• Privacy Policy

Buy Me a Coffee

Research Method

Home » Research Methodology – Types, Examples and writing Guide

Research Methodology – Types, Examples and writing Guide

Table of Contents

Research Methodology

Research Methodology

Definition:

Research Methodology refers to the systematic and scientific approach used to conduct research, investigate problems, and gather data and information for a specific purpose. It involves the techniques and procedures used to identify, collect , analyze , and interpret data to answer research questions or solve research problems . Moreover, They are philosophical and theoretical frameworks that guide the research process.

Structure of Research Methodology

Research methodology formats can vary depending on the specific requirements of the research project, but the following is a basic example of a structure for a research methodology section:

I. Introduction

  • Provide an overview of the research problem and the need for a research methodology section
  • Outline the main research questions and objectives

II. Research Design

  • Explain the research design chosen and why it is appropriate for the research question(s) and objectives
  • Discuss any alternative research designs considered and why they were not chosen
  • Describe the research setting and participants (if applicable)

III. Data Collection Methods

  • Describe the methods used to collect data (e.g., surveys, interviews, observations)
  • Explain how the data collection methods were chosen and why they are appropriate for the research question(s) and objectives
  • Detail any procedures or instruments used for data collection

IV. Data Analysis Methods

  • Describe the methods used to analyze the data (e.g., statistical analysis, content analysis )
  • Explain how the data analysis methods were chosen and why they are appropriate for the research question(s) and objectives
  • Detail any procedures or software used for data analysis

V. Ethical Considerations

  • Discuss any ethical issues that may arise from the research and how they were addressed
  • Explain how informed consent was obtained (if applicable)
  • Detail any measures taken to ensure confidentiality and anonymity

VI. Limitations

  • Identify any potential limitations of the research methodology and how they may impact the results and conclusions

VII. Conclusion

  • Summarize the key aspects of the research methodology section
  • Explain how the research methodology addresses the research question(s) and objectives

Research Methodology Types

Types of Research Methodology are as follows:

Quantitative Research Methodology

This is a research methodology that involves the collection and analysis of numerical data using statistical methods. This type of research is often used to study cause-and-effect relationships and to make predictions.

Qualitative Research Methodology

This is a research methodology that involves the collection and analysis of non-numerical data such as words, images, and observations. This type of research is often used to explore complex phenomena, to gain an in-depth understanding of a particular topic, and to generate hypotheses.

Mixed-Methods Research Methodology

This is a research methodology that combines elements of both quantitative and qualitative research. This approach can be particularly useful for studies that aim to explore complex phenomena and to provide a more comprehensive understanding of a particular topic.

Case Study Research Methodology

This is a research methodology that involves in-depth examination of a single case or a small number of cases. Case studies are often used in psychology, sociology, and anthropology to gain a detailed understanding of a particular individual or group.

Action Research Methodology

This is a research methodology that involves a collaborative process between researchers and practitioners to identify and solve real-world problems. Action research is often used in education, healthcare, and social work.

Experimental Research Methodology

This is a research methodology that involves the manipulation of one or more independent variables to observe their effects on a dependent variable. Experimental research is often used to study cause-and-effect relationships and to make predictions.

Survey Research Methodology

This is a research methodology that involves the collection of data from a sample of individuals using questionnaires or interviews. Survey research is often used to study attitudes, opinions, and behaviors.

Grounded Theory Research Methodology

This is a research methodology that involves the development of theories based on the data collected during the research process. Grounded theory is often used in sociology and anthropology to generate theories about social phenomena.

Research Methodology Example

An Example of Research Methodology could be the following:

Research Methodology for Investigating the Effectiveness of Cognitive Behavioral Therapy in Reducing Symptoms of Depression in Adults

Introduction:

The aim of this research is to investigate the effectiveness of cognitive-behavioral therapy (CBT) in reducing symptoms of depression in adults. To achieve this objective, a randomized controlled trial (RCT) will be conducted using a mixed-methods approach.

Research Design:

The study will follow a pre-test and post-test design with two groups: an experimental group receiving CBT and a control group receiving no intervention. The study will also include a qualitative component, in which semi-structured interviews will be conducted with a subset of participants to explore their experiences of receiving CBT.

Participants:

Participants will be recruited from community mental health clinics in the local area. The sample will consist of 100 adults aged 18-65 years old who meet the diagnostic criteria for major depressive disorder. Participants will be randomly assigned to either the experimental group or the control group.

Intervention :

The experimental group will receive 12 weekly sessions of CBT, each lasting 60 minutes. The intervention will be delivered by licensed mental health professionals who have been trained in CBT. The control group will receive no intervention during the study period.

Data Collection:

Quantitative data will be collected through the use of standardized measures such as the Beck Depression Inventory-II (BDI-II) and the Generalized Anxiety Disorder-7 (GAD-7). Data will be collected at baseline, immediately after the intervention, and at a 3-month follow-up. Qualitative data will be collected through semi-structured interviews with a subset of participants from the experimental group. The interviews will be conducted at the end of the intervention period, and will explore participants’ experiences of receiving CBT.

Data Analysis:

Quantitative data will be analyzed using descriptive statistics, t-tests, and mixed-model analyses of variance (ANOVA) to assess the effectiveness of the intervention. Qualitative data will be analyzed using thematic analysis to identify common themes and patterns in participants’ experiences of receiving CBT.

Ethical Considerations:

This study will comply with ethical guidelines for research involving human subjects. Participants will provide informed consent before participating in the study, and their privacy and confidentiality will be protected throughout the study. Any adverse events or reactions will be reported and managed appropriately.

Data Management:

All data collected will be kept confidential and stored securely using password-protected databases. Identifying information will be removed from qualitative data transcripts to ensure participants’ anonymity.

Limitations:

One potential limitation of this study is that it only focuses on one type of psychotherapy, CBT, and may not generalize to other types of therapy or interventions. Another limitation is that the study will only include participants from community mental health clinics, which may not be representative of the general population.

Conclusion:

This research aims to investigate the effectiveness of CBT in reducing symptoms of depression in adults. By using a randomized controlled trial and a mixed-methods approach, the study will provide valuable insights into the mechanisms underlying the relationship between CBT and depression. The results of this study will have important implications for the development of effective treatments for depression in clinical settings.

How to Write Research Methodology

Writing a research methodology involves explaining the methods and techniques you used to conduct research, collect data, and analyze results. It’s an essential section of any research paper or thesis, as it helps readers understand the validity and reliability of your findings. Here are the steps to write a research methodology:

  • Start by explaining your research question: Begin the methodology section by restating your research question and explaining why it’s important. This helps readers understand the purpose of your research and the rationale behind your methods.
  • Describe your research design: Explain the overall approach you used to conduct research. This could be a qualitative or quantitative research design, experimental or non-experimental, case study or survey, etc. Discuss the advantages and limitations of the chosen design.
  • Discuss your sample: Describe the participants or subjects you included in your study. Include details such as their demographics, sampling method, sample size, and any exclusion criteria used.
  • Describe your data collection methods : Explain how you collected data from your participants. This could include surveys, interviews, observations, questionnaires, or experiments. Include details on how you obtained informed consent, how you administered the tools, and how you minimized the risk of bias.
  • Explain your data analysis techniques: Describe the methods you used to analyze the data you collected. This could include statistical analysis, content analysis, thematic analysis, or discourse analysis. Explain how you dealt with missing data, outliers, and any other issues that arose during the analysis.
  • Discuss the validity and reliability of your research : Explain how you ensured the validity and reliability of your study. This could include measures such as triangulation, member checking, peer review, or inter-coder reliability.
  • Acknowledge any limitations of your research: Discuss any limitations of your study, including any potential threats to validity or generalizability. This helps readers understand the scope of your findings and how they might apply to other contexts.
  • Provide a summary: End the methodology section by summarizing the methods and techniques you used to conduct your research. This provides a clear overview of your research methodology and helps readers understand the process you followed to arrive at your findings.

When to Write Research Methodology

Research methodology is typically written after the research proposal has been approved and before the actual research is conducted. It should be written prior to data collection and analysis, as it provides a clear roadmap for the research project.

The research methodology is an important section of any research paper or thesis, as it describes the methods and procedures that will be used to conduct the research. It should include details about the research design, data collection methods, data analysis techniques, and any ethical considerations.

The methodology should be written in a clear and concise manner, and it should be based on established research practices and standards. It is important to provide enough detail so that the reader can understand how the research was conducted and evaluate the validity of the results.

Applications of Research Methodology

Here are some of the applications of research methodology:

  • To identify the research problem: Research methodology is used to identify the research problem, which is the first step in conducting any research.
  • To design the research: Research methodology helps in designing the research by selecting the appropriate research method, research design, and sampling technique.
  • To collect data: Research methodology provides a systematic approach to collect data from primary and secondary sources.
  • To analyze data: Research methodology helps in analyzing the collected data using various statistical and non-statistical techniques.
  • To test hypotheses: Research methodology provides a framework for testing hypotheses and drawing conclusions based on the analysis of data.
  • To generalize findings: Research methodology helps in generalizing the findings of the research to the target population.
  • To develop theories : Research methodology is used to develop new theories and modify existing theories based on the findings of the research.
  • To evaluate programs and policies : Research methodology is used to evaluate the effectiveness of programs and policies by collecting data and analyzing it.
  • To improve decision-making: Research methodology helps in making informed decisions by providing reliable and valid data.

Purpose of Research Methodology

Research methodology serves several important purposes, including:

  • To guide the research process: Research methodology provides a systematic framework for conducting research. It helps researchers to plan their research, define their research questions, and select appropriate methods and techniques for collecting and analyzing data.
  • To ensure research quality: Research methodology helps researchers to ensure that their research is rigorous, reliable, and valid. It provides guidelines for minimizing bias and error in data collection and analysis, and for ensuring that research findings are accurate and trustworthy.
  • To replicate research: Research methodology provides a clear and detailed account of the research process, making it possible for other researchers to replicate the study and verify its findings.
  • To advance knowledge: Research methodology enables researchers to generate new knowledge and to contribute to the body of knowledge in their field. It provides a means for testing hypotheses, exploring new ideas, and discovering new insights.
  • To inform decision-making: Research methodology provides evidence-based information that can inform policy and decision-making in a variety of fields, including medicine, public health, education, and business.

Advantages of Research Methodology

Research methodology has several advantages that make it a valuable tool for conducting research in various fields. Here are some of the key advantages of research methodology:

  • Systematic and structured approach : Research methodology provides a systematic and structured approach to conducting research, which ensures that the research is conducted in a rigorous and comprehensive manner.
  • Objectivity : Research methodology aims to ensure objectivity in the research process, which means that the research findings are based on evidence and not influenced by personal bias or subjective opinions.
  • Replicability : Research methodology ensures that research can be replicated by other researchers, which is essential for validating research findings and ensuring their accuracy.
  • Reliability : Research methodology aims to ensure that the research findings are reliable, which means that they are consistent and can be depended upon.
  • Validity : Research methodology ensures that the research findings are valid, which means that they accurately reflect the research question or hypothesis being tested.
  • Efficiency : Research methodology provides a structured and efficient way of conducting research, which helps to save time and resources.
  • Flexibility : Research methodology allows researchers to choose the most appropriate research methods and techniques based on the research question, data availability, and other relevant factors.
  • Scope for innovation: Research methodology provides scope for innovation and creativity in designing research studies and developing new research techniques.

Research Methodology Vs Research Methods

About the author.

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Research Paper Citation

How to Cite Research Paper – All Formats and...

Data collection

Data Collection – Methods Types and Examples

Delimitations

Delimitations in Research – Types, Examples and...

Research Paper Formats

Research Paper Format – Types, Examples and...

Research Process

Research Process – Steps, Examples and Tips

Research Design

Research Design – Types, Methods and Examples

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, automatically generate references for free.

  • Knowledge Base
  • Dissertation
  • What Is a Research Methodology? | Steps & Tips

What Is a Research Methodology? | Steps & Tips

Published on 25 February 2019 by Shona McCombes . Revised on 10 October 2022.

Your research methodology discusses and explains the data collection and analysis methods you used in your research. A key part of your thesis, dissertation, or research paper, the methodology chapter explains what you did and how you did it, allowing readers to evaluate the reliability and validity of your research.

It should include:

  • The type of research you conducted
  • How you collected and analysed your data
  • Any tools or materials you used in the research
  • Why you chose these methods
  • Your methodology section should generally be written in the past tense .
  • Academic style guides in your field may provide detailed guidelines on what to include for different types of studies.
  • Your citation style might provide guidelines for your methodology section (e.g., an APA Style methods section ).

Instantly correct all language mistakes in your text

Be assured that you'll submit flawless writing. Upload your document to correct all your mistakes.

upload-your-document-ai-proofreader

Table of contents

How to write a research methodology, why is a methods section important, step 1: explain your methodological approach, step 2: describe your data collection methods, step 3: describe your analysis method, step 4: evaluate and justify the methodological choices you made, tips for writing a strong methodology chapter, frequently asked questions about methodology.

Prevent plagiarism, run a free check.

Your methods section is your opportunity to share how you conducted your research and why you chose the methods you chose. It’s also the place to show that your research was rigorously conducted and can be replicated .

It gives your research legitimacy and situates it within your field, and also gives your readers a place to refer to if they have any questions or critiques in other sections.

You can start by introducing your overall approach to your research. You have two options here.

Option 1: Start with your “what”

What research problem or question did you investigate?

  • Aim to describe the characteristics of something?
  • Explore an under-researched topic?
  • Establish a causal relationship?

And what type of data did you need to achieve this aim?

  • Quantitative data , qualitative data , or a mix of both?
  • Primary data collected yourself, or secondary data collected by someone else?
  • Experimental data gathered by controlling and manipulating variables, or descriptive data gathered via observations?

Option 2: Start with your “why”

Depending on your discipline, you can also start with a discussion of the rationale and assumptions underpinning your methodology. In other words, why did you choose these methods for your study?

  • Why is this the best way to answer your research question?
  • Is this a standard methodology in your field, or does it require justification?
  • Were there any ethical considerations involved in your choices?
  • What are the criteria for validity and reliability in this type of research ?

Once you have introduced your reader to your methodological approach, you should share full details about your data collection methods .

Quantitative methods

In order to be considered generalisable, you should describe quantitative research methods in enough detail for another researcher to replicate your study.

Here, explain how you operationalised your concepts and measured your variables. Discuss your sampling method or inclusion/exclusion criteria, as well as any tools, procedures, and materials you used to gather your data.

Surveys Describe where, when, and how the survey was conducted.

  • How did you design the questionnaire?
  • What form did your questions take (e.g., multiple choice, Likert scale )?
  • Were your surveys conducted in-person or virtually?
  • What sampling method did you use to select participants?
  • What was your sample size and response rate?

Experiments Share full details of the tools, techniques, and procedures you used to conduct your experiment.

  • How did you design the experiment ?
  • How did you recruit participants?
  • How did you manipulate and measure the variables ?
  • What tools did you use?

Existing data Explain how you gathered and selected the material (such as datasets or archival data) that you used in your analysis.

  • Where did you source the material?
  • How was the data originally produced?
  • What criteria did you use to select material (e.g., date range)?

The survey consisted of 5 multiple-choice questions and 10 questions measured on a 7-point Likert scale.

The goal was to collect survey responses from 350 customers visiting the fitness apparel company’s brick-and-mortar location in Boston on 4–8 July 2022, between 11:00 and 15:00.

Here, a customer was defined as a person who had purchased a product from the company on the day they took the survey. Participants were given 5 minutes to fill in the survey anonymously. In total, 408 customers responded, but not all surveys were fully completed. Due to this, 371 survey results were included in the analysis.

Qualitative methods

In qualitative research , methods are often more flexible and subjective. For this reason, it’s crucial to robustly explain the methodology choices you made.

Be sure to discuss the criteria you used to select your data, the context in which your research was conducted, and the role you played in collecting your data (e.g., were you an active participant, or a passive observer?)

Interviews or focus groups Describe where, when, and how the interviews were conducted.

  • How did you find and select participants?
  • How many participants took part?
  • What form did the interviews take ( structured , semi-structured , or unstructured )?
  • How long were the interviews?
  • How were they recorded?

Participant observation Describe where, when, and how you conducted the observation or ethnography .

  • What group or community did you observe? How long did you spend there?
  • How did you gain access to this group? What role did you play in the community?
  • How long did you spend conducting the research? Where was it located?
  • How did you record your data (e.g., audiovisual recordings, note-taking)?

Existing data Explain how you selected case study materials for your analysis.

  • What type of materials did you analyse?
  • How did you select them?

In order to gain better insight into possibilities for future improvement of the fitness shop’s product range, semi-structured interviews were conducted with 8 returning customers.

Here, a returning customer was defined as someone who usually bought products at least twice a week from the store.

Surveys were used to select participants. Interviews were conducted in a small office next to the cash register and lasted approximately 20 minutes each. Answers were recorded by note-taking, and seven interviews were also filmed with consent. One interviewee preferred not to be filmed.

Mixed methods

Mixed methods research combines quantitative and qualitative approaches. If a standalone quantitative or qualitative study is insufficient to answer your research question, mixed methods may be a good fit for you.

Mixed methods are less common than standalone analyses, largely because they require a great deal of effort to pull off successfully. If you choose to pursue mixed methods, it’s especially important to robustly justify your methods here.

Next, you should indicate how you processed and analysed your data. Avoid going into too much detail: you should not start introducing or discussing any of your results at this stage.

In quantitative research , your analysis will be based on numbers. In your methods section, you can include:

  • How you prepared the data before analysing it (e.g., checking for missing data , removing outliers , transforming variables)
  • Which software you used (e.g., SPSS, Stata or R)
  • Which statistical tests you used (e.g., two-tailed t test , simple linear regression )

In qualitative research, your analysis will be based on language, images, and observations (often involving some form of textual analysis ).

Specific methods might include:

  • Content analysis : Categorising and discussing the meaning of words, phrases and sentences
  • Thematic analysis : Coding and closely examining the data to identify broad themes and patterns
  • Discourse analysis : Studying communication and meaning in relation to their social context

Mixed methods combine the above two research methods, integrating both qualitative and quantitative approaches into one coherent analytical process.

Above all, your methodology section should clearly make the case for why you chose the methods you did. This is especially true if you did not take the most standard approach to your topic. In this case, discuss why other methods were not suitable for your objectives, and show how this approach contributes new knowledge or understanding.

In any case, it should be overwhelmingly clear to your reader that you set yourself up for success in terms of your methodology’s design. Show how your methods should lead to results that are valid and reliable, while leaving the analysis of the meaning, importance, and relevance of your results for your discussion section .

  • Quantitative: Lab-based experiments cannot always accurately simulate real-life situations and behaviours, but they are effective for testing causal relationships between variables .
  • Qualitative: Unstructured interviews usually produce results that cannot be generalised beyond the sample group , but they provide a more in-depth understanding of participants’ perceptions, motivations, and emotions.
  • Mixed methods: Despite issues systematically comparing differing types of data, a solely quantitative study would not sufficiently incorporate the lived experience of each participant, while a solely qualitative study would be insufficiently generalisable.

Remember that your aim is not just to describe your methods, but to show how and why you applied them. Again, it’s critical to demonstrate that your research was rigorously conducted and can be replicated.

1. Focus on your objectives and research questions

The methodology section should clearly show why your methods suit your objectives  and convince the reader that you chose the best possible approach to answering your problem statement and research questions .

2. Cite relevant sources

Your methodology can be strengthened by referencing existing research in your field. This can help you to:

  • Show that you followed established practice for your type of research
  • Discuss how you decided on your approach by evaluating existing research
  • Present a novel methodological approach to address a gap in the literature

3. Write for your audience

Consider how much information you need to give, and avoid getting too lengthy. If you are using methods that are standard for your discipline, you probably don’t need to give a lot of background or justification.

Regardless, your methodology should be a clear, well-structured text that makes an argument for your approach, not just a list of technical details and procedures.

Methodology refers to the overarching strategy and rationale of your research. Developing your methodology involves studying the research methods used in your field and the theories or principles that underpin them, in order to choose the approach that best matches your objectives.

Methods are the specific tools and procedures you use to collect and analyse data (e.g. interviews, experiments , surveys , statistical tests ).

In a dissertation or scientific paper, the methodology chapter or methods section comes after the introduction and before the results , discussion and conclusion .

Depending on the length and type of document, you might also include a literature review or theoretical framework before the methodology.

Quantitative research deals with numbers and statistics, while qualitative research deals with words and meanings.

Quantitative methods allow you to test a hypothesis by systematically collecting and analysing data, while qualitative methods allow you to explore ideas and experiences in depth.

A sample is a subset of individuals from a larger population. Sampling means selecting the group that you will actually collect data from in your research.

For example, if you are researching the opinions of students in your university, you could survey a sample of 100 students.

Statistical sampling allows you to test a hypothesis about the characteristics of a population. There are various sampling methods you can use to ensure that your sample is representative of the population as a whole.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the ‘Cite this Scribbr article’ button to automatically add the citation to our free Reference Generator.

McCombes, S. (2022, October 10). What Is a Research Methodology? | Steps & Tips. Scribbr. Retrieved 9 April 2024, from https://www.scribbr.co.uk/thesis-dissertation/methodology/

Is this article helpful?

Shona McCombes

Shona McCombes

Other students also liked, how to write a dissertation proposal | a step-by-step guide, what is a literature review | guide, template, & examples, what is a theoretical framework | a step-by-step guide.

  • Resources Home 🏠
  • Try SciSpace Copilot
  • Search research papers
  • Add Copilot Extension
  • Try AI Detector
  • Try Paraphraser
  • Try Citation Generator
  • April Papers
  • June Papers
  • July Papers

SciSpace Resources

Here's What You Need to Understand About Research Methodology

Deeptanshu D

Table of Contents

Research methodology involves a systematic and well-structured approach to conducting scholarly or scientific inquiries. Knowing the significance of research methodology and its different components is crucial as it serves as the basis for any study.

Typically, your research topic will start as a broad idea you want to investigate more thoroughly. Once you’ve identified a research problem and created research questions , you must choose the appropriate methodology and frameworks to address those questions effectively.

What is the definition of a research methodology?

Research methodology is the process or the way you intend to execute your study. The methodology section of a research paper outlines how you plan to conduct your study. It covers various steps such as collecting data, statistical analysis, observing participants, and other procedures involved in the research process

The methods section should give a description of the process that will convert your idea into a study. Additionally, the outcomes of your process must provide valid and reliable results resonant with the aims and objectives of your research. This thumb rule holds complete validity, no matter whether your paper has inclinations for qualitative or quantitative usage.

Studying research methods used in related studies can provide helpful insights and direction for your own research. Now easily discover papers related to your topic on SciSpace and utilize our AI research assistant, Copilot , to quickly review the methodologies applied in different papers.

Analyze and understand research methodologies faster with SciSpace Copilot

The need for a good research methodology

While deciding on your approach towards your research, the reason or factors you weighed in choosing a particular problem and formulating a research topic need to be validated and explained. A research methodology helps you do exactly that. Moreover, a good research methodology lets you build your argument to validate your research work performed through various data collection methods, analytical methods, and other essential points.

Just imagine it as a strategy documented to provide an overview of what you intend to do.

While undertaking any research writing or performing the research itself, you may get drifted in not something of much importance. In such a case, a research methodology helps you to get back to your outlined work methodology.

A research methodology helps in keeping you accountable for your work. Additionally, it can help you evaluate whether your work is in sync with your original aims and objectives or not. Besides, a good research methodology enables you to navigate your research process smoothly and swiftly while providing effective planning to achieve your desired results.

What is the basic structure of a research methodology?

Usually, you must ensure to include the following stated aspects while deciding over the basic structure of your research methodology:

1. Your research procedure

Explain what research methods you’re going to use. Whether you intend to proceed with quantitative or qualitative, or a composite of both approaches, you need to state that explicitly. The option among the three depends on your research’s aim, objectives, and scope.

2. Provide the rationality behind your chosen approach

Based on logic and reason, let your readers know why you have chosen said research methodologies. Additionally, you have to build strong arguments supporting why your chosen research method is the best way to achieve the desired outcome.

3. Explain your mechanism

The mechanism encompasses the research methods or instruments you will use to develop your research methodology. It usually refers to your data collection methods. You can use interviews, surveys, physical questionnaires, etc., of the many available mechanisms as research methodology instruments. The data collection method is determined by the type of research and whether the data is quantitative data(includes numerical data) or qualitative data (perception, morale, etc.) Moreover, you need to put logical reasoning behind choosing a particular instrument.

4. Significance of outcomes

The results will be available once you have finished experimenting. However, you should also explain how you plan to use the data to interpret the findings. This section also aids in understanding the problem from within, breaking it down into pieces, and viewing the research problem from various perspectives.

5. Reader’s advice

Anything that you feel must be explained to spread more awareness among readers and focus groups must be included and described in detail. You should not just specify your research methodology on the assumption that a reader is aware of the topic.  

All the relevant information that explains and simplifies your research paper must be included in the methodology section. If you are conducting your research in a non-traditional manner, give a logical justification and list its benefits.

6. Explain your sample space

Include information about the sample and sample space in the methodology section. The term "sample" refers to a smaller set of data that a researcher selects or chooses from a larger group of people or focus groups using a predetermined selection method. Let your readers know how you are going to distinguish between relevant and non-relevant samples. How you figured out those exact numbers to back your research methodology, i.e. the sample spacing of instruments, must be discussed thoroughly.

For example, if you are going to conduct a survey or interview, then by what procedure will you select the interviewees (or sample size in case of surveys), and how exactly will the interview or survey be conducted.

7. Challenges and limitations

This part, which is frequently assumed to be unnecessary, is actually very important. The challenges and limitations that your chosen strategy inherently possesses must be specified while you are conducting different types of research.

The importance of a good research methodology

You must have observed that all research papers, dissertations, or theses carry a chapter entirely dedicated to research methodology. This section helps maintain your credibility as a better interpreter of results rather than a manipulator.

A good research methodology always explains the procedure, data collection methods and techniques, aim, and scope of the research. In a research study, it leads to a well-organized, rationality-based approach, while the paper lacking it is often observed as messy or disorganized.

You should pay special attention to validating your chosen way towards the research methodology. This becomes extremely important in case you select an unconventional or a distinct method of execution.

Curating and developing a strong, effective research methodology can assist you in addressing a variety of situations, such as:

  • When someone tries to duplicate or expand upon your research after few years.
  • If a contradiction or conflict of facts occurs at a later time. This gives you the security you need to deal with these contradictions while still being able to defend your approach.
  • Gaining a tactical approach in getting your research completed in time. Just ensure you are using the right approach while drafting your research methodology, and it can help you achieve your desired outcomes. Additionally, it provides a better explanation and understanding of the research question itself.
  • Documenting the results so that the final outcome of the research stays as you intended it to be while starting.

Instruments you could use while writing a good research methodology

As a researcher, you must choose which tools or data collection methods that fit best in terms of the relevance of your research. This decision has to be wise.

There exists many research equipments or tools that you can use to carry out your research process. These are classified as:

a. Interviews (One-on-One or a Group)

An interview aimed to get your desired research outcomes can be undertaken in many different ways. For example, you can design your interview as structured, semi-structured, or unstructured. What sets them apart is the degree of formality in the questions. On the other hand, in a group interview, your aim should be to collect more opinions and group perceptions from the focus groups on a certain topic rather than looking out for some formal answers.

In surveys, you are in better control if you specifically draft the questions you seek the response for. For example, you may choose to include free-style questions that can be answered descriptively, or you may provide a multiple-choice type response for questions. Besides, you can also opt to choose both ways, deciding what suits your research process and purpose better.

c. Sample Groups

Similar to the group interviews, here, you can select a group of individuals and assign them a topic to discuss or freely express their opinions over that. You can simultaneously note down the answers and later draft them appropriately, deciding on the relevance of every response.

d. Observations

If your research domain is humanities or sociology, observations are the best-proven method to draw your research methodology. Of course, you can always include studying the spontaneous response of the participants towards a situation or conducting the same but in a more structured manner. A structured observation means putting the participants in a situation at a previously decided time and then studying their responses.

