153 Industrial Revolution Essay Topics & Examples

If you’re looking for the Industrial Revolution essay examples and topics, this page is for you. Below, find ideas on how different inventions changed the world and people.

Our IvyPanda team has provided these Industrial Revolution essay questions and topics so that you don’t have to worry about missing an engaging idea. Interested in describing the phenomenon in America or Britain? Willing to explore public health and how society changed due to new machines? We have perfect titles for you! Plus, check our tips on formulating the Industrial Revolution thesis statement and writing the essay.

9.1 The Second Industrial Revolution

Learning objectives.

By the end of this section, you will be able to:

  • Describe the technological innovations of the Second Industrial Revolution
  • Describe the spread of industrialization beyond western and central Europe and the United States
  • Explain the obstacles to industrialization facing countries in Asia, North Africa, and Latin America in the nineteenth century

Great Britain was the first nation to enter the Industrial Revolution , beginning to mechanize the production of goods in the eighteenth century. It was followed by the United States, France, Belgium, and, in the first half of the nineteenth century, by Germany. These nations harnessed the power first of water and then of steam and began the mass production of goods such as textiles, iron, and steel. Perhaps most significantly, they also manufactured machines that produced parts for other machines, such as spinning jennies and flying shuttles. Developments in transportation and communications technology, especially the locomotive , steamboat , and telegraph , transformed the way their citizens lived, traveled, and worked.

Between the middle of the nineteenth century and the beginning of the twentieth, these nations embarked on a new phase of industrialization. European and U.S. industry was transformed again by new sources of power, technological innovations, new forms of transportation, and growing communications networks. This process is often called the Second Industrial Revolution. At the same time, industrialization began outside the United States and western and central Europe, especially in Russia and Japan .

The Expansion and Transformation of Technology

Many developments of the Second Industrial Revolution built on or improved earlier technology. Mass production of steel, for example, had begun with the development of the Bessemer process in the 1850s. This innovation removed impurities from molten pig iron, producing stronger steel better suited to building rail lines and machines. Later engineers further improved the process. The open-hearth Siemens-Martin process , first developed in Germany in the 1860s, was slower than the Bessemer process, but it produced higher-quality steel that was less brittle. By the beginning of the twentieth century, the Siemens-Martin process had become the most common way of manufacturing steel. The mass production of steel made possible the great engineering feats of the Second Industrial Revolution, such as the first skyscrapers and the expansion of railroads ( Figure 9.4 ).

Improvements in steel manufacturing enabled other innovations. As rust-resistant steel became less expensive, more could be used to manufacture rail lines, making them heavier, stronger, and able to support heavier locomotives pulling heavier loads. Railroads expanded across the United States and Europe, carrying more freight and passengers.

Other inventions also made railroads more efficient. The air brake , invented by George Westinghouse in 1869, sent compressed air through a line to enable the train’s engineer to apply brakes from the locomotive. Before this, trains had been braked by workers who jumped from one moving car to the next and applied the brakes manually. The method was obviously very dangerous, and if a train car broke free, there was no way of stopping it. Because trains could now be stopped more safely, they could also travel at higher speeds.

By the end of the nineteenth century, railroads had become a common way of transporting people and products over land across distances long and short. Two new modes of transportation vied with railroads for popularity. The first modern bicycle, the safety bicycle , was developed by John Kemp Starley of England in 1885 and sported two wheels of equal size, unlike earlier bicycles with oversized front wheels that required riders to perch far above the ground. The safety bicycle could be ridden by anyone, including women and children. Developments in rubber-production technology also improved the bicycle. The process of vulcanizing rubber , discovered by American inventor Charles Goodyear in 1839, made it stronger and better able hold its shape under extremes of temperature. (Non-vulcanized rubber melts in the heat and shatters in the cold.) In 1887, Scottish-born inventor John Boyd Dunlop made a pressurized air-filled pneumatic tire from vulcanized rubber, just in time for use by bicycle and automobile manufacturers. Although pneumatic tires had been invented earlier, Dunlop’s was the first practical tire to be mass produced, and he patented his invention in 1888. By the 1890s, bicycling had become popular in Europe and the United States, and tens of thousands of people rode daily.

Eventually eclipsing both the train and the bicycle in popularity in the United States and western and central Europe was the gasoline-fueled automobile , patented by the German Karl Benz in 1886 and marketed beginning in 1888 ( Figure 9.5 ). Within a few decades, the automobile had transformed the world as few other inventions have. Cities and suburbs could expand beyond the reach of rail lines, leading city and national governments to raise taxes to pay for new roads. New businesses that sold and repaired cars replaced blacksmiths and stables. City traffic grew noisier and more dangerous, and autos added their exhaust to the emissions of factory smokestacks. The automobile industry also increased the demand for rubber and petroleum, which most industrialized nations needed to import. Even though the United States was initially able to satisfy its petroleum demands with domestic oil, it had to look elsewhere for rubber.

The automobile’s arrival depended on another crucial invention—the internal combustion engine . This engine generates power by burning fuel, often some form of petroleum, in the presence of oxygen in a chamber, to produce a gas whose high pressure exerts force on another component such as a piston, rotor, or turbine blade, causing it to move. Internal combustion engines powered automobiles as well as machinery in small workshops, offering an alternative where steam engines, which were large, could not easily fit.

Internal combustion did not become the sole source of energy that powered the Second Industrial Revolution , however. It did not completely replace steam or the horse. Indeed, the steam turbine , invented by Sir Charles Parsons in 1884, provided efficient power for river- and ocean-going vessels. Steam was also used to generate electricity, one of the great developments of the Second Industrial Revolution. Burning coal turned water to steam that moved the blades of turbines, which generated electric current. Parsons’s steam turbine served this purpose in Britain and the United States. Water power also generated electricity ; in 1882, the first world’s hydroelectric plant opened in Appleton, Wisconsin. Wind turbines also generated electricity, and in 1911 Italy built a plant to produce electricity from geothermal power. By the end of the century, electricity was the dominant force powering the factories of industrialized nations.

Electricity ran machines in factories and lit streets, workplaces, and homes following the invention of the incandescent light bulb , by Joseph Swan in Britain in 1878 and Thomas Edison in the United States in 1879. The incandescent bulb’s bright light replaced the dim and often odorous illumination of oil and gas lamps that brought the risk of fire and, in the case of gas, of suffocation and explosions. Electric lighting made it possible for factories to operate far into the night.

Communications technology improved when the first transatlantic telegraph line between Great Britain and North America was completed in 1858, and by the end of the century all the world’s continents were connected except Antarctica. The telephone , patented by American inventor Alexander Graham Bell in 1876, spread throughout Europe and North America during the same time, greatly easing business communications. In 1901, the Italian engineer Guglielmo Marconi successfully transmitted a wireless signal across the Atlantic Ocean from Wales to Newfoundland, Canada. He then founded broadcasting stations in Europe and North America and used them to send communications to ships at sea. In the 1920s, once the vacuum tube and the triode had been developed, commercial radio that broadcast news, music, and radio plays became available as well.

Other discoveries transformed the factory and the home. Chemical experimentation produced synthetic aniline dyes yielding textile colors more intense and vibrant than those from plant dyes, transforming fashions. Along with combine harvesters, mechanical seeders, and horse-drawn machines that reaped, gathered, and winnowed grain in one operation, chemical fertilizer s enabled farmers to grow ever-larger crops. Another invention, barbed wire, helped cattle ranchers protect their herds. Refrigerated rail cars were perfected in the 1870s by engineers working for U.S. meat packer Gustavus Swift . The meat and other foods being produced in increasing quantities could now be shipped great distances without spoiling.

