead, G.H.: The working hypothesis in social reform. Am. J. Sociol. 5 (3), 367–371 (1899)

Milnes, A.G.: Structure of the Pennine Zone (Central Alps): a new working hypothesis. Geol. Soc. Am. Bull. 85 (11), 1727–1732 (1974)

Morgan, D.L.: Paradigms lost and pragmatism regained: methodological implications of combining qualitative and quantitative methods. J. Mixed Methods Res. 1 (1), 48–76 (2007)

Morse, J.: The significance of saturation. Qual. Health Res. 5 (2), 147–149 (1995)

O’Connor, M.K., Netting, F.E., Thomas, M.L.: Grounded theory: managing the challenge for those facing institutional review board oversight. Qual. Inq. 14 (1), 28–45 (2008)

Onwuegbuzie, A.J., Leech, N.L.: On becoming a pragmatic researcher: The importance of combining quantitative and qualitative research methodologies. Int. J. Soc. Res. Methodol. 8 (5), 375–387 (2005)

Oppenheim, P., Putnam, H.: Unity of science as a working hypothesis. In: Minnesota Studies in the Philosophy of Science, vol. II, pp. 3–36 (1958)

Patten, M.L., Newhart, M.: Understanding Research Methods: An Overview of the Essentials, 2nd edn. Routledge, New York (2000)

Pearse, N.: An illustration of deductive analysis in qualitative research. In: European Conference on Research Methodology for Business and Management Studies, pp. 264–VII. Academic Conferences International Limited (2019)

Prater, D.N., Case, J., Ingram, D.A., Yoder, M.C.: Working hypothesis to redefine endothelial progenitor cells. Leukemia 21 (6), 1141–1149 (2007)

Ravitch, B., Riggan, M.: Reason and Rigor: How Conceptual Frameworks Guide Research. Sage, Beverley Hills (2012)

Reiter, B.: The epistemology and methodology of exploratory social science research: Crossing Popper with Marcuse. In: Government and International Affairs Faculty Publications. Paper 99. http://scholarcommons.usf.edu/gia_facpub/99 (2013)

Ritchie, J., Lewis, J.: Qualitative Research Practice: A Guide for Social Science Students and Researchers. Sage, London (2003)

Schrag, F.: In defense of positivist research paradigms. Educ. Res. 21 (5), 5–8 (1992)

Shields, P.M.: Pragmatism as a philosophy of science: A tool for public administration. Res. Pub. Admin. 41995-225 (1998)

Shields, P.M., Rangarajan, N.: A Playbook for Research Methods: Integrating Conceptual Frameworks and Project Management. New Forums Press (2013)

Shields, P.M., Tajalli, H.: Intermediate theory: the missing link in successful student scholarship. J. Public Aff. Educ. 12 (3), 313–334 (2006)

Shields, P., & Whetsell, T.: Public administration methodology: A pragmatic perspective. In: Raadshelders, J., Stillman, R., (eds). Foundations of Public Administration, pp. 75–92. New York: Melvin and Leigh (2017)

Shields, P., Rangarajan, N., Casula, M.: It is a Working Hypothesis: Searching for Truth in a Post-Truth World (part I). Sotsiologicheskie issledovaniya 10 , 39–47 (2019a)

Shields, P., Rangarajan, N., Casula, M.: It is a Working Hypothesis: Searching for Truth in a Post-Truth World (part 2). Sotsiologicheskie issledovaniya 11 , 40–51 (2019b)

Smith, J.K.: Quantitative versus qualitative research: an attempt to clarify the issue. Educ. Res. 12 (3), 6–13 (1983a)

Smith, J.K.: Quantitative versus interpretive: the problem of conducting social inquiry. In: House, E. (ed.) Philosophy of Evaluation, pp. 27–52. Jossey-Bass, San Francisco (1983b)

Smith, J.K., Heshusius, L.: Closing down the conversation: the end of the quantitative-qualitative debate among educational inquirers. Educ. Res. 15 (1), 4–12 (1986)

Stebbins, R.A.: Exploratory Research in the Social Sciences. Sage, Thousand Oaks (2001)

Book   Google Scholar  

Strydom, H.: An evaluation of the purposes of research in social work. Soc. Work/Maatskaplike Werk 49 (2), 149–164 (2013)

Sutton, R. I., Staw, B.M.: What theory is not. Administrative science quarterly. 371–384 (1995)

Swift, III, J.: Exploring Capital Metro’s Sexual Harassment Training using Dr. Bengt-Ake Lundvall’s taxonomy of knowledge principles. Applied Research Project, Texas State University https://digital.library.txstate.edu/handle/10877/3671 (2010)

Thomas, E., Magilvy, J.K.: Qualitative rigor or research validity in qualitative research. J. Spec. Pediatric Nurs. 16 (2), 151–155 (2011)

Twining, P., Heller, R.S., Nussbaum, M., Tsai, C.C.: Some guidance on conducting and reporting qualitative studies. Comput. Educ. 107 , A1–A9 (2017)

Ulriksen, M., Dadalauri, N.: Single case studies and theory-testing: the knots and dots of the process-tracing method. Int. J. Soc. Res. Methodol. 19 (2), 223–239 (2016)

Van Evera, S.: Guide to Methods for Students of Political Science. Cornell University Press, Ithaca (1997)

Whetsell, T.A., Shields, P.M.: The dynamics of positivism in the study of public administration: a brief intellectual history and reappraisal. Adm. Soc. 47 (4), 416–446 (2015)

Willis, J.W., Jost, M., Nilakanta, R.: Foundations of Qualitative Research: Interpretive and Critical Approaches. Sage, Beverley Hills (2007)

Worster, W.T.: The inductive and deductive methods in customary international law analysis: traditional and modern approaches. Georget. J. Int. Law 45 , 445 (2013)

Yin, R.K.: The case study as a serious research strategy. Knowledge 3 (1), 97–114 (1981)

Yin, R.K.: The case study method as a tool for doing evaluation. Curr. Sociol. 40 (1), 121–137 (1992)

Yin, R.K.: Applications of Case Study Research. Sage, Beverley Hills (2011)

Yin, R.K.: Case Study Research and Applications: Design and Methods. Sage Publications, Beverley Hills (2017)

Download references

Acknowledgements

The authors contributed equally to this work. The authors would like to thank Quality & Quantity’ s editors and the anonymous reviewers for their valuable advice and comments on previous versions of this paper.