Of all the tools described above, it is you who should wisely choose the instruments and decide what’s the best fit for your research. You must not restrict yourself from multiple methods or a combination of a few instruments if appropriate in drafting a good research methodology.

Types of research methodology

A research methodology exists in various forms. Depending upon their approach, whether centered around words, numbers, or both, methodologies are distinguished as qualitative, quantitative, or an amalgamation of both.

1. Qualitative research methodology

When a research methodology primarily focuses on words and textual data, then it is generally referred to as qualitative research methodology. This type is usually preferred among researchers when the aim and scope of the research are mainly theoretical and explanatory.

The instruments used are observations, interviews, and sample groups. You can use this methodology if you are trying to study human behavior or response in some situations. Generally, qualitative research methodology is widely used in sociology, psychology, and other related domains.

2. Quantitative research methodology

If your research is majorly centered on data, figures, and stats, then analyzing these numerical data is often referred to as quantitative research methodology. You can use quantitative research methodology if your research requires you to validate or justify the obtained results.

In quantitative methods, surveys, tests, experiments, and evaluations of current databases can be advantageously used as instruments If your research involves testing some hypothesis, then use this methodology.

3. Amalgam methodology

As the name suggests, the amalgam methodology uses both quantitative and qualitative approaches. This methodology is used when a part of the research requires you to verify the facts and figures, whereas the other part demands you to discover the theoretical and explanatory nature of the research question.

The instruments for the amalgam methodology require you to conduct interviews and surveys, including tests and experiments. The outcome of this methodology can be insightful and valuable as it provides precise test results in line with theoretical explanations and reasoning.

The amalgam method, makes your work both factual and rational at the same time.

Final words: How to decide which is the best research methodology?

If you have kept your sincerity and awareness intact with the aims and scope of research well enough, you must have got an idea of which research methodology suits your work best.

Before deciding which research methodology answers your research question, you must invest significant time in reading and doing your homework for that. Taking references that yield relevant results should be your first approach to establishing a research methodology.

Moreover, you should never refrain from exploring other options. Before setting your work in stone, you must try all the available options as it explains why the choice of research methodology that you finally make is more appropriate than the other available options.

You should always go for a quantitative research methodology if your research requires gathering large amounts of data, figures, and statistics. This research methodology will provide you with results if your research paper involves the validation of some hypothesis.

Whereas, if  you are looking for more explanations, reasons, opinions, and public perceptions around a theory, you must use qualitative research methodology.The choice of an appropriate research methodology ultimately depends on what you want to achieve through your research.

Frequently Asked Questions (FAQs) about Research Methodology

1. how to write a research methodology.

You can always provide a separate section for research methodology where you should specify details about the methods and instruments used during the research, discussions on result analysis, including insights into the background information, and conveying the research limitations.

2. What are the types of research methodology?

There generally exists four types of research methodology i.e.

  • Observation
  • Experimental
  • Derivational

3. What is the true meaning of research methodology?

The set of techniques or procedures followed to discover and analyze the information gathered to validate or justify a research outcome is generally called Research Methodology.

4. Where lies the importance of research methodology?

Your research methodology directly reflects the validity of your research outcomes and how well-informed your research work is. Moreover, it can help future researchers cite or refer to your research if they plan to use a similar research methodology.

methodology of research paper example

You might also like

Consensus GPT vs. SciSpace GPT: Choose the Best GPT for Research

Consensus GPT vs. SciSpace GPT: Choose the Best GPT for Research

Sumalatha G

Literature Review and Theoretical Framework: Understanding the Differences

Nikhil Seethi

Using AI for research: A beginner’s guide

Shubham Dogra

  • USC Libraries
  • Research Guides

Organizing Your Social Sciences Research Paper

  • 6. The Methodology
  • Purpose of Guide
  • Design Flaws to Avoid
  • Independent and Dependent Variables
  • Glossary of Research Terms
  • Reading Research Effectively
  • Narrowing a Topic Idea
  • Broadening a Topic Idea
  • Extending the Timeliness of a Topic Idea
  • Academic Writing Style
  • Applying Critical Thinking
  • Choosing a Title
  • Making an Outline
  • Paragraph Development
  • Research Process Video Series
  • Executive Summary
  • The C.A.R.S. Model
  • Background Information
  • The Research Problem/Question
  • Theoretical Framework
  • Citation Tracking
  • Content Alert Services
  • Evaluating Sources
  • Primary Sources
  • Secondary Sources
  • Tiertiary Sources
  • Scholarly vs. Popular Publications
  • Qualitative Methods
  • Quantitative Methods
  • Insiderness
  • Using Non-Textual Elements
  • Limitations of the Study
  • Common Grammar Mistakes
  • Writing Concisely
  • Avoiding Plagiarism
  • Footnotes or Endnotes?
  • Further Readings
  • Generative AI and Writing
  • USC Libraries Tutorials and Other Guides
  • Bibliography

The methods section describes actions taken to investigate a research problem and the rationale for the application of specific procedures or techniques used to identify, select, process, and analyze information applied to understanding the problem, thereby, allowing the reader to critically evaluate a study’s overall validity and reliability. The methodology section of a research paper answers two main questions: How was the data collected or generated? And, how was it analyzed? The writing should be direct and precise and always written in the past tense.

Kallet, Richard H. "How to Write the Methods Section of a Research Paper." Respiratory Care 49 (October 2004): 1229-1232.

Importance of a Good Methodology Section

You must explain how you obtained and analyzed your results for the following reasons:

  • Readers need to know how the data was obtained because the method you chose affects the results and, by extension, how you interpreted their significance in the discussion section of your paper.
  • Methodology is crucial for any branch of scholarship because an unreliable method produces unreliable results and, as a consequence, undermines the value of your analysis of the findings.
  • In most cases, there are a variety of different methods you can choose to investigate a research problem. The methodology section of your paper should clearly articulate the reasons why you have chosen a particular procedure or technique.
  • The reader wants to know that the data was collected or generated in a way that is consistent with accepted practice in the field of study. For example, if you are using a multiple choice questionnaire, readers need to know that it offered your respondents a reasonable range of answers to choose from.
  • The method must be appropriate to fulfilling the overall aims of the study. For example, you need to ensure that you have a large enough sample size to be able to generalize and make recommendations based upon the findings.
  • The methodology should discuss the problems that were anticipated and the steps you took to prevent them from occurring. For any problems that do arise, you must describe the ways in which they were minimized or why these problems do not impact in any meaningful way your interpretation of the findings.
  • In the social and behavioral sciences, it is important to always provide sufficient information to allow other researchers to adopt or replicate your methodology. This information is particularly important when a new method has been developed or an innovative use of an existing method is utilized.

Bem, Daryl J. Writing the Empirical Journal Article. Psychology Writing Center. University of Washington; Denscombe, Martyn. The Good Research Guide: For Small-Scale Social Research Projects . 5th edition. Buckingham, UK: Open University Press, 2014; Lunenburg, Frederick C. Writing a Successful Thesis or Dissertation: Tips and Strategies for Students in the Social and Behavioral Sciences . Thousand Oaks, CA: Corwin Press, 2008.

Structure and Writing Style

I.  Groups of Research Methods

There are two main groups of research methods in the social sciences:

  • The e mpirical-analytical group approaches the study of social sciences in a similar manner that researchers study the natural sciences . This type of research focuses on objective knowledge, research questions that can be answered yes or no, and operational definitions of variables to be measured. The empirical-analytical group employs deductive reasoning that uses existing theory as a foundation for formulating hypotheses that need to be tested. This approach is focused on explanation.
  • The i nterpretative group of methods is focused on understanding phenomenon in a comprehensive, holistic way . Interpretive methods focus on analytically disclosing the meaning-making practices of human subjects [the why, how, or by what means people do what they do], while showing how those practices arrange so that it can be used to generate observable outcomes. Interpretive methods allow you to recognize your connection to the phenomena under investigation. However, the interpretative group requires careful examination of variables because it focuses more on subjective knowledge.

II.  Content

The introduction to your methodology section should begin by restating the research problem and underlying assumptions underpinning your study. This is followed by situating the methods you used to gather, analyze, and process information within the overall “tradition” of your field of study and within the particular research design you have chosen to study the problem. If the method you choose lies outside of the tradition of your field [i.e., your review of the literature demonstrates that the method is not commonly used], provide a justification for how your choice of methods specifically addresses the research problem in ways that have not been utilized in prior studies.

The remainder of your methodology section should describe the following:

  • Decisions made in selecting the data you have analyzed or, in the case of qualitative research, the subjects and research setting you have examined,
  • Tools and methods used to identify and collect information, and how you identified relevant variables,
  • The ways in which you processed the data and the procedures you used to analyze that data, and
  • The specific research tools or strategies that you utilized to study the underlying hypothesis and research questions.

In addition, an effectively written methodology section should:

  • Introduce the overall methodological approach for investigating your research problem . Is your study qualitative or quantitative or a combination of both (mixed method)? Are you going to take a special approach, such as action research, or a more neutral stance?
  • Indicate how the approach fits the overall research design . Your methods for gathering data should have a clear connection to your research problem. In other words, make sure that your methods will actually address the problem. One of the most common deficiencies found in research papers is that the proposed methodology is not suitable to achieving the stated objective of your paper.
  • Describe the specific methods of data collection you are going to use , such as, surveys, interviews, questionnaires, observation, archival research. If you are analyzing existing data, such as a data set or archival documents, describe how it was originally created or gathered and by whom. Also be sure to explain how older data is still relevant to investigating the current research problem.
  • Explain how you intend to analyze your results . Will you use statistical analysis? Will you use specific theoretical perspectives to help you analyze a text or explain observed behaviors? Describe how you plan to obtain an accurate assessment of relationships, patterns, trends, distributions, and possible contradictions found in the data.
  • Provide background and a rationale for methodologies that are unfamiliar for your readers . Very often in the social sciences, research problems and the methods for investigating them require more explanation/rationale than widely accepted rules governing the natural and physical sciences. Be clear and concise in your explanation.
  • Provide a justification for subject selection and sampling procedure . For instance, if you propose to conduct interviews, how do you intend to select the sample population? If you are analyzing texts, which texts have you chosen, and why? If you are using statistics, why is this set of data being used? If other data sources exist, explain why the data you chose is most appropriate to addressing the research problem.
  • Provide a justification for case study selection . A common method of analyzing research problems in the social sciences is to analyze specific cases. These can be a person, place, event, phenomenon, or other type of subject of analysis that are either examined as a singular topic of in-depth investigation or multiple topics of investigation studied for the purpose of comparing or contrasting findings. In either method, you should explain why a case or cases were chosen and how they specifically relate to the research problem.
  • Describe potential limitations . Are there any practical limitations that could affect your data collection? How will you attempt to control for potential confounding variables and errors? If your methodology may lead to problems you can anticipate, state this openly and show why pursuing this methodology outweighs the risk of these problems cropping up.

NOTE :   Once you have written all of the elements of the methods section, subsequent revisions should focus on how to present those elements as clearly and as logically as possibly. The description of how you prepared to study the research problem, how you gathered the data, and the protocol for analyzing the data should be organized chronologically. For clarity, when a large amount of detail must be presented, information should be presented in sub-sections according to topic. If necessary, consider using appendices for raw data.

ANOTHER NOTE : If you are conducting a qualitative analysis of a research problem , the methodology section generally requires a more elaborate description of the methods used as well as an explanation of the processes applied to gathering and analyzing of data than is generally required for studies using quantitative methods. Because you are the primary instrument for generating the data [e.g., through interviews or observations], the process for collecting that data has a significantly greater impact on producing the findings. Therefore, qualitative research requires a more detailed description of the methods used.

YET ANOTHER NOTE :   If your study involves interviews, observations, or other qualitative techniques involving human subjects , you may be required to obtain approval from the university's Office for the Protection of Research Subjects before beginning your research. This is not a common procedure for most undergraduate level student research assignments. However, i f your professor states you need approval, you must include a statement in your methods section that you received official endorsement and adequate informed consent from the office and that there was a clear assessment and minimization of risks to participants and to the university. This statement informs the reader that your study was conducted in an ethical and responsible manner. In some cases, the approval notice is included as an appendix to your paper.

III.  Problems to Avoid

Irrelevant Detail The methodology section of your paper should be thorough but concise. Do not provide any background information that does not directly help the reader understand why a particular method was chosen, how the data was gathered or obtained, and how the data was analyzed in relation to the research problem [note: analyzed, not interpreted! Save how you interpreted the findings for the discussion section]. With this in mind, the page length of your methods section will generally be less than any other section of your paper except the conclusion.

Unnecessary Explanation of Basic Procedures Remember that you are not writing a how-to guide about a particular method. You should make the assumption that readers possess a basic understanding of how to investigate the research problem on their own and, therefore, you do not have to go into great detail about specific methodological procedures. The focus should be on how you applied a method , not on the mechanics of doing a method. An exception to this rule is if you select an unconventional methodological approach; if this is the case, be sure to explain why this approach was chosen and how it enhances the overall process of discovery.

Problem Blindness It is almost a given that you will encounter problems when collecting or generating your data, or, gaps will exist in existing data or archival materials. Do not ignore these problems or pretend they did not occur. Often, documenting how you overcame obstacles can form an interesting part of the methodology. It demonstrates to the reader that you can provide a cogent rationale for the decisions you made to minimize the impact of any problems that arose.

Literature Review Just as the literature review section of your paper provides an overview of sources you have examined while researching a particular topic, the methodology section should cite any sources that informed your choice and application of a particular method [i.e., the choice of a survey should include any citations to the works you used to help construct the survey].

It’s More than Sources of Information! A description of a research study's method should not be confused with a description of the sources of information. Such a list of sources is useful in and of itself, especially if it is accompanied by an explanation about the selection and use of the sources. The description of the project's methodology complements a list of sources in that it sets forth the organization and interpretation of information emanating from those sources.

Azevedo, L.F. et al. "How to Write a Scientific Paper: Writing the Methods Section." Revista Portuguesa de Pneumologia 17 (2011): 232-238; Blair Lorrie. “Choosing a Methodology.” In Writing a Graduate Thesis or Dissertation , Teaching Writing Series. (Rotterdam: Sense Publishers 2016), pp. 49-72; Butin, Dan W. The Education Dissertation A Guide for Practitioner Scholars . Thousand Oaks, CA: Corwin, 2010; Carter, Susan. Structuring Your Research Thesis . New York: Palgrave Macmillan, 2012; Kallet, Richard H. “How to Write the Methods Section of a Research Paper.” Respiratory Care 49 (October 2004):1229-1232; Lunenburg, Frederick C. Writing a Successful Thesis or Dissertation: Tips and Strategies for Students in the Social and Behavioral Sciences . Thousand Oaks, CA: Corwin Press, 2008. Methods Section. The Writer’s Handbook. Writing Center. University of Wisconsin, Madison; Rudestam, Kjell Erik and Rae R. Newton. “The Method Chapter: Describing Your Research Plan.” In Surviving Your Dissertation: A Comprehensive Guide to Content and Process . (Thousand Oaks, Sage Publications, 2015), pp. 87-115; What is Interpretive Research. Institute of Public and International Affairs, University of Utah; Writing the Experimental Report: Methods, Results, and Discussion. The Writing Lab and The OWL. Purdue University; Methods and Materials. The Structure, Format, Content, and Style of a Journal-Style Scientific Paper. Department of Biology. Bates College.

Writing Tip

Statistical Designs and Tests? Do Not Fear Them!

Don't avoid using a quantitative approach to analyzing your research problem just because you fear the idea of applying statistical designs and tests. A qualitative approach, such as conducting interviews or content analysis of archival texts, can yield exciting new insights about a research problem, but it should not be undertaken simply because you have a disdain for running a simple regression. A well designed quantitative research study can often be accomplished in very clear and direct ways, whereas, a similar study of a qualitative nature usually requires considerable time to analyze large volumes of data and a tremendous burden to create new paths for analysis where previously no path associated with your research problem had existed.

To locate data and statistics, GO HERE .

Another Writing Tip

Knowing the Relationship Between Theories and Methods

There can be multiple meaning associated with the term "theories" and the term "methods" in social sciences research. A helpful way to delineate between them is to understand "theories" as representing different ways of characterizing the social world when you research it and "methods" as representing different ways of generating and analyzing data about that social world. Framed in this way, all empirical social sciences research involves theories and methods, whether they are stated explicitly or not. However, while theories and methods are often related, it is important that, as a researcher, you deliberately separate them in order to avoid your theories playing a disproportionate role in shaping what outcomes your chosen methods produce.

Introspectively engage in an ongoing dialectic between the application of theories and methods to help enable you to use the outcomes from your methods to interrogate and develop new theories, or ways of framing conceptually the research problem. This is how scholarship grows and branches out into new intellectual territory.

Reynolds, R. Larry. Ways of Knowing. Alternative Microeconomics . Part 1, Chapter 3. Boise State University; The Theory-Method Relationship. S-Cool Revision. United Kingdom.

Yet Another Writing Tip

Methods and the Methodology

Do not confuse the terms "methods" and "methodology." As Schneider notes, a method refers to the technical steps taken to do research . Descriptions of methods usually include defining and stating why you have chosen specific techniques to investigate a research problem, followed by an outline of the procedures you used to systematically select, gather, and process the data [remember to always save the interpretation of data for the discussion section of your paper].

The methodology refers to a discussion of the underlying reasoning why particular methods were used . This discussion includes describing the theoretical concepts that inform the choice of methods to be applied, placing the choice of methods within the more general nature of academic work, and reviewing its relevance to examining the research problem. The methodology section also includes a thorough review of the methods other scholars have used to study the topic.

Bryman, Alan. "Of Methods and Methodology." Qualitative Research in Organizations and Management: An International Journal 3 (2008): 159-168; Schneider, Florian. “What's in a Methodology: The Difference between Method, Methodology, and Theory…and How to Get the Balance Right?” PoliticsEastAsia.com. Chinese Department, University of Leiden, Netherlands.

  • << Previous: Scholarly vs. Popular Publications
  • Next: Qualitative Methods >>
  • Last Updated: Apr 9, 2024 1:19 PM
  • URL: https://libguides.usc.edu/writingguide

Grad Coach

What Is Research Methodology? A Plain-Language Explanation & Definition (With Examples)

By Derek Jansen (MBA)  and Kerryn Warren (PhD) | June 2020 (Last updated April 2023)

If you’re new to formal academic research, it’s quite likely that you’re feeling a little overwhelmed by all the technical lingo that gets thrown around. And who could blame you – “research methodology”, “research methods”, “sampling strategies”… it all seems never-ending!

In this post, we’ll demystify the landscape with plain-language explanations and loads of examples (including easy-to-follow videos), so that you can approach your dissertation, thesis or research project with confidence. Let’s get started.

Research Methodology 101

  • What exactly research methodology means
  • What qualitative , quantitative and mixed methods are
  • What sampling strategy is
  • What data collection methods are
  • What data analysis methods are
  • How to choose your research methodology
  • Example of a research methodology

Free Webinar: Research Methodology 101

What is research methodology?

Research methodology simply refers to the practical “how” of a research study. More specifically, it’s about how  a researcher  systematically designs a study  to ensure valid and reliable results that address the research aims, objectives and research questions . Specifically, how the researcher went about deciding:

  • What type of data to collect (e.g., qualitative or quantitative data )
  • Who  to collect it from (i.e., the sampling strategy )
  • How to  collect  it (i.e., the data collection method )
  • How to  analyse  it (i.e., the data analysis methods )

Within any formal piece of academic research (be it a dissertation, thesis or journal article), you’ll find a research methodology chapter or section which covers the aspects mentioned above. Importantly, a good methodology chapter explains not just   what methodological choices were made, but also explains  why they were made. In other words, the methodology chapter should justify  the design choices, by showing that the chosen methods and techniques are the best fit for the research aims, objectives and research questions. 

So, it’s the same as research design?

Not quite. As we mentioned, research methodology refers to the collection of practical decisions regarding what data you’ll collect, from who, how you’ll collect it and how you’ll analyse it. Research design, on the other hand, is more about the overall strategy you’ll adopt in your study. For example, whether you’ll use an experimental design in which you manipulate one variable while controlling others. You can learn more about research design and the various design types here .

Need a helping hand?

methodology of research paper example

What are qualitative, quantitative and mixed-methods?

Qualitative, quantitative and mixed-methods are different types of methodological approaches, distinguished by their focus on words , numbers or both . This is a bit of an oversimplification, but its a good starting point for understanding.

Let’s take a closer look.

Qualitative research refers to research which focuses on collecting and analysing words (written or spoken) and textual or visual data, whereas quantitative research focuses on measurement and testing using numerical data . Qualitative analysis can also focus on other “softer” data points, such as body language or visual elements.

It’s quite common for a qualitative methodology to be used when the research aims and research questions are exploratory  in nature. For example, a qualitative methodology might be used to understand peoples’ perceptions about an event that took place, or a political candidate running for president. 

Contrasted to this, a quantitative methodology is typically used when the research aims and research questions are confirmatory  in nature. For example, a quantitative methodology might be used to measure the relationship between two variables (e.g. personality type and likelihood to commit a crime) or to test a set of hypotheses .

As you’ve probably guessed, the mixed-method methodology attempts to combine the best of both qualitative and quantitative methodologies to integrate perspectives and create a rich picture. If you’d like to learn more about these three methodological approaches, be sure to watch our explainer video below.

What is sampling strategy?

Simply put, sampling is about deciding who (or where) you’re going to collect your data from . Why does this matter? Well, generally it’s not possible to collect data from every single person in your group of interest (this is called the “population”), so you’ll need to engage a smaller portion of that group that’s accessible and manageable (this is called the “sample”).

How you go about selecting the sample (i.e., your sampling strategy) will have a major impact on your study.  There are many different sampling methods  you can choose from, but the two overarching categories are probability   sampling and  non-probability   sampling .

Probability sampling  involves using a completely random sample from the group of people you’re interested in. This is comparable to throwing the names all potential participants into a hat, shaking it up, and picking out the “winners”. By using a completely random sample, you’ll minimise the risk of selection bias and the results of your study will be more generalisable  to the entire population. 

Non-probability sampling , on the other hand,  doesn’t use a random sample . For example, it might involve using a convenience sample, which means you’d only interview or survey people that you have access to (perhaps your friends, family or work colleagues), rather than a truly random sample. With non-probability sampling, the results are typically not generalisable .

To learn more about sampling methods, be sure to check out the video below.

What are data collection methods?

As the name suggests, data collection methods simply refers to the way in which you go about collecting the data for your study. Some of the most common data collection methods include:

  • Interviews (which can be unstructured, semi-structured or structured)
  • Focus groups and group interviews
  • Surveys (online or physical surveys)
  • Observations (watching and recording activities)
  • Biophysical measurements (e.g., blood pressure, heart rate, etc.)
  • Documents and records (e.g., financial reports, court records, etc.)

The choice of which data collection method to use depends on your overall research aims and research questions , as well as practicalities and resource constraints. For example, if your research is exploratory in nature, qualitative methods such as interviews and focus groups would likely be a good fit. Conversely, if your research aims to measure specific variables or test hypotheses, large-scale surveys that produce large volumes of numerical data would likely be a better fit.

What are data analysis methods?

Data analysis methods refer to the methods and techniques that you’ll use to make sense of your data. These can be grouped according to whether the research is qualitative  (words-based) or quantitative (numbers-based).

Popular data analysis methods in qualitative research include:

  • Qualitative content analysis
  • Thematic analysis
  • Discourse analysis
  • Narrative analysis
  • Interpretative phenomenological analysis (IPA)
  • Visual analysis (of photographs, videos, art, etc.)

Qualitative data analysis all begins with data coding , after which an analysis method is applied. In some cases, more than one analysis method is used, depending on the research aims and research questions . In the video below, we explore some  common qualitative analysis methods, along with practical examples.  

Moving on to the quantitative side of things, popular data analysis methods in this type of research include:

  • Descriptive statistics (e.g. means, medians, modes )
  • Inferential statistics (e.g. correlation, regression, structural equation modelling)

Again, the choice of which data collection method to use depends on your overall research aims and objectives , as well as practicalities and resource constraints. In the video below, we explain some core concepts central to quantitative analysis.

How do I choose a research methodology?

As you’ve probably picked up by now, your research aims and objectives have a major influence on the research methodology . So, the starting point for developing your research methodology is to take a step back and look at the big picture of your research, before you make methodology decisions. The first question you need to ask yourself is whether your research is exploratory or confirmatory in nature.

If your research aims and objectives are primarily exploratory in nature, your research will likely be qualitative and therefore you might consider qualitative data collection methods (e.g. interviews) and analysis methods (e.g. qualitative content analysis). 

Conversely, if your research aims and objective are looking to measure or test something (i.e. they’re confirmatory), then your research will quite likely be quantitative in nature, and you might consider quantitative data collection methods (e.g. surveys) and analyses (e.g. statistical analysis).

Designing your research and working out your methodology is a large topic, which we cover extensively on the blog . For now, however, the key takeaway is that you should always start with your research aims, objectives and research questions (the golden thread). Every methodological choice you make needs align with those three components. 

Example of a research methodology chapter

In the video below, we provide a detailed walkthrough of a research methodology from an actual dissertation, as well as an overview of our free methodology template .

methodology of research paper example

Psst… there’s more (for free)

This post is part of our dissertation mini-course, which covers everything you need to get started with your dissertation, thesis or research project. 

You Might Also Like:

What is descriptive statistics?

199 Comments

Leo Balanlay

Thank you for this simple yet comprehensive and easy to digest presentation. God Bless!

Derek Jansen

You’re most welcome, Leo. Best of luck with your research!

Asaf

I found it very useful. many thanks

Solomon F. Joel

This is really directional. A make-easy research knowledge.

Upendo Mmbaga

Thank you for this, I think will help my research proposal

vicky

Thanks for good interpretation,well understood.

Alhaji Alie Kanu

Good morning sorry I want to the search topic

Baraka Gombela

Thank u more

Boyd

Thank you, your explanation is simple and very helpful.

Suleiman Abubakar

Very educative a.nd exciting platform. A bigger thank you and I’ll like to always be with you

Daniel Mondela

That’s the best analysis

Okwuchukwu

So simple yet so insightful. Thank you.

Wendy Lushaba

This really easy to read as it is self-explanatory. Very much appreciated…

Lilian

Thanks for this. It’s so helpful and explicit. For those elements highlighted in orange, they were good sources of referrals for concepts I didn’t understand. A million thanks for this.

Tabe Solomon Matebesi

Good morning, I have been reading your research lessons through out a period of times. They are important, impressive and clear. Want to subscribe and be and be active with you.

Hafiz Tahir

Thankyou So much Sir Derek…

Good morning thanks so much for the on line lectures am a student of university of Makeni.select a research topic and deliberate on it so that we’ll continue to understand more.sorry that’s a suggestion.

James Olukoya

Beautiful presentation. I love it.

ATUL KUMAR

please provide a research mehodology example for zoology

Ogar , Praise

It’s very educative and well explained

Joseph Chan

Thanks for the concise and informative data.

Goja Terhemba John

This is really good for students to be safe and well understand that research is all about

Prakash thapa

Thank you so much Derek sir🖤🙏🤗

Abraham

Very simple and reliable

Chizor Adisa

This is really helpful. Thanks alot. God bless you.

Danushika

very useful, Thank you very much..

nakato justine

thanks a lot its really useful

karolina

in a nutshell..thank you!

Bitrus

Thanks for updating my understanding on this aspect of my Thesis writing.

VEDASTO DATIVA MATUNDA

thank you so much my through this video am competently going to do a good job my thesis

Jimmy

Thanks a lot. Very simple to understand. I appreciate 🙏

Mfumukazi

Very simple but yet insightful Thank you

Adegboyega ADaeBAYO

This has been an eye opening experience. Thank you grad coach team.