Link to Learning

Manchester was one of the first cities in England to industrialize. The online exhibits of its Science and Industry Museum allow you to dive deep into the history of the Industrial Revolution in Britain.

Other inventions made office workers more productive. Typewriters and adding machines were common by the 1880s, and New York jeweler Willard Legrand Bundy patented the time clock in 1888. Upon arriving at or leaving work, employees inserted a card in the machine, which stamped it with the exact time and led to the expression “punching the clock.”

New technology also changed leisure activities. In 1877, Edison patented the phonograph , a machine that could record sound by tracing soundwaves with a stylus on a rotating disc or cylinder and then play it back. Although it had business applications, the phonograph was soon used for entertainment. Phonograph recordings were often combined with the projection of still photographic images to create audiovisual presentations, the forerunners of motion pictures ( Figure 9.6 ).

Photographic technology advanced in the first half of the nineteenth century, enabling people to permanently record images with a camera . In the late nineteenth century, a number of people began taking multiple photographs of objects or people in motion and replaying them quickly to give the impression of movement. A patent for a machine to do this was filed by English inventor Wordsworth Donisthorpe in 1876, and a variety of photographers and inventors tried to perfect the process in the following years. The most famous experiment was made in 1878 by English photographer Eadweard Muybridge , who photographed running horses and replayed the images on a machine he called the Zoopraxiscope . Following the invention of photographic film by New York native George Eastman in 1884, light-sensitive cameras captured images on strips of paper coated with gelatin. In 1887, French inventor Louis Le Prince patented a motion-picture camera that relied on photographic film and used it to record the first movie still in existence: a scene, only a few seconds long, of people walking in a garden in England. The age of cinema had been born, but it was some time before recorded sound and moving images were synchronized.

Beyond the Book

The first “action” movie.

Of all the inventions of the Second Industrial Revolution, movie s are likely the most beloved.

The French were pioneers in the film industry. Many film historians date cinema’s beginning to the first paid public screening by the Cinématographe Lumière, an apparatus developed by brothers Auguste and Louis Lumière that both recorded and projected moving pictures. At this event, held on December 28, 1895, at the Grand Café in central Paris, ten one-minute films were shown, including La Sortie de l’usine Lumière à Lyon ( Workers Leaving the Lumière Factory ), Le Repas de bébé ( Baby’s Breakfast ), and L’Arroseur arrosé ( The Sprinkler Sprinkled ), a comedy about a gardener watering his garden. One of their most successful early films was L’Arrivée d’un train en gare de La Ciotat ( The Arrival of a Train at La Ciotat ). Only fifty seconds long, it shows a train pulling into the station of a small French town near Marseille.

In attendance at the early demonstrations of the Cinématographe were engineer and inventor Léon Gaumont and his secretary Alice Guy, who became the world’s first female filmmaker, producing more than four hundred films at the Gaumont studio. Georges Méliès also attended; his short film Le Voyage dans la lune ( A Trip to the Moon ) (1902) is considered the first science fiction movie. At the start of the twentieth century, the French company Pathé Frères produced more film s than any other company in the world.

Thomas Edison was a pioneer in the U.S. film industry, and his studios turned out many silent short films in the early twentieth century. One of them was an action picture called The Great Train Robbery that was made by Edwin S. Porter in 1903. Just over eleven minutes long, it was based on a stage play and is one of many early films featuring trains.

  • Why do you think trains were a favorite subject matter in early films?
  • What would people have found most interesting about Porter’s movie?
  • Why might Porter have thought a movie about the West would appeal to audiences?
  • Why do you think the film ends with one of the robbers firing at the camera?

Watch the short film A Trip to the Moon by Georges Méliès. Its film techniques were considered quite inventive at the time.

Industrial Frontiers

Until the mid-nineteenth century, industrialization had taken place only in Britain , the United States , France , Germany , and Belgium . By the middle of the century, other countries like Canada, Italy, and Russia had also begun to industrialize.

Industrialization in Canada , then under British rule, began in the 1850s in the population centers of Toronto and Montreal . As in the United States and Britain, early factories produced textiles and metal goods. Brewing and the milling of flour were also industrialized. In the second half of the nineteenth century, Canadian entrepreneurs began the mass production of steel, established meat-packing companies, and invested in the extraction of natural resources such as timber, coal, and oil.

In 1867, to facilitate national defense and build a transcontinental railroad , the British Parliament passed the British North American Act , joining its colonies of Nova Scotia, New Brunswick, and the Province of Canada (which included Ontario and Quebec) in the Dominion of Canada . The Dominion had the right to govern itself, but it remained within the British Empire with Queen Victoria as its head of state.

Two years later, the Dominion purchased the territory of Rupert’s Land from the Hudson’s Bay Company for the railroad. Rupert’s Land was inhabited largely by Métis , people of mixed First Nations and French ancestry who were largely French-speaking and Roman Catholic. Fearing the loss of their land and culture under the Dominion’s English-speaking Protestant majority, many Métis united under the leadership of Louis Riel to oppose the Canadian government’s attempts to survey Rupert’s Land. Riel formed a provisional government to negotiate with Canada, demanding protection for Métis rights, especially the right to establish French-language schools for children. After a brief outbreak of violence, Canada’s Parliament granted the Métis 200,000 hectares of land, incorporated into the Dominion as the new province of Manitoba in 1870 ( Figure 9.7 ).

The Dominion of Canada reached the Pacific in 1871, when British Columbia agreed to join it if a railroad connecting eastern and western Canada were built within ten years. The Canadian Pacific Railroad , constructed largely by European and Chinese immigrants, was completed in 1885. It enabled the settling of the prairie provinces in the middle of the country and aided Canada’s industrialization.

Industrialization was also assisted by the National Policy , begun in 1878 under Prime Minister John A. Macdonald and lasting until World War II. It imposed taxes on imports, some as high as 20 percent, to shield Canadian industry from competition by U.S. companies. While the policy did help Canadian businesses grow, residents of the west argued that the tariffs generated wealth for industrialized eastern provinces like Quebec and Ontario while maintaining artificially high prices for domestic goods in the prairie provinces.

Italy industrialized after other western and central European nations such as France and Germany. The fragmented political system of the Italian peninsula before its unification as a single nation (which began in 1861) delayed general industrial development. After unification (completed in 1871 with the incorporation of Rome and Veneto), the government was dominated by northern Italians and invested in northern industries. From the 1890s to the 1910s, steelworks, shipyards, rubber plants, and factories producing canned food, machine tools, chemicals, cement, and automobiles were established north of Rome. Agricultural production in northern provinces such as Emilia-Romagna was also modernized and mechanized, freeing peasants from the land to work in the new factories. The Italian government imposed high tariffs on imported goods to protect northern industry.

South of Rome, with the exception of Naples, little industrial development took place. Southern Italy and the island of Sicily remained rural and agricultural. As the north grew wealthier and more urbanized, the south grew poorer and more depopulated as peasants left to seek opportunities abroad.

Russia had begun industrializing in the early nineteenth century, as Russian entrepreneurs imported textile manufacturing equipment from Britain to create cotton cloth. The tsars were eager to use new technology to unite their empire and offered cash incentives to European and American business leaders willing to assist. With their help, Russia established steamship lines, and as early as 1820 steamships were regularly traveling the Volga River , Russia’s main waterway. By 1851, Moscow was joined by rail with St. Petersburg , the nation’s capital and home of the tsar ( Figure 9.8 ).