Open access funding provided by Alma Mater Studiorum - Università di Bologna within the CRUI-CARE Agreement. There are no funders to report for this submission.

Author information

Authors and affiliations.

Department of Political and Social Sciences, University of Bologna, Strada Maggiore 45, 40125, Bologna, Italy

Mattia Casula

Texas State University, San Marcos, TX, USA

Nandhini Rangarajan & Patricia Shields

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Mattia Casula .

Ethics declarations

Conflict of interest.

No potential conflict of interest was reported by the author.

Additional information

Publisher's note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ .

Reprints and permissions

About this article

Casula, M., Rangarajan, N. & Shields, P. The potential of working hypotheses for deductive exploratory research. Qual Quant 55 , 1703–1725 (2021). https://doi.org/10.1007/s11135-020-01072-9

Download citation

Accepted : 05 November 2020

Published : 08 December 2020

Issue Date : October 2021

DOI : https://doi.org/10.1007/s11135-020-01072-9

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Exploratory research
  • Working hypothesis
  • Deductive qualitative research
  • Find a journal
  • Publish with us
  • Track your research

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base

Methodology

  • How to Write a Strong Hypothesis | Steps & Examples

How to Write a Strong Hypothesis | Steps & Examples

Published on May 6, 2022 by Shona McCombes . Revised on November 20, 2023.

A hypothesis is a statement that can be tested by scientific research. If you want to test a relationship between two or more variables, you need to write hypotheses before you start your experiment or data collection .

Example: Hypothesis

Daily apple consumption leads to fewer doctor’s visits.

Table of contents

What is a hypothesis, developing a hypothesis (with example), hypothesis examples, other interesting articles, frequently asked questions about writing hypotheses.

A hypothesis states your predictions about what your research will find. It is a tentative answer to your research question that has not yet been tested. For some research projects, you might have to write several hypotheses that address different aspects of your research question.

A hypothesis is not just a guess – it should be based on existing theories and knowledge. It also has to be testable, which means you can support or refute it through scientific research methods (such as experiments, observations and statistical analysis of data).

Variables in hypotheses

Hypotheses propose a relationship between two or more types of variables .

  • An independent variable is something the researcher changes or controls.
  • A dependent variable is something the researcher observes and measures.

If there are any control variables , extraneous variables , or confounding variables , be sure to jot those down as you go to minimize the chances that research bias  will affect your results.

In this example, the independent variable is exposure to the sun – the assumed cause . The dependent variable is the level of happiness – the assumed effect .

Here's why students love Scribbr's proofreading services

Discover proofreading & editing

Step 1. Ask a question

Writing a hypothesis begins with a research question that you want to answer. The question should be focused, specific, and researchable within the constraints of your project.

Step 2. Do some preliminary research

Your initial answer to the question should be based on what is already known about the topic. Look for theories and previous studies to help you form educated assumptions about what your research will find.

At this stage, you might construct a conceptual framework to ensure that you’re embarking on a relevant topic . This can also help you identify which variables you will study and what you think the relationships are between them. Sometimes, you’ll have to operationalize more complex constructs.

Step 3. Formulate your hypothesis

Now you should have some idea of what you expect to find. Write your initial answer to the question in a clear, concise sentence.

4. Refine your hypothesis

You need to make sure your hypothesis is specific and testable. There are various ways of phrasing a hypothesis, but all the terms you use should have clear definitions, and the hypothesis should contain:

  • The relevant variables
  • The specific group being studied
  • The predicted outcome of the experiment or analysis

5. Phrase your hypothesis in three ways

To identify the variables, you can write a simple prediction in  if…then form. The first part of the sentence states the independent variable and the second part states the dependent variable.

In academic research, hypotheses are more commonly phrased in terms of correlations or effects, where you directly state the predicted relationship between variables.

If you are comparing two groups, the hypothesis can state what difference you expect to find between them.

6. Write a null hypothesis

If your research involves statistical hypothesis testing , you will also have to write a null hypothesis . The null hypothesis is the default position that there is no association between the variables. The null hypothesis is written as H 0 , while the alternative hypothesis is H 1 or H a .

  • H 0 : The number of lectures attended by first-year students has no effect on their final exam scores.
  • H 1 : The number of lectures attended by first-year students has a positive effect on their final exam scores.

If you want to know more about the research process , methodology , research bias , or statistics , make sure to check out some of our other articles with explanations and examples.

  • Sampling methods
  • Simple random sampling
  • Stratified sampling
  • Cluster sampling
  • Likert scales
  • Reproducibility

 Statistics

  • Null hypothesis
  • Statistical power
  • Probability distribution
  • Effect size
  • Poisson distribution

Research bias

  • Optimism bias
  • Cognitive bias
  • Implicit bias
  • Hawthorne effect
  • Anchoring bias
  • Explicit bias

Prevent plagiarism. Run a free check.

A hypothesis is not just a guess — it should be based on existing theories and knowledge. It also has to be testable, which means you can support or refute it through scientific research methods (such as experiments, observations and statistical analysis of data).

Null and alternative hypotheses are used in statistical hypothesis testing . The null hypothesis of a test always predicts no effect or no relationship between variables, while the alternative hypothesis states your research prediction of an effect or relationship.

Hypothesis testing is a formal procedure for investigating our ideas about the world using statistics. It is used by scientists to test specific predictions, called hypotheses , by calculating how likely it is that a pattern or relationship between variables could have arisen by chance.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

McCombes, S. (2023, November 20). How to Write a Strong Hypothesis | Steps & Examples. Scribbr. Retrieved April 2, 2024, from https://www.scribbr.com/methodology/hypothesis/

Is this article helpful?

Shona McCombes

Shona McCombes

Other students also liked, construct validity | definition, types, & examples, what is a conceptual framework | tips & examples, operationalization | a guide with examples, pros & cons, unlimited academic ai-proofreading.

✔ Document error-free in 5minutes ✔ Unlimited document corrections ✔ Specialized in correcting academic texts

working hypothesis psychology

Final dates! Join the tutor2u subject teams in London for a day of exam technique and revision at the cinema. Learn more →

Reference Library

Collections

  • See what's new
  • All Resources
  • Student Resources
  • Assessment Resources
  • Teaching Resources
  • CPD Courses
  • Livestreams

Study notes, videos, interactive activities and more!

