qualitative case study meaning

The Ultimate Guide to Qualitative Research - Part 1: The Basics

qualitative case study meaning

  • Introduction and overview
  • What is qualitative research?
  • What is qualitative data?
  • Examples of qualitative data
  • Qualitative vs. quantitative research
  • Mixed methods
  • Qualitative research preparation
  • Theoretical perspective
  • Theoretical framework
  • Literature reviews

Research question

  • Conceptual framework
  • Conceptual vs. theoretical framework

Data collection

  • Qualitative research methods
  • Focus groups
  • Observational research

What is a case study?

Applications for case study research, what is a good case study, process of case study design, benefits and limitations of case studies.

  • Ethnographical research
  • Ethical considerations
  • Confidentiality and privacy
  • Power dynamics
  • Reflexivity

Case studies

Case studies are essential to qualitative research , offering a lens through which researchers can investigate complex phenomena within their real-life contexts. This chapter explores the concept, purpose, applications, examples, and types of case studies and provides guidance on how to conduct case study research effectively.

qualitative case study meaning

Whereas quantitative methods look at phenomena at scale, case study research looks at a concept or phenomenon in considerable detail. While analyzing a single case can help understand one perspective regarding the object of research inquiry, analyzing multiple cases can help obtain a more holistic sense of the topic or issue. Let's provide a basic definition of a case study, then explore its characteristics and role in the qualitative research process.

Definition of a case study

A case study in qualitative research is a strategy of inquiry that involves an in-depth investigation of a phenomenon within its real-world context. It provides researchers with the opportunity to acquire an in-depth understanding of intricate details that might not be as apparent or accessible through other methods of research. The specific case or cases being studied can be a single person, group, or organization – demarcating what constitutes a relevant case worth studying depends on the researcher and their research question .

Among qualitative research methods , a case study relies on multiple sources of evidence, such as documents, artifacts, interviews , or observations , to present a complete and nuanced understanding of the phenomenon under investigation. The objective is to illuminate the readers' understanding of the phenomenon beyond its abstract statistical or theoretical explanations.

Characteristics of case studies

Case studies typically possess a number of distinct characteristics that set them apart from other research methods. These characteristics include a focus on holistic description and explanation, flexibility in the design and data collection methods, reliance on multiple sources of evidence, and emphasis on the context in which the phenomenon occurs.

Furthermore, case studies can often involve a longitudinal examination of the case, meaning they study the case over a period of time. These characteristics allow case studies to yield comprehensive, in-depth, and richly contextualized insights about the phenomenon of interest.

The role of case studies in research

Case studies hold a unique position in the broader landscape of research methods aimed at theory development. They are instrumental when the primary research interest is to gain an intensive, detailed understanding of a phenomenon in its real-life context.

In addition, case studies can serve different purposes within research - they can be used for exploratory, descriptive, or explanatory purposes, depending on the research question and objectives. This flexibility and depth make case studies a valuable tool in the toolkit of qualitative researchers.

Remember, a well-conducted case study can offer a rich, insightful contribution to both academic and practical knowledge through theory development or theory verification, thus enhancing our understanding of complex phenomena in their real-world contexts.

What is the purpose of a case study?

Case study research aims for a more comprehensive understanding of phenomena, requiring various research methods to gather information for qualitative analysis . Ultimately, a case study can allow the researcher to gain insight into a particular object of inquiry and develop a theoretical framework relevant to the research inquiry.

Why use case studies in qualitative research?

Using case studies as a research strategy depends mainly on the nature of the research question and the researcher's access to the data.

Conducting case study research provides a level of detail and contextual richness that other research methods might not offer. They are beneficial when there's a need to understand complex social phenomena within their natural contexts.

The explanatory, exploratory, and descriptive roles of case studies

Case studies can take on various roles depending on the research objectives. They can be exploratory when the research aims to discover new phenomena or define new research questions; they are descriptive when the objective is to depict a phenomenon within its context in a detailed manner; and they can be explanatory if the goal is to understand specific relationships within the studied context. Thus, the versatility of case studies allows researchers to approach their topic from different angles, offering multiple ways to uncover and interpret the data .

The impact of case studies on knowledge development

Case studies play a significant role in knowledge development across various disciplines. Analysis of cases provides an avenue for researchers to explore phenomena within their context based on the collected data.

qualitative case study meaning

This can result in the production of rich, practical insights that can be instrumental in both theory-building and practice. Case studies allow researchers to delve into the intricacies and complexities of real-life situations, uncovering insights that might otherwise remain hidden.

Types of case studies

In qualitative research , a case study is not a one-size-fits-all approach. Depending on the nature of the research question and the specific objectives of the study, researchers might choose to use different types of case studies. These types differ in their focus, methodology, and the level of detail they provide about the phenomenon under investigation.

Understanding these types is crucial for selecting the most appropriate approach for your research project and effectively achieving your research goals. Let's briefly look at the main types of case studies.

Exploratory case studies

Exploratory case studies are typically conducted to develop a theory or framework around an understudied phenomenon. They can also serve as a precursor to a larger-scale research project. Exploratory case studies are useful when a researcher wants to identify the key issues or questions which can spur more extensive study or be used to develop propositions for further research. These case studies are characterized by flexibility, allowing researchers to explore various aspects of a phenomenon as they emerge, which can also form the foundation for subsequent studies.

Descriptive case studies

Descriptive case studies aim to provide a complete and accurate representation of a phenomenon or event within its context. These case studies are often based on an established theoretical framework, which guides how data is collected and analyzed. The researcher is concerned with describing the phenomenon in detail, as it occurs naturally, without trying to influence or manipulate it.

Explanatory case studies

Explanatory case studies are focused on explanation - they seek to clarify how or why certain phenomena occur. Often used in complex, real-life situations, they can be particularly valuable in clarifying causal relationships among concepts and understanding the interplay between different factors within a specific context.

qualitative case study meaning

Intrinsic, instrumental, and collective case studies

These three categories of case studies focus on the nature and purpose of the study. An intrinsic case study is conducted when a researcher has an inherent interest in the case itself. Instrumental case studies are employed when the case is used to provide insight into a particular issue or phenomenon. A collective case study, on the other hand, involves studying multiple cases simultaneously to investigate some general phenomena.

Each type of case study serves a different purpose and has its own strengths and challenges. The selection of the type should be guided by the research question and objectives, as well as the context and constraints of the research.

The flexibility, depth, and contextual richness offered by case studies make this approach an excellent research method for various fields of study. They enable researchers to investigate real-world phenomena within their specific contexts, capturing nuances that other research methods might miss. Across numerous fields, case studies provide valuable insights into complex issues.

Critical information systems research

Case studies provide a detailed understanding of the role and impact of information systems in different contexts. They offer a platform to explore how information systems are designed, implemented, and used and how they interact with various social, economic, and political factors. Case studies in this field often focus on examining the intricate relationship between technology, organizational processes, and user behavior, helping to uncover insights that can inform better system design and implementation.

Health research

Health research is another field where case studies are highly valuable. They offer a way to explore patient experiences, healthcare delivery processes, and the impact of various interventions in a real-world context.

qualitative case study meaning

Case studies can provide a deep understanding of a patient's journey, giving insights into the intricacies of disease progression, treatment effects, and the psychosocial aspects of health and illness.

Asthma research studies

Specifically within medical research, studies on asthma often employ case studies to explore the individual and environmental factors that influence asthma development, management, and outcomes. A case study can provide rich, detailed data about individual patients' experiences, from the triggers and symptoms they experience to the effectiveness of various management strategies. This can be crucial for developing patient-centered asthma care approaches.

Other fields

Apart from the fields mentioned, case studies are also extensively used in business and management research, education research, and political sciences, among many others. They provide an opportunity to delve into the intricacies of real-world situations, allowing for a comprehensive understanding of various phenomena.

Case studies, with their depth and contextual focus, offer unique insights across these varied fields. They allow researchers to illuminate the complexities of real-life situations, contributing to both theory and practice.

qualitative case study meaning

Whatever field you're in, ATLAS.ti puts your data to work for you

Download a free trial of ATLAS.ti to turn your data into insights.

Understanding the key elements of case study design is crucial for conducting rigorous and impactful case study research. A well-structured design guides the researcher through the process, ensuring that the study is methodologically sound and its findings are reliable and valid. The main elements of case study design include the research question , propositions, units of analysis, and the logic linking the data to the propositions.

The research question is the foundation of any research study. A good research question guides the direction of the study and informs the selection of the case, the methods of collecting data, and the analysis techniques. A well-formulated research question in case study research is typically clear, focused, and complex enough to merit further detailed examination of the relevant case(s).

Propositions

Propositions, though not necessary in every case study, provide a direction by stating what we might expect to find in the data collected. They guide how data is collected and analyzed by helping researchers focus on specific aspects of the case. They are particularly important in explanatory case studies, which seek to understand the relationships among concepts within the studied phenomenon.

Units of analysis

The unit of analysis refers to the case, or the main entity or entities that are being analyzed in the study. In case study research, the unit of analysis can be an individual, a group, an organization, a decision, an event, or even a time period. It's crucial to clearly define the unit of analysis, as it shapes the qualitative data analysis process by allowing the researcher to analyze a particular case and synthesize analysis across multiple case studies to draw conclusions.

Argumentation

This refers to the inferential model that allows researchers to draw conclusions from the data. The researcher needs to ensure that there is a clear link between the data, the propositions (if any), and the conclusions drawn. This argumentation is what enables the researcher to make valid and credible inferences about the phenomenon under study.

Understanding and carefully considering these elements in the design phase of a case study can significantly enhance the quality of the research. It can help ensure that the study is methodologically sound and its findings contribute meaningful insights about the case.

Ready to jumpstart your research with ATLAS.ti?

Conceptualize your research project with our intuitive data analysis interface. Download a free trial today.

Conducting a case study involves several steps, from defining the research question and selecting the case to collecting and analyzing data . This section outlines these key stages, providing a practical guide on how to conduct case study research.

Defining the research question

The first step in case study research is defining a clear, focused research question. This question should guide the entire research process, from case selection to analysis. It's crucial to ensure that the research question is suitable for a case study approach. Typically, such questions are exploratory or descriptive in nature and focus on understanding a phenomenon within its real-life context.

Selecting and defining the case

The selection of the case should be based on the research question and the objectives of the study. It involves choosing a unique example or a set of examples that provide rich, in-depth data about the phenomenon under investigation. After selecting the case, it's crucial to define it clearly, setting the boundaries of the case, including the time period and the specific context.

Previous research can help guide the case study design. When considering a case study, an example of a case could be taken from previous case study research and used to define cases in a new research inquiry. Considering recently published examples can help understand how to select and define cases effectively.

Developing a detailed case study protocol

A case study protocol outlines the procedures and general rules to be followed during the case study. This includes the data collection methods to be used, the sources of data, and the procedures for analysis. Having a detailed case study protocol ensures consistency and reliability in the study.

The protocol should also consider how to work with the people involved in the research context to grant the research team access to collecting data. As mentioned in previous sections of this guide, establishing rapport is an essential component of qualitative research as it shapes the overall potential for collecting and analyzing data.

Collecting data

Gathering data in case study research often involves multiple sources of evidence, including documents, archival records, interviews, observations, and physical artifacts. This allows for a comprehensive understanding of the case. The process for gathering data should be systematic and carefully documented to ensure the reliability and validity of the study.

Analyzing and interpreting data

The next step is analyzing the data. This involves organizing the data , categorizing it into themes or patterns , and interpreting these patterns to answer the research question. The analysis might also involve comparing the findings with prior research or theoretical propositions.

Writing the case study report

The final step is writing the case study report . This should provide a detailed description of the case, the data, the analysis process, and the findings. The report should be clear, organized, and carefully written to ensure that the reader can understand the case and the conclusions drawn from it.

Each of these steps is crucial in ensuring that the case study research is rigorous, reliable, and provides valuable insights about the case.

The type, depth, and quality of data in your study can significantly influence the validity and utility of the study. In case study research, data is usually collected from multiple sources to provide a comprehensive and nuanced understanding of the case. This section will outline the various methods of collecting data used in case study research and discuss considerations for ensuring the quality of the data.

Interviews are a common method of gathering data in case study research. They can provide rich, in-depth data about the perspectives, experiences, and interpretations of the individuals involved in the case. Interviews can be structured , semi-structured , or unstructured , depending on the research question and the degree of flexibility needed.

Observations

Observations involve the researcher observing the case in its natural setting, providing first-hand information about the case and its context. Observations can provide data that might not be revealed in interviews or documents, such as non-verbal cues or contextual information.

Documents and artifacts

Documents and archival records provide a valuable source of data in case study research. They can include reports, letters, memos, meeting minutes, email correspondence, and various public and private documents related to the case.

qualitative case study meaning

These records can provide historical context, corroborate evidence from other sources, and offer insights into the case that might not be apparent from interviews or observations.

Physical artifacts refer to any physical evidence related to the case, such as tools, products, or physical environments. These artifacts can provide tangible insights into the case, complementing the data gathered from other sources.

Ensuring the quality of data collection

Determining the quality of data in case study research requires careful planning and execution. It's crucial to ensure that the data is reliable, accurate, and relevant to the research question. This involves selecting appropriate methods of collecting data, properly training interviewers or observers, and systematically recording and storing the data. It also includes considering ethical issues related to collecting and handling data, such as obtaining informed consent and ensuring the privacy and confidentiality of the participants.

Data analysis

Analyzing case study research involves making sense of the rich, detailed data to answer the research question. This process can be challenging due to the volume and complexity of case study data. However, a systematic and rigorous approach to analysis can ensure that the findings are credible and meaningful. This section outlines the main steps and considerations in analyzing data in case study research.

Organizing the data

The first step in the analysis is organizing the data. This involves sorting the data into manageable sections, often according to the data source or the theme. This step can also involve transcribing interviews, digitizing physical artifacts, or organizing observational data.

Categorizing and coding the data

Once the data is organized, the next step is to categorize or code the data. This involves identifying common themes, patterns, or concepts in the data and assigning codes to relevant data segments. Coding can be done manually or with the help of software tools, and in either case, qualitative analysis software can greatly facilitate the entire coding process. Coding helps to reduce the data to a set of themes or categories that can be more easily analyzed.

Identifying patterns and themes

After coding the data, the researcher looks for patterns or themes in the coded data. This involves comparing and contrasting the codes and looking for relationships or patterns among them. The identified patterns and themes should help answer the research question.

Interpreting the data

Once patterns and themes have been identified, the next step is to interpret these findings. This involves explaining what the patterns or themes mean in the context of the research question and the case. This interpretation should be grounded in the data, but it can also involve drawing on theoretical concepts or prior research.

Verification of the data

The last step in the analysis is verification. This involves checking the accuracy and consistency of the analysis process and confirming that the findings are supported by the data. This can involve re-checking the original data, checking the consistency of codes, or seeking feedback from research participants or peers.

Like any research method , case study research has its strengths and limitations. Researchers must be aware of these, as they can influence the design, conduct, and interpretation of the study.

Understanding the strengths and limitations of case study research can also guide researchers in deciding whether this approach is suitable for their research question . This section outlines some of the key strengths and limitations of case study research.

Benefits include the following:

  • Rich, detailed data: One of the main strengths of case study research is that it can generate rich, detailed data about the case. This can provide a deep understanding of the case and its context, which can be valuable in exploring complex phenomena.
  • Flexibility: Case study research is flexible in terms of design , data collection , and analysis . A sufficient degree of flexibility allows the researcher to adapt the study according to the case and the emerging findings.
  • Real-world context: Case study research involves studying the case in its real-world context, which can provide valuable insights into the interplay between the case and its context.
  • Multiple sources of evidence: Case study research often involves collecting data from multiple sources , which can enhance the robustness and validity of the findings.

On the other hand, researchers should consider the following limitations:

  • Generalizability: A common criticism of case study research is that its findings might not be generalizable to other cases due to the specificity and uniqueness of each case.
  • Time and resource intensive: Case study research can be time and resource intensive due to the depth of the investigation and the amount of collected data.
  • Complexity of analysis: The rich, detailed data generated in case study research can make analyzing the data challenging.
  • Subjectivity: Given the nature of case study research, there may be a higher degree of subjectivity in interpreting the data , so researchers need to reflect on this and transparently convey to audiences how the research was conducted.

Being aware of these strengths and limitations can help researchers design and conduct case study research effectively and interpret and report the findings appropriately.

qualitative case study meaning

Ready to analyze your data with ATLAS.ti?

See how our intuitive software can draw key insights from your data with a free trial today.

Qualitative study design: Case Studies

  • Qualitative study design
  • Phenomenology
  • Grounded theory
  • Ethnography
  • Narrative inquiry
  • Action research

Case Studies

  • Field research
  • Focus groups
  • Observation
  • Surveys & questionnaires
  • Study Designs Home

In depth description of the experience of a single person, a family, a group, a community or an organisation.

An example of a qualitative case study is a life history which is the story of one specific person.  A case study may be done to highlight a specific issue by telling a story of one person or one group. 

  • Oral recording

Ability to explore and describe, in depth, an issue or event. 

Develop an understanding of health, illness and health care in context. 

Single case can be used to develop or disprove a theory. 

Can be used as a model or prototype .  

Limitations

Labour intensive and generates large diverse data sets which can be hard to manage. 

Case studies are seen by many as a weak methodology because they only look at one person or one specific group and aren’t as broad in their participant selection as other methodologies. 

Example questions

This methodology can be used to ask questions about a specific drug or treatment and its effects on an individual.

  • Does thalidomide cause birth defects?
  • Does exposure to a pesticide lead to cancer?

Example studies

  • Choi, T. S. T., Walker, K. Z., & Palermo, C. (2018). Diabetes management in a foreign land: A case study on Chinese Australians. Health & Social Care in the Community, 26(2), e225-e232. 
  • Reade, I., Rodgers, W., & Spriggs, K. (2008). New Ideas for High Performance Coaches: A Case Study of Knowledge Transfer in Sport Science.  International Journal of Sports Science & Coaching , 3(3), 335-354. 
  • Wingrove, K., Barbour, L., & Palermo, C. (2017). Exploring nutrition capacity in Australia's charitable food sector.  Nutrition & Dietetics , 74(5), 495-501. 
  • Green, J., & Thorogood, N. (2018). Qualitative methods for health research (4th ed.). London: SAGE. 
  • University of Missouri-St. Louis. Qualitative Research Designs. Retrieved from http://www.umsl.edu/~lindquists/qualdsgn.html   
  • << Previous: Action research
  • Next: Field research >>
  • Last Updated: Apr 8, 2024 11:12 AM
  • URL: https://deakin.libguides.com/qualitative-study-designs

Academic Success Center

Research Writing and Analysis

  • NVivo Group and Study Sessions
  • SPSS This link opens in a new window
  • Statistical Analysis Group sessions
  • Using Qualtrics
  • Dissertation and Data Analysis Group Sessions
  • Defense Schedule - Commons Calendar This link opens in a new window
  • Research Process Flow Chart
  • Research Alignment Chapter 1 This link opens in a new window
  • Step 1: Seek Out Evidence
  • Step 2: Explain
  • Step 3: The Big Picture
  • Step 4: Own It
  • Step 5: Illustrate
  • Annotated Bibliography
  • Literature Review This link opens in a new window
  • Systematic Reviews & Meta-Analyses
  • How to Synthesize and Analyze
  • Synthesis and Analysis Practice
  • Synthesis and Analysis Group Sessions
  • Problem Statement
  • Purpose Statement
  • Conceptual Framework
  • Theoretical Framework
  • Quantitative Research Questions
  • Qualitative Research Questions
  • Trustworthiness of Qualitative Data
  • Analysis and Coding Example- Qualitative Data
  • Thematic Data Analysis in Qualitative Design
  • Dissertation to Journal Article This link opens in a new window
  • International Journal of Online Graduate Education (IJOGE) This link opens in a new window
  • Journal of Research in Innovative Teaching & Learning (JRIT&L) This link opens in a new window

Writing a Case Study

Hands holding a world globe

What is a case study?