SHANTHi

Very useful message for research scholars

Teijili

Really very helpful thank you

sandokhan

yes you are right and i’m left

MAHAMUDUL HASSAN

Research methodology with a simplest way i have never seen before this article.

wogayehu tuji

wow thank u so much

Good morning thanks so much for the on line lectures am a student of university of Makeni.select a research topic and deliberate on is so that we will continue to understand more.sorry that’s a suggestion.

Gebregergish

Very precise and informative.

Javangwe Nyeketa

Thanks for simplifying these terms for us, really appreciate it.

Mary Benard Mwanganya

Thanks this has really helped me. It is very easy to understand.

mandla

I found the notes and the presentation assisting and opening my understanding on research methodology

Godfrey Martin Assenga

Good presentation

Nhubu Tawanda

Im so glad you clarified my misconceptions. Im now ready to fry my onions. Thank you so much. God bless

Odirile

Thank you a lot.

prathap

thanks for the easy way of learning and desirable presentation.

Ajala Tajudeen

Thanks a lot. I am inspired

Visor Likali

Well written

Pondris Patrick

I am writing a APA Format paper . I using questionnaire with 120 STDs teacher for my participant. Can you write me mthology for this research. Send it through email sent. Just need a sample as an example please. My topic is ” impacts of overcrowding on students learning

Thanks for your comment.

We can’t write your methodology for you. If you’re looking for samples, you should be able to find some sample methodologies on Google. Alternatively, you can download some previous dissertations from a dissertation directory and have a look at the methodology chapters therein.

All the best with your research.

Anon

Thank you so much for this!! God Bless

Keke

Thank you. Explicit explanation

Sophy

Thank you, Derek and Kerryn, for making this simple to understand. I’m currently at the inception stage of my research.

Luyanda

Thnks a lot , this was very usefull on my assignment

Beulah Emmanuel

excellent explanation

Gino Raz

I’m currently working on my master’s thesis, thanks for this! I’m certain that I will use Qualitative methodology.

Abigail

Thanks a lot for this concise piece, it was quite relieving and helpful. God bless you BIG…

Yonas Tesheme

I am currently doing my dissertation proposal and I am sure that I will do quantitative research. Thank you very much it was extremely helpful.

zahid t ahmad

Very interesting and informative yet I would like to know about examples of Research Questions as well, if possible.

Maisnam loyalakla

I’m about to submit a research presentation, I have come to understand from your simplification on understanding research methodology. My research will be mixed methodology, qualitative as well as quantitative. So aim and objective of mixed method would be both exploratory and confirmatory. Thanks you very much for your guidance.

Mila Milano

OMG thanks for that, you’re a life saver. You covered all the points I needed. Thank you so much ❤️ ❤️ ❤️

Christabel

Thank you immensely for this simple, easy to comprehend explanation of data collection methods. I have been stuck here for months 😩. Glad I found your piece. Super insightful.

Lika

I’m going to write synopsis which will be quantitative research method and I don’t know how to frame my topic, can I kindly get some ideas..

Arlene

Thanks for this, I was really struggling.

This was really informative I was struggling but this helped me.

Modie Maria Neswiswi

Thanks a lot for this information, simple and straightforward. I’m a last year student from the University of South Africa UNISA South Africa.

Mursel Amin

its very much informative and understandable. I have enlightened.

Mustapha Abubakar

An interesting nice exploration of a topic.

Sarah

Thank you. Accurate and simple🥰

Sikandar Ali Shah

This article was really helpful, it helped me understanding the basic concepts of the topic Research Methodology. The examples were very clear, and easy to understand. I would like to visit this website again. Thank you so much for such a great explanation of the subject.

Debbie

Thanks dude

Deborah

Thank you Doctor Derek for this wonderful piece, please help to provide your details for reference purpose. God bless.

Michael

Many compliments to you

Dana

Great work , thank you very much for the simple explanation

Aryan

Thank you. I had to give a presentation on this topic. I have looked everywhere on the internet but this is the best and simple explanation.

omodara beatrice

thank you, its very informative.

WALLACE

Well explained. Now I know my research methodology will be qualitative and exploratory. Thank you so much, keep up the good work

GEORGE REUBEN MSHEGAME

Well explained, thank you very much.

Ainembabazi Rose

This is good explanation, I have understood the different methods of research. Thanks a lot.

Kamran Saeed

Great work…very well explanation

Hyacinth Chebe Ukwuani

Thanks Derek. Kerryn was just fantastic!

Great to hear that, Hyacinth. Best of luck with your research!

Matobela Joel Marabi

Its a good templates very attractive and important to PhD students and lectuter

Thanks for the feedback, Matobela. Good luck with your research methodology.

Elie

Thank you. This is really helpful.

You’re very welcome, Elie. Good luck with your research methodology.

Sakina Dalal

Well explained thanks

Edward

This is a very helpful site especially for young researchers at college. It provides sufficient information to guide students and equip them with the necessary foundation to ask any other questions aimed at deepening their understanding.

Thanks for the kind words, Edward. Good luck with your research!

Ngwisa Marie-claire NJOTU

Thank you. I have learned a lot.

Great to hear that, Ngwisa. Good luck with your research methodology!

Claudine

Thank you for keeping your presentation simples and short and covering key information for research methodology. My key takeaway: Start with defining your research objective the other will depend on the aims of your research question.

Zanele

My name is Zanele I would like to be assisted with my research , and the topic is shortage of nursing staff globally want are the causes , effects on health, patients and community and also globally

Oluwafemi Taiwo

Thanks for making it simple and clear. It greatly helped in understanding research methodology. Regards.

Francis

This is well simplified and straight to the point

Gabriel mugangavari

Thank you Dr

Dina Haj Ibrahim

I was given an assignment to research 2 publications and describe their research methodology? I don’t know how to start this task can someone help me?

Sure. You’re welcome to book an initial consultation with one of our Research Coaches to discuss how we can assist – https://gradcoach.com/book/new/ .

BENSON ROSEMARY

Thanks a lot I am relieved of a heavy burden.keep up with the good work

Ngaka Mokoena

I’m very much grateful Dr Derek. I’m planning to pursue one of the careers that really needs one to be very much eager to know. There’s a lot of research to do and everything, but since I’ve gotten this information I will use it to the best of my potential.

Pritam Pal

Thank you so much, words are not enough to explain how helpful this session has been for me!

faith

Thanks this has thought me alot.

kenechukwu ambrose

Very concise and helpful. Thanks a lot

Eunice Shatila Sinyemu 32070

Thank Derek. This is very helpful. Your step by step explanation has made it easier for me to understand different concepts. Now i can get on with my research.

Michelle

I wish i had come across this sooner. So simple but yet insightful

yugine the

really nice explanation thank you so much

Goodness

I’m so grateful finding this site, it’s really helpful…….every term well explained and provide accurate understanding especially to student going into an in-depth research for the very first time, even though my lecturer already explained this topic to the class, I think I got the clear and efficient explanation here, much thanks to the author.

lavenda

It is very helpful material

Lubabalo Ntshebe

I would like to be assisted with my research topic : Literature Review and research methodologies. My topic is : what is the relationship between unemployment and economic growth?

Buddhi

Its really nice and good for us.

Ekokobe Aloysius

THANKS SO MUCH FOR EXPLANATION, ITS VERY CLEAR TO ME WHAT I WILL BE DOING FROM NOW .GREAT READS.

Asanka

Short but sweet.Thank you

Shishir Pokharel

Informative article. Thanks for your detailed information.

Badr Alharbi

I’m currently working on my Ph.D. thesis. Thanks a lot, Derek and Kerryn, Well-organized sequences, facilitate the readers’ following.

Tejal

great article for someone who does not have any background can even understand

Hasan Chowdhury

I am a bit confused about research design and methodology. Are they the same? If not, what are the differences and how are they related?

Thanks in advance.

Ndileka Myoli

concise and informative.

Sureka Batagoda

Thank you very much

More Smith

How can we site this article is Harvard style?

Anne

Very well written piece that afforded better understanding of the concept. Thank you!

Denis Eken Lomoro

Am a new researcher trying to learn how best to write a research proposal. I find your article spot on and want to download the free template but finding difficulties. Can u kindly send it to my email, the free download entitled, “Free Download: Research Proposal Template (with Examples)”.

fatima sani

Thank too much

Khamis

Thank you very much for your comprehensive explanation about research methodology so I like to thank you again for giving us such great things.

Aqsa Iftijhar

Good very well explained.Thanks for sharing it.

Krishna Dhakal

Thank u sir, it is really a good guideline.

Vimbainashe

so helpful thank you very much.

Joelma M Monteiro

Thanks for the video it was very explanatory and detailed, easy to comprehend and follow up. please, keep it up the good work

AVINASH KUMAR NIRALA

It was very helpful, a well-written document with precise information.

orebotswe morokane

how do i reference this?

Roy

MLA Jansen, Derek, and Kerryn Warren. “What (Exactly) Is Research Methodology?” Grad Coach, June 2021, gradcoach.com/what-is-research-methodology/.

APA Jansen, D., & Warren, K. (2021, June). What (Exactly) Is Research Methodology? Grad Coach. https://gradcoach.com/what-is-research-methodology/

sheryl

Your explanation is easily understood. Thank you

Dr Christie

Very help article. Now I can go my methodology chapter in my thesis with ease

Alice W. Mbuthia

I feel guided ,Thank you

Joseph B. Smith

This simplification is very helpful. It is simple but very educative, thanks ever so much

Dr. Ukpai Ukpai Eni

The write up is informative and educative. It is an academic intellectual representation that every good researcher can find useful. Thanks

chimbini Joseph

Wow, this is wonderful long live.

Tahir

Nice initiative

Thembsie

thank you the video was helpful to me.

JesusMalick

Thank you very much for your simple and clear explanations I’m really satisfied by the way you did it By now, I think I can realize a very good article by following your fastidious indications May God bless you

G.Horizon

Thanks very much, it was very concise and informational for a beginner like me to gain an insight into what i am about to undertake. I really appreciate.

Adv Asad Ali

very informative sir, it is amazing to understand the meaning of question hidden behind that, and simple language is used other than legislature to understand easily. stay happy.

Jonas Tan

This one is really amazing. All content in your youtube channel is a very helpful guide for doing research. Thanks, GradCoach.

mahmoud ali

research methodologies

Lucas Sinyangwe

Please send me more information concerning dissertation research.

Amamten Jr.

Nice piece of knowledge shared….. #Thump_UP

Hajara Salihu

This is amazing, it has said it all. Thanks to Gradcoach

Gerald Andrew Babu

This is wonderful,very elaborate and clear.I hope to reach out for your assistance in my research very soon.

Safaa

This is the answer I am searching about…

realy thanks a lot

Ahmed Saeed

Thank you very much for this awesome, to the point and inclusive article.

Soraya Kolli

Thank you very much I need validity and reliability explanation I have exams

KuzivaKwenda

Thank you for a well explained piece. This will help me going forward.

Emmanuel Chukwuma

Very simple and well detailed Many thanks

Zeeshan Ali Khan

This is so very simple yet so very effective and comprehensive. An Excellent piece of work.

Molly Wasonga

I wish I saw this earlier on! Great insights for a beginner(researcher) like me. Thanks a mil!

Blessings Chigodo

Thank you very much, for such a simplified, clear and practical step by step both for academic students and general research work. Holistic, effective to use and easy to read step by step. One can easily apply the steps in practical terms and produce a quality document/up-to standard

Thanks for simplifying these terms for us, really appreciated.

Joseph Kyereme

Thanks for a great work. well understood .

Julien

This was very helpful. It was simple but profound and very easy to understand. Thank you so much!

Kishimbo

Great and amazing research guidelines. Best site for learning research

ankita bhatt

hello sir/ma’am, i didn’t find yet that what type of research methodology i am using. because i am writing my report on CSR and collect all my data from websites and articles so which type of methodology i should write in dissertation report. please help me. i am from India.

memory

how does this really work?

princelow presley

perfect content, thanks a lot

George Nangpaak Duut

As a researcher, I commend you for the detailed and simplified information on the topic in question. I would like to remain in touch for the sharing of research ideas on other topics. Thank you

EPHRAIM MWANSA MULENGA

Impressive. Thank you, Grad Coach 😍

Thank you Grad Coach for this piece of information. I have at least learned about the different types of research methodologies.

Varinder singh Rana

Very useful content with easy way

Mbangu Jones Kashweeka

Thank you very much for the presentation. I am an MPH student with the Adventist University of Africa. I have successfully completed my theory and starting on my research this July. My topic is “Factors associated with Dental Caries in (one District) in Botswana. I need help on how to go about this quantitative research

Carolyn Russell

I am so grateful to run across something that was sooo helpful. I have been on my doctorate journey for quite some time. Your breakdown on methodology helped me to refresh my intent. Thank you.

Indabawa Musbahu

thanks so much for this good lecture. student from university of science and technology, Wudil. Kano Nigeria.

Limpho Mphutlane

It’s profound easy to understand I appreciate

Mustafa Salimi

Thanks a lot for sharing superb information in a detailed but concise manner. It was really helpful and helped a lot in getting into my own research methodology.

Rabilu yau

Comment * thanks very much

Ari M. Hussein

This was sooo helpful for me thank you so much i didn’t even know what i had to write thank you!

You’re most welcome 🙂

Varsha Patnaik

Simple and good. Very much helpful. Thank you so much.

STARNISLUS HAAMBOKOMA

This is very good work. I have benefited.

Dr Md Asraul Hoque

Thank you so much for sharing

Nkasa lizwi

This is powerful thank you so much guys

I am nkasa lizwi doing my research proposal on honors with the university of Walter Sisulu Komani I m on part 3 now can you assist me.my topic is: transitional challenges faced by educators in intermediate phase in the Alfred Nzo District.

Atonisah Jonathan

Appreciate the presentation. Very useful step-by-step guidelines to follow.

Bello Suleiman

I appreciate sir

Titilayo

wow! This is super insightful for me. Thank you!

Emerita Guzman

Indeed this material is very helpful! Kudos writers/authors.

TSEDEKE JOHN

I want to say thank you very much, I got a lot of info and knowledge. Be blessed.

Akanji wasiu

I want present a seminar paper on Optimisation of Deep learning-based models on vulnerability detection in digital transactions.

Need assistance

Clement Lokwar

Dear Sir, I want to be assisted on my research on Sanitation and Water management in emergencies areas.

Peter Sone Kome

I am deeply grateful for the knowledge gained. I will be getting in touch shortly as I want to be assisted in my ongoing research.

Nirmala

The information shared is informative, crisp and clear. Kudos Team! And thanks a lot!

Bipin pokhrel

hello i want to study

Kassahun

Hello!! Grad coach teams. I am extremely happy in your tutorial or consultation. i am really benefited all material and briefing. Thank you very much for your generous helps. Please keep it up. If you add in your briefing, references for further reading, it will be very nice.

Ezra

All I have to say is, thank u gyz.

Work

Good, l thanks

Artak Ghonyan

thank you, it is very useful

Trackbacks/Pingbacks

  • What Is A Literature Review (In A Dissertation Or Thesis) - Grad Coach - […] the literature review is to inform the choice of methodology for your own research. As we’ve discussed on the Grad Coach blog,…
  • Free Download: Research Proposal Template (With Examples) - Grad Coach - […] Research design (methodology) […]
  • Dissertation vs Thesis: What's the difference? - Grad Coach - […] and thesis writing on a daily basis – everything from how to find a good research topic to which…

Submit a Comment Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

  • Print Friendly

helpful professor logo

15 Research Methodology Examples

research methodologies examples, explained below

Research methodologies can roughly be categorized into three group: quantitative, qualitative, and mixed-methods.

  • Qualitative Research : This methodology is based on obtaining deep, contextualized, non-numerical data. It can occur, for example, through open-ended questioning of research particiapnts in order to understand human behavior. It’s all about describing and analyzing subjective phenomena such as emotions or experiences.
  • Quantitative Research: This methodology is rationally-based and relies heavily on numerical analysis of empirical data . With quantitative research, you aim for objectivity by creating hypotheses and testing them through experiments or surveys, which allow for statistical analyses.
  • Mixed-Methods Research: Mixed-methods research combines both previous types into one project. We have more flexibility when designing our research study with mixed methods since we can use multiple approaches depending on our needs at each time. Using mixed methods can help us validate our results and offer greater predictability than just either type of methodology alone could provide.

Below are research methodologies that fit into each category.

chris

Qualitative Research Methodologies

1. case study.

Conducts an in-depth examination of a specific case, individual, or event to understand a phenomenon.

Instead of examining a whole population for numerical trend data, case study researchers seek in-depth explanations of one event.

The benefit of case study research is its ability to elucidate overlooked details of interesting cases of a phenomenon (Busetto, Wick & Gumbinger, 2020). It offers deep insights for empathetic, reflective, and thoughtful understandings of that phenomenon.

However, case study findings aren’t transferrable to new contexts or for population-wide predictions. Instead, they inform practitioner understandings for nuanced, deep approaches to future instances (Liamputtong, 2020).

2. Grounded Theory

Grounded theory involves generating hypotheses and theories through the collection and interpretation of data (Faggiolani, n.d.). Its distinguishing features is that it doesn’t test a hypothesis generated prior to analysis, but rather generates a hypothesis or ‘theory’ that emerges from the data.

It also involves the application of inductive reasoning and is often contrasted with the hypothetico-deductive model of scientific research. This research methodology was developed by Barney Glaser and Anselm Strauss in the 1960s (Glaser & Strauss, 2009). 

The basic difference between traditional scientific approaches to research and grounded theory is that the latter begins with a question, then collects data, and the theoretical framework is said to emerge later from this data.

By contrast, scientists usually begin with an existing theoretical framework , develop hypotheses, and only then start collecting data to verify or falsify the hypotheses.

3. Ethnography

In ethnographic research , the researcher immerses themselves within the group they are studying, often for long periods of time.

This type of research aims to understand the shared beliefs, practices, and values of a particular community by immersing the researcher within the cultural group.

Although ethnographic research cannot predict or identify trends in an entire population, it can create detailed explanations of cultural practices and comparisons between social and cultural groups.

When a person conducts an ethnographic study of themselves or their own culture, it can be considered autoethnography .

Its strength lies in producing comprehensive accounts of groups of people and their interactions.

Common methods researchers use during an ethnographic study include participant observation , thick description, unstructured interviews, and field notes vignettes. These methods can provide detailed and contextualized descriptions of their subjects.

Example Study

Liquidated: An Ethnography of Wall Street by Karen Ho involves an anthropologist who embeds herself with Wall Street firms to study the culture of Wall Street bankers and how this culture affects the broader economy and world.

4. Phenomenology

Phenomenology to understand and describe individuals’ lived experiences concerning a specific phenomenon.

As a research methodology typically used in the social sciences , phenomenology involves the study of social reality as a product of intersubjectivity (the intersection of people’s cognitive perspectives) (Zahavi & Overgaard, n.d.).

This philosophical approach was first developed by Edmund Husserl.

5. Narrative Research

Narrative research explores personal stories and experiences to understand their meanings and interpretations.

It is also known as narrative inquiry and narrative analysis(Riessman, 1993).

This approach to research uses qualitative material like journals, field notes, letters, interviews, texts, photos, etc., as its data.

It is aimed at understanding the way people create meaning through narratives (Clandinin & Connelly, 2004).

6. Discourse Analysis

A discourse analysis examines the structure, patterns, and functions of language in context to understand how the text produces social constructs.

This methodology is common in critical theory , poststructuralism , and postmodernism. Its aim is to understand how language constructs discourses (roughly interpreted as “ways of thinking and constructing knowledge”).

As a qualitative methodology , its focus is on developing themes through close textual analysis rather than using numerical methods. Common methods for extracting data include semiotics and linguistic analysis.

7. Action Research

Action research involves researchers working collaboratively with stakeholders to address problems, develop interventions, and evaluate effectiveness.

Action research is a methodology and philosophy of research that is common in the social sciences.

The term was first coined in 1944 by Kurt Lewin, a German-American psychologist who also introduced applied research and group communication (Altrichter & Gstettner, 1993).

Lewin originally defined action research as involving two primary processes: taking action and doing research (Lewin, 1946).

Action research involves planning, action, and information-seeking about the result of the action.

Since Lewin’s original formulation, many different theoretical approaches to action research have been developed. These include action science, participatory action research, cooperative inquiry, and living educational theory among others.

Using Digital Sandbox Gaming to Improve Creativity Within Boys’ Writing (Ellison & Drew, 2019) is a study conducted by a school teacher who used video games to help teach his students English. It involved action research, where he interviewed his students to see if the use of games as stimuli for storytelling helped draw them into the learning experience, and iterated on his teaching style based on their feedback (disclaimer: I am the second author of this study).

See More: Examples of Qualitative Research

Quantitative Research Methodologies

8. experimental design.

As the name suggests, this type of research is based on testing hypotheses in experimental settings by manipulating variables and observing their effects on other variables.

The main benefit lies in its ability to manipulate specific variables to determine their effect on outcomes which is a great method for those looking for causational links in their research.

This is common, for example, in high-school science labs, where students are asked to introduce a variable into a setting in order to examine its effect.

9. Non-Experimental Design

Non-experimental design observes and measures associations between variables without manipulating them.

It can take, for example, the form of a ‘fly on the wall’ observation of a phenomenon, allowing researchers to examine authentic settings and changes that occur naturally in the environment.

10. Cross-Sectional Design

Cross-sectional design involves analyzing variables pertaining to a specific time period and at that exact moment.

This approach allows for an extensive examination and comparison of distinct and independent subjects, thereby offering advantages over qualitative methodologies such as case studies or surveys.

While cross-sectional design can be extremely useful in taking a ‘snapshot in time’, as a standalone method, it is not useful for examining changes in subjects after an intervention. The next methodology addresses this issue.

The prime example of this type of study is a census. A population census is mailed out to every house in the country, and each household must complete the census on the same evening. This allows the government to gather a snapshot of the nation’s demographics, beliefs, religion, and so on.

11. Longitudinal Design

Longitudinal research gathers data from the same subjects over an extended period to analyze changes and development.

In contrast to cross-sectional tactics, longitudinal designs examine variables more than once, over a pre-determined time span, allowing for multiple data points to be taken at different times.

A cross-sectional design is also useful for examining cohort effects , by comparing differences or changes in multiple different generations’ beliefs over time.

With multiple data points collected over extended periods ,it’s possible to examine continuous changes within things like population dynamics or consumer behavior. This makes detailed analysis of change possible.

12. Quasi-Experimental Design

Quasi-experimental design involves manipulating variables for analysis, but uses pre-existing groups of subjects rather than random groups.

Because the groups of research participants already exist, they cannot be randomly assigned to a cohort as with a true experimental design study. This makes inferring a causal relationship more difficult, but is nonetheless often more feasible in real-life settings.

Quasi-experimental designs are generally considered inferior to true experimental designs.

13. Correlational Research

Correlational research examines the relationships between two or more variables, determining the strength and direction of their association.

Similar to quasi-experimental methods, this type of research focuses on relationship differences between variables.

This approach provides a fast and easy way to make initial hypotheses based on either positive or negative correlation trends that can be observed within dataset.

Methods used for data analysis may include statistic correlations such as Pearson’s or Spearman’s.

Mixed-Methods Research Methodologies

14. sequential explanatory design (quan→qual).

This methodology involves conducting quantitative analysis first, then supplementing it with a qualitative study.

It begins by collecting quantitative data that is then analyzed to determine any significant patterns or trends.

Secondly, qualitative methods are employed. Their intent is to help interpret and expand the quantitative results.

This offers greater depth into understanding both large and smaller aspects of research questions being addressed.

The rationale behind this approach is to ensure that your data collection generates richer context for gaining insight into the particular issue across different levels, integrating in one study, qualitative exploration as well as statistical procedures.

15. Sequential Exploratory Design (QUAL→QUAN)

This methodology goes in the other direction, starting with qualitative analysis and ending with quantitative analysis.

It starts with qualitative research that delves deeps into complex areas and gathers rich information through interviewing or observing participants.

After this stage of exploration comes to an end, quantitative techniques are used to analyze the collected data through inferential statistics.

The idea is that a qualitative study can arm the researchers with a strong hypothesis testing framework, which they can then apply to a larger sample size using qualitative methods.

When I first took research classes, I had a lot of trouble distinguishing between methodologies and methods.

The key is to remember that the methodology sets the direction, while the methods are the specific tools to be used. A good analogy is transport: first you need to choose a mode (public transport, private transport, motorized transit, non-motorized transit), then you can choose a tool (bus, car, bike, on foot).

While research methodologies can be split into three types, each type has many different nuanced methodologies that can be chosen, before you then choose the methods – or tools – to use in the study. Each has its own strengths and weaknesses, so choose wisely!

Altrichter, H., & Gstettner, P. (1993). Action Research: A closed chapter in the history of German social science? Educational Action Research , 1 (3), 329–360. https://doi.org/10.1080/0965079930010302

Audi, R. (1999). The Cambridge dictionary of philosophy . Cambridge ; New York : Cambridge University Press. http://archive.org/details/cambridgediction00audi

Clandinin, D. J., & Connelly, F. M. (2004). Narrative Inquiry: Experience and Story in Qualitative Research . John Wiley & Sons.

Creswell, J. W. (2008). Educational Research: Planning, Conducting, and Evaluating Quantitative and Qualitative Research . Pearson/Merrill Prentice Hall.

Faggiolani, C. (n.d.). Perceived Identity: Applying Grounded Theory in Libraries . https://doi.org/10.4403/jlis.it-4592

Gauch, H. G. (2002). Scientific Method in Practice . Cambridge University Press.

Glaser, B. G., & Strauss, A. L. (2009). The Discovery of Grounded Theory: Strategies for Qualitative Research . Transaction Publishers.

Kothari, C. R. (2004). Research Methodology: Methods and Techniques . New Age International.

Kuada, J. (2012). Research Methodology: A Project Guide for University Students . Samfundslitteratur.

Lewin, K. (1946). Action research and minority problems. Journal of Social Issues , 2,  4 , 34–46. https://doi.org/10.1111/j.1540-4560.1946.tb02295.x

Mills, J., Bonner, A., & Francis, K. (2006). The Development of Constructivist Grounded Theory. International Journal of Qualitative Methods , 5 (1), 25–35. https://doi.org/10.1177/160940690600500103

Mingers, J., & Willcocks, L. (2017). An integrative semiotic methodology for IS research. Information and Organization , 27 (1), 17–36. https://doi.org/10.1016/j.infoandorg.2016.12.001

OECD. (2015). Frascati Manual 2015: Guidelines for Collecting and Reporting Data on Research and Experimental Development . Organisation for Economic Co-operation and Development. https://www.oecd-ilibrary.org/science-and-technology/frascati-manual-2015_9789264239012-en

Peirce, C. S. (1992). The Essential Peirce, Volume 1: Selected Philosophical Writings (1867–1893) . Indiana University Press.

Reese, W. L. (1980). Dictionary of Philosophy and Religion: Eastern and Western Thought . Humanities Press.

Riessman, C. K. (1993). Narrative analysis . Sage Publications, Inc.

Saussure, F. de, & Riedlinger, A. (1959). Course in General Linguistics . Philosophical Library.

Thomas, C. G. (2021). Research Methodology and Scientific Writing . Springer Nature.

Zahavi, D., & Overgaard, S. (n.d.). Phenomenological Sociology—The Subjectivity of Everyday Life .

Tio

Tio Gabunia (B.Arch, M.Arch)

Tio Gabunia is an academic writer and architect based in Tbilisi. He has studied architecture, design, and urban planning at the Georgian Technical University and the University of Lisbon. He has worked in these fields in Georgia, Portugal, and France. Most of Tio’s writings concern philosophy. Other writings include architecture, sociology, urban planning, and economics.