Psychology news, insights and enrichment

Currated collections of free resources

Browse resources by topic

  • All Psychology Resources

Resource Selections

Currated lists of resources

  • Study Notes

Aims and Hypotheses

Last updated 22 Mar 2021

  • Share on Facebook
  • Share on Twitter
  • Share by Email

Observations of events or behaviour in our surroundings provoke questions as to why they occur. In turn, one or multiple theories might attempt to explain a phenomenon, and investigations are consequently conducted to test them. One observation could be that athletes tend to perform better when they have a training partner, and a theory might propose that this is because athletes are more motivated with peers around them.

The aim of an investigation, driven by a theory to explain a given observation, states the intent of the study in general terms. Continuing the above example, the consequent aim might be “to investigate the effect of having a training partner on athletes’ motivation levels”.

The theory attempting to explain an observation will help to inform hypotheses - predictions of an investigation’s outcome that make specific reference to the independent variables (IVs) manipulated and dependent variables (DVs) measured by the researchers.

There are two types of hypothesis:

  • - H 1 – Research hypothesis
  • - H 0 – Null hypothesis

H 1 – The Research Hypothesis

This predicts a statistically significant effect of an IV on a DV (i.e. an experiment), or a significant relationship between variables (i.e. a correlation study), e.g.

  • In an experiment: “Athletes who have a training partner are likely to score higher on a questionnaire measuring motivation levels than athletes who train alone.”
  • In a correlation study: ‘There will be a significant positive correlation between athletes’ motivation questionnaire scores and the number of partners athletes train with.”

The research hypothesis will be directional (one-tailed) if theory or existing evidence argues a particular ‘direction’ of the predicted results, as demonstrated in the two hypothesis examples above.

Non-directional (two-tailed) research hypotheses do not predict a direction, so here would simply predict “a significant difference” between questionnaire scores in athletes who train alone and with a training partner (in an experiment), or “a significant relationship” between questionnaire scores and number of training partners (in a correlation study).

H 0 – The Null Hypothesis

This predicts that a statistically significant effect or relationship will not be found, e.g.

  • In an experiment: “There will be no significant difference in motivation questionnaire scores between athletes who train with and without a training partner.”
  • In a correlation study: “There will be no significant relationship between motivation questionnaire scores and the number of partners athletes train with.”

When the investigation concludes, analysis of results will suggest that either the research hypothesis or null hypothesis can be retained, with the other rejected. Ultimately this will either provide evidence to support of refute the theory driving a hypothesis, and may lead to further research in the field.

You might also like

A level psychology topic quiz - research methods.

Quizzes & Activities

Research Methods: MCQ Revision Test 1 for AQA A Level Psychology

Topic Videos

Example Answers for Research Methods: A Level Psychology, Paper 2, June 2018 (AQA)

Exam Support

Our subjects

  • › Criminology
  • › Economics
  • › Geography
  • › Health & Social Care
  • › Psychology
  • › Sociology
  • › Teaching & learning resources
  • › Student revision workshops
  • › Online student courses
  • › CPD for teachers
  • › Livestreams
  • › Teaching jobs

Boston House, 214 High Street, Boston Spa, West Yorkshire, LS23 6AD Tel: 01937 848885

  • › Contact us
  • › Terms of use
  • › Privacy & cookies

© 2002-2024 Tutor2u Limited. Company Reg no: 04489574. VAT reg no 816865400.

Working hypothesis

  • View history

Assessment | Biopsychology | Comparative | Cognitive | Developmental | Language | Individual differences | Personality | Philosophy | Social | Methods | Statistics | Clinical | Educational | Industrial | Professional items | World psychology |

Statistics: Scientific method · Research methods · Experimental design · Undergraduate statistics courses · Statistical tests · Game theory · Decision theory

A working hypothesis is a hypothesis that is provisionally accepted as a basis for further research [1] in the hope that a tenable theory will be produced, even if the hypothesis ultimately fails. [2] Like all hypotheses, a working hypothesis is constructed as a statement of expectations, which can be linked to the exploratory research purpose in empirical investigation and is often used as a conceptual framework in qualitative research. [3] [4]

  • 4 References
  • 5 External links

History [ ]

Use of the phrase "working hypothesis" goes back at least two centuries. [5]

Charles Sanders Peirce came to hold that an explanatory hypothesis is not only justifiable as a tentative conclusion by its plausibility (by which he meant its naturalness and economy of explanation), [6] but also justifiable as a starting point by the broader promise that the hypothesis holds for research. This idea of justifying a hypothesis as potentially fruitful (at the level of research method), not merely as plausible (at the level of logical conclusions), is essential for the idea of a working hypothesis, as later elaborated by Peirce's fellow pragmatist John Dewey .

Peirce held that, as a matter of research method, an explanatory hypothesis is judged and selected [7] for research because it offers to economize and expedite the process of inquiry, [8] by being testable and by further factors in the economy of hypotheses: low cost, intrinsic value (instinctive naturalness and reasoned likelihood), and relations (caution, breadth, and incomplexity) among hypotheses, inquiries, etc. (as in the game of Twenty Questions). [9] The Century Dictionary Supplement definition of "working hypothesis" [2] reflects that perspective; Peirce may or may not have written it. [10] Peirce seldom used the phrase "working hypothesis," but he once commented about a related kind of a hypothesis that it was "a hypothesis, which like the working hypothesis of a scientific inquiry, we may not believe to be altogether true, but which is useful in enabling us to conceive of what takes place." [11] For Peirce the pragmatist, conceiving pragmatically of something meant conceiving of its effects in their conceivable implications as to informed practice in general including research. [12]

John Dewey used the concept of the working hypothesis as a pivotal feature in his theory of inquiry . Contrary to the principles of verification and falsifiability, used in formal hypothesis testing found within dominant paradigms of 'normal' science, [13] working hypotheses were conceived by Dewey as neither true nor false but "provisional, working means of advancing investigation," which lead to the discovery of other unforeseen but "relevant" facts. [14] Dewey's development of the concept of the working hypothesis emerged from his contextualist epistemology in which absolute truth is unobtainable and replaced by "warranted assertability". [15] Thus, Dewey noted: [14]

The history of science also shows that when hypotheses have been taken to be finally true and hence unquestionable, they have obstructed inquiry and kept science committed to doctrines that later turned out to be invalid.