Nevertheless, Russia remained relatively unindustrialized compared to the United States and much of western and central Europe. This became apparent when Russia lost the Crimean War in 1856, despite having a population larger than that of its opponents Britain and France and despite fighting the war in its own backyard while the enemy traveled more than a thousand miles by sea. Britain’s and France’s steamships provided better transportation than Russia’s few roads and railroads did, and their factories produced more and better weapons.

Despite its size and the support of its tsars, Russia lacked many advantages for industrializing that other countries possessed. It did not have many artisans, and mechanization of production means little in a country without crafts to be mechanized. So long as peasant families were available to plant and harvest crops, there was no pressing need to mechanize agriculture either. Russia’s population also consisted of many serfs who, unlike American and British farmers, were bound to the land and could not seek opportunities elsewhere such as in factories. Many Russians found it easier to profit by shipping raw materials such as grain, timber, and hemp to the industrializing nations of western Europe than to build a manufacturing sector of their own.

Finally, Russia’s sheer size made industrialization difficult. Its rich natural resources were widely separated and far from the cities in which factories were located. To allow access, thousands of miles of roads and railroad lines needed to be constructed through the dense tracts of uninhabited forests, over raging rivers, and across the frozen tundra that covered much of the country. The United States, which industrialized relatively early, is also large, but not as large as Russia. The workers who laid railroad lines to connect its Atlantic and Pacific coasts worked across easy terrain of largely flat, treeless prairie and plains. In Russia, the few railroad and steamship lines and the few thousand miles of roads constructed before the end of the nineteenth century were not enough to bring natural resources to factories or manufactured goods to the countryside.

Following its defeat in the Crimean War, Russia increased its efforts to industrialize. In 1861, it abolished serfdom , providing potential workers for factories. In the 1890s, Minister of Finance Sergei Witte successfully lobbied for improvements in Russia’s railway system, which at the end of the Crimean War had had fewer than one thousand miles of track. In 1891, the construction of a rail line across Siberia was begun. By 1900, the country had approximately thirty-six thousand miles of track. Soon it became easier to exploit the interior’s vast reserves of iron, wood, and coal. However, Russia’s late start meant it did not reach the same level of industrialization as western and central Europe and the United States until the twentieth century.

Industrialization conveyed a great advantage. Once a country had begun the process, it was capable of generating even more wealth and building larger, more technologically advanced military forces, which enabled it to gain an advantage over non-industrialized countries. It became nearly impossible for non-industrialized countries to compete with industrialized ones or even to protect themselves from aggression by their industrialized rivals. Japan proved an exception.

In July 1853, U.S. commodore Matthew Perry sailed into Edo (Tokyo) Bay at the head of a fleet of four gunships, charged with negotiating diplomatic relations and trade agreements with Japan. Japan had largely closed itself off in the 1600s to avoid colonization and domination by western countries. The Japanese also wished to protect their cultural integrity, and warding off foreign influences was part of this strategy. Intent upon securing entry, Perry ordered his ship’s guns to turn toward the shore and fire. The guns fired blanks, but the Japanese military did not know this. Talks between Perry and the Japanese government ensued, and on March 31, 1854, Japan signed the Convention of Kanagawa , which opened the ports of Shimoda and Hakotate to American ships, promised assistance for American ships and sailors shipwrecked on Japanese coasts, granted American merchants permission to purchase provisions in Japan, and promised peaceful and friendly relations between the United States and Japan. Lacking the military power to resist Perry’s demands, the Japanese government had no choice but to agree.

Japan was then governed by the Tokugawa shogunate , a system in which a military leader, the shogun , ruled in place of the emperor, whose role had largely been that of a figurehead for hundreds of years. Under the shogunate, aristocratic lords who were subordinate to the shogun, called daimyo , and their retainers, members of a warrior elite called the samurai , governed the country. After Perry’s arrival, modernizers in Japan, remembering the American gunboats and China’s humbling by Britain’s navy in the first of the Opium Wars (1839–1842), believed the best way to protect their country was to adopt the technology and institutions of the west. They saw the shogunate as a barrier to modernization, so they called for the emperor to resume rule. Many samurai were not convinced by these arguments. Not only would industrialization elevate “inferior” craftspeople and merchants, who were far below them in the social hierarchy, but the shogunate’s end would deprive them of power and influence.

In January 1867, Emperor Meiji ( Figure 9.9 ) ascended the throne following the death of his father. In November, the reigning shogun Tokugawa Yoshinobu resigned and relinquished his power, and in January 1868 the emperor officially proclaimed the end of the shogunate. The period called the Meiji Restoration was underway. In 1869, the daimyo surrendered their titles and their land to the emperor. Although the daimyo were allowed to remain governors of their former lands, the samurai were no longer their retainers. Instead, they worked for the state. In 1871, the daimyo were removed as governors, and they and the samurai were given yearly stipends.

Even further indignities awaited those who had once held power in Japan, however. The government stipends given to daimyo and samurai were made subject to taxation in 1873, and beginning in 1876 they were distributed in the form of government bonds. The Meiji government officially abolished class distinctions, which for the samurai meant the loss of privileges such as the right to wear swords. Although some rebelled, rising up against government forces several times in the 1870s, they were defeated by Japan’s new national army, equipped with modern weapons and trained in western methods of fighting.

Industrialization was a major goal of Japan’s Meiji government, and the state played a greater role in it than in most western countries in the nineteenth century. The first goal was to build railroad s to unite the regions of the country and assist in further industrial development. Construction began in 1870; by 1872, a rail line linked the capital of Tokyo with the port of Yokohama. Perhaps remembering that Perry’s demands had been dictated from the deck of a gunboat, the government also invested heavily in shipbuilding.

The Mitsubishi Corporation , a private company founded by samurai Iwasaki Yatori , competed directly with the government and, with its modern ships and efficient management, replaced it as the country’s leading shipbuilder and shipper. Seeking independence from western shipping lines, the government then turned eleven ships over to Mitsubishi with the provision that it establish regular trade with China. In 1887, the company purchased the government-owned shipyard in Nagasaki. Mitsubishi became one of Japan’s first zaibatsu , family-owned business conglomerates with financial and industrial branches influential in Japanese politics.

Mitsubishi also invested heavily in coal mining. The Japanese government did so too and invested in lead, iron, and copper mines, as well as in factories that manufactured weapons and cement. The government’s willingness to fund industries not crucial to military defense or industrial development was variable. The textile industry, for example, relied less heavily on government support. Thus as Japan strove to build battleships and railways and to modernize its army, textile companies continued to purchase mechanized equipment from abroad.

The Japanese government abolished feudalism and gave peasant farmers title to their land, freeing them to sell it and travel to cities for work in factories and shipyards if they wished. Those who remained on the land were helped to increase Japan’s food production by the government’s importation of fertilizers and farm equipment. The abolition of samurai status freed the warrior elite to use their skills as managers of factories. As the samurai built private wealth, they invested in economic sectors that received less government support. Textile production benefited greatly from this trend, as did brewing and the manufacture of glass and chemicals.

Japan established a public school system in 1872. By 1900, attendance was nearly universal for boys, and girls were not far behind. The new system stressed the study of both science and the Confucian classics. Japan also sent students abroad to study technology and institutions in the United States and Europe.

By the end of the nineteenth century, Japan had become capable of competing with larger countries and was eager to do so. It soon got the chance. In 1895, it successfully defeated non-industrialized China in the Sino-Japanese War . In 1905, it defeated Russia and sent a clear message to the United States and Europe that it intended to become a world power.