  • Tio Gabunia (B.Arch, M.Arch) #molongui-disabled-link 6 Types of Societies (With 21 Examples)
  • Tio Gabunia (B.Arch, M.Arch) #molongui-disabled-link 25 Public Health Policy Examples
  • Tio Gabunia (B.Arch, M.Arch) #molongui-disabled-link 15 Cultural Differences Examples
  • Tio Gabunia (B.Arch, M.Arch) #molongui-disabled-link Social Interaction Types & Examples (Sociology)

Chris

Chris Drew (PhD)

Dr. Chris Drew is the founder of the Helpful Professor. He holds a PhD in education and has published over 20 articles in scholarly journals. He is the former editor of the Journal of Learning Development in Higher Education. [Image Descriptor: Photo of Chris]

  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd/ 5 Top Tips for Succeeding at University
  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd/ 50 Durable Goods Examples
  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd/ 100 Consumer Goods Examples
  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd/ 30 Globalization Pros and Cons

Leave a Comment Cancel Reply

Your email address will not be published. Required fields are marked *

Get science-backed answers as you write with Paperpal's Research feature

What is Research Methodology? Definition, Types, and Examples

methodology of research paper example

Research methodology 1,2 is a structured and scientific approach used to collect, analyze, and interpret quantitative or qualitative data to answer research questions or test hypotheses. A research methodology is like a plan for carrying out research and helps keep researchers on track by limiting the scope of the research. Several aspects must be considered before selecting an appropriate research methodology, such as research limitations and ethical concerns that may affect your research.

The research methodology section in a scientific paper describes the different methodological choices made, such as the data collection and analysis methods, and why these choices were selected. The reasons should explain why the methods chosen are the most appropriate to answer the research question. A good research methodology also helps ensure the reliability and validity of the research findings. There are three types of research methodology—quantitative, qualitative, and mixed-method, which can be chosen based on the research objectives.

What is research methodology ?

A research methodology describes the techniques and procedures used to identify and analyze information regarding a specific research topic. It is a process by which researchers design their study so that they can achieve their objectives using the selected research instruments. It includes all the important aspects of research, including research design, data collection methods, data analysis methods, and the overall framework within which the research is conducted. While these points can help you understand what is research methodology, you also need to know why it is important to pick the right methodology.

Why is research methodology important?

Having a good research methodology in place has the following advantages: 3

  • Helps other researchers who may want to replicate your research; the explanations will be of benefit to them.
  • You can easily answer any questions about your research if they arise at a later stage.
  • A research methodology provides a framework and guidelines for researchers to clearly define research questions, hypotheses, and objectives.
  • It helps researchers identify the most appropriate research design, sampling technique, and data collection and analysis methods.
  • A sound research methodology helps researchers ensure that their findings are valid and reliable and free from biases and errors.
  • It also helps ensure that ethical guidelines are followed while conducting research.
  • A good research methodology helps researchers in planning their research efficiently, by ensuring optimum usage of their time and resources.

Writing the methods section of a research paper? Let Paperpal help you achieve perfection

Types of research methodology.

There are three types of research methodology based on the type of research and the data required. 1

  • Quantitative research methodology focuses on measuring and testing numerical data. This approach is good for reaching a large number of people in a short amount of time. This type of research helps in testing the causal relationships between variables, making predictions, and generalizing results to wider populations.
  • Qualitative research methodology examines the opinions, behaviors, and experiences of people. It collects and analyzes words and textual data. This research methodology requires fewer participants but is still more time consuming because the time spent per participant is quite large. This method is used in exploratory research where the research problem being investigated is not clearly defined.
  • Mixed-method research methodology uses the characteristics of both quantitative and qualitative research methodologies in the same study. This method allows researchers to validate their findings, verify if the results observed using both methods are complementary, and explain any unexpected results obtained from one method by using the other method.

What are the types of sampling designs in research methodology?

Sampling 4 is an important part of a research methodology and involves selecting a representative sample of the population to conduct the study, making statistical inferences about them, and estimating the characteristics of the whole population based on these inferences. There are two types of sampling designs in research methodology—probability and nonprobability.

  • Probability sampling

In this type of sampling design, a sample is chosen from a larger population using some form of random selection, that is, every member of the population has an equal chance of being selected. The different types of probability sampling are:

  • Systematic —sample members are chosen at regular intervals. It requires selecting a starting point for the sample and sample size determination that can be repeated at regular intervals. This type of sampling method has a predefined range; hence, it is the least time consuming.
  • Stratified —researchers divide the population into smaller groups that don’t overlap but represent the entire population. While sampling, these groups can be organized, and then a sample can be drawn from each group separately.
  • Cluster —the population is divided into clusters based on demographic parameters like age, sex, location, etc.
  • Convenience —selects participants who are most easily accessible to researchers due to geographical proximity, availability at a particular time, etc.
  • Purposive —participants are selected at the researcher’s discretion. Researchers consider the purpose of the study and the understanding of the target audience.
  • Snowball —already selected participants use their social networks to refer the researcher to other potential participants.
  • Quota —while designing the study, the researchers decide how many people with which characteristics to include as participants. The characteristics help in choosing people most likely to provide insights into the subject.

What are data collection methods?

During research, data are collected using various methods depending on the research methodology being followed and the research methods being undertaken. Both qualitative and quantitative research have different data collection methods, as listed below.

Qualitative research 5

  • One-on-one interviews: Helps the interviewers understand a respondent’s subjective opinion and experience pertaining to a specific topic or event
  • Document study/literature review/record keeping: Researchers’ review of already existing written materials such as archives, annual reports, research articles, guidelines, policy documents, etc.
  • Focus groups: Constructive discussions that usually include a small sample of about 6-10 people and a moderator, to understand the participants’ opinion on a given topic.
  • Qualitative observation : Researchers collect data using their five senses (sight, smell, touch, taste, and hearing).

Quantitative research 6

  • Sampling: The most common type is probability sampling.
  • Interviews: Commonly telephonic or done in-person.
  • Observations: Structured observations are most commonly used in quantitative research. In this method, researchers make observations about specific behaviors of individuals in a structured setting.
  • Document review: Reviewing existing research or documents to collect evidence for supporting the research.
  • Surveys and questionnaires. Surveys can be administered both online and offline depending on the requirement and sample size.

Let Paperpal help you write the perfect research methods section. Start now!

What are data analysis methods.

The data collected using the various methods for qualitative and quantitative research need to be analyzed to generate meaningful conclusions. These data analysis methods 7 also differ between quantitative and qualitative research.

Quantitative research involves a deductive method for data analysis where hypotheses are developed at the beginning of the research and precise measurement is required. The methods include statistical analysis applications to analyze numerical data and are grouped into two categories—descriptive and inferential.

Descriptive analysis is used to describe the basic features of different types of data to present it in a way that ensures the patterns become meaningful. The different types of descriptive analysis methods are:

  • Measures of frequency (count, percent, frequency)
  • Measures of central tendency (mean, median, mode)
  • Measures of dispersion or variation (range, variance, standard deviation)
  • Measure of position (percentile ranks, quartile ranks)

Inferential analysis is used to make predictions about a larger population based on the analysis of the data collected from a smaller population. This analysis is used to study the relationships between different variables. Some commonly used inferential data analysis methods are:

  • Correlation: To understand the relationship between two or more variables.
  • Cross-tabulation: Analyze the relationship between multiple variables.
  • Regression analysis: Study the impact of independent variables on the dependent variable.
  • Frequency tables: To understand the frequency of data.
  • Analysis of variance: To test the degree to which two or more variables differ in an experiment.

Qualitative research involves an inductive method for data analysis where hypotheses are developed after data collection. The methods include:

  • Content analysis: For analyzing documented information from text and images by determining the presence of certain words or concepts in texts.
  • Narrative analysis: For analyzing content obtained from sources such as interviews, field observations, and surveys. The stories and opinions shared by people are used to answer research questions.
  • Discourse analysis: For analyzing interactions with people considering the social context, that is, the lifestyle and environment, under which the interaction occurs.
  • Grounded theory: Involves hypothesis creation by data collection and analysis to explain why a phenomenon occurred.
  • Thematic analysis: To identify important themes or patterns in data and use these to address an issue.

How to choose a research methodology?

Here are some important factors to consider when choosing a research methodology: 8

  • Research objectives, aims, and questions —these would help structure the research design.
  • Review existing literature to identify any gaps in knowledge.
  • Check the statistical requirements —if data-driven or statistical results are needed then quantitative research is the best. If the research questions can be answered based on people’s opinions and perceptions, then qualitative research is most suitable.
  • Sample size —sample size can often determine the feasibility of a research methodology. For a large sample, less effort- and time-intensive methods are appropriate.
  • Constraints —constraints of time, geography, and resources can help define the appropriate methodology.

Got writer’s block? Kickstart your research paper writing with Paperpal now!

How to write a research methodology .

A research methodology should include the following components: 3,9

  • Research design —should be selected based on the research question and the data required. Common research designs include experimental, quasi-experimental, correlational, descriptive, and exploratory.
  • Research method —this can be quantitative, qualitative, or mixed-method.
  • Reason for selecting a specific methodology —explain why this methodology is the most suitable to answer your research problem.
  • Research instruments —explain the research instruments you plan to use, mainly referring to the data collection methods such as interviews, surveys, etc. Here as well, a reason should be mentioned for selecting the particular instrument.
  • Sampling —this involves selecting a representative subset of the population being studied.
  • Data collection —involves gathering data using several data collection methods, such as surveys, interviews, etc.
  • Data analysis —describe the data analysis methods you will use once you’ve collected the data.
  • Research limitations —mention any limitations you foresee while conducting your research.
  • Validity and reliability —validity helps identify the accuracy and truthfulness of the findings; reliability refers to the consistency and stability of the results over time and across different conditions.
  • Ethical considerations —research should be conducted ethically. The considerations include obtaining consent from participants, maintaining confidentiality, and addressing conflicts of interest.

Streamline Your Research Paper Writing Process with Paperpal

The methods section is a critical part of the research papers, allowing researchers to use this to understand your findings and replicate your work when pursuing their own research. However, it is usually also the most difficult section to write. This is where Paperpal can help you overcome the writer’s block and create the first draft in minutes with Paperpal Copilot, its secure generative AI feature suite.  

With Paperpal you can get research advice, write and refine your work, rephrase and verify the writing, and ensure submission readiness, all in one place. Here’s how you can use Paperpal to develop the first draft of your methods section.  

  • Generate an outline: Input some details about your research to instantly generate an outline for your methods section 
  • Develop the section: Use the outline and suggested sentence templates to expand your ideas and develop the first draft.  
  • P araph ras e and trim : Get clear, concise academic text with paraphrasing that conveys your work effectively and word reduction to fix redundancies. 
  • Choose the right words: Enhance text by choosing contextual synonyms based on how the words have been used in previously published work.  
  • Check and verify text : Make sure the generated text showcases your methods correctly, has all the right citations, and is original and authentic. .   

You can repeat this process to develop each section of your research manuscript, including the title, abstract and keywords. Ready to write your research papers faster, better, and without the stress? Sign up for Paperpal and start writing today!

Frequently Asked Questions

Q1. What are the key components of research methodology?

A1. A good research methodology has the following key components:

  • Research design
  • Data collection procedures
  • Data analysis methods
  • Ethical considerations

Q2. Why is ethical consideration important in research methodology?

A2. Ethical consideration is important in research methodology to ensure the readers of the reliability and validity of the study. Researchers must clearly mention the ethical norms and standards followed during the conduct of the research and also mention if the research has been cleared by any institutional board. The following 10 points are the important principles related to ethical considerations: 10

  • Participants should not be subjected to harm.
  • Respect for the dignity of participants should be prioritized.
  • Full consent should be obtained from participants before the study.
  • Participants’ privacy should be ensured.
  • Confidentiality of the research data should be ensured.
  • Anonymity of individuals and organizations participating in the research should be maintained.
  • The aims and objectives of the research should not be exaggerated.
  • Affiliations, sources of funding, and any possible conflicts of interest should be declared.
  • Communication in relation to the research should be honest and transparent.
  • Misleading information and biased representation of primary data findings should be avoided.

Q3. What is the difference between methodology and method?

A3. Research methodology is different from a research method, although both terms are often confused. Research methods are the tools used to gather data, while the research methodology provides a framework for how research is planned, conducted, and analyzed. The latter guides researchers in making decisions about the most appropriate methods for their research. Research methods refer to the specific techniques, procedures, and tools used by researchers to collect, analyze, and interpret data, for instance surveys, questionnaires, interviews, etc.

Research methodology is, thus, an integral part of a research study. It helps ensure that you stay on track to meet your research objectives and answer your research questions using the most appropriate data collection and analysis tools based on your research design.

Accelerate your research paper writing with Paperpal. Try for free now!

  • Research methodologies. Pfeiffer Library website. Accessed August 15, 2023. https://library.tiffin.edu/researchmethodologies/whatareresearchmethodologies
  • Types of research methodology. Eduvoice website. Accessed August 16, 2023. https://eduvoice.in/types-research-methodology/
  • The basics of research methodology: A key to quality research. Voxco. Accessed August 16, 2023. https://www.voxco.com/blog/what-is-research-methodology/
  • Sampling methods: Types with examples. QuestionPro website. Accessed August 16, 2023. https://www.questionpro.com/blog/types-of-sampling-for-social-research/
  • What is qualitative research? Methods, types, approaches, examples. Researcher.Life blog. Accessed August 15, 2023. https://researcher.life/blog/article/what-is-qualitative-research-methods-types-examples/
  • What is quantitative research? Definition, methods, types, and examples. Researcher.Life blog. Accessed August 15, 2023. https://researcher.life/blog/article/what-is-quantitative-research-types-and-examples/
  • Data analysis in research: Types & methods. QuestionPro website. Accessed August 16, 2023. https://www.questionpro.com/blog/data-analysis-in-research/#Data_analysis_in_qualitative_research
  • Factors to consider while choosing the right research methodology. PhD Monster website. Accessed August 17, 2023. https://www.phdmonster.com/factors-to-consider-while-choosing-the-right-research-methodology/
  • What is research methodology? Research and writing guides. Accessed August 14, 2023. https://paperpile.com/g/what-is-research-methodology/
  • Ethical considerations. Business research methodology website. Accessed August 17, 2023. https://research-methodology.net/research-methodology/ethical-considerations/

Paperpal is a comprehensive AI writing toolkit that helps students and researchers achieve 2x the writing in half the time. It leverages 21+ years of STM experience and insights from millions of research articles to provide in-depth academic writing, language editing, and submission readiness support to help you write better, faster.  

Get accurate academic translations, rewriting support, grammar checks, vocabulary suggestions, and generative AI assistance that delivers human precision at machine speed. Try for free or upgrade to Paperpal Prime starting at US$19 a month to access premium features, including consistency, plagiarism, and 30+ submission readiness checks to help you succeed.  

Experience the future of academic writing – Sign up to Paperpal and start writing for free!  

Related Reads:

  • Dangling Modifiers and How to Avoid Them in Your Writing 
  • Webinar: How to Use Generative AI Tools Ethically in Your Academic Writing
  • Research Outlines: How to Write An Introduction Section in Minutes with Paperpal Copilot
  • How to Paraphrase Research Papers Effectively

Language and Grammar Rules for Academic Writing

Climatic vs. climactic: difference and examples, you may also like, what is hedging in academic writing  , how to use ai to enhance your college..., how to use paperpal to generate emails &..., ai in education: it’s time to change the..., is it ethical to use ai-generated abstracts without..., do plagiarism checkers detect ai content, word choice problems: how to use the right..., how to avoid plagiarism when using generative ai..., what are journal guidelines on using generative ai..., types of plagiarism and 6 tips to avoid....

Educational resources and simple solutions for your research journey

How to write the methods section of a research paper

How to Write the Methods Section of a Research Paper

How to write the methods section of a research paper

Writing a research paper is both an art and a skill, and knowing how to write the methods section of a research paper is the first crucial step in mastering scientific writing. If, like the majority of early career researchers, you believe that the methods section is the simplest to write and needs little in the way of careful consideration or thought, this article will help you understand it is not 1 .

We have all probably asked our supervisors, coworkers, or search engines “ how to write a methods section of a research paper ” at some point in our scientific careers, so you are not alone if that’s how you ended up here.  Even for seasoned researchers, selecting what to include in the methods section from a wealth of experimental information can occasionally be a source of distress and perplexity.   

Additionally, journal specifications, in some cases, may make it more of a requirement rather than a choice to provide a selective yet descriptive account of the experimental procedure. Hence, knowing these nuances of how to write the methods section of a research paper is critical to its success. The methods section of the research paper is not supposed to be a detailed heavy, dull section that some researchers tend to write; rather, it should be the central component of the study that justifies the validity and reliability of the research.

Are you still unsure of how the methods section of a research paper forms the basis of every investigation? Consider the last article you read but ignore the methods section and concentrate on the other parts of the paper . Now think whether you could repeat the study and be sure of the credibility of the findings despite knowing the literature review and even having the data in front of you. You have the answer!   

Researcher Life

Having established the importance of the methods section , the next question is how to write the methods section of a research paper that unifies the overall study. The purpose of the methods section , which was earlier called as Materials and Methods , is to describe how the authors went about answering the “research question” at hand. Here, the objective is to tell a coherent story that gives a detailed account of how the study was conducted, the rationale behind specific experimental procedures, the experimental setup, objects (variables) involved, the research protocol employed, tools utilized to measure, calculations and measurements, and the analysis of the collected data 2 .

In this article, we will take a deep dive into this topic and provide a detailed overview of how to write the methods section of a research paper . For the sake of clarity, we have separated the subject into various sections with corresponding subheadings.  

Table of Contents

What is the methods section of a research paper ?  

The methods section is a fundamental section of any paper since it typically discusses the ‘ what ’, ‘ how ’, ‘ which ’, and ‘ why ’ of the study, which is necessary to arrive at the final conclusions. In a research article, the introduction, which serves to set the foundation for comprehending the background and results is usually followed by the methods section, which precedes the result and discussion sections. The methods section must explicitly state what was done, how it was done, which equipment, tools and techniques were utilized, how were the measurements/calculations taken, and why specific research protocols, software, and analytical methods were employed.  

Why is the methods section important?  

The primary goal of the methods section is to provide pertinent details about the experimental approach so that the reader may put the results in perspective and, if necessary, replicate the findings 3 .  This section offers readers the chance to evaluate the reliability and validity of any study. In short, it also serves as the study’s blueprint, assisting researchers who might be unsure about any other portion in establishing the study’s context and validity. The methods plays a rather crucial role in determining the fate of the article; an incomplete and unreliable methods section can frequently result in early rejections and may lead to numerous rounds of modifications during the publication process. This means that the reviewers also often use methods section to assess the reliability and validity of the research protocol and the data analysis employed to address the research topic. In other words, the purpose of the methods section is to demonstrate the research acumen and subject-matter expertise of the author(s) in their field.  

Structure of methods section of a research paper  

Similar to the research paper, the methods section also follows a defined structure; this may be dictated by the guidelines of a specific journal or can be presented in a chronological or thematic manner based on the study type. When writing the methods section , authors should keep in mind that they are telling a story about how the research was conducted. They should only report relevant information to avoid confusing the reader and include details that would aid in connecting various aspects of the entire research activity together. It is generally advisable to present experiments in the order in which they were conducted. This facilitates the logical flow of the research and allows readers to follow the progression of the study design.   

methodology of research paper example

It is also essential to clearly state the rationale behind each experiment and how the findings of earlier experiments informed the design or interpretation of later experiments. This allows the readers to understand the overall purpose of the study design and the significance of each experiment within that context. However, depending on the particular research question and method, it may make sense to present information in a different order; therefore, authors must select the best structure and strategy for their individual studies.   

In cases where there is a lot of information, divide the sections into subheadings to cover the pertinent details. If the journal guidelines pose restrictions on the word limit , additional important information can be supplied in the supplementary files. A simple rule of thumb for sectioning the method section is to begin by explaining the methodological approach ( what was done ), describing the data collection methods ( how it was done ), providing the analysis method ( how the data was analyzed ), and explaining the rationale for choosing the methodological strategy. This is described in detail in the upcoming sections.    

How to write the methods section of a research paper  

Contrary to widespread assumption, the methods section of a research paper should be prepared once the study is complete to prevent missing any key parameter. Hence, please make sure that all relevant experiments are done before you start writing a methods section . The next step for authors is to look up any applicable academic style manuals or journal-specific standards to ensure that the methods section is formatted correctly. The methods section of a research paper typically constitutes materials and methods; while writing this section, authors usually arrange the information under each category.

The materials category describes the samples, materials, treatments, and instruments, while experimental design, sample preparation, data collection, and data analysis are a part of the method category. According to the nature of the study, authors should include additional subsections within the methods section, such as ethical considerations like the declaration of Helsinki (for studies involving human subjects), demographic information of the participants, and any other crucial information that can affect the output of the study. Simply put, the methods section has two major components: content and format. Here is an easy checklist for you to consider if you are struggling with how to write the methods section of a research paper .   

  • Explain the research design, subjects, and sample details  
  • Include information on inclusion and exclusion criteria  
  • Mention ethical or any other permission required for the study  
  • Include information about materials, experimental setup, tools, and software  
  • Add details of data collection and analysis methods  
  • Incorporate how research biases were avoided or confounding variables were controlled  
  • Evaluate and justify the experimental procedure selected to address the research question  
  • Provide precise and clear details of each experiment  
  • Flowcharts, infographics, or tables can be used to present complex information     
  • Use past tense to show that the experiments have been done   
  • Follow academic style guides (such as APA or MLA ) to structure the content  
  • Citations should be included as per standard protocols in the field  

Now that you know how to write the methods section of a research paper , let’s address another challenge researchers face while writing the methods section —what to include in the methods section .  How much information is too much is not always obvious when it comes to trying to include data in the methods section of a paper. In the next section, we examine this issue and explore potential solutions.   

methodology of research paper example

What to include in the methods section of a research paper  

The technical nature of the methods section occasionally makes it harder to present the information clearly and concisely while staying within the study context. Many young researchers tend to veer off subject significantly, and they frequently commit the sin of becoming bogged down in itty bitty details, making the text harder to read and impairing its overall flow. However, the best way to write the methods section is to start with crucial components of the experiments. If you have trouble deciding which elements are essential, think about leaving out those that would make it more challenging to comprehend the context or replicate the results. The top-down approach helps to ensure all relevant information is incorporated and vital information is not lost in technicalities. Next, remember to add details that are significant to assess the validity and reliability of the study. Here is a simple checklist for you to follow ( bonus tip: you can also make a checklist for your own study to avoid missing any critical information while writing the methods section ).  

  • Structuring the methods section : Authors should diligently follow journal guidelines and adhere to the specific author instructions provided when writing the methods section . Journals typically have specific guidelines for formatting the methods section ; for example, Frontiers in Plant Sciences advises arranging the materials and methods section by subheading and citing relevant literature. There are several standardized checklists available for different study types in the biomedical field, including CONSORT (Consolidated Standards of Reporting Trials) for randomized clinical trials, PRISMA (Preferred Reporting Items for Systematic reviews and Meta-Analysis) for systematic reviews and meta-analysis, and STROBE (STrengthening the Reporting of OBservational studies in Epidemiology) for cohort, case-control, cross-sectional studies. Before starting the methods section , check the checklist available in your field that can function as a guide.     
  • Organizing different sections to tell a story : Once you are sure of the format required for structuring the methods section , the next is to present the sections in a logical manner; as mentioned earlier, the sections can be organized according to the chronology or themes. In the chronological arrangement, you should discuss the methods in accordance with how the experiments were carried out. An example of the method section of a research paper of an animal study should first ideally include information about the species, weight, sex, strain, and age. Next, the number of animals, their initial conditions, and their living and housing conditions should also be mentioned. Second, how the groups are assigned and the intervention (drug treatment, stress, or other) given to each group, and finally, the details of tools and techniques used to measure, collect, and analyze the data. Experiments involving animal or human subjects should additionally state an ethics approval statement. It is best to arrange the section using the thematic approach when discussing distinct experiments not following a sequential order.  
  • Define and explain the objects and procedure: Experimental procedure should clearly be stated in the methods section . Samples, necessary preparations (samples, treatment, and drug), and methods for manipulation need to be included. All variables (control, dependent, independent, and confounding) must be clearly defined, particularly if the confounding variables can affect the outcome of the study.  
  • Match the order of the methods section with the order of results: Though not mandatory, organizing the manuscript in a logical and coherent manner can improve the readability and clarity of the paper. This can be done by following a consistent structure throughout the manuscript; readers can easily navigate through the different sections and understand the methods and results in relation to each other. Using experiment names as headings for both the methods and results sections can also make it simpler for readers to locate specific information and corroborate it if needed.   
  • Relevant information must always be included: The methods section should have information on all experiments conducted and their details clearly mentioned. Ask the journal whether there is a way to offer more information in the supplemental files or external repositories if your target journal has strict word limitations. For example, Nature communications encourages authors to deposit their step-by-step protocols in an open-resource depository, Protocol Exchange which allows the protocols to be linked with the manuscript upon publication. Providing access to detailed protocols also helps to increase the transparency and reproducibility of the research.  
  • It’s all in the details: The methods section should meticulously list all the materials, tools, instruments, and software used for different experiments. Specify the testing equipment on which data was obtained, together with its manufacturer’s information, location, city, and state or any other stimuli used to manipulate the variables. Provide specifics on the research process you employed; if it was a standard protocol, cite previous studies that also used the protocol.  Include any protocol modifications that were made, as well as any other factors that were taken into account when planning the study or gathering data. Any new or modified techniques should be explained by the authors. Typically, readers evaluate the reliability and validity of the procedures using the cited literature, and a widely accepted checklist helps to support the credibility of the methodology. Note: Authors should include a statement on sample size estimation (if applicable), which is often missed. It enables the reader to determine how many subjects will be required to detect the expected change in the outcome variables within a given confidence interval.  
  • Write for the audience: While explaining the details in the methods section , authors should be mindful of their target audience, as some of the rationale or assumptions on which specific procedures are based might not always be obvious to the audience, particularly for a general audience. Therefore, when in doubt, the objective of a procedure should be specified either in relation to the research question or to the entire protocol.  
  • Data interpretation and analysis : Information on data processing, statistical testing, levels of significance, and analysis tools and software should be added. Mention if the recommendations and expertise of an experienced statistician were followed. Also, evaluate and justify the preferred statistical method used in the study and its significance.  

What NOT to include in the methods section of a research paper  

To address “ how to write the methods section of a research paper ”, authors should not only pay careful attention to what to include but also what not to include in the methods section of a research paper . Here is a list of do not’s when writing the methods section :  

  • Do not elaborate on specifics of standard methods/procedures: You should refrain from adding unnecessary details of experiments and practices that are well established and cited previously.  Instead, simply cite relevant literature or mention if the manufacturer’s protocol was followed.  
  • Do not add unnecessary details : Do not include minute details of the experimental procedure and materials/instruments used that are not significant for the outcome of the experiment. For example, there is no need to mention the brand name of the water bath used for incubation.    
  • Do not discuss the results: The methods section is not to discuss the results or refer to the tables and figures; save it for the results and discussion section. Also, focus on the methods selected to conduct the study and avoid diverting to other methods or commenting on their pros or cons.  
  • Do not make the section bulky : For extensive methods and protocols, provide the essential details and share the rest of the information in the supplemental files. The writing should be clear yet concise to maintain the flow of the section.  

We hope that by this point, you understand how crucial it is to write a thoughtful and precise methods section and the ins and outs of how to write the methods section of a research paper . To restate, the entire purpose of the methods section is to enable others to reproduce the results or verify the research. We sincerely hope that this post has cleared up any confusion and given you a fresh perspective on the methods section .

As a parting gift, we’re leaving you with a handy checklist that will help you understand how to write the methods section of a research paper . Feel free to download this checklist and use or share this with those who you think may benefit from it.  

methodology of research paper example

References  

  • Bhattacharya, D. How to write the Methods section of a research paper. Editage Insights, 2018. https://www.editage.com/insights/how-to-write-the-methods-section-of-a-research-paper (2018).
  • Kallet, R. H. How to Write the Methods Section of a Research Paper. Respiratory Care 49, 1229–1232 (2004). https://pubmed.ncbi.nlm.nih.gov/15447808/
  • Grindstaff, T. L. & Saliba, S. A. AVOIDING MANUSCRIPT MISTAKES. Int J Sports Phys Ther 7, 518–524 (2012). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3474299/

Researcher.Life is a subscription-based platform that unifies the best AI tools and services designed to speed up, simplify, and streamline every step of a researcher’s journey. The Researcher.Life All Access Pack is a one-of-a-kind subscription that unlocks full access to an AI writing assistant, literature recommender, journal finder, scientific illustration tool, and exclusive discounts on professional publication services from Editage.  

Based on 21+ years of experience in academia, Researcher.Life All Access empowers researchers to put their best research forward and move closer to success. Explore our top AI Tools pack, AI Tools + Publication Services pack, or Build Your Own Plan. Find everything a researcher needs to succeed, all in one place –  Get All Access now starting at just $17 a month !    

Related Posts

Highest Impact Factor journal

Top 10 High Impact Factor Journals

essay writing

Essay Writing Basics: Strategies for PhD Success 

Sacred Heart University Library

Organizing Academic Research Papers: 6. The Methodology

  • Purpose of Guide
  • Design Flaws to Avoid
  • Glossary of Research Terms
  • Narrowing a Topic Idea
  • Broadening a Topic Idea
  • Extending the Timeliness of a Topic Idea
  • Academic Writing Style
  • Choosing a Title
  • Making an Outline
  • Paragraph Development
  • Executive Summary
  • Background Information
  • The Research Problem/Question
  • Theoretical Framework
  • Citation Tracking
  • Content Alert Services
  • Evaluating Sources
  • Primary Sources
  • Secondary Sources
  • Tertiary Sources
  • What Is Scholarly vs. Popular?
  • Qualitative Methods
  • Quantitative Methods
  • Using Non-Textual Elements
  • Limitations of the Study
  • Common Grammar Mistakes
  • Avoiding Plagiarism
  • Footnotes or Endnotes?
  • Further Readings
  • Annotated Bibliography
  • Dealing with Nervousness
  • Using Visual Aids
  • Grading Someone Else's Paper
  • How to Manage Group Projects
  • Multiple Book Review Essay
  • Reviewing Collected Essays
  • About Informed Consent
  • Writing Field Notes
  • Writing a Policy Memo
  • Writing a Research Proposal
  • Acknowledgements

The methods section of a research paper provides the information by which a study’s validity is judged. The method section answers two main questions: 1) How was the data collected or generated? 2) How was it analyzed? The writing should be direct and precise and written in the past tense.

Importance of a Good Methodology Section

You must explain how you obtained and analyzed your results for the following reasons:

  • Readers need to know how the data was obtained because the method you choose affects the results and, by extension, how you likely interpreted those results.
  • Methodology is crucial for any branch of scholarship because an unreliable method produces unreliable results and it misappropriates interpretations of findings .
  • In most cases, there are a variety of different methods you can choose to investigate a research problem. Your methodology section of your paper should make clear the reasons why you chose a particular method or procedure .
  • The reader wants to know that the data was collected or generated in a way that is consistent with accepted practice in the field of study. For example, if you are using a questionnaire, readers need to know that it offered your respondents a reasonable range of answers to choose from.
  • The research method must be appropriate to the objectives of the study . For example, be sure you have a large enough sample size to be able to generalize and make recommendations based upon the findings.
  • The methodology should discuss the problems that were anticipated and the steps you took to prevent them from occurring . For any problems that did arise, you must describe the ways in which their impact was minimized or why these problems do not affect the findings in any way that impacts your interpretation of the data.
  • Often in social science research, it is useful for other researchers to adapt or replicate your methodology. Therefore, it is important to always provide sufficient information to allow others to use or replicate the study . This information is particularly important when a new method had been developed or an innovative use of an existing method has been utilized.

Bem, Daryl J. Writing the Empirical Journal Article . Psychology Writing Center. University of Washington; Lunenburg, Frederick C. Writing a Successful Thesis or Dissertation: Tips and Strategies for Students in the Social and Behavioral Sciences . Thousand Oaks, CA: Corwin Press, 2008.

Structure and Writing Style

I. Groups of Research Methods

There are two main groups of research methods in the social sciences:

  • The empirical-analytical group approaches the study of social sciences in a similar manner that researchers study the natural sciences. This type of research focuses on objective knowledge, research questions that can be answered yes or no, and operational definitions of variables to be measured. The empirical-analytical group employs deductive reasoning that uses existing theory as a foundation for hypotheses that need to be tested. This approach is focused on explanation .
  • The interpretative group is focused on understanding phenomenon in a comprehensive, holistic way . This research method allows you to recognize your connection to the subject under study. Because the interpretative group focuses more on subjective knowledge, it requires careful interpretation of variables.

II. Content

An effectively written methodology section should:

  • Introduce the overall methodological approach for investigating your research problem . Is your study qualitative or quantitative or a combination of both (mixed method)? Are you going to take a special approach, such as action research, or a more neutral stance?
  • Indicate how the approach fits the overall research design . Your methods should have a clear connection with your research problem. In other words, make sure that your methods will actually address the problem. One of the most common deficiencies found in research papers is that the proposed methodology is unsuited to achieving the stated objective of your paper.
  • Describe the specific methods of data collection you are going to use , such as, surveys, interviews, questionnaires, observation, archival research. If you are analyzing existing data, such as a data set or archival documents, describe how it was originally created or gathered and by whom.
  • Explain how you intend to analyze your results . Will you use statistical analysis? Will you use specific theoretical perspectives to help you analyze a text or explain observed behaviors?
  • Provide background and rationale for methodologies that are unfamiliar for your readers . Very often in the social sciences, research problems and the methods for investigating them require more explanation/rationale than widely accepted rules governing the natural and physical sciences. Be clear and concise in your explanation.
  • Provide a rationale for subject selection and sampling procedure . For instance, if you propose to conduct interviews, how do you intend to select the sample population? If you are analyzing texts, which texts have you chosen, and why? If you are using statistics, why is this set of statisics being used? If other data sources exist, explain why the data you chose is most appropriate.
  • Address potential limitations . Are there any practical limitations that could affect your data collection? How will you attempt to control for potential confounding variables and errors? If your methodology may lead to problems you can anticipate, state this openly and show why pursuing this methodology outweighs the risk of these problems cropping up.

NOTE :  Once you have written all of the elements of the methods section, subsequent revisions should focus on how to present those elements as clearly and as logically as possibly. The description of how you prepared to study the research problem, how you gathered the data, and the protocol for analyzing the data should be organized chronologically. For clarity, when a large amount of detail must be presented, information should be presented in sub-sections according to topic.

III.  Problems to Avoid

Irrelevant Detail The methodology section of your paper should be thorough but to the point. Don’t provide any background information that doesn’t directly help the reader to understand why a particular method was chosen, how the data was gathered or obtained, and how it was analyzed. Unnecessary Explanation of Basic Procedures Remember that you are not writing a how-to guide about a particular method. You should make the assumption that readers possess a basic understanding of how to investigate the research problem on their own and, therefore, you do not have to go into great detail about specific methodological procedures. The focus should be on how you applied a method , not on the mechanics of doing a method. NOTE: An exception to this rule is if you select an unconventional approach to doing the method; if this is the case, be sure to explain why this approach was chosen and how it enhances the overall research process. Problem Blindness It is almost a given that you will encounter problems when collecting or generating your data. Do not ignore these problems or pretend they did not occur. Often, documenting how you overcame obstacles can form an interesting part of the methodology. It demonstrates to the reader that you can provide a cogent rationale for the decisions you made to minimize the impact of any problems that arose. Literature Review Just as the literature review section of your paper provides an overview of sources you have examined while researching a particular topic, the methodology section should cite any sources that informed your choice and application of a particular method [i.e., the choice of a survey should include any citations to the works you used to help construct the survey].

It’s More than Sources of Information! A description of a research study's method should not be confused with a description of the sources of information. Such a list of sources is useful in itself, especially if it is accompanied by an explanation about the selection and use of the sources. The description of the project's methodology complements a list of sources in that it sets forth the organization and interpretation of information emanating from those sources.

Azevedo, L.F. et al. How to Write a Scientific Paper: Writing the Methods Section. Revista Portuguesa de Pneumologia 17 (2011): 232-238; Butin, Dan W. The Education Dissertation A Guide for Practitioner Scholars . Thousand Oaks, CA: Corwin, 2010; Carter, Susan. Structuring Your Research Thesis . New York: Palgrave Macmillan, 2012; Lunenburg, Frederick C. Writing a Successful Thesis or Dissertation: Tips and Strategies for Students in the Social and Behavioral Sciences . Thousand Oaks, CA: Corwin Press, 2008. Methods Section . The Writer’s Handbook. Writing Center. University of Wisconsin, Madison; Writing the Experimental Report: Methods, Results, and Discussion . The Writing Lab and The OWL. Purdue University; Methods and Materials . The Structure, Format, Content, and Style of a Journal-Style Scientific Paper. Department of Biology. Bates College.

Writing Tip

Statistical Designs and Tests? Do Not Fear Them!

Don't avoid using a quantitative approach to analyzing your research problem just because you fear the idea of applying statistical designs and tests. A qualitative approach, such as conducting interviews or content analysis of archival texts, can yield exciting new insights about a research problem, but it should not be undertaken simply because you have a disdain for running a simple regression. A well designed quantitative research study can often be accomplished in very clear and direct ways, whereas, a similar study of a qualitative nature usually requires considerable time to analyze large volumes of data and a tremendous burden to create new paths for analysis where previously no path associated with your research problem had existed.

Another Writing Tip

Knowing the Relationship Between Theories and Methods

There can be multiple meaning associated with the term "theories" and the term "methods" in social sciences research. A helpful way to delineate between them is to understand "theories" as representing different ways of characterizing the social world when you research it and "methods" as representing different ways of generating and analyzing data about that social world. Framed in this way, all empirical social sciences research involves theories and methods, whether they are stated explicitly or not. However, while theories and methods are often related, it is important that, as a researcher, you deliberately separate them in order to avoid your theories playing a disproportionate role in shaping what outcomes your chosen methods produce.

Introspectively engage in an ongoing dialectic between theories and methods to help enable you to use the outcomes from your methods to interrogate and develop new theories, or ways of framing conceptually the research problem. This is how scholarship grows and branches out into new intellectual territory.

Reynolds, R. Larry. Ways of Knowing. Alternative Microeconomics. Part 1, Chapter 3. Boise State University; The Theory-Method Relationship . S-Cool Revision. United Kingdom.

  • << Previous: What Is Scholarly vs. Popular?
  • Next: Qualitative Methods >>
  • Last Updated: Jul 18, 2023 11:58 AM
  • URL: https://library.sacredheart.edu/c.php?g=29803
  • QuickSearch
  • Library Catalog
  • Databases A-Z
  • Publication Finder
  • Course Reserves
  • Citation Linker
  • Digital Commons
  • Our Website

Research Support

  • Ask a Librarian
  • Appointments
  • Interlibrary Loan (ILL)
  • Research Guides
  • Databases by Subject
  • Citation Help

Using the Library

  • Reserve a Group Study Room
  • Renew Books
  • Honors Study Rooms
  • Off-Campus Access
  • Library Policies
  • Library Technology

User Information

  • Grad Students
  • Online Students
  • COVID-19 Updates
  • Staff Directory
  • News & Announcements
  • Library Newsletter

My Accounts

  • Interlibrary Loan
  • Staff Site Login

Sacred Heart University

FIND US ON  

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • BMC Med Res Methodol

Logo of bmcmrm

A tutorial on methodological studies: the what, when, how and why

Lawrence mbuagbaw.

1 Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, ON Canada

2 Biostatistics Unit/FSORC, 50 Charlton Avenue East, St Joseph’s Healthcare—Hamilton, 3rd Floor Martha Wing, Room H321, Hamilton, Ontario L8N 4A6 Canada

3 Centre for the Development of Best Practices in Health, Yaoundé, Cameroon

Daeria O. Lawson

Livia puljak.

4 Center for Evidence-Based Medicine and Health Care, Catholic University of Croatia, Ilica 242, 10000 Zagreb, Croatia

David B. Allison

5 Department of Epidemiology and Biostatistics, School of Public Health – Bloomington, Indiana University, Bloomington, IN 47405 USA

Lehana Thabane

6 Departments of Paediatrics and Anaesthesia, McMaster University, Hamilton, ON Canada

7 Centre for Evaluation of Medicine, St. Joseph’s Healthcare-Hamilton, Hamilton, ON Canada

8 Population Health Research Institute, Hamilton Health Sciences, Hamilton, ON Canada

Associated Data

Data sharing is not applicable to this article as no new data were created or analyzed in this study.

Methodological studies – studies that evaluate the design, analysis or reporting of other research-related reports – play an important role in health research. They help to highlight issues in the conduct of research with the aim of improving health research methodology, and ultimately reducing research waste.

We provide an overview of some of the key aspects of methodological studies such as what they are, and when, how and why they are done. We adopt a “frequently asked questions” format to facilitate reading this paper and provide multiple examples to help guide researchers interested in conducting methodological studies. Some of the topics addressed include: is it necessary to publish a study protocol? How to select relevant research reports and databases for a methodological study? What approaches to data extraction and statistical analysis should be considered when conducting a methodological study? What are potential threats to validity and is there a way to appraise the quality of methodological studies?

Appropriate reflection and application of basic principles of epidemiology and biostatistics are required in the design and analysis of methodological studies. This paper provides an introduction for further discussion about the conduct of methodological studies.

The field of meta-research (or research-on-research) has proliferated in recent years in response to issues with research quality and conduct [ 1 – 3 ]. As the name suggests, this field targets issues with research design, conduct, analysis and reporting. Various types of research reports are often examined as the unit of analysis in these studies (e.g. abstracts, full manuscripts, trial registry entries). Like many other novel fields of research, meta-research has seen a proliferation of use before the development of reporting guidance. For example, this was the case with randomized trials for which risk of bias tools and reporting guidelines were only developed much later – after many trials had been published and noted to have limitations [ 4 , 5 ]; and for systematic reviews as well [ 6 – 8 ]. However, in the absence of formal guidance, studies that report on research differ substantially in how they are named, conducted and reported [ 9 , 10 ]. This creates challenges in identifying, summarizing and comparing them. In this tutorial paper, we will use the term methodological study to refer to any study that reports on the design, conduct, analysis or reporting of primary or secondary research-related reports (such as trial registry entries and conference abstracts).

In the past 10 years, there has been an increase in the use of terms related to methodological studies (based on records retrieved with a keyword search [in the title and abstract] for “methodological review” and “meta-epidemiological study” in PubMed up to December 2019), suggesting that these studies may be appearing more frequently in the literature. See Fig.  1 .

An external file that holds a picture, illustration, etc.
Object name is 12874_2020_1107_Fig1_HTML.jpg

Trends in the number studies that mention “methodological review” or “meta-

epidemiological study” in PubMed.

The methods used in many methodological studies have been borrowed from systematic and scoping reviews. This practice has influenced the direction of the field, with many methodological studies including searches of electronic databases, screening of records, duplicate data extraction and assessments of risk of bias in the included studies. However, the research questions posed in methodological studies do not always require the approaches listed above, and guidance is needed on when and how to apply these methods to a methodological study. Even though methodological studies can be conducted on qualitative or mixed methods research, this paper focuses on and draws examples exclusively from quantitative research.

The objectives of this paper are to provide some insights on how to conduct methodological studies so that there is greater consistency between the research questions posed, and the design, analysis and reporting of findings. We provide multiple examples to illustrate concepts and a proposed framework for categorizing methodological studies in quantitative research.

What is a methodological study?

Any study that describes or analyzes methods (design, conduct, analysis or reporting) in published (or unpublished) literature is a methodological study. Consequently, the scope of methodological studies is quite extensive and includes, but is not limited to, topics as diverse as: research question formulation [ 11 ]; adherence to reporting guidelines [ 12 – 14 ] and consistency in reporting [ 15 ]; approaches to study analysis [ 16 ]; investigating the credibility of analyses [ 17 ]; and studies that synthesize these methodological studies [ 18 ]. While the nomenclature of methodological studies is not uniform, the intents and purposes of these studies remain fairly consistent – to describe or analyze methods in primary or secondary studies. As such, methodological studies may also be classified as a subtype of observational studies.

Parallel to this are experimental studies that compare different methods. Even though they play an important role in informing optimal research methods, experimental methodological studies are beyond the scope of this paper. Examples of such studies include the randomized trials by Buscemi et al., comparing single data extraction to double data extraction [ 19 ], and Carrasco-Labra et al., comparing approaches to presenting findings in Grading of Recommendations, Assessment, Development and Evaluations (GRADE) summary of findings tables [ 20 ]. In these studies, the unit of analysis is the person or groups of individuals applying the methods. We also direct readers to the Studies Within a Trial (SWAT) and Studies Within a Review (SWAR) programme operated through the Hub for Trials Methodology Research, for further reading as a potential useful resource for these types of experimental studies [ 21 ]. Lastly, this paper is not meant to inform the conduct of research using computational simulation and mathematical modeling for which some guidance already exists [ 22 ], or studies on the development of methods using consensus-based approaches.

When should we conduct a methodological study?

Methodological studies occupy a unique niche in health research that allows them to inform methodological advances. Methodological studies should also be conducted as pre-cursors to reporting guideline development, as they provide an opportunity to understand current practices, and help to identify the need for guidance and gaps in methodological or reporting quality. For example, the development of the popular Preferred Reporting Items of Systematic reviews and Meta-Analyses (PRISMA) guidelines were preceded by methodological studies identifying poor reporting practices [ 23 , 24 ]. In these instances, after the reporting guidelines are published, methodological studies can also be used to monitor uptake of the guidelines.

These studies can also be conducted to inform the state of the art for design, analysis and reporting practices across different types of health research fields, with the aim of improving research practices, and preventing or reducing research waste. For example, Samaan et al. conducted a scoping review of adherence to different reporting guidelines in health care literature [ 18 ]. Methodological studies can also be used to determine the factors associated with reporting practices. For example, Abbade et al. investigated journal characteristics associated with the use of the Participants, Intervention, Comparison, Outcome, Timeframe (PICOT) format in framing research questions in trials of venous ulcer disease [ 11 ].

How often are methodological studies conducted?

There is no clear answer to this question. Based on a search of PubMed, the use of related terms (“methodological review” and “meta-epidemiological study”) – and therefore, the number of methodological studies – is on the rise. However, many other terms are used to describe methodological studies. There are also many studies that explore design, conduct, analysis or reporting of research reports, but that do not use any specific terms to describe or label their study design in terms of “methodology”. This diversity in nomenclature makes a census of methodological studies elusive. Appropriate terminology and key words for methodological studies are needed to facilitate improved accessibility for end-users.

Why do we conduct methodological studies?

Methodological studies provide information on the design, conduct, analysis or reporting of primary and secondary research and can be used to appraise quality, quantity, completeness, accuracy and consistency of health research. These issues can be explored in specific fields, journals, databases, geographical regions and time periods. For example, Areia et al. explored the quality of reporting of endoscopic diagnostic studies in gastroenterology [ 25 ]; Knol et al. investigated the reporting of p -values in baseline tables in randomized trial published in high impact journals [ 26 ]; Chen et al. describe adherence to the Consolidated Standards of Reporting Trials (CONSORT) statement in Chinese Journals [ 27 ]; and Hopewell et al. describe the effect of editors’ implementation of CONSORT guidelines on reporting of abstracts over time [ 28 ]. Methodological studies provide useful information to researchers, clinicians, editors, publishers and users of health literature. As a result, these studies have been at the cornerstone of important methodological developments in the past two decades and have informed the development of many health research guidelines including the highly cited CONSORT statement [ 5 ].

Where can we find methodological studies?

Methodological studies can be found in most common biomedical bibliographic databases (e.g. Embase, MEDLINE, PubMed, Web of Science). However, the biggest caveat is that methodological studies are hard to identify in the literature due to the wide variety of names used and the lack of comprehensive databases dedicated to them. A handful can be found in the Cochrane Library as “Cochrane Methodology Reviews”, but these studies only cover methodological issues related to systematic reviews. Previous attempts to catalogue all empirical studies of methods used in reviews were abandoned 10 years ago [ 29 ]. In other databases, a variety of search terms may be applied with different levels of sensitivity and specificity.

Some frequently asked questions about methodological studies

In this section, we have outlined responses to questions that might help inform the conduct of methodological studies.

Q: How should I select research reports for my methodological study?

A: Selection of research reports for a methodological study depends on the research question and eligibility criteria. Once a clear research question is set and the nature of literature one desires to review is known, one can then begin the selection process. Selection may begin with a broad search, especially if the eligibility criteria are not apparent. For example, a methodological study of Cochrane Reviews of HIV would not require a complex search as all eligible studies can easily be retrieved from the Cochrane Library after checking a few boxes [ 30 ]. On the other hand, a methodological study of subgroup analyses in trials of gastrointestinal oncology would require a search to find such trials, and further screening to identify trials that conducted a subgroup analysis [ 31 ].

The strategies used for identifying participants in observational studies can apply here. One may use a systematic search to identify all eligible studies. If the number of eligible studies is unmanageable, a random sample of articles can be expected to provide comparable results if it is sufficiently large [ 32 ]. For example, Wilson et al. used a random sample of trials from the Cochrane Stroke Group’s Trial Register to investigate completeness of reporting [ 33 ]. It is possible that a simple random sample would lead to underrepresentation of units (i.e. research reports) that are smaller in number. This is relevant if the investigators wish to compare multiple groups but have too few units in one group. In this case a stratified sample would help to create equal groups. For example, in a methodological study comparing Cochrane and non-Cochrane reviews, Kahale et al. drew random samples from both groups [ 34 ]. Alternatively, systematic or purposeful sampling strategies can be used and we encourage researchers to justify their selected approaches based on the study objective.

Q: How many databases should I search?

A: The number of databases one should search would depend on the approach to sampling, which can include targeting the entire “population” of interest or a sample of that population. If you are interested in including the entire target population for your research question, or drawing a random or systematic sample from it, then a comprehensive and exhaustive search for relevant articles is required. In this case, we recommend using systematic approaches for searching electronic databases (i.e. at least 2 databases with a replicable and time stamped search strategy). The results of your search will constitute a sampling frame from which eligible studies can be drawn.

Alternatively, if your approach to sampling is purposeful, then we recommend targeting the database(s) or data sources (e.g. journals, registries) that include the information you need. For example, if you are conducting a methodological study of high impact journals in plastic surgery and they are all indexed in PubMed, you likely do not need to search any other databases. You may also have a comprehensive list of all journals of interest and can approach your search using the journal names in your database search (or by accessing the journal archives directly from the journal’s website). Even though one could also search journals’ web pages directly, using a database such as PubMed has multiple advantages, such as the use of filters, so the search can be narrowed down to a certain period, or study types of interest. Furthermore, individual journals’ web sites may have different search functionalities, which do not necessarily yield a consistent output.

Q: Should I publish a protocol for my methodological study?

A: A protocol is a description of intended research methods. Currently, only protocols for clinical trials require registration [ 35 ]. Protocols for systematic reviews are encouraged but no formal recommendation exists. The scientific community welcomes the publication of protocols because they help protect against selective outcome reporting, the use of post hoc methodologies to embellish results, and to help avoid duplication of efforts [ 36 ]. While the latter two risks exist in methodological research, the negative consequences may be substantially less than for clinical outcomes. In a sample of 31 methodological studies, 7 (22.6%) referenced a published protocol [ 9 ]. In the Cochrane Library, there are 15 protocols for methodological reviews (21 July 2020). This suggests that publishing protocols for methodological studies is not uncommon.

Authors can consider publishing their study protocol in a scholarly journal as a manuscript. Advantages of such publication include obtaining peer-review feedback about the planned study, and easy retrieval by searching databases such as PubMed. The disadvantages in trying to publish protocols includes delays associated with manuscript handling and peer review, as well as costs, as few journals publish study protocols, and those journals mostly charge article-processing fees [ 37 ]. Authors who would like to make their protocol publicly available without publishing it in scholarly journals, could deposit their study protocols in publicly available repositories, such as the Open Science Framework ( https://osf.io/ ).

Q: How to appraise the quality of a methodological study?

A: To date, there is no published tool for appraising the risk of bias in a methodological study, but in principle, a methodological study could be considered as a type of observational study. Therefore, during conduct or appraisal, care should be taken to avoid the biases common in observational studies [ 38 ]. These biases include selection bias, comparability of groups, and ascertainment of exposure or outcome. In other words, to generate a representative sample, a comprehensive reproducible search may be necessary to build a sampling frame. Additionally, random sampling may be necessary to ensure that all the included research reports have the same probability of being selected, and the screening and selection processes should be transparent and reproducible. To ensure that the groups compared are similar in all characteristics, matching, random sampling or stratified sampling can be used. Statistical adjustments for between-group differences can also be applied at the analysis stage. Finally, duplicate data extraction can reduce errors in assessment of exposures or outcomes.

Q: Should I justify a sample size?

A: In all instances where one is not using the target population (i.e. the group to which inferences from the research report are directed) [ 39 ], a sample size justification is good practice. The sample size justification may take the form of a description of what is expected to be achieved with the number of articles selected, or a formal sample size estimation that outlines the number of articles required to answer the research question with a certain precision and power. Sample size justifications in methodological studies are reasonable in the following instances:

  • Comparing two groups
  • Determining a proportion, mean or another quantifier
  • Determining factors associated with an outcome using regression-based analyses

For example, El Dib et al. computed a sample size requirement for a methodological study of diagnostic strategies in randomized trials, based on a confidence interval approach [ 40 ].

Q: What should I call my study?

A: Other terms which have been used to describe/label methodological studies include “ methodological review ”, “methodological survey” , “meta-epidemiological study” , “systematic review” , “systematic survey”, “meta-research”, “research-on-research” and many others. We recommend that the study nomenclature be clear, unambiguous, informative and allow for appropriate indexing. Methodological study nomenclature that should be avoided includes “ systematic review” – as this will likely be confused with a systematic review of a clinical question. “ Systematic survey” may also lead to confusion about whether the survey was systematic (i.e. using a preplanned methodology) or a survey using “ systematic” sampling (i.e. a sampling approach using specific intervals to determine who is selected) [ 32 ]. Any of the above meanings of the words “ systematic” may be true for methodological studies and could be potentially misleading. “ Meta-epidemiological study” is ideal for indexing, but not very informative as it describes an entire field. The term “ review ” may point towards an appraisal or “review” of the design, conduct, analysis or reporting (or methodological components) of the targeted research reports, yet it has also been used to describe narrative reviews [ 41 , 42 ]. The term “ survey ” is also in line with the approaches used in many methodological studies [ 9 ], and would be indicative of the sampling procedures of this study design. However, in the absence of guidelines on nomenclature, the term “ methodological study ” is broad enough to capture most of the scenarios of such studies.

Q: Should I account for clustering in my methodological study?

A: Data from methodological studies are often clustered. For example, articles coming from a specific source may have different reporting standards (e.g. the Cochrane Library). Articles within the same journal may be similar due to editorial practices and policies, reporting requirements and endorsement of guidelines. There is emerging evidence that these are real concerns that should be accounted for in analyses [ 43 ]. Some cluster variables are described in the section: “ What variables are relevant to methodological studies?”

A variety of modelling approaches can be used to account for correlated data, including the use of marginal, fixed or mixed effects regression models with appropriate computation of standard errors [ 44 ]. For example, Kosa et al. used generalized estimation equations to account for correlation of articles within journals [ 15 ]. Not accounting for clustering could lead to incorrect p -values, unduly narrow confidence intervals, and biased estimates [ 45 ].

Q: Should I extract data in duplicate?