In Dewey's view, the working hypothesis is generated, not directly as a testable statement of expectation, but instead in order to "direct inquiry into channels in which new material, factual and conceptual, is disclosed, material which is more relevant, more weighted and confirmed, more fruitful, than were the initial facts and conceptions which served as the point of departure". [14]

Abraham Kaplan later described the working hypothesis as "provisional or loosely formatted" theory or constructs . [16]

Working hypotheses are constructed to facilitate inquiry; however, formal hypotheses can often be constructed based on the results of the inquiry, which in turn allows for the design of specific experiments whose data will either support or fail to support the formal hypotheses. In Unity of Science as a Working Hypothesis Oppenheim and Putnam argued that unitary science, in which laws from one branch could be equally useful by others, could only be accepted tentatively without further empirical testing. Thus they argued: [17]

We therefore think the assumption that unitary science can be attained through cumulative micro-reduction recommends itself as a working hypothesis. That is, we believe that it is in accord with the standards of reasonable scientific judgment to tentatively accept this hypothesis and to work on the assumption that further progress can be made in this direction.

For Putnam, the working hypothesis, therefore, represents a practical starting point in the design of an empirical research exploration. A contrasting example of this conception of the working hypothesis is illustrated by the brain-in-a-vat thought experiment. This experiment involves confronting the global skeptic position that we, in fact, are all just brains in vats being stimulated by a mad scientist to believe that our reality is real. Putnam argued that this proposition, however, rests on a "magical theory of reference" in which the existential evidence necessary to validate it is assumed. [18] Thus, the brain-in-a-vat proposition does not make for much of a hypothesis at all since there is no means to verify its truth. It does, however, provide a contrast for what a good working hypothesis would look like: one suited to culling potential existential evidence of the subject at hand.

A more concrete example would be that of conjectures in mathematics – propositions which appear to be true but which are formally unproven. Very often, conjectures will be provisionally accepted as working hypotheses in order to investigate its consequences and formulate conditional proofs . [19]

See also [ ]

  • Conceptual framework
  • Contextualism
  • Falsifiability
  • Logical positivism
  • Philosophy of science
  • Thomas Kuhn

References [ ]

  • ↑ Oxford Dictionary of Sports Science & Medicine . Eprint via Answers.com.
hypothesis [...]— Working hypothesis , a hypothesis suggested or supported in some measure by features of observed facts, from which consequences may be deduced which can be tested by experiment and special observations, and which it is proposed to subject to an extended course of such investigation, with the hope that, even should the hypothesis thus be overthrown, such research may lead to a tenable theory.
  • ↑ Patricia M. Shields , Hassan Tajalli (2006). Intermediate Theory: The Missing Link in Successful Student Scholarship . Journal of Public Affairs Education 12 (3): 313–334.
  • ↑ Patricia M. Shields (1998). "Pragmatism As a Philosophy of Science: A Tool For Public Administration" Jay D. White Research in Public Administration , 195–225 [211].
  • ↑ 1805, for example. See p. 118 in The Monthly Review; or Literary Journal vol. XLVII, May–August 1805, London: Printed by Straban and Preston (see its title page for year printed as "M,DCCC,V").
  • ↑ Peirce, C. S. (1908), " A Neglected Argument for the Reality of God ", Hibbert Journal v. 7, pp. 90–112. See both part III and part IV. Reprinted, including originally unpublished portion, in Collected Papers v. 6, paragraphs 452–85, The Essential Peirce v. 2, pp. 434–50, and elsewhere.
Methodeutic has a special interest in Abduction, or the inference which starts a scientific hypothesis. For it is not sufficient that a hypothesis should be a justifiable one. Any hypothesis which explains the facts is justified critically. But among justifiable hypotheses we have to select that one which is suitable for being tested by experiment.
Consequently, to discover is simply to expedite an event that would occur sooner or later, if we had not troubled ourselves to make the discovery. Consequently, the art of discovery is purely a question of economics. The economics of research is, so far as logic is concerned, the leading doctrine with reference to the art of discovery. Consequently, the conduct of abduction, which is chiefly a question of heuretic and is the first question of heuretic, is to be governed by economical considerations.
  • ↑ Peirce, C. S. (1901 MS), "On The Logic of Drawing History from Ancient Documents, Especially from Testimonies", manuscript corresponding to an abstract delivered at the National Academy of Sciences meeting of November 1901. Published in 1958 in Collected Papers v. 7, paragraphs 162–231; see 220. Reprinted (first half) in 1998 in The Essential Peirce v. 2, pp. 75–114; see 107–110.
  • ↑ See " Peirce Edition Project (UQÀM) - in short " from the Peirce Edition Project's branch at Université du Québec à Montréal (UQÀM) , which is working on Writings v. 7: Peirce's work on the Century Dictionary . Peirce worked on the Century during the years between 1883 and 1909. Find "hypothesis" in PEP-UQÀM's list of words in Peirce's charge under "H" . "Pragmatism" was also in Peirce's charge (see under "P" , but Joseph M. Ransdell reported that PEP-UQÀM's director François Latraverse informed him that John Dewey actually wrote it (see Ransdell's 2006 January 13 post to peirce-l).
  • ↑ Peirce, C. S. Collected Papers v. 7, paragraph 534, from an undated manuscript.
  • ↑ Peirce, C. S. (1878), " How to Make Our Ideas Clear ", Popular Science Monthly , v. 12, 286 –302. Reprinted widely, including The Essential Peirce v. 1, pp. 109–123.
  • ↑ Thomas Kuhn (1962). The Structure of Scientific Revolutions , 2nd, University of Chicago Press .
  • ↑ 14.0 14.1 14.2 John Dewey (1938). Logic: The Theory of Inquiry , 142–143, Henry Holt and Company .
  • ↑ Patrick Rysiew. Epistemic Contextualism . Stanford Encyclopedia of Philosophy . URL accessed on 2011-05-19 .
  • ↑ Abraham Kaplan (1964). The Conduct of Inquiry: Methodology for Behavioral Science , Scranton, PA: Chandler Publishing Company .
  • ↑ Paul Oppenheim, Hilary Putnam (1958). Unity of Science as a Working Hypothesis , 3–36.
  • ↑ Hilary Putnam (1982). "Brains in a vat" Reason, Truth, and History , 1–21, Cambridge University Press .
  • ↑ Ian Stewart (2003). Mathematics: Conjuring with Conjectures. Nature 423 (6936): 124–127.

