Talk to our experts

1800-120-456-456

  • Technology Essay

ffImage

Essay on Technology

The word "technology" and its uses have immensely changed since the 20th century, and with time, it has continued to evolve ever since. We are living in a world driven by technology. The advancement of technology has played an important role in the development of human civilization, along with cultural changes. Technology provides innovative ways of doing work through various smart and innovative means. 

Electronic appliances, gadgets, faster modes of communication, and transport have added to the comfort factor in our lives. It has helped in improving the productivity of individuals and different business enterprises. Technology has brought a revolution in many operational fields. It has undoubtedly made a very important contribution to the progress that mankind has made over the years.

The Advancement of Technology:

Technology has reduced the effort and time and increased the efficiency of the production requirements in every field. It has made our lives easy, comfortable, healthy, and enjoyable. It has brought a revolution in transport and communication. The advancement of technology, along with science, has helped us to become self-reliant in all spheres of life. With the innovation of a particular technology, it becomes part of society and integral to human lives after a point in time.

Technology is Our Part of Life:

Technology has changed our day-to-day lives. Technology has brought the world closer and better connected. Those days have passed when only the rich could afford such luxuries. Because of the rise of globalisation and liberalisation, all luxuries are now within the reach of the average person. Today, an average middle-class family can afford a mobile phone, a television, a washing machine, a refrigerator, a computer, the Internet, etc. At the touch of a switch, a man can witness any event that is happening in far-off places.  

Benefits of Technology in All Fields: 

We cannot escape technology; it has improved the quality of life and brought about revolutions in various fields of modern-day society, be it communication, transportation, education, healthcare, and many more. Let us learn about it.

Technology in Communication:

With the advent of technology in communication, which includes telephones, fax machines, cellular phones, the Internet, multimedia, and email, communication has become much faster and easier. It has transformed and influenced relationships in many ways. We no longer need to rely on sending physical letters and waiting for several days for a response. Technology has made communication so simple that you can connect with anyone from anywhere by calling them via mobile phone or messaging them using different messaging apps that are easy to download.

Innovation in communication technology has had an immense influence on social life. Human socialising has become easier by using social networking sites, dating, and even matrimonial services available on mobile applications and websites.

Today, the Internet is used for shopping, paying utility bills, credit card bills, admission fees, e-commerce, and online banking. In the world of marketing, many companies are marketing and selling their products and creating brands over the internet. 

In the field of travel, cities, towns, states, and countries are using the web to post detailed tourist and event information. Travellers across the globe can easily find information on tourism, sightseeing, places to stay, weather, maps, timings for events, transportation schedules, and buy tickets to various tourist spots and destinations.

Technology in the Office or Workplace:

Technology has increased efficiency and flexibility in the workspace. Technology has made it easy to work remotely, which has increased the productivity of the employees. External and internal communication has become faster through emails and apps. Automation has saved time, and there is also a reduction in redundancy in tasks. Robots are now being used to manufacture products that consistently deliver the same product without defect until the robot itself fails. Artificial Intelligence and Machine Learning technology are innovations that are being deployed across industries to reap benefits.

Technology has wiped out the manual way of storing files. Now files are stored in the cloud, which can be accessed at any time and from anywhere. With technology, companies can make quick decisions, act faster towards solutions, and remain adaptable. Technology has optimised the usage of resources and connected businesses worldwide. For example, if the customer is based in America, he can have the services delivered from India. They can communicate with each other in an instant. Every company uses business technology like virtual meeting tools, corporate social networks, tablets, and smart customer relationship management applications that accelerate the fast movement of data and information.

Technology in Education:

Technology is making the education industry improve over time. With technology, students and parents have a variety of learning tools at their fingertips. Teachers can coordinate with classrooms across the world and share their ideas and resources online. Students can get immediate access to an abundance of good information on the Internet. Teachers and students can access plenty of resources available on the web and utilise them for their project work, research, etc. Online learning has changed our perception of education. 

The COVID-19 pandemic brought a paradigm shift using technology where school-going kids continued their studies from home and schools facilitated imparting education by their teachers online from home. Students have learned and used 21st-century skills and tools, like virtual classrooms, AR (Augmented Reality), robots, etc. All these have increased communication and collaboration significantly. 

Technology in Banking:

Technology and banking are now inseparable. Technology has boosted digital transformation in how the banking industry works and has vastly improved banking services for their customers across the globe.

Technology has made banking operations very sophisticated and has reduced errors to almost nil, which were somewhat prevalent with manual human activities. Banks are adopting Artificial Intelligence (AI) to increase their efficiency and profits. With the emergence of Internet banking, self-service tools have replaced the traditional methods of banking. 

You can now access your money, handle transactions like paying bills, money transfers, and online purchases from merchants, and monitor your bank statements anytime and from anywhere in the world. Technology has made banking more secure and safe. You do not need to carry cash in your pocket or wallet; the payments can be made digitally using e-wallets. Mobile banking, banking apps, and cybersecurity are changing the face of the banking industry.

Manufacturing and Production Industry Automation:

At present, manufacturing industries are using all the latest technologies, ranging from big data analytics to artificial intelligence. Big data, ARVR (Augmented Reality and Virtual Reality), and IoT (Internet of Things) are the biggest manufacturing industry players. Automation has increased the level of productivity in various fields. It has reduced labour costs, increased efficiency, and reduced the cost of production.

For example, 3D printing is used to design and develop prototypes in the automobile industry. Repetitive work is being done easily with the help of robots without any waste of time. This has also reduced the cost of the products. 

Technology in the Healthcare Industry:

Technological advancements in the healthcare industry have not only improved our personal quality of life and longevity; they have also improved the lives of many medical professionals and students who are training to become medical experts. It has allowed much faster access to the medical records of each patient. 

The Internet has drastically transformed patients' and doctors’ relationships. Everyone can stay up to date on the latest medical discoveries, share treatment information, and offer one another support when dealing with medical issues. Modern technology has allowed us to contact doctors from the comfort of our homes. There are many sites and apps through which we can contact doctors and get medical help. 

Breakthrough innovations in surgery, artificial organs, brain implants, and networked sensors are examples of transformative developments in the healthcare industry. Hospitals use different tools and applications to perform their administrative tasks, using digital marketing to promote their services.

Technology in Agriculture:

Today, farmers work very differently than they would have decades ago. Data analytics and robotics have built a productive food system. Digital innovations are being used for plant breeding and harvesting equipment. Software and mobile devices are helping farmers harvest better. With various data and information available to farmers, they can make better-informed decisions, for example, tracking the amount of carbon stored in soil and helping with climate change.

Disadvantages of Technology:

People have become dependent on various gadgets and machines, resulting in a lack of physical activity and tempting people to lead an increasingly sedentary lifestyle. Even though technology has increased the productivity of individuals, organisations, and the nation, it has not increased the efficiency of machines. Machines cannot plan and think beyond the instructions that are fed into their system. Technology alone is not enough for progress and prosperity. Management is required, and management is a human act. Technology is largely dependent on human intervention. 

Computers and smartphones have led to an increase in social isolation. Young children are spending more time surfing the internet, playing games, and ignoring their real lives. Usage of technology is also resulting in job losses and distracting students from learning. Technology has been a reason for the production of weapons of destruction.

Dependency on technology is also increasing privacy concerns and cyber crimes, giving way to hackers.

arrow-right

FAQs on Technology Essay

1. What is technology?

Technology refers to innovative ways of doing work through various smart means. The advancement of technology has played an important role in the development of human civilization. It has helped in improving the productivity of individuals and businesses.

2. How has technology changed the face of banking?

Technology has made banking operations very sophisticated. With the emergence of Internet banking, self-service tools have replaced the traditional methods of banking. You can now access your money, handle transactions, and monitor your bank statements anytime and from anywhere in the world. Technology has made banking more secure and safe.

3. How has technology brought a revolution in the medical field?

Patients and doctors keep each other up to date on the most recent medical discoveries, share treatment information, and offer each other support when dealing with medical issues. It has allowed much faster access to the medical records of each patient. Modern technology has allowed us to contact doctors from the comfort of our homes. There are many websites and mobile apps through which we can contact doctors and get medical help.

4. Are we dependent on technology?

Yes, today, we are becoming increasingly dependent on technology. Computers, smartphones, and modern technology have helped humanity achieve success and progress. However, in hindsight, people need to continuously build a healthy lifestyle, sorting out personal problems that arise due to technological advancements in different aspects of human life.

  • Essay On Technology

Essay on Technology

500+ words essay on technology.

The word technology comes from the two Greek words, ‘techne’ and ‘logos’. Techne means art, skills, or craft, and Logos means a word, saying, or expression that expresses inward thought. Thus, technology means the skill to convey an idea to reach a goal. But nowadays, the term technology mainly signifies the knowledge of tools, machines, techniques, crafts, systems, and organisation methods to solve a problem. Today, technological advancement has provided the human race with the ability to control and adapt to their natural environment. In this Essay on Technology, students will know the importance of technology, its advantages and disadvantages and the future of technology.

How Has Technology Changed Our Lives?

Various innovations and development took place in the field of technology which has made a significant impact on our lives in different ways. With the invention of technology, we become more powerful. We have the ability to transform the environment, extend our lifetime, create big and interconnected societies and even explore various new things about the universe. Today, we use technology from morning to evening, from the simplest nail cutter to television and personal laptop. Technology has touched all aspects of our lives, whether it is mobile phones, kettles, kitchen microwaves, electric cookers, television, water heaters, remote control, fridge, and other larger communication systems such as internet facilities, railways, air routes, and so on. Thus, technology plays an extremely crucial role in the lives of human beings.

Advantages of Technology

The advancement in technology has made our lives easier, more comfortable and enjoyable. It has reduced the effort and time required to complete a task, thus enhancing the quality and efficiency of work. Technology has become a part of our life and benefited us in many ways. Today, we can communicate with people living in any city or country. Communication has become much faster and easier as we are just a click away from people. In education, technology has played a vital role, especially during the COVID-19 breakdown period. It has brought virtual and online classes for students and teachers across the globe to share knowledge, ideas and resources online. Moreover, technology has made it easier for students to understand complex concepts with the help of virtualisation, graphics, 3D animation and diagrams.

Technology is considered to be the driving force behind improvements in the medical and healthcare field. Modern machines have helped doctors to perform operations successfully. Due to technology, the lifespan of the common person has increased. There are many more sectors, such as banking, automation, automobile, and various industries, where technology is making significant changes and helping us.

Disadvantages of Technology

Although we have so many advantages of technology, there are also disadvantages. Robots and machines have taken over the job of many people. Instead of bringing people together, technology has made them socially isolated. People now spend most of their time on smartphones or computers rather than interacting with other people. Technology in education has reduced the intellectual and analytical ability of students. It is like spoon-feeding to students as they don’t have the reasoning and aptitude skills to think differently. Technology has raised the issue of internet privacy. So, one has to be very careful while using banking passwords to make online transactions.

Future of Technology

The future of technology seems to be exciting but also scary. Futuristic predictions in technology can dish out some exciting or scary visions for the future of machines and science. Technology will either enhance or replace the products and activities that are near and dear to us. The answer to our technological dilemma about what will be the upcoming technological innovation in the future is not surprising. In the past, technology was mainly focused on retaining more information and efficient processing, but in the future, it will be based on industrial robots, artificial intelligence, machine learning, etc.

Technology alone cannot help in building a better world. The collateral collaboration of machines and human effort is required for the progress and prosperity of the nation. We need to develop a more robust management system for the efficient functioning of technology.

Practise CBSE Essays on more topics to improve the writing section. Students can get the latest updates on CBSE/ICSE/State Board/Competitive Exams at BYJU’S website. They can also download the BYJU’S App for interactive study videos.

Frequently Asked Questions on Technology Essay

What is the simple definition of technology.

The real-time application of science and knowledge is how technology can be defined in simple terms.

Which country is ranked first in technological advancement?

Finland ranks top in technological advancement ahead of the USA according to the UNDP.

Why is the development of technology important?

Technology has now become an important part of our lives and thus technical and technological advancements are essential to take us forward in all aspects.

Leave a Comment Cancel reply

Your Mobile number and Email id will not be published. Required fields are marked *

Request OTP on Voice Call

Post My Comment

define technology essay

  • Share Share

Register with BYJU'S & Download Free PDFs

Register with byju's & watch live videos.

close

Counselling

Live Support

define technology essay

Technology Liberation Front

Keeping politicians' hands off the Net & everything else related to technology

  • Ongoing Series
  • Contributors

Defining “Technology”

by Adam Thierer on April 29, 2014 · 2 comments

[ Last updated July 2021 .]

I spend a lot of time reading books and essays about technology; more specifically, books and essays about technology history and criticism. Yet, I am often struck by how few of the authors of these works even bother defining what they mean by “technology.” I find that frustrating because, if you are going to make an attempt to either study or critique a particular technology or technological practice or development, then you probably should take the time to tell us how broadly or narrowly you are defining the term “technology” or “technological process.”

Quite right, and for a more detailed and critical discussion of how earlier scholars, historians, and intellectuals have defined or thought about the term “technology,” you’ll want to check out Michael’s other recent essay, “ What Are We Talking About When We Talk About Technology ?” which preceded the one cited above. We don’t always agree on things — in fact, I am quite certain that most of my comparatively amateurish work must make his blood boil at times! — but you won’t find a more thoughtful technology scholar alive today than Michael Sacasas. If you’re serious about studying technology history and criticism, you should follow his blog and check out his book, The Tourist and The Pilgrim: Essays on Life and Technology in the Digital Age , which is a collection of some of his finest essays.

Anyway, for what it’s worth, I figured I would create this post to list some of the more interesting definitions of “technology” that I have uncovered in my own research. I suspect I will add to it in coming months and years, so please feel free to suggest other additions since I would like this to be a useful resource to others.

I figure the easiest thing to do is to just list the definitions by author. There’s no particular order here, although that might change in the future since I could arrange this chronologically and push the inquiry all the way back to how the Greeks thought about the term (the root term “ techne ,” that is). But for now this collection is a bit random and incorporates mostly modern conceptions of “technology” since the term didn’t really gain traction until relatively recent times.

Also, I’ve not bothered critiquing any particular definition or conception of the term, although that may change in the future, too. (I did, however, go after a few modern tech critics briefly in my recent booklet, “ Permissionless Innovation: The Continuing Case for Comprehensive Technological Freedom .” So, you might want to check that out for more on how I feel, as well as my old essays, “ What Does It Mean to ‘Have a Conversation’ about a New Technology ?” and, “ On the Line between Technology Ethics vs. Technology Policy .”)

So, I’ll begin with two straight-forward definitions from the Merriam-Webster and Oxford dictionaries and then bring in the definitions from various historians and critics.

Merriam-Webster Dictionary

Technology ( noun ):

1)     (a): the practical application of knowledge especially in a particular area; (b): a capability given by the practical application of knowledge

2)      a manner of accomplishing a task especially using technical processes, methods, or knowledge.

3)      the specialized aspects of a particular field of endeavor.

Oxford Dictionary

1)      The application of scientific knowledge for practical purposes, especially in industry.

2)      Machinery and devices developed from scientific knowledge.

3)      The branch of knowledge dealing with engineering or applied sciences.

Emmanuel Mesthene

My personal favorite definition of the term comes from Emmanuel G. Mesthene’s terrific little 1970 book, Technological Change: Its Impact on Man and Society:

“we define technology as the organization of knowledge for the achievement of practical purposes.”

John Kenneth Galbraith

A very similar definition to Mesthene’s was employed by Galbraith in his 1967 book  The New Industrial State :

“Technology means the systematic application of scientific or other organized  knowledge to practical tasks.”

Thomas P. Hughes

I have always loved the opening passage from Thomas Hughes’s 2004 book, Human-Built World: How to Think about Technology and Culture :

“Technology is messy and complex. It is difficult to define and to understand. In its variety, it is full of contradictions, laden with human folly, saved by occasional benign deeds, and rich with unintended consequences.” (p. 1) “Defining technology in its complexity,” he continued, “is as difficult as grasping the essence of politics.” (p. 2)

So true! Nonetheless, Hughes went on to offer his own definition of technology as:

“a creativity process involving human ingenuity.” (p. 3)

Interestingly, in another book, American Genesis: A Century of Invention and Technological Enthusiasm, 1870-1970 , he offered a somewhat different definition:

“Technology is the effort to organize the world for problem solving so that goods and services can be invented, developed, produced, and used.” (p. 6, 2004 ed., emphasis in original .)

W. Brian Arthur

In his 2009 book, The Nature of Technology: What It Is and How It Evolves , W. Brian Arthur sketched out three conceptions of technology.

1)      “The first and most basic one is a technology is a means to fulfill a human purpose . … As a means, a technology may be a method or process or device… Or it may be complicated… Or it may be material… Or it may be nonmaterial. Whichever it is, it is always a means to carry out a human purpose.” 2)      “The second definition is a plural one: technology as an assemblage of practices and components .” 3)      “I will also allow a third meaning. This technology as the entire collection of devices and engineering practices available to a culture .” (p. 28, emphasis in original .)  

Alfred P. Sloan Foundation / Richard Rhodes

In his 1999 book, Visions of Technology: A Century Of Vital Debate About Machines Systems And The Human World , Pulitizer Prize-winning historian Richard Rhodes assembled a wonderful collection of essays about technology that spanned the entire 20 th century. It’s a terrific volume to have on your bookshelf if want a quick overview of how over a hundred leading scholars, critics, historians, scientists, and authors thought about technology and technological advances.

The collection kicked off with a brief preface from the Alfred P. Sloan Foundation (no specific Foundation author was listed) that included one of the most succinct definitions of the term you’ll ever read:

“Technology is the application of science, engineering and industrial organization to create a human-build world.” (p. 19)

Just a few pages later, however, Rhodes notes that is probably too simplistic:

“Ask a friend today to define technology and you might hear words like ‘machines,’ ‘engineering,’ ‘science.’ Most of us aren’t even sure where science leaves off and technology begins. Neither are the experts.”