Obstacles to Industrialization

As the United States and European nations industrialized, African, Latin American, and Asian nations, with the exception of Japan, did not. This left them at an economic, technological, and military disadvantage compared to the countries of the industrialized world. Historians disagree about the reasons for this Great Divergence . Some point to the fact that these nations lacked natural resources, such as abundant coal, that European nations possessed. Many note that establishing colonies in the Americas and Asia helped nations like Britain and France acquire capital, resources, and markets that assisted their industrial development. Thus Africa, Asia, and Latin America became parties to unequal treaties forced on them by Europeans bearing deadlier weapons.

A contrasting argument is that countries such as Egypt and the Latin American nations realized their strengths lay in producing raw materials for the industrializing nations. Factors such as history, geography, climate, and the nature of their labor forces better suited them to producing agricultural goods or other types of raw materials than to pursuing widespread industrialization. In each nation, a unique set of circumstances influenced the path taken.

India ’s industrial endeavors were greatly affected by its relationship with Britain , which had begun trading in India in the 1600s. The Seven Years’ War and the subsequent Treaty of Paris , signed in 1763, effectively brought French power in India to an end, paving the way for Britain’s eventual control of the subcontinent. At this time, India possessed characteristics that seemed to make it an ideal candidate for industrialization. It had large merchant and artisan classes, which produced beautiful textiles highly valued in sixteenth- and seventeenth-century England. India was, in fact, the largest exporter of cotton cloth in the world by the middle of the eighteenth century. It was also wealthy, and the country’s Mughal rulers had maintained ports, roads, and bridges that helped manufacturers and merchants bring goods to market.

Britain, however, had no intention of allowing its colony to become its economic rival. Like all colonies, India was meant to enrich Britain, not compete with it. Thus began a process often referred to as deindustrialization , a reduction in a nation’s or region’s industrial activity. In the early eighteenth century, even before Britain had forced the French from India, the British Parliament passed the Calico Acts , prohibiting the importation of finished cotton textiles that could compete with the products of English weavers. India thus lost an important market for its goods and a source of revenue. Many weavers lost their jobs, reducing the number of workshops that could be mechanized later in the century. The destruction of the Indian textile industry only accelerated once British textile production became mechanized. Inexpensive mass-produced British cloth flooded Indian markets, underpricing local weavers and driving them out of business.

India’s economy was not completely destroyed by the British presence, however, and Indian entrepreneurs invested in industrial development. For example, Dwarkanath Tagore , a member of a wealthy Hindu family, founded a bank and purchased hand-manufacturing operations ( Figure 9.10 ). Eager to work with the British, he pooled his money with that of British investors to open India’s first coal mine in 1834 and to build sugar refineries and textile factories. Other Indians also invested in such ventures, especially cloth production. Indeed, at the time Britain entered the Second Industrial Revolution, Indian textile factories were successfully competing with British ones selling cloth in China.

Ultimately, though, Indian textiles could not compete with British products on price. One part of the Indian economy that Britain did encourage was cash-crop agriculture. Small farmers unable to pay British taxes were evicted from their lands, which were combined with others and transformed into cotton plantations. The loss of food-producing land in the late eighteenth century led to devastating famine s that killed some thirty million people. Thus India was transformed from a manufacturing nation into an export economy , producing primarily raw materials such as cotton but also tea and sugar for use by the British and opium for the British to sell in China.

A similar process of deindustrialization took place in Egypt , but there British influence was only one of the reasons. In 1805, Muhammad Ali , an Albanian army commander in the service of the Ottoman Empire , gained control of Egypt with the assistance of Egyptian political and religious leaders and replaced the viceroy who had governed on behalf of the Ottoman sultan Selim III . In 1811, Muhammad Ali won Egypt’s effective (although not formal) independence from the Ottoman Empire by defeating the Mamluks , the ruling dynasty of formerly enslaved soldiers who had guarded the country for the Ottomans. To reinforce his authority, he adopted the title khedive of Egypt, a designation above a viceroy and only one step below the reigning sultan.

As Egypt’s new ruler, Muhammad Ali set out to modernize it. He encouraged the peasantry to grow cotton during the winter months, when they were not growing food crops, and sold the cotton to Britain. He used the profits to modernize Egypt’s army, purchase ships for a modern navy, build irrigation systems to grow more cotton, and establish a weapons foundry. He reformed Egypt’s educational system, built a military college, and founded a medical college for women. He built paper mills, sugar refineries, and textile factories using imported European machinery and technicians. Under Muhammad Ali’s rule, Egyptian landowners prospered. Peasants, however, resented both the forced labor system employed in many construction projects and conscription into the army. Many ran away or deliberately crippled themselves to avoid them.

Muhammad Ali also used his army to expand his domains. He seized the western part of the Arabian Peninsula and most of Sudan as well as Crete and Syria ( Figure 9.11 ). Alarmed by his military success, the Ottoman sultan called upon the European powers for assistance. Faced with a blockade of the Nile by the British and Austrians, Muhammad Ali was forced at the Convention of London in 1840 to reduce his army, dissolve his navy, and give up all the territory he had claimed except Egypt and Sudan. In exchange he won the right to establish hereditary rule for his family in Egypt.

The European powers also interfered with Muhammad Ali’s efforts to industrialize. In the 1838 Treaty of Balta Liman with Britain, the Ottoman Empire agreed to abolish monopolies and reduce import taxes on British- and French-made goods, making them cheaper than those produced in Egypt. Lacking coal to power steam engines, Egypt’s factories also could not rapidly produce enough goods to satisfy Egyptian demand. Although Egypt’s manufacturing sector faltered, agriculture boomed, with ready buyers for its sugar and cotton. Needing tax revenues to pay for its military and for foreign imports, the government promoted the growing of cash crop s for sale to Europe, and Egypt found itself locked into the role of an export economy .

Latin America

The nations of Latin America also became export economies. Now freed from Spanish and Portuguese control, they were eager to industrialize but faced a variety of obstacles. At the beginning of the nineteenth century, Brazil had imported steam engines and developed facilities for sugar refining, coffee processing, and textile production. Paraguay built an iron foundry and established a steamship line. Chile opened coal mines and built sawmills and flour mills. Many countries also built rail lines. However, they did not become heavily industrialized; consequently, their development took another path.

Ironically, independence was part of the problem. When Spain and Portugal regulated their economies, Latin American merchants had chafed at restrictions, but these regulations had also heavily taxed foreign-made goods, which protected local handicraft industries. Now that merchants could trade with any countries they wished, however, goods made in Europe and the United States flooded in. Like India and Egypt, Latin American countries quickly found their own manufactured goods could not be made or sold as cheaply as imports. They also could not make enough to supply internal demand. As Brazilians and Chileans watched, their silver flowed overseas instead of being spent at home.

Latin Americans quickly realized that they would be more successful at continuing to grow sugar and coffee, products that had been the bases of the colonial economy and were still in high demand, than they would be at attempting to compete with foreign manufacturers. Later in the nineteenth century, Brazil produced rubber for the same reasons, using its abundant land and large agricultural workforce to supply raw materials for industrialized nations. Although these decisions made sense to planters and politicians, they nevertheless locked Spain’s and Portugal’s former colonies into providing raw materials that did not command as high a price as the finished products made from them.