External links [ ]

  • Working, Null, and Alternative hypotheses

Template:Use dmy dates

  • 1 Race and intelligence (test data)
  • 2 Pregnancy fetishism
  • 3 Filipino psychology

working hypothesis psychology

Psychology Dictionary

WORKING HYPOTHESIS

a conditional hypothesis readily exposed to revising upon additional experimentation .

Avatar photo

Leave a Reply

Your email address will not be published. Required fields are marked *

Latest Posts

working hypothesis psychology

The Psychology of Metaphysical Belief Systems

working hypothesis psychology

4 Key Considerations When Supporting a Loved One Through a Legal Battle for Justice 

How Exercise Can Boost Your Mental Health as You Age

Finding Balance: The Psychological Benefits of Staying Active

working hypothesis psychology

The Psychology of Winning: Case Studies and Analysis from the World of Sports

working hypothesis psychology

Transitioning to Digital Therapy: Navigating the Pros and Cons

working hypothesis psychology

From Loss to Liberation: The Psychological Journey Of Seniors Receiving All-On-4 Dental Implants

working hypothesis psychology

How to Create Family History Interview Questions?

working hypothesis psychology

The Most Common Addiction in the United States

working hypothesis psychology

Road To Recovery: Tools And Resources For Mental Health Treatment Success

working hypothesis psychology

Do Cat Allergy Shots for Humans Work?

working hypothesis psychology

Exploring Past Life Regression: What Is It And How Does It Work?

working hypothesis psychology

Coordinated Care: Ensuring Optimal Eye Health In Primary Care

Popular psychology terms, medical model, hypermnesia, affirmation, brainwashing, backup reinforcer, affiliative behavior, message-learning approach, behavioral consistency, personal adjustment, social instinct, posttraumatic stress disorder (ptsd).

Working Memory Model (Baddeley and Hitch)

Saul Mcleod, PhD

Editor-in-Chief for Simply Psychology

BSc (Hons) Psychology, MRes, PhD, University of Manchester

Saul Mcleod, PhD., is a qualified psychology teacher with over 18 years of experience in further and higher education. He has been published in peer-reviewed journals, including the Journal of Clinical Psychology.

Learn about our Editorial Process

Olivia Guy-Evans, MSc

Associate Editor for Simply Psychology

BSc (Hons) Psychology, MSc Psychology of Education

Olivia Guy-Evans is a writer and associate editor for Simply Psychology. She has previously worked in healthcare and educational sectors.

On This Page:

The Working Memory Model, proposed by Baddeley and Hitch in 1974, describes short-term memory as a system with multiple components.

It comprises the central executive, which controls attention and coordinates the phonological loop (handling auditory information), and the visuospatial sketchpad (processing visual and spatial information).

Later, the episodic buffer was added to integrate information across these systems and link to long-term memory. This model suggests that short-term memory is dynamic and multifaceted.

Working Memory

Take-home Messages

  • Working memory is a limited capacity store for retaining information for a brief period while performing mental operations on that information.
  • Working memory is a multi-component system that includes the central executive, visuospatial sketchpad, phonological loop, and episodic buffer.
  • Working memory is important for reasoning, learning, and comprehension.
  • Working memory theories assume that complex reasoning and learning tasks require a mental workspace to hold and manipulate information.
Atkinson’s and Shiffrin’s (1968) multi-store model was extremely successful in terms of the amount of research it generated. However, as a result of this research, it became apparent that there were a number of problems with their ideas concerning the characteristics of short-term memory.

Working Memory 1

Fig 1 . The Working Memory Model (Baddeley and Hitch, 1974)

Baddeley and Hitch (1974) argue that the picture of short-term memory (STM) provided by the Multi-Store Model is far too simple.

According to the Multi-Store Model , STM holds limited amounts of information for short periods of time with relatively little processing.  It is a unitary system. This means it is a single system (or store) without any subsystems. Whereas working memory is a multi-component system (auditory and visual).

Therefore, whereas short-term memory can only hold information, working memory can both retain and process information.

Working memory is short-term memory . However, instead of all information going into one single store, there are different systems for different types of information.

Central Executive

Visuospatial sketchpad (inner eye), phonological loop.

  • Phonological Store (inner ear) processes speech perception and stores spoken words we hear for 1-2 seconds.
  • Articulatory control process (inner voice) processes speech production, and rehearses and stores verbal information from the phonological store.

Working Memory2 1

Fig 2 . The Working Memory Model Components (Baddeley and Hitch, 1974)

The labels given to the components (see Fig 2) of the working memory reflect their function and the type of information they process and manipulate.

The phonological loop is assumed to be responsible for the manipulation of speech-based information, whereas the visuospatial sketchpad is assumed to be responsible for manipulating visual images.

The model proposes that every component of working memory has a limited capacity, and also that the components are relatively independent of each other.

The Central Executive

The central executive is the most important component of the model, although little is known about how it functions.  It is responsible for monitoring and coordinating the operation of the slave systems (i.e., visuospatial sketchpad and phonological loop) and relates them to long-term  memory (LTM).

The central executive decides which information is attended to and which parts of the working memory to send that information to be dealt with. For example, two activities sometimes come into conflict, such as driving a car and talking.

Rather than hitting a cyclist who is wobbling all over the road, it is preferable to stop talking and concentrate on driving. The central executive directs attention and gives priority to particular activities.

p> The central executive is the most versatile and important component of the working memory system. However, despite its importance in the working-memory model, we know considerably less about this component than the two subsystems it controls.

Baddeley suggests that the central executive acts more like a system which controls attentional processes rather than as a memory store.  This is unlike the phonological loop and the visuospatial sketchpad, which are specialized storage systems. The central executive enables the working memory system to selectively attend to some stimuli and ignore others.

Baddeley (1986) uses the metaphor of a company boss to describe the way in which the central executive operates.  The company boss makes decisions about which issues deserve attention and which should be ignored.