Again, so true!

Lever of Riches: Technological Creativity and Economic Progress (1990) by Joel Mokyr is one of the most readable and enjoyable histories of technology you’ll ever come across. I highly recommend it. [My thanks to my friend William Rinehart for bringing the book to my attention.]  In Lever of Riches , Mokyr defines “technological progress” as follows:

“By technological progress I mean any change in the application of information to the production process in such a way as to increase efficiency, resulting either in the production of a given output with fewer resources (i.e., lower costs), or the production of better or new products.” (p. 6)

Edwin Mansfield

You’ll find definitions of both “technology” and “technological change” in Edwin Mansfield’s Technological Change: An Introduction to a Vital Area of Modern Economics (1968, 1971):

“Technology is society’s pool of knowledge regarding the industrial arts. It consists of knowledge used by industry regarding the principles of physical and social phenomena… knowledge regarding the application of these principles to production… and knowledge regarding the day-to-day operations of production…” “Technological change is the advance of technology, such advance often taking the form of new methods of producing existing products, new designs which enable the production of products with important new characteristics, and new techniques of organization, marketing, and management.” (p. 9-10)

In his December 1937 essay in Vol. 2, Issue No. 6 of the American Sociological Review , “ Technology and State Government ,” Read Bain said:

 “technology includes all tools, machines, utensils, weapons, instruments, housing, clothing, communicating and transporting devices and the skills by which we produce and use them.” (p. 860)

[My thanks to Jasmine McNealy for bringing this one to my attention.]

David M. Kaplan

Found this one thanks to Sacasas . It’s from David M. Kaplan, Ricoeur’s Critical Theory (2003), which I have not yet had the chance to read:

“Technologies are best seen as systems that combine technique and activities with implements and artifacts, within a social context of organization in which the technologies are developed, employed, and administered. They alter patterns of human activity and institutions by making worlds that shape our culture and our environment. If technology consists of not only tools, implements, and artifacts, but also whole networks of social relations that structure, limit, and enable social life, then we can say that a circle exists between humanity and technology, each shaping and affecting the other. Technologies are fashioned to reflect and extend human interests, activities, and social arrangements, which are, in turn, conditioned, structured, and transformed by technological systems.”

I liked Michael’s comment on this beefy definition: “This definitional bloat is a symptom of the technological complexity of modern societies. It is also a consequence of our growing awareness of the significance of what we make.”

Jacques Ellul

Jacques Ellul, a French theologian and sociologist, penned a massive, 440-plus page work of technological criticism in 1954, La Technique ou L’enjeu du Siècle (1954), which was later translated in English as, The Technological Society (New York: Vintage Books, 1964). In setting forth his critique of modern technological society, he used the term “technique” repeatedly and contrasted with “technology.” He defined technique as follows:

“The term technique , as I use it, does not mean machines, technology, or this or that procedure for attaining an end. In our technological society, technique is the totality of methods rationally arrived at and having absolute efficiency (for a given state of development) in every field of human activity. […] Technique is not an isolated fact in society (as the term technology would lead us to believe) but is related to every factor in the life of modern man; it affects social facts as well as all others. Thus technique itself is a sociological phenomenon…” (p. xxvi, emphasis in original .)

Bernard Stiegler

In  La technique et le temps, 1: La faute d’Épiméthée , or translated, Technics and Time, 1: The Fault of Epimetheus (1998), French philosopher Bernard Stiegler defines technology as:

“the pursuit of life by means other than life”

[I found that one here .]

Peter Thiel

In Zero to One: Notes on How to Build the Future (2014), Internet entrepreneur and venture capitalist Peter Thiel says,

“Properly understood, any new and better way of doing things is technology.”

Marc Andressen

Marc Andreessen is interviewed in June 2020 by Sriram Krishan in his newsletter, The Observer Effect , and asked what motivates him to support technological innovation. He closes by defining technology as follows:

“Technology is quite literally the lever for being able to take natural resources and able to make something better out of them.”

Frederick Ferré

Frederick Ferré’s Philosophy Of Technology (1988) is a wonderful introduction to the study of this subject and has become a widely assigned textbook used in many college courses. In Chapter 2, “Defining Technology,” Ferré provided a remarkably concise definition of “technologies” as:

“practical implementations of intelligence” (with the caveat that “‘Practical’ requires that they not be wholly ends in themselves ; ‘implementations’ entails that a technology be somehow concretely embodied , normally in implements or artifacts, sometimes simply in social organization…”)

Importantly, Ferré arrived at this definition by carefully detailing what should and should not be considered “technological.” In an attempt to avoid excessive breadth when defining the term, Ferré made four important stipulations:

  • Technology is implemented, not ’empty-handed’: “[I]t would be wise to resist a definition of technology that includes empty hands as technological implements. The totally naked human body, interacting face-to-face with the environment, unmediated by any artifact, contrivance, invention, or tool, would seem to stand as a paradigm case of the non -technological.”
  • Technology is practical, not ‘for its own sake’: Where “the notion of the ‘practical’. . . [means] supporting such ends as survival, health, comfort, and material well-being.”
  • Technology is embodied, non ‘in the head’ alone: “[I]t would be wise to guard against the absorption of all methods and techniques, including wholly mental ones, into the concept of technology.” He uses the examples of natural language and mathematics.
  • Technology is intelligent, not ‘blind’: “[T]he concept of technology will not usefully be extended to behavior that, among humans, is merely accidental or, among other species, is entirely instinctive. . . . Put positively, it suggests our definition will need to stipulate that technology involves (i) implements used as (ii) means to practical ends that are somehow (iii) manifested in the material world as (iv) expressions of intelligence.”

John Fernald

Compared to philosophers, historians, and social critics, economists tend to define technology in a somewhat more dry fashion. (No surprise there, right?!) That being said, it is surprising how few economists bother defining the term in their articles and textbooks. But here’s a concise definition of the term that I recently heard John Fernald, an economist and Senior Research Adviser at the Federal Reserve Bank of San Francisco, articulate at a policy conference. In an October 2014 presentation entitled, “ Technology and the American Economy: Or, What’s the New Normal ?,” Fernald defined technology as the:

“Ability to convert society’s resources (labor and capital) into output (goods and services that we value).”

Ian Barbour

In Chapter 1 of his 1993 book,  Ethics in an Age of Technology , Ian Barbour discussed three  conflicting views of technology: “Technology as Liberator,” “Technology as Threat,” and “Technology as Instrument of Power.” Before discussing each, he defined technology as follows:

“Technology may be defined as the application of organized knowledge to practical tasks by ordered systems of people and machines.” (p. 3)

He continued on to note that:

“There are several advantages to such a broad definition. ‘Organized knowledge’ allows us to include technologies based on practical experience and invention as well as those based on scientific theories. The ‘practical tasks’ can include both the production of material goods (in industry and agriculture, for instance) and the provision of services (by computers, communications media, and biotechnologies, among others). Reference to ‘ordered systems of people and machines’ directs attention to social institutions as well as to the hardware of technology. The breadth of the definition also reminds us that there are major differences among technologies.” (p. 3-4)

Robert Friedel

In his 2007 book,  A Culture of Improvement: Technology and the Western Millennium , University of Maryland historian Robert Friedel offers a formal definition of technology to kick off the book and then ends with a less formal one:

“By technology we typically mean the knowledge and instruments that humans use to accomplish the purposes of life.” (p. 1)

He also clarifies the definition by explaining what it does  not  include, namely: “processes that completely mental or biological;” “knowledge of the world … that is purely in the realm of ideas and description;” and “nature.”  He then closes the book by noting that:

“Technology can, indeed, be defined as a pursuit of power over nature.” (p. 543).

Again, please feel free to suggest additions to this compendium that future students and scholars might find useful. I hope that this can become a resource to them.

Additional Reading :

  • Frederick Ferré – Philosophy Of Technology (1988)
  • Carl Mitcham, “From Philosophy to Technology, ” Ch. 6 in  Thinking Through Technology: The Path Between Engineering and Philosophy (Chicago: The University of Chicago Press, 1994), 137-160.
  • Eric Schatzberg – “ Technik Comes to America: Changing Meanings of Technology ,”  Technology and Culture (2006)

Adam Thierer / Senior Fellow in Technology & Innovation at the R Street Institute in Washington, DC. Formerly a senior research fellow at the Mercatus Center at George Mason University, President of the Progress & Freedom Foundation, Director of Telecommunications Studies at the Cato Institute, and a Fellow in Economic Policy at the Heritage Foundation.

Read more articles by Adam Thierer.

Previous post: New Essays about Permissionless Innovation & Why It Matters

Next post: What Vox Doesn’t Get About the “Battle for the Future of the Internet”

define technology essay

Search the Blog

Popular posts.

  • The Case for Innovation, Progress & Abundance: Some Readings
  • Defining ‘Technology’
  • Regulatory Capture: What the Experts Have Found
  • So You Want to Be an Internet Policy Analyst?
  • Muddling Through: How We Learn to Cope with Technological Change
  • Are You An Internet Optimist or Pessimist? The Great Debate over Technology’s Impact on Society
  • Advertising & Marketing
  • Antitrust & Competition Policy
  • Appleplectics
  • Artificial Intelligence & Robotics
  • Broadband & Neutrality Regulation
  • Cutting the Video Cord
  • Cybersecurity
  • Digital Policy Reading List
  • DMCA, DRM & Piracy
  • E-Commerce Taxation & Regulation
  • E-Government & Transparency
  • First Amendment & Free Speech
  • Googlephobia
  • Governance & Soft Law
  • Innovation & Entrepreneurship
  • Inside the Beltway (Politics)
  • Intermediary Deputization & Section 230
  • international
  • Internet Governance & ICANN
  • Internet of Things & Wearable Tech
  • Lost Laptop Follies
  • Media Deconsolidation
  • Media Regulation
  • Medical Innovation
  • Miscellaneous
  • Moral Panics
  • Online Child Safety
  • Online Education
  • Open Source, Open Standards & Peer Production
  • Philosophy & Cyber-Libertarianism
  • Privacy Solutions
  • Privacy, Security & Government Surveillance
  • Problems in Public Utility Paradise
  • Sharing Economy
  • Sin on the 'Net
  • Technology, Business & Cool Toys
  • Technopanics & the Precautionary Principle
  • Telecom & Cable Regulation
  • The News Frontier
  • Things that Go 'Bump' in the 'Net
  • Uncategorized
  • Video Games & Virtual Worlds
  • What We're Reading
  • Wireless & Spectrum Policy

Get smart with the Thesis WordPress Theme from DIYthemes.

Issue Cover

  • Previous Article
  • Next Article

Promises and Pitfalls of Technology

Politics and privacy, private-sector influence and big tech, state competition and conflict, author biography, how is technology changing the world, and how should the world change technology.

[email protected]

  • Split-Screen
  • Article contents
  • Figures & tables
  • Supplementary Data
  • Peer Review
  • Open the PDF for in another window
  • Guest Access
  • Get Permissions
  • Cite Icon Cite
  • Search Site

Josephine Wolff; How Is Technology Changing the World, and How Should the World Change Technology?. Global Perspectives 1 February 2021; 2 (1): 27353. doi: https://doi.org/10.1525/gp.2021.27353

Download citation file:

  • Ris (Zotero)
  • Reference Manager

Technologies are becoming increasingly complicated and increasingly interconnected. Cars, airplanes, medical devices, financial transactions, and electricity systems all rely on more computer software than they ever have before, making them seem both harder to understand and, in some cases, harder to control. Government and corporate surveillance of individuals and information processing relies largely on digital technologies and artificial intelligence, and therefore involves less human-to-human contact than ever before and more opportunities for biases to be embedded and codified in our technological systems in ways we may not even be able to identify or recognize. Bioengineering advances are opening up new terrain for challenging philosophical, political, and economic questions regarding human-natural relations. Additionally, the management of these large and small devices and systems is increasingly done through the cloud, so that control over them is both very remote and removed from direct human or social control. The study of how to make technologies like artificial intelligence or the Internet of Things “explainable” has become its own area of research because it is so difficult to understand how they work or what is at fault when something goes wrong (Gunning and Aha 2019) .

This growing complexity makes it more difficult than ever—and more imperative than ever—for scholars to probe how technological advancements are altering life around the world in both positive and negative ways and what social, political, and legal tools are needed to help shape the development and design of technology in beneficial directions. This can seem like an impossible task in light of the rapid pace of technological change and the sense that its continued advancement is inevitable, but many countries around the world are only just beginning to take significant steps toward regulating computer technologies and are still in the process of radically rethinking the rules governing global data flows and exchange of technology across borders.

These are exciting times not just for technological development but also for technology policy—our technologies may be more advanced and complicated than ever but so, too, are our understandings of how they can best be leveraged, protected, and even constrained. The structures of technological systems as determined largely by government and institutional policies and those structures have tremendous implications for social organization and agency, ranging from open source, open systems that are highly distributed and decentralized, to those that are tightly controlled and closed, structured according to stricter and more hierarchical models. And just as our understanding of the governance of technology is developing in new and interesting ways, so, too, is our understanding of the social, cultural, environmental, and political dimensions of emerging technologies. We are realizing both the challenges and the importance of mapping out the full range of ways that technology is changing our society, what we want those changes to look like, and what tools we have to try to influence and guide those shifts.

Technology can be a source of tremendous optimism. It can help overcome some of the greatest challenges our society faces, including climate change, famine, and disease. For those who believe in the power of innovation and the promise of creative destruction to advance economic development and lead to better quality of life, technology is a vital economic driver (Schumpeter 1942) . But it can also be a tool of tremendous fear and oppression, embedding biases in automated decision-making processes and information-processing algorithms, exacerbating economic and social inequalities within and between countries to a staggering degree, or creating new weapons and avenues for attack unlike any we have had to face in the past. Scholars have even contended that the emergence of the term technology in the nineteenth and twentieth centuries marked a shift from viewing individual pieces of machinery as a means to achieving political and social progress to the more dangerous, or hazardous, view that larger-scale, more complex technological systems were a semiautonomous form of progress in and of themselves (Marx 2010) . More recently, technologists have sharply criticized what they view as a wave of new Luddites, people intent on slowing the development of technology and turning back the clock on innovation as a means of mitigating the societal impacts of technological change (Marlowe 1970) .

At the heart of fights over new technologies and their resulting global changes are often two conflicting visions of technology: a fundamentally optimistic one that believes humans use it as a tool to achieve greater goals, and a fundamentally pessimistic one that holds that technological systems have reached a point beyond our control. Technology philosophers have argued that neither of these views is wholly accurate and that a purely optimistic or pessimistic view of technology is insufficient to capture the nuances and complexity of our relationship to technology (Oberdiek and Tiles 1995) . Understanding technology and how we can make better decisions about designing, deploying, and refining it requires capturing that nuance and complexity through in-depth analysis of the impacts of different technological advancements and the ways they have played out in all their complicated and controversial messiness across the world.

These impacts are often unpredictable as technologies are adopted in new contexts and come to be used in ways that sometimes diverge significantly from the use cases envisioned by their designers. The internet, designed to help transmit information between computer networks, became a crucial vehicle for commerce, introducing unexpected avenues for crime and financial fraud. Social media platforms like Facebook and Twitter, designed to connect friends and families through sharing photographs and life updates, became focal points of election controversies and political influence. Cryptocurrencies, originally intended as a means of decentralized digital cash, have become a significant environmental hazard as more and more computing resources are devoted to mining these forms of virtual money. One of the crucial challenges in this area is therefore recognizing, documenting, and even anticipating some of these unexpected consequences and providing mechanisms to technologists for how to think through the impacts of their work, as well as possible other paths to different outcomes (Verbeek 2006) . And just as technological innovations can cause unexpected harm, they can also bring about extraordinary benefits—new vaccines and medicines to address global pandemics and save thousands of lives, new sources of energy that can drastically reduce emissions and help combat climate change, new modes of education that can reach people who would otherwise have no access to schooling. Regulating technology therefore requires a careful balance of mitigating risks without overly restricting potentially beneficial innovations.

Nations around the world have taken very different approaches to governing emerging technologies and have adopted a range of different technologies themselves in pursuit of more modern governance structures and processes (Braman 2009) . In Europe, the precautionary principle has guided much more anticipatory regulation aimed at addressing the risks presented by technologies even before they are fully realized. For instance, the European Union’s General Data Protection Regulation focuses on the responsibilities of data controllers and processors to provide individuals with access to their data and information about how that data is being used not just as a means of addressing existing security and privacy threats, such as data breaches, but also to protect against future developments and uses of that data for artificial intelligence and automated decision-making purposes. In Germany, Technische Überwachungsvereine, or TÜVs, perform regular tests and inspections of technological systems to assess and minimize risks over time, as the tech landscape evolves. In the United States, by contrast, there is much greater reliance on litigation and liability regimes to address safety and security failings after-the-fact. These different approaches reflect not just the different legal and regulatory mechanisms and philosophies of different nations but also the different ways those nations prioritize rapid development of the technology industry versus safety, security, and individual control. Typically, governance innovations move much more slowly than technological innovations, and regulations can lag years, or even decades, behind the technologies they aim to govern.

In addition to this varied set of national regulatory approaches, a variety of international and nongovernmental organizations also contribute to the process of developing standards, rules, and norms for new technologies, including the International Organization for Standardization­ and the International Telecommunication Union. These multilateral and NGO actors play an especially important role in trying to define appropriate boundaries for the use of new technologies by governments as instruments of control for the state.

At the same time that policymakers are under scrutiny both for their decisions about how to regulate technology as well as their decisions about how and when to adopt technologies like facial recognition themselves, technology firms and designers have also come under increasing criticism. Growing recognition that the design of technologies can have far-reaching social and political implications means that there is more pressure on technologists to take into consideration the consequences of their decisions early on in the design process (Vincenti 1993; Winner 1980) . The question of how technologists should incorporate these social dimensions into their design and development processes is an old one, and debate on these issues dates back to the 1970s, but it remains an urgent and often overlooked part of the puzzle because so many of the supposedly systematic mechanisms for assessing the impacts of new technologies in both the private and public sectors are primarily bureaucratic, symbolic processes rather than carrying any real weight or influence.