Thus, though Latin Americans sold large amounts of cash crops to the United States and Europe, enriching the planter class, their earnings never exceeded (or even equaled) what they paid for imports. This disparity had a negative effect on Latin American society. Wealthy plantation owners and urban professionals could afford the factory-made products of other continents, but agricultural laborers could not, accentuating the class divide. Furthermore, many of the industrial improvements that Latin American countries did make, like the construction of mines and railroads, were funded by European and U.S. banks, and much necessary equipment, like steam engines and other machinery, was imported from Europe, leaving little money at home for domestic projects like building roads and telegraph lines. Regional wars in the nineteenth century also destabilized South America and interfered with industrialization. For example, from 1864 to 1870, Paraguay battled the united forces of Uruguay, Brazil, and Argentina in the War of the Triple Alliance . By the time the war ended, it and infectious diseases had killed much of Paraguay’s population.

Thus a variety of forces combined to make Latin America’s attempts to industrialize largely unsuccessful, and the region remained primarily an exporter of cash crops. Although railroad s were built, they tended to be short lines linking the interior to the coast, enabling the export of raw materials. No national rail networks developed like they did in the United States and Europe, and electrification took place only in major cities.

China also did not become an industrial power in the nineteenth century, despite its population, wealth, natural resources, and tradition of innovation and invention. Historians have offered a variety of reasons.

First, no challengers in East Asia could match China in size, wealth, and military strength, so it had no need to compete with anyone. Second, because China’s population was large and often poor, labor was abundant and employers did not have to offer high wages to attract employees or replace workers with labor-saving machinery. Also, unlike in Europe, most coal deposits in China were located far from population and manufacturing centers. Coal provided the most efficient means of powering steam engines in factories and was crucial to the development of railroads.

China had also been weakened by military defeats and internal rebellion. Britain won the First Opium War (1839–1842), gaining control over Hong Kong and five other ports: Guangzhou, Shanghai, Ningbo, Fuzhou, and Xiamen. In 1844, China also signed treaties with France and the United States, giving them the right to trade in the five open ports and build Christian churches in and send missionaries to China. China’s loss to Britain in the Second Opium War (1856–1860) led to the signing of the Treaty of Tianjin , which gave Britain, France, the United States, and Russia further rights to trade and establish diplomatic posts in the capital of Beijing. China refused to honor the treaty, however, and British and French troops invaded Beijing in 1860, looting and burning the imperial Old Summer Palace ( Figure 9.12 ). The subsequent Convention of Beijing affirmed the Treaty of Tianjin .

China’s defeat in the Opium Wars began what the Chinese have called “the century of humiliation.” In accord with the Treaty of Tianjin, six million taels (a unit of currency) of Chinese silver that might otherwise have been invested in business enterprises flowed to the victorious foreigners as compensation for damages sustained. This demonstration of the Qing ’s military weakness plus other grievances such as high unemployment and failure to maintain the crucially important Grand Canal , which transported food stuffs from south to north, led to numerous uprisings and outbreaks of violence directed at the reigning dynasty.

Internal rebellion also weakened China. In December 1850, the Taiping Rebellion began when Qing troops tried to force the followers of a man named Hong Xiuquan from their stronghold in Guangxi province in the south. Hong, a village schoolteacher, had come to believe he was the son of the Christian God and the brother of Jesus. Rejecting both Qing authority and Confucian tradition, he spread his religious teachings throughout southern China and gained a sizable following. In early 1851, after defeating some Qing forces, Hong Xiuquan proclaimed the Taiping Tianguo (Heavenly Kingdom of Great Peace) with himself as king. He urged his followers to give up alcohol and opium and called for the overthrow of the Qing government. His promises of land and wealth for all attracted impoverished peasants, tribal minority groups, bandit gangs, and members of Chinese secret societies, some originally formed to restore the Ming dynasty .

Hong Xiuquan’s forces raged through southern China, seizing towns and cities and confiscating food, money, and weapons. ( Figure 9.13 ). In 1853, the populous southern city of Nanjing fell to the Taiping army and became Hong Xiuquan’s capital. Many died in the fighting, and the confiscation of foodstuffs led to famine . By the time the Taiping Rebellion ended after Hong’s death in 1864, an estimated twenty to thirty million Chinese had died, and the south, China’s most populous region, had been devastated.

As an Amazon Associate we earn from qualifying purchases.

This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute OpenStax.

Access for free at https://openstax.org/books/world-history-volume-2/pages/1-introduction
  • Authors: Ann Kordas, Ryan J. Lynch, Brooke Nelson, Julie Tatlock
  • Publisher/website: OpenStax
  • Book title: World History Volume 2, from 1400
  • Publication date: Dec 14, 2022
  • Location: Houston, Texas
  • Book URL: https://openstax.org/books/world-history-volume-2/pages/1-introduction
  • Section URL: https://openstax.org/books/world-history-volume-2/pages/9-1-the-second-industrial-revolution

© Dec 13, 2023 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.

Overview of the Second Industrial Revolution

  • The Gilded Age
  • Important Historical Figures
  • U.S. Presidents
  • Native American History
  • American Revolution
  • America Moves Westward
  • Crimes & Disasters
  • The Most Important Inventions of the Industrial Revolution
  • African American History
  • African History
  • Ancient History and Culture
  • Asian History
  • European History
  • Latin American History
  • Medieval & Renaissance History
  • Military History
  • The 20th Century
  • Women's History
  • B.S., Texas A&M University

The Second Industrial Revolution was a period of groundbreaking advancements in manufacturing, technology, and industrial production methods, particularly in the United States, from around 1870 to 1914. Developments such as steel , electricity , increased mass production, and the building of a nationwide railroad network enabled the growth of sprawling cities. This historic boost in factory output, coupled with the invention of technological marvels such as the telegraph , the telephone , the automobile , and the radio would forever change how Americans lived and worked.

Key Takeaways: Second Industrial Revolution

  • The Second Industrial Revolution was as period of tremendous economic, industrial, and technological advancement taking place between the end of the American Civil War and the start of World War I.
  • Considered to have been triggered by the invention of the Bessemer process for the cost-effective production of steel and the associated expansion of the U.S. railroad system, the period resulted in an unprecedented increase in industrial production.
  • Advancements in factory workflow, such as mass production, electrification, and automation contributed to economic growth.
  • The Second Industrial Revolution also gave rise to the first workplace safety and work hours laws, including the prohibition of child labor. 

Factory Automation

While factory automation and productivity had been improved by the limited use of First Industrial Revolution inventions such as the steam engine , interchangeable parts, the assembly line, and mass production, most late 19th century factories were still water-powered. During the c, newly developed resources like steel, petroleum, and railroads, along with the superior new power source of electricity, allowed factories to increase production to unheard-of levels. Combined with these, the development of machines controlled by rudimentary computers, gave rise to automated production. By the late 1940s, many of the assembly line factories of the First Industrial Revolution quickly evolved into fully automated factories.

Invented in 1856 by Sir Henry Bessemer , the Bessemer process allowed for the mass-production of steel . Stronger and cheaper to produce, steel soon replaced iron in the building industry. By making it cost-effective to build new rail lines, steel enabled the rapid expansion of America’s railroad network. It also made it possible to build larger ships, skyscrapers, and longer, stronger bridges.

In 1865, the open-hearth process enabled the production of steel cable, rods, plates, gears, and axels used to build the higher-pressure steam boilers needed for more powerful factory engines. With World War I on the horizon by 1912, steel made it possible to build larger, stronger, and more powerful warships, tanks, and guns.

Electrification

In 1879, famed American inventor Thomas Edison perfected his design for a practical electric lightbulb . By the late 1880s, the first efficient commercial electrical generators made large-scale transmission of electrical power to the public possible. Called “the most important engineering achievement of the 20th century” by the National Academy of Engineering, electric lighting greatly improved working conditions and productivity in factories. By replacing the fire hazards of gaslighting, the initial cost of converting to electric lighting was quickly offset by reduced fire insurance premiums. In 1886, the first DC (direct current) electric motor was developed, and by 1920, it powered passenger railways in many cities.