They also select strategies for dealing with problems, but like any person in the company, the boss can only do a limited number of things at the same time. The boss of a company will collect information from a number of different sources.

If we continue applying this metaphor, then we can see the central executive in working memory integrating (i.e., combining) information from two assistants (the phonological loop and the visuospatial sketchpad) and also drawing on information held in a large database (long-term memory).

The Phonological Loop

The phonological loop is the part of working memory that deals with spoken and written material. It consists of two parts (see Figure 3).

The phonological store (linked to speech perception) acts as an inner ear and holds information in a speech-based form (i.e., spoken words) for 1-2 seconds. Spoken words enter the store directly. Written words must first be converted into an articulatory (spoken) code before they can enter the phonological store.

phonological loop

Fig 3 . The phonological loop

The articulatory control process (linked to speech production) acts like an inner voice rehearsing information from the phonological store. It circulates information round and round like a tape loop. This is how we remember a telephone number we have just heard. As long as we keep repeating it, we can retain the information in working memory.

The articulatory control process also converts written material into an articulatory code and transfers it to the phonological store.

The Visuospatial Sketchpad

The visuospatial sketchpad ( inner eye ) deals with visual and spatial information. Visual information refers to what things look like. It is likely that the visuospatial sketchpad plays an important role in helping us keep track of where we are in relation to other objects as we move through our environment (Baddeley, 1997).

As we move around, our position in relation to objects is constantly changing and it is important that we can update this information.  For example, being aware of where we are in relation to desks, chairs and tables when we are walking around a classroom means that we don”t bump into things too often!

The sketchpad also displays and manipulates visual and spatial information held in long-term memory. For example, the spatial layout of your house is held in LTM. Try answering this question: How many windows are there in the front of your house?

You probably find yourself picturing the front of your house and counting the windows. An image has been retrieved from LTM and pictured on the sketchpad.

Evidence suggests that working memory uses two different systems for dealing with visual and verbal information. A visual processing task and a verbal processing task can be performed at the same time.

It is more difficult to perform two visual tasks at the same time because they interfere with each other and performance is reduced. The same applies to performing two verbal tasks at the same time. This supports the view that the phonological loop and the sketchpad are separate systems within working memory.

The Episodic Buffer

The original model was updated by Baddeley (2000) after the model failed to explain the results of various experiments. An additional component was added called the episodic buffer.

The episodic buffer acts as a “backup” store which communicates with both long-term memory and the components of working memory.

episodic buffer

Fig 3 . Updated Model to include the Episodic Buffer

Critical Evaluation

Researchers today generally agree that short-term memory is made up of a number of components or subsystems. The working memory model has replaced the idea of a unitary (one part) STM as suggested by the multistore model.

The working memory model explains a lot more than the multistore model. It makes sense of a range of tasks – verbal reasoning, comprehension, reading, problem-solving and visual and spatial processing. The model is supported by considerable experimental evidence.

The working memory applies to real-life tasks:
  • reading (phonological loop)
  • problem-solving (central executive)
  • navigation (visual and spatial processing)

The KF Case Study supports the Working Memory Model. KF suffered brain damage from a motorcycle accident that damaged his short-term memory.

KF’s impairment was mainly for verbal information – his memory for visual information was largely unaffected. This shows that there are separate STM components for visual information (VSS) and verbal information (phonological loop).

The working memory model does not over-emphasize the importance of rehearsal for STM retention, in contrast to the multi-store model.

Empirical Evidence for Working Memory

What evidence is there that working memory exists, that it comprises several parts, that perform different tasks? Working memory is supported by dual-task studies (Baddeley and Hitch, 1976).

The working memory model makes the following two predictions:

1 . If two tasks make use of the same component (of working memory), they cannot be performed successfully together. 2 . If two tasks make use of different components, it should be possible to perform them as well as together as separately.

Key Study: Baddeley and Hitch (1976)

Aim : To investigate if participants can use different parts of working memory at the same time.

Method : Conducted an experiment in which participants were asked to perform two tasks at the same time (dual task technique) – a digit span task which required them to repeat a list of numbers, and a verbal reasoning task which required them to answer true or false to various questions (e.g., B is followed by A?).

Results : As the number of digits increased in the digit span tasks, participants took longer to answer the reasoning questions, but not much longer – only fractions of a second.  And, they didn”t make any more errors in the verbal reasoning tasks as the number of digits increased.

Conclusion : The verbal reasoning task made use of the central executive and the digit span task made use of the phonological loop.

Brain Imaging Studies

Several neuroimaging studies have attempted to identify distinct neural correlates for the phonological loop and visuospatial sketchpad posited by the multi-component model.

For example, some studies have found that tasks tapping phonological storage tend to activate more left-hemisphere perisylvian language areas, whereas visuospatial tasks activate more right posterior regions like the parietal cortex (Smith & Jonides, 1997).

However, the overall pattern of results remains complex and controversial. Meta-analyses often fail to show consistent localization of verbal and visuospatial working memory (Baddeley, 2012).

There is significant overlap in activation, which may reflect binding processes through the episodic buffer, as well as common executive demands.

Differences in paradigms and limitations of neuroimaging methodology further complicate mapping the components of working memory onto distinct brain regions or circuits (Henson, 2001).

While neuroscience offers insight into working memory, Baddeley (2012) argues that clear anatomical localization is unlikely given the distributed and interactive nature of working memory. Specifically, he suggests that each component likely comprises a complex neural circuit rather than a circumscribed brain area.

Additionally, working memory processes are closely interrelated with other systems for attention, perception and long-term memory . Thus, neuroimaging provides clues but has not yet offered definitive evidence to validate the separable storage components posited in the multi-component framework.

Further research using techniques with higher spatial and temporal resolution may help better delineate the neural basis of verbal and visuo-spatial working memory.

Lieberman (1980) criticizes the working memory model as the visuospatial sketchpad (VSS) implies that all spatial information was first visual (they are linked).

However, Lieberman points out that blind people have excellent spatial awareness, although they have never had any visual information. Lieberman argues that the VSS should be separated into two different components: one for visual information and one for spatial.

There is little direct evidence for how the central executive works and what it does. The capacity of the central executive has never been measured.

Working memory only involves STM, so it is not a comprehensive model of memory (as it does not include SM or LTM).

The working memory model does not explain changes in processing ability that occur as the result of practice or time.

State-based models of WM

Early models of working memory proposed specialized storage systems, such as the phonological loop and visuospatial sketchpad, in Baddeley and Hitch’s (1974) influential multi-component model.

However, newer “state-based” models suggest working memory arises from temporarily activating representations that already exist in your brain’s long-term memory or perceptual systems.

For example, you activate your memory of number concepts to remember a phone number. Or, to remember where your keys are, you activate your mental map of the room.

According to state-based models, you hold information in mind by directing your attention to these internal representations. This gives them a temporary “boost” of activity.

More recent state-based models argue against dedicated buffers, and propose that working memory relies on temporarily activating long-term memory representations through attention (Cowan, 1995; Oberauer, 2002) or recruiting perceptual and motor systems (Postle, 2006; D’Esposito, 2007).

Evidence from multivariate pattern analysis (MVPA) of fMRI data largely supports state-based models, rather than dedicated storage buffers.

For example, Lewis-Peacock and Postle (2008) showed MVPA classifiers could decode information being held in working memory from patterns of activity associated with long-term memory for that content.

Other studies have shown stimulus-specific patterns of activity in sensory cortices support the retention of perceptual information (Harrison & Tong, 2009; Serences et al., 2009).

Atkinson, R. C., & Shiffrin, R. M. (1968). Chapter: Human memory: A proposed system and its control processes. In Spence, K. W., & Spence, J. T. The psychology of learning and motivation (Volume 2). New York: Academic Press. pp. 89–195.

Baddeley, A. D. (1986). Working memory . Oxford: Oxford University Press.

Baddeley, A. (1996). Exploring the central executive.  The Quarterly Journal of Experimental Psychology Section A ,  49 (1), 5-28.

Baddeley, A. D. (2000). The episodic buffer: A new component of working memory? Trends in Cognitive Sciences , 4, (11): 417-423.

Baddeley, A. (2010). Working memory.  Current biology ,  20 (4), R136-R140.

Baddeley, A. (2012). Working memory: Theories, models, and controversies.  Annual review of psychology ,  63 , 1-29.

Baddeley, A. D., & Hitch, G. (1974). Working memory. In G.H. Bower (Ed.), The psychology of learning and motivation: Advances in research and theory (Vol. 8, pp. 47–89). New York: Academic Press.

Baddeley, A. D., & Lieberman, K. (1980). Spatial working memory. ln R. Nickerson. Attention and Performance, VIII . Hillsdale, N): Erlbaum.

Borella, E., Carretti, B., Sciore, R., Capotosto, E., Taconnat, L., Cornoldi, C., & De Beni, R. (2017). Training working memory in older adults: Is there an advantage of using strategies?.  Psychology and Aging ,  32 (2), 178.

Chai, W. J., Abd Hamid, A. I., & Abdullah, J. M. (2018). Working memory from the psychological and neurosciences perspectives: a review.  Frontiers in Psychology ,  9 , 401.

Cowan, N. (1995). Attention and memory: An integrated framework . Oxford Psychology Series, No. 26. New York: Oxford University Press.

Cowan, N. (2005). Working memory capacity.  Exp. Psychology,  54, 245–246.

Cowan, N. (2008). What are the differences between long-term, short-term, and working memory?.  Progress in brain research ,  169 , 323-338.

Curtis, C.E., & D’Esposito, M. (2003). Persistent activity in the prefrontal cortex during working memory. Trends in Cognitive Sciences, 7 (9), 415-423.

D’Esposito, M. (2007). From cognitive to neural models of working memory. Philosophical Transactions of the Royal Society B: Biological Sciences, 362 (1481), 761-772.

D’Esposito, M., & Postle, B. R. (2015). The cognitive neuroscience of working memory.  Annual review of psychology ,  66 , 115-142.

Fell, J., & Axmacher, N. (2011). The role of phase synchronization in memory processes. Nature Reviews Neuroscience, 12 (2), 105-118.

Harrison, S. A., & Tong, F. (2009). Decoding reveals the contents of visual working memory in early visual areas. Nature, 458 (7238), 632-635.

Henson, R. (2001). Neural working memory. In J. Andrade (Ed.), Working memory in perspective (pp. 151-174). Psychology Press.

Lewis-Peacock, J. A., & Postle, B. R. (2008). Temporary activation of long-term memory supports working memory. Journal of Neuroscience, 28 (35), 8765-8771.

Lieberman, M. D. (2000). Introversion and working memory: Central executive differences.  Personality and Individual Differences ,  28 (3), 479-486.

Osaka, M., Osaka, N., Kondo, H., Morishita, M., Fukuyama, H., Aso, T., & Shibasaki, H. (2003). The neural basis of individual differences in working memory capacity: an fMRI study.  NeuroImage ,  18 (3), 789-797.

Serences, J.T., Ester, E.F., Vogel, E.K., & Awh, E. (2009). Stimulus-specific delay activity in human primary visual cortex. Psychological Science, 20( 2), 207-214.

Smith, E.E., & Jonides, J. (1997). Working memory: A view from neuroimaging. Cognitive Psychology, 33 (1), 5-42.

Print Friendly, PDF & Email

VIDEO

  1. 1.4.4 Development of working hypothesis

  2. Hypothesis| UGC NET Psychology

  3. Hypothesis Testing in Psychological Research

  4. MCO03 Unit-02|Part-02| Hypothesis |Types of hypothesis |Uses of hypothesis |IGNOU Malayalam

  5. HYPOTHESIS in 3 minutes for UPSC ,UGC NET and others

  6. Research Methods Q2: Hypothesis Writing

COMMENTS

  1. Full article: Concepts as a working hypothesis

    4 Working hypotheses. A working hypothesis is a hypothesis that is provisionally accepted as a basis for further research in the hope that a tenable theory will be produced, even if the hypothesis ultimately fails. In this way, a working hypothesis is an accepted starting point for further research.

  2. The potential of working hypotheses for deductive exploratory research

    The working hypothesis provides the bridge between theory and data that Sutton and Staw (1995) found missing in exploratory work. The sub-hypotheses are designed to be refined enough that the researchers would know what to look for and tailor their hunt for evidence. Figure 1 captures the generic sub-hypothesis design.

  3. Research Hypothesis In Psychology: Types, & Examples

    Examples. A research hypothesis, in its plural form "hypotheses," is a specific, testable prediction about the anticipated results of a study, established at its outset. It is a key component of the scientific method. Hypotheses connect theory to data and guide the research process towards expanding scientific understanding.

  4. How to Write a Great Hypothesis

    In psychology, the hypothesis might focus on how a certain aspect of the environment might influence a particular behavior. Remember, a hypothesis does not have to be correct. While the hypothesis predicts what the researchers expect to see, the goal of the research is to determine whether this guess is right or wrong. When conducting an ...

  5. Working hypothesis

    A working hypothesis is a hypothesis that is provisionally accepted as a basis for further ongoing research in the hope that a tenable theory will be produced, even if the hypothesis ultimately fails. Like all hypotheses, a working hypothesis is constructed as a statement of expectations, which can be linked to deductive, exploratory research in empirical investigation and is often used as a ...

  6. 2.4 Developing a Hypothesis

    First, a good hypothesis must be testable and falsifiable. We must be able to test the hypothesis using the methods of science and if you'll recall Popper's falsifiability criterion, it must be possible to gather evidence that will disconfirm the hypothesis if it is indeed false. Second, a good hypothesis must be logical.

  7. (PDF) Concepts as a working hypothesis

    Psychology, DOI: 10.1080/09515089.2021.2014439. To link to this article: https: ... A working hypothesis is a hypothesis that is provisionally accepted as a basis .

  8. APA Dictionary of Psychology

    A trusted reference in the field of psychology, offering more than 25,000 clear and authoritative entries. ... working hypothesis. Share button. Updated on 04/19/2018. a provisional but empirically testable statement about the relationship between two or more variables that is readily subject to revision upon further experimentation.

  9. The Theory of Psycho-Physical Parallelism as a Working Hypothesis in

    fully admitted indeed that psychology is not actually con-cerned with this relation, that the whole question is a meta-physical one, that psychology never can and is not called upon to solve it. Psychology merely asks that we will accept a theory of this relation without prejudice, purely as a working hypothesis. No other science nmakes such a ...

  10. Developing a Hypothesis

    The first is to raise a research question, answer that question by conducting a new study, and then offer one or more theories (usually more) to explain or interpret the results. This format works well for applied research questions and for research questions that existing theories do not address. The second way is to describe one or more ...

  11. The language-of-thought hypothesis as a working hypothesis in cognitive

    The language-of-thought hypothesis as a working hypothesis in cognitive science - Volume 46. ... Department of Philosophy and Department of Psychology, The Graduate Center & Baruch College, CUNY, New York, NY, USA [email protected]; ericmandelbaum.com. Response Related commentaries

  12. Chapter 3: From Theory to Hypothesis

    A researcher begins with a set of phenomena and either constructs a theory to explain or interpret them or chooses an existing theory to work with. He or she then makes a prediction about some new phenomenon that should be observed if the theory is correct. Again, this prediction is called a hypothesis.

  13. Developing a Hypothesis

    Theories and Hypotheses. Before describing how to develop a hypothesis, it is important to distinguish between a theory and a hypothesis. A theory is a coherent explanation or interpretation of one or more phenomena. Although theories can take a variety of forms, one thing they have in common is that they go beyond the phenomena they explain by including variables, structures, processes ...

  14. WORKING HYPOTHESIS Definition in Psychology

    A working hypothesis is an assumption or a proposed explanation made on the basis of limited evidence as a starting point for further investigation. This concept is essential for the scientific method as it allows for further research and experimentation to support or reject the hypothesis. ... In psychology, a working hypothesis can be used to ...

  15. The potential of working hypotheses for deductive ...

    The working hypothesis conceptual framework is introduced, placed in a philosophical context, defined, and applied to public administration and comparative public policy. ... used "working hypothesis" to describe a key concept in psychology. "The idea of the reflex arc has upon the whole come nearer to meeting this demand for a general ...

  16. How to Write a Strong Hypothesis

    5. Phrase your hypothesis in three ways. To identify the variables, you can write a simple prediction in if…then form. The first part of the sentence states the independent variable and the second part states the dependent variable. If a first-year student starts attending more lectures, then their exam scores will improve.

  17. Aims and Hypotheses

    The theory attempting to explain an observation will help to inform hypotheses - predictions of an investigation's outcome that make specific reference to the independent variables (IVs) manipulated and dependent variables (DVs) measured by the researchers. There are two types of hypothesis: H1 - The Research Hypothesis.

  18. Working hypothesis

    A working hypothesis is a hypothesis that is provisionally accepted as a basis for further research [1] in the hope that a tenable theory will be produced, even if the hypothesis ultimately fails. [2] Like all hypotheses, a working hypothesis is constructed as a statement of expectations, which can be linked to the exploratory research purpose ...

  19. Summary of Working Hypothesis, Strengths and Assets

    Summary of Working Hypothesis. When Maria was challenged to take responsibility for herself and family, she began to feel "less than." This cognitive schema of inadequacy, irresponsibility, inferiority, shame, and guilt brought about depression, and the spiral of depression into poor self-care has made it difficult for Maria to see an end to ...

  20. Toward an hypothesis of work behavior.

    Presents a "balance" theoretical hypothesis which argues that the self-concept of an individual in relation to the task at hand is a determinant of the outcome he will seek to attain and which will satisfy him. Previous evidence and new findings relating to the hypothesis are presented. ... Toward an hypothesis of work behavior. Journal of ...

  21. WORKING HYPOTHESIS

    Psychology Definition of WORKING HYPOTHESIS: a conditional hypothesis readily exposed to revising upon additional experimentation.

  22. PDF Task 4

    DO NOT worry if you find this work confusing. Hypotheses writing is a tricky concept and ... Task 1: Without knowing much about how to write a hypothesis in psychology, try and write a hypothesis for this research aim: investigating the power of uniforms in obedience. Here is an example of hypothesis for a different research aim. Look how the ...

  23. Working Memory Model In Psychology (Baddeley & Hitch)

    The Working Memory Model, proposed by Baddeley and Hitch in 1974, describes short-term memory as a system with multiple components. It comprises the central executive, which controls attention and coordinates the phonological loop (handling auditory information) and the visuospatial sketchpad (processing visual and spatial information).