Technologists are often ill-equipped or unwilling to respond to the sorts of social problems that their creations have—often unwittingly—exacerbated, and instead point to governments and lawmakers to address those problems (Zuckerberg 2019) . But governments often have few incentives to engage in this area. This is because setting clear standards and rules for an ever-evolving technological landscape can be extremely challenging, because enforcement of those rules can be a significant undertaking requiring considerable expertise, and because the tech sector is a major source of jobs and revenue for many countries that may fear losing those benefits if they constrain companies too much. This indicates not just a need for clearer incentives and better policies for both private- and public-sector entities but also a need for new mechanisms whereby the technology development and design process can be influenced and assessed by people with a wider range of experiences and expertise. If we want technologies to be designed with an eye to their impacts, who is responsible for predicting, measuring, and mitigating those impacts throughout the design process? Involving policymakers in that process in a more meaningful way will also require training them to have the analytic and technical capacity to more fully engage with technologists and understand more fully the implications of their decisions.

At the same time that tech companies seem unwilling or unable to rein in their creations, many also fear they wield too much power, in some cases all but replacing governments and international organizations in their ability to make decisions that affect millions of people worldwide and control access to information, platforms, and audiences (Kilovaty 2020) . Regulators around the world have begun considering whether some of these companies have become so powerful that they violate the tenets of antitrust laws, but it can be difficult for governments to identify exactly what those violations are, especially in the context of an industry where the largest players often provide their customers with free services. And the platforms and services developed by tech companies are often wielded most powerfully and dangerously not directly by their private-sector creators and operators but instead by states themselves for widespread misinformation campaigns that serve political purposes (Nye 2018) .

Since the largest private entities in the tech sector operate in many countries, they are often better poised to implement global changes to the technological ecosystem than individual states or regulatory bodies, creating new challenges to existing governance structures and hierarchies. Just as it can be challenging to provide oversight for government use of technologies, so, too, oversight of the biggest tech companies, which have more resources, reach, and power than many nations, can prove to be a daunting task. The rise of network forms of organization and the growing gig economy have added to these challenges, making it even harder for regulators to fully address the breadth of these companies’ operations (Powell 1990) . The private-public partnerships that have emerged around energy, transportation, medical, and cyber technologies further complicate this picture, blurring the line between the public and private sectors and raising critical questions about the role of each in providing critical infrastructure, health care, and security. How can and should private tech companies operating in these different sectors be governed, and what types of influence do they exert over regulators? How feasible are different policy proposals aimed at technological innovation, and what potential unintended consequences might they have?

Conflict between countries has also spilled over significantly into the private sector in recent years, most notably in the case of tensions between the United States and China over which technologies developed in each country will be permitted by the other and which will be purchased by other customers, outside those two countries. Countries competing to develop the best technology is not a new phenomenon, but the current conflicts have major international ramifications and will influence the infrastructure that is installed and used around the world for years to come. Untangling the different factors that feed into these tussles as well as whom they benefit and whom they leave at a disadvantage is crucial for understanding how governments can most effectively foster technological innovation and invention domestically as well as the global consequences of those efforts. As much of the world is forced to choose between buying technology from the United States or from China, how should we understand the long-term impacts of those choices and the options available to people in countries without robust domestic tech industries? Does the global spread of technologies help fuel further innovation in countries with smaller tech markets, or does it reinforce the dominance of the states that are already most prominent in this sector? How can research universities maintain global collaborations and research communities in light of these national competitions, and what role does government research and development spending play in fostering innovation within its own borders and worldwide? How should intellectual property protections evolve to meet the demands of the technology industry, and how can those protections be enforced globally?

These conflicts between countries sometimes appear to challenge the feasibility of truly global technologies and networks that operate across all countries through standardized protocols and design features. Organizations like the International Organization for Standardization, the World Intellectual Property Organization, the United Nations Industrial Development Organization, and many others have tried to harmonize these policies and protocols across different countries for years, but have met with limited success when it comes to resolving the issues of greatest tension and disagreement among nations. For technology to operate in a global environment, there is a need for a much greater degree of coordination among countries and the development of common standards and norms, but governments continue to struggle to agree not just on those norms themselves but even the appropriate venue and processes for developing them. Without greater global cooperation, is it possible to maintain a global network like the internet or to promote the spread of new technologies around the world to address challenges of sustainability? What might help incentivize that cooperation moving forward, and what could new structures and process for governance of global technologies look like? Why has the tech industry’s self-regulation culture persisted? Do the same traditional drivers for public policy, such as politics of harmonization and path dependency in policy-making, still sufficiently explain policy outcomes in this space? As new technologies and their applications spread across the globe in uneven ways, how and when do they create forces of change from unexpected places?

These are some of the questions that we hope to address in the Technology and Global Change section through articles that tackle new dimensions of the global landscape of designing, developing, deploying, and assessing new technologies to address major challenges the world faces. Understanding these processes requires synthesizing knowledge from a range of different fields, including sociology, political science, economics, and history, as well as technical fields such as engineering, climate science, and computer science. A crucial part of understanding how technology has created global change and, in turn, how global changes have influenced the development of new technologies is understanding the technologies themselves in all their richness and complexity—how they work, the limits of what they can do, what they were designed to do, how they are actually used. Just as technologies themselves are becoming more complicated, so are their embeddings and relationships to the larger social, political, and legal contexts in which they exist. Scholars across all disciplines are encouraged to join us in untangling those complexities.

Josephine Wolff is an associate professor of cybersecurity policy at the Fletcher School of Law and Diplomacy at Tufts University. Her book You’ll See This Message When It Is Too Late: The Legal and Economic Aftermath of Cybersecurity Breaches was published by MIT Press in 2018.

Recipient(s) will receive an email with a link to 'How Is Technology Changing the World, and How Should the World Change Technology?' and will not need an account to access the content.

Subject: How Is Technology Changing the World, and How Should the World Change Technology?

(Optional message may have a maximum of 1000 characters.)

Citing articles via

Email alerts, affiliations.

  • Special Collections
  • Review Symposia
  • Info for Authors
  • Info for Librarians
  • Editorial Team
  • Emerging Scholars Forum
  • Open Access
  • Online ISSN 2575-7350
  • Copyright © 2024 The Regents of the University of California. All Rights Reserved.

Stay Informed

Disciplines.

  • Ancient World
  • Anthropology
  • Communication
  • Criminology & Criminal Justice
  • Film & Media Studies
  • Food & Wine
  • Browse All Disciplines
  • Browse All Courses
  • Book Authors
  • Booksellers
  • Instructions
  • Journal Authors
  • Journal Editors
  • Media & Journalists
  • Planned Giving

About UC Press

  • Press Releases
  • Seasonal Catalog
  • Acquisitions Editors
  • Customer Service
  • Exam/Desk Requests
  • Media Inquiries
  • Print-Disability
  • Rights & Permissions
  • UC Press Foundation
  • © Copyright 2023 by the Regents of the University of California. All rights reserved. Privacy policy    Accessibility

This Feature Is Available To Subscribers Only

Sign In or Create an Account

Essay on Technology – A Boon or Bane for Students

500+ words essay on technology for students.

In this essay on technology, we are going to discuss what technology is, what are its uses, and also what technology can do? First of all, technology refers to the use of technical and scientific knowledge to create, monitor, and design machinery. Also, technology helps in making other goods that aid mankind.

Essay on Technology – A Boon or Bane?

Experts are debating on this topic for years. Also, the technology covered a long way to make human life easier but the negative aspect of it can’t be ignored. Over the years technological advancement has caused a severe rise in pollution . Also, pollution has become a major cause of many health issues. Besides, it has cut off people from society rather than connecting them. Above all, it has taken away many jobs from the workers class.

Essay on technology

Familiarity between Technology and Science

As they are completely different fields but they are interdependent on each other. Also, it is due to science contribution we can create new innovation and build new technological tools. Apart from that, the research conducted in laboratories contributes a lot to the development of technologies. On the other hand, technology extends the agenda of science.

Vital Part of our Life

Regularly evolving technology has become an important part of our lives. Also, newer technologies are taking the market by storm and the people are getting used to them in no time. Above all, technological advancement has led to the growth and development of nations.

Negative Aspect of Technology

Although technology is a good thing, everything has two sides. Technology also has two sides one is good and the other is bad. Here are some negative aspects of technology that we are going to discuss.

Get the huge list of more than 500 Essay Topics and Ideas

With new technology the industrialization increases which give birth to many pollutions like air, water, soil, and noise. Also, they cause many health-related issues in animals, birds, and human beings.

Exhaustion of Natural Resources

New technology requires new resources for which the balance is disturbed. Eventually, this will lead to over-exploitation of natural resources which ultimately disturbs the balance of nature.

Unemployment

A single machine can replace many workers. Also, machines can do work at a constant pace for several hours or days without stopping. Due to this, many workers lost their job which ultimately increases unemployment .

Types of Technology

Generally, we judge technology on the same scale but in reality, technology is divided into various types. This includes information technology, industrial technology , architectural technology, creative technology and many more. Let’s discuss these technologies in brief.

Industrial Technology

This technology organizes engineering and manufacturing technology for the manufacturing of machines. Also, this makes the production process easier and convenient.

Creative Technology

This process includes art, advertising, and product design which are made with the help of software. Also, it comprises of 3D printers , virtual reality, computer graphics, and other wearable technologies.

Information Technology

This technology involves the use of telecommunication and computer to send, receive and store information. Internet is the best example of Information technology.

define technology essay

FAQs on Essay on Technology

Q.1 What is Information technology?

A –  It is a form of technology that uses telecommunication and computer systems for study. Also, they send, retrieve, and store data.

Q.2 Is technology harmful to humans?

 A – No, technology is not harmful to human beings until it is used properly. But, misuses of technology can be harmful and deadly.

Download Toppr – Best Learning App for Class 5 to 12

Toppr provides free study materials, last 10 years of question papers, 1000+ hours of video lectures, live 24/7 doubts solving, and much more for FREE! Download Toppr app for Android and iOS or signup for free.

Customize your course in 30 seconds

Which class are you in.

tutor

  • Travelling Essay
  • Picnic Essay
  • Our Country Essay
  • My Parents Essay
  • Essay on Favourite Personality
  • Essay on Memorable Day of My Life
  • Essay on Knowledge is Power
  • Essay on Gurpurab
  • Essay on My Favourite Season
  • Essay on Types of Sports

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Download the App

Google Play

Science, technology and innovation in a 21st century context

  • Published: 27 August 2011
  • Volume 44 , pages 209–213, ( 2011 )

Cite this article

  • John H. Marburger III 1  

22k Accesses

8 Citations

3 Altmetric

Explore all metrics

Avoid common mistakes on your manuscript.

This editorial essay was prepared by John H. “Jack” Marburger for a workshop on the “science of science and innovation policy” held in 2009 that was the basis for this special issue. It is published posthumously .

Linking the words “science,” “technology,” and “innovation,” may suggest that we know more about how these activities are related than we really do. This very common linkage implicitly conveys a linear progression from scientific research to technology creation to innovative products. More nuanced pictures of these complex activities break them down into components that interact with each other in a multi-dimensional socio-technological-economic network. A few examples will help to make this clear.

Science has always functioned on two levels that we may describe as curiosity-driven and need-driven, and they interact in sometimes surprising ways. Galileo’s telescope, the paradigmatic instrument of discovery in pure science, emerged from an entirely pragmatic tradition of lens-making for eye-glasses. And we should keep in mind that the industrial revolution gave more to science than it received, at least until the last half of the nineteenth century when the sciences of chemistry and electricity began to produce serious economic payoffs. The flowering of science during the era, we call the enlightenment owed much to its links with crafts and industry, but as it gained momentum science created its own need for practical improvements. After all, the frontiers of science are defined by the capabilities of instrumentation, that is, of technology. The needs of pure science are a huge but poorly understood stimulus for technologies that have the capacity to be disruptive precisely because these needs do not arise from the marketplace. The innovators who built the World Wide Web on the foundation of the Internet were particle physicists at CERN, struggling to satisfy their unique need to share complex information. Others soon discovered “needs” of which they had been unaware that could be satisfied by this innovation, and from that point the Web transformed the Internet from a tool for the technological elite into a broad platform for a new kind of economy.

Necessity is said to be the mother of invention, but in all human societies, “necessity” is a mix of culturally conditioned perceptions and the actual physical necessities of life. The concept of need, of what is wanted, is the ultimate driver of markets and an essential dimension of innovation. And as the example of the World Wide Web shows, need is very difficult to identify before it reveals itself in a mass movement. Why did I not know I needed a cell phone before nearly everyone else had one? Because until many others had one I did not, in fact, need one. Innovation has this chicken-and-egg quality that makes it extremely hard to analyze. We all know of visionaries who conceive of a society totally transformed by their invention and who are bitter that the world has not embraced their idea. Sometimes we think of them as crackpots, or simply unrealistic about what it takes to change the world. We practical people necessarily view the world through the filter of what exists, and fail to anticipate disruptive change. Nearly always we are surprised by the rapid acceptance of a transformative idea. If we truly want to encourage innovation through government policies, we are going to have to come to grips with this deep unpredictability of the mass acceptance of a new concept. Works analyzing this phenomenon are widely popular under titles like “ The Tipping Point ” by Gladwell ( 2000 ) or more recently the book by Taleb ( 2007 ) called The Black Swan , among others.

What causes innovations to be adopted and integrated into economies depends on their ability to satisfy some perceived need by consumers, and that perception may be an artifact of marketing, or fashion, or cultural inertia, or ignorance. Some of the largest and most profitable industries in the developed world—entertainment, automobiles, clothing and fashion accessories, health products, children’s toys, grownups’ toys!—depend on perceptions of need that go far beyond the utilitarian and are notoriously difficult to predict. And yet these industries clearly depend on sophisticated and rapidly advancing technologies to compete in the marketplace. Of course, they do not depend only upon technology. Technologies are part of the environment for innovation, or in a popular and very appropriate metaphor—part of the innovation ecology .

This complexity of innovation and its ecology is conveyed in Chapter One of a currently popular best-seller in the United States called Innovation Nation by the American innovation guru, Kao ( 2007 ), formerly on the faculty of the Harvard Business School:

“I define it [innovation],” writes Kao, “as the ability of individuals, companies, and entire nations to continuously create their desired future. Innovation depends on harvesting knowledge from a range of disciplines besides science and technology, among them design, social science, and the arts. And it is exemplified by more than just products; services, experiences, and processes can be innovative as well. The work of entrepreneurs, scientists, and software geeks alike contributes to innovation. It is also about the middlemen who know how to realize value from ideas. Innovation flows from shifts in mind-set that can generate new business models, recognize new opportunities, and weave innovations throughout the fabric of society. It is about new ways of doing and seeing things as much as it is about the breakthrough idea.” (Kao 2007 , p. 19).

This is not your standard government-type definition. Gurus, of course, do not have to worry about leading indicators and predictive measures of policy success. Nevertheless, some policy guidance can be drawn from this high level “definition,” and I will do so later.

The first point, then, is that the structural aspects of “science, technology, and innovation” are imperfectly defined, complex, and poorly understood. There is still much work to do to identify measures, develop models, and test them against actual experience before we can say we really know what it takes to foster innovation. The second point I want to make is about the temporal aspects: all three of these complex activities are changing with time. Science, of course, always changes through the accumulation of knowledge, but it also changes through revolutions in its theoretical structure, through its ever-improving technology, and through its evolving sociology. The technology and sociology of science are currently impacted by a rapidly changing information technology. Technology today flows increasingly from research laboratories but the influence of technology on both science and innovation depends strongly on its commercial adoption, that is, on market forces. Commercial scale manufacturing drives down the costs of technology so it can be exploited in an ever-broadening range of applications. The mass market for precision electro-mechanical devices like cameras, printers, and disk drives is the basis for new scientific instrumentation and also for further generations of products that integrate hundreds of existing components in new devices and business models like the Apple iPod and video games, not to mention improvements in old products like cars and telephones. Innovation is changing too as it expands its scope beyond individual products to include all or parts of systems such as supply chains and inventory control, as in the Wal-Mart phenomenon. Apple’s iPod does not stand alone; it is integrated with iTunes software and novel arrangements with media providers.

With one exception, however, technology changes more slowly than it appears because we encounter basic technology platforms in a wide variety of relatively short-lived products. Technology is like a language that innovators use to express concepts in the form of products, and business models that serve (and sometimes create) a variety of needs, some of which fluctuate with fashion. The exception to the illusion of rapid technology change is the pace of information technology, which is no illusion. It has fulfilled Moore’s Law for more than half a century, and it is a remarkable historical anomaly arising from the systematic exploitation of the understanding of the behavior of microscopic matter following the discovery of quantum mechanics. The pace would be much less without a continually evolving market for the succession of smaller, higher capacity products. It is not at all clear that the market demand will continue to support the increasingly expensive investment in fabrication equipment for each new step up the exponential curve of Moore’s Law. The science is probably available to allow many more capacity doublings if markets can sustain them. Let me digress briefly on this point.

Many science commentators have described the twentieth century as the century of physics and the twenty-first as the century of biology. We now know that is misleading. It is true that our struggle to understand the ultimate constituents of matter has now encompassed (apparently) everything of human scale and relevance, and that the universe of biological phenomena now lies open for systematic investigation and dramatic applications in health, agriculture, and energy production. But there are two additional frontiers of physical science, one already highly productive, the other very intriguing. The first is the frontier of complexity , where physics, chemistry, materials science, biology, and mathematics all come together. This is where nanotechnology and biotechnology reside. These are huge fields that form the core of basic science policy in most developed nations. The basic science of the twenty-first century is neither biology nor physics, but an interdisciplinary mix of these and other traditional fields. Continued development of this domain contributes to information technology and much else. I mentioned two frontiers. The other physical science frontier borders the nearly unexploited domain of quantum coherence phenomena . It is a very large domain and potentially a source of entirely new platform technologies not unlike microelectronics. To say more about this would take me too far from our topic. The point is that nature has many undeveloped physical phenomena to enrich the ecology of innovation and keep us marching along the curve of Moore’s Law if we can afford to do so.