Development of Railroads

Much of the explosion of economic production in America during the Second Industrial Revolution has been attributed to the expansion of the railroads.

By the 1860s, the increased availability and lower cost of Bessemer process steel finally allowed the railroads to utilize it in quantity. Early U.S. railroads had used wrought iron rails imported from Britain. However, being soft and often full of impurities, iron rails could not support heavy locomotives and required frequent repair and replacement. As a far more durable and readily available material, steel soon replaced iron as the standard for railroad rails. Not only did the longer sections of steel rails allow for tracks to be laid far faster, more powerful locomotives, which could pull longer trains, which greatly increased the productivity of the railroads.

First used to report the current location of trains, the telegraph further facilitated the growth of the railroads, as well as financial and commodity markets by reducing the cost of transmitting information within and between firms.

During the 1880s, America’s railroads laid more than 75,000 miles of new track, the most anywhere in history. Between 1865 and 1916, the transcontinental network of railroads, America’s “magic carpet made of steel,” expanded from 35,000 miles to over 254,000 miles. By 1920, rail had become the dominant means of transportation, resulting in a steady decrease in the cost of shipping lasting throughout the rest of the century. The railroad soon became the main way by which companies transported raw materials to their factories and delivered final products to consumers.

Social and Economic Shifts

Within just a few decades, the Second Industrial Revolution transformed the United States from a mainly rural agricultural society to a booming industrial economy centered in major cities. Since rural areas were now connected to large urban markets by a well-developed transportation network, unavoidable crop failures no longer doomed them to poverty. At the same time, however, industrialization and urbanization drastically reduced the share of the population engaged in agriculture.

Between 1870 and 1900, almost all industrialized nations enjoyed booming economies that led to dramatically lower consumer prices, resulting in greatly improved living conditions.    

While it was a period of unprecedented progress and innovation that propelled some people into vast wealth, it also condemned many to poverty, creating a deep social chasm between the industrial machine and the working middle class that fueled it.

Thanks to the development of sewage systems in cities along with the passage of drinking water safety laws, public health improved greatly and rates of death from infectious diseases fell. However, the overall health of the working class declined due to the many hours spent toiling in the harsh and unhealthy conditions of the factories.

For working-class families, prosperity was often followed by poverty as the availability of work rose and fell depending on the demand for goods. As mechanism reduced the demand for labor, many people who had first been drawn from farms to cities to work in the factories lost their jobs. No longer able to compete with the lower cost of mass-produced goods, many artisans and craftsmen lost their livelihoods.

Between the Civil War and WWI, over 25 million people from Europe, as well as Russia and Asia, immigrated to the United States drawn by the prospect of well-paid factory jobs. By 1900, the U.S. Census revealed that 25% of the American population was foreign-born.

Child Labor

Perhaps the most tragic negative aspect of the Second Industrial Revolution was the growth of unregulated child labor. To help their impoverished families, children, often as young as four years old, were forced to work long hours for little pay in factories under unhealthy and unsafe conditions. By 1900, an estimated 1.7 million children under the age of fifteen were working in American factories.

The practice of child labor remained common until 1938 when the Fair Labor Standards Act ( FSLA ) imposed the first nationwide compulsory federal regulation of wages and working hours. Sponsored by Sen. Robert F. Wagner of New York and signed by its ardent supporter, President Franklin D. Roosevelt , the FSLA prohibited the employment of minors in “oppressive child labor,” established a mandatory minimum wage , and limited the number of hours employees should work.  

Company Ownership

The basic model of ownership of industry also underwent a major “innovation” during the Second Industrial Revolution. The oligarchical ownership of companies, if not entire industries by wealthy individual “business magnates” that had dominated during the original Industrial Revolution in the early to mid-19th century was slowly replaced by today’s model of wider public distribution of ownership through the sale of stock to individual investors and institutions such as banks and insurance companies.

The trend began during the first half of the 20th century when several European countries chose to convert basic sectors of their economies to collective or common ownership, a common characteristic of socialism . Beginning in the 1980s this trend toward economic socialization was reversed in the United States and the United Kingdom.

  • Muntone, Stephanie. “Second Industrial Revolution.” The McGraw-Hill Companies , Feb. 4, 2012, https://web.archive.org/web/20131022224325/http://www.education.com/study-help/article/us-history-glided-age-technological-revolution/.
  • Smil, Vaclav (2005). “Creating the Twentieth Century: Technical Innovations of 1867–1914 and Their Lasting Impact.” Oxford University Press, 2005, ISBN 0-19-516874-7.
  • Misa, Thomas J. “A Nation of Steel: The Making of Modern America 1965-1925.” Johns Hopkins University Press, 1995, ISBN 978-0-8018-6502-2.
  • White, Richard. “Railroaded: The Transcontinentals and the Making of Modern America.” W. W. Norton & Company, 2011, ISBN-10: 0393061264.
  • Nye, David E. “Electrifying America: Social Meanings of a New Technology, 1880-1940.” The MIT Press, July 8, 1992, ISBN-10: 0262640309.
  • Hounshell, David A. “From the American System to Mass Production, 1800–1932: The Development of Manufacturing Technology in the United States.” Johns Hopkins University Press, 1984, ISBN 978-0-8018-2975-8.
  • “The Industrial Revolution.” Web Institute for Teachers , https://web.archive.org/web/20080804084618/http://webinstituteforteachers.org/~bobfinn/2003/industrialrevolution.htm.
  • A Beginner's Guide to the Industrial Revolution
  • Steam in the Industrial Revolution
  • Did Cotton Drive the Industrial Revolution?
  • Population Growth and Movement in the Industrial Revolution
  • Coal Demand and the Industrial Revolution
  • Notable American Inventors of the Industrial Revolution
  • Economic Growth: Inventions, Development, and Tycoons
  • The First Skyscrapers
  • Transport in the Industrial Revolution
  • The Development of Banking in the Industrial Revolution
  • Iron in the Industrial Revolution
  • Pictures From the Industrial Revolution
  • The Railways in the Industrial Revolution
  • Textile Industry and Machinery of the Industrial Revolution
  • Progressivism Defined: Roots and Goals

thesis statement second industrial revolution

  • History Classics
  • Your Profile
  • Find History on Facebook (Opens in a new window)
  • Find History on Twitter (Opens in a new window)
  • Find History on YouTube (Opens in a new window)
  • Find History on Instagram (Opens in a new window)
  • Find History on TikTok (Opens in a new window)
  • This Day In History
  • History Podcasts
  • History Vault

8 Groundbreaking Inventions from the Second Industrial Revolution

By: Patrick J. Kiger

Updated: September 11, 2023 | Original: March 9, 2021

8 Inventions from the Second Industrial Revolution That Transformed Life

The Second Industrial Revolution , which lasted from the late 1800s to the early 1900s, saw a surge of new technology and inventions that led to dramatic changes in the economy and how people lived and worked in Europe, Great Britain and especially the United States.

Steel mills, chemical plants and massive factories pumped out vast quantities of consumer goods, electric light and power advanced and new forms of transportation and communication connected people more than ever before. Mechanized farm equipment changed how food was produced, and transformed agriculture into a big industry.

It also was a period when innovators dared to dream big and take great risks, either by devising new inventions or finding ways to make existing products more efficiently. As a result, some made enormous fortunes.