A Map of the world with hands holding a pen.

A Case study is: 

  • An in-depth research design that primarily uses a qualitative methodology but sometimes​​ includes quantitative methodology.
  • Used to examine an identifiable problem confirmed through research.
  • Used to investigate an individual, group of people, organization, or event.
  • Used to mostly answer "how" and "why" questions.

What are the different types of case studies?

Man and woman looking at a laptop

Note: These are the primary case studies. As you continue to research and learn

about case studies you will begin to find a robust list of different types. 

Who are your case study participants?

Boys looking through a camera

What is triangulation ? 

Validity and credibility are an essential part of the case study. Therefore, the researcher should include triangulation to ensure trustworthiness while accurately reflecting what the researcher seeks to investigate.

Triangulation image with examples

How to write a Case Study?

When developing a case study, there are different ways you could present the information, but remember to include the five parts for your case study.

Man holding his hand out to show five fingers.

Was this resource helpful?

  • << Previous: Thematic Data Analysis in Qualitative Design
  • Next: Journal Article Reporting Standards (JARS) >>
  • Last Updated: Apr 29, 2024 5:34 AM
  • URL: https://resources.nu.edu/researchtools

NCU Library Home

qualitative case study meaning

Designing and Conducting Case Studies

This guide examines case studies, a form of qualitative descriptive research that is used to look at individuals, a small group of participants, or a group as a whole. Researchers collect data about participants using participant and direct observations, interviews, protocols, tests, examinations of records, and collections of writing samples. Starting with a definition of the case study, the guide moves to a brief history of this research method. Using several well documented case studies, the guide then looks at applications and methods including data collection and analysis. A discussion of ways to handle validity, reliability, and generalizability follows, with special attention to case studies as they are applied to composition studies. Finally, this guide examines the strengths and weaknesses of case studies.

Definition and Overview

Case study refers to the collection and presentation of detailed information about a particular participant or small group, frequently including the accounts of subjects themselves. A form of qualitative descriptive research, the case study looks intensely at an individual or small participant pool, drawing conclusions only about that participant or group and only in that specific context. Researchers do not focus on the discovery of a universal, generalizable truth, nor do they typically look for cause-effect relationships; instead, emphasis is placed on exploration and description.

Case studies typically examine the interplay of all variables in order to provide as complete an understanding of an event or situation as possible. This type of comprehensive understanding is arrived at through a process known as thick description, which involves an in-depth description of the entity being evaluated, the circumstances under which it is used, the characteristics of the people involved in it, and the nature of the community in which it is located. Thick description also involves interpreting the meaning of demographic and descriptive data such as cultural norms and mores, community values, ingrained attitudes, and motives.

Unlike quantitative methods of research, like the survey, which focus on the questions of who, what, where, how much, and how many, and archival analysis, which often situates the participant in some form of historical context, case studies are the preferred strategy when how or why questions are asked. Likewise, they are the preferred method when the researcher has little control over the events, and when there is a contemporary focus within a real life context. In addition, unlike more specifically directed experiments, case studies require a problem that seeks a holistic understanding of the event or situation in question using inductive logic--reasoning from specific to more general terms.

In scholarly circles, case studies are frequently discussed within the context of qualitative research and naturalistic inquiry. Case studies are often referred to interchangeably with ethnography, field study, and participant observation. The underlying philosophical assumptions in the case are similar to these types of qualitative research because each takes place in a natural setting (such as a classroom, neighborhood, or private home), and strives for a more holistic interpretation of the event or situation under study.

Unlike more statistically-based studies which search for quantifiable data, the goal of a case study is to offer new variables and questions for further research. F.H. Giddings, a sociologist in the early part of the century, compares statistical methods to the case study on the basis that the former are concerned with the distribution of a particular trait, or a small number of traits, in a population, whereas the case study is concerned with the whole variety of traits to be found in a particular instance" (Hammersley 95).

Case studies are not a new form of research; naturalistic inquiry was the primary research tool until the development of the scientific method. The fields of sociology and anthropology are credited with the primary shaping of the concept as we know it today. However, case study research has drawn from a number of other areas as well: the clinical methods of doctors; the casework technique being developed by social workers; the methods of historians and anthropologists, plus the qualitative descriptions provided by quantitative researchers like LePlay; and, in the case of Robert Park, the techniques of newspaper reporters and novelists.

Park was an ex-newspaper reporter and editor who became very influential in developing sociological case studies at the University of Chicago in the 1920s. As a newspaper professional he coined the term "scientific" or "depth" reporting: the description of local events in a way that pointed to major social trends. Park viewed the sociologist as "merely a more accurate, responsible, and scientific reporter." Park stressed the variety and value of human experience. He believed that sociology sought to arrive at natural, but fluid, laws and generalizations in regard to human nature and society. These laws weren't static laws of the kind sought by many positivists and natural law theorists, but rather, they were laws of becoming--with a constant possibility of change. Park encouraged students to get out of the library, to quit looking at papers and books, and to view the constant experiment of human experience. He writes, "Go and sit in the lounges of the luxury hotels and on the doorsteps of the flophouses; sit on the Gold Coast settees and on the slum shakedowns; sit in the Orchestra Hall and in the Star and Garter Burlesque. In short, gentlemen [sic], go get the seats of your pants dirty in real research."

But over the years, case studies have drawn their share of criticism. In fact, the method had its detractors from the start. In the 1920s, the debate between pro-qualitative and pro-quantitative became quite heated. Case studies, when compared to statistics, were considered by many to be unscientific. From the 1930's on, the rise of positivism had a growing influence on quantitative methods in sociology. People wanted static, generalizable laws in science. The sociological positivists were looking for stable laws of social phenomena. They criticized case study research because it failed to provide evidence of inter subjective agreement. Also, they condemned it because of the few number of cases studied and that the under-standardized character of their descriptions made generalization impossible. By the 1950s, quantitative methods, in the form of survey research, had become the dominant sociological approach and case study had become a minority practice.

Educational Applications

The 1950's marked the dawning of a new era in case study research, namely that of the utilization of the case study as a teaching method. "Instituted at Harvard Business School in the 1950s as a primary method of teaching, cases have since been used in classrooms and lecture halls alike, either as part of a course of study or as the main focus of the course to which other teaching material is added" (Armisted 1984). The basic purpose of instituting the case method as a teaching strategy was "to transfer much of the responsibility for learning from the teacher on to the student, whose role, as a result, shifts away from passive absorption toward active construction" (Boehrer 1990). Through careful examination and discussion of various cases, "students learn to identify actual problems, to recognize key players and their agendas, and to become aware of those aspects of the situation that contribute to the problem" (Merseth 1991). In addition, students are encouraged to "generate their own analysis of the problems under consideration, to develop their own solutions, and to practically apply their own knowledge of theory to these problems" (Boyce 1993). Along the way, students also develop "the power to analyze and to master a tangled circumstance by identifying and delineating important factors; the ability to utilize ideas, to test them against facts, and to throw them into fresh combinations" (Merseth 1991).

In addition to the practical application and testing of scholarly knowledge, case discussions can also help students prepare for real-world problems, situations and crises by providing an approximation of various professional environments (i.e. classroom, board room, courtroom, or hospital). Thus, through the examination of specific cases, students are given the opportunity to work out their own professional issues through the trials, tribulations, experiences, and research findings of others. An obvious advantage to this mode of instruction is that it allows students the exposure to settings and contexts that they might not otherwise experience. For example, a student interested in studying the effects of poverty on minority secondary student's grade point averages and S.A.T. scores could access and analyze information from schools as geographically diverse as Los Angeles, New York City, Miami, and New Mexico without ever having to leave the classroom.

The case study method also incorporates the idea that students can learn from one another "by engaging with each other and with each other's ideas, by asserting something and then having it questioned, challenged and thrown back at them so that they can reflect on what they hear, and then refine what they say" (Boehrer 1990). In summary, students can direct their own learning by formulating questions and taking responsibility for the study.

Types and Design Concerns

Researchers use multiple methods and approaches to conduct case studies.

Types of Case Studies

Under the more generalized category of case study exist several subdivisions, each of which is custom selected for use depending upon the goals and/or objectives of the investigator. These types of case study include the following:

Illustrative Case Studies These are primarily descriptive studies. They typically utilize one or two instances of an event to show what a situation is like. Illustrative case studies serve primarily to make the unfamiliar familiar and to give readers a common language about the topic in question.

Exploratory (or pilot) Case Studies These are condensed case studies performed before implementing a large scale investigation. Their basic function is to help identify questions and select types of measurement prior to the main investigation. The primary pitfall of this type of study is that initial findings may seem convincing enough to be released prematurely as conclusions.

Cumulative Case Studies These serve to aggregate information from several sites collected at different times. The idea behind these studies is the collection of past studies will allow for greater generalization without additional cost or time being expended on new, possibly repetitive studies.

Critical Instance Case Studies These examine one or more sites for either the purpose of examining a situation of unique interest with little to no interest in generalizability, or to call into question or challenge a highly generalized or universal assertion. This method is useful for answering cause and effect questions.

Identifying a Theoretical Perspective

Much of the case study's design is inherently determined for researchers, depending on the field from which they are working. In composition studies, researchers are typically working from a qualitative, descriptive standpoint. In contrast, physicists will approach their research from a more quantitative perspective. Still, in designing the study, researchers need to make explicit the questions to be explored and the theoretical perspective from which they will approach the case. The three most commonly adopted theories are listed below:

Individual Theories These focus primarily on the individual development, cognitive behavior, personality, learning and disability, and interpersonal interactions of a particular subject.

Organizational Theories These focus on bureaucracies, institutions, organizational structure and functions, or excellence in organizational performance.

Social Theories These focus on urban development, group behavior, cultural institutions, or marketplace functions.

Two examples of case studies are used consistently throughout this chapter. The first, a study produced by Berkenkotter, Huckin, and Ackerman (1988), looks at a first year graduate student's initiation into an academic writing program. The study uses participant-observer and linguistic data collecting techniques to assess the student's knowledge of appropriate discourse conventions. Using the pseudonym Nate to refer to the subject, the study sought to illuminate the particular experience rather than to generalize about the experience of fledgling academic writers collectively.

For example, in Berkenkotter, Huckin, and Ackerman's (1988) study we are told that the researchers are interested in disciplinary communities. In the first paragraph, they ask what constitutes membership in a disciplinary community and how achieving membership might affect a writer's understanding and production of texts. In the third paragraph they state that researchers must negotiate their claims "within the context of his sub specialty's accepted knowledge and methodology." In the next paragraph they ask, "How is literacy acquired? What is the process through which novices gain community membership? And what factors either aid or hinder students learning the requisite linguistic behaviors?" This introductory section ends with a paragraph in which the study's authors claim that during the course of the study, the subject, Nate, successfully makes the transition from "skilled novice" to become an initiated member of the academic discourse community and that his texts exhibit linguistic changes which indicate this transition. In the next section the authors make explicit the sociolinguistic theoretical and methodological assumptions on which the study is based (1988). Thus the reader has a good understanding of the authors' theoretical background and purpose in conducting the study even before it is explicitly stated on the fourth page of the study. "Our purpose was to examine the effects of the educational context on one graduate student's production of texts as he wrote in different courses and for different faculty members over the academic year 1984-85." The goal of the study then, was to explore the idea that writers must be initiated into a writing community, and that this initiation will change the way one writes.

The second example is Janet Emig's (1971) study of the composing process of a group of twelfth graders. In this study, Emig seeks to answer the question of what happens to the self as a result educational stimuli in terms of academic writing. The case study used methods such as protocol analysis, tape-recorded interviews, and discourse analysis.

In the case of Janet Emig's (1971) study of the composing process of eight twelfth graders, four specific hypotheses were made:

  • Twelfth grade writers engage in two modes of composing: reflexive and extensive.
  • These differences can be ascertained and characterized through having the writers compose aloud their composition process.
  • A set of implied stylistic principles governs the writing process.
  • For twelfth grade writers, extensive writing occurs chiefly as a school-sponsored activity, or reflexive, as a self-sponsored activity.

In this study, the chief distinction is between the two dominant modes of composing among older, secondary school students. The distinctions are:

  • The reflexive mode, which focuses on the writer's thoughts and feelings.
  • The extensive mode, which focuses on conveying a message.

Emig also outlines the specific questions which guided the research in the opening pages of her Review of Literature , preceding the report.

Designing a Case Study

After considering the different sub categories of case study and identifying a theoretical perspective, researchers can begin to design their study. Research design is the string of logic that ultimately links the data to be collected and the conclusions to be drawn to the initial questions of the study. Typically, research designs deal with at least four problems:

  • What questions to study
  • What data are relevant
  • What data to collect
  • How to analyze that data

In other words, a research design is basically a blueprint for getting from the beginning to the end of a study. The beginning is an initial set of questions to be answered, and the end is some set of conclusions about those questions.

Because case studies are conducted on topics as diverse as Anglo-Saxon Literature (Thrane 1986) and AIDS prevention (Van Vugt 1994), it is virtually impossible to outline any strict or universal method or design for conducting the case study. However, Robert K. Yin (1993) does offer five basic components of a research design:

  • A study's questions.
  • A study's propositions (if any).
  • A study's units of analysis.
  • The logic that links the data to the propositions.
  • The criteria for interpreting the findings.

In addition to these five basic components, Yin also stresses the importance of clearly articulating one's theoretical perspective, determining the goals of the study, selecting one's subject(s), selecting the appropriate method(s) of collecting data, and providing some considerations to the composition of the final report.

Conducting Case Studies

To obtain as complete a picture of the participant as possible, case study researchers can employ a variety of approaches and methods. These approaches, methods, and related issues are discussed in depth in this section.

Method: Single or Multi-modal?

To obtain as complete a picture of the participant as possible, case study researchers can employ a variety of methods. Some common methods include interviews , protocol analyses, field studies, and participant-observations. Emig (1971) chose to use several methods of data collection. Her sources included conversations with the students, protocol analysis, discrete observations of actual composition, writing samples from each student, and school records (Lauer and Asher 1988).

Berkenkotter, Huckin, and Ackerman (1988) collected data by observing classrooms, conducting faculty and student interviews, collecting self reports from the subject, and by looking at the subject's written work.

A study that was criticized for using a single method model was done by Flower and Hayes (1984). In this study that explores the ways in which writers use different forms of knowing to create space, the authors used only protocol analysis to gather data. The study came under heavy fire because of their decision to use only one method.

Participant Selection

Case studies can use one participant, or a small group of participants. However, it is important that the participant pool remain relatively small. The participants can represent a diverse cross section of society, but this isn't necessary.

For example, the Berkenkotter, Huckin, and Ackerman (1988) study looked at just one participant, Nate. By contrast, in Janet Emig's (1971) study of the composition process of twelfth graders, eight participants were selected representing a diverse cross section of the community, with volunteers from an all-white upper-middle-class suburban school, an all-black inner-city school, a racially mixed lower-middle-class school, an economically and racially mixed school, and a university school.

Often, a brief "case history" is done on the participants of the study in order to provide researchers with a clearer understanding of their participants, as well as some insight as to how their own personal histories might affect the outcome of the study. For instance, in Emig's study, the investigator had access to the school records of five of the participants, and to standardized test scores for the remaining three. Also made available to the researcher was the information that three of the eight students were selected as NCTE Achievement Award winners. These personal histories can be useful in later stages of the study when data are being analyzed and conclusions drawn.

Data Collection

There are six types of data collected in case studies:

  • Archival records.
  • Interviews.
  • Direct observation.
  • Participant observation.

In the field of composition research, these six sources might be:

  • A writer's drafts.
  • School records of student writers.
  • Transcripts of interviews with a writer.
  • Transcripts of conversations between writers (and protocols).
  • Videotapes and notes from direct field observations.
  • Hard copies of a writer's work on computer.

Depending on whether researchers have chosen to use a single or multi-modal approach for the case study, they may choose to collect data from one or any combination of these sources.

Protocols, that is, transcriptions of participants talking aloud about what they are doing as they do it, have been particularly common in composition case studies. For example, in Emig's (1971) study, the students were asked, in four different sessions, to give oral autobiographies of their writing experiences and to compose aloud three themes in the presence of a tape recorder and the investigator.

In some studies, only one method of data collection is conducted. For example, the Flower and Hayes (1981) report on the cognitive process theory of writing depends on protocol analysis alone. However, using multiple sources of evidence to increase the reliability and validity of the data can be advantageous.

Case studies are likely to be much more convincing and accurate if they are based on several different sources of information, following a corroborating mode. This conclusion is echoed among many composition researchers. For example, in her study of predrafting processes of high and low-apprehensive writers, Cynthia Selfe (1985) argues that because "methods of indirect observation provide only an incomplete reflection of the complex set of processes involved in composing, a combination of several such methods should be used to gather data in any one study." Thus, in this study, Selfe collected her data from protocols, observations of students role playing their writing processes, audio taped interviews with the students, and videotaped observations of the students in the process of composing.

It can be said then, that cross checking data from multiple sources can help provide a multidimensional profile of composing activities in a particular setting. Sharan Merriam (1985) suggests "checking, verifying, testing, probing, and confirming collected data as you go, arguing that this process will follow in a funnel-like design resulting in less data gathering in later phases of the study along with a congruent increase in analysis checking, verifying, and confirming."

It is important to note that in case studies, as in any qualitative descriptive research, while researchers begin their studies with one or several questions driving the inquiry (which influence the key factors the researcher will be looking for during data collection), a researcher may find new key factors emerging during data collection. These might be unexpected patterns or linguistic features which become evident only during the course of the research. While not bearing directly on the researcher's guiding questions, these variables may become the basis for new questions asked at the end of the report, thus linking to the possibility of further research.

Data Analysis

As the information is collected, researchers strive to make sense of their data. Generally, researchers interpret their data in one of two ways: holistically or through coding. Holistic analysis does not attempt to break the evidence into parts, but rather to draw conclusions based on the text as a whole. Flower and Hayes (1981), for example, make inferences from entire sections of their students' protocols, rather than searching through the transcripts to look for isolatable characteristics.

However, composition researchers commonly interpret their data by coding, that is by systematically searching data to identify and/or categorize specific observable actions or characteristics. These observable actions then become the key variables in the study. Sharan Merriam (1988) suggests seven analytic frameworks for the organization and presentation of data:

  • The role of participants.
  • The network analysis of formal and informal exchanges among groups.
  • Historical.
  • Thematical.
  • Ritual and symbolism.
  • Critical incidents that challenge or reinforce fundamental beliefs, practices, and values.

There are two purposes of these frameworks: to look for patterns among the data and to look for patterns that give meaning to the case study.

As stated above, while most researchers begin their case studies expecting to look for particular observable characteristics, it is not unusual for key variables to emerge during data collection. Typical variables coded in case studies of writers include pauses writers make in the production of a text, the use of specific linguistic units (such as nouns or verbs), and writing processes (planning, drafting, revising, and editing). In the Berkenkotter, Huckin, and Ackerman (1988) study, for example, researchers coded the participant's texts for use of connectives, discourse demonstratives, average sentence length, off-register words, use of the first person pronoun, and the ratio of definite articles to indefinite articles.

Since coding is inherently subjective, more than one coder is usually employed. In the Berkenkotter, Huckin, and Ackerman (1988) study, for example, three rhetoricians were employed to code the participant's texts for off-register phrases. The researchers established the agreement among the coders before concluding that the participant used fewer off-register words as the graduate program progressed.

Composing the Case Study Report

In the many forms it can take, "a case study is generically a story; it presents the concrete narrative detail of actual, or at least realistic events, it has a plot, exposition, characters, and sometimes even dialogue" (Boehrer 1990). Generally, case study reports are extensively descriptive, with "the most problematic issue often referred to as being the determination of the right combination of description and analysis" (1990). Typically, authors address each step of the research process, and attempt to give the reader as much context as possible for the decisions made in the research design and for the conclusions drawn.

This contextualization usually includes a detailed explanation of the researchers' theoretical positions, of how those theories drove the inquiry or led to the guiding research questions, of the participants' backgrounds, of the processes of data collection, of the training and limitations of the coders, along with a strong attempt to make connections between the data and the conclusions evident.

Although the Berkenkotter, Huckin, and Ackerman (1988) study does not, case study reports often include the reactions of the participants to the study or to the researchers' conclusions. Because case studies tend to be exploratory, most end with implications for further study. Here researchers may identify significant variables that emerged during the research and suggest studies related to these, or the authors may suggest further general questions that their case study generated.

For example, Emig's (1971) study concludes with a section dedicated solely to the topic of implications for further research, in which she suggests several means by which this particular study could have been improved, as well as questions and ideas raised by this study which other researchers might like to address, such as: is there a correlation between a certain personality and a certain composing process profile (e.g. is there a positive correlation between ego strength and persistence in revising)?

Also included in Emig's study is a section dedicated to implications for teaching, which outlines the pedagogical ramifications of the study's findings for teachers currently involved in high school writing programs.

Sharan Merriam (1985) also offers several suggestions for alternative presentations of data:

  • Prepare specialized condensations for appropriate groups.
  • Replace narrative sections with a series of answers to open-ended questions.
  • Present "skimmer's" summaries at beginning of each section.
  • Incorporate headlines that encapsulate information from text.
  • Prepare analytic summaries with supporting data appendixes.
  • Present data in colorful and/or unique graphic representations.

Issues of Validity and Reliability

Once key variables have been identified, they can be analyzed. Reliability becomes a key concern at this stage, and many case study researchers go to great lengths to ensure that their interpretations of the data will be both reliable and valid. Because issues of validity and reliability are an important part of any study in the social sciences, it is important to identify some ways of dealing with results.

Multi-modal case study researchers often balance the results of their coding with data from interviews or writer's reflections upon their own work. Consequently, the researchers' conclusions become highly contextualized. For example, in a case study which looked at the time spent in different stages of the writing process, Berkenkotter concluded that her participant, Donald Murray, spent more time planning his essays than in other writing stages. The report of this case study is followed by Murray's reply, wherein he agrees with some of Berkenkotter's conclusions and disagrees with others.

As is the case with other research methodologies, issues of external validity, construct validity, and reliability need to be carefully considered.

Commentary on Case Studies

Researchers often debate the relative merits of particular methods, among them case study. In this section, we comment on two key issues. To read the commentaries, choose any of the items below:

Strengths and Weaknesses of Case Studies

Most case study advocates point out that case studies produce much more detailed information than what is available through a statistical analysis. Advocates will also hold that while statistical methods might be able to deal with situations where behavior is homogeneous and routine, case studies are needed to deal with creativity, innovation, and context. Detractors argue that case studies are difficult to generalize because of inherent subjectivity and because they are based on qualitative subjective data, generalizable only to a particular context.

Flexibility

The case study approach is a comparatively flexible method of scientific research. Because its project designs seem to emphasize exploration rather than prescription or prediction, researchers are comparatively freer to discover and address issues as they arise in their experiments. In addition, the looser format of case studies allows researchers to begin with broad questions and narrow their focus as their experiment progresses rather than attempt to predict every possible outcome before the experiment is conducted.

Emphasis on Context

By seeking to understand as much as possible about a single subject or small group of subjects, case studies specialize in "deep data," or "thick description"--information based on particular contexts that can give research results a more human face. This emphasis can help bridge the gap between abstract research and concrete practice by allowing researchers to compare their firsthand observations with the quantitative results obtained through other methods of research.

Inherent Subjectivity

"The case study has long been stereotyped as the weak sibling among social science methods," and is often criticized as being too subjective and even pseudo-scientific. Likewise, "investigators who do case studies are often regarded as having deviated from their academic disciplines, and their investigations as having insufficient precision (that is, quantification), objectivity and rigor" (Yin 1989). Opponents cite opportunities for subjectivity in the implementation, presentation, and evaluation of case study research. The approach relies on personal interpretation of data and inferences. Results may not be generalizable, are difficult to test for validity, and rarely offer a problem-solving prescription. Simply put, relying on one or a few subjects as a basis for cognitive extrapolations runs the risk of inferring too much from what might be circumstance.

High Investment

Case studies can involve learning more about the subjects being tested than most researchers would care to know--their educational background, emotional background, perceptions of themselves and their surroundings, their likes, dislikes, and so on. Because of its emphasis on "deep data," the case study is out of reach for many large-scale research projects which look at a subject pool in the tens of thousands. A budget request of $10,000 to examine 200 subjects sounds more efficient than a similar request to examine four subjects.

Ethical Considerations

Researchers conducting case studies should consider certain ethical issues. For example, many educational case studies are often financed by people who have, either directly or indirectly, power over both those being studied and those conducting the investigation (1985). This conflict of interests can hinder the credibility of the study.

The personal integrity, sensitivity, and possible prejudices and/or biases of the investigators need to be taken into consideration as well. Personal biases can creep into how the research is conducted, alternative research methods used, and the preparation of surveys and questionnaires.

A common complaint in case study research is that investigators change direction during the course of the study unaware that their original research design was inadequate for the revised investigation. Thus, the researchers leave unknown gaps and biases in the study. To avoid this, researchers should report preliminary findings so that the likelihood of bias will be reduced.

Concerns about Reliability, Validity, and Generalizability

Merriam (1985) offers several suggestions for how case study researchers might actively combat the popular attacks on the validity, reliability, and generalizability of case studies:

  • Prolong the Processes of Data Gathering on Site: This will help to insure the accuracy of the findings by providing the researcher with more concrete information upon which to formulate interpretations.
  • Employ the Process of "Triangulation": Use a variety of data sources as opposed to relying solely upon one avenue of observation. One example of such a data check would be what McClintock, Brannon, and Maynard (1985) refer to as a "case cluster method," that is, when a single unit within a larger case is randomly sampled, and that data treated quantitatively." For instance, in Emig's (1971) study, the case cluster method was employed, singling out the productivity of a single student named Lynn. This cluster profile included an advanced case history of the subject, specific examination and analysis of individual compositions and protocols, and extensive interview sessions. The seven remaining students were then compared with the case of Lynn, to ascertain if there are any shared, or unique dimensions to the composing process engaged in by these eight students.
  • Conduct Member Checks: Initiate and maintain an active corroboration on the interpretation of data between the researcher and those who provided the data. In other words, talk to your subjects.
  • Collect Referential Materials: Complement the file of materials from the actual site with additional document support. For example, Emig (1971) supports her initial propositions with historical accounts by writers such as T.S. Eliot, James Joyce, and D.H. Lawrence. Emig also cites examples of theoretical research done with regards to the creative process, as well as examples of empirical research dealing with the writing of adolescents. Specific attention is then given to the four stages description of the composing process delineated by Helmoltz, Wallas, and Cowley, as it serves as the focal point in this study.
  • Engage in Peer Consultation: Prior to composing the final draft of the report, researchers should consult with colleagues in order to establish validity through pooled judgment.

Although little can be done to combat challenges concerning the generalizability of case studies, "most writers suggest that qualitative research should be judged as credible and confirmable as opposed to valid and reliable" (Merriam 1985). Likewise, it has been argued that "rather than transplanting statistical, quantitative notions of generalizability and thus finding qualitative research inadequate, it makes more sense to develop an understanding of generalization that is congruent with the basic characteristics of qualitative inquiry" (1985). After all, criticizing the case study method for being ungeneralizable is comparable to criticizing a washing machine for not being able to tell the correct time. In other words, it is unjust to criticize a method for not being able to do something which it was never originally designed to do in the first place.

Annotated Bibliography

Armisted, C. (1984). How Useful are Case Studies. Training and Development Journal, 38 (2), 75-77.

This article looks at eight types of case studies, offers pros and cons of using case studies in the classroom, and gives suggestions for successfully writing and using case studies.

Bardovi-Harlig, K. (1997). Beyond Methods: Components of Second Language Teacher Education . New York: McGraw-Hill.

A compilation of various research essays which address issues of language teacher education. Essays included are: "Non-native reading research and theory" by Lee, "The case for Psycholinguistics" by VanPatten, and "Assessment and Second Language Teaching" by Gradman and Reed.

Bartlett, L. (1989). A Question of Good Judgment; Interpretation Theory and Qualitative Enquiry Address. 70th Annual Meeting of the American Educational Research Association. San Francisco.

Bartlett selected "quasi-historical" methodology, which focuses on the "truth" found in case records, as one that will provide "good judgments" in educational inquiry. He argues that although the method is not comprehensive, it can try to connect theory with practice.

Baydere, S. et. al. (1993). Multimedia conferencing as a tool for collaborative writing: a case study in Computer Supported Collaborative Writing. New York: Springer-Verlag.

The case study by Baydere et. al. is just one of the many essays in this book found in the series "Computer Supported Cooperative Work." Denley, Witefield and May explore similar issues in their essay, "A case study in task analysis for the design of a collaborative document production system."

Berkenkotter, C., Huckin, T., N., & Ackerman J. (1988). Conventions, Conversations, and the Writer: Case Study of a Student in a Rhetoric Ph.D. Program. Research in the Teaching of English, 22, 9-44.

The authors focused on how the writing of their subject, Nate or Ackerman, changed as he became more acquainted or familiar with his field's discourse community.

Berninger, V., W., and Gans, B., M. (1986). Language Profiles in Nonspeaking Individuals of Normal Intelligence with Severe Cerebral Palsy. Augmentative and Alternative Communication, 2, 45-50.

Argues that generalizations about language abilities in patients with severe cerebral palsy (CP) should be avoided. Standardized tests of different levels of processing oral language, of processing written language, and of producing written language were administered to 3 male participants (aged 9, 16, and 40 yrs).

Bockman, J., R., and Couture, B. (1984). The Case Method in Technical Communication: Theory and Models. Texas: Association of Teachers of Technical Writing.

Examines the study and teaching of technical writing, communication of technical information, and the case method in terms of those applications.

Boehrer, J. (1990). Teaching With Cases: Learning to Question. New Directions for Teaching and Learning, 42 41-57.

This article discusses the origins of the case method, looks at the question of what is a case, gives ideas about learning in case teaching, the purposes it can serve in the classroom, the ground rules for the case discussion, including the role of the question, and new directions for case teaching.

Bowman, W. R. (1993). Evaluating JTPA Programs for Economically Disadvantaged Adults: A Case Study of Utah and General Findings . Washington: National Commission for Employment Policy.

"To encourage state-level evaluations of JTPA, the Commission and the State of Utah co-sponsored this report on the effectiveness of JTPA Title II programs for adults in Utah. The technique used is non-experimental and the comparison group was selected from registrants with Utah's Employment Security. In a step-by-step approach, the report documents how non-experimental techniques can be applied and several specific technical issues can be addressed."

Boyce, A. (1993) The Case Study Approach for Pedagogists. Annual Meeting of the American Alliance for Health, Physical Education, Recreation and Dance. (Address). Washington DC.

This paper addresses how case studies 1) bridge the gap between teaching theory and application, 2) enable students to analyze problems and develop solutions for situations that will be encountered in the real world of teaching, and 3) helps students to evaluate the feasibility of alternatives and to understand the ramifications of a particular course of action.

Carson, J. (1993) The Case Study: Ideal Home of WAC Quantitative and Qualitative Data. Annual Meeting of the Conference on College Composition and Communication. (Address). San Diego.

"Increasingly, one of the most pressing questions for WAC advocates is how to keep [WAC] programs going in the face of numerous difficulties. Case histories offer the best chance for fashioning rhetorical arguments to keep WAC programs going because they offer the opportunity to provide a coherent narrative that contextualizes all documents and data, including what is generally considered scientific data. A case study of the WAC program, . . . at Robert Morris College in Pittsburgh demonstrates the advantages of this research method. Such studies are ideal homes for both naturalistic and positivistic data as well as both quantitative and qualitative information."

---. (1991). A Cognitive Process Theory of Writing. College Composition and Communication. 32. 365-87.

No abstract available.

Cromer, R. (1994) A Case Study of Dissociations Between Language and Cognition. Constraints on Language Acquisition: Studies of Atypical Children . Hillsdale: Lawrence Erlbaum Associates, 141-153.

Crossley, M. (1983) Case Study in Comparative and International Education: An Approach to Bridging the Theory-Practice Gap. Proceedings of the 11th Annual Conference of the Australian Comparative and International Education Society. Hamilton, NZ.

Case study research, as presented here, helps bridge the theory-practice gap in comparative and international research studies of education because it focuses on the practical, day-to-day context rather than on the national arena. The paper asserts that the case study method can be valuable at all levels of research, formation, and verification of theories in education.

Daillak, R., H., and Alkin, M., C. (1982). Qualitative Studies in Context: Reflections on the CSE Studies of Evaluation Use . California: EDRS

The report shows how the Center of the Study of Evaluation (CSE) applied qualitative techniques to a study of evaluation information use in local, Los Angeles schools. It critiques the effectiveness and the limitations of using case study, evaluation, field study, and user interview survey methodologies.

Davey, L. (1991). The Application of Case Study Evaluations. ERIC/TM Digest.

This article examines six types of case studies, the type of evaluation questions that can be answered, the functions served, some design features, and some pitfalls of the method.

Deutch, C. E. (1996). A course in research ethics for graduate students. College Teaching, 44, 2, 56-60.

This article describes a one-credit discussion course in research ethics for graduate students in biology. Case studies are focused on within the four parts of the course: 1) major issues, 2 )practical issues in scholarly work, 3) ownership of research results, and 4) training and personal decisions.

DeVoss, G. (1981). Ethics in Fieldwork Research. RIE 27p. (ERIC)

This article examines four of the ethical problems that can happen when conducting case study research: acquiring permission to do research, knowing when to stop digging, the pitfalls of doing collaborative research, and preserving the integrity of the participants.

Driscoll, A. (1985). Case Study of a Research Intervention: the University of Utah’s Collaborative Approach . San Francisco: Far West Library for Educational Research Development.

Paper presented at the annual meeting of the American Association of Colleges of Teacher Education, Denver, CO, March 1985. Offers information of in-service training, specifically case studies application.

Ellram, L. M. (1996). The Use of the Case Study Method in Logistics Research. Journal of Business Logistics, 17, 2, 93.

This article discusses the increased use of case study in business research, and the lack of understanding of when and how to use case study methodology in business.

Emig, J. (1971) The Composing Processes of Twelfth Graders . Urbana: NTCE.

This case study uses observation, tape recordings, writing samples, and school records to show that writing in reflexive and extensive situations caused different lengths of discourse and different clusterings of the components of the writing process.

Feagin, J. R. (1991). A Case For the Case Study . Chapel Hill: The University of North Carolina Press.

This book discusses the nature, characteristics, and basic methodological issues of the case study as a research method.

Feldman, H., Holland, A., & Keefe, K. (1989) Language Abilities after Left Hemisphere Brain Injury: A Case Study of Twins. Topics in Early Childhood Special Education, 9, 32-47.

"Describes the language abilities of 2 twin pairs in which 1 twin (the experimental) suffered brain injury to the left cerebral hemisphere around the time of birth and1 twin (the control) did not. One pair of twins was initially assessed at age 23 mo. and the other at about 30 mo.; they were subsequently evaluated in their homes 3 times at about 6-mo intervals."

Fidel, R. (1984). The Case Study Method: A Case Study. Library and Information Science Research, 6.

The article describes the use of case study methodology to systematically develop a model of online searching behavior in which study design is flexible, subject manner determines data gathering and analyses, and procedures adapt to the study's progressive change.

Flower, L., & Hayes, J. R. (1984). Images, Plans and Prose: The Representation of Meaning in Writing. Written Communication, 1, 120-160.

Explores the ways in which writers actually use different forms of knowing to create prose.

Frey, L. R. (1992). Interpreting Communication Research: A Case Study Approach Englewood Cliffs, N.J.: Prentice Hall.

The book discusses research methodologies in the Communication field. It focuses on how case studies bridge the gap between communication research, theory, and practice.

Gilbert, V. K. (1981). The Case Study as a Research Methodology: Difficulties and Advantages of Integrating the Positivistic, Phenomenological and Grounded Theory Approaches . The Annual Meeting of the Canadian Association for the Study of Educational Administration. (Address) Halifax, NS, Can.

This study on an innovative secondary school in England shows how a "low-profile" participant-observer case study was crucial to the initial observation, the testing of hypotheses, the interpretive approach, and the grounded theory.

Gilgun, J. F. (1994). A Case for Case Studies in Social Work Research. Social Work, 39, 4, 371-381.

This article defines case study research, presents guidelines for evaluation of case studies, and shows the relevance of case studies to social work research. It also looks at issues such as evaluation and interpretations of case studies.

Glennan, S. L., Sharp-Bittner, M. A. & Tullos, D. C. (1991). Augmentative and Alternative Communication Training with a Nonspeaking Adult: Lessons from MH. Augmentative and Alternative Communication, 7, 240-7.

"A response-guided case study documented changes in a nonspeaking 36-yr-old man's ability to communicate using 3 trained augmentative communication modes. . . . Data were collected in videotaped interaction sessions between the nonspeaking adult and a series of adult speaking."

Graves, D. (1981). An Examination of the Writing Processes of Seven Year Old Children. Research in the Teaching of English, 15, 113-134.

Hamel, J. (1993). Case Study Methods . Newbury Park: Sage. .

"In a most economical fashion, Hamel provides a practical guide for producing theoretically sharp and empirically sound sociological case studies. A central idea put forth by Hamel is that case studies must "locate the global in the local" thus making the careful selection of the research site the most critical decision in the analytic process."

Karthigesu, R. (1986, July). Television as a Tool for Nation-Building in the Third World: A Post-Colonial Pattern, Using Malaysia as a Case-Study. International Television Studies Conference. (Address). London, 10-12.

"The extent to which Television Malaysia, as a national mass media organization, has been able to play a role in nation building in the post-colonial period is . . . studied in two parts: how the choice of a model of nation building determines the character of the organization; and how the character of the organization influences the output of the organization."

Kenny, R. (1984). Making the Case for the Case Study. Journal of Curriculum Studies, 16, (1), 37-51.

The article looks at how and why the case study is justified as a viable and valuable approach to educational research and program evaluation.

Knirk, F. (1991). Case Materials: Research and Practice. Performance Improvement Quarterly, 4 (1 ), 73-81.

The article addresses the effectiveness of case studies, subject areas where case studies are commonly used, recent examples of their use, and case study design considerations.

Klos, D. (1976). Students as Case Writers. Teaching of Psychology, 3.2, 63-66.

This article reviews a course in which students gather data for an original case study of another person. The task requires the students to design the study, collect the data, write the narrative, and interpret the findings.

Leftwich, A. (1981). The Politics of Case Study: Problems of Innovation in University Education. Higher Education Review, 13.2, 38-64.

The article discusses the use of case studies as a teaching method. Emphasis is on the instructional materials, interdisciplinarity, and the complex relationships within the university that help or hinder the method.

Mabrito, M. (1991, Oct.). Electronic Mail as a Vehicle for Peer Response: Conversations of High and Low Apprehensive Writers. Written Communication, 509-32.

McCarthy, S., J. (1955). The Influence of Classroom Discourse on Student Texts: The Case of Ella . East Lansing: Institute for Research on Teaching.

A look at how students of color become marginalized within traditional classroom discourse. The essay follows the struggles of one black student: Ella.