I worry about the psychological impact of the rapid advance of information technology. I believe it has created unrealistic expectations about all technologies and has encouraged a casual attitude among policy makers toward the capability of science and technology to deliver solutions to difficult social problems. This is certainly true of what may be the greatest technical challenge of all time—the delivery of energy to large developed and developing populations without adding greenhouse gases to the atmosphere. The challenge of sustainable energy technology is much more difficult than many people currently seem to appreciate. I am afraid that time will make this clear.

Structural complexities and the intrinsic dynamism of science and technology pose challenges to policy makers, but they seem almost manageable compared with the challenges posed by extrinsic forces. Among these are globalization and the impact of global economic development on the environment. The latter, expressed quite generally through the concept of “sustainability” is likely to be a component of much twenty-first century innovation policy. Measures of development, competitiveness, and innovation need to include sustainability dimensions to be realistic over the long run. Development policies that destroy economically important environmental systems, contribute to harmful global change, and undermine the natural resource basis of the economy are bad policies. Sustainability is now an international issue because the scale of development and the globalization of economies have environmental and natural resource implications that transcend national borders.

From the policy point of view, globalization is a not a new phenomenon. Science has been globalized for centuries, and we ought to be studying it more closely as a model for effective responses to the globalization of our economies. What is striking about science is the strong imperative to share ideas through every conceivable channel to the widest possible audience. If you had to name one chief characteristic of science, it would be empiricism. If you had to name two, the other would be open communication of data and ideas. The power of open communication in science cannot be overestimated. It has established, uniquely among human endeavors, an absolute global standard. And it effectively recruits talent from every part of the globe to labor at the science frontiers. The result has been an extraordinary legacy of understanding of the phenomena that shape our existence. Science is the ultimate example of an open innovation system.

Science practice has received much attention from philosophers, social scientists, and historians during the past half-century, and some of what has been learned holds valuable lessons for policy makers. It is fascinating to me how quickly countries that provide avenues to advanced education are able to participate in world science. The barriers to a small but productive scientific activity appear to be quite low and whether or not a country participates in science appears to be discretionary. A small scientific establishment, however, will not have significant direct economic impact. Its value at early stages of development is indirect, bringing higher performance standards, international recognition, and peer role models for a wider population. A science program of any size is also a link to the rich intellectual resources of the world scientific community. The indirect benefit of scientific research to a developing country far exceeds its direct benefit, and policy needs to recognize this. It is counterproductive to base support for science in such countries on a hoped-for direct economic stimulus.

Keeping in mind that the innovation ecology includes far more than science and technology, it should be obvious that within a small national economy innovation can thrive on a very small indigenous science and technology base. But innovators, like scientists, do require access to technical information and ideas. Consequently, policies favorable to innovation will create access to education and encourage free communication with the world technical community. Anything that encourages awareness of the marketplace and all its actors on every scale will encourage innovation.

This brings me back to John Kao’s definition of innovation. His vision of “the ability of individuals, companies, and entire nations to continuously create their desired future” implies conditions that create that ability, including most importantly educational opportunity (Kao 2007 , p. 19). The notion that “innovation depends on harvesting knowledge from a range of disciplines besides science and technology” implies that innovators must know enough to recognize useful knowledge when they see it, and that they have access to knowledge sources across a spectrum that ranges from news media and the Internet to technical and trade conferences (2007, p. 19). If innovation truly “flows from shifts in mind-set that can generate new business models, recognize new opportunities, and weave innovations throughout the fabric of society,” then the fabric of society must be somewhat loose-knit to accommodate the new ideas (2007, p. 19). Innovation is about risk and change, and deep forces in every society resist both of these. A striking feature of the US innovation ecology is the positive attitude toward failure, an attitude that encourages risk-taking and entrepreneurship.

All this gives us some insight into what policies we need to encourage innovation. Innovation policy is broader than science and technology policy, but the latter must be consistent with the former to produce a healthy innovation ecology. Innovation requires a predictable social structure, an open marketplace, and a business culture amenable to risk and change. It certainly requires an educational infrastructure that produces people with a global awareness and sufficient technical literacy to harvest the fruits of current technology. What innovation does not require is the creation by governments of a system that defines, regulates, or even rewards innovation except through the marketplace or in response to evident success. Some regulation of new products and new ideas is required to protect public health and environmental quality, but innovation needs lots of freedom. Innovative ideas that do not work out should be allowed to die so the innovation community can learn from the experience and replace the failed attempt with something better.

Do we understand innovation well enough to develop policy for it? If the policy addresses very general infrastructure issues such as education, economic, and political stability and the like, the answer is perhaps. If we want to measure the impact of specific programs on innovation, the answer is no. Studies of innovation are at an early stage where anecdotal information and case studies, similar to John Kao’s book—or the books on Business Week’s top ten list of innovation titles—are probably the most useful tools for policy makers.

I have been urging increased attention to what I call the science of science policy —the systematic quantitative study of the subset of our economy called science and technology—including the construction and validation of micro- and macro-economic models for S&T activity. Innovators themselves, and those who finance them, need to identify their needs and the impediments they face. Eventually, we may learn enough to create reliable indicators by which we can judge the health of our innovation ecosystems. The goal is well worth the sustained effort that will be required to achieve it.

Gladwell, M. (2000). The tipping point: How little things can make a big difference . Boston: Little, Brown and Company.

Google Scholar  

Kao, J. (2007). Innovation nation: How America is losing its innovation edge, why it matters, and what we can do to get it back . New York: Free Press.

Taleb, N. N. (2007). The black swan: The impact of the highly improbable . New York: Random House.

Download references

Author information

Authors and affiliations.

Stony Brook University, Stony Brook, NY, USA

John H. Marburger III

You can also search for this author in PubMed   Google Scholar

Additional information

John H. Marburger III—deceased

Rights and permissions

Reprints and permissions

About this article

Marburger, J.H. Science, technology and innovation in a 21st century context. Policy Sci 44 , 209–213 (2011). https://doi.org/10.1007/s11077-011-9137-3

Download citation

Published : 27 August 2011

Issue Date : September 2011

DOI : https://doi.org/10.1007/s11077-011-9137-3

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Find a journal
  • Publish with us
  • Track your research

Feb 13, 2023

200-500 Word Example Essays about Technology

Got an essay assignment about technology check out these examples to inspire you.

Technology is a rapidly evolving field that has completely changed the way we live, work, and interact with one another. Technology has profoundly impacted our daily lives, from how we communicate with friends and family to how we access information and complete tasks. As a result, it's no surprise that technology is a popular topic for students writing essays.

But writing a technology essay can be challenging, especially for those needing more time or help with writer's block. This is where Jenni.ai comes in. Jenni.ai is an innovative AI tool explicitly designed for students who need help writing essays. With Jenni.ai, students can quickly and easily generate essays on various topics, including technology.

This blog post aims to provide readers with various example essays on technology, all generated by Jenni.ai. These essays will be a valuable resource for students looking for inspiration or guidance as they work on their essays. By reading through these example essays, students can better understand how technology can be approached and discussed in an essay.

Moreover, by signing up for a free trial with Jenni.ai, students can take advantage of this innovative tool and receive even more support as they work on their essays. Jenni.ai is designed to help students write essays faster and more efficiently, so they can focus on what truly matters – learning and growing as a student. Whether you're a student who is struggling with writer's block or simply looking for a convenient way to generate essays on a wide range of topics, Jenni.ai is the perfect solution.

The Impact of Technology on Society and Culture

Introduction:.

Technology has become an integral part of our daily lives and has dramatically impacted how we interact, communicate, and carry out various activities. Technological advancements have brought positive and negative changes to society and culture. In this article, we will explore the impact of technology on society and culture and how it has influenced different aspects of our lives.

Positive impact on communication:

Technology has dramatically improved communication and made it easier for people to connect from anywhere in the world. Social media platforms, instant messaging, and video conferencing have brought people closer, bridging geographical distances and cultural differences. This has made it easier for people to share information, exchange ideas, and collaborate on projects.

Positive impact on education:

Students and instructors now have access to a multitude of knowledge and resources because of the effect of technology on education. Students may now study at their speed and from any location thanks to online learning platforms, educational applications, and digital textbooks.

Negative impact on critical thinking and creativity:

Technological advancements have resulted in a reduction in critical thinking and creativity. With so much information at our fingertips, individuals have become more passive in their learning, relying on the internet for solutions rather than logic and inventiveness. As a result, independent thinking and problem-solving abilities have declined.

Positive impact on entertainment:

Technology has transformed how we access and consume entertainment. People may now access a wide range of entertainment alternatives from the comfort of their own homes thanks to streaming services, gaming platforms, and online content makers. The entertainment business has entered a new age of creativity and invention as a result of this.

Negative impact on attention span:

However, the continual bombardment of information and technological stimulation has also reduced attention span and the capacity to focus. People are easily distracted and need help focusing on a single activity for a long time. This has hampered productivity and the ability to accomplish duties.

The Ethics of Artificial Intelligence And Machine Learning

The development of artificial intelligence (AI) and machine learning (ML) technologies has been one of the most significant technological developments of the past several decades. These cutting-edge technologies have the potential to alter several sectors of society, including commerce, industry, healthcare, and entertainment. 

As with any new and quickly advancing technology, AI and ML ethics must be carefully studied. The usage of these technologies presents significant concerns around privacy, accountability, and command. As the use of AI and ML grows more ubiquitous, we must assess their possible influence on society and investigate the ethical issues that must be taken into account as these technologies continue to develop.

What are Artificial Intelligence and Machine Learning?

Artificial Intelligence is the simulation of human intelligence in machines designed to think and act like humans. Machine learning is a subfield of AI that enables computers to learn from data and improve their performance over time without being explicitly programmed.

The impact of AI and ML on Society

The use of AI and ML in various industries, such as healthcare, finance, and retail, has brought many benefits. For example, AI-powered medical diagnosis systems can identify diseases faster and more accurately than human doctors. However, there are also concerns about job displacement and the potential for AI to perpetuate societal biases.

The Ethical Considerations of AI and ML

A. Bias in AI algorithms

One of the critical ethical concerns about AI and ML is the potential for algorithms to perpetuate existing biases. This can occur if the data used to train these algorithms reflects the preferences of the people who created it. As a result, AI systems can perpetuate these biases and discriminate against certain groups of people.

B. Responsibility for AI-generated decisions

Another ethical concern is the responsibility for decisions made by AI systems. For example, who is responsible for the damage if a self-driving car causes an accident? The manufacturer of the vehicle, the software developer, or the AI algorithm itself?

C. The potential for misuse of AI and ML

AI and ML can also be used for malicious purposes, such as cyberattacks and misinformation. The need for more regulation and oversight in developing and using these technologies makes it difficult to prevent misuse.

The developments in AI and ML have given numerous benefits to humanity, but they also present significant ethical concerns that must be addressed. We must assess the repercussions of new technologies on society, implement methods to limit the associated dangers, and guarantee that they are utilized for the greater good. As AI and ML continue to play an ever-increasing role in our daily lives, we must engage in an open and frank discussion regarding their ethics.

The Future of Work And Automation

Rapid technological breakthroughs in recent years have brought about considerable changes in our way of life and work. Concerns regarding the influence of artificial intelligence and machine learning on the future of work and employment have increased alongside the development of these technologies. This article will examine the possible advantages and disadvantages of automation and its influence on the labor market, employees, and the economy.

The Advantages of Automation

Automation in the workplace offers various benefits, including higher efficiency and production, fewer mistakes, and enhanced precision. Automated processes may accomplish repetitive jobs quickly and precisely, allowing employees to concentrate on more complex and creative activities. Additionally, automation may save organizations money since it removes the need to pay for labor and minimizes the danger of workplace accidents.

The Potential Disadvantages of Automation

However, automation has significant disadvantages, including job loss and income stagnation. As robots and computers replace human labor in particular industries, there is a danger that many workers may lose their jobs, resulting in higher unemployment and more significant economic disparity. Moreover, if automation is not adequately regulated and managed, it might lead to stagnant wages and a deterioration in employees' standard of life.

The Future of Work and Automation

Despite these difficulties, automation will likely influence how labor is done. As a result, firms, employees, and governments must take early measures to solve possible issues and reap the rewards of automation. This might entail funding worker retraining programs, enhancing education and skill development, and implementing regulations that support equality and justice at work.

IV. The Need for Ethical Considerations

We must consider the ethical ramifications of automation and its effects on society as technology develops. The impact on employees and their rights, possible hazards to privacy and security, and the duty of corporations and governments to ensure that automation is utilized responsibly and ethically are all factors to be taken into account.

Conclusion:

To summarise, the future of employment and automation will most certainly be defined by a complex interaction of technological advances, economic trends, and cultural ideals. All stakeholders must work together to handle the problems and possibilities presented by automation and ensure that technology is employed to benefit society as a whole.

The Role of Technology in Education

Introduction.

Nearly every part of our lives has been transformed by technology, and education is no different. Today's students have greater access to knowledge, opportunities, and resources than ever before, and technology is becoming a more significant part of their educational experience. Technology is transforming how we think about education and creating new opportunities for learners of all ages, from online courses and virtual classrooms to instructional applications and augmented reality.

Technology's Benefits for Education

The capacity to tailor learning is one of technology's most significant benefits in education. Students may customize their education to meet their unique needs and interests since they can access online information and tools. 

For instance, people can enroll in online classes on topics they are interested in, get tailored feedback on their work, and engage in virtual discussions with peers and subject matter experts worldwide. As a result, pupils are better able to acquire and develop the abilities and information necessary for success.

Challenges and Concerns

Despite the numerous advantages of technology in education, there are also obstacles and considerations to consider. One issue is the growing reliance on technology and the possibility that pupils would become overly dependent on it. This might result in a lack of critical thinking and problem-solving abilities, as students may become passive learners who only follow instructions and rely on technology to complete their assignments.

Another obstacle is the digital divide between those who have access to technology and those who do not. This division can exacerbate the achievement gap between pupils and produce uneven educational and professional growth chances. To reduce these consequences, all students must have access to the technology and resources necessary for success.

In conclusion, technology is rapidly becoming an integral part of the classroom experience and has the potential to alter the way we learn radically. 

Technology can help students flourish and realize their full potential by giving them access to individualized instruction, tools, and opportunities. While the benefits of technology in the classroom are undeniable, it's crucial to be mindful of the risks and take precautions to guarantee that all kids have access to the tools they need to thrive.

The Influence of Technology On Personal Relationships And Communication 

Technological advancements have profoundly altered how individuals connect and exchange information. It has changed the world in many ways in only a few decades. Because of the rise of the internet and various social media sites, maintaining relationships with people from all walks of life is now simpler than ever. 

However, concerns about how these developments may affect interpersonal connections and dialogue are inevitable in an era of rapid technological growth. In this piece, we'll discuss how the prevalence of digital media has altered our interpersonal connections and the language we use to express ourselves.

Direct Effect on Direct Interaction:

The disruption of face-to-face communication is a particularly stark example of how technology has impacted human connections. The quality of interpersonal connections has suffered due to people's growing preference for digital over human communication. Technology has been demonstrated to reduce the usage of nonverbal signs such as facial expressions, tone of voice, and other indicators of emotional investment in the connection.

Positive Impact on Long-Distance Relationships:

Yet there are positives to be found as well. Long-distance relationships have also benefited from technological advancements. The development of technologies such as video conferencing, instant messaging, and social media has made it possible for individuals to keep in touch with distant loved ones. It has become simpler for individuals to stay in touch and feel connected despite geographical distance.

The Effects of Social Media on Personal Connections:

The widespread use of social media has had far-reaching consequences, especially on the quality of interpersonal interactions. Social media has positive and harmful effects on relationships since it allows people to keep in touch and share life's milestones.

Unfortunately, social media has made it all too easy to compare oneself to others, which may lead to emotions of jealousy and a general decline in confidence. Furthermore, social media might cause people to have inflated expectations of themselves and their relationships.

A Personal Perspective on the Intersection of Technology and Romance

Technological advancements have also altered physical touch and closeness. Virtual reality and other technologies have allowed people to feel physical contact and familiarity in a digital setting. This might be a promising breakthrough, but it has some potential downsides. 

Experts are concerned that people's growing dependence on technology for intimacy may lead to less time spent communicating face-to-face and less emphasis on physical contact, both of which are important for maintaining good relationships.

In conclusion, technological advancements have significantly affected the quality of interpersonal connections and the exchange of information. Even though technology has made it simpler to maintain personal relationships, it has chilled interpersonal interactions between people. 

Keeping tabs on how technology is changing our lives and making adjustments as necessary is essential as we move forward. Boundaries and prioritizing in-person conversation and physical touch in close relationships may help reduce the harm it causes.

The Security and Privacy Implications of Increased Technology Use and Data Collection

The fast development of technology over the past few decades has made its way into every aspect of our life. Technology has improved many facets of our life, from communication to commerce. However, significant privacy and security problems have emerged due to the broad adoption of technology. In this essay, we'll look at how the widespread use of technological solutions and the subsequent explosion in collected data affects our right to privacy and security.

Data Mining and Privacy Concerns

Risk of Cyber Attacks and Data Loss

The Widespread Use of Encryption and Other Safety Mechanisms

The Privacy and Security of the Future in a Globalized Information Age

Obtaining and Using Individual Information

The acquisition and use of private information is a significant cause for privacy alarm in the digital age. Data about their customers' online habits, interests, and personal information is a valuable commodity for many internet firms. Besides tailored advertising, this information may be used for other, less desirable things like identity theft or cyber assaults.

Moreover, many individuals need to be made aware of what data is being gathered from them or how it is being utilized because of the lack of transparency around gathering personal information. Privacy and data security have become increasingly contentious as a result.

Data breaches and other forms of cyber-attack pose a severe risk.

The risk of cyber assaults and data breaches is another big issue of worry. More people are using more devices, which means more opportunities for cybercriminals to steal private information like credit card numbers and other identifying data. This may cause monetary damages and harm one's reputation or identity.

Many high-profile data breaches have occurred in recent years, exposing the personal information of millions of individuals and raising serious concerns about the safety of this information. Companies and governments have responded to this problem by adopting new security methods like encryption and multi-factor authentication.

Many businesses now use encryption and other security measures to protect themselves from cybercriminals and data thieves. Encryption keeps sensitive information hidden by encoding it so that only those possessing the corresponding key can decipher it. This prevents private information like bank account numbers or social security numbers from falling into the wrong hands.

Firewalls, virus scanners, and two-factor authentication are all additional security precautions that may be used with encryption. While these safeguards do much to stave against cyber assaults, they are not entirely impregnable, and data breaches are still possible.

The Future of Privacy and Security in a Technologically Advanced World

There's little doubt that concerns about privacy and security will persist even as technology improves. There must be strict safeguards to secure people's private information as more and more of it is transferred and kept digitally. To achieve this goal, it may be necessary to implement novel technologies and heightened levels of protection and to revise the rules and regulations regulating the collection and storage of private information.

Individuals and businesses are understandably concerned about the security and privacy consequences of widespread technological use and data collecting. There are numerous obstacles to overcome in a society where technology plays an increasingly important role, from acquiring and using personal data to the risk of cyber-attacks and data breaches. Companies and governments must keep spending money on security measures and working to educate people about the significance of privacy and security if personal data is to remain safe.

In conclusion, technology has profoundly impacted virtually every aspect of our lives, including society and culture, ethics, work, education, personal relationships, and security and privacy. The rise of artificial intelligence and machine learning has presented new ethical considerations, while automation is transforming the future of work. 

In education, technology has revolutionized the way we learn and access information. At the same time, our dependence on technology has brought new challenges in terms of personal relationships, communication, security, and privacy.

Jenni.ai is an AI tool that can help students write essays easily and quickly. Whether you're looking, for example, for essays on any of these topics or are seeking assistance in writing your essay, Jenni.ai offers a convenient solution. Sign up for a free trial today and experience the benefits of AI-powered writing assistance for yourself.

Try Jenni for free today

Create your first piece of content with Jenni today and never look back

  • CBSE Class 10th
  • CBSE Class 12th
  • UP Board 10th
  • UP Board 12th
  • Bihar Board 10th
  • Bihar Board 12th
  • Top Schools in India
  • Top Schools in Delhi
  • Top Schools in Mumbai
  • Top Schools in Chennai
  • Top Schools in Hyderabad
  • Top Schools in Kolkata
  • Top Schools in Pune
  • Top Schools in Bangalore

Products & Resources

  • JEE Main Knockout April
  • Free Sample Papers
  • Free Ebooks
  • NCERT Notes
  • NCERT Syllabus
  • NCERT Books
  • RD Sharma Solutions
  • Navodaya Vidyalaya Admission 2024-25
  • NCERT Solutions
  • NCERT Solutions for Class 12
  • NCERT Solutions for Class 11
  • NCERT solutions for Class 10
  • NCERT solutions for Class 9
  • NCERT solutions for Class 8
  • NCERT Solutions for Class 7
  • JEE Main 2024
  • JEE Advanced 2024
  • BITSAT 2024
  • View All Engineering Exams
  • Colleges Accepting B.Tech Applications
  • Top Engineering Colleges in India
  • Engineering Colleges in India
  • Engineering Colleges in Tamil Nadu
  • Engineering Colleges Accepting JEE Main
  • Top IITs in India
  • Top NITs in India
  • Top IIITs in India
  • JEE Main College Predictor
  • JEE Main Rank Predictor
  • MHT CET College Predictor
  • AP EAMCET College Predictor
  • TS EAMCET College Predictor
  • KCET College Predictor
  • JEE Advanced College Predictor
  • View All College Predictors
  • JEE Main Question Paper
  • JEE Main Mock Test
  • JEE Main Registration
  • JEE Main Syllabus
  • Download E-Books and Sample Papers
  • Compare Colleges
  • B.Tech College Applications
  • JEE Main Paper 2 Result
  • MAH MBA CET Exam
  • View All Management Exams

Colleges & Courses

  • MBA College Admissions
  • MBA Colleges in India
  • Top IIMs Colleges in India
  • Top Online MBA Colleges in India
  • MBA Colleges Accepting XAT Score
  • BBA Colleges in India
  • XAT College Predictor 2024
  • SNAP College Predictor 2023
  • NMAT College Predictor
  • MAT College Predictor 2024
  • CMAT College Predictor 2024
  • CAT Percentile Predictor 2023
  • CAT 2023 College Predictor
  • CMAT 2024 Registration
  • XAT Cut Off 2024
  • XAT Score vs Percentile 2024
  • CAT Score Vs Percentile
  • Download Helpful Ebooks
  • List of Popular Branches
  • QnA - Get answers to your doubts
  • IIM Fees Structure
  • AIIMS Nursing
  • Top Medical Colleges in India
  • Top Medical Colleges in India accepting NEET Score
  • Medical Colleges accepting NEET
  • List of Medical Colleges in India
  • List of AIIMS Colleges In India
  • Medical Colleges in Maharashtra
  • Medical Colleges in India Accepting NEET PG
  • NEET College Predictor
  • NEET PG College Predictor
  • NEET MDS College Predictor
  • DNB CET College Predictor
  • DNB PDCET College Predictor
  • NEET Application Form 2024
  • NEET PG Application Form 2024
  • NEET Cut off
  • NEET Online Preparation
  • Download Helpful E-books
  • LSAT India 2024
  • Colleges Accepting Admissions
  • Top Law Colleges in India
  • Law College Accepting CLAT Score
  • List of Law Colleges in India
  • Top Law Colleges in Delhi
  • Top Law Collages in Indore
  • Top Law Colleges in Chandigarh
  • Top Law Collages in Lucknow

Predictors & E-Books

  • CLAT College Predictor
  • MHCET Law ( 5 Year L.L.B) College Predictor
  • AILET College Predictor
  • Sample Papers
  • Compare Law Collages
  • Careers360 Youtube Channel
  • CLAT 2024 Exam Live
  • CLAT Result 2024
  • AIBE 18 Result 2023
  • SEED Result 2024
  • UCEED Answer Key 2024
  • NIFT Admit Card
  • CEED Answer Key 2024

Animation Courses

  • Animation Courses in India
  • Animation Courses in Bangalore
  • Animation Courses in Mumbai
  • Animation Courses in Pune
  • Animation Courses in Chennai
  • Animation Courses in Hyderabad
  • Design Colleges in India
  • Fashion Design Colleges in Bangalore
  • Fashion Design Colleges in Mumbai
  • Fashion Design Colleges in Pune
  • Fashion Design Colleges in Delhi
  • Fashion Design Colleges in Hyderabad
  • Fashion Design Colleges in India
  • Top Design Colleges in India
  • Free Design E-books
  • List of Branches
  • Careers360 Youtube channel
  • NIFT College Predictor
  • IPU CET BJMC
  • JMI Mass Communication Entrance Exam
  • IIMC Entrance Exam
  • Media & Journalism colleges in Delhi
  • Media & Journalism colleges in Bangalore
  • Media & Journalism colleges in Mumbai
  • List of Media & Journalism Colleges in India
  • CA Intermediate
  • CA Foundation
  • CS Executive
  • CS Professional
  • Difference between CA and CS
  • Difference between CA and CMA
  • CA Full form
  • CMA Full form
  • CS Full form
  • CA Salary In India

Top Courses & Careers

  • Bachelor of Commerce (B.Com)
  • Master of Commerce (M.Com)
  • Company Secretary
  • Cost Accountant
  • Charted Accountant
  • Credit Manager
  • Financial Advisor
  • Top Commerce Colleges in India
  • Top Government Commerce Colleges in India
  • Top Private Commerce Colleges in India
  • Top M.Com Colleges in Mumbai
  • Top B.Com Colleges in India
  • IT Colleges in Tamil Nadu
  • IT Colleges in Uttar Pradesh
  • MCA Colleges in India
  • BCA Colleges in India

Quick Links

  • Information Technology Courses
  • Programming Courses
  • Web Development Courses
  • Data Analytics Courses
  • Big Data Analytics Courses
  • RUHS Pharmacy Admission Test
  • Top Pharmacy Colleges in India
  • Pharmacy Colleges in Pune
  • Pharmacy Colleges in Mumbai
  • Colleges Accepting GPAT Score
  • Pharmacy Colleges in Lucknow
  • List of Pharmacy Colleges in Nagpur
  • GPAT Result
  • GPAT 2024 Admit Card
  • GPAT Question Papers
  • NCHMCT JEE 2024
  • Mah BHMCT CET
  • Top Hotel Management Colleges in Delhi
  • Top Hotel Management Colleges in Hyderabad
  • Top Hotel Management Colleges in Mumbai
  • Top Hotel Management Colleges in Tamil Nadu
  • Top Hotel Management Colleges in Maharashtra
  • B.Sc Hotel Management
  • Hotel Management
  • Diploma in Hotel Management and Catering Technology

Diploma Colleges

  • Top Diploma Colleges in Maharashtra
  • UPSC IAS 2024
  • SSC CGL 2024
  • IBPS RRB 2024
  • Previous Year Sample Papers
  • Free Competition E-books
  • Sarkari Result
  • QnA- Get your doubts answered
  • UPSC Previous Year Sample Papers
  • CTET Previous Year Sample Papers
  • SBI Clerk Previous Year Sample Papers
  • NDA Previous Year Sample Papers

Upcoming Events

  • NDA Application Form 2024
  • UPSC IAS Application Form 2024
  • CDS Application Form 2024
  • CTET Admit card 2024
  • HP TET Result 2023
  • SSC GD Constable Admit Card 2024
  • UPTET Notification 2024
  • SBI Clerk Result 2024

Other Exams

  • SSC CHSL 2024
  • UP PCS 2024
  • UGC NET 2024
  • RRB NTPC 2024
  • IBPS PO 2024
  • IBPS Clerk 2024
  • IBPS SO 2024
  • Top University in USA
  • Top University in Canada
  • Top University in Ireland
  • Top Universities in UK
  • Top Universities in Australia
  • Best MBA Colleges in Abroad
  • Business Management Studies Colleges

Top Countries

  • Study in USA
  • Study in UK
  • Study in Canada
  • Study in Australia
  • Study in Ireland
  • Study in Germany
  • Study in China
  • Study in Europe

Student Visas

  • Student Visa Canada
  • Student Visa UK
  • Student Visa USA
  • Student Visa Australia
  • Student Visa Germany
  • Student Visa New Zealand
  • Student Visa Ireland
  • CUET PG 2024
  • IGNOU B.Ed Admission 2024
  • DU Admission
  • UP B.Ed JEE 2024
  • DDU Entrance Exam
  • IIT JAM 2024
  • ICAR AIEEA Exam
  • Universities in India 2023
  • Top Universities in India 2023
  • Top Colleges in India
  • Top Universities in Uttar Pradesh 2023
  • Top Universities in Bihar 2023
  • Top Universities in Madhya Pradesh 2023
  • Top Universities in Tamil Nadu 2023
  • Central Universities in India
  • CUET PG Admit Card 2024
  • IGNOU Date Sheet
  • CUET Mock Test 2024
  • CUET Application Form 2024
  • CUET PG Syllabus 2024
  • CUET Participating Universities 2024
  • CUET Previous Year Question Paper
  • ICAR AIEEA Previous Year Question Papers
  • E-Books and Sample Papers
  • CUET Exam Pattern 2024
  • CUET Exam Date 2024
  • CUET Syllabus 2024
  • IGNOU Exam Form 2024
  • IGNOU Result 2023
  • CUET PG Courses 2024

Engineering Preparation

  • Knockout JEE Main 2024
  • Test Series JEE Main 2024
  • JEE Main 2024 Rank Booster

Medical Preparation

  • Knockout NEET 2024
  • Test Series NEET 2024
  • Rank Booster NEET 2024

Online Courses

  • JEE Main One Month Course
  • NEET One Month Course
  • IBSAT Free Mock Tests
  • IIT JEE Foundation Course
  • Knockout BITSAT 2024
  • Career Guidance Tool

Top Streams

  • IT & Software Certification Courses
  • Engineering and Architecture Certification Courses
  • Programming And Development Certification Courses
  • Business and Management Certification Courses
  • Marketing Certification Courses
  • Health and Fitness Certification Courses
  • Design Certification Courses

Specializations

  • Digital Marketing Certification Courses
  • Cyber Security Certification Courses
  • Artificial Intelligence Certification Courses
  • Business Analytics Certification Courses
  • Data Science Certification Courses
  • Cloud Computing Certification Courses
  • Machine Learning Certification Courses
  • View All Certification Courses
  • UG Degree Courses
  • PG Degree Courses
  • Short Term Courses
  • Free Courses
  • Online Degrees and Diplomas
  • Compare Courses

Top Providers

  • Coursera Courses
  • Udemy Courses
  • Edx Courses
  • Swayam Courses
  • upGrad Courses
  • Simplilearn Courses
  • Great Learning Courses

Popular Searches

Access premium articles, webinars, resources to make the best decisions for career, course, exams, scholarships, study abroad and much more with

Plan, Prepare & Make the Best Career Choices

Technology Essay

Technology has changed our daily lives. Technology has made the world closer and more connected. With increasing globalization and liberalization, all benefits are now within the reach of people. Today, the average middle-class family can afford mobile phones, televisions, washing machines, refrigerators, computers, the internet, and more. We can witness events unfolding far away at the touch of a button. Here are a few sample essays on the topic ‘technology’.

100 Words Essay On Technology

200 words essay on technology, 500 words essay on technology, importance of technology in education, importance of technology in health sector, disadvantages of technology.

Technology Essay

Communication has become much faster and easier with the advent of technology such as telephones, fax machines, mobile phones, the Internet, multimedia, and email. There is no more resorting to sending physical letters and waiting days for a reply. Technology has made communication so easy that we can connect with anyone from anywhere by making a call on our mobile phones or sending a message. Innovation in communication technology has a powerful impact on social life. Human socializing has become easier with the use of social networking sites, dating services, and even matrimonial and gaming services available on mobile applications and websites. Technology has proven to be a boon to society in all aspects.

Technology is the study and application of technical aspects of materials, science, and nature to design mechanical, electrical, biological, and information systems to increase efficiency and make life easier. The history of technology dates back to the Neolithic Age or earlier. Pre-Neolithic people put their skills, resources, and developed technologies to their best use. Since then, technology has brought incredible advances to people's lives.

The first visible use of large-scale technology began in the 18th century as the Industrial Revolution, when the human hand was replaced by machine tools. After that, many researchers, scientists, and engineers tried to bring technology closer to humans. This human-technology connection has made our lives more technology-dependent and child's play.

Technology has moved from the atomic level to the gross level of our daily lives. Life without technology is unimaginable. The implementation of technology has made it possible to see other planets several light-years away. Technology has also mobilized our economy. People can easily hang out with friends and relatives, near or far, as they like. We can easily find the existence of technology such as shopping, automation, IT, medicine, space, education, and communication. Technology has therefore made the lives of human beings easier and efficient.

Technology is the scientific knowledge used to manufacture things. As technology advances, we all gravitate toward new tools and techniques. From an early age, children observe how their parents and family use technology. In this regard, they begin to adapt as well. We recognize that technology is booming in today's world—that is contributing to human development. We all depend on technology and its applications. Everyone uses technology to make life easier. Technologies used in our daily lives include consumer electronics, computers, laptops, mobile phones, gadgets, and applications. Most importantly, it improves the quality of life and overall human development. Needless to say, technology is used in many fields such as science, medicine, agriculture, space, education, and research.

With growing educational technology, children experience a better learning environment. They can extract and learn tough concepts. With the help of technology, children can share and discuss their questions with their teachers. Also, they can network with people around the world to gain knowledge and also access resources for exams and project work.

Technology continues to improve the education industry over time. Technology puts a variety of learning tools at our fingertips for students and parents. Teachers can collaborate with classrooms around the world and share ideas and resources online. Students have instant access to a wealth of great information on the Internet. Teachers and students can access numerous resources available on the Internet and use them for project work, research, and more. Online learning has changed the education system.

The COVID-19 pandemic has brought about a paradigm shift through the use of technology. School-age children continue to be educated at home, and schools are making it easier for teachers to provide education online from home. The student learned and used his 21st-century skills and tools such as virtual classrooms, AR (augmented reality), and robotics. All of these have greatly improved communication and collaboration.

Technological advancements have improved the quality of life and longevity of individuals and the lives of many medical professionals and students training to become medical professionals. It allows quick access to each patient's medical records. The Internet has dramatically changed the patient-physician relationship. Everyone can stay on top of the latest medical discoveries, share treatment information, and support each other in dealing with medical issues. Thanks to modern technology, it is now possible to contact a doctor from the comfort of your home. There are many websites and apps for contacting doctors and getting medical help.

Breakthrough innovations in surgery, artificial organs, brain implants, and connected sensors are examples of groundbreaking developments in the healthcare industry. Hospitals use a variety of tools and applications to perform administrative tasks and use digital marketing to promote their services.

People have become dependent on various gadgets and machines, leading to a lack of exercise and an increasingly sedentary lifestyle. Computers and smartphones are increasing social isolation. Young children spend a lot of time surfing the internet, playing games, and ignoring real life. The use of technology also leads to unemployment and discourages students from learning. Dependence on technology also increases privacy concerns and cybercrime, giving way to hackers.

Explore Career Options (By Industry)

  • Construction
  • Entertainment
  • Manufacturing
  • Information Technology

Data Administrator

Database professionals use software to store and organise data such as financial information, and customer shipping records. Individuals who opt for a career as data administrators ensure that data is available for users and secured from unauthorised sales. DB administrators may work in various types of industries. It may involve computer systems design, service firms, insurance companies, banks and hospitals.

Bio Medical Engineer

The field of biomedical engineering opens up a universe of expert chances. An Individual in the biomedical engineering career path work in the field of engineering as well as medicine, in order to find out solutions to common problems of the two fields. The biomedical engineering job opportunities are to collaborate with doctors and researchers to develop medical systems, equipment, or devices that can solve clinical problems. Here we will be discussing jobs after biomedical engineering, how to get a job in biomedical engineering, biomedical engineering scope, and salary. 

Ethical Hacker

A career as ethical hacker involves various challenges and provides lucrative opportunities in the digital era where every giant business and startup owns its cyberspace on the world wide web. Individuals in the ethical hacker career path try to find the vulnerabilities in the cyber system to get its authority. If he or she succeeds in it then he or she gets its illegal authority. Individuals in the ethical hacker career path then steal information or delete the file that could affect the business, functioning, or services of the organization.

Data Analyst

The invention of the database has given fresh breath to the people involved in the data analytics career path. Analysis refers to splitting up a whole into its individual components for individual analysis. Data analysis is a method through which raw data are processed and transformed into information that would be beneficial for user strategic thinking.

Data are collected and examined to respond to questions, evaluate hypotheses or contradict theories. It is a tool for analyzing, transforming, modeling, and arranging data with useful knowledge, to assist in decision-making and methods, encompassing various strategies, and is used in different fields of business, research, and social science.

Water Manager

A career as water manager needs to provide clean water, preventing flood damage, and disposing of sewage and other wastes. He or she also repairs and maintains structures that control the flow of water, such as reservoirs, sea defense walls, and pumping stations. In addition to these, the Manager has other responsibilities related to water resource management.

Geothermal Engineer

Individuals who opt for a career as geothermal engineers are the professionals involved in the processing of geothermal energy. The responsibilities of geothermal engineers may vary depending on the workplace location. Those who work in fields design facilities to process and distribute geothermal energy. They oversee the functioning of machinery used in the field.

Geotechnical engineer

The role of geotechnical engineer starts with reviewing the projects needed to define the required material properties. The work responsibilities are followed by a site investigation of rock, soil, fault distribution and bedrock properties on and below an area of interest. The investigation is aimed to improve the ground engineering design and determine their engineering properties that include how they will interact with, on or in a proposed construction. 

The role of geotechnical engineer in mining includes designing and determining the type of foundations, earthworks, and or pavement subgrades required for the intended man-made structures to be made. Geotechnical engineering jobs are involved in earthen and concrete dam construction projects, working under a range of normal and extreme loading conditions. 

Operations Manager

Individuals in the operations manager jobs are responsible for ensuring the efficiency of each department to acquire its optimal goal. They plan the use of resources and distribution of materials. The operations manager's job description includes managing budgets, negotiating contracts, and performing administrative tasks.

Budget Analyst

Budget analysis, in a nutshell, entails thoroughly analyzing the details of a financial budget. The budget analysis aims to better understand and manage revenue. Budget analysts assist in the achievement of financial targets, the preservation of profitability, and the pursuit of long-term growth for a business. Budget analysts generally have a bachelor's degree in accounting, finance, economics, or a closely related field. Knowledge of Financial Management is of prime importance in this career.

Finance Executive

A career as a Finance Executive requires one to be responsible for monitoring an organisation's income, investments and expenses to create and evaluate financial reports. His or her role involves performing audits, invoices, and budget preparations. He or she manages accounting activities, bank reconciliations, and payable and receivable accounts.  

Product Manager

A Product Manager is a professional responsible for product planning and marketing. He or she manages the product throughout the Product Life Cycle, gathering and prioritising the product. A product manager job description includes defining the product vision and working closely with team members of other departments to deliver winning products.  

Investment Banker

An Investment Banking career involves the invention and generation of capital for other organizations, governments, and other entities. Individuals who opt for a career as Investment Bankers are the head of a team dedicated to raising capital by issuing bonds. Investment bankers are termed as the experts who have their fingers on the pulse of the current financial and investing climate. Students can pursue various Investment Banker courses, such as Banking and Insurance , and  Economics to opt for an Investment Banking career path.

Underwriter

An underwriter is a person who assesses and evaluates the risk of insurance in his or her field like mortgage, loan, health policy, investment, and so on and so forth. The underwriter career path does involve risks as analysing the risks means finding out if there is a way for the insurance underwriter jobs to recover the money from its clients. If the risk turns out to be too much for the company then in the future it is an underwriter who will be held accountable for it. Therefore, one must carry out his or her job with a lot of attention and diligence.

Commercial Manager

A Commercial Manager negotiates, advises and secures information about pricing for commercial contracts. He or she is responsible for developing financial plans in order to maximise the business's profitability.

Welding Engineer

Welding Engineer Job Description: A Welding Engineer work involves managing welding projects and supervising welding teams. He or she is responsible for reviewing welding procedures, processes and documentation. A career as Welding Engineer involves conducting failure analyses and causes on welding issues. 

Transportation Planner

A career as Transportation Planner requires technical application of science and technology in engineering, particularly the concepts, equipment and technologies involved in the production of products and services. In fields like land use, infrastructure review, ecological standards and street design, he or she considers issues of health, environment and performance. A Transportation Planner assigns resources for implementing and designing programmes. He or she is responsible for assessing needs, preparing plans and forecasts and compliance with regulations.

Construction Manager

Individuals who opt for a career as construction managers have a senior-level management role offered in construction firms. Responsibilities in the construction management career path are assigning tasks to workers, inspecting their work, and coordinating with other professionals including architects, subcontractors, and building services engineers.

Environmental Engineer

Individuals who opt for a career as an environmental engineer are construction professionals who utilise the skills and knowledge of biology, soil science, chemistry and the concept of engineering to design and develop projects that serve as solutions to various environmental problems. 

Naval Architect

A Naval Architect is a professional who designs, produces and repairs safe and sea-worthy surfaces or underwater structures. A Naval Architect stays involved in creating and designing ships, ferries, submarines and yachts with implementation of various principles such as gravity, ideal hull form, buoyancy and stability. 

Field Surveyor

Are you searching for a Field Surveyor Job Description? A Field Surveyor is a professional responsible for conducting field surveys for various places or geographical conditions. He or she collects the required data and information as per the instructions given by senior officials. 

Highway Engineer

Highway Engineer Job Description:  A Highway Engineer is a civil engineer who specialises in planning and building thousands of miles of roads that support connectivity and allow transportation across the country. He or she ensures that traffic management schemes are effectively planned concerning economic sustainability and successful implementation.

Conservation Architect

A Conservation Architect is a professional responsible for conserving and restoring buildings or monuments having a historic value. He or she applies techniques to document and stabilise the object’s state without any further damage. A Conservation Architect restores the monuments and heritage buildings to bring them back to their original state.

Orthotist and Prosthetist

Orthotists and Prosthetists are professionals who provide aid to patients with disabilities. They fix them to artificial limbs (prosthetics) and help them to regain stability. There are times when people lose their limbs in an accident. In some other occasions, they are born without a limb or orthopaedic impairment. Orthotists and prosthetists play a crucial role in their lives with fixing them to assistive devices and provide mobility.

Veterinary Doctor

A veterinary doctor is a medical professional with a degree in veterinary science. The veterinary science qualification is the minimum requirement to become a veterinary doctor. There are numerous veterinary science courses offered by various institutes. He or she is employed at zoos to ensure they are provided with good health facilities and medical care to improve their life expectancy.

Pathologist

A career in pathology in India is filled with several responsibilities as it is a medical branch and affects human lives. The demand for pathologists has been increasing over the past few years as people are getting more aware of different diseases. Not only that, but an increase in population and lifestyle changes have also contributed to the increase in a pathologist’s demand. The pathology careers provide an extremely huge number of opportunities and if you want to be a part of the medical field you can consider being a pathologist. If you want to know more about a career in pathology in India then continue reading this article.

Speech Therapist

Gynaecologist.

Gynaecology can be defined as the study of the female body. The job outlook for gynaecology is excellent since there is evergreen demand for one because of their responsibility of dealing with not only women’s health but also fertility and pregnancy issues. Although most women prefer to have a women obstetrician gynaecologist as their doctor, men also explore a career as a gynaecologist and there are ample amounts of male doctors in the field who are gynaecologists and aid women during delivery and childbirth. 

An oncologist is a specialised doctor responsible for providing medical care to patients diagnosed with cancer. He or she uses several therapies to control the cancer and its effect on the human body such as chemotherapy, immunotherapy, radiation therapy and biopsy. An oncologist designs a treatment plan based on a pathology report after diagnosing the type of cancer and where it is spreading inside the body.

Audiologist

The audiologist career involves audiology professionals who are responsible to treat hearing loss and proactively preventing the relevant damage. Individuals who opt for a career as an audiologist use various testing strategies with the aim to determine if someone has a normal sensitivity to sounds or not. After the identification of hearing loss, a hearing doctor is required to determine which sections of the hearing are affected, to what extent they are affected, and where the wound causing the hearing loss is found. As soon as the hearing loss is identified, the patients are provided with recommendations for interventions and rehabilitation such as hearing aids, cochlear implants, and appropriate medical referrals. While audiology is a branch of science that studies and researches hearing, balance, and related disorders.

Cardiothoracic Surgeon

Cardiothoracic surgeons are an important part of the surgical team. They usually work in hospitals, and perform emergency as well as scheduled operations. Some of the cardiothoracic surgeons also work in teaching hospitals working as teachers and guides for medical students aspiring to become a cardiothoracic surgeon. A career as a cardiothoracic surgeon involves treating and managing various types of conditions within their speciality that includes their presence at different locations such as outpatient clinics, team meetings, and ward rounds. 

For an individual who opts for a career as an actor, the primary responsibility is to completely speak to the character he or she is playing and to persuade the crowd that the character is genuine by connecting with them and bringing them into the story. This applies to significant roles and littler parts, as all roles join to make an effective creation. Here in this article, we will discuss how to become an actor in India, actor exams, actor salary in India, and actor jobs. 

Individuals who opt for a career as acrobats create and direct original routines for themselves, in addition to developing interpretations of existing routines. The work of circus acrobats can be seen in a variety of performance settings, including circus, reality shows, sports events like the Olympics, movies and commercials. Individuals who opt for a career as acrobats must be prepared to face rejections and intermittent periods of work. The creativity of acrobats may extend to other aspects of the performance. For example, acrobats in the circus may work with gym trainers, celebrities or collaborate with other professionals to enhance such performance elements as costume and or maybe at the teaching end of the career.

Video Game Designer

Career as a video game designer is filled with excitement as well as responsibilities. A video game designer is someone who is involved in the process of creating a game from day one. He or she is responsible for fulfilling duties like designing the character of the game, the several levels involved, plot, art and similar other elements. Individuals who opt for a career as a video game designer may also write the codes for the game using different programming languages.

Depending on the video game designer job description and experience they may also have to lead a team and do the early testing of the game in order to suggest changes and find loopholes.

Talent Agent

The career as a Talent Agent is filled with responsibilities. A Talent Agent is someone who is involved in the pre-production process of the film. It is a very busy job for a Talent Agent but as and when an individual gains experience and progresses in the career he or she can have people assisting him or her in work. Depending on one’s responsibilities, number of clients and experience he or she may also have to lead a team and work with juniors under him or her in a talent agency. In order to know more about the job of a talent agent continue reading the article.

If you want to know more about talent agent meaning, how to become a Talent Agent, or Talent Agent job description then continue reading this article.

Radio Jockey

Radio Jockey is an exciting, promising career and a great challenge for music lovers. If you are really interested in a career as radio jockey, then it is very important for an RJ to have an automatic, fun, and friendly personality. If you want to get a job done in this field, a strong command of the language and a good voice are always good things. Apart from this, in order to be a good radio jockey, you will also listen to good radio jockeys so that you can understand their style and later make your own by practicing.

A career as radio jockey has a lot to offer to deserving candidates. If you want to know more about a career as radio jockey, and how to become a radio jockey then continue reading the article.

Videographer

Careers in videography are art that can be defined as a creative and interpretive process that culminates in the authorship of an original work of art rather than a simple recording of a simple event. It would be wrong to portrait it as a subcategory of photography, rather photography is one of the crafts used in videographer jobs in addition to technical skills like organization, management, interpretation, and image-manipulation techniques. Students pursue Visual Media , Film, Television, Digital Video Production to opt for a videographer career path. The visual impacts of a film are driven by the creative decisions taken in videography jobs. Individuals who opt for a career as a videographer are involved in the entire lifecycle of a film and production. 

Multimedia Specialist

A multimedia specialist is a media professional who creates, audio, videos, graphic image files, computer animations for multimedia applications. He or she is responsible for planning, producing, and maintaining websites and applications. 

An individual who is pursuing a career as a producer is responsible for managing the business aspects of production. They are involved in each aspect of production from its inception to deception. Famous movie producers review the script, recommend changes and visualise the story. 

They are responsible for overseeing the finance involved in the project and distributing the film for broadcasting on various platforms. A career as a producer is quite fulfilling as well as exhaustive in terms of playing different roles in order for a production to be successful. Famous movie producers are responsible for hiring creative and technical personnel on contract basis.

Copy Writer

In a career as a copywriter, one has to consult with the client and understand the brief well. A career as a copywriter has a lot to offer to deserving candidates. Several new mediums of advertising are opening therefore making it a lucrative career choice. Students can pursue various copywriter courses such as Journalism , Advertising , Marketing Management . Here, we have discussed how to become a freelance copywriter, copywriter career path, how to become a copywriter in India, and copywriting career outlook. 

Careers in journalism are filled with excitement as well as responsibilities. One cannot afford to miss out on the details. As it is the small details that provide insights into a story. Depending on those insights a journalist goes about writing a news article. A journalism career can be stressful at times but if you are someone who is passionate about it then it is the right choice for you. If you want to know more about the media field and journalist career then continue reading this article.

For publishing books, newspapers, magazines and digital material, editorial and commercial strategies are set by publishers. Individuals in publishing career paths make choices about the markets their businesses will reach and the type of content that their audience will be served. Individuals in book publisher careers collaborate with editorial staff, designers, authors, and freelance contributors who develop and manage the creation of content.

In a career as a vlogger, one generally works for himself or herself. However, once an individual has gained viewership there are several brands and companies that approach them for paid collaboration. It is one of those fields where an individual can earn well while following his or her passion. 

Ever since internet costs got reduced the viewership for these types of content has increased on a large scale. Therefore, a career as a vlogger has a lot to offer. If you want to know more about the Vlogger eligibility, roles and responsibilities then continue reading the article. 

Individuals in the editor career path is an unsung hero of the news industry who polishes the language of the news stories provided by stringers, reporters, copywriters and content writers and also news agencies. Individuals who opt for a career as an editor make it more persuasive, concise and clear for readers. In this article, we will discuss the details of the editor's career path such as how to become an editor in India, editor salary in India and editor skills and qualities.

Advertising Manager

Advertising managers consult with the financial department to plan a marketing strategy schedule and cost estimates. We often see advertisements that attract us a lot, not every advertisement is just to promote a business but some of them provide a social message as well. There was an advertisement for a washing machine brand that implies a story that even a man can do household activities. And of course, how could we even forget those jingles which we often sing while working?

Photographer

Photography is considered both a science and an art, an artistic means of expression in which the camera replaces the pen. In a career as a photographer, an individual is hired to capture the moments of public and private events, such as press conferences or weddings, or may also work inside a studio, where people go to get their picture clicked. Photography is divided into many streams each generating numerous career opportunities in photography. With the boom in advertising, media, and the fashion industry, photography has emerged as a lucrative and thrilling career option for many Indian youths.

Social Media Manager

A career as social media manager involves implementing the company’s or brand’s marketing plan across all social media channels. Social media managers help in building or improving a brand’s or a company’s website traffic, build brand awareness, create and implement marketing and brand strategy. Social media managers are key to important social communication as well.

Quality Controller

A quality controller plays a crucial role in an organisation. He or she is responsible for performing quality checks on manufactured products. He or she identifies the defects in a product and rejects the product. 

A quality controller records detailed information about products with defects and sends it to the supervisor or plant manager to take necessary actions to improve the production process.

Production Manager

A Team Leader is a professional responsible for guiding, monitoring and leading the entire group. He or she is responsible for motivating team members by providing a pleasant work environment to them and inspiring positive communication. A Team Leader contributes to the achievement of the organisation’s goals. He or she improves the confidence, product knowledge and communication skills of the team members and empowers them.

Procurement Manager

The procurement Manager is also known as  Purchasing Manager. The role of the Procurement Manager is to source products and services for a company. A Procurement Manager is involved in developing a purchasing strategy, including the company's budget and the supplies as well as the vendors who can provide goods and services to the company. His or her ultimate goal is to bring the right products or services at the right time with cost-effectiveness. 

Merchandiser

A career as a merchandiser requires one to promote specific products and services of one or different brands, to increase the in-house sales of the store. Merchandising job focuses on enticing the customers to enter the store and hence increasing their chances of buying a product. Although the buyer is the one who selects the lines, it all depends on the merchandiser on how much money a buyer will spend, how many lines will be purchased, and what will be the quantity of those lines. In a career as merchandiser, one is required to closely work with the display staff in order to decide in what way a product would be displayed so that sales can be maximised. In small brands or local retail stores, a merchandiser is responsible for both merchandising and buying. 

Azure Administrator

An Azure Administrator is a professional responsible for implementing, monitoring, and maintaining Azure Solutions. He or she manages cloud infrastructure service instances and various cloud servers as well as sets up public and private cloud systems. 

AWS Solution Architect

An AWS Solution Architect is someone who specializes in developing and implementing cloud computing systems. He or she has a good understanding of the various aspects of cloud computing and can confidently deploy and manage their systems. He or she troubleshoots the issues and evaluates the risk from the third party. 

Computer Programmer

Careers in computer programming primarily refer to the systematic act of writing code and moreover include wider computer science areas. The word 'programmer' or 'coder' has entered into practice with the growing number of newly self-taught tech enthusiasts. Computer programming careers involve the use of designs created by software developers and engineers and transforming them into commands that can be implemented by computers. These commands result in regular usage of social media sites, word-processing applications and browsers.

ITSM Manager

Information security manager.

Individuals in the information security manager career path involves in overseeing and controlling all aspects of computer security. The IT security manager job description includes planning and carrying out security measures to protect the business data and information from corruption, theft, unauthorised access, and deliberate attack 

Big Data Analytics Engineer

Big Data Analytics Engineer Job Description: A Big Data Analytics Engineer is responsible for collecting data from various sources. He or she has to sort the organised and chaotic data to find out patterns. The role of Big Data Engineer involves converting messy information into useful data that is clean, accurate and actionable. 

Applications for Admissions are open.

NEET 2024 Most scoring concepts

NEET 2024 Most scoring concepts

Just Study 32% of the NEET syllabus and Score upto 100% marks

JEE Main high scoring chapters and topics

JEE Main high scoring chapters and topics

As per latest 2024 syllabus. Study 40% syllabus and score upto 100% marks in JEE

NEET previous year papers with solutions

NEET previous year papers with solutions

Solve NEET previous years question papers & check your preparedness

JEE Main Important Mathematics Formulas

JEE Main Important Mathematics Formulas

As per latest 2024 syllabus. Maths formulas, equations, & theorems of class 11 & 12th chapters

JEE Main Important Physics formulas

JEE Main Important Physics formulas

As per latest 2024 syllabus. Physics formulas, equations, & laws of class 11 & 12th chapters

JEE Main Important Chemistry formulas

JEE Main Important Chemistry formulas

As per latest 2024 syllabus. Chemistry formulas, equations, & laws of class 11 & 12th chapters

Everything about Education

Latest updates, Exclusive Content, Webinars and more.

Download Careers360 App's

Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile

student

Cetifications

student

We Appeared in

Economic Times

Home — Essay Samples — Science — Evolution — The Evolution of Technology

test_template

The Evolution of Technology

  • Categories: Dependence on Technology Evolution

About this sample

close

Words: 640 |

Published: Dec 18, 2018

Words: 640 | Page: 1 | 4 min read

Technology Essay: Hook Examples

  • The Digital Revolution: In the 21st century, technology has reshaped every facet of our lives. This essay delves into the profound impact of the digital revolution, from smartphones to artificial intelligence, and how it continues to shape our world.
  • From Stone Tools to Silicon Chips: Human history is marked by technological advancements. Join us as we journey through time, exploring the milestones that have propelled humanity from the Stone Age to the Information Age.
  • The Ethical Crossroads: Advancements in technology bring forth ethical dilemmas. This essay examines the ethical challenges posed by emerging technologies, from genetic engineering to surveillance, and the need for responsible innovation.
  • Technology in Education: Education is undergoing a digital transformation. Explore how technology is revolutionizing classrooms, expanding access to knowledge, and reshaping the way we learn.
  • The Future Unveiled: What does the future hold in the realm of technology? In this essay, we’ll peer into the crystal ball of tech trends, from quantum computing to space exploration, and envision the world that awaits us.

Works Cited

  • Feeney, A. (2019). Overcoming Fear: Finding the Courage to Face Your Fears and Embrace Change. John Wiley & Sons.
  • Seligman, M. E. (2006). Learned optimism: How to change your mind and your life. Vintage.
  • Adams, S. K. (2019). How to Overcome Fear and Find Your Courage: Overcoming Fear, Gaining Confidence, Building Trust, and Improving Self Esteem. Independently Published.
  • Brown, B. (2012). Daring Greatly: How the Courage to Be Vulnerable Transforms the Way We Live, Love, Parent, and Lead. Avery.
  • Knaus, W. J. (2006). Fearless: Imagine Your Life Without Fear. American Management Association.
  • Chansky, T. E. (2014). Freeing your child from anxiety: Powerful, practical solutions to overcome your child’s fears, worries, and phobias. Harmony.
  • Lerner, H. G. (2015). Fear and other uninvited guests: Tackling the anxiety, fear, and shame that keep us from optimal living and loving. HarperCollins.
  • Rappaport, J. (2017). The Courage Habit: How to Accept Your Fears, Release the Past, and Live Your Courageous Life. New Harbinger Publications.
  • McGrath, C. (2018). The Psychology of Fear in Organizations: How to Transform Anxiety into Well-being, Productivity and Innovation. Kogan Page.
  • Gilbert, E. (2019). Big Magic: Creative Living Beyond Fear. Riverhead Books.

Image of Alex Wood

Cite this Essay

Let us write you an essay from scratch

  • 450+ experts on 30 subjects ready to help
  • Custom essay delivered in as few as 3 hours

Get high-quality help

author

Prof Ernest (PhD)

Verified writer

  • Expert in: Information Science and Technology Science

writer

+ 120 experts online

By clicking “Check Writers’ Offers”, you agree to our terms of service and privacy policy . We’ll occasionally send you promo and account related email

No need to pay just yet!

Related Essays

2 pages / 915 words

4 pages / 1919 words

3 pages / 1349 words

1 pages / 287 words

Remember! This is just a sample.

You can get your custom paper by one of our expert writers.

121 writers online

The Evolution of Technology Essay

Still can’t find what you need?

Browse our vast selection of original essay samples, each expertly formatted and styled

Related Essays on Evolution

Modern technology enables us to prenatally diagnose birth defects of genetic disor- ders inherited from the family. Examples of these disorders are the abnormal growth of the body, mental retardation and other conditions which [...]

Uneven distribution of mineral deposits through space and time reflect evolution of the earth in terms of hydrosphere-atmosphere, changes in global heat flow and trends in plate tectonic settings and (Barley & Groves, 1992; [...]

Game Theory is a groundbreaking theory which has explained various analyses in different domains of Science and Commerce. In here, strategies of Evolutionary Biology are explained in the light of Game Theory. Mathematics and [...]

12 Monkeys, directed by Terry Gilliam, depicts a story about time-travel. Cole, the main actor, volunteers to go back into time to help prevent the spread of a virus. During his travel, viewers are able to grasp the idea of [...]

The continental drift is a movement of earth continents. The continental drift demonstrated how continents shift positions on the earth’s surface. It was discovered and developed in the early 20th century. The continents are [...]

Time travel is a plot device almost as old as science fiction itself. It seems that as soon as we have permission to create whatever technology we want we are using it to explore and change the past and future. From Star Trek’s [...]

Related Topics

By clicking “Send”, you agree to our Terms of service and Privacy statement . We will occasionally send you account related emails.

Where do you want us to send this sample?

By clicking “Continue”, you agree to our terms of service and privacy policy.

Be careful. This essay is not unique

This essay was donated by a student and is likely to have been used and submitted before

Download this Sample

Free samples may contain mistakes and not unique parts

Sorry, we could not paraphrase this essay. Our professional writers can rewrite it and get you a unique paper.

Please check your inbox.

We can write you a custom essay that will follow your exact instructions and meet the deadlines. Let's fix your grades together!

Get Your Personalized Essay in 3 Hours or Less!

We use cookies to personalyze your web-site experience. By continuing we’ll assume you board with our cookie policy .

  • Instructions Followed To The Letter
  • Deadlines Met At Every Stage
  • Unique And Plagiarism Free

define technology essay

Enter your email to download PDF and receive updates from OSMO

Scan to get started.

The Assessment App is available only on the Apple App Store . Please scan the QR code below with your iPhone device to download the app.

define technology essay

Technology Essay

Essay on technology for kids.

Technology is the scientific knowledge used in the production of things. With the advancement of technology, we all are inclined towards new tools and techniques. Kids from an early age watch their parents and family members use technology. In this regard, they start adapting to the same. We are aware of the fact that technology has been booming in today’s world. It is contributing to the development of mankind. We all are dependent on technology and its applications. Everyone is using technology to make their lives easier. The technologies that are used in day-to-day life are appliances, computers, laptops, mobile phones, gadgets, applications, and many more. Most importantly, it improves the quality of life and overall development of humans. Not to forget, technology is used in various fields such as science, medicine, agriculture, space, education, research, etc.

In the field of education, technology is booming at a much faster rate. With the help of technology, kids are able to expand their knowledge for better learning outcomes. It makes the process of learning simple and easily understandable. There are many tools and applications in technology that help kids to understand concepts easily. The main reason for using technology in education is that it saves time, provides personalized learning and engaging concepts. Kids also develop their cognitive skills by playing technology-based games and activities. Additionally, it increases the quality and efficiency of things that they are doing. Technology has made our lives much easier and comfortable. In this technology essay, you can read about technology and its benefits in various fields. 

Benefits Of Technology 

Technology is extremely beneficial in all aspects of life. There is hardly any field where technology is not used. In recent years, we have seen the use of technology in every household. Isn’t it? The common man can use technology for better living. With just a click or touch, you can experience the task being accomplished in a matter of seconds. Here are some of the benefits of technology in various fields mentioned below:

  • Communication: Technology is widely used for communication. We all have smartphones, laptops, computers, gadgets and other devices. With the help of technology, we can easily communicate with others. There are many platforms and applications on phones and computers that enable us to communicate with each other effectively. Kids especially can interact with their teachers and fellow students for educational purposes. Within a fraction of seconds, you will be able to connect to your loved ones. 
  • Education: With the growing education technology, kids are experiencing better learning environments. They are able to extract and learn concepts that are difficult to understand. With the help of technology, kids can share and discuss their queries with teachers. In addition to this, they will be able to connect with people around the world to acquire knowledge. Moreover, they will have access to resources for their exams and project work. 
  • Science & Medicine: Technology plays an important role in the field of science and medicine. It helps in developing new innovations and discoveries for mankind. Further, it helps in the field of medicine where you can expand your knowledge to become a medical expert. 
  • Industries: With the help of technology, many big and small scale industries are booming. They are able to produce and yield products in less time keeping the quality in mind. There is less pressure on the people who are now able to produce the yield within the given timeframe. 

Also explore: Essay on internet , essay on computer and essay on science .

Conclusion 

Technology is the most important tool for the development of mankind. It enhances the efficacy of the product that we are using. Technology is useful in all the sectors of life such as industries, medicine, business, education, etc. It makes life easier and better. 

We hope this technology essay was useful to you. Check essays for kids to explore more topics. 

Frequently Asked Questions on Technology Essay

What is a technology essay.

It is a short write-up on technology which refers to the use of scientific knowledge on practical things that you are doing with the help of tools and techniques.

What are the benefits of technology?

Technology helps in making things easier for mankind. It is used in various fields such as medicine, education, communication, industries, etc.

What is the use of technology?

Technology saves time, improves productivity, increases efficiency, makes work easier and faster.

To find more information, explore related articles such as communication essay and essay on internet .

Frequently asked questions

What is an essay.

An essay is a focused piece of writing that explains, argues, describes, or narrates.

In high school, you may have to write many different types of essays to develop your writing skills.

Academic essays at college level are usually argumentative : you develop a clear thesis about your topic and make a case for your position using evidence, analysis and interpretation.

Frequently asked questions: Writing an essay

For a stronger conclusion paragraph, avoid including:

  • Important evidence or analysis that wasn’t mentioned in the main body
  • Generic concluding phrases (e.g. “In conclusion…”)
  • Weak statements that undermine your argument (e.g. “There are good points on both sides of this issue.”)

Your conclusion should leave the reader with a strong, decisive impression of your work.

Your essay’s conclusion should contain:

  • A rephrased version of your overall thesis
  • A brief review of the key points you made in the main body
  • An indication of why your argument matters

The conclusion may also reflect on the broader implications of your argument, showing how your ideas could applied to other contexts or debates.

The conclusion paragraph of an essay is usually shorter than the introduction . As a rule, it shouldn’t take up more than 10–15% of the text.

The “hook” is the first sentence of your essay introduction . It should lead the reader into your essay, giving a sense of why it’s interesting.

To write a good hook, avoid overly broad statements or long, dense sentences. Try to start with something clear, concise and catchy that will spark your reader’s curiosity.

Your essay introduction should include three main things, in this order:

  • An opening hook to catch the reader’s attention.
  • Relevant background information that the reader needs to know.
  • A thesis statement that presents your main point or argument.

The length of each part depends on the length and complexity of your essay .

Let’s say you’re writing a five-paragraph  essay about the environmental impacts of dietary choices. Here are three examples of topic sentences you could use for each of the three body paragraphs :

  • Research has shown that the meat industry has severe environmental impacts.
  • However, many plant-based foods are also produced in environmentally damaging ways.
  • It’s important to consider not only what type of diet we eat, but where our food comes from and how it is produced.

Each of these sentences expresses one main idea – by listing them in order, we can see the overall structure of the essay at a glance. Each paragraph will expand on the topic sentence with relevant detail, evidence, and arguments.

The topic sentence usually comes at the very start of the paragraph .

However, sometimes you might start with a transition sentence to summarize what was discussed in previous paragraphs, followed by the topic sentence that expresses the focus of the current paragraph.

Topic sentences help keep your writing focused and guide the reader through your argument.

In an essay or paper , each paragraph should focus on a single idea. By stating the main idea in the topic sentence, you clarify what the paragraph is about for both yourself and your reader.

A topic sentence is a sentence that expresses the main point of a paragraph . Everything else in the paragraph should relate to the topic sentence.

The thesis statement is essential in any academic essay or research paper for two main reasons:

  • It gives your writing direction and focus.
  • It gives the reader a concise summary of your main point.

Without a clear thesis statement, an essay can end up rambling and unfocused, leaving your reader unsure of exactly what you want to say.

The thesis statement should be placed at the end of your essay introduction .

Follow these four steps to come up with a thesis statement :

  • Ask a question about your topic .
  • Write your initial answer.
  • Develop your answer by including reasons.
  • Refine your answer, adding more detail and nuance.

A thesis statement is a sentence that sums up the central point of your paper or essay . Everything else you write should relate to this key idea.

An essay isn’t just a loose collection of facts and ideas. Instead, it should be centered on an overarching argument (summarized in your thesis statement ) that every part of the essay relates to.

The way you structure your essay is crucial to presenting your argument coherently. A well-structured essay helps your reader follow the logic of your ideas and understand your overall point.

The structure of an essay is divided into an introduction that presents your topic and thesis statement , a body containing your in-depth analysis and arguments, and a conclusion wrapping up your ideas.

The structure of the body is flexible, but you should always spend some time thinking about how you can organize your essay to best serve your ideas.

The vast majority of essays written at university are some sort of argumentative essay . Almost all academic writing involves building up an argument, though other types of essay might be assigned in composition classes.

Essays can present arguments about all kinds of different topics. For example:

  • In a literary analysis essay, you might make an argument for a specific interpretation of a text
  • In a history essay, you might present an argument for the importance of a particular event
  • In a politics essay, you might argue for the validity of a certain political theory

At high school and in composition classes at university, you’ll often be told to write a specific type of essay , but you might also just be given prompts.

Look for keywords in these prompts that suggest a certain approach: The word “explain” suggests you should write an expository essay , while the word “describe” implies a descriptive essay . An argumentative essay might be prompted with the word “assess” or “argue.”

In rhetorical analysis , a claim is something the author wants the audience to believe. A support is the evidence or appeal they use to convince the reader to believe the claim. A warrant is the (often implicit) assumption that links the support with the claim.

Logos appeals to the audience’s reason, building up logical arguments . Ethos appeals to the speaker’s status or authority, making the audience more likely to trust them. Pathos appeals to the emotions, trying to make the audience feel angry or sympathetic, for example.

Collectively, these three appeals are sometimes called the rhetorical triangle . They are central to rhetorical analysis , though a piece of rhetoric might not necessarily use all of them.

The term “text” in a rhetorical analysis essay refers to whatever object you’re analyzing. It’s frequently a piece of writing or a speech, but it doesn’t have to be. For example, you could also treat an advertisement or political cartoon as a text.

The goal of a rhetorical analysis is to explain the effect a piece of writing or oratory has on its audience, how successful it is, and the devices and appeals it uses to achieve its goals.

Unlike a standard argumentative essay , it’s less about taking a position on the arguments presented, and more about exploring how they are constructed.

You should try to follow your outline as you write your essay . However, if your ideas change or it becomes clear that your structure could be better, it’s okay to depart from your essay outline . Just make sure you know why you’re doing so.

If you have to hand in your essay outline , you may be given specific guidelines stating whether you have to use full sentences. If you’re not sure, ask your supervisor.

When writing an essay outline for yourself, the choice is yours. Some students find it helpful to write out their ideas in full sentences, while others prefer to summarize them in short phrases.

You will sometimes be asked to hand in an essay outline before you start writing your essay . Your supervisor wants to see that you have a clear idea of your structure so that writing will go smoothly.

Even when you do not have to hand it in, writing an essay outline is an important part of the writing process . It’s a good idea to write one (as informally as you like) to clarify your structure for yourself whenever you are working on an essay.

Comparisons in essays are generally structured in one of two ways:

  • The alternating method, where you compare your subjects side by side according to one specific aspect at a time.
  • The block method, where you cover each subject separately in its entirety.

It’s also possible to combine both methods, for example by writing a full paragraph on each of your topics and then a final paragraph contrasting the two according to a specific metric.

Your subjects might be very different or quite similar, but it’s important that there be meaningful grounds for comparison . You can probably describe many differences between a cat and a bicycle, but there isn’t really any connection between them to justify the comparison.

You’ll have to write a thesis statement explaining the central point you want to make in your essay , so be sure to know in advance what connects your subjects and makes them worth comparing.

Some essay prompts include the keywords “compare” and/or “contrast.” In these cases, an essay structured around comparing and contrasting is the appropriate response.

Comparing and contrasting is also a useful approach in all kinds of academic writing : You might compare different studies in a literature review , weigh up different arguments in an argumentative essay , or consider different theoretical approaches in a theoretical framework .

The key difference is that a narrative essay is designed to tell a complete story, while a descriptive essay is meant to convey an intense description of a particular place, object, or concept.