“One of the reasons for this period of great inventiveness from the 1870s-1920s, was the growing complexity and interdependence of production processes, which allowed designers and engineers to identify key bottlenecks and points of inefficiency that slowed or blocked progress,” explains Philip Scranton, emeritus professor of the history of industry and technology at Rutgers University, and author of Endless Novelty: Specialty Production and American Industrialization, 1865-1925. “Tackling those challenges successfully could yield patents and profits, serious incentives for taking a shot at a solution.”

Here are eight significant inventions from the Second Industrial Revolution.

The Air Brake

Locomotive Air Brake

Trains were invented before the Second Industrial Revolution, but there were frequent accidents because slowing and stopping them was a cumbersome process. Then came George Westinghouse, a largely self-taught engineer who dropped out of college after three months because he was too busy inventing things. In 1872, he obtained a patent for an ingenious system that used air pressure to keep train brakes off ; when the train’s engineer reduced the pressure, the brakes slowed the wheels and the train came to a precise stop. Westinghouse’s air brakes helped make possible the rapid growth of railroads as a safe, reliable means to transport people and goods across the country.

The Light Bulb

Thomas Edison, perhaps the most famous inventor in American history, created many of his numerous innovations , from the phonograph and the movie camera to the alkaline storage battery, during the Second Industrial Revolution. But perhaps his most influential breakthrough was his invention and marketing of the first incandescent light bulb that was long-lasting and practical for wide use.

Edison came up with the idea of putting a carbonized bamboo filament inside a vacuum bulb, and then heating it to produce light. He kept tinkering with his creation and eventually improved his bulbs so much that they could last for 1,200 hours. Edison’s “electric lamp,” for which he obtained a patent in January 1880, illuminated homes and businesses across the nation, and helped create an indoor culture that defined its days by the clock rather than by sunrise and sundown.

Petroleum Refining

In the early 1900s, William Burton , a chemist and executive for the Standard Oil Co. in Indiana, developed a process in which crude oil was placed inside a container and heated until it reached a temperature of over 700 degrees Fahrenheit. At this temperature, the oil broke down into simpler, more useful byproducts. Burton “gave us the array of distillates that runs from fuel oil to gasoline to petrochemical basics,” explains Scranton. “No cracking, no interstate highways.”

The QWERTY Typewriter Keyboard

QWERTY Keyboard Typewriter

Like many modern inventions, the typewriter wasn’t the result of a single genius, but was gradually developed by a succession of visionaries starting in the mid-1700s. But it wasn’t until the 1870s that the first really practical typewriters went on sale. In 1878, typing visionary Christopher Latham Sholes , a former journalist and customs inspector, came up with the idea of equipping a typewriter with a QWERTY keyboard, whose arrangement of letters was designed to slow typists’ fingers slightly and prevent typewriters from jamming. 

The QWERTY keyboard triumphed over other arrangements of keys, and became the popular system of choice. Mark Twain used the system to type his 1883 novel Life on the Mississippi , which may have been the first literary work composed on a typewriter .

The Skyscraper

Chicago’s Home Insurance Building , completed in 1885, was the first modern skyscraper with a metal frame, which allowed for a taller building without the enormous weight of traditional brickwork. Engineer and architect William Le Baron Jenney devised the design, which utilized steel I-beams rolled at the Carnegie mill in Pittsburgh.

It was the first use of steel in a building in the United States, and marked the start of an age in which tall office buildings and office towers would rise in urban downtowns across the nation. This shift dramatically altered the look of cities and made it possible for much larger numbers of people to live and work in them.

The Tractor

Before the advent of mechanized agriculture, farmers had to devote a portion of their acreage to raising grain to feed horses and mules since these animals helped them to work the land. By the 1890s, farmers were already using steam-powered machines, but the machines were cumbersome and dangerous, since a spark from the boiler could set fire to a field.

But an Iowa inventor named John Froelich devised a solution. With the help of his mechanic, Will Mann, Froelich replaced the steam apparatus with a single-cylinder gasoline-powered engine. After trying out the modified machine in South Dakota’s big fields, he showed it to some Iowa businessmen, who formed the Waterloo Gasoline Traction Engine Company. The business took a while to get in gear, but by 1914, its Model R Waterloo Boy Tractor became a big seller, according to the Froelich Tractor Museum . Gas-powered tractors proved pivotal in boosting agricultural productivity and enabling American farmers to feed a growing population.

The Safety Razor

A Photograph of the First Safety Razor Invented by King C Gillette, circa 1901.

Back in the days when men’s only choice for shaving was a straight razor that had to be regularly sharpened with a strap, it was safer and more convenient just to grow a beard. 

But in 1895, a traveling salesman named King Gillette got the idea for a razor with a handle that used a tiny, disposable metal blade that could be discarded in the trash and replaced when it eventually got dull. Initially, metallurgists at the Massachusetts Institute of Technology told him the idea wouldn’t work, but eventually, he found an engineer trained at the same university, William Emery, who was able to create the blade . In 1901, Gillette and Nickerson formed the American Safety Razor Company, and Gillette obtained a patent for the safety razor with disposable blades in 1904.

The Wireless

Guglielmo Marconi

The invention of the telegraph in 1844 made it possible for people to communicate for the first time instantaneously over long distances, but they still were limited by the need to have miles of wires installed to connect the sender and the receiver.

But starting in the mid-1890s, an Italian inventor named Guglielmo Marconi developed a better method—transmitting messages through radio waves. Marconi didn’t get a lot of encouragement in his own country, so he moved to England and formed a wireless telegraph company. By 1899, Marconi’s technology was capable of sending messages across the English channel and from ships. 

In 1901, he achieved another, even more spectacular success, when a wireless telegraph station in Cornwall, England successfully transmitted a message across the Atlantic Ocean to another of his stations in St. John’s, Newfoundland. Marconi’s breakthrough was the start of global communications that led to the modern world’s mobile phones and the Internet connecting billions of people.

thesis statement second industrial revolution

HISTORY Vault: 101 Inventions That Changed the World

Take a closer look at the inventions that have transformed our lives far beyond our homes (the steam engine), our planet (the telescope), and our wildest dreams (the Internet).

thesis statement second industrial revolution

Sign up for Inside History

Get HISTORY’s most fascinating stories delivered to your inbox three times a week.

By submitting your information, you agree to receive emails from HISTORY and A+E Networks. You can opt out at any time. You must be 16 years or older and a resident of the United States.

More details : Privacy Notice | Terms of Use | Contact Us

thesis statement second industrial revolution

Finished Papers

Advanced essay writer

icon

Sharing Educational Goals

Our cheap essay service is a helping hand for those who want to reach academic success and have the perfect 4.0 GPA. Whatever kind of help you need, we will give it to you.

Some FAQs related to our essay writer service

Laura V. Svendsen

All our papers are written from scratch. To ensure high quality of writing, the pages number is limited for short deadlines. If you want to order more pages, please choose longer Deadline (Urgency).

Look up our reviews and see what our clients have to say! We have thousands of returning clients that use our writing services every chance they get. We value your reputation, anonymity, and trust in us.

thesis statement second industrial revolution

Finished Papers

Customer Reviews

Niamh Chamberlain

Customer Reviews

Can you write essays for free?

Sometimes our managers receive ambiguous questions from the site. At first, we did not know how to correctly respond to such requests, but we are progressing every day, so we have improved our support service. Our consultants will competently answer strange suggestions and recommend a different way to solve the problem.

The question of whether we can write a text for the user for free no longer surprises anyone from the team. For those who still do not know the answer, read the description of the online platform in more detail.