Matsuhashi, A., ed. (1987). Writing in Real Time: Modeling Production Processes Norwood, NJ: Ablex Publishing Corporation.

Investigates how writers plan to produce discourse for different purposes to report, to generalize, and to persuade, as well as how writers plan for sentence level units of language. To learn about planning, an observational measure of pause time was used" (ERIC).

Merriam, S. B. (1985). The Case Study in Educational Research: A Review of Selected Literature. Journal of Educational Thought, 19.3, 204-17.

The article examines the characteristics of, philosophical assumptions underlying the case study, the mechanics of conducting a case study, and the concerns about the reliability, validity, and generalizability of the method.

---. (1988). Case Study Research in Education: A Qualitative Approach San Francisco: Jossey Bass.

Merry, S. E., & Milner, N. eds. (1993). The Possibility of Popular Justice: A Case Study of Community Mediation in the United States . Ann Arbor: U of Michigan.

". . . this volume presents a case study of one experiment in popular justice, the San Francisco Community Boards. This program has made an explicit claim to create an alternative justice, or new justice, in the midst of a society ordered by state law. The contributors to this volume explore the history and experience of the program and compare it to other versions of popular justice in the United States, Europe, and the Third World."

Merseth, K. K. (1991). The Case for Cases in Teacher Education. RIE. 42p. (ERIC).

This monograph argues that the case method of instruction offers unique potential for revitalizing the field of teacher education.

Michaels, S. (1987). Text and Context: A New Approach to the Study of Classroom Writing. Discourse Processes, 10, 321-346.

"This paper argues for and illustrates an approach to the study of writing that integrates ethnographic analysis of classroom interaction with linguistic analysis of written texts and teacher/student conversational exchanges. The approach is illustrated through a case study of writing in a single sixth grade classroom during a single writing assignment."

Milburn, G. (1995). Deciphering a Code or Unraveling a Riddle: A Case Study in the Application of a Humanistic Metaphor to the Reporting of Social Studies Teaching. Theory and Research in Education, 13.

This citation serves as an example of how case studies document learning procedures in a senior-level economics course.

Milley, J. E. (1979). An Investigation of Case Study as an Approach to Program Evaluation. 19th Annual Forum of the Association for Institutional Research. (Address). San Diego.

The case study method merged a narrative report focusing on the evaluator as participant-observer with document review, interview, content analysis, attitude questionnaire survey, and sociogram analysis. Milley argues that case study program evaluation has great potential for widespread use.

Minnis, J. R. (1985, Sept.). Ethnography, Case Study, Grounded Theory, and Distance Education Research. Distance Education, 6.2.

This article describes and defines the strengths and weaknesses of ethnography, case study, and grounded theory.

Nunan, D. (1992). Collaborative language learning and teaching . New York: Cambridge University Press.

Included in this series of essays is Peter Sturman’s "Team Teaching: a case study from Japan" and David Nunan’s own "Toward a collaborative approach to curriculum development: a case study."

Nystrand, M., ed. (1982). What Writers Know: The Language, Process, and Structure of Written Discourse . New York: Academic Press.

Owenby, P. H. (1992). Making Case Studies Come Alive. Training, 29, (1), 43-46. (ERIC)

This article provides tips for writing more effective case studies.

---. (1981). Pausing and Planning: The Tempo of Writer Discourse Production. Research in the Teaching of English, 15 (2),113-34.

Perl, S. (1979). The Composing Processes of Unskilled College Writers. Research in the Teaching of English, 13, 317-336.

"Summarizes a study of five unskilled college writers, focusing especially on one of the five, and discusses the findings in light of current pedagogical practice and research design."

Pilcher J. and A. Coffey. eds. (1996). Gender and Qualitative Research . Brookfield: Aldershot, Hants, England.

This book provides a series of essays which look at gender identity research, qualitative research and applications of case study to questions of gendered pedagogy.

Pirie, B. S. (1993). The Case of Morty: A Four Year Study. Gifted Education International, 9 (2), 105-109.

This case study describes a boy from kindergarten through third grade with above average intelligence but difficulty in learning to read, write, and spell.

Popkewitz, T. (1993). Changing Patterns of Power: Social Regulation and Teacher Education Reform. Albany: SUNY Press.

Popkewitz edits this series of essays that address case studies on educational change and the training of teachers. The essays vary in terms of discipline and scope. Also, several authors include case studies of educational practices in countries other than the United States.

---. (1984). The Predrafting Processes of Four High- and Four Low Apprehensive Writers. Research in the Teaching of English, 18, (1), 45-64.

Rasmussen, P. (1985, March) A Case Study on the Evaluation of Research at the Technical University of Denmark. International Journal of Institutional Management in Higher Education, 9 (1).

This is an example of a case study methodology used to evaluate the chemistry and chemical engineering departments at the University of Denmark.

Roth, K. J. (1986). Curriculum Materials, Teacher Talk, and Student Learning: Case Studies in Fifth-Grade Science Teaching . East Lansing: Institute for Research on Teaching.

Roth offers case studies on elementary teachers, elementary school teaching, science studies and teaching, and verbal learning.

Selfe, C. L. (1985). An Apprehensive Writer Composes. When a Writer Can't Write: Studies in Writer's Block and Other Composing-Process Problems . (pp. 83-95). Ed. Mike Rose. NMY: Guilford.

Smith-Lewis, M., R. and Ford, A. (1987). A User's Perspective on Augmentative Communication. Augmentative and Alternative Communication, 3, 12-7.

"During a series of in-depth interviews, a 25-yr-old woman with cerebral palsy who utilized augmentative communication reflected on the effectiveness of the devices designed for her during her school career."

St. Pierre, R., G. (1980, April). Follow Through: A Case Study in Metaevaluation Research . 64th Annual Meeting of the American Educational Research Association. (Address).

The three approaches to metaevaluation are evaluation of primary evaluations, integrative meta-analysis with combined primary evaluation results, and re-analysis of the raw data from a primary evaluation.

Stahler, T., M. (1996, Feb.) Early Field Experiences: A Model That Worked. ERIC.

"This case study of a field and theory class examines a model designed to provide meaningful field experiences for preservice teachers while remaining consistent with the instructor's beliefs about the role of teacher education in preparing teachers for the classroom."

Stake, R. E. (1995). The Art of Case Study Research. Thousand Oaks: Sage Publications.

This book examines case study research in education and case study methodology.

Stiegelbauer, S. (1984) Community, Context, and Co-curriculum: Situational Factors Influencing School Improvements in a Study of High Schools. Presented at the annual meeting of the American Educational Research Association, New Orleans, LA.

Discussion of several case studies: one looking at high school environments, another examining educational innovations.

Stolovitch, H. (1990). Case Study Method. Performance And Instruction, 29, (9), 35-37.

This article describes the case study method as a form of simulation and presents guidelines for their use in professional training situations.

Thaller, E. (1994). Bibliography for the Case Method: Using Case Studies in Teacher Education. RIE. 37 p.

This bibliography presents approximately 450 citations on the use of case studies in teacher education from 1921-1993.

Thrane, T. (1986). On Delimiting the Senses of Near-Synonyms in Historical Semantics: A Case Study of Adjectives of 'Moral Sufficiency' in the Old English Andreas. Linguistics Across Historical and Geographical Boundaries: In Honor of Jacek Fisiak on the Occasion of his Fiftieth Birthday . Berlin: Mouton de Gruyter.

United Nations. (1975). Food and Agriculture Organization. Report on the FAO/UNFPA Seminar on Methodology, Research and Country: Case Studies on Population, Employment and Productivity . Rome: United Nations.

This example case study shows how the methodology can be used in a demographic and psychographic evaluation. At the same time, it discusses the formation and instigation of the case study methodology itself.

Van Vugt, J. P., ed. (1994). Aids Prevention and Services: Community Based Research . Westport: Bergin and Garvey.

"This volume has been five years in the making. In the process, some of the policy applications called for have met with limited success, such as free needle exchange programs in a limited number of American cities, providing condoms to prison inmates, and advertisements that depict same-sex couples. Rather than dating our chapters that deal with such subjects, such policy applications are verifications of the type of research demonstrated here. Furthermore, they indicate the critical need to continue community based research in the various communities threatened by acquired immuno-deficiency syndrome (AIDS) . . . "

Welch, W., ed. (1981, May). Case Study Methodology in Educational Evaluation. Proceedings of the Minnesota Evaluation Conference. Minnesota. (Address).

The four papers in these proceedings provide a comprehensive picture of the rationale, methodology, strengths, and limitations of case studies.

Williams, G. (1987). The Case Method: An Approach to Teaching and Learning in Educational Administration. RIE, 31p.

This paper examines the viability of the case method as a teaching and learning strategy in instructional systems geared toward the training of personnel of the administration of various aspects of educational systems.

Yin, R. K. (1993). Advancing Rigorous Methodologies: A Review of 'Towards Rigor in Reviews of Multivocal Literatures.' Review of Educational Research, 61, (3).

"R. T. Ogawa and B. Malen's article does not meet its own recommended standards for rigorous testing and presentation of its own conclusions. Use of the exploratory case study to analyze multivocal literatures is not supported, and the claim of grounded theory to analyze multivocal literatures may be stronger."

---. (1989). Case Study Research: Design and Methods. London: Sage Publications Inc.

This book discusses in great detail, the entire design process of the case study, including entire chapters on collecting evidence, analyzing evidence, composing the case study report, and designing single and multiple case studies.

Related Links

Consider the following list of related Web sites for more information on the topic of case study research. Note: although many of the links cover the general category of qualitative research, all have sections that address issues of case studies.

  • Sage Publications on Qualitative Methodology: Search here for a comprehensive list of new books being published about "Qualitative Methodology" http://www.sagepub.co.uk/
  • The International Journal of Qualitative Studies in Education: An on-line journal "to enhance the theory and practice of qualitative research in education." On-line submissions are welcome. http://www.tandf.co.uk/journals/tf/09518398.html
  • Qualitative Research Resources on the Internet: From syllabi to home pages to bibliographies. All links relate somehow to qualitative research. http://www.nova.edu/ssss/QR/qualres.html

Becker, Bronwyn, Patrick Dawson, Karen Devine, Carla Hannum, Steve Hill, Jon Leydens, Debbie Matuskevich, Carol Traver, & Mike Palmquist. (2005). Case Studies. Writing@CSU . Colorado State University. https://writing.colostate.edu/guides/guide.cfm?guideid=60

Logo for Open Educational Resources Collective

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

Chapter 8: Case study

Darshini Ayton

Learning outcomes

Upon completion of this chapter, you should be able to:

  • Identify the key terms and concepts used in qualitative case study research.
  • Discuss the advantages and disadvantages of qualitative case study research.

What is a case study?

The key concept in a case study is context .

In qualitative research, case studies provide in-depth accounts of events, relationships, experiences or processes. Stemming from the fields of evaluation, political science and law, the aim of a qualitative case study is to explore a phenomenon within the context of the case 1 and to answer how and why research questions. 2 The contextual conditions are relevant to the phenomenon under study and the contextual factors tend to lie with the case. 1 From the outset it is important (a) to determine who or what is your case – this can be a person, program, organisation or group, or a process – and (b) to articulate the phenomenon of interest.

An example of why context is important in understanding the phenomenon of interest is a study of health promotion action by local churches in Victoria, Australia. 3 The phenomenon under study was health promotion action, with 10 churches comprising the cases, which were mapped across the framework of health promotion approaches. 4 The contextual factors included church denomination (Baptist, Church of Christ, Uniting, Anglican, Catholic and Salvation Army), size (small, medium and large), location (rural and metropolitan), partnerships with external organisations (government, local schools and social welfare organisations) and theological orientation (traditional, modern or postmodern), to understand the phenomenon of health promotion action. Data collection took 12 months and involved interviews with 37 church leaders, 10 focus groups with volunteers, 17 instances of participant observation of church activities, including church services, youth events, food banks and community meals, and 12 documentary analyses of church websites, newsletters and annual reports. The case studies identified and illustrated how and why three different expressions of church – traditional, new modern and emerging – led to different levels and types of health promotion activities.

Three prominent qualitative case study methodologists, Robert Stake, Robert Yin and Sharan Merriams, have articulated different approaches to case studies and their underpinning philosophical and paradigmatic assumptions. Table 8 outlines these approaches, based on work by Yazan, 5 whose expanded table covers characteristics of case studies, data collection and analysis.

Table 8.1. Comparison of case study terms used by three key methodologists

Table 8.1 is derived from ‘Three Approaches to Case Study Methods in Education: Yin, Merriam, and Stake ‘  by Bedrettin Yazan,  licensed under CC BY-NC-SA 4.0. 5

There are several forms of qualitative case studies. 1,2

Discovery-led case studies, which:

  • describe what is happening in the setting
  • explore the key issues affecting people within the setting
  • compare settings, to learn from the similarities and differences between them.

Theory-led case studies, which:

  • explain the causes of events, processes or relationships within a setting
  • illustrate how a particular theory applies to a real-life setting
  • experiment with changes in the setting to test specific factors or variables.

Single and collective case studies, where: 2, 9

  • the researcher wants to understand a unique phenomenon in detail– known as an intrinsic case study
  • the researcher is seeking insight and understanding of a particular situation or phenomenon, known as an illustrative case study or instrumental case study.

In both intrinsic, instrumental and illustrative case studies, the exploration might take place within a single case. In contrast, a collective case study includes multiple individual cases, and the exploration occurs both within and between cases. Collective case studies may include comparative cases, whereby cases are sampled to provide points of comparison for either context or the phenomenon. Embedded case studies are increasingly common within multi-site, randomised controlled trials, where each of the study sites is considered a case.

Multiple forms of data collection and methods of analysis (e.g. thematic, content, framework and constant comparative analyses) can be employed, since case studies are characterised by the depth of knowledge they provide and their nuanced approaches to understanding phenomena within context. 2,5 This approach enables triangulation between data sources (interviews, focus groups, participant observations), researchers and theory. Refer to Chapter 19 for information about triangulation.

Advantages and disadvantages of qualitative case studies

Advantages of using a case study approach include the ability to explore the subtleties and intricacies of complex social situations, and the use of multiple data collection methods and data from multiple sources within the case, which enables rigour through triangulation. Collective case studies enable comparison and contrasting within and across cases.

However, it can be challenging to define the boundaries of the case and to gain appropriate access to the case for the ‘deep dive’ form of analysis. Participant observation, which is a common form of data collection, can lead to observer bias. Data collection can take a long time and may require lengthy times, resources and funding to conduct the study. 9

Table 8.2 provides an example of a single case study and of a collective case study.

Table 8.2. Examples of qualitative case studies

Qualitative case studies provide a study design with diverse methods to examine the contextual factors relevant to understanding the why and how of a phenomenon within a case. The design incorporates single case studies and collective cases, which can also be embedded within randomised controlled trials as a form of process evaluation.

  • Creswell J, Hanson W, Clark Plano V et al.. Qualitative research designs: selection and implementation. Couns Psychol  2007;35(2):236-264. doi:10.1177/0011000006287390
  • Crowe S, Cresswell K, Robertson A, et al. The case study approach. BMC Med Res Methodol . 2011;11:100. doi:10.1186/1471-2288-11-100
  • Ayton D, Manderson L, Smith BJ et al. Health promotion in local churches in Victoria: an exploratory study. Health Soc Care Community . 2016;24(6):728-738. doi:10.1111/hsc.12258
  • Keleher H, Murphy C. Understanding Health: A Determinants Approach . Oxford University Press; 2004.
  • Yazan B. Three approaches to case study methods in education: Yin, Merriam, and Stake. The Qualitative Report . 2015;20(2):134-152. doi:10.46743/2160-3715/2015.2102
  • Stake RE. The A rt of C ase S tudy R esearch . SAGE Publications; 1995.
  • Yin RK. Case S tudy R esearch: Design and M ethods . SAGE Publications; 2002.
  • Merriam SB. Qualitative R esearch and C ase S tudy A pplications in E ducation . Jossey-Boss; 1998.
  • Kekeya J. Qualitative case study research design: the commonalities and differences between collective, intrinsic and instrumental case studies. Contemporary PNG Studies . 2021;36:28-37.
  • Nayback-Beebe AM, Yoder LH. The lived experiences of a male survivor of intimate partner violence: a qualitative case study. Medsurg Nurs . 2012;21(2):89-95; quiz 96.
  • Clack L, Zingg W, Saint S et al. Implementing infection prevention practices across European hospitals: an in-depth qualitative assessment. BMJ Qual Saf . 2018;27(10):771-780. doi:10.1136/bmjqs-2017-007675

Qualitative Research – a practical guide for health and social care researchers and practitioners Copyright © 2023 by Darshini Ayton is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License , except where otherwise noted.

Share This Book

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Neurol Res Pract

Logo of neurrp

How to use and assess qualitative research methods

Loraine busetto.

1 Department of Neurology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany

Wolfgang Wick

2 Clinical Cooperation Unit Neuro-Oncology, German Cancer Research Center, Heidelberg, Germany

Christoph Gumbinger

Associated data.

Not applicable.

This paper aims to provide an overview of the use and assessment of qualitative research methods in the health sciences. Qualitative research can be defined as the study of the nature of phenomena and is especially appropriate for answering questions of why something is (not) observed, assessing complex multi-component interventions, and focussing on intervention improvement. The most common methods of data collection are document study, (non-) participant observations, semi-structured interviews and focus groups. For data analysis, field-notes and audio-recordings are transcribed into protocols and transcripts, and coded using qualitative data management software. Criteria such as checklists, reflexivity, sampling strategies, piloting, co-coding, member-checking and stakeholder involvement can be used to enhance and assess the quality of the research conducted. Using qualitative in addition to quantitative designs will equip us with better tools to address a greater range of research problems, and to fill in blind spots in current neurological research and practice.

The aim of this paper is to provide an overview of qualitative research methods, including hands-on information on how they can be used, reported and assessed. This article is intended for beginning qualitative researchers in the health sciences as well as experienced quantitative researchers who wish to broaden their understanding of qualitative research.

What is qualitative research?

Qualitative research is defined as “the study of the nature of phenomena”, including “their quality, different manifestations, the context in which they appear or the perspectives from which they can be perceived” , but excluding “their range, frequency and place in an objectively determined chain of cause and effect” [ 1 ]. This formal definition can be complemented with a more pragmatic rule of thumb: qualitative research generally includes data in form of words rather than numbers [ 2 ].

Why conduct qualitative research?

Because some research questions cannot be answered using (only) quantitative methods. For example, one Australian study addressed the issue of why patients from Aboriginal communities often present late or not at all to specialist services offered by tertiary care hospitals. Using qualitative interviews with patients and staff, it found one of the most significant access barriers to be transportation problems, including some towns and communities simply not having a bus service to the hospital [ 3 ]. A quantitative study could have measured the number of patients over time or even looked at possible explanatory factors – but only those previously known or suspected to be of relevance. To discover reasons for observed patterns, especially the invisible or surprising ones, qualitative designs are needed.

While qualitative research is common in other fields, it is still relatively underrepresented in health services research. The latter field is more traditionally rooted in the evidence-based-medicine paradigm, as seen in " research that involves testing the effectiveness of various strategies to achieve changes in clinical practice, preferably applying randomised controlled trial study designs (...) " [ 4 ]. This focus on quantitative research and specifically randomised controlled trials (RCT) is visible in the idea of a hierarchy of research evidence which assumes that some research designs are objectively better than others, and that choosing a "lesser" design is only acceptable when the better ones are not practically or ethically feasible [ 5 , 6 ]. Others, however, argue that an objective hierarchy does not exist, and that, instead, the research design and methods should be chosen to fit the specific research question at hand – "questions before methods" [ 2 , 7 – 9 ]. This means that even when an RCT is possible, some research problems require a different design that is better suited to addressing them. Arguing in JAMA, Berwick uses the example of rapid response teams in hospitals, which he describes as " a complex, multicomponent intervention – essentially a process of social change" susceptible to a range of different context factors including leadership or organisation history. According to him, "[in] such complex terrain, the RCT is an impoverished way to learn. Critics who use it as a truth standard in this context are incorrect" [ 8 ] . Instead of limiting oneself to RCTs, Berwick recommends embracing a wider range of methods , including qualitative ones, which for "these specific applications, (...) are not compromises in learning how to improve; they are superior" [ 8 ].