Narrative and descriptive essays both allow you to write more personally and creatively than other kinds of essays , and similar writing skills can apply to both.

If you’re not given a specific prompt for your descriptive essay , think about places and objects you know well, that you can think of interesting ways to describe, or that have strong personal significance for you.

The best kind of object for a descriptive essay is one specific enough that you can describe its particular features in detail—don’t choose something too vague or general.

If you’re not given much guidance on what your narrative essay should be about, consider the context and scope of the assignment. What kind of story is relevant, interesting, and possible to tell within the word count?

The best kind of story for a narrative essay is one you can use to reflect on a particular theme or lesson, or that takes a surprising turn somewhere along the way.

Don’t worry too much if your topic seems unoriginal. The point of a narrative essay is how you tell the story and the point you make with it, not the subject of the story itself.

Narrative essays are usually assigned as writing exercises at high school or in university composition classes. They may also form part of a university application.

When you are prompted to tell a story about your own life or experiences, a narrative essay is usually the right response.

The majority of the essays written at university are some sort of argumentative essay . Unless otherwise specified, you can assume that the goal of any essay you’re asked to write is argumentative: To convince the reader of your position using evidence and reasoning.

In composition classes you might be given assignments that specifically test your ability to write an argumentative essay. Look out for prompts including instructions like “argue,” “assess,” or “discuss” to see if this is the goal.

At college level, you must properly cite your sources in all essays , research papers , and other academic texts (except exams and in-class exercises).

Add a citation whenever you quote , paraphrase , or summarize information or ideas from a source. You should also give full source details in a bibliography or reference list at the end of your text.

The exact format of your citations depends on which citation style you are instructed to use. The most common styles are APA , MLA , and Chicago .

An argumentative essay tends to be a longer essay involving independent research, and aims to make an original argument about a topic. Its thesis statement makes a contentious claim that must be supported in an objective, evidence-based way.

An expository essay also aims to be objective, but it doesn’t have to make an original argument. Rather, it aims to explain something (e.g., a process or idea) in a clear, concise way. Expository essays are often shorter assignments and rely less on research.

An expository essay is a common assignment in high-school and university composition classes. It might be assigned as coursework, in class, or as part of an exam.

Sometimes you might not be told explicitly to write an expository essay. Look out for prompts containing keywords like “explain” and “define.” An expository essay is usually the right response to these prompts.

An expository essay is a broad form that varies in length according to the scope of the assignment.

Expository essays are often assigned as a writing exercise or as part of an exam, in which case a five-paragraph essay of around 800 words may be appropriate.

You’ll usually be given guidelines regarding length; if you’re not sure, ask.

Ask our team

Want to contact us directly? No problem.  We  are always here for you.

Support team - Nina

Our team helps students graduate by offering:

  • A world-class citation generator
  • Plagiarism Checker software powered by Turnitin
  • Innovative Citation Checker software
  • Professional proofreading services
  • Over 300 helpful articles about academic writing, citing sources, plagiarism, and more

Scribbr specializes in editing study-related documents . We proofread:

  • PhD dissertations
  • Research proposals
  • Personal statements
  • Admission essays
  • Motivation letters
  • Reflection papers
  • Journal articles
  • Capstone projects

Scribbr’s Plagiarism Checker is powered by elements of Turnitin’s Similarity Checker , namely the plagiarism detection software and the Internet Archive and Premium Scholarly Publications content databases .

The add-on AI detector is also powered by Turnitin software and includes the Turnitin AI Writing Report.

Note that Scribbr’s free AI Detector is not powered by Turnitin, but instead by Scribbr’s proprietary software.

The Scribbr Citation Generator is developed using the open-source Citation Style Language (CSL) project and Frank Bennett’s citeproc-js . It’s the same technology used by dozens of other popular citation tools, including Mendeley and Zotero.

You can find all the citation styles and locales used in the Scribbr Citation Generator in our publicly accessible repository on Github .

  • Newsletters

OpenAI teases an amazing new generative video model called Sora

The firm is sharing Sora with a small group of safety testers but the rest of us will have to wait to learn more.

  • Will Douglas Heaven archive page

OpenAI has built a striking new generative video model called Sora that can take a short text description and turn it into a detailed, high-definition film clip up to a minute long.

Based on four sample videos that OpenAI shared with MIT Technology Review ahead of today’s announcement, the San Francisco–based firm has pushed the envelope of what’s possible with text-to-video generation (a hot new research direction that we flagged as a trend to watch in 2024 ).

“We think building models that can understand video, and understand all these very complex interactions of our world, is an important step for all future AI systems,” says Tim Brooks, a scientist at OpenAI.

But there’s a disclaimer. OpenAI gave us a preview of Sora (which means sky in Japanese) under conditions of strict secrecy. In an unusual move, the firm would only share information about Sora if we agreed to wait until after news of the model was made public to seek the opinions of outside experts. [Editor’s note: We’ve updated this story with outside comment below.] OpenAI has not yet released a technical report or demonstrated the model actually working. And it says it won’t be releasing Sora anytime soon. [ Update: OpenAI has now shared more technical details on its website.]

The first generative models that could produce video from snippets of text appeared in late 2022. But early examples from Meta , Google, and a startup called Runway were glitchy and grainy. Since then, the tech has been getting better fast. Runway’s gen-2 model, released last year, can produce short clips that come close to matching big-studio animation in their quality. But most of these examples are still only a few seconds long.  

The sample videos from OpenAI’s Sora are high-definition and full of detail. OpenAI also says it can generate videos up to a minute long. One video of a Tokyo street scene shows that Sora has learned how objects fit together in 3D: the camera swoops into the scene to follow a couple as they walk past a row of shops.

OpenAI also claims that Sora handles occlusion well. One problem with existing models is that they can fail to keep track of objects when they drop out of view. For example, if a truck passes in front of a street sign, the sign might not reappear afterward.  

In a video of a papercraft underwater scene, Sora has added what look like cuts between different pieces of footage, and the model has maintained a consistent style between them.

It’s not perfect. In the Tokyo video, cars to the left look smaller than the people walking beside them. They also pop in and out between the tree branches. “There’s definitely some work to be done in terms of long-term coherence,” says Brooks. “For example, if someone goes out of view for a long time, they won’t come back. The model kind of forgets that they were supposed to be there.”

Impressive as they are, the sample videos shown here were no doubt cherry-picked to show Sora at its best. Without more information, it is hard to know how representative they are of the model’s typical output.   

It may be some time before we find out. OpenAI’s announcement of Sora today is a tech tease, and the company says it has no current plans to release it to the public. Instead, OpenAI will today begin sharing the model with third-party safety testers for the first time.

In particular, the firm is worried about the potential misuses of fake but photorealistic video . “We’re being careful about deployment here and making sure we have all our bases covered before we put this in the hands of the general public,” says Aditya Ramesh, a scientist at OpenAI, who created the firm’s text-to-image model DALL-E .

But OpenAI is eyeing a product launch sometime in the future. As well as safety testers, the company is also sharing the model with a select group of video makers and artists to get feedback on how to make Sora as useful as possible to creative professionals. “The other goal is to show everyone what is on the horizon, to give a preview of what these models will be capable of,” says Ramesh.

To build Sora, the team adapted the tech behind DALL-E 3, the latest version of OpenAI’s flagship text-to-image model. Like most text-to-image models, DALL-E 3 uses what’s known as a diffusion model. These are trained to turn a fuzz of random pixels into a picture.

Sora takes this approach and applies it to videos rather than still images. But the researchers also added another technique to the mix. Unlike DALL-E or most other generative video models, Sora combines its diffusion model with a type of neural network called a transformer.

Transformers are great at processing long sequences of data, like words. That has made them the special sauce inside large language models like OpenAI’s GPT-4 and Google DeepMind’s Gemini . But videos are not made of words. Instead, the researchers had to find a way to cut videos into chunks that could be treated as if they were. The approach they came up with was to dice videos up across both space and time. “It’s like if you were to have a stack of all the video frames and you cut little cubes from it,” says Brooks.

The transformer inside Sora can then process these chunks of video data in much the same way that the transformer inside a large language model processes words in a block of text. The researchers say that this let them train Sora on many more types of video than other text-to-video models, varied in terms of resolution, duration, aspect ratio, and orientation. “It really helps the model,” says Brooks. “That is something that we’re not aware of any existing work on.”

“From a technical perspective it seems like a very significant leap forward,” says Sam Gregory, executive director at Witness, a human rights organization that specializes in the use and misuse of video technology. “But there are two sides to the coin,” he says. “The expressive capabilities offer the potential for many more people to be storytellers using video. And there are also real potential avenues for misuse.” 

OpenAI is well aware of the risks that come with a generative video model. We are already seeing the large-scale misuse of deepfake images . Photorealistic video takes this to another level.

Gregory notes that you could use technology like this to misinform people about conflict zones or protests. The range of styles is also interesting, he says. If you could generate shaky footage that looked like something shot with a phone, it would come across as more authentic.

The tech is not there yet, but generative video has gone from zero to Sora in just 18 months. “We’re going to be entering a universe where there will be fully synthetic content, human-generated content and a mix of the two,” says Gregory.

The OpenAI team plans to draw on the safety testing it did last year for DALL-E 3. Sora already includes a filter that runs on all prompts sent to the model that will block requests for violent, sexual, or hateful images, as well as images of known people. Another filter will look at frames of generated videos and block material that violates OpenAI’s safety policies.

OpenAI says it is also adapting a fake-image detector developed for DALL-E 3 to use with Sora. And the company will embed industry-standard C2PA tags , metadata that states how an image was generated, into all of Sora’s output. But these steps are far from foolproof. Fake-image detectors are hit-or-miss. Metadata is easy to remove, and most social media sites strip it from uploaded images by default.  

“We’ll definitely need to get more feedback and learn more about the types of risks that need to be addressed with video before it would make sense for us to release this,” says Ramesh.

Brooks agrees. “Part of the reason that we’re talking about this research now is so that we can start getting the input that we need to do the work necessary to figure out how it could be safely deployed,” he says.

Update 2/15: Comments from Sam Gregory were added .

Artificial intelligence

Ai for everything: 10 breakthrough technologies 2024.

Generative AI tools like ChatGPT reached mass adoption in record time, and reset the course of an entire industry.

What’s next for AI in 2024

Our writers look at the four hot trends to watch out for this year

  • Melissa Heikkilä archive page

Google’s Gemini is now in everything. Here’s how you can try it out.

Gmail, Docs, and more will now come with Gemini baked in. But Europeans will have to wait before they can download the app.

Deploying high-performance, energy-efficient AI

Investments into downsized infrastructure can help enterprises reap the benefits of AI while mitigating energy consumption, says corporate VP and GM of data center platform engineering and architecture at Intel, Zane Ball.

  • MIT Technology Review Insights archive page

Stay connected

Get the latest updates from mit technology review.

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at [email protected] with a list of newsletters you’d like to receive.

IMAGES

  1. Technology Essay

    define technology essay

  2. Calaméo

    define technology essay

  3. Essay on Technology: 250, 500-1000 words for Students

    define technology essay

  4. How to Write a Technology Essay: Tips, Topics and Example

    define technology essay

  5. Technology Essay Introduction Free Essay Example

    define technology essay

  6. ⚡ Introduction paragraph for technology essay. Paragraph About

    define technology essay

VIDEO

  1. Disadvantages of Technology//English Essay//Drawbacks of technology

  2. Information Technology essay in English

  3. Information Technology Essay writing in English..Short Essay on Technology Information in 150 words

  4. Define Essay

  5. Essay examples I The best online essay

  6. Technology essay in English for students/essay on Technology in English. #essay #essaywriting

COMMENTS

  1. Full article: What is technology?

    What is technology? Technology: critical history of a concept, by Eric Schatzberg, Chicago and London, University of Chicago Press, 2018, 352 pp., $27.45 (paperback), ISBN: 978--226-58383-9 Jon Agar Pages 377-382 | Published online: 11 Oct 2019 Cite this article https://doi.org/10.1080/00033790.2019.1672788 In this article Full Article

  2. Technology Essay for Students in English

    CBSE CBSE Study Material Textbook Solutions CBSE Notes Essay on Technology The word "technology" and its uses have immensely changed since the 20th century, and with time, it has continued to evolve ever since. We are living in a world driven by technology.

  3. Technology

    Technology is the application of conceptual knowledge for achieving practical goals, especially in a reproducible way. [1] The word technology can also mean the products resulting from such efforts, [2] [3] including both tangible tools such as utensils or machines, and intangible ones such as software.

  4. Technology

    technology, the application of scientific knowledge to the practical aims of human life or, as it is sometimes phrased, to the change and manipulation of the human environment. The subject of technology is treated in a number of articles. For general treatment, see technology, history of; hand tool.

  5. Essay on Technology For Students In English

    Techne means art, skills, or craft, and Logos means a word, saying, or expression that expresses inward thought. Thus, technology means the skill to convey an idea to reach a goal. But nowadays, the term technology mainly signifies the knowledge of tools, machines, techniques, crafts, systems, and organisation methods to solve a problem.

  6. Defining "Technology"

    Merriam-Webster Dictionary. Technology ( noun ): 1) (a): the practical application of knowledge especially in a particular area; (b): a capability given by the practical application of knowledge. 2) a manner of accomplishing a task especially using technical processes, methods, or knowledge. 3) the specialized aspects of a particular field of ...

  7. How Is Technology Changing the World, and How Should the World Change

    Technologies are becoming increasingly complicated and increasingly interconnected. Cars, airplanes, medical devices, financial transactions, and electricity systems all rely on more computer software than they ever have before, making them seem both harder to understand and, in some cases, harder to control. Government and corporate surveillance of individuals and information processing ...

  8. Essay on Technology

    First of all, technology refers to the use of technical and scientific knowledge to create, monitor, and design machinery. Also, technology helps in making other goods that aid mankind. Essay on Technology - A Boon or Bane? Experts are debating on this topic for years.

  9. (PDF) A Comprehensive Definition of Technology from an Ethological

    Erlyna Wida Riptanti. Mujiyo. View. ... Technology is a tool that humans use to survive all sources of change, both natural and social. At the same time (Volti in Carroll, 2017) defines it as ...

  10. Heidegger: The Question Concerning Technology

    He comes up with two answers: technology is a means to an end. technology is a human activity. These answers make up what Heidegger calls the current "instrumental [aimed at getting things done] and anthropological [a human activity] definition of technology" (288). He concedes that this definition is correct--that it describes technology ...

  11. Essay on Technology for Students and Children in English

    Technology can be defined as the application of scientific knowledge to change and manipulate the human environment. Technology can also be defined as the branch of knowledge that caters to the creation and use of technical means and their relationship with society and environment, using engineering, applied and pure science.

  12. Science, technology and innovation in a 21st century context

    Science, technology and innovation in a 21st century context. This editorial essay was prepared by John H. "Jack" Marburger for a workshop on the "science of science and innovation policy" held in 2009 that was the basis for this special issue. It is published posthumously. Linking the words "science," "technology," and ...

  13. 200-500 Word Example Essays about Technology

    Feb 13, 2023 200-500 Word Example Essays about Technology Got an essay assignment about technology? Check out these examples to inspire you! Technology is a rapidly evolving field that has completely changed the way we live, work, and interact with one another.

  14. What is Technology? Six Definitions and Two Pathologies

    The Committee defines technology as practices, tools, skills, and environments that improve human productivity and efficiency of time and energy use (Nightingale 2014). The easier it is for people ...

  15. Technology Essay

    200 Words Essay On Technology. Technology is the study and application of technical aspects of materials, science, and nature to design mechanical, electrical, biological, and information systems to increase efficiency and make life easier. ... The role of geotechnical engineer starts with reviewing the projects needed to define the required ...

  16. What is Technology? Essay

    Technology is the branch of knowledge that deals with the creation and use of technical means and their interrelation with life, society, and the environment, drawing upon such subjects as industrial arts, engineering, applied science, and pure science. Since the creation of modern technology man has been entwined with it.

  17. Technology Definition Essay

    Technology Definition Essay 783 Words4 Pages What is the meaning of technology? Technology word consist of two words, Techno which means art and industry, second word is Logia which means science. The definition of technology is a process gives a way to think, solve problems, and specific style to lead into the desired result.

  18. The Evolution of Technology: [Essay Example], 640 words

    Used to support both teaching and learning, technology infuses classrooms with digital learning tools such as computers and hand-held devices; expands course offerings, experiences, and learning materials, supports learning 24 hours a day, 7 days a week, builds 21st century skills, increases student engagement and motivation, accelerates learning.

  19. Essay on Science and Technology

    February 14, 2024 by Prasanna Essay on Science and Technology: Science encompasses the methodical study of the physical and natural properties of our surrounding through the medium of research and experiment. Technology is the application of science to achieve a realistic goal.

  20. PDF Essay 6. Using Educational Technology to Enhance Learning and Teaching

    In this essay, we focus on our capacity to build on our diverse experiences and to develop a more cohesive approach to leadership, infrastructure, and services based on a shared understanding of the uses of technology that will have the greatest impact on student learning and faculty teaching.

  21. How to Structure an Essay

    An essay that concerns a specific problem (practical or theoretical) may be structured according to the problems-methods-solutions approach. This is just what it sounds like: You define the problem, characterize a method or theory that may solve it, and finally analyze the problem, using this method or theory to arrive at a solution.

  22. Technology Essay

    Technology is the scientific knowledge used in the production of things. With the advancement of technology, we all are inclined towards new tools and techniques. Kids from an early age watch their parents and family members use technology. In this regard, they start adapting to the same. We are aware of the fact that technology has been ...

  23. What is an essay?

    An essay is a focused piece of writing that explains, argues, describes, or narrates. In high school, you may have to write many different types of essays to develop your writing skills. Academic essays at college level are usually argumentative: you develop a clear thesis about your topic and make a case for your position using evidence ...

  24. OpenAI teases an amazing new generative video model called Sora

    OpenAI has built a striking new generative video model called Sora that can take a short text description and turn it into a detailed, high-definition film clip up to a minute long.. Based on four ...