A: Yes. Duplicate data extraction takes more time but results in less errors [ 19 ]. Data extraction errors in turn affect the effect estimate [ 46 ], and therefore should be mitigated. Duplicate data extraction should be considered in the absence of other approaches to minimize extraction errors. However, much like systematic reviews, this area will likely see rapid new advances with machine learning and natural language processing technologies to support researchers with screening and data extraction [ 47 , 48 ]. However, experience plays an important role in the quality of extracted data and inexperienced extractors should be paired with experienced extractors [ 46 , 49 ].

Q: Should I assess the risk of bias of research reports included in my methodological study?

A : Risk of bias is most useful in determining the certainty that can be placed in the effect measure from a study. In methodological studies, risk of bias may not serve the purpose of determining the trustworthiness of results, as effect measures are often not the primary goal of methodological studies. Determining risk of bias in methodological studies is likely a practice borrowed from systematic review methodology, but whose intrinsic value is not obvious in methodological studies. When it is part of the research question, investigators often focus on one aspect of risk of bias. For example, Speich investigated how blinding was reported in surgical trials [ 50 ], and Abraha et al., investigated the application of intention-to-treat analyses in systematic reviews and trials [ 51 ].

Q: What variables are relevant to methodological studies?

A: There is empirical evidence that certain variables may inform the findings in a methodological study. We outline some of these and provide a brief overview below:

  • Country: Countries and regions differ in their research cultures, and the resources available to conduct research. Therefore, it is reasonable to believe that there may be differences in methodological features across countries. Methodological studies have reported loco-regional differences in reporting quality [ 52 , 53 ]. This may also be related to challenges non-English speakers face in publishing papers in English.
  • Authors’ expertise: The inclusion of authors with expertise in research methodology, biostatistics, and scientific writing is likely to influence the end-product. Oltean et al. found that among randomized trials in orthopaedic surgery, the use of analyses that accounted for clustering was more likely when specialists (e.g. statistician, epidemiologist or clinical trials methodologist) were included on the study team [ 54 ]. Fleming et al. found that including methodologists in the review team was associated with appropriate use of reporting guidelines [ 55 ].
  • Source of funding and conflicts of interest: Some studies have found that funded studies report better [ 56 , 57 ], while others do not [ 53 , 58 ]. The presence of funding would indicate the availability of resources deployed to ensure optimal design, conduct, analysis and reporting. However, the source of funding may introduce conflicts of interest and warrant assessment. For example, Kaiser et al. investigated the effect of industry funding on obesity or nutrition randomized trials and found that reporting quality was similar [ 59 ]. Thomas et al. looked at reporting quality of long-term weight loss trials and found that industry funded studies were better [ 60 ]. Kan et al. examined the association between industry funding and “positive trials” (trials reporting a significant intervention effect) and found that industry funding was highly predictive of a positive trial [ 61 ]. This finding is similar to that of a recent Cochrane Methodology Review by Hansen et al. [ 62 ]
  • Journal characteristics: Certain journals’ characteristics may influence the study design, analysis or reporting. Characteristics such as journal endorsement of guidelines [ 63 , 64 ], and Journal Impact Factor (JIF) have been shown to be associated with reporting [ 63 , 65 – 67 ].
  • Study size (sample size/number of sites): Some studies have shown that reporting is better in larger studies [ 53 , 56 , 58 ].
  • Year of publication: It is reasonable to assume that design, conduct, analysis and reporting of research will change over time. Many studies have demonstrated improvements in reporting over time or after the publication of reporting guidelines [ 68 , 69 ].
  • Type of intervention: In a methodological study of reporting quality of weight loss intervention studies, Thabane et al. found that trials of pharmacologic interventions were reported better than trials of non-pharmacologic interventions [ 70 ].
  • Interactions between variables: Complex interactions between the previously listed variables are possible. High income countries with more resources may be more likely to conduct larger studies and incorporate a variety of experts. Authors in certain countries may prefer certain journals, and journal endorsement of guidelines and editorial policies may change over time.

Q: Should I focus only on high impact journals?

A: Investigators may choose to investigate only high impact journals because they are more likely to influence practice and policy, or because they assume that methodological standards would be higher. However, the JIF may severely limit the scope of articles included and may skew the sample towards articles with positive findings. The generalizability and applicability of findings from a handful of journals must be examined carefully, especially since the JIF varies over time. Even among journals that are all “high impact”, variations exist in methodological standards.

Q: Can I conduct a methodological study of qualitative research?

A: Yes. Even though a lot of methodological research has been conducted in the quantitative research field, methodological studies of qualitative studies are feasible. Certain databases that catalogue qualitative research including the Cumulative Index to Nursing & Allied Health Literature (CINAHL) have defined subject headings that are specific to methodological research (e.g. “research methodology”). Alternatively, one could also conduct a qualitative methodological review; that is, use qualitative approaches to synthesize methodological issues in qualitative studies.

Q: What reporting guidelines should I use for my methodological study?

A: There is no guideline that covers the entire scope of methodological studies. One adaptation of the PRISMA guidelines has been published, which works well for studies that aim to use the entire target population of research reports [ 71 ]. However, it is not widely used (40 citations in 2 years as of 09 December 2019), and methodological studies that are designed as cross-sectional or before-after studies require a more fit-for purpose guideline. A more encompassing reporting guideline for a broad range of methodological studies is currently under development [ 72 ]. However, in the absence of formal guidance, the requirements for scientific reporting should be respected, and authors of methodological studies should focus on transparency and reproducibility.

Q: What are the potential threats to validity and how can I avoid them?

A: Methodological studies may be compromised by a lack of internal or external validity. The main threats to internal validity in methodological studies are selection and confounding bias. Investigators must ensure that the methods used to select articles does not make them differ systematically from the set of articles to which they would like to make inferences. For example, attempting to make extrapolations to all journals after analyzing high-impact journals would be misleading.

Many factors (confounders) may distort the association between the exposure and outcome if the included research reports differ with respect to these factors [ 73 ]. For example, when examining the association between source of funding and completeness of reporting, it may be necessary to account for journals that endorse the guidelines. Confounding bias can be addressed by restriction, matching and statistical adjustment [ 73 ]. Restriction appears to be the method of choice for many investigators who choose to include only high impact journals or articles in a specific field. For example, Knol et al. examined the reporting of p -values in baseline tables of high impact journals [ 26 ]. Matching is also sometimes used. In the methodological study of non-randomized interventional studies of elective ventral hernia repair, Parker et al. matched prospective studies with retrospective studies and compared reporting standards [ 74 ]. Some other methodological studies use statistical adjustments. For example, Zhang et al. used regression techniques to determine the factors associated with missing participant data in trials [ 16 ].

With regard to external validity, researchers interested in conducting methodological studies must consider how generalizable or applicable their findings are. This should tie in closely with the research question and should be explicit. For example. Findings from methodological studies on trials published in high impact cardiology journals cannot be assumed to be applicable to trials in other fields. However, investigators must ensure that their sample truly represents the target sample either by a) conducting a comprehensive and exhaustive search, or b) using an appropriate and justified, randomly selected sample of research reports.

Even applicability to high impact journals may vary based on the investigators’ definition, and over time. For example, for high impact journals in the field of general medicine, Bouwmeester et al. included the Annals of Internal Medicine (AIM), BMJ, the Journal of the American Medical Association (JAMA), Lancet, the New England Journal of Medicine (NEJM), and PLoS Medicine ( n  = 6) [ 75 ]. In contrast, the high impact journals selected in the methodological study by Schiller et al. were BMJ, JAMA, Lancet, and NEJM ( n  = 4) [ 76 ]. Another methodological study by Kosa et al. included AIM, BMJ, JAMA, Lancet and NEJM ( n  = 5). In the methodological study by Thabut et al., journals with a JIF greater than 5 were considered to be high impact. Riado Minguez et al. used first quartile journals in the Journal Citation Reports (JCR) for a specific year to determine “high impact” [ 77 ]. Ultimately, the definition of high impact will be based on the number of journals the investigators are willing to include, the year of impact and the JIF cut-off [ 78 ]. We acknowledge that the term “generalizability” may apply differently for methodological studies, especially when in many instances it is possible to include the entire target population in the sample studied.

Finally, methodological studies are not exempt from information bias which may stem from discrepancies in the included research reports [ 79 ], errors in data extraction, or inappropriate interpretation of the information extracted. Likewise, publication bias may also be a concern in methodological studies, but such concepts have not yet been explored.

A proposed framework

In order to inform discussions about methodological studies, the development of guidance for what should be reported, we have outlined some key features of methodological studies that can be used to classify them. For each of the categories outlined below, we provide an example. In our experience, the choice of approach to completing a methodological study can be informed by asking the following four questions:

  • What is the aim?

A methodological study may be focused on exploring sources of bias in primary or secondary studies (meta-bias), or how bias is analyzed. We have taken care to distinguish bias (i.e. systematic deviations from the truth irrespective of the source) from reporting quality or completeness (i.e. not adhering to a specific reporting guideline or norm). An example of where this distinction would be important is in the case of a randomized trial with no blinding. This study (depending on the nature of the intervention) would be at risk of performance bias. However, if the authors report that their study was not blinded, they would have reported adequately. In fact, some methodological studies attempt to capture both “quality of conduct” and “quality of reporting”, such as Richie et al., who reported on the risk of bias in randomized trials of pharmacy practice interventions [ 80 ]. Babic et al. investigated how risk of bias was used to inform sensitivity analyses in Cochrane reviews [ 81 ]. Further, biases related to choice of outcomes can also be explored. For example, Tan et al investigated differences in treatment effect size based on the outcome reported [ 82 ].

Methodological studies may report quality of reporting against a reporting checklist (i.e. adherence to guidelines) or against expected norms. For example, Croituro et al. report on the quality of reporting in systematic reviews published in dermatology journals based on their adherence to the PRISMA statement [ 83 ], and Khan et al. described the quality of reporting of harms in randomized controlled trials published in high impact cardiovascular journals based on the CONSORT extension for harms [ 84 ]. Other methodological studies investigate reporting of certain features of interest that may not be part of formally published checklists or guidelines. For example, Mbuagbaw et al. described how often the implications for research are elaborated using the Evidence, Participants, Intervention, Comparison, Outcome, Timeframe (EPICOT) format [ 30 ].

Sometimes investigators may be interested in how consistent reports of the same research are, as it is expected that there should be consistency between: conference abstracts and published manuscripts; manuscript abstracts and manuscript main text; and trial registration and published manuscript. For example, Rosmarakis et al. investigated consistency between conference abstracts and full text manuscripts [ 85 ].

In addition to identifying issues with reporting in primary and secondary studies, authors of methodological studies may be interested in determining the factors that are associated with certain reporting practices. Many methodological studies incorporate this, albeit as a secondary outcome. For example, Farrokhyar et al. investigated the factors associated with reporting quality in randomized trials of coronary artery bypass grafting surgery [ 53 ].

Methodological studies may also be used to describe methods or compare methods, and the factors associated with methods. Muller et al. described the methods used for systematic reviews and meta-analyses of observational studies [ 86 ].

Some methodological studies synthesize results from other methodological studies. For example, Li et al. conducted a scoping review of methodological reviews that investigated consistency between full text and abstracts in primary biomedical research [ 87 ].

Some methodological studies may investigate the use of names and terms in health research. For example, Martinic et al. investigated the definitions of systematic reviews used in overviews of systematic reviews (OSRs), meta-epidemiological studies and epidemiology textbooks [ 88 ].

In addition to the previously mentioned experimental methodological studies, there may exist other types of methodological studies not captured here.

  • 2. What is the design?

Most methodological studies are purely descriptive and report their findings as counts (percent) and means (standard deviation) or medians (interquartile range). For example, Mbuagbaw et al. described the reporting of research recommendations in Cochrane HIV systematic reviews [ 30 ]. Gohari et al. described the quality of reporting of randomized trials in diabetes in Iran [ 12 ].

Some methodological studies are analytical wherein “analytical studies identify and quantify associations, test hypotheses, identify causes and determine whether an association exists between variables, such as between an exposure and a disease.” [ 89 ] In the case of methodological studies all these investigations are possible. For example, Kosa et al. investigated the association between agreement in primary outcome from trial registry to published manuscript and study covariates. They found that larger and more recent studies were more likely to have agreement [ 15 ]. Tricco et al. compared the conclusion statements from Cochrane and non-Cochrane systematic reviews with a meta-analysis of the primary outcome and found that non-Cochrane reviews were more likely to report positive findings. These results are a test of the null hypothesis that the proportions of Cochrane and non-Cochrane reviews that report positive results are equal [ 90 ].

  • 3. What is the sampling strategy?

Methodological reviews with narrow research questions may be able to include the entire target population. For example, in the methodological study of Cochrane HIV systematic reviews, Mbuagbaw et al. included all of the available studies ( n  = 103) [ 30 ].

Many methodological studies use random samples of the target population [ 33 , 91 , 92 ]. Alternatively, purposeful sampling may be used, limiting the sample to a subset of research-related reports published within a certain time period, or in journals with a certain ranking or on a topic. Systematic sampling can also be used when random sampling may be challenging to implement.

  • 4. What is the unit of analysis?

Many methodological studies use a research report (e.g. full manuscript of study, abstract portion of the study) as the unit of analysis, and inferences can be made at the study-level. However, both published and unpublished research-related reports can be studied. These may include articles, conference abstracts, registry entries etc.

Some methodological studies report on items which may occur more than once per article. For example, Paquette et al. report on subgroup analyses in Cochrane reviews of atrial fibrillation in which 17 systematic reviews planned 56 subgroup analyses [ 93 ].

This framework is outlined in Fig.  2 .

An external file that holds a picture, illustration, etc.
Object name is 12874_2020_1107_Fig2_HTML.jpg

A proposed framework for methodological studies

Conclusions

Methodological studies have examined different aspects of reporting such as quality, completeness, consistency and adherence to reporting guidelines. As such, many of the methodological study examples cited in this tutorial are related to reporting. However, as an evolving field, the scope of research questions that can be addressed by methodological studies is expected to increase.

In this paper we have outlined the scope and purpose of methodological studies, along with examples of instances in which various approaches have been used. In the absence of formal guidance on the design, conduct, analysis and reporting of methodological studies, we have provided some advice to help make methodological studies consistent. This advice is grounded in good contemporary scientific practice. Generally, the research question should tie in with the sampling approach and planned analysis. We have also highlighted the variables that may inform findings from methodological studies. Lastly, we have provided suggestions for ways in which authors can categorize their methodological studies to inform their design and analysis.

Acknowledgements

Abbreviations, authors’ contributions.

LM conceived the idea and drafted the outline and paper. DOL and LT commented on the idea and draft outline. LM, LP and DOL performed literature searches and data extraction. All authors (LM, DOL, LT, LP, DBA) reviewed several draft versions of the manuscript and approved the final manuscript.

This work did not receive any dedicated funding.

Availability of data and materials

Ethics approval and consent to participate.

Not applicable.

Consent for publication

Competing interests.

DOL, DBA, LM, LP and LT are involved in the development of a reporting guideline for methodological studies.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base

Methodology

  • What Is a Research Design | Types, Guide & Examples

What Is a Research Design | Types, Guide & Examples

Published on June 7, 2021 by Shona McCombes . Revised on November 20, 2023 by Pritha Bhandari.

A research design is a strategy for answering your   research question  using empirical data. Creating a research design means making decisions about:

  • Your overall research objectives and approach
  • Whether you’ll rely on primary research or secondary research
  • Your sampling methods or criteria for selecting subjects
  • Your data collection methods
  • The procedures you’ll follow to collect data
  • Your data analysis methods

A well-planned research design helps ensure that your methods match your research objectives and that you use the right kind of analysis for your data.

Table of contents

Step 1: consider your aims and approach, step 2: choose a type of research design, step 3: identify your population and sampling method, step 4: choose your data collection methods, step 5: plan your data collection procedures, step 6: decide on your data analysis strategies, other interesting articles, frequently asked questions about research design.

  • Introduction

Before you can start designing your research, you should already have a clear idea of the research question you want to investigate.

There are many different ways you could go about answering this question. Your research design choices should be driven by your aims and priorities—start by thinking carefully about what you want to achieve.

The first choice you need to make is whether you’ll take a qualitative or quantitative approach.

Qualitative research designs tend to be more flexible and inductive , allowing you to adjust your approach based on what you find throughout the research process.

Quantitative research designs tend to be more fixed and deductive , with variables and hypotheses clearly defined in advance of data collection.

It’s also possible to use a mixed-methods design that integrates aspects of both approaches. By combining qualitative and quantitative insights, you can gain a more complete picture of the problem you’re studying and strengthen the credibility of your conclusions.

Practical and ethical considerations when designing research

As well as scientific considerations, you need to think practically when designing your research. If your research involves people or animals, you also need to consider research ethics .

  • How much time do you have to collect data and write up the research?
  • Will you be able to gain access to the data you need (e.g., by travelling to a specific location or contacting specific people)?
  • Do you have the necessary research skills (e.g., statistical analysis or interview techniques)?
  • Will you need ethical approval ?

At each stage of the research design process, make sure that your choices are practically feasible.

Here's why students love Scribbr's proofreading services

Discover proofreading & editing

Within both qualitative and quantitative approaches, there are several types of research design to choose from. Each type provides a framework for the overall shape of your research.

Types of quantitative research designs

Quantitative designs can be split into four main types.

  • Experimental and   quasi-experimental designs allow you to test cause-and-effect relationships
  • Descriptive and correlational designs allow you to measure variables and describe relationships between them.

With descriptive and correlational designs, you can get a clear picture of characteristics, trends and relationships as they exist in the real world. However, you can’t draw conclusions about cause and effect (because correlation doesn’t imply causation ).

Experiments are the strongest way to test cause-and-effect relationships without the risk of other variables influencing the results. However, their controlled conditions may not always reflect how things work in the real world. They’re often also more difficult and expensive to implement.

Types of qualitative research designs

Qualitative designs are less strictly defined. This approach is about gaining a rich, detailed understanding of a specific context or phenomenon, and you can often be more creative and flexible in designing your research.

The table below shows some common types of qualitative design. They often have similar approaches in terms of data collection, but focus on different aspects when analyzing the data.

Your research design should clearly define who or what your research will focus on, and how you’ll go about choosing your participants or subjects.

In research, a population is the entire group that you want to draw conclusions about, while a sample is the smaller group of individuals you’ll actually collect data from.

Defining the population

A population can be made up of anything you want to study—plants, animals, organizations, texts, countries, etc. In the social sciences, it most often refers to a group of people.

For example, will you focus on people from a specific demographic, region or background? Are you interested in people with a certain job or medical condition, or users of a particular product?

The more precisely you define your population, the easier it will be to gather a representative sample.

  • Sampling methods

Even with a narrowly defined population, it’s rarely possible to collect data from every individual. Instead, you’ll collect data from a sample.

To select a sample, there are two main approaches: probability sampling and non-probability sampling . The sampling method you use affects how confidently you can generalize your results to the population as a whole.

Probability sampling is the most statistically valid option, but it’s often difficult to achieve unless you’re dealing with a very small and accessible population.

For practical reasons, many studies use non-probability sampling, but it’s important to be aware of the limitations and carefully consider potential biases. You should always make an effort to gather a sample that’s as representative as possible of the population.

Case selection in qualitative research

In some types of qualitative designs, sampling may not be relevant.

For example, in an ethnography or a case study , your aim is to deeply understand a specific context, not to generalize to a population. Instead of sampling, you may simply aim to collect as much data as possible about the context you are studying.

In these types of design, you still have to carefully consider your choice of case or community. You should have a clear rationale for why this particular case is suitable for answering your research question .

For example, you might choose a case study that reveals an unusual or neglected aspect of your research problem, or you might choose several very similar or very different cases in order to compare them.

Data collection methods are ways of directly measuring variables and gathering information. They allow you to gain first-hand knowledge and original insights into your research problem.

You can choose just one data collection method, or use several methods in the same study.

Survey methods

Surveys allow you to collect data about opinions, behaviors, experiences, and characteristics by asking people directly. There are two main survey methods to choose from: questionnaires and interviews .

Observation methods

Observational studies allow you to collect data unobtrusively, observing characteristics, behaviors or social interactions without relying on self-reporting.

Observations may be conducted in real time, taking notes as you observe, or you might make audiovisual recordings for later analysis. They can be qualitative or quantitative.

Other methods of data collection

There are many other ways you might collect data depending on your field and topic.

If you’re not sure which methods will work best for your research design, try reading some papers in your field to see what kinds of data collection methods they used.

Secondary data

If you don’t have the time or resources to collect data from the population you’re interested in, you can also choose to use secondary data that other researchers already collected—for example, datasets from government surveys or previous studies on your topic.

With this raw data, you can do your own analysis to answer new research questions that weren’t addressed by the original study.

Using secondary data can expand the scope of your research, as you may be able to access much larger and more varied samples than you could collect yourself.

However, it also means you don’t have any control over which variables to measure or how to measure them, so the conclusions you can draw may be limited.

Prevent plagiarism. Run a free check.

As well as deciding on your methods, you need to plan exactly how you’ll use these methods to collect data that’s consistent, accurate, and unbiased.

Planning systematic procedures is especially important in quantitative research, where you need to precisely define your variables and ensure your measurements are high in reliability and validity.

Operationalization

Some variables, like height or age, are easily measured. But often you’ll be dealing with more abstract concepts, like satisfaction, anxiety, or competence. Operationalization means turning these fuzzy ideas into measurable indicators.

If you’re using observations , which events or actions will you count?

If you’re using surveys , which questions will you ask and what range of responses will be offered?

You may also choose to use or adapt existing materials designed to measure the concept you’re interested in—for example, questionnaires or inventories whose reliability and validity has already been established.

Reliability and validity

Reliability means your results can be consistently reproduced, while validity means that you’re actually measuring the concept you’re interested in.

For valid and reliable results, your measurement materials should be thoroughly researched and carefully designed. Plan your procedures to make sure you carry out the same steps in the same way for each participant.

If you’re developing a new questionnaire or other instrument to measure a specific concept, running a pilot study allows you to check its validity and reliability in advance.

Sampling procedures

As well as choosing an appropriate sampling method , you need a concrete plan for how you’ll actually contact and recruit your selected sample.

That means making decisions about things like:

  • How many participants do you need for an adequate sample size?
  • What inclusion and exclusion criteria will you use to identify eligible participants?
  • How will you contact your sample—by mail, online, by phone, or in person?

If you’re using a probability sampling method , it’s important that everyone who is randomly selected actually participates in the study. How will you ensure a high response rate?

If you’re using a non-probability method , how will you avoid research bias and ensure a representative sample?

Data management

It’s also important to create a data management plan for organizing and storing your data.

Will you need to transcribe interviews or perform data entry for observations? You should anonymize and safeguard any sensitive data, and make sure it’s backed up regularly.

Keeping your data well-organized will save time when it comes to analyzing it. It can also help other researchers validate and add to your findings (high replicability ).

On its own, raw data can’t answer your research question. The last step of designing your research is planning how you’ll analyze the data.

Quantitative data analysis

In quantitative research, you’ll most likely use some form of statistical analysis . With statistics, you can summarize your sample data, make estimates, and test hypotheses.

Using descriptive statistics , you can summarize your sample data in terms of:

  • The distribution of the data (e.g., the frequency of each score on a test)
  • The central tendency of the data (e.g., the mean to describe the average score)
  • The variability of the data (e.g., the standard deviation to describe how spread out the scores are)

The specific calculations you can do depend on the level of measurement of your variables.

Using inferential statistics , you can:

  • Make estimates about the population based on your sample data.
  • Test hypotheses about a relationship between variables.

Regression and correlation tests look for associations between two or more variables, while comparison tests (such as t tests and ANOVAs ) look for differences in the outcomes of different groups.

Your choice of statistical test depends on various aspects of your research design, including the types of variables you’re dealing with and the distribution of your data.

Qualitative data analysis

In qualitative research, your data will usually be very dense with information and ideas. Instead of summing it up in numbers, you’ll need to comb through the data in detail, interpret its meanings, identify patterns, and extract the parts that are most relevant to your research question.

Two of the most common approaches to doing this are thematic analysis and discourse analysis .

There are many other ways of analyzing qualitative data depending on the aims of your research. To get a sense of potential approaches, try reading some qualitative research papers in your field.

If you want to know more about the research process , methodology , research bias , or statistics , make sure to check out some of our other articles with explanations and examples.

  • Simple random sampling
  • Stratified sampling
  • Cluster sampling
  • Likert scales
  • Reproducibility

 Statistics

  • Null hypothesis
  • Statistical power
  • Probability distribution
  • Effect size
  • Poisson distribution

Research bias

  • Optimism bias
  • Cognitive bias
  • Implicit bias
  • Hawthorne effect
  • Anchoring bias
  • Explicit bias

A research design is a strategy for answering your   research question . It defines your overall approach and determines how you will collect and analyze data.

A well-planned research design helps ensure that your methods match your research aims, that you collect high-quality data, and that you use the right kind of analysis to answer your questions, utilizing credible sources . This allows you to draw valid , trustworthy conclusions.

Quantitative research designs can be divided into two main categories:

  • Correlational and descriptive designs are used to investigate characteristics, averages, trends, and associations between variables.
  • Experimental and quasi-experimental designs are used to test causal relationships .

Qualitative research designs tend to be more flexible. Common types of qualitative design include case study , ethnography , and grounded theory designs.

The priorities of a research design can vary depending on the field, but you usually have to specify:

  • Your research questions and/or hypotheses
  • Your overall approach (e.g., qualitative or quantitative )
  • The type of design you’re using (e.g., a survey , experiment , or case study )
  • Your data collection methods (e.g., questionnaires , observations)
  • Your data collection procedures (e.g., operationalization , timing and data management)
  • Your data analysis methods (e.g., statistical tests  or thematic analysis )

A sample is a subset of individuals from a larger population . Sampling means selecting the group that you will actually collect data from in your research. For example, if you are researching the opinions of students in your university, you could survey a sample of 100 students.

In statistics, sampling allows you to test a hypothesis about the characteristics of a population.

Operationalization means turning abstract conceptual ideas into measurable observations.

For example, the concept of social anxiety isn’t directly observable, but it can be operationally defined in terms of self-rating scores, behavioral avoidance of crowded places, or physical anxiety symptoms in social situations.

Before collecting data , it’s important to consider how you will operationalize the variables that you want to measure.

A research project is an academic, scientific, or professional undertaking to answer a research question . Research projects can take many forms, such as qualitative or quantitative , descriptive , longitudinal , experimental , or correlational . What kind of research approach you choose will depend on your topic.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

McCombes, S. (2023, November 20). What Is a Research Design | Types, Guide & Examples. Scribbr. Retrieved April 10, 2024, from https://www.scribbr.com/methodology/research-design/

Is this article helpful?

Shona McCombes

Shona McCombes

Other students also liked, guide to experimental design | overview, steps, & examples, how to write a research proposal | examples & templates, ethical considerations in research | types & examples, "i thought ai proofreading was useless but..".

I've been using Scribbr for years now and I know it's a service that won't disappoint. It does a good job spotting mistakes”

  • Reference Manager
  • Simple TEXT file

People also looked at

Original research article, an integrated energy system day-ahead scheduling method based on an improved dynamic time warping algorithm.

www.frontiersin.org

  • School of Electrical Engineering, Shanghai University of Electric Power, Shanghai, China

With the construction and development of the new energy system, the integrated energy system (IES) has garnered significant attention as a crucial energy carrier in recent years. Therefore, to address the scheduling challenges of IES influenced by uncertainty in source load and mitigate the conservatism of scheduling schemes while enhancing clustering accuracy, a method for day-ahead top-note scheduling of IES is proposed. First, by improving dynamic time warping (DTW) for hierarchical clustering of wind, solar, and load data in IES, typical scenarios of IES are derived. Second, using the interval method to model wind, solar, and load data in IES along with their coupled devices and considering the conservatism issue of interval optimization, the established IES interval model undergoes affine processing. Finally, with the goal of minimizing the operating costs of IES, a day-ahead interval affine scheduling model is established, which is solved using the CPLEX Solver and INTLAB toolbox, and scheduling schemes for all typical scenarios are provided. Through comparative analysis of calculation examples, it is found that the method proposed in this paper can enhance clustering accuracy and reduce the conservatism of system scheduling schemes.

1 Introduction

The global energy shortage and environmental issues are pressing challenges for the world, necessitating an accelerated shift toward green and low-carbon energy transformation and the rapid development of new industries ( Antonazzi et al., 2023 ). The integration of renewable energy on a large scale has led to the need for an integrated energy system (IES) that combines various energy sources, such as wind, solar, and chemical energy, within a region in an effective way to promote the utilization and development of new energy systems ( Martínez Ceseña et al., 2020 ). However, the uncertainty of new energy output at the source end and energy consumption at the load end increases the volatility of IES, impacting the accuracy of its day-ahead scheduling scheme ( Jena et al., 2022 ). Therefore, studying the IES day-ahead scheduling method becomes crucial in the face of growing uncertainty.

Currently, two methods are prevalent for addressing uncertainties in the IES: i) the probabilistic form and ii) the non-probabilistic form. The former accurately describes uncertainty, while the latter, comprising robust and interval methods, has a simpler modeling structure. Kalim et al. (2021) predicted the behavior of wind and light renewable energy using probability and cumulative density functions, and they solved the smart microgrid model based on the multi-objective wind-driven optimization (MOWDO) algorithm and multi-objective genetic algorithm by Pareto criterion and fuzzy mechanism using the demand–response scenario and tilt block tariff as the scenarios to optimize the operating cost, pollution emission, and system availability at the same time. Meanwhile, Sajjad et al. (2022) further developed a responsive consumer model based on the demand response of Kalim et al. (2021) and a multi-objective dispatch model based on MOWDO to optimize the operating cost, curtailable load reduction cost, pollution emission, transferable load, and wind power generation. Hengyu et al. (2023) proposed a thermoelectric coupled probability multi-energy flow calculation method establishing the probabilistic and correlation models. Ran et al. (2024) constructed an optimization model considering load probability uncertainty based on easily accessible conditional risk values. Representing uncertainties through probability functions demands extensive historical data, making it challenging to obtain accurate distributions. To enhance accuracy, Liu et al. (2023) used kernel density estimation to obtain probability density distributions of wind speed, solar radiation, and multidemand, and typical scenarios are generated using Latin hypercube sampling and self-organizing mapping. Duan et al. (2023) generated typical daily output scenarios of the scenery using the Frank-copula theory with joint probability distributions for source load uncertainty. Xu et al. (2023) used Monte Carlo simulation and K-means clustering methods to generate typical scenarios and attempted to minimize the operating costs using an adaptive differential evolutionary algorithm based on the success history.

Despite improvements in accuracy, generating typical scenarios affects the robustness of IES scheduling. Hafeez et al. (2020) actively participated in the market through demand response programs to cope with load uncertainty and proposed wind-driven bacterial foraging algorithms to solve energy management strategies based on price-based demand response programs. Ghulam et al. (2020) established an integrated framework based on artificial neural networks (ANNs) and the gray wolf modified enhanced differential evolution (GmEDE) algorithm to improve the efficient energy management of residential buildings by predicting price-based demand response signals and energy consumption through ANNs and efficiently managing residential buildings under the predicted values through GmEDE. Ahmad et al. (2023) developed a real-time energy optimization algorithm based on the framework of Lyapunov optimization. Li et al. (2023) considered the integrated demand response and inertia of various energy sources to construct a robust optimization model, achieving optimality under worst-case scenarios. Ma et al. (2022) developed a model of an integrated electricity–gas–heat system at the user level, which is solved using a decentralized, robust algorithm to protect the security and privacy of the various participants in the system. Interval variables encompassing more information and handling unknown distribution parameters offer an alternative ( Xiong et al., 2023 ). Gong et al. (2020) proposed a dynamic interval multi-objective co-evolutionary optimization framework based on interval similarity to solve dynamic interval multi-objective optimization problems and adopted a response strategy to quickly track the changing Pareto frontiers of the optimization problem. Zhang et al. (2023) dealt with the uncertainty issues of wind energy using interval numbers to model wind energy, and an interval-based optimization scheduling model was established to minimize operating costs. However, relying solely on upper and lower bounds neglects correlations, which results in conservative outcomes. To address conservatism, Zheng et al. (2022) introduced a noise element variable through an affine algorithm, formulating an interval affine optimization scheduling model for multi-microgrids. Nevertheless, this study only evaluates the approach based on forecasting data and lacks solutions for all possible scenarios.

Table 1 compares the aforementioned uncertainty modeling methods and analyzes their strengths and weaknesses.

www.frontiersin.org

Table 1 . Comparison of different uncertainty modeling methods.

Unlike k-means clustering, hierarchical clustering does not require a prior specification of clusters but relies on data point similarity. Traditional similarity measures like the Euclidean distance method, though computationally simple, face challenges in recognizing data shape deformations and requiring equal-length time-series data ( Ezugwu et al., 2022 ). The dynamic time warping (DTW) algorithm, known for addressing shape deformations and unequal time-series data ( Holder et al., 2023 ), has been introduced in power system analysis ( Gunawan and Huang, 2021 ; Shuai et al., 2023 ). However, due to the high-dimensional nonlinear characteristics of the IES source and load data, direct clustering calculations can be complex ( Liu and Chen, 2019 ).

Building upon existing research, this paper emphasizes the advantages of DTW in addressing conservative scheduling issues in the IES. However, few studies focus on IES scheduling schemes under all possible scenarios and provide references for scheduling personnel. To address this, the paper preprocesses IES source and load data, converting high-dimensional nonlinear data into low-dimensional linear interval data. An enhanced DTW is then employed for hierarchical clustering, followed by the establishment of a day-ahead interval affine scheduling model based on economic factors and correlations. The resulting scheduling scheme provides intervals for all typical scenarios, offering valuable references for dispatchers and elucidating the fluctuation range and operational interval of the IES. The primary contributions include the following:

(1) Establishing an IES day-ahead scheduling model considering economic factors and the correlation of uncertain variables.

(2) Improving the original DTW using the interval distance formula and applying it to measure the similarity of linear interval data obtained through dimensionality reduction.

(3) Presenting a scheduling scheme for all typical scenarios, providing a reference for dispatchers, and clarifying the fluctuation range and operational interval of the IES.

2 Integrated energy system structure and model

2.1 integrated energy system model.

The park-integrated electrical heating systems (PIEHSs) discussed in this article are illustrated in Figure 1 , comprising two main components: the power subsystem and the thermal subsystem. The PIEHS source side incorporates the superior power grid, gas grid, wind turbine (WT), and photovoltaic (PV). The system coupling side equipment includes combined heat and power (CHP) and an electric boiler (EB). The PIEHS load side includes electrical and thermal loads. The system’s energy storage process encompasses electric energy storage (EES) and thermal energy storage (TES).

www.frontiersin.org

Figure 1 . PIEHS structure diagram.

2.2 Modeling of uncertain variables

Various factors, including weather changes and consumer psychology, lead to fluctuations in wind and solar power output and load demand. Although existing research suggests that these fluctuations follow probability distributions, obtaining accurate probability density functions during actual operation is challenging ( Yang et al., 2023 ). However, obtaining the value range of uncertain quantities from historical data is relatively straightforward and helps avoid the interference of prediction errors. Therefore, this article models wind and solar power output and load demand using interval numbers based on historical data ( Bai et al., 2016 ).

where P t pv and P _ pv are the output ranges of photovoltaic and wind turbines at time t, respectively; P ¯ pv and P t w t are the upper and lower limits of the photovoltaic output, respectively; P _ w t and P ¯ w t are the upper and lower limits of the wind turbine output, respectively; P t load is the load demand range at time t; and P _ lood and P ¯ l o a d are the limits of the load demand range.

2.3 PIEHS equipment model

2.3.1 chp unit model.

The CHP unit, a key component in the electric heating system, is assumed to operate in a “heat-to-power” mode in this article. The CHP unit model is as follows ( Yansong et al., 2023 ):

where P CHP t and H CHP t are the electrical and thermal power output of the CHP unit at time t, respectively; G CHP t is the power of natural gas consumed by the CHP unit at time t; η E and η S are the electrical and thermal efficiencies of the CHP unit, respectively. η H is the CHP unit heat recovery efficiency.

The constraints are as follows:

In the above formula, Δ P CHP down t and Δ P CHP up t are the maximum downhill and uphill rates of the electric output of the CHP unit at time t, respectively; Δ Q CHP down t and Δ Q CHP up t are the maximum downhill and uphill rates of the thermal output of the CHP unit at time t, respectively; p C H P , t is the thermal output of the CHP unit at time t; and P C H P , ⁡ min and P C H P , ⁡ max are the minimum and maximum thermal output values of the CHP unit, respectively.

2.3.2 EB model

The EB, acting as a coupling device between electric heating systems, follows the model given below:

where Q E B , t is the efficiency of the electricity-to-heat conversion, η E B is the absorbed electric power at time t, and P E B , t is the emitted thermal power at time t.

where R E B , t down and R E B , t up are the maximum values of the downhill and uphill speed of the EB, respectively, and Q E B , ⁡ min and Q E B , ⁡ max are the minimum and maximum values of the thermal power output of the EB, respectively.

2.3.3 Energy storage model

Energy storage in PIEHS involves ESS and TES, and its model is outlined as follows:

where P α , i is the stored energy of the energy storage device i within time t; δ i is the dissipation rate of the energy storage device i; η c h a , i is the charging efficiency of the energy storage device i; P c h a , α , i is the input of the energy storage device i within time t; η d i s , i is the discharge efficiency of the energy storage device i; P dis , α , i is the output of the energy storage device i within time t; Δ α is the time interval between two actions; and i ∈ E , T is an electrical energy storage device or a thermal energy storage device.

where N i , ⁡ min is the minimum capacity of the energy storage device i; N i , t is the state of the energy storage device i at time t; N i , ⁡ max is the maximum capacity of the energy storage device i; P c h a , i , t is the charging power of the energy storage device i at time t; P c h a , i , ⁡ max is the maximum charging power of the energy storage device i; P d i s , i , t is the discharging power of the energy storage device i at time t; P d i a , i , ⁡ max is the maximum discharging power of the energy storage device i; B c h a , i t and B d i s , i t , respectively, represent the charging and discharging states of the energy storage device i at time t, which are 0–1 variables; and N i , 0 is the initial capacity of the energy storage device i.

3 Hierarchical clustering based on improved dynamic time warping

In the daily scheduling of the IES, most scheduling schemes are typically based on the forecast data of wind, light, and loads. However, such schemes are specific to particular scenarios and do not account for all situations. To address this, the article clusters historical data to obtain typical scenarios and provides interval scheduling schemes for each scenario. During day-ahead dispatching, the forecast values of wind and rain load are matched with the corresponding typical scenario, offering a dispatching scheme for the dispatcher’s reference. Unlike k-means clustering, hierarchical clustering does not require setting the number of clusters in advance, resulting in more accurate clustering results. The article employs the condensed hierarchical clustering method for historical data on wind, solar power, and load, merging the closest samples and repeating the clustering process until the end threshold condition is met.

3.1 Improved dynamic time warping

When measuring the similarity of historical data, issues like data loss may arise due to malfunctions in data collection equipment, leading to unequal lengths between historical datasets. DTW enables “one-to-many” matching in uncertain variable historical data, addressing data loss issues and equalizing time-series data lengths. DTW is shown in Figure 2 :

www.frontiersin.org

Figure 2 . Schematic of DTW

3.1.1 Data preprocessing

Due to the high-dimensional and nonlinear characteristics of historical data on wind, solar, and load, direct clustering operations can pose challenges such as algorithmic time and space complexity ( Liu and Chen, 2019 ). Therefore, historical data need to undergo preprocessing. Approximate piecewise linearization and normalization ( Santiago et al., 2020 ) are employed for processing, reducing the dimensionality of high-dimensional data and linearizing historical data. Using a 15-min time period, the maximum and minimum values within each period form the upper and lower limits of the interval. The upper and lower limits of the subsequent periods are sequentially connected, as illustrated in Figure 3 . This transforms historical data on wind, solar, and load into interval time-series data, as follows:

www.frontiersin.org

Figure 3 . Preprocessing of historical data of wind, solar, and load.

where Δ t ′ is the normalized time interval; n is the number of time intervals; t X ′ is the normalized time point; P t c a t e ′ is the normalized wind, solar, and load interval data, c a t e ∈ w t 、 p v 、 l o a d ; and P U i ′ and P L i ′ are the normalized upper and lower limits of the time interval data, respectively.

3.1.2 Similarity measure

Eq. 12 demonstrates the transformation of wind, light, and load data into interval time-series data after preprocessing. Calculating the distance between interval data is challenging, leading to the introduction of triangular filling, as shown in Figure 4 . By comparing preprocessed data along the time axis, when t b − t a > t d − t c , point A connects to point D, forming a triangle with points B and C. The triangle’s center of gravity and circumscribed circle radius convert the interval time-series data into a set of triplet data. Initially, the DTW method used the Euclidean distance to calculate the similarity between uncertain variables. However, the Euclidean distance fails to capture all information within uncertain variable interval data. Tran and Duckstein (2002) introduced a new formula for calculating distance based on the midpoint and radius of intervals, which can be considered a generalization of the Euclidean distance:

www.frontiersin.org

Figure 4 . Interval data triangular filling.

where A and B are interval numbers in the ranges ( a 1 , a 2 ) and ( b 1 , b 2 ), respectively; a 1 + a 2 2 and b 1 + b 2 2 are the midpoints of A and B, respectively; and a 1 − a 2 2 and b 2 − b 1 2 are the radiis of A and B, respectively.

According to Equation 16 , after filling the triangular interval data for T G i , V G i , r i and S G i , U G i , R i , the formula for measuring the distance between them is as follows:

In the above formula, T G i , V G i and S G i − U G i are the coordinates of the center of gravity of the i th triangle of the same uncertain quantity in P t c a t e ′ ; r i and R i are the outer radii of the i th triangle of the two sets of interval data.

As an example, assuming that the filled points of triangle ACD in Figure 4 are denoted as point X and the filled points of triangle ABD in Figure 4 are denoted as point Y, the sequence of points X is (1, 2, 3) and the sequence of points Y is (3, 6, 9). The distance between X and Y is as follows:

The distance between X and Y can be obtained by substituting the centroid coordinates (1, 2) and (3, 6) along with the radii 3 and 9 into Eq. 17 . The distance between X and Y is calculated to be 8.2462.

A distance matrix of order m × n is obtained using Equation 17 . The distance matrix is as follows:

where D m n represents the distance between the m th data and n th data in any two sets of data under the same uncertainty in P t c a t e ′ .

Next, the optimal path—the minimum-distance route from D 11 to D 12 within the distance matrix D 21 —must be identified. The path selection must satisfy the following conditions:

(1) Boundary conditions: the selected path must commence from D 11 and terminate at D m n .

(2) Monotonicity condition: the selected path must proceed monotonically over time.

(3) Continuity condition: the selected path must be contiguous, without cross-point matching.

Starting from D 11 , there are three possible directions: to the right ( D 12 ), below ( D 21 ), and to the lower right ( D 22 ). The smallest value among these three is chosen and continued in this manner until D m n . The elements in the path selection are denoted as M D I I ∈ 1 , m + n − 1 . The similarity measure between two sets of data under the same uncertainty can be represented as follows:

Eq. 19 indicates that the distance between two sets of data under the same uncertainty is the minimum accumulated distance.

3.1.3 Evaluation indicators

To verify the clustering effect, the sum of squared errors (SSEs) ( Shang et al., 2021 ), Davies–Bouldin index (DBI), and Dunn validity index (DVI) ( Kan et al., 2019 ) are used as evaluation metrics.

The SSE expression is as follows:

where C i represents the clustering center; j C i is the clustering result corresponding to C i ; and x is the point in the clustering result.

The DBI expression is as follows:

where x ¯ C i and x ¯ C j are the average intra-class distance between any two classes; C is the final number of clusters in the clustering; and C i − C j 2 is the distance between two cluster centers.

The DVI expression is as follows:

where x i j C i and x j j C i are any two data points within j C i and x i j C i − x j j C i is the distance between x i j C i and x j j C i .

A smaller DBI metric indicates a smaller within-class distance and a larger inter-class distance. Conversely, a larger DVI metric indicates a larger inter-class distance and a smaller within-class distance.

3.2 Typical scene generation

First, the normalized wind, solar, and load data are organized into a composite data sample set on a daily basis. After forming the distance matrix using Eq. 18 , the optimal path is selected using DTW, and the distance between samples is calculated according to Eq. 19 . Then, the data sample set is clustered using the agglomerative hierarchical clustering method. Agglomerative hierarchical clustering employs a bottom-up strategy, treating each object as a separate cluster and gradually merging the clusters, with the convergence criterion being that all data ultimately converge into a single class or reach a certain stopping threshold. The stopping threshold condition is determined as follows:

According to the definition of an isolation point in the literature ( Laszlo, 2010 ), an isolated sequence G x i is defined as the DTW distance D D T W x i between a data sample x i and a sample nearest to sample x i that is greater than a certain margin Y i , i.e., D D T W x i > Y i . Therefore, as Y i decreases, the number of G x i will increase, and the increased number of G x i will be recorded as Δ G x i . Δ G x i will increase and then decrease as Y i decreases. Therefore, when Δ G x i reaches its maximum value, Y i is chosen as the stop threshold condition. The detailed flowchart is illustrated in Figure 5 :

www.frontiersin.org

Figure 5 . Generated typical scenarios.

First, the initial threshold, denoted as D D T W , i x i , is chosen as the maximum value of D D T W x i in the entire data sample. Next, the reduction in D D T W , i x i during cycling, denoted as Δ D D T W o , is a fractional multiple of the initial threshold, D D T W , i x i = ⁡ max ⁡ D D T W x i − Δ D D T W o .The isolated sequence detection algorithm stops when the amount of Δ G x i peaks, indicating a sharp increase in the number of isolated sequences produced at that threshold. Since it is necessary to compare Δ G x i , Δ G x i is detected as the maximum at step i when D D T W , i x i has been reduced to the same amount for the i+2nd time. The final convergence condition is, therefore, as follows: D D T W s t o p = D D T W , i x i + 3 Δ D D T W o .

The final conclusion is drawn from typical scenarios. The detailed flowchart is illustrated in Figure 6 .

www.frontiersin.org

Figure 6 . Clustering stopping threshold conditions.

To determine which class the predicted data belongs to, the predicted data are first pre-processed and formed into a composite data sample set according to Eqs 12 – 15 , then the distances between the predicted data and each clustering center are calculated according to Equation 16 , and finally, the predicted data are assigned to the class with the closest distance.

4 Affine-based IES interval scheduling model

4.1 objective function.

This article considers the minimum total cost of IES, comprising the sum of the operating cost of the IES equipment and the external power purchase cost, as the objective function. The objective function is as follows:

where f is the operating cost of IES and f 2 is the power supply cost of IES’s superior power grid.

4.1.1 IES equipment operating cost

The operating costs of the IES equipment include WT and PV operating costs, CHP fuel costs, EB operating costs, and the operating costs of energy storage devices.

The operating costs of the equipment are as follows:

where F W T , F P V , F C H P , F E B , and F E S are, respectively, the W T operation cost, P V operation cost, operating cost of the CHP unit, EB operation cost, and energy storage operation cost.

The operating cost of WT is as follows:

where λ W T is the unit WT operating cost and P t wt is the WT output power within the time t .

The operating cost of PV is as follows:

where λ P V is the unit PV operating cost and P t p v is the PV output power within time t .

The operating cost of the CHP unit is as follows:

where λ G is the unit cost of gas purchase and Q G , t is the amount of gas purchased within time t .

The operating cost of EB is as follows:

where λ E B is the unit EB operating cost and P E B , t is the electric power absorbed within time t .

The operation costs of energy storage are as follows:

where F E E S is the cost of electrical energy storage; λ E E S is the cost of thermal energy storage; λ H E S is the operating cost per unit EES; P E E S , t is the operating cost per unit HES; t is the power absorbed and discharged during time t , with absorption being positive and discharge being negative; and P H E S , t is the heat absorbed and discharged during time t , with absorption being positive and discharge being negative.

4.1.2 Power supply cost of the superior power grid

The power supply cost of the superior power grid is as follows:

where λ E g , t is the price of purchasing power from the superior power grid within time t ; λ E s , t is the price of selling electricity to the superior power grid within time t ; P E g , t is the purchasing power within time t ; and P E s , t is the selling power within time t .

4.2 Constraint condition

The network balance constraint is as follows:

where P C H P , E , t is the electric power generated by CHP at time t ; P L O A D , t is the electric load demand in the IES at time t ; P E B , t is the electric power absorbed by the EB at time t ; Q E B , t is the thermal power output by the EB at time t ; P C H P , E , t is the thermal power generated by CHP at time t ; Q L O A D , t is the thermal load demand in the IES at time t ; P H E S , t is the heat storage capacity of thermal energy storage equipment at time t ; and P E E S , t is the electric energy storage capacity of electric energy storage equipment at time t .

The constraints on equipment operation are expressed in Eqs 5 , 6 , 8 , 9 , and 11 . The power purchase constraints of the superior grid are outlined as follows:

where B buy t and B sell t are, respectively, the purchase and sale status of PIEHS time and external power supply, both of which are 0–1 variables; P buy t and P sell t are the power purchased and sold at time t , respectively; and P buy max and P sell max are the maximum value of electricity purchased and sold, respectively.

4.3 Model analysis

Since interval linear programming is more suitable to deal with situations where the membership or distribution function of uncertain information is unknown, an economically optimal day-ahead scheduling model of the regional integrated energy system based on interval linear programming is established ( Duan et al., 2023 ). When modeling the uncertainty of source and load using interval numbers, the output of each device in PIEHS will also be modeled as an interval, resulting in an interval scheduling model. The notation "[ ]" indicates the interval form of the corresponding variable, and the variables in the constraints are also converted to corresponding interval variables. The objective function and constraints are shown in Eqs 36 – 46 , and the individual devices are modeled in Eqs 47 – 49 .

Given that this paper focuses on the PIEHS day-ahead optimization scheduling problem, where the only uncertain variables are the load and new energy output, parameters such as cost coefficients and energy conversion efficiency remain constant. Observing that the constraints in this model are linear and the objective function is monotonically convex, the interval optimization scheduling problem is transformed into a deterministic scheduling problem under both optimal and worst-case scenarios.

In the calculation of interval numbers, only the upper and lower limit values are substituted into the computation, often resulting in conservative outcomes. Affine operations, an improved form of interval arithmetic, transform uncertain variables into linear combinations among multiple noise components, reducing conservatism by eliminating redundancy when the same noise component appears ( Zheng et al., 2022 ). The specific details are as follows:

where x ^ is the affine form of the uncertain variable; x 0 is the affine center value, which is the midpoint of the interval; ε i is the noise element variable with a value in − 1 , 1 , which are mutually independent; noise elements can be seen as the correlation factors between uncertain variables; and x i is the noise element coefficient, which reflects the degree of influence of noise elements on uncertain variables.

Although the result of affine computation is simple, its readability is poor. Therefore, it is necessary to convert the affine result to an interval form. The conversion relationship between the two is as follows:

An interval X = X _ , X ¯ is defined, where X _ and X ¯ are the lower and upper limits of the interval, with the center value M = X _ + X ¯ / 2 being the midpoint of the interval and the noise element coefficient r = X ¯ − X _ / 2 being the radius of the interval. Therefore, the affine result is as follows:

The affine technique is used to convert the uncertainties of wind, solar, and load into affine forms with the following specific expressions:

where P ^ t pv , P ^ t w t , and f ^ t i are the affine values of photovoltaic, wind turbine, and load, respectively; ε p v is the noise element of the photovoltaic output; ε w t is the noise element of the wind turbine output; ε i is the noise element of the load demand; and ε x x ∈ pv , wt , i is a interval number with a value of − 1 , 1 .

Similarly, for a given affine number x ^ , it can also be converted into an interval form, with the midpoint of the interval being the center value x 0 of x ^ and the conversion radius being the sum of the noise element coefficients, that is, r = ∑ i = 1 n x i . Therefore, the transformed interval is as follows:

By applying affine transformation techniques, the interval scheduling problems of PIEHS is transformed into deterministic scheduling problems based on central values and uncertainty scheduling problems based on noise element coefficients.

The article deals with Eqs 36 – 49 using affine techniques. Eqs 36 – 38 are transformed into the following equations:

where the symbol " ^ " indicates the affine form of the corresponding variable and the variables in the constraints are converted to the corresponding affine variables.

The definition of affine can split Eq. (56) into two parts, the central value cost and variation cost; the central value cost refers to the system operation cost of the new energy output and load under the affine central value, and the variation cost indicates the system correction scheduling cost when the new energy output and load differ from the central value and are subject to stochastic variation, as shown in Eq. (57) :

where F W T , 0 , F P V , 0 , F C H P , 0 , F E B , 0 , F E S , 0 , and F E , 0 are the center value costs of WT, PV, CHP units, EB, ES, and purchased and sold electricity, respectively, and F W T , i , F P V , i , F C H P , i , F E B , i , F E S , i , and F E , i are the fluctuating costs of WT, PV, CHP units, EB, ES, and purchased and sold electricity, respectively.

In order to maintain the linearity of the objective function, the absolute value of Eq. (56) is removed as follows:

where x t , i is a variable containing absolute values and x i , t + and x i , t − are auxiliary variables used to equate x t , i .

Since the objective of model optimization is to minimize cost, x i , t + and x i , t − will not be non-zero at the same time in the final optimized solution, ensuring that x t , i = x i , t + − x i , t − .

From Eqs 39 – 49 , it can be seen that the above constraints include equality, inequality, and intertemporal constraints, and the three types of constraints can be defined in affine form as follows:

The equality constraints are mainly of two types: energy conversion relations [47]–[48] and power balances [39]–[40], whose affine forms are shown as follows:

where X ^ a t , X ^ b , and X ^ c t are the affine variables that are included in the constraints of the equation; λ X , A , λ X , B , and λ X , C are the energy conversion efficiencies for energy conversion devices, and they also indicate the relationship between the positive and negative signs of each variable in power balances.

Since the systems have the same noise element, Eq. (58) can be transformed as follows:

where X a , 0 t , X b , 0 t , and X c , 0 t are the midpoints of the affine variables and X a , i t , X b , i t , and X c , i t are the affine noise coefficients.

The processing Eq. (60) converts the equality constraint into the standard form: the left side of the constraint minus the right side equals zero, as shown in Eq. (61) :

The standardized equality constraint can be treated as a linear term in the objective function or constraints.

The inequality constraints mainly include the upper and lower constraints on the output of the system equipment and the constraints on the purchase and sale of electricity from the external grid, whose affine forms are shown as follows:

In order to ensure that the inequality constraints used work, i.e., to ensure the completeness of the constraints, the upper and lower bounds are imposed:

where I ^ t is the affine variable that is involved in the inequality constraints; I max and I min are the maximum and minimum values allowed for the affine variables, respectively; and I 0 t and I i t are the center values and noise element coefficients of the affine variables, respectively.

The intertemporal constraints fall into two main categories: energy storage constraints and energy conversion ramp constraints. The affine form of the energy storage constraint is shown as follows:

The constraints in the affine form are converted to the center value and noise element coefficient form:

where P α , i , 0 and P α − 1 , i , 0 and P α , i , i ′ and P α − 1 , i , i ′ are the center values and noise element coefficients of P ^ α , i and P ^ α − 1 , i , respectively; P c h a , α , i , 0 and P c h a , α , i , i ′ and P d i s , α , i , 0 and P d i s , α , i , i ′ are the center values and noise element coefficients of P ^ c h a , α , i and P ^ d i s , α , i , respectively; and P 0 is the capacity of the device before the start of the planning cycle.

The same standardization process is performed for Eqs 64 and 65, as described in Eq. 61 .

The affine form for the climb constraint for the energy conversion device is given as follows:

where P ^ i , t and P ^ i , t − 1 are the projected values of the energy conversion device i at time t and t-1, respectively.

Again, for completeness, constraints on the upper and lower bounds of equation [65] are required:

where P i , t , 0 and P i , t , i ′ and P i , t − 1 , 0 and P i , t − 1 , i ′ are the center values and noise element coefficients of P ^ i , t and P ^ i , t − 1 , respectively.

In order to maintain the linearization of the constraints, Equations 63 and 67 are de-absolute valued according to Eq. 58 .

The optimization scheduling problem for the PIEHS addressed in this paper is a mixed integer linear programming problem, and it was solved using the INTLAB toolbox in MATLAB along with the CPLEX Solver.

The specific process of IES day-ahead scheduling based on improved DTW is illustrated in Figure 7 .

www.frontiersin.org

Figure 7 . IES day-ahead scheduling based on improved DTW

5 Case study

To validate the rationality and accuracy of the method proposed in this paper, a specific regional PIEHS was selected as the research subject. The structure of this PIEHS is shown in Figure 1 , where no related thermal product production activities are conducted during the night. One set each of wind and solar units, CHP units, and EB units is operational, with a 24-h operational cycle and a 15-min scheduling interval. In this paper, the selection of noise sources is described by Feixiong et al. (2023 ), the natural gas price is taken as 2.7, and the time-of-use electricity pricing mechanism is presented in Table 2 . The parameters and settings of each piece of equipment are detailed by Zhang et al. (2023) ; Wei and Bai (2009) ; Rafique et al. (2018 ). The superiority and accuracy of the method proposed in this paper are verified through a comparison of scenarios. The computational hardware platform for the text is a PC with a 2.30 GHz Intel Core i5-6300HQ CPU and 8.00 GB of RAM.

www.frontiersin.org

Table 2 . Time-sharing electricity pricing mechanism.

5.1 Clustering result comparison

To evaluate the superiority of the clustering results, the SSE, DBI, and DVI were used as evaluation metrics. Two scenarios were used to compare and analyze the proposed method: Scheme 1 using DTW hierarchical clustering and Scheme 2 using hierarchical clustering of improved DTW. The hierarchical clustering center results under the two schemes are shown in Figure 8 .

www.frontiersin.org

Figure 8 . Hierarchical clustering center results.

As shown in Figure 8 , after hierarchical clustering, there is no difference in the number of generated results between Schemes 1 and 2, both generating nine scenarios. Therefore, the two schemes were assessed using the SSE index, DBI index, and DVI index. The results for each index can be found in Table 3 , while the computation time for both schemes is presented in Table 4 .

www.frontiersin.org

Table 3 . Evaluation indicators under two schemes.

www.frontiersin.org

Table 4 . Computation time under two schemes.

From Table 3, it can be seen that the SSE index of Scheme 1 is larger than that of Scheme 2, indicating that the distance from the data in Scheme 1 to the cluster center is greater than that in Scheme 2. The DBI index of Scheme 1 is also larger than that of Scheme 2, indicating that the distance within the data cluster in Scheme 2 is smaller and closer to the cluster center. The DVI index of Scheme 2 is larger than that of Scheme 1, indicating that the distance between data clusters in Scheme 2 is larger and the distance within clusters is smaller. These three metrics show that the quality of clustering under Scheme 2 is better. As can be seen from Table 4 , it is because of the better quality of clustering in Scheme 2 that the time used for iteration of Scheme 1 is greater than that of Scheme 2. Both the clustering metrics and the time taken show that the selection of clustering centers in Scheme 2 is better than that in Scheme 1, improving the accuracy of clustering.

In essence, the algorithm proposed in this article can guarantee convergence to a near-global optimum solution. This is because the algorithm is a greedy algorithm that minimizes the distance between data samples by continuously adjusting the time alignment between them. At each iteration, the algorithm selects the two closest data samples to merge until all data samples are merged. Such a greedy strategy essentially ensures that each step operates on the data pair with the smallest distance, allowing the algorithm to achieve a near-optimal solution.

5.2 Interval affine scheduling results

This article aims to provide interval affine scheduling schemes for all scenarios, focusing on scenario 1 (top left corner) as the scheduling object. As PIEHS is active only during 08:00–22:00 for related thermal product and production activities, a power system analysis is conducted to analyze the scheduling results. A comparative analysis of the two schemes is presented as follows:

Scheme 3 represents PIEHS interval scheduling, and Scheme 4 represents PIEHS interval affine scheduling. The power system interval dispatching of PIEHS is illustrated in Figure 9 .

www.frontiersin.org

Figure 9 . Interval dispatching in the PIEHS power system.

In PIEHS interval dispatching, the optimal operation condition is characterized by the minimum load demand and the highest new energy output, while the worst operation condition is characterized by the maximum load demand and the lowest new energy output. Transforming the uncertain scheduling problem into two deterministic problems, Table 5 lists the scheduling costs under interval operating conditions, ranging from 4,091.85 to 6,630.96. The output of various types of equipment in the power system is detailed in Table 6 .

www.frontiersin.org

Table 5 . PIEHS interval scheduling cost.

www.frontiersin.org

Table 6 . PIEHS power system interval dispatch equipment output time.

As shown in Figure 9 , the wind speed in this region is relatively stable, resulting in consistent wind power output throughout the day. The primary period of wind power output is from 08:00 to 18:00. The CHP unit operates in a “heat-based power” mode, with its output influenced by thermal load, operating only between 08:00 and 22:00. The EB unit does not contribute to the output. Under the optimal operation condition, only wind power is available between 23:00 and 07:00, failing to meet the electrical load demand. Therefore, electricity needs to be purchased from the higher-level power grid. The periods of 24:00 and 06:00–07:00 fall during the low electricity price period, allowing for the storage of excess energy. During 12:00–15:00, the source-end output meets the load requirement, eliminating the need to purchase electricity from the higher-level grid. In this period, it is also possible to sell excess electricity to the higher-level grid, resulting in a profit. The hours 19:00–21:00 represent the peak electricity price period, during which the CHP unit’s output reaches its maximum, with excess energy being discharged to compensate for the difference between the source and load, reducing the cost of purchasing electricity. Under the worst operation condition, the energy storage device discharges energy to the system during the peak periods of 12:00–14:00 and 19:00–22:00. Additionally, during the periods of 16:00–18:00, 24:00, and 05:00–07:00, excess energy is stored. In this scenario, the new energy output is low, the load demand is high, and there is no excess energy available for sale to the higher-level grid.

In contrast to interval scheduling, which transforms uncertain problems into two deterministic problems, this study constructs a PIEHS scheduling model based on affine transformations. Through affine arithmetic, the correlation between uncertain variables is represented by noise elements. The scheduling cost range calculated by interval affine is between 4,639.07 and 5,987.97, as shown in Table 7 . After considering the correlation between uncertain variables, the scheduling range of Scheme 4 is smaller and less conservative than the scheduling cost range of Scheme 3.

www.frontiersin.org

Table 7 . PIEHS interval affine scheduling cost.

The output of various types of equipment in the power system under interval affine scheduling is shown in Table 8 .

www.frontiersin.org

Table 8 . PIEHS power system interval affine scheduling equipment output time.

Based on Figure 10 , it can be observed that the PIEHS interval scheduling problem based on the affine algorithm is transformed into a deterministic scheduling problem centered around the interval and a fluctuation problem based on the interval radius. There is no need for dispatchers to choose between optimal or suboptimal scheduling solutions. At this point, the predictive data are transformed into cluster center data, and the fluctuation range of uncertain variables is also better provided for dispatchers’ reference. In Scheme 4, the EB is not operated due to the influence of operational costs and thermal loads. During the time periods of 11:00 and 14:00–18:00, the system is susceptible to fluctuations in electrical load. During the time period of 23:00–07:00, the electricity price is low, and the electrical load requirement is met by purchasing electricity from external sources. During this time, the fluctuation of the power system is mainly resolved by purchasing electricity from the higher-level power grid. The energy storage device is charged during the time periods of 15:00–17:00 and discharged during the time periods of 12:00–14:00. The energy storage device charges when the electricity price is low and discharges when the electricity price is high, reducing the operational cost of the system. During the time period of 08:00–21:00, the power system is susceptible to changes in thermal load and variations in the output of new energy sources. Since the CHP unit operates in the “heat-based power” mode, its output is limited by the coupling relationship between electricity and heat. The impact of uncertainty on the power system can be mitigated by discharging from the energy storage device and purchasing electricity from external sources. Among these, the CHP unit has the lowest output and the highest electricity price during the time period of 12:00–14:00; therefore, the discharge from the energy storage device is selected during this time. The comparison between Schemes 3 and 4 is shown in Tables 9 and 10 .

www.frontiersin.org

Figure 10 . Interval affine scheduling for the PIEHS power system.

www.frontiersin.org

Table 9 . Cost comparison under optimal conditions.

www.frontiersin.org

Table 10 . Cost comparison under worst conditions.

Compared to interval scheduling, interval affine scheduling can take into account the correlation between various uncertainties, allowing for the rational utilization of CHP units, energy storage devices, and the higher-level power grid to reduce fluctuations. This achieves a better level of conservatism than Scheme 3. The results obtained also provide a more accurate reference for dispatchers.

6 Conclusion

The PIEHS interval affine scheduling proposed in this paper, based on the improved dynamic time warping algorithm, addresses current issues in PIEHS day-ahead scheduling. The main conclusions are as follows:

1) The hierarchical clustering method using the enhanced dynamic time warping algorithm avoids issues of length inconsistency caused by missing data in an interval time series. By analyzing the clustering results using the SSE metric, the SSE index for the improved hierarchical clustering is 63,957.179, a reduction of 4,605.699 compared to the pre-improvement value of 68,562.878. This indicates that the method proposed in this paper can perform accurate clustering for interval time-series data.

2) The scheduling cost range based on the interval algorithm is 4,091.85–6,630.96, while that based on the affine algorithm is 4,639.07–5,987.97. From this, it can be observed that the day-ahead interval scheduling model based on the affine algorithm can improve the conservatism of the interval scheduling results and consider the correlation of various uncertain variables. Moreover, based on the affine radius, the fluctuation range of each uncertain variable can be clearly determined, resulting in results that are more useful for reference by scheduling personnel.

Subsequent research efforts can delve deeper from the perspectives of considering load response characteristics and multi-energy coupling.

Data availability statement

The original contributions presented in the study are included in the article/Supplementary material; further inquiries can be directed to the corresponding author.

Author contributions

BL: writing–original draft.

The author(s) declare that no financial support was received for the research, authorship, and/or publication of this article.

Conflict of interest

The author declares that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors, and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Ahmad, A., Khizar, S., Ghulam, H., Sadia, M., Sheraz, K., and Farrukh, A. K. (2023). Real-time energy optimization and scheduling of buildings integrated with renewable microgrid. Appl. Energy , 335. doi:10.1016/j.apenergy.2023.120640

CrossRef Full Text | Google Scholar

Antonazzi, E., Di Lorenzo, G., Stracqualursi, E., and Araneo, R. (2023). Renewable energy communities for sustainability: a case study in the metropolitan area of Rome. IEEE Ind. Comm. Power Syst. Eur. , 1–6. doi:10.1109/EEEIC/ICPSEurope57605.2023.10194850

Bai, L., Li, F., Cui, H., Jiang, T., Sun, H., and Zhu, J. (2016). Interval optimization based operating strategy for gas-electricity integrated energy systems considering demand response and wind uncertainty. Appl. Energy 167, 270–279. doi:10.1016/j.apenergy.2015.10.119

Duan, P., Zhao, B., Zhang, X., and Fen, M. (2023). A day-ahead optimal operation strategy for integrated energy systems in multi-public buildings based on cooperative game. Energy 275, 127395. doi:10.1016/j.energy.2023.127395

Ezugwu, A. E., Ikotun, A. M., Oyelade, O. O., Abualigah, L., Agushaka, J. O., Eke, C. I., et al. (2022). A comprehensive survey of clustering algorithms: state-of-the-art machine learning applications, taxonomy, challenges, and future research prospects. Eng. Appl. Artif. Intell. 110, 104743. doi:10.1016/j.engappai.2022.104743

Feixiong, C., Mingjie, C., Yimin, L., Yixin, G., and Zhenguo, S. (2023). Affine optimization method for electrical-thermal interconnected systems considering multiple uncertainties. Proc. CSEE , 7467–7483. doi:10.13334/j.0258-8013.pcsee.220501

Ghulam, H., Khurram, S. A., Zahid, W., Imran, K., Muhammad, U., Abdul, B. Q., et al. (2020). An innovative optimization strategy for efficient energy management with day-ahead demand response signal and energy consumption forecasting in smart grid using artificial neural network. IEEE Access 8, 84415–84433. doi:10.1109/ACCESS.2020.2989316

Gong, D., Xu, B., Zhang, Y., Guo, Y., and Yang, S. (2020). A similarity-based cooperative co-evolutionary algorithm for dynamic interval multiobjective optimization problems. IEEE Trans. Evol. Comput. 24, 142–156. doi:10.1109/TEVC.2019.2912204

Gunawan, J., and Huang, C.-Y. (2021). An extensible framework for short-term holiday load forecasting combining dynamic time warping and LSTM network. IEEE Access 9, 106885–106894. doi:10.1109/ACCESS.2021.3099981

Hafeez, G., Wadud, Z., Khan, I. U., Khan, I., Shafiq, Z., Usman, M., et al. (2020). Efficient energy management of IoT-enabled smart homes under price-based demand response program in smart grid. Sensors 20, 3155. doi:10.3390/s20113155

PubMed Abstract | CrossRef Full Text | Google Scholar

Hengyu, H., Minglei, B., Yi, D., Jinyue, Y., and Yonghua, S. (2023). Probabilistic integrated flexible regions of multi-energy industrial parks: conceptualization andcharacterization. Appl. Energy , 349. doi:10.1016/j.apenergy.2023.121521

Holder, C., Middlehurst, M., and Bagnall, A. (2023). A review and evaluation of elastic distance functions for time series clustering. Knowl. Inf. Syst. 66, 765–809. doi:10.1007/s10115-023-01952-0

Jena, C., Guerrero, J. M., Abusorrah, A., Al-Turki, Y., and Khan, B. (2022). Multi-objective generation scheduling of hydrothermal system incorporating energy storage with demand side management considering renewable energy uncertainties. IEEE Access 10, 52343–52357. doi:10.1109/ACCESS.2022.3172500

Kalim, U., Ghulam, H., Imran, K., Sadaqat, J., and Nadeem, J. (2021). A multi-objective energy optimization in smart grid with high penetration of renewable energy sources. Appl. Energy , 299. doi:10.1016/j.apenergy.2021.117104

Kan, R., Hongliang, Y., Guohua, G., and Qian, C. (2019). Pulses classification based on sparse auto-encoders neural networks. IEEE Access 7, 92651–92660. doi:10.1109/ACCESS.2019.2927724

Laszlo, T. (2010). Monte Carlo method for identification of outlier molecules in QSAR studies. J. Math. Chem. 47, 174–190. doi:10.1007/s10910-009-9540-6

Li, Y., Han, M., Shahidehpour, M., Li, J., and Long, C. (2023). Data-driven distributionally robust scheduling of community integrated energy systems with uncertain renewable generations considering integrated demand response. Appl. Energy 335, 120749. doi:10.1016/j.apenergy.2023.120749

Liu, H., and Chen, C. (2019). Data processing strategies in wind energy forecasting models and applications: a comprehensive review. Appl. Energy 249, 392–408. doi:10.1016/j.apenergy.2019.04.188

Liu, J., Li, Y., Ma, Y., Qin, R., Meng, X., and Wu, J. (2023). Two-layer multiple scenario optimization framework for integrated energy system based on optimal energy contribution ratio strategy. Energy 285, 128673. doi:10.1016/j.energy.2023.128673

Ma, Z., Yang, M., Jia, W., and Ding, T. (2022). Decentralized robust optimal dispatch of user-level integrated electricity-gas-heat systems considering two-level integrated demand response. Front. Energy Res. 10, 10. doi:10.3389/fenrg.2022.1030496

Martínez Ceseña, E. A., Loukarakis, E., Good, N., and Mancarella, P. (2020). Integrated electricity-heat–gas systems: techno–economic modeling, optimization, and application to multienergy districts. Proc. IEEE 108, 1392–1410. doi:10.1109/JPROC.2020.2989382

Rafique, M. K., Haider, Z. M., Mehmood, K. K., Zaman, M. S. U., Irfan, M., Khan, S. U., et al. (2018). Optimal scheduling of hybrid energy resources for a smart home. Energies 11, 3201. doi:10.3390/en11113201

Ran, X., Zhang, J., Zhu, W., Liu, K., and Liu, Y. (2024). A model of correlated interval–probabilistic conditional value-at-risk and optimal dispatch with spatial correlation of multiple wind power generations. Int. J. Electr. Power Energy Syst. 155, 109500. doi:10.1016/j.ijepes.2023.109500

Sajjad, A., Kalim, U., Ghulam, H., Imran, K., Fahad, R. A., and Syed, I. H. (2022). Solving day-ahead scheduling problem with multi-objective energy optimization for demand side management in smart grid. Eng. Sci. Technol. , 36. doi:10.1016/j.jestch.2022.101135

Santiago, R., Bergamaschi, F., Bustince, H., Dimuro, G., Asmus, T., and Sanz, J. A. (2020). On the normalization of interval data. Mathematics 8, 2092. doi:10.3390/math8112092

Shang, C., Gao, J., Liu, H., and Liu, F. (2021). Short-term load forecasting based on PSO-KFCM daily load curve clustering and CNN-LSTM model. IEEE Access 9, 50344–50357. doi:10.1109/ACCESS.2021.3067043

Shuai, C., Sun, Y., Zhang, X., Yang, F., Ouyang, X., and Chen, Z. (2023). Intelligent diagnosis of abnormal charging for electric bicycles based on improved dynamic time warping. IEEE Trans. Ind. Electron 70, 7280–7289. doi:10.1109/TIE.2022.3206702

Tran, L., and Duckstein, L. (2002). Comparison of fuzzy numbers using a fuzzy distance measure. Fuzzy Sets Syst. 130, 331–341. doi:10.1016/S0165-0114(01)00195-6

Wei, H., and Bai, X. (2009). Semi-definite programming-based method for security-constrained unit commitment with operational and optimal power flow constraints. IET Gener. Transm. Distrib. 3 (2), 182–197. doi:10.1049/iet-gtd:20070516

Xiong, H., Chen, Z., Zhang, X., Wang, C., Shi, Y., and Guo, C. (2023). Robust scheduling with temporal decomposition of integrated electrical-heating system based on dynamic programming formulation. IEEE Trans. Ind. Appl. 59, 1–13. doi:10.1109/TIA.2023.3263385

Xu, J., Wang, X., Gu, Y., and Ma, S. (2023). A data-based day-ahead scheduling optimization approach for regional integrated energy systems with varying operating conditions. Energy 283, 128534. doi:10.1016/j.energy.2023.128534

Yang, X., Wang, X., Deng, Y., Mei, L., Deng, F., and Zhang, Z. (2023). Integrated energy system scheduling model based on non-complete interval multi-objective fuzzy optimization. Renew. Energy 218, 119289. doi:10.1016/j.renene.2023.119289

Yansong, W., Shuangyu, L., Renjie, M., Chengbo, N., and Jingbo, Y. (2023). Optimization planning of oil field comprehensive energy system based on interval theory. Electr. Power Autom. Equip. , 1–15. doi:10.16081/j.epae.202305010

Zhang, M., Yu, S., and Li, H. (2023). Inter-zone optimal scheduling of rural wind–biomass-hydrogen integrated energy system. Energies 16, 6202. doi:10.3390/en16176202

Zheng, W., Wang, X., Shao, Z., Zhang, M., and Li, Y. (2022). A modified affine arithmetic-based interval optimization for integrated energy system with multiple uncertainties. J. Renew. Sustain. Energy 14, 016302. doi:10.1063/5.0079306

Nomenclature

www.frontiersin.org

Keywords: integrated energy system, dynamic time warping, hierarchical clustering, interval affine, day-ahead scheduling

Citation: Li B (2024) An integrated energy system day-ahead scheduling method based on an improved dynamic time warping algorithm. Front. Energy Res. 12:1354196. doi: 10.3389/fenrg.2024.1354196

Received: 12 December 2023; Accepted: 18 March 2024; Published: 09 April 2024.

Reviewed by:

Copyright © 2024 Li. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

*Correspondence: Bohang Li, [email protected]

IMAGES

  1. Methodology Sample In Research

    methodology of research paper example

  2. Methodology Sample In Research

    methodology of research paper example

  3. Example Of Methodology Paper

    methodology of research paper example

  4. Example Method Paper / 28 Research Paper Formats

    methodology of research paper example

  5. Research Methodology Examples

    methodology of research paper example

  6. chapter 3 research methodology quantitative

    methodology of research paper example

VIDEO

  1. How to write Your Methodology for the Dissertations || step by step Guide with Example

  2. Research Methodology: How To Write Research Paper in Hindi Manuscript Writing Skill

  3. Types of Research methodology

  4. Research essay

  5. Research Methodology Example for the PhD

  6. 📢Upcoming International Conference for Paper Presentation

COMMENTS

  1. Research Methodology

    Research Methodology Example. An Example of Research Methodology could be the following: ... The research methodology is an important section of any research paper or thesis, as it describes the methods and procedures that will be used to conduct the research. It should include details about the research design, data collection methods, data ...

  2. Examples of Methodology in Research Papers (With Definition)

    Example of a methodology in a research paper. The following example of a methodology in a research paper provides insight into the structure and content to consider when writing your own: This research article discusses the psychological and emotional impact of a mental health support program for employees. The program provided prolonged and ...

  3. What Is a Research Methodology?

    Your research methodology discusses and explains the data collection and analysis methods you used in your research. A key part of your thesis, dissertation, or research paper, the methodology chapter explains what you did and how you did it, allowing readers to evaluate the reliability and validity of your research and your dissertation topic.

  4. PDF Methodology Section for Research Papers

    The methodology section of your paper describes how your research was conducted. This information allows readers to check whether your approach is accurate and dependable. A good methodology can help increase the reader's trust in your findings. First, we will define and differentiate quantitative and qualitative research.

  5. How to Write an APA Methods Section

    To structure your methods section, you can use the subheadings of "Participants," "Materials," and "Procedures.". These headings are not mandatory—aim to organize your methods section using subheadings that make sense for your specific study. Note that not all of these topics will necessarily be relevant for your study.

  6. Methodology in a Research Paper: Definition and Example

    The following example of a methodology in a research paper can provide additional insight into what to include and how to structure yours: This research paper explains the psychological and emotional effects of a support program for employees with mental illness. The program involved extended and individualized support for employment candidates ...

  7. How To Write The Methodology Chapter (With Examples)

    Do yourself a favour and start with the end in mind. Section 1 - Introduction. As with all chapters in your dissertation or thesis, the methodology chapter should have a brief introduction. In this section, you should remind your readers what the focus of your study is, especially the research aims. As we've discussed many times on the blog ...

  8. Research Methodology Example (PDF + Template)

    Research Methodology Example. Detailed Walkthrough + Free Methodology Chapter Template. If you're working on a dissertation or thesis and are looking for an example of a research methodology chapter, you've come to the right place. In this video, we walk you through a research methodology from a dissertation that earned full distinction ...

  9. Research Methods

    Research methods are specific procedures for collecting and analyzing data. Developing your research methods is an integral part of your research design. When planning your methods, there are two key decisions you will make. First, decide how you will collect data. Your methods depend on what type of data you need to answer your research question:

  10. What Is a Research Methodology?

    Revised on 10 October 2022. Your research methodology discusses and explains the data collection and analysis methods you used in your research. A key part of your thesis, dissertation, or research paper, the methodology chapter explains what you did and how you did it, allowing readers to evaluate the reliability and validity of your research.

  11. Your Step-by-Step Guide to Writing a Good Research Methodology

    The methodology section of a research paper outlines how you plan to conduct your study. It covers various steps such as collecting data, statistical analysis, observing participants, and other procedures involved in the research process ... How you figured out those exact numbers to back your research methodology, i.e. the sample spacing of ...

  12. 6. The Methodology

    Bem, Daryl J. Writing the Empirical Journal Article. Psychology Writing Center. University of Washington; Denscombe, Martyn. The Good Research Guide: For Small-Scale Social Research Projects. 5th edition.Buckingham, UK: Open University Press, 2014; Lunenburg, Frederick C. Writing a Successful Thesis or Dissertation: Tips and Strategies for Students in the Social and Behavioral Sciences.

  13. What Is Research Methodology? Definition + Examples

    As we mentioned, research methodology refers to the collection of practical decisions regarding what data you'll collect, from who, how you'll collect it and how you'll analyse it. Research design, on the other hand, is more about the overall strategy you'll adopt in your study. For example, whether you'll use an experimental design ...

  14. Research Methodology Guide: Writing Tips, Types, & Examples

    Types of research methodology. 1. Qualitative research methodology. Qualitative research methodology is aimed at understanding concepts, thoughts, or experiences. This approach is descriptive and is often utilized to gather in-depth insights into people's attitudes, behaviors, or cultures. Qualitative research methodology involves methods ...

  15. 15 Research Methodology Examples (2024)

    A methodology is a broad approach to data collection, whereas the methods are the exact tools used for data extraction. For example, 'case study' and 'ethnography' are methodologies, while 'interviewing', 'surveying', and ' systematic observing ' are the methods used to collect the data. Contents show.

  16. What is Research Methodology? Definition, Types, and Examples

    Definition, Types, and Examples. Research methodology 1,2 is a structured and scientific approach used to collect, analyze, and interpret quantitative or qualitative data to answer research questions or test hypotheses. A research methodology is like a plan for carrying out research and helps keep researchers on track by limiting the scope of ...

  17. PDF How to Write the Methods Section of a Research Paper

    The methods section should describe what was done to answer the research question, describe how it was done, justify the experimental design, and explain how the results were analyzed. Scientific writing is direct and orderly. Therefore, the methods section structure should: describe the materials used in the study, explain how the materials ...

  18. How to Write the Methods Section of a Research Paper

    The methods section of a research paper typically constitutes materials and methods; while writing this section, authors usually arrange the information under each category. The materials category describes the samples, materials, treatments, and instruments, while experimental design, sample preparation, data collection, and data analysis are ...

  19. Organizing Academic Research Papers: 6. The Methodology

    The methods section of a research paper provides the information by which a study's validity is judged. The method section answers two main questions: 1) How was the data collected or generated? ... The research method must be appropriate to the objectives of the study. For example, be sure you have a large enough sample size to be able to ...

  20. A tutorial on methodological studies: the what, when, how and why

    Even though methodological studies can be conducted on qualitative or mixed methods research, this paper focuses on and draws examples exclusively from quantitative research. The objectives of this paper are to provide some insights on how to conduct methodological studies so that there is greater consistency between the research questions ...

  21. Research Methodology: Examples and Tips from Experts

    The research methodology is essential to a dissertation, thesis, or research paper as it explains the methods applied to collect and analyze data. This chapter enables readers to estimate the validity and credibility of your research by providing the following information: The reasons for selecting particular methods.

  22. What Is a Research Design

    Step 1: Consider your aims and approach. Step 2: Choose a type of research design. Step 3: Identify your population and sampling method. Step 4: Choose your data collection methods. Step 5: Plan your data collection procedures. Step 6: Decide on your data analysis strategies. Other interesting articles.

  23. Frontiers

    With the construction and development of the new energy system, the integrated energy system (IES) has garnered significant attention as a crucial energy carrier in recent years. Therefore, to address the scheduling challenges of IES influenced by uncertainty in source load and mitigate the conservatism of scheduling schemes while enhancing clustering accuracy, a method for day-ahead top-note ...