Research problems that can be approached particularly well using qualitative methods include assessing complex multi-component interventions or systems (of change), addressing questions beyond “what works”, towards “what works for whom when, how and why”, and focussing on intervention improvement rather than accreditation [ 7 , 9 – 12 ]. Using qualitative methods can also help shed light on the “softer” side of medical treatment. For example, while quantitative trials can measure the costs and benefits of neuro-oncological treatment in terms of survival rates or adverse effects, qualitative research can help provide a better understanding of patient or caregiver stress, visibility of illness or out-of-pocket expenses.

How to conduct qualitative research?

Given that qualitative research is characterised by flexibility, openness and responsivity to context, the steps of data collection and analysis are not as separate and consecutive as they tend to be in quantitative research [ 13 , 14 ]. As Fossey puts it : “sampling, data collection, analysis and interpretation are related to each other in a cyclical (iterative) manner, rather than following one after another in a stepwise approach” [ 15 ]. The researcher can make educated decisions with regard to the choice of method, how they are implemented, and to which and how many units they are applied [ 13 ]. As shown in Fig.  1 , this can involve several back-and-forth steps between data collection and analysis where new insights and experiences can lead to adaption and expansion of the original plan. Some insights may also necessitate a revision of the research question and/or the research design as a whole. The process ends when saturation is achieved, i.e. when no relevant new information can be found (see also below: sampling and saturation). For reasons of transparency, it is essential for all decisions as well as the underlying reasoning to be well-documented.

An external file that holds a picture, illustration, etc.
Object name is 42466_2020_59_Fig1_HTML.jpg

Iterative research process

While it is not always explicitly addressed, qualitative methods reflect a different underlying research paradigm than quantitative research (e.g. constructivism or interpretivism as opposed to positivism). The choice of methods can be based on the respective underlying substantive theory or theoretical framework used by the researcher [ 2 ].

Data collection

The methods of qualitative data collection most commonly used in health research are document study, observations, semi-structured interviews and focus groups [ 1 , 14 , 16 , 17 ].

Document study

Document study (also called document analysis) refers to the review by the researcher of written materials [ 14 ]. These can include personal and non-personal documents such as archives, annual reports, guidelines, policy documents, diaries or letters.

Observations

Observations are particularly useful to gain insights into a certain setting and actual behaviour – as opposed to reported behaviour or opinions [ 13 ]. Qualitative observations can be either participant or non-participant in nature. In participant observations, the observer is part of the observed setting, for example a nurse working in an intensive care unit [ 18 ]. In non-participant observations, the observer is “on the outside looking in”, i.e. present in but not part of the situation, trying not to influence the setting by their presence. Observations can be planned (e.g. for 3 h during the day or night shift) or ad hoc (e.g. as soon as a stroke patient arrives at the emergency room). During the observation, the observer takes notes on everything or certain pre-determined parts of what is happening around them, for example focusing on physician-patient interactions or communication between different professional groups. Written notes can be taken during or after the observations, depending on feasibility (which is usually lower during participant observations) and acceptability (e.g. when the observer is perceived to be judging the observed). Afterwards, these field notes are transcribed into observation protocols. If more than one observer was involved, field notes are taken independently, but notes can be consolidated into one protocol after discussions. Advantages of conducting observations include minimising the distance between the researcher and the researched, the potential discovery of topics that the researcher did not realise were relevant and gaining deeper insights into the real-world dimensions of the research problem at hand [ 18 ].

Semi-structured interviews

Hijmans & Kuyper describe qualitative interviews as “an exchange with an informal character, a conversation with a goal” [ 19 ]. Interviews are used to gain insights into a person’s subjective experiences, opinions and motivations – as opposed to facts or behaviours [ 13 ]. Interviews can be distinguished by the degree to which they are structured (i.e. a questionnaire), open (e.g. free conversation or autobiographical interviews) or semi-structured [ 2 , 13 ]. Semi-structured interviews are characterized by open-ended questions and the use of an interview guide (or topic guide/list) in which the broad areas of interest, sometimes including sub-questions, are defined [ 19 ]. The pre-defined topics in the interview guide can be derived from the literature, previous research or a preliminary method of data collection, e.g. document study or observations. The topic list is usually adapted and improved at the start of the data collection process as the interviewer learns more about the field [ 20 ]. Across interviews the focus on the different (blocks of) questions may differ and some questions may be skipped altogether (e.g. if the interviewee is not able or willing to answer the questions or for concerns about the total length of the interview) [ 20 ]. Qualitative interviews are usually not conducted in written format as it impedes on the interactive component of the method [ 20 ]. In comparison to written surveys, qualitative interviews have the advantage of being interactive and allowing for unexpected topics to emerge and to be taken up by the researcher. This can also help overcome a provider or researcher-centred bias often found in written surveys, which by nature, can only measure what is already known or expected to be of relevance to the researcher. Interviews can be audio- or video-taped; but sometimes it is only feasible or acceptable for the interviewer to take written notes [ 14 , 16 , 20 ].

Focus groups

Focus groups are group interviews to explore participants’ expertise and experiences, including explorations of how and why people behave in certain ways [ 1 ]. Focus groups usually consist of 6–8 people and are led by an experienced moderator following a topic guide or “script” [ 21 ]. They can involve an observer who takes note of the non-verbal aspects of the situation, possibly using an observation guide [ 21 ]. Depending on researchers’ and participants’ preferences, the discussions can be audio- or video-taped and transcribed afterwards [ 21 ]. Focus groups are useful for bringing together homogeneous (to a lesser extent heterogeneous) groups of participants with relevant expertise and experience on a given topic on which they can share detailed information [ 21 ]. Focus groups are a relatively easy, fast and inexpensive method to gain access to information on interactions in a given group, i.e. “the sharing and comparing” among participants [ 21 ]. Disadvantages include less control over the process and a lesser extent to which each individual may participate. Moreover, focus group moderators need experience, as do those tasked with the analysis of the resulting data. Focus groups can be less appropriate for discussing sensitive topics that participants might be reluctant to disclose in a group setting [ 13 ]. Moreover, attention must be paid to the emergence of “groupthink” as well as possible power dynamics within the group, e.g. when patients are awed or intimidated by health professionals.

Choosing the “right” method

As explained above, the school of thought underlying qualitative research assumes no objective hierarchy of evidence and methods. This means that each choice of single or combined methods has to be based on the research question that needs to be answered and a critical assessment with regard to whether or to what extent the chosen method can accomplish this – i.e. the “fit” between question and method [ 14 ]. It is necessary for these decisions to be documented when they are being made, and to be critically discussed when reporting methods and results.

Let us assume that our research aim is to examine the (clinical) processes around acute endovascular treatment (EVT), from the patient’s arrival at the emergency room to recanalization, with the aim to identify possible causes for delay and/or other causes for sub-optimal treatment outcome. As a first step, we could conduct a document study of the relevant standard operating procedures (SOPs) for this phase of care – are they up-to-date and in line with current guidelines? Do they contain any mistakes, irregularities or uncertainties that could cause delays or other problems? Regardless of the answers to these questions, the results have to be interpreted based on what they are: a written outline of what care processes in this hospital should look like. If we want to know what they actually look like in practice, we can conduct observations of the processes described in the SOPs. These results can (and should) be analysed in themselves, but also in comparison to the results of the document analysis, especially as regards relevant discrepancies. Do the SOPs outline specific tests for which no equipment can be observed or tasks to be performed by specialized nurses who are not present during the observation? It might also be possible that the written SOP is outdated, but the actual care provided is in line with current best practice. In order to find out why these discrepancies exist, it can be useful to conduct interviews. Are the physicians simply not aware of the SOPs (because their existence is limited to the hospital’s intranet) or do they actively disagree with them or does the infrastructure make it impossible to provide the care as described? Another rationale for adding interviews is that some situations (or all of their possible variations for different patient groups or the day, night or weekend shift) cannot practically or ethically be observed. In this case, it is possible to ask those involved to report on their actions – being aware that this is not the same as the actual observation. A senior physician’s or hospital manager’s description of certain situations might differ from a nurse’s or junior physician’s one, maybe because they intentionally misrepresent facts or maybe because different aspects of the process are visible or important to them. In some cases, it can also be relevant to consider to whom the interviewee is disclosing this information – someone they trust, someone they are otherwise not connected to, or someone they suspect or are aware of being in a potentially “dangerous” power relationship to them. Lastly, a focus group could be conducted with representatives of the relevant professional groups to explore how and why exactly they provide care around EVT. The discussion might reveal discrepancies (between SOPs and actual care or between different physicians) and motivations to the researchers as well as to the focus group members that they might not have been aware of themselves. For the focus group to deliver relevant information, attention has to be paid to its composition and conduct, for example, to make sure that all participants feel safe to disclose sensitive or potentially problematic information or that the discussion is not dominated by (senior) physicians only. The resulting combination of data collection methods is shown in Fig.  2 .

An external file that holds a picture, illustration, etc.
Object name is 42466_2020_59_Fig2_HTML.jpg

Possible combination of data collection methods

Attributions for icons: “Book” by Serhii Smirnov, “Interview” by Adrien Coquet, FR, “Magnifying Glass” by anggun, ID, “Business communication” by Vectors Market; all from the Noun Project

The combination of multiple data source as described for this example can be referred to as “triangulation”, in which multiple measurements are carried out from different angles to achieve a more comprehensive understanding of the phenomenon under study [ 22 , 23 ].

Data analysis

To analyse the data collected through observations, interviews and focus groups these need to be transcribed into protocols and transcripts (see Fig.  3 ). Interviews and focus groups can be transcribed verbatim , with or without annotations for behaviour (e.g. laughing, crying, pausing) and with or without phonetic transcription of dialects and filler words, depending on what is expected or known to be relevant for the analysis. In the next step, the protocols and transcripts are coded , that is, marked (or tagged, labelled) with one or more short descriptors of the content of a sentence or paragraph [ 2 , 15 , 23 ]. Jansen describes coding as “connecting the raw data with “theoretical” terms” [ 20 ]. In a more practical sense, coding makes raw data sortable. This makes it possible to extract and examine all segments describing, say, a tele-neurology consultation from multiple data sources (e.g. SOPs, emergency room observations, staff and patient interview). In a process of synthesis and abstraction, the codes are then grouped, summarised and/or categorised [ 15 , 20 ]. The end product of the coding or analysis process is a descriptive theory of the behavioural pattern under investigation [ 20 ]. The coding process is performed using qualitative data management software, the most common ones being InVivo, MaxQDA and Atlas.ti. It should be noted that these are data management tools which support the analysis performed by the researcher(s) [ 14 ].

An external file that holds a picture, illustration, etc.
Object name is 42466_2020_59_Fig3_HTML.jpg

From data collection to data analysis

Attributions for icons: see Fig. ​ Fig.2, 2 , also “Speech to text” by Trevor Dsouza, “Field Notes” by Mike O’Brien, US, “Voice Record” by ProSymbols, US, “Inspection” by Made, AU, and “Cloud” by Graphic Tigers; all from the Noun Project

How to report qualitative research?

Protocols of qualitative research can be published separately and in advance of the study results. However, the aim is not the same as in RCT protocols, i.e. to pre-define and set in stone the research questions and primary or secondary endpoints. Rather, it is a way to describe the research methods in detail, which might not be possible in the results paper given journals’ word limits. Qualitative research papers are usually longer than their quantitative counterparts to allow for deep understanding and so-called “thick description”. In the methods section, the focus is on transparency of the methods used, including why, how and by whom they were implemented in the specific study setting, so as to enable a discussion of whether and how this may have influenced data collection, analysis and interpretation. The results section usually starts with a paragraph outlining the main findings, followed by more detailed descriptions of, for example, the commonalities, discrepancies or exceptions per category [ 20 ]. Here it is important to support main findings by relevant quotations, which may add information, context, emphasis or real-life examples [ 20 , 23 ]. It is subject to debate in the field whether it is relevant to state the exact number or percentage of respondents supporting a certain statement (e.g. “Five interviewees expressed negative feelings towards XYZ”) [ 21 ].

How to combine qualitative with quantitative research?

Qualitative methods can be combined with other methods in multi- or mixed methods designs, which “[employ] two or more different methods [ …] within the same study or research program rather than confining the research to one single method” [ 24 ]. Reasons for combining methods can be diverse, including triangulation for corroboration of findings, complementarity for illustration and clarification of results, expansion to extend the breadth and range of the study, explanation of (unexpected) results generated with one method with the help of another, or offsetting the weakness of one method with the strength of another [ 1 , 17 , 24 – 26 ]. The resulting designs can be classified according to when, why and how the different quantitative and/or qualitative data strands are combined. The three most common types of mixed method designs are the convergent parallel design , the explanatory sequential design and the exploratory sequential design. The designs with examples are shown in Fig.  4 .

An external file that holds a picture, illustration, etc.
Object name is 42466_2020_59_Fig4_HTML.jpg

Three common mixed methods designs

In the convergent parallel design, a qualitative study is conducted in parallel to and independently of a quantitative study, and the results of both studies are compared and combined at the stage of interpretation of results. Using the above example of EVT provision, this could entail setting up a quantitative EVT registry to measure process times and patient outcomes in parallel to conducting the qualitative research outlined above, and then comparing results. Amongst other things, this would make it possible to assess whether interview respondents’ subjective impressions of patients receiving good care match modified Rankin Scores at follow-up, or whether observed delays in care provision are exceptions or the rule when compared to door-to-needle times as documented in the registry. In the explanatory sequential design, a quantitative study is carried out first, followed by a qualitative study to help explain the results from the quantitative study. This would be an appropriate design if the registry alone had revealed relevant delays in door-to-needle times and the qualitative study would be used to understand where and why these occurred, and how they could be improved. In the exploratory design, the qualitative study is carried out first and its results help informing and building the quantitative study in the next step [ 26 ]. If the qualitative study around EVT provision had shown a high level of dissatisfaction among the staff members involved, a quantitative questionnaire investigating staff satisfaction could be set up in the next step, informed by the qualitative study on which topics dissatisfaction had been expressed. Amongst other things, the questionnaire design would make it possible to widen the reach of the research to more respondents from different (types of) hospitals, regions, countries or settings, and to conduct sub-group analyses for different professional groups.

How to assess qualitative research?

A variety of assessment criteria and lists have been developed for qualitative research, ranging in their focus and comprehensiveness [ 14 , 17 , 27 ]. However, none of these has been elevated to the “gold standard” in the field. In the following, we therefore focus on a set of commonly used assessment criteria that, from a practical standpoint, a researcher can look for when assessing a qualitative research report or paper.

Assessors should check the authors’ use of and adherence to the relevant reporting checklists (e.g. Standards for Reporting Qualitative Research (SRQR)) to make sure all items that are relevant for this type of research are addressed [ 23 , 28 ]. Discussions of quantitative measures in addition to or instead of these qualitative measures can be a sign of lower quality of the research (paper). Providing and adhering to a checklist for qualitative research contributes to an important quality criterion for qualitative research, namely transparency [ 15 , 17 , 23 ].

Reflexivity

While methodological transparency and complete reporting is relevant for all types of research, some additional criteria must be taken into account for qualitative research. This includes what is called reflexivity, i.e. sensitivity to the relationship between the researcher and the researched, including how contact was established and maintained, or the background and experience of the researcher(s) involved in data collection and analysis. Depending on the research question and population to be researched this can be limited to professional experience, but it may also include gender, age or ethnicity [ 17 , 27 ]. These details are relevant because in qualitative research, as opposed to quantitative research, the researcher as a person cannot be isolated from the research process [ 23 ]. It may influence the conversation when an interviewed patient speaks to an interviewer who is a physician, or when an interviewee is asked to discuss a gynaecological procedure with a male interviewer, and therefore the reader must be made aware of these details [ 19 ].

Sampling and saturation

The aim of qualitative sampling is for all variants of the objects of observation that are deemed relevant for the study to be present in the sample “ to see the issue and its meanings from as many angles as possible” [ 1 , 16 , 19 , 20 , 27 ] , and to ensure “information-richness [ 15 ]. An iterative sampling approach is advised, in which data collection (e.g. five interviews) is followed by data analysis, followed by more data collection to find variants that are lacking in the current sample. This process continues until no new (relevant) information can be found and further sampling becomes redundant – which is called saturation [ 1 , 15 ] . In other words: qualitative data collection finds its end point not a priori , but when the research team determines that saturation has been reached [ 29 , 30 ].

This is also the reason why most qualitative studies use deliberate instead of random sampling strategies. This is generally referred to as “ purposive sampling” , in which researchers pre-define which types of participants or cases they need to include so as to cover all variations that are expected to be of relevance, based on the literature, previous experience or theory (i.e. theoretical sampling) [ 14 , 20 ]. Other types of purposive sampling include (but are not limited to) maximum variation sampling, critical case sampling or extreme or deviant case sampling [ 2 ]. In the above EVT example, a purposive sample could include all relevant professional groups and/or all relevant stakeholders (patients, relatives) and/or all relevant times of observation (day, night and weekend shift).

Assessors of qualitative research should check whether the considerations underlying the sampling strategy were sound and whether or how researchers tried to adapt and improve their strategies in stepwise or cyclical approaches between data collection and analysis to achieve saturation [ 14 ].

Good qualitative research is iterative in nature, i.e. it goes back and forth between data collection and analysis, revising and improving the approach where necessary. One example of this are pilot interviews, where different aspects of the interview (especially the interview guide, but also, for example, the site of the interview or whether the interview can be audio-recorded) are tested with a small number of respondents, evaluated and revised [ 19 ]. In doing so, the interviewer learns which wording or types of questions work best, or which is the best length of an interview with patients who have trouble concentrating for an extended time. Of course, the same reasoning applies to observations or focus groups which can also be piloted.

Ideally, coding should be performed by at least two researchers, especially at the beginning of the coding process when a common approach must be defined, including the establishment of a useful coding list (or tree), and when a common meaning of individual codes must be established [ 23 ]. An initial sub-set or all transcripts can be coded independently by the coders and then compared and consolidated after regular discussions in the research team. This is to make sure that codes are applied consistently to the research data.

Member checking

Member checking, also called respondent validation , refers to the practice of checking back with study respondents to see if the research is in line with their views [ 14 , 27 ]. This can happen after data collection or analysis or when first results are available [ 23 ]. For example, interviewees can be provided with (summaries of) their transcripts and asked whether they believe this to be a complete representation of their views or whether they would like to clarify or elaborate on their responses [ 17 ]. Respondents’ feedback on these issues then becomes part of the data collection and analysis [ 27 ].

Stakeholder involvement

In those niches where qualitative approaches have been able to evolve and grow, a new trend has seen the inclusion of patients and their representatives not only as study participants (i.e. “members”, see above) but as consultants to and active participants in the broader research process [ 31 – 33 ]. The underlying assumption is that patients and other stakeholders hold unique perspectives and experiences that add value beyond their own single story, making the research more relevant and beneficial to researchers, study participants and (future) patients alike [ 34 , 35 ]. Using the example of patients on or nearing dialysis, a recent scoping review found that 80% of clinical research did not address the top 10 research priorities identified by patients and caregivers [ 32 , 36 ]. In this sense, the involvement of the relevant stakeholders, especially patients and relatives, is increasingly being seen as a quality indicator in and of itself.

How not to assess qualitative research

The above overview does not include certain items that are routine in assessments of quantitative research. What follows is a non-exhaustive, non-representative, experience-based list of the quantitative criteria often applied to the assessment of qualitative research, as well as an explanation of the limited usefulness of these endeavours.

Protocol adherence

Given the openness and flexibility of qualitative research, it should not be assessed by how well it adheres to pre-determined and fixed strategies – in other words: its rigidity. Instead, the assessor should look for signs of adaptation and refinement based on lessons learned from earlier steps in the research process.

Sample size

For the reasons explained above, qualitative research does not require specific sample sizes, nor does it require that the sample size be determined a priori [ 1 , 14 , 27 , 37 – 39 ]. Sample size can only be a useful quality indicator when related to the research purpose, the chosen methodology and the composition of the sample, i.e. who was included and why.

Randomisation

While some authors argue that randomisation can be used in qualitative research, this is not commonly the case, as neither its feasibility nor its necessity or usefulness has been convincingly established for qualitative research [ 13 , 27 ]. Relevant disadvantages include the negative impact of a too large sample size as well as the possibility (or probability) of selecting “ quiet, uncooperative or inarticulate individuals ” [ 17 ]. Qualitative studies do not use control groups, either.

Interrater reliability, variability and other “objectivity checks”

The concept of “interrater reliability” is sometimes used in qualitative research to assess to which extent the coding approach overlaps between the two co-coders. However, it is not clear what this measure tells us about the quality of the analysis [ 23 ]. This means that these scores can be included in qualitative research reports, preferably with some additional information on what the score means for the analysis, but it is not a requirement. Relatedly, it is not relevant for the quality or “objectivity” of qualitative research to separate those who recruited the study participants and collected and analysed the data. Experiences even show that it might be better to have the same person or team perform all of these tasks [ 20 ]. First, when researchers introduce themselves during recruitment this can enhance trust when the interview takes place days or weeks later with the same researcher. Second, when the audio-recording is transcribed for analysis, the researcher conducting the interviews will usually remember the interviewee and the specific interview situation during data analysis. This might be helpful in providing additional context information for interpretation of data, e.g. on whether something might have been meant as a joke [ 18 ].

Not being quantitative research

Being qualitative research instead of quantitative research should not be used as an assessment criterion if it is used irrespectively of the research problem at hand. Similarly, qualitative research should not be required to be combined with quantitative research per se – unless mixed methods research is judged as inherently better than single-method research. In this case, the same criterion should be applied for quantitative studies without a qualitative component.

The main take-away points of this paper are summarised in Table ​ Table1. 1 . We aimed to show that, if conducted well, qualitative research can answer specific research questions that cannot to be adequately answered using (only) quantitative designs. Seeing qualitative and quantitative methods as equal will help us become more aware and critical of the “fit” between the research problem and our chosen methods: I can conduct an RCT to determine the reasons for transportation delays of acute stroke patients – but should I? It also provides us with a greater range of tools to tackle a greater range of research problems more appropriately and successfully, filling in the blind spots on one half of the methodological spectrum to better address the whole complexity of neurological research and practice.

Take-away-points

Acknowledgements

Abbreviations, authors’ contributions.

LB drafted the manuscript; WW and CG revised the manuscript; all authors approved the final versions.

no external funding.

Availability of data and materials

Ethics approval and consent to participate, consent for publication, competing interests.

The authors declare no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

[Qualitative case study]

Affiliation.

  • 1 c/o Revue Soins, Elsevier Masson, 92442 Issy-les-Moulineaux cedex, France. Electronic address: [email protected].
  • PMID: 27338694
  • DOI: 10.1016/j.soin.2016.04.018

The qualitative case study is a research method which enables a complex phenomenon to be explored through the identification of different factors interacting with each other. The case observed is a real situation. In the field of nursing science, it may be a clinical decision-making process. The study thereby enables the patient or health professional experience to be conceptualised.

Keywords: method; méthode; nursing science; qualitative case study; recherche; research; sciences infirmières; étude de cas qualitative.

Copyright © 2016. Published by Elsevier Masson SAS.

Publication types

  • English Abstract
  • Nursing Research / methods*
  • Qualitative Research*

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals
  • My Account Login
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • Open access
  • Published: 01 April 2024

Adaptive neighborhood rough set model for hybrid data processing: a case study on Parkinson’s disease behavioral analysis

  • Imran Raza 1 ,
  • Muhammad Hasan Jamal 1 ,
  • Rizwan Qureshi 1 ,
  • Abdul Karim Shahid 1 ,
  • Angel Olider Rojas Vistorte 2 , 3 , 4 ,
  • Md Abdus Samad 5 &
  • Imran Ashraf 5  

Scientific Reports volume  14 , Article number:  7635 ( 2024 ) Cite this article

238 Accesses

Metrics details

  • Computational biology and bioinformatics
  • Machine learning

Extracting knowledge from hybrid data, comprising both categorical and numerical data, poses significant challenges due to the inherent difficulty in preserving information and practical meanings during the conversion process. To address this challenge, hybrid data processing methods, combining complementary rough sets, have emerged as a promising approach for handling uncertainty. However, selecting an appropriate model and effectively utilizing it in data mining requires a thorough qualitative and quantitative comparison of existing hybrid data processing models. This research aims to contribute to the analysis of hybrid data processing models based on neighborhood rough sets by investigating the inherent relationships among these models. We propose a generic neighborhood rough set-based hybrid model specifically designed for processing hybrid data, thereby enhancing the efficacy of the data mining process without resorting to discretization and avoiding information loss or practical meaning degradation in datasets. The proposed scheme dynamically adapts the threshold value for the neighborhood approximation space according to the characteristics of the given datasets, ensuring optimal performance without sacrificing accuracy. To evaluate the effectiveness of the proposed scheme, we develop a testbed tailored for Parkinson’s patients, a domain where hybrid data processing is particularly relevant. The experimental results demonstrate that the proposed scheme consistently outperforms existing schemes in adaptively handling both numerical and categorical data, achieving an impressive accuracy of 95% on the Parkinson’s dataset. Overall, this research contributes to advancing hybrid data processing techniques by providing a robust and adaptive solution that addresses the challenges associated with handling hybrid data, particularly in the context of Parkinson’s disease analysis.

Similar content being viewed by others

qualitative case study meaning

Soft ordered double quantitative approximations based three-way decisions and their applications

qualitative case study meaning

Hybrid similarity relation based mutual information for feature selection in intuitionistic fuzzy rough framework and its applications

qualitative case study meaning

A dynamic fuzzy rule-based inference system using fuzzy inference with semantic reasoning

Introduction.

The advancement of technology has facilitated the accumulation of vast amounts of data from various sources such as databases, web repositories, and files, necessitating robust tools for analysis and decision-making 1 , 2 . Data mining, employing techniques such as support vector machine (SVM), decision trees, neural networks, clustering, fuzzy logic, and genetic algorithms, plays a pivotal role in extracting information and uncovering hidden patterns within the data 3 , 4 . However, the complexity of the data landscape, characterized by high dimensionality, heterogeneity, and non-traditional structures, renders the data mining process inherently challenging 5 , 6 . To tackle these challenges effectively, a combination of complementary and cooperative intelligent techniques, including SVM, fuzzy logic, probabilistic reasoning, genetic algorithms, and neural networks, has been advocated 7 , 8 .

Hybrid intelligent systems, amalgamating various intelligent techniques, have emerged as a promising approach to enhance the efficacy of data mining. Adaptive neuro-fuzzy inference systems (ANFIS) have laid the groundwork for intelligent systems in data mining techniques, providing a foundation for exploring complex data relationships 7 , 8 . Moreover, the theory of rough sets has found practical application in tasks such as attribute selection, data reduction, decision rule generation, and pattern extraction, contributing to the development of intelligent systems for knowledge discovery 7 , 8 . Extracting meaningful knowledge from hybrid data, which encompasses both categorical and numerical data, presents a significant challenge. Two predominant strategies have emerged to address this challenge 9 , 10 . The first strategy involves employing numerical data processing techniques such as Principal Component Analysis (PCA) 11 , 12 , Neural Networks 13 , 14 , 15 , 16 , and SVM 17 . However, this approach necessitates converting categorical data into numerical equivalents, leading to a loss of contextual meaning 18 , 19 . The second strategy leverages rough set theory alongside methods tailored for categorical data. Nonetheless, applying rough set theory to numerical data requires a discretization process, resulting in information loss 20 , 21 . Numerous hybrid data processing methods have been proposed, combining rough sets and fuzzy sets to handle uncertainty 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 . However, selecting an appropriate rough set model for a given dataset necessitates exploring the inherent relationships among existing models, presenting a challenge for users. The selection and utilization of an appropriate model in data mining thus demand qualitative and quantitative comparisons of existing hybrid data processing models.

This research endeavors to present a comprehensive analysis of hybrid data processing models, with a specific focus on those rooted in neighborhood rough sets (NRS). By investigating the inherent interconnections among these models, this study aims to elucidate their complex dynamics. To address the challenges posed by hybrid data, a novel hybrid model founded on NRS is introduced. This model enhances the efficiency of the data mining process without discretization mitigating information loss and ambiguity in data interpretation. Notably, the adaptability of the proposed model, particularly in adjusting the threshold value governing the neighborhood approximation space, ensures optimal performance aligned with dataset characteristics while maintaining high accuracy. A dedicated testbed tailored for Parkinson’s patients is developed to evaluate the real-world effectiveness of the proposed approach. Furthermore, a rigorous evaluation of the proposed model is conducted, encompassing both accuracy and overall effectiveness. Encouragingly, the results demonstrate that the proposed scheme surpasses alternative approaches, adeptly managing both numerical and categorical data through an adaptive framework.

The major contributions, listed below, collectively emphasize the innovative hybrid data processing model, the adaptive nature of its thresholding mechanism, and the empirical validation using a Parkinson’s patient testbed, underscoring the relevance and significance of the study’s findings.

Novel Hybrid Data Processing Model: This research introduces a novel hybrid data processing model based on NRS, preserving the practical meaning of both numerical and categorical data types. Unlike conventional methods, it minimizes information loss while optimizing interpretability. The proposed distance function combines Euclidean and Levenshtein distances with weighted calculations and dynamic selection mechanisms to enhance accuracy and realism in neighborhood approximation spaces.

Adaptive Thresholding Mechanism: Another key contribution is the integration of an adaptive thresholding mechanism within the hybrid model. This feature dynamically adjusts the threshold value based on dataset characteristics, ensuring optimal performance and yielding more accurate and contextually relevant results.

Empirical Validation through Parkinson’s Testbed: This research provides a dedicated testbed for analyzing behavioral data from Parkinson’s patients, allowing rigorous evaluation of the proposed hybrid data processing model. Utilizing real-world datasets enhances the model’s practical applicability and advances knowledge in medical data analysis and diagnosis.

The subsequent structure of the paper unfolds as follows: section “ Related work ” delves into the related work. The proposed model is introduced in section “ Adaptive neighborhood rough set model ”, Section “ Instrumentation ” underscores the instrumentation aspect, section “ Result and discussion ” unfolds the presentation of results and ensuing discussions, while section “ Conclusion and future work ” provides the concluding remarks for the paper. A list of notations used in this study is provided in Table  1 .

Related work

Rough set-based approaches have been utilized in various applications like bankruptcy prediction 42 , attribute/feature subset selection 43 , 44 , cancer prediction 45 , 46 , etc. In addition, recently, several innovative hybrid models have emerged, blending the realms of fuzzy logic and non-randomized systems (NRSs). One such development is presented by Yin et al. 47 , who introduce a parameterized hybrid fuzzy similarity relation. They apply this relation to the task of granulating multilabel data, subsequently extending it to the domain of multilabel learning. To construct a noise-tolerant multilabel fuzzy NRS model (NT-MLFNRS), they leverage the inclusion relationship between fuzzy neighborhood granules and fuzzy decisions. Building upon NT-MLFNRS, Yin et al. also devise a noise-resistant heuristic multilabel feature selection (NRFSFN) algorithm. To further enhance the efficiency of feature selection and address the complexities associated with handling large-scale multilabel datasets, they culminate their efforts by introducing an efficient extended version of NRFSFN known as ENFSFN.

Sang et al. 48 explore incremental feature selection methodologies, introducing a novel conditional entropy metric tailored for dynamic ordered data robustness. Their approach introduces the concept of a fuzzy dominance neighborhood rough set (FDNRS) and defines a conditional entropy metric with robustness, leveraging the FDNRS model. This metric serves as an evaluation criterion for features, and it is integrated into a heuristic feature selection algorithm. The resulting incremental feature selection algorithm is built upon this innovative model

Wang et al. 19 introduced the Fuzzy Rough Iterative Computational (FRIC) model, addressing challenges in hybrid information systems (HIS). Their framework includes a specialized distance function for object sets, enhancing object differentiation precision within HIS. Utilizing this function, they establish fuzzy symmetric relations among objects to formulate fuzzy rough approximations. Additionally, they introduce evaluation functions like fuzzy positive regions, dependency functions, and attribute importance functions to assess classification capabilities of attribute sets. They developed an attribute reduction algorithm tailored for hybrid data based on FRIC principles. This work contributes significantly to HIS analysis, providing a robust framework for data classification and feature selection in complex hybrid information systems.

Xu et al. 49 introduced a novel Fitting Fuzzy Rough Set (FRS) model enriched with relative dependency complement mutual information. This model addresses challenges related to data distribution and precision enhancement of fuzzy information granules. They utilized relative distance to mitigate the influence of data distribution on fuzzy similarity relationships and introduced a fitting fuzzy neighborhood radius optimized for enhancing the precision of fuzzy information granules. Within this model, the authors conducted a comprehensive analysis of information uncertainty, introducing definitions of relative complement information entropy and formulating a multiview uncertainty measure based on relative dependency complement mutual information. This work significantly advances our understanding of managing information uncertainty within FRS models, making a valuable contribution to computational modeling and data analysis.

Jiang et al. 50 presented an innovative approach for multiattribute decision-making (MADM) rooted in PROMETHEE II methodologies. Building upon the NRS model, they introduce two additional variants of covering-based variable precision fuzzy rough sets (CVPFRSs) by applying fuzzy logical operators, specifically type-I CVPFRSs and type-II CVPFRSs. In the context of MADM, their method entails the selection of medicines using an algorithm that leverages the identified features.

Qu et al. 51 introduced the concept of Adaptive Neighborhood Rough Sets (ANRSs), aiming for effective integration of feature separation and linkage with classification. They utilize the mRMR-based Feature Selection Algorithm (FSRMI), demonstrating outstanding performance across various selected datasets. However, it’s worth noting that FSRMI may not consistently outperform other algorithms on all datasets.

Xu et al. 52 introduced the Fuzzy Neighborhood Joint Entropy Model (FNSIJE) for feature selection, leveraging fuzzy neighborhood self-information measures and joint entropy to capture combined feature information. FNSIJE comprehensively analyzes the neighborhood decision system, considering noise, uncertainty, and ambiguity. To improve classification performance, the authors devised a new forward search method. Experimental results demonstrated the effectiveness of FNSIJE-KS, efficiently selecting fewer features for both low-dimensional UCI datasets and high-dimensional gene datasets while maintaining optimal classification performance. This approach advances feature selection techniques in machine learning and data analysis.

In 53 , the authors introduced a novel multi-label feature selection method utilizing fuzzy NRS to optimize classification performance in multi-label fuzzy neighborhood decision systems. By combining the NRS and FRS models a Multi-Label Fuzzy NRS model is introduced. They devised a fuzzy neighborhood approximation accuracy metric and crafted a hybrid metric integrating fuzzy neighborhood approximate accuracy with fuzzy neighborhood conditional entropy for attribute importance evaluation. Rigorous evaluation of their methods across ten diverse multi-label datasets showcased significant progress in multi-label feature selection techniques, promising enhanced classification performance in complex multi-label scenarios.

Sanget et al. 54 introduced the Fuzzy Dominance Neighborhood Rough Set (NRS) model for Interval-Valued Ordered Decision Systems (IvODS), along with a robust conditional entropy measure to assess monotonic consistency within IvODS. They also presented two incremental feature selection algorithms. Experimental results on nine publicly available datasets showcased the robustness of their proposed metric and the effectiveness and efficiency of the incremental algorithms, particularly in dynamic IvODS updates. This research significantly advances the application of fuzzy dominance NRS models in IvODS scenarios, providing valuable insights for data analysis and decision-making processes.

Zheng et al. 55 generalized the FRSs using axiomatic and constructive approaches. A pair of dual generalized fuzzy approximation operators is defined using arbitrary fuzzy relation in the constructive approach. Different classes of FRSs are characterized using different sets of axioms. The postulates governing fuzzy approximation operators ensure the presence of specific categories of fuzzy relations yielding identical operators. Using a generalized FRS model, Hu et al. 18 introduced an efficient algorithm for hybrid attribute reduction based on fuzzy relations constructing a forward greedy algorithm for hybrid attribute reduction resulting in optimal classification performance with lesser selected features and higher accuracy. Considering the similarity between two objects, Wang et al. 36 redefine fuzzy upper and lower approximations. The existing concepts of knowledge reduction are extending fuzzy environment resulting in a heuristic algorithm to learn fuzzy rules.

Gogoi et al. 56 use rough set theory for generating decision rules from inconsistent data. The proposed scheme uses indiscernibility relation to find inconsistencies in the data generating minimized and non-redundant rules using lower and upper approximations. The proposed scheme is based on the LEM2 algorithm 57 which performs the local covering option for generating minimum and non-redundant sets of classification rules and does not consider the global covering. The scheme is evaluated on a variety of data sets from the UCI Machine Learning Repository. All these data sets are either categorical or numerical having variable feature spaces. The proposed scheme performs consistently better for categorical data sets, as it is designed to handle inconsistencies in the data having at least one inconsistency. Results show that the proposed scheme generates minimized rule without reducing the feature space unlike other schemes, which compromise the feature space.

In 58 , the authors introduced a novel NRS model to address attribute reduction in noisy systems with heterogeneous attributes. This model extends traditional NRS by incorporating tolerance neighborhood relation and probabilistic theory, resulting in more comprehensive information granules. It evaluates the significance of heterogeneous attributes by considering neighborhood dependency and aims to maximize classification consistency within selected feature spaces. The feature space reduction algorithm employs an incremental approach, adding features while preserving maximal dependency in each round and halting when a new feature no longer increases dependency. This approach selects fewer features than other methods while achieving significantly improved classification performance, demonstrating its effectiveness in attribute reduction for noisy systems.

Zhu et al. 59 propose a fault tolerance scheme combining kernel method, NRS, and statistical features to adaptively select sensitive features. They employ a Gaussian kernel function with NRS to map fault data to a high-dimensional space. Their feature selection algorithm utilizes the hyper-sphere radius in high-dimensional feature space as the neighborhood value, selecting features based on significance measure regardless of the classification algorithm. A wrapper deploys a classification algorithm to evaluate selected features, choosing a subset for optimal classification. Experimental results demonstrate precise determination of the neighborhood value by mapping data into a high-dimensional space using the kernel function and hyper-sphere radius. This methodology proficiently selects sensitive fault features, diagnoses fault types, and identifies fault degrees in rolling bearing datasets.

A neighborhood covering a rough set model for the fuzziness of decision systems is proposed that solves the problem of hybrid decision systems having both fuzzy and numerical attributes 60 . The fuzzy neighborhood relation measures the indiscernibility relation and approximates the universe space using information granules, which deal with fuzzy attributes directly. The experimental results evaluate the influence of neighborhood operator size on the accuracy and attribute reduction of fuzzy neighborhood rough sets. The attribute reduction increases with the increase in the threshold size. A feature will not distinguish any samples and cannot reduce attributes if the neighborhood operator exceeds a certain value.

Hou et al. 61 applied NRS reduction techniques to cancer molecular classification, focusing on gene expression profiles. Their method introduced a novel perspective by using gene occurrence probability in selected gene subsets to indicate tumor classification efficacy. Unlike traditional methods, it integrated both Filters and Wrappers, enhancing classification performance while being computationally efficient. Additionally, they developed an ensemble classifier to improve accuracy and stability without overfitting. Experimental results showed the method achieved high prediction accuracy, identified potential cancer biomarkers, and demonstrated stability in performance.

Table  2 gives a comparison of existing rough set-based schemes for quantitative and qualitative analysis. The comparative parameters include handling hybrid data, generalized NRS, attribute reduction, classification, and accuracy rate. Most of the existing schemes do not handle hybrid data sets without discretization resulting in information loss and a lack of practical meanings. Another parameter to evaluate the effectiveness of the existing scheme is the ability to adapt the threshold value according to the given data sets. Most of the schemes do not adapt threshold values for neighborhood approximation space resulting in variable accuracy rates for different datasets. The end-user has to adjust the value of the threshold for different datasets without understanding its impact in terms of overfitting. Selecting a large threshold value will result in more global rules resulting in poor accuracy. There needs to be a mechanism to adaptively choose the value of the threshold considering both the global and local information without compromising on the accuracy rate. The schemes are also evaluated for their ability to attribute reduction using NRS. This can greatly improve processing time and accuracy by not considering insignificant attributes. The comparative analysis shows that most of the NRS-based existing schemes perform better than many other well-known schemes in terms of accuracy. Most of these schemes have a higher accuracy rate than CART, C4.5, and k NN. This makes the NRS-based schemes a choice for attribute reduction and classification.

Adaptive neighborhood rough set model

The detailed analysis of existing techniques highlights the need for a generalized NRS-based classification technique to handle both categorical and numerical data. The proposed NRS-based techniques not only handle the hybrid information granules but also dynamically select the threshold \(\delta \) producing optimal results with a high accuracy rate. The proposed scheme considers a hybrid tuple \(HIS=\langle U_h,\ Q_h,\ V,\ f \rangle \) , where \(U_h\) is nonempty set of hybrid records \(\{x_{h1},\ x_{h2},\ x_{h3},\ \ldots ,\ x_{hn}\}\) , \(Q_h=\left\{ q_{h1},\ q_{h2},\ \ q_{h3},\ \ldots \,\ q_{hn}\right\} \) is the non-empty set of hybrid features. \( V_{q_h}\) is the domain of attribute \(q_h\) and \(V=\ \cup _{q_h\in Q_h}V_{q_h}\) , and \(f=U_h\ x\ Q_h\rightarrow V\) is a total function such \(f\left( x_h,q_h\right) \in V_{q_h}\) for each \(q_h\in Q_h, x_h\in U_h\) , called information function. \(\langle U_h,\ Q_h,\ V,\ f\rangle \) is also known as a decision table if \(Q_h=C_h\cup D\) , where \(C_h\) is the set of hybrid condition attributes and D is the decision attribute.

A neighborhood relation N is calculated using this set of hybrid samples \(U_h\) creating the neighborhood approximation space \(\langle U_h,\ N\rangle \) which contains information granules \( \left\{ \delta ({x_h}_i)\big |{x_h}_i\in U_h\right\} \) based on some distance function \(\Delta \) . For an arbitrary sample \({x_h}_i\in U_h\) and \(B \subseteq C_h\) , the neighborhood \(\delta _B({x_h}_i)\) of \({x_h}_i\) in the subspace B is defined as \(\delta _B\left( {x_h}_i\right) =\{{x_h}_j\left| {x_h}_j\right. \in U_h,\ \Delta B(x_i,x_j) \le \delta \}\) . The scheme proposes a new hybrid distance function to handle both the categorical and numerical features in an approximation space.

The proposed distance function uses Euclidean distance for numerical features and Levenshtein distance for categorical features. The distance function also takes care of the significant features calculating weighted distance for both the categorical and numerical features. The proposed algorithm dynamically selects the distance function at the run time. The use of Levenshtein distance for categorical features provides precise distance for optimal neighborhood approximation space providing better results. Existing techniques add 1 to distance if two strings do not match in calculating the distance for categorical data and add 0 otherwise. This may not result in a realistic neighborhood approximation space.

The neighborhood size depends on the threshold \(\delta \) . The neighborhood will contain more samples if \(\delta \) is greater and results in more rules not considering the local information data. The accuracy rate of the NRS greatly depends on the selection of threshold values. The proposed scheme dynamically calculates the threshold value for any given dataset considering both local and global information. The threshold calculation formula is given below where \({min}_D\) is the minimum distance between the set of training samples and the test sample containing local information and \(R_D\) is the range of distance between the set of training samples and the test sample containing the global information.

The proposed scheme then calculates the lower and upper approximations given a neighborhood space \(\langle U_h, N\rangle \) for \(X \subseteq U_h\) , the lower and upper approximations of X are defined as:

Given a hybrid neighborhood decision table \(HNDT=\langle U_h,\ C_h\cup \ D, V, f\rangle \) , \(\{ X_{h1},X_{h2},\ \ldots ,\ X_{hN} \}\) are the sample hybrid subjects with decision 1 to N , \(\delta _B\left( x_{hi}\right) \) is the information granules generated by attributes \(B \subseteq C_h\) , then the lower and upper approximation is defined as:

and the boundary region of D is defined as:

The lower and upper approximation spaces are the set of rules, which are used to classify a test sample. A test sample forms its neighborhood using a lower approximation having all the rules with a distance less than a dynamically calculated threshold value. The majority voting is used in the neighborhood of a test sample to decide the class of a test sample. K-fold cross-validation is used to measure the accuracy of the proposed scheme where the value k is 10. The algorithm 1 of the proposed scheme has a time complexity of \(O(nm^{2})\) where n is the number of clients and m is the size of the categorial data.

figure a

Instrumentation

The proposed generalized rough set model has been rigorously assessed through the development of a testbed designed for the classification of Parkinson’s patients. It has also been subjected to testing using various standard datasets sourced from the University of California at Irvine machine learning data repository 63 . This research underscores the increasing significance of biomedical engineering in healthcare, particularly in light of the growing prevalence of Parkinson’s disease, which ranks as the second most common neurodegenerative condition, impacting over 1% of the population aged 65 and above 64 . The disease manifests through distinct motor symptoms like resting tremors, bradykinesia (slowness of movement), rigidity, and poor balance, with medication-related side effects such as wearing off and dyskinesias 65 .

In this study, to address the need for a reliable quantitative method for assessing motor complications in Parkinson’s patients, the data collection process involves utilizing a home-monitoring system equipped with wireless wearable sensors. These sensors were specifically deployed to closely monitor Parkinson’s patients with severe tremors in real time. It’s important to note that all patients involved in the study were clinically diagnosed with Parkinson’s disease. Additionally, before data collection, proper consent was obtained from each participant, and the study protocol was approved by the ethical committee of our university. The data collected from these sensors is then analyzed, yielding reliable quantitative information that can significantly aid clinical decision-making within both routine patient care and clinical trials of innovative treatments.

figure 1

Testbed for Parkinson’s patients.

Figure  1 illustrates a real-time Testbed designed for monitoring Parkinson’s patients. This system utilizes a tri-axial accelerometer to capture three signals, one for each axis \((x,\ y,\ and\ z)\) , resulting in a total of 18 channels of data. The sensors employed in this setup employ ZigBee (IEEE 802.15.4 infrastructure) protocol to transmit data to a computer at a sampling rate of 62.5 Hz. To ensure synchronization of the transmitted signals, a transition protocol is applied. These data packets are received through the Serial Forwarder using the TinyOS platform ( http://www.tinyos.net ). The recorded acceleration data is represented as digital signals and can be visualized on an oscilloscope. The frequency domain data is obtained by applying the Fast Fourier Transform (FFT) to the signal, resulting in an ARFF file format that is then employed for classification purposes. The experimental flowchart is shown in Fig.  2 .

figure 2

Experimental flowchart.

The real-time testbed includes various components to capture data using the Unified Parkinson’s Disease Rating Scale (UPDRS). TelosB MTM-CM5000-MSP and MTM-CM3000-MSP sensors are used to send and receive radio signals from the sensor to the PC. These sensors are based on an open-source TelosB/Tmote Sky platform, designed and developed by the University of California, Berkeley.

TelosB sensor uses the IEEE 802.15.4 wireless structure and the embedded sensors can measure temperature, relative humidity, and light. In CM3000, the USB connector is replaced with an ERNI connector that is compatible with interface modules. Also, the Hirose 51-pin connector makes this more versatile as it can be attachable to any sensor board family, and the coverage area is increased using SMA design by a 5dBi external antenna 66 . These components can be used for a variety of applications such as low-power Wireless Sensor Networks (WSN) platforms, network monitoring, and environment monitoring systems.

MTS-EX1000 sensor board is used for the amplification of the voltage/current value from the accelerometer. The EX1000 is an attachable board that supports the CMXXXX series of wireless sensors network Motes (Hirose 51-pin connector). The basic functionality of EX1000 is to connect the external sensors with CMXX00 communication modules to enhance the mote’s I/O capability and support different kinds of sensors based on the sensor type and its output signal. ADXL-345 Tri-accelerometer sensor is used to calculate body motion along x, y, and z-axis relative to gravity. It is a small, thin, low-power, 3-axis accelerometer that calculates high resolution (13-bit) measurements at up to ±16g. Its digital output, in 16-bit twos complement format, is accessible through either an SPI (3- or 4-wire) or I2C digital interface. A customized main circuit board is used having a programmed IC, registers, and transistors. Its basic functionality is to convert the digital data, accessed through the ADXL-345 sensor, into analog form and send it to MTS1000.

Result and discussion

The proposed generalized and ANRS is evaluated against different data sets taken from the machine learning data repository, at the University of California at Irvine. In addition to these common data sets, a real-time Testbed for Parkinson’s patients is also used to evaluate the proposed scheme. The hybrid data of 500 people was collected using the Testbed for Parkinson’s patients including 10 Parkinson’s patients, 20 people have abnormal and uncontrolled hand movements, and the rest of the samples were taken approximating the hand movements of Parkinson’s patients. The objective of this evaluation is to compare the accuracy rate of the proposed scheme with CART, k NN, and SVM having both simple and complex datasets containing numerical and hybrid features respectively. The results also demonstrate the selection of radius r for dynamically calculating the threshold value.

Table  3 provides the details of the datasets used for the evaluation of the proposed scheme including the training and test ratio used for evaluation in addition to data type, total number of instances, total feature, a feature considered for evaluation, and number of classes. The hybrid datasets are also selected to evaluate to performance of the proposed scheme against the hybrid feature space without discretization preventing information loss.

The accuracy of the NRS is greatly dependent on the threshold value. Most of the existing techniques do not dynamically adapt the threshold \(\delta \) value for different hybrid datasets. This results in the variant of NRS suitable for specific datasets with different threshold values. A specific threshold value may produce better results for one dataset and poor results for others requiring a more generic threshold value catering to different datasets with optimal results. The proposed scheme introduces an adaptable threshold calculation mechanism to achieve optimal results regardless of the datasets under evaluation. The radius value plays a pivotal role in forming a neighborhood, as the threshold values consider both the local and global information of the NRS to calculate neighborhood approximation space. Table  4 shows the accuracy rate having different values of the radius of the NRS. The proposed threshold mechanism provides better results for all datasets if the value of the radius is 0.002. Results also show that assigning no weight to the radius produces poor results, as it will then only consider the local information for the approximation space. Selecting other weights for radius may produce better results for one dataset but not for all datasets.

Table  5 presents the comparative analysis of the proposed scheme with k NN, Naive Bayes, and C45. The results show that the proposed scheme performs well against other well-known techniques for both the categorical and numerical features space. Naive Bayes and C45 also result in information loss, as these techniques cannot process the hybrid data. So the proposed scheme handles the hybrid data without compromising on the information completeness producing acceptable results. K-fold cross-validation is used to measure the accuracy of the proposed scheme. Each dataset is divided into 10 subsets to use one of the K subsets as the test set and the other K-1 subsets as training sets. Then the average accuracy of all K trials is computed with the advantage of having results regardless of the dataset division.

Conclusion and future work

This work evaluates the existing NRS-based scheme for handling hybrid data sets i.e. numerical and categorical features. The comparative analysis of existing NRS-based schemes shows that there is a need for a generic NRS-based approach to adapt the threshold selection forming neighborhood approximation space. A generalized and ANRS-based scheme is proposed to handle both the categorical and numerical features avoiding information loss and lack of practical meanings. The proposed scheme uses a Euclidean and Levenshtein distance to calculate the upper and lower approximation of NRS for numerical and categorical features respectively. Euclidean and Levenshtein distances have been modified to handle the impact of outliers in calculating the approximation spaces. The proposed scheme defines an adaptive threshold mechanism for calculating neighborhood approximation space regardless of the data set under consideration. A Testbed is developed for real-time behavioral analysis of Parkinson’s patients evaluating the effectiveness of the proposed scheme. The evaluation results show that the proposed scheme provides better accuracy than k NN, C4.5, and Naive Bayes for both the categorical and numerical feature space achieving 95% accuracy on the Parkinson’s dataset. The proposed scheme will be evaluated against the hybrid data set having more than two classes in future work. Additionally, in future work, we aim to explore the following areas; (i) conduct longitudinal studies to track the progression of Parkinson’s disease over time, allowing for a deeper understanding of how behavioral patterns evolve and how interventions may impact disease trajectory, (ii) explore the integration of additional data sources, such as genetic data, imaging studies, and environmental factors, to provide a more comprehensive understanding of Parkinson’s disease etiology and progression, (iii) validate our findings in larger and more diverse patient populations and investigate the feasibility of implementing our proposed approach in clinical settings to support healthcare providers in decision-making processes, (iv) investigate novel biomarkers or physiological signals that may provide additional insights into Parkinson’s disease progression and motor complications, potentially leading to the development of new diagnostic and monitoring tools, and (v) conduct patient-centered outcomes research to better understand the impact of Parkinson’s disease on patients’ quality of life, functional abilities, and overall well-being, with a focus on developing personalized treatment approaches.

Data availability

The datasets used in this study are publicly available at the following links:

Bupa 67 : https://doi.org/10.24432/C54G67 , Sonar 68 : https://doi.org/10.24432/C5T01Q , Mammographic Mass 69 : https://doi.org/10.24432/C53K6Z , Haberman’s Survival 70 : https://doi.org/10.24432/C5XK51 , Credit-g 71 : https://doi.org/10.24432/C5NC77 , Lymmography 73 : https://doi.org/10.24432/C54598 , Splice 74 : https://doi.org/10.24432/C5M888 , Optdigits 75 : https://doi.org/10.24432/C50P49 , Pendigits 76 : https://doi.org/10.1137/1.9781611972825.9 , Pageblocks 77 : https://doi.org/10.24432/C5J590 , Statlog 78 : https://doi.org/10.24432/C55887 , Magic04 79 : https://doi.org/10.1609/aaai.v29i1.9277 .

Gaber, M. M. Scientific Data Mining and Knowledge Discovery Vol. 1 (Springer, 2009).

Google Scholar  

Hajirahimi, Z. & Khashei, M. Weighting approaches in data mining and knowledge discovery: A review. Neural Process. Lett. 55 , 10393–10438 (2023).

Article   Google Scholar  

Kantardzic, M. Data Mining: Concepts, Models, Methods, and Algorithms (Wiley, 2011).

Book   Google Scholar  

Shu, X. & Ye, Y. Knowledge discovery: Methods from data mining and machine learning. Soc. Sci. Res. 110 , 102817 (2023).

Article   PubMed   Google Scholar  

Tan, P.-N., Steinbach, M. & Kumar, V. Introduction to Data Mining (Pearson Education India, 2016).

Khan, S. & Shaheen, M. From data mining to wisdom mining. J. Inf. Sci. 49 , 952–975 (2023).

Engelbrecht, A. P. Computational Intelligence: An Introduction (Wiley, 2007).

Bhateja, V., Yang, X.-S., Lin, J.C.-W. & Das, R. Evolution in computational intelligence. In Evolution (Springer, 2023).

Wei, W., Liang, J. & Qian, Y. A comparative study of rough sets for hybrid data. Inf. Sci. 190 , 1–16 (2012).

Article   ADS   MathSciNet   Google Scholar  

Kumari, N. & Acharjya, D. Data classification using rough set and bioinspired computing in healthcare applications—An extensive review. Multimedia Tools Appl. 82 , 13479–13505 (2023).

Martinez, A. M. & Kak, A. C. PCA versus LDA. IEEE Trans. Pattern Anal. Mach. Intell. 23 , 228–233 (2001).

Brereton, R. G. Principal components analysis with several objects and variables. J. Chemom. 37 (4), e3408 (2023).

Article   CAS   Google Scholar  

De, R. K., Basak, J. & Pal, S. K. Neuro-fuzzy feature evaluation with theoretical analysis. Neural Netw. 12 , 1429–1455 (1999).

Talpur, N. et al. Deep neuro-fuzzy system application trends, challenges, and future perspectives: A systematic survey. Artif. Intell. Rev. 56 , 865–913 (2023).

Jang, J.-S.R., Sun, C.-T. & Mizutani, E. Neuro-fuzzy and soft computing—A computational approach to learning and machine intelligence [book review]. IEEE Trans. Autom. Control 42 , 1482–1484 (1997).

Ouifak, H. & Idri, A. Application of neuro-fuzzy ensembles across domains: A systematic review of the two last decades (2000–2022). Eng. Appl. Artif. Intell. 124 , 106582 (2023).

Jung, T. & Kim, J. A new support vector machine for categorical features. Expert Syst. Appl. 229 , 120449 (2023).

Hu, Q., Xie, Z. & Yu, D. Hybrid attribute reduction based on a novel fuzzy-rough model and information granulation. Pattern Recognit. 40 , 3509–3521 (2007).

Article   ADS   Google Scholar  

Wang, P., He, J. & Li, Z. Attribute reduction for hybrid data based on fuzzy rough iterative computation model. Inf. Sci. 632 , 555–575 (2023).

Yeung, D. S., Chen, D., Tsang, E. C., Lee, J. W. & Xizhao, W. On the generalization of fuzzy rough sets. IEEE Trans. Fuzzy Syst. 13 , 343–361 (2005).

Gao, L., Yao, B.-X. & Li, L.-Q. L-fuzzy generalized neighborhood system-based pessimistic l-fuzzy rough sets and its applications. Soft Comput. 27 , 7773–7788 (2023).

Bhatt, R. B. & Gopal, M. On fuzzy-rough sets approach to feature selection. Pattern Recognit. Lett. 26 , 965–975 (2005).

Dubois, D. & Prade, H. Putting fuzzy sets and rough sets together. Intell. Decis. Support 23 , 203–232 (1992).

Jensen, R. & Shen, Q. Fuzzy-rough sets for descriptive dimensionality reduction. In 2002 IEEE World Congress on Computational Intelligence. 2002 IEEE International Conference on Fuzzy Systems. FUZZ-IEEE’02. Proceedings (Cat. No. 02CH37291) , vol. 1, 29–34 (IEEE, 2002).

Pedrycz, W. & Vukovich, G. Feature analysis through information granulation and fuzzy sets. Pattern Recognit. 35 , 825–834 (2002).

Jensen, R. & Shen, Q. Fuzzy-rough sets assisted attribute selection. IEEE Trans. Fuzzy Syst. 15 , 73–89 (2007).

Shen, Q. & Jensen, R. Selecting informative features with fuzzy-rough sets and its application for complex systems monitoring. Pattern Recognit. 37 , 1351–1363 (2004).

Wang, X., Tsang, E. C., Zhao, S., Chen, D. & Yeung, D. S. Learning fuzzy rules from fuzzy samples based on rough set technique. Inf. Sci. 177 , 4493–4514 (2007).

Article   MathSciNet   Google Scholar  

Wei, W., Liang, J., Qian, Y. & Wang, F. An attribute reduction approach and its accelerated version for hybrid data. In 2009 8th IEEE International Conference on Cognitive Informatics , 167–173 (IEEE, 2009).

Yin, T., Chen, H., Li, T., Yuan, Z. & Luo, C. Robust feature selection using label enhancement and \(\beta \) -precision fuzzy rough sets for multilabel fuzzy decision system. Fuzzy Sets Syst. 461 , 108462 (2023).

Yin, T. et al. Exploiting feature multi-correlations for multilabel feature selection in robust multi-neighborhood fuzzy \(\beta \) covering space. Inf. Fusion 104 , 102150 (2024).

Yin, T. et al. A robust multilabel feature selection approach based on graph structure considering fuzzy dependency and feature interaction. IEEE Trans. Fuzzy Syst. 31 , 4516–4528. https://doi.org/10.1109/TFUZZ.2023.3287193 (2023).

Huang, W., She, Y., He, X. & Ding, W. Fuzzy rough sets-based incremental feature selection for hierarchical classification. IEEE Trans. Fuzzy Syst. https://doi.org/10.1109/TFUZZ.2023.3300913 (2023).

Dong, L., Wang, R. & Chen, D. Incremental feature selection with fuzzy rough sets for dynamic data sets. Fuzzy Sets Syst. 467 , 108503 (2023).

Chakraborty, M. K. & Samanta, P. Fuzzy sets and rough sets: A mathematical narrative. In Fuzzy, Rough and Intuitionistic Fuzzy Set Approaches for Data Handling: Theory and Applications , 1–21 (Springer, 2023).

Wang, Z., Chen, H., Yuan, Z. & Li, T. Fuzzy-rough hybrid dimensionality reduction. Fuzzy Sets Syst. 459 , 95–117 (2023).

Xue, Z.-A., Jing, M.-M., Li, Y.-X. & Zheng, Y. Variable precision multi-granulation covering rough intuitionistic fuzzy sets. Granul. Comput. 8 , 577–596 (2023).

Akram, M., Nawaz, H. S. & Deveci, M. Attribute reduction and information granulation in pythagorean fuzzy formal contexts. Expert Systems Appl. 222 , 119794 (2023).

Hu, M., Guo, Y., Chen, D., Tsang, E. C. & Zhang, Q. Attribute reduction based on neighborhood constrained fuzzy rough sets. Knowl. Based Syst. 274 , 110632 (2023).

Zhang, C., Ding, J., Zhan, J., Sangaiah, A. K. & Li, D. Fuzzy intelligence learning based on bounded rationality in IOMT systems: A case study in Parkinson’s disease. IEEE Trans. Comput. Soc. Syst. 10 , 1607–1621. https://doi.org/10.1109/TCSS.2022.3221933 (2023).

Zhang, C. & Zhang, J. Three-way group decisions with incomplete spherical fuzzy information for treating Parkinson’s disease using IOMT devices. Wireless Communications and Mobile Computing , vol. 2022 (2022).

Jain, P., Tiwari, A. K. & Som, T. Improving financial bankruptcy prediction using oversampling followed by fuzzy rough feature selection via evolutionary search. In Computational Management: Applications of Computational Intelligence in Business Management , 455–471 (Springer, 2021).

Shreevastava, S., Singh, S., Tiwari, A. & Som, T. Different classes ratio and Laplace summation operator based intuitionistic fuzzy rough attribute selection. Iran. J. Fuzzy Syst. 18 , 67–82 (2021).

MathSciNet   Google Scholar  

Shreevastava, S., Tiwari, A. & Som, T. Feature subset selection of semi-supervised data: an intuitionistic fuzzy-rough set-based concept. In Proceedings of International Ethical Hacking Conference 2018: eHaCON 2018, Kolkata, India , 303–315 (Springer, 2019).

Tiwari, A. K., Nath, A., Subbiah, K. & Shukla, K. K. Enhanced prediction for observed peptide count in protein mass spectrometry data by optimally balancing the training dataset. Int. J. Pattern Recognit. Artif. Intell. 31 , 1750040 (2017).

Jain, P., Tiwari, A. K. & Som, T. An intuitionistic fuzzy bireduct model and its application to cancer treatment. Comput. Ind. Eng. 168 , 108124 (2022).

Yin, T., Chen, H., Yuan, Z., Li, T. & Liu, K. Noise-resistant multilabel fuzzy neighborhood rough sets for feature subset selection. Inf. Sci. 621 , 200–226 (2023).

Sang, B., Chen, H., Yang, L., Li, T. & Xu, W. Incremental feature selection using a conditional entropy based on fuzzy dominance neighborhood rough sets. IEEE Trans. Fuzzy Syst. 30 , 1683–1697 (2021).

Xu, J., Meng, X., Qu, K., Sun, Y. & Hou, Q. Feature selection using relative dependency complement mutual information in fitting fuzzy rough set model. Appl. Intell. 53 , 18239–18262 (2023).

Jiang, H., Zhan, J. & Chen, D. Promethee ii method based on variable precision fuzzy rough sets with fuzzy neighborhoods. Artif. Intell. Rev. 54 , 1281–1319 (2021).

Qu, K., Xu, J., Han, Z. & Xu, S. Maximum relevance minimum redundancy-based feature selection using rough mutual information in adaptive neighborhood rough sets. Appl. Intell. 53 , 17727–17746 (2023).

Xu, J., Yuan, M. & Ma, Y. Feature selection using self-information and entropy-based uncertainty measure for fuzzy neighborhood rough set. Complex Intell. Syst. 8 , 287–305 (2022).

Xu, J., Shen, K. & Sun, L. Multi-label feature selection based on fuzzy neighborhood rough sets. Complex Intell. Syst. 8 , 2105–2129 (2022).

Sang, B. et al. Feature selection for dynamic interval-valued ordered data based on fuzzy dominance neighborhood rough set. Knowl. Based Syst. 227 , 107223 (2021).

Wu, W.-Z., Mi, J.-S. & Zhang, W.-X. Generalized fuzzy rough sets. Inf. Sci. 151 , 263–282 (2003).

Gogoi, P., Bhattacharyya, D. K. & Kalita, J. K. A rough set-based effective rule generation method for classification with an application in intrusion detection. Int. J. Secur. Netw. 8 , 61–71 (2013).

Grzymala-Busse, J. W. Knowledge acquisition under uncertainty—A rough set approach. J. Intell. Robot. Syst. 1 , 3–16 (1988).

Jing, S. & She, K. Heterogeneous attribute reduction in noisy system based on a generalized neighborhood rough sets model. World Acad. Sci. Eng. Technol. 75 , 1067–1072 (2011).

Zhu, X., Zhang, Y. & Zhu, Y. Intelligent fault diagnosis of rolling bearing based on kernel neighborhood rough sets and statistical features. J. Mech. Sci. Technol. 26 , 2649–2657 (2012).

Zhao, B.-T. & Jia, X.-F. Neighborhood covering rough set model of fuzzy decision system. Int. J. Comput. Sci. Issues 10 , 51 (2013).

Hou, M.-L. et al. Neighborhood rough set reduction-based gene selection and prioritization for gene expression profile analysis and molecular cancer classification. J Biomed Biotechnol. 2010 , 726413 (2010).

Article   PubMed   PubMed Central   Google Scholar  

He, M.-X. & Qiu, D.-D. A intrusion detection method based on neighborhood rough set. TELKOMNIKA Indones. J. Electr. Eng. 11 , 3736–3741 (2013).

ADS   Google Scholar  

Newman, D. J., Hettich, S., Blake, C. L. & Merz, C. UCI repository of machine learning databases (1998).

Aarsland, D. et al. Parkinson disease-associated cognitive impairment. Nat. Rev. Dis. Primers 7 , 47 (2021).

Lang, A. E. & Lozano, A. M. Parkinson’s disease. N. Engl. J. Med. 339 , 1130–1143 (1998).

Article   CAS   PubMed   Google Scholar  

Engin, M. et al. The classification of human tremor signals using artificial neural network. Expert Syst. Appl. 33 , 754–761 (2007).

Liver Disorders. UCI Machine Learning Repository. https://doi.org/10.24432/C54G67 (1990).

Sejnowski, T. & Gorman, R. Connectionist bench (sonar, mines vs. rocks). UCI Machine Learning Repository. https://doi.org/10.24432/C5T01Q

Elter, M. Mammographic Mass. UCI Machine Learning Repository. https://doi.org/10.24432/C53K6Z (2007).

Haberman, S. Haberman’s Survival. UCI Machine Learning Repository. https://doi.org/10.24432/C5XK51 (1999).

Hofmann, H. Statlog (German Credit Data). UCI Machine Learning Repository. https://doi.org/10.24432/C5NC77 (1994).

Kubat, M., Holte, R. C. & Matwin, S. Machine learning for the detection of oil spills in satellite radar images. Mach. Learn. 30 , 195–215 (1998).

Zwitter, M. & Soklic, M. Lymphography. UCI Machine Learning Repository. https://doi.org/10.24432/C54598 (1988).

Molecular Biology (Splice-junction Gene Sequences). UCI Machine Learning Repository. https://doi.org/10.24432/C5M888 (1992).

Alpaydin, E. & Kaynak, C. Optical Recognition of Handwritten Digits. UCI Machine Learning Repository. https://doi.org/10.24432/C50P49 (1998).

Schubert, E., Wojdanowski, R., Zimek, A. & Kriegel, H.-P. On evaluation of outlier rankings and outlier scores. In Proceedings of the 2012 SIAM International Conference on Data Mining , 1047–1058 (SIAM, 2012).

Malerba, D. Page Blocks Classification. UCI Machine Learning Repository. https://doi.org/10.24432/C5J590 (1995).

Srinivasan, A. Statlog (Landsat Satellite). UCI Machine Learning Repository. https://doi.org/10.24432/C55887 (1993).

Rossi, R. A. & Ahmed, N. K. The network data repository with interactive graph analytics and visualization. In AAAI (2015).

Download references

Acknowledgements

This research was funded by the European University of Atlantic.

Author information

Authors and affiliations.

Department of Computer Science, COMSATS University Islamabad, Lahore Campus, Lahore, 54000, Pakistan

Imran Raza, Muhammad Hasan Jamal, Rizwan Qureshi & Abdul Karim Shahid

Universidad Europea del Atlántico, Isabel Torres 21, 39011, Santander, Spain

Angel Olider Rojas Vistorte

Universidad Internacional Iberoamericana Campeche, 24560, Campeche, Mexico

Universidade Internacional do Cuanza, Cuito, Bié, Angola

Department of Information and Communication Engineering, Yeungnam University, Gyeongsan-si, Gyeongsangbuk-do, 38541, South Korea

Md Abdus Samad & Imran Ashraf

You can also search for this author in PubMed   Google Scholar

Contributions

Imran Raza: Conceptualization, Formal analysis, Writing—original draft; Muhammad Hasan Jamal: Conceptualization, Data curation, Writing—original draft; Rizwan Qureshi: Data curation, Formal analysis, Methodology; Abdul Karim Shahid: Project administration, Software, Visualization; Angel Olider Rojas Vistorte: Funding acquisition, Investigation, Project administration; Md Abdus Samad: Investigation, Software, Resources; Imran Ashraf: Supervision, Validation, Writing —review and editing. All authors reviewed the manuscript and approved it.

Corresponding authors

Correspondence to Md Abdus Samad or Imran Ashraf .

Ethics declarations

Competing interests.

The authors declare no competing interests.

Additional information

Publisher's note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ .

Reprints and permissions

About this article

Cite this article.

Raza, I., Jamal, M.H., Qureshi, R. et al. Adaptive neighborhood rough set model for hybrid data processing: a case study on Parkinson’s disease behavioral analysis. Sci Rep 14 , 7635 (2024). https://doi.org/10.1038/s41598-024-57547-4

Download citation

Received : 01 October 2023

Accepted : 19 March 2024

Published : 01 April 2024

DOI : https://doi.org/10.1038/s41598-024-57547-4

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

By submitting a comment you agree to abide by our Terms and Community Guidelines . If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

qualitative case study meaning

IMAGES

  1. Qualitative Research: Definition, Types, Methods and Examples (2022)

    qualitative case study meaning

  2. Understanding Qualitative Research: An In-Depth Study Guide

    qualitative case study meaning

  3. 18 Qualitative Research Examples (2024)

    qualitative case study meaning

  4. What Are The Six Types Of Qualitative Research

    qualitative case study meaning

  5. 15+ Case Study Examples, Design Tips & Templates

    qualitative case study meaning

  6. 5 Steps for Creating a Qualitative Study

    qualitative case study meaning

VIDEO

  1. Lecture 46: Qualitative Resarch

  2. Lecture 49: Qualitative Resarch

  3. Lecture 47: Qualitative Resarch

  4. Lecture 50: Qualitative Resarch

  5. Lecture 48: Qualitative Resarch

  6. Qualitative Approach

COMMENTS

  1. Case Study Methodology of Qualitative Research: Key Attributes and

    A case study is one of the most commonly used methodologies of social research. This article attempts to look into the various dimensions of a case study research strategy, the different epistemological strands which determine the particular case study type and approach adopted in the field, discusses the factors which can enhance the effectiveness of a case study research, and the debate ...

  2. What Is a Case Study?

    A case study is a detailed study of a specific subject, such as a person, group, place, event, organization, or phenomenon. Case studies are commonly used in social, educational, clinical, and business research. A case study research design usually involves qualitative methods, but quantitative methods are sometimes also used.

  3. What is a Case Study?

    Let's provide a basic definition of a case study, then explore its characteristics and role in the qualitative research process. Definition of a case study. A case study in qualitative research is a strategy of inquiry that involves an in-depth investigation of a phenomenon within its real-world context. It provides researchers with the ...

  4. Case Study

    A case study is a research method that involves an in-depth examination and analysis of a particular phenomenon or case, such as an individual, organization, community, event, or situation. It is a qualitative research approach that aims to provide a detailed and comprehensive understanding of the case being studied.

  5. LibGuides: Qualitative study design: Case Studies

    Definition. An example of a qualitative case study is a life history which is the story of one specific person. A case study may be done to highlight a specific issue by telling a story of one person or one group. ... Case studies are seen by many as a weak methodology because they only look at one person or one specific group and aren't as ...

  6. Planning Qualitative Research: Design and Decision Making for New

    A group culture may fit a classic definition of such, as is historically a focus of the field of ... Jack S (2008). Qualitative case study methodology: Study design and implementation for novice researchers. The Qualitative Report, 13(4), 544-559. Google Scholar. Converse M. (2012). Philosophy of phenomenology: How understanding aids research

  7. (PDF) Qualitative Case Study Methodology: Study Design and

    The case study is a qualitative methodology that supports research on studying complex phenomena within their contexts (Baxter and Jack, 2008). The case study strategy was selected as contextual ...

  8. Case Study Methods and Examples

    The purpose of case study research is twofold: (1) to provide descriptive information and (2) to suggest theoretical relevance. Rich description enables an in-depth or sharpened understanding of the case. It is unique given one characteristic: case studies draw from more than one data source. Case studies are inherently multimodal or mixed ...

  9. LibGuides: Research Writing and Analysis: Case Study

    A Case study is: An in-depth research design that primarily uses a qualitative methodology but sometimes includes quantitative methodology. Used to examine an identifiable problem confirmed through research. Used to investigate an individual, group of people, organization, or event. Used to mostly answer "how" and "why" questions.

  10. Case Study Methodology of Qualitative Research: Key Attributes and

    must be noted, as highlighted by Yin (2009), a case study is not a method of data collection, rather is a research strategy or design to study a social unit. Creswell (2014, p. 241) makes a lucid and comprehensive definition of case study strategy. Case Studies are a qualitative design in which the researcher explores in depth a pro-

  11. UCSF Guides: Qualitative Research Guide: Case Studies

    According to the book Understanding Case Study Research, case studies are "small scale research with meaning" that generally involve the following: The study of a particular case, or a number of cases. That the case will be complex and bounded. That it will be studied in its context. That the analysis undertaken will seek to be holistic.

  12. Qualitative Case Study Methodology: Study Design and Implementation for

    Qualitative case study methodology provides tools for researchers to study complex phenomena within their contexts. When the approach is applied correctly, it becomes a valuable method for health science ... creation of meaning, but doesn't reject outright some notion of objectivity. Pluralism, not relativism, is stressed with focus on the ...

  13. Methodology or method? A critical review of qualitative case study

    Current qualitative case study approaches are shaped by paradigm, study design, and selection of methods, and, as a result, case studies in the published literature vary. Differences between published case studies can make it difficult for researchers to define and understand case study as a methodology.

  14. Guide: Designing and Conducting Case Studies

    Definition and Overview. Case study refers to the collection and presentation of detailed information about a particular participant or small group, frequently including the accounts of subjects themselves. A form of qualitative descriptive research, the case study looks intensely at an individual or small participant pool, drawing conclusions ...

  15. What Is Qualitative Research?

    Qualitative research involves collecting and analyzing non-numerical data (e.g., text, video, or audio) to understand concepts, opinions, or experiences. It can be used to gather in-depth insights into a problem or generate new ideas for research. Qualitative research is the opposite of quantitative research, which involves collecting and ...

  16. Chapter 8: Case study

    Qualitative case studies provide a study design with diverse methods to examine the contextual factors relevant to understanding the why and how of a phenomenon within a case. The design incorporates single case studies and collective cases, which can also be embedded within randomised controlled trials as a form of process evaluation.

  17. (PDF) The case study as a type of qualitative research

    Abstract. This article presents the case study as a type of qualitative research. Its aim is to give a detailed description of a case study - its definition, some classifications, and several ...

  18. Case Study Method: A Step-by-Step Guide for Business Researchers

    Case study method is the most widely used method in academia for researchers interested in qualitative research (Baskarada, 2014).Research students select the case study as a method without understanding array of factors that can affect the outcome of their research.

  19. Qualitative Research

    Qualitative research aims to uncover the meaning and significance of social phenomena, and it typically involves a more flexible and iterative approach to data collection and analysis compared to quantitative research. ... Case Study. This method involves an in-depth examination of a single person, group, or event to gain an understanding of ...

  20. Qualitative Study

    Qualitative research is a type of research that explores and provides deeper insights into real-world problems.[1] Instead of collecting numerical data points or intervene or introduce treatments just like in quantitative research, qualitative research helps generate hypotheses as well as further investigate and understand quantitative data. Qualitative research gathers participants ...

  21. How to use and assess qualitative research methods

    Qualitative research is defined as "the study of the nature of phenomena ... However, the aim is not the same as in RCT protocols, i.e. to pre-define and set in stone the research questions and primary or secondary endpoints. ... unless mixed methods research is judged as inherently better than single-method research. In this case, the same ...

  22. [Qualitative case study]

    The qualitative case study is a research method which enables a complex phenomenon to be explored through the identification of different factors interacting with each other. The case observed is a real situation. In the field of nursing science, it may be a clinical decision-making process. The study thereby enables the patient or health ...

  23. Understanding and Identifying 'Themes' in Qualitative Case Study

    Further, often the contribution of a qualitative case study research (QCSR) emerges from the 'extension of a theory' or 'developing deeper understanding—fresh meaning of a phenomenon'. However, the lack of knowledge on how to identify themes results in shallow findings with limited to no contribution towards literature. This editorial ...

  24. Adaptive neighborhood rough set model for hybrid data ...

    Table 2 gives a comparison of existing rough set-based schemes for quantitative and qualitative analysis. The comparative parameters include handling hybrid data, generalized NRS, attribute ...