We love our job very much and are ready to write essays even for free. We want to help people and make their lives better, but if the team does not receive money, then their life will become very bad. Each work must be paid and specialists from the team also want to receive remuneration for their work. For our clients, we have created the most affordable prices so that a student can afford this service. But we cannot be left completely without a salary, because every author has needs for food, housing and recreation.

We hope that you will understand us and agree to such working conditions, and if not, then there are other agencies on the Internet that you can ask for such an option.

  • Member Login

Finished Papers

Customer Reviews

thesis statement second industrial revolution

Advocate Educational Integrity

Our service exists to help you grow as a student, and not to cheat your academic institution. We suggest you use our work as a study aid and not as finalized material. Order a personalized assignment to study from.

COMMENTS

  1. 153 Industrial Revolution Essay Topics & Examples

    Secret #3. Industrial revolution essay positive and negative effects go beyond everyday-life. The on-going processes affected politics, economics, and even diplomacy. Highlighting these effects in your work is crucial for the creation of a convincing argument.

  2. PDF AP United States History SCORING GUIDELINES

    Responses can earn this point without earning the point for thesis statement. (1 point) Evidence used could include the following: • Barbed wire • Alexander Graham Bell ... • "During the Second Industrial Revolution, factories became much more efficient following Henry Ford's introduction of the assembly line. This assembly line moved ...

  3. PDF The Second Industrial Revolution, 1870-1914

    Northwestern University 2003 Sheridan Rd., Evanston IL 60208 Phone: (847)491-5693; Fax (847)491-7001. E-mail: [email protected]. August 1998 subsequent essays. Introduction. The second Industrial Revolution is usually dated between 1870 and 1914, although a number of its char-acteristic events can be dated to the 1850s.

  4. The Second Industrial Revolution, 1870-1914

    The Second Industrial Revolution fueled the Gilded Age, a period of great extremes: great wealth and widespread poverty, great expansion and deep depression, new opportunities, and greater standardization. Economic insecurity became a basic way of life as the depressions of the 1870s and 1890s put millions out of work or reduced pay.

  5. 9.1 The Second Industrial Revolution

    Learning Objectives. By the end of this section, you will be able to: Describe the technological innovations of the Second Industrial Revolution; Describe the spread of industrialization beyond western and central Europe and the United States; Explain the obstacles to industrialization facing countries in Asia, North Africa, and Latin America in the nineteenth century

  6. Overview of the Second Industrial Revolution

    Published on April 26, 2021. The Second Industrial Revolution was a period of groundbreaking advancements in manufacturing, technology, and industrial production methods, particularly in the United States, from around 1870 to 1914. Developments such as steel, electricity, increased mass production, and the building of a nationwide railroad ...

  7. PDF AP European History

    • The thesis or claim must consist of one or more sentences located in one place, either in the introduction or the conclusion (which may not be limited to the first . ... first Industrial Revolution and the second Industrial Revolution. This statement would need to be followed

  8. How the Second Industrial Revolution Changed Americans' Lives

    The Second Industrial Revolution ended just before World War I, historians say. It has been followed by the Third Industrial Revolution in which digital communications technology and the internet ...

  9. 8 Groundbreaking Inventions from the Second Industrial Revolution

    Keystone/Getty Images. The Second Industrial Revolution, which lasted from the late 1800s to the early 1900s, saw a surge of new technology and inventions that led to dramatic changes in the ...

  10. The Second Industrial Revolution

    The Second Industrial Revolution took place by America from which 1870s until the beginning of World Fighting I in 1914. During these forty-five period young children and women began working in the workforce as well as many people migrating from all over the world, mostly from Europe in hope to find

  11. K12 9th grade 2.07 quiz: Effects of the Second Industrial Revolution

    K12 9th grade 2.07 quiz: Effects of the Second Industrial Revolution. Read this Thesis Statement: During the Second Industrial Revolution the quality of life improved for many people thanks to the many inventions of the period. Which of the following options refute the thesis statement?

  12. What is a good thesis statement about the European Industrial

    First, you might want to argue that the Industrial Revolution caused the growth of the great cities of Europe and the world. In other words, you can look at the Industrial Revolution from the ...

  13. Industrial Revolution

    Historians conventionally divide the Industrial Revolution into two approximately consecutive parts. What is called the first Industrial Revolution lasted from the mid-18th century to about 1830 and was mostly confined to Britain.The second Industrial Revolution lasted from the mid-19th century until the early 20th century and took place in Britain, continental Europe, North America, and Japan.

  14. Read this Thesis Statement: During the Second Industrial Revolution the

    The thesis statement suggests that the Second Industrial Revolution improved the quality of life for many individuals. Out of the provided options, the statement that refutes the thesis is: "As a result of the new factories and an increase in production of new inventions, cities became polluted and overcrowded."

  15. Thesis Statement: The Industrial Revolution

    I. Thesis Statement: The Industrial Revolution ensured that the production of goods moved from home crafts and settled in factory production by machine use, mass inflow of immigrants from all over the world escaping religious and political persecution took place and the government contributed by giving grants to entrepreneurs. A.

  16. Look at the thesis statement below. Thesis statement: During The Second

    Since the introduction of the interior electric bulb, there has been more social engagement after dark.. What makes a strong industrial revolution thesis statement? Declaring a thesis The Industrial Revolution made sure that widespread immigration from around the world who were fleeing political and religious persecution took place, that industrial manufacturing by machine use replaced ...

  17. Look at the thesis statement below. Thesis statement: During The Second

    The answer that best supports the thesis statement During The Second Industrial Revolution multiple inventions were created that improved the quality of life for people is C.) More social interaction after dark with the invention of the indoor electric lamp. ... In the case of the thesis statement During The Second Industrial Revolution ...

  18. Thesis statement: The Second Industrial Revolution harnessed many

    The Second Industrial Revolution has brought in new innovations and has enhanced the quality of life that people are living. This revolution was witnessed mostly in the Europe. There are many products that have contributed greatly to the second Industrial revolution. There include chemicals, petroleum, steel, iron, textiles, railroads, etc.

  19. World History B: Chapter 2-12 Flashcards

    Which statement best explains how transportation technology advanced the Industrial Revolution? A. Technological improvements in the shipping industry led most industries to transport their goods to markets overseas. B. Railroads allowed goods to travel over land, but shipping by sea remained the most important method of transporting goods. C.

  20. Thesis Statement About The Second Industrial Revolution

    Connect with the writers. Once paid, the initial draft will be made. For any query r to ask for revision, you can get in touch with the online chat support available 24X7 for you. Meet Robert! His research papers on information technology and design earn the highest scores. Robert is a safe pick for everyone who values quality, adherence to ...

  21. Thesis Statement About The Second Industrial Revolution

    Thesis Statement About The Second Industrial Revolution - 578 . Finished Papers. Margurite J. Perez #13 in Global Rating Level: College, High School, University, Master's, PHD, Undergraduate ... Thesis Statement About The Second Industrial Revolution: User ID: 102652 .

  22. Thesis Statement About The Second Industrial Revolution

    Nursing Business and Economics History Art and Design +64. Extra Services. (415) 397-1966. Thesis Statement About The Second Industrial Revolution -.

  23. Thesis Statement Second Industrial Revolution

    Thesis Statement Second Industrial Revolution - Toll free 1(888)814-4206 1(888)499-5521. 4 reasons to write my essay with us! You are always welcome to check some of our previously done projects given on our website and then judge it for yourself. Apart from that, we can give you 4 significant reasons to be a part of our customer base: