Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base

Methodology

  • What Is a Research Design | Types, Guide & Examples

What Is a Research Design | Types, Guide & Examples

Published on June 7, 2021 by Shona McCombes . Revised on November 20, 2023 by Pritha Bhandari.

A research design is a strategy for answering your   research question  using empirical data. Creating a research design means making decisions about:

  • Your overall research objectives and approach
  • Whether you’ll rely on primary research or secondary research
  • Your sampling methods or criteria for selecting subjects
  • Your data collection methods
  • The procedures you’ll follow to collect data
  • Your data analysis methods

A well-planned research design helps ensure that your methods match your research objectives and that you use the right kind of analysis for your data.

Table of contents

Step 1: consider your aims and approach, step 2: choose a type of research design, step 3: identify your population and sampling method, step 4: choose your data collection methods, step 5: plan your data collection procedures, step 6: decide on your data analysis strategies, other interesting articles, frequently asked questions about research design.

  • Introduction

Before you can start designing your research, you should already have a clear idea of the research question you want to investigate.

There are many different ways you could go about answering this question. Your research design choices should be driven by your aims and priorities—start by thinking carefully about what you want to achieve.

The first choice you need to make is whether you’ll take a qualitative or quantitative approach.

Qualitative research designs tend to be more flexible and inductive , allowing you to adjust your approach based on what you find throughout the research process.

Quantitative research designs tend to be more fixed and deductive , with variables and hypotheses clearly defined in advance of data collection.

It’s also possible to use a mixed-methods design that integrates aspects of both approaches. By combining qualitative and quantitative insights, you can gain a more complete picture of the problem you’re studying and strengthen the credibility of your conclusions.

Practical and ethical considerations when designing research

As well as scientific considerations, you need to think practically when designing your research. If your research involves people or animals, you also need to consider research ethics .

  • How much time do you have to collect data and write up the research?
  • Will you be able to gain access to the data you need (e.g., by travelling to a specific location or contacting specific people)?
  • Do you have the necessary research skills (e.g., statistical analysis or interview techniques)?
  • Will you need ethical approval ?

At each stage of the research design process, make sure that your choices are practically feasible.

Here's why students love Scribbr's proofreading services

Discover proofreading & editing

Within both qualitative and quantitative approaches, there are several types of research design to choose from. Each type provides a framework for the overall shape of your research.

Types of quantitative research designs

Quantitative designs can be split into four main types.

  • Experimental and   quasi-experimental designs allow you to test cause-and-effect relationships
  • Descriptive and correlational designs allow you to measure variables and describe relationships between them.

With descriptive and correlational designs, you can get a clear picture of characteristics, trends and relationships as they exist in the real world. However, you can’t draw conclusions about cause and effect (because correlation doesn’t imply causation ).

Experiments are the strongest way to test cause-and-effect relationships without the risk of other variables influencing the results. However, their controlled conditions may not always reflect how things work in the real world. They’re often also more difficult and expensive to implement.

Types of qualitative research designs

Qualitative designs are less strictly defined. This approach is about gaining a rich, detailed understanding of a specific context or phenomenon, and you can often be more creative and flexible in designing your research.

The table below shows some common types of qualitative design. They often have similar approaches in terms of data collection, but focus on different aspects when analyzing the data.

Your research design should clearly define who or what your research will focus on, and how you’ll go about choosing your participants or subjects.

In research, a population is the entire group that you want to draw conclusions about, while a sample is the smaller group of individuals you’ll actually collect data from.

Defining the population

A population can be made up of anything you want to study—plants, animals, organizations, texts, countries, etc. In the social sciences, it most often refers to a group of people.

For example, will you focus on people from a specific demographic, region or background? Are you interested in people with a certain job or medical condition, or users of a particular product?

The more precisely you define your population, the easier it will be to gather a representative sample.

  • Sampling methods

Even with a narrowly defined population, it’s rarely possible to collect data from every individual. Instead, you’ll collect data from a sample.

To select a sample, there are two main approaches: probability sampling and non-probability sampling . The sampling method you use affects how confidently you can generalize your results to the population as a whole.

Probability sampling is the most statistically valid option, but it’s often difficult to achieve unless you’re dealing with a very small and accessible population.

For practical reasons, many studies use non-probability sampling, but it’s important to be aware of the limitations and carefully consider potential biases. You should always make an effort to gather a sample that’s as representative as possible of the population.

Case selection in qualitative research

In some types of qualitative designs, sampling may not be relevant.

For example, in an ethnography or a case study , your aim is to deeply understand a specific context, not to generalize to a population. Instead of sampling, you may simply aim to collect as much data as possible about the context you are studying.

In these types of design, you still have to carefully consider your choice of case or community. You should have a clear rationale for why this particular case is suitable for answering your research question .

For example, you might choose a case study that reveals an unusual or neglected aspect of your research problem, or you might choose several very similar or very different cases in order to compare them.

Data collection methods are ways of directly measuring variables and gathering information. They allow you to gain first-hand knowledge and original insights into your research problem.

You can choose just one data collection method, or use several methods in the same study.

Survey methods

Surveys allow you to collect data about opinions, behaviors, experiences, and characteristics by asking people directly. There are two main survey methods to choose from: questionnaires and interviews .

Observation methods

Observational studies allow you to collect data unobtrusively, observing characteristics, behaviors or social interactions without relying on self-reporting.

Observations may be conducted in real time, taking notes as you observe, or you might make audiovisual recordings for later analysis. They can be qualitative or quantitative.

Other methods of data collection

There are many other ways you might collect data depending on your field and topic.

If you’re not sure which methods will work best for your research design, try reading some papers in your field to see what kinds of data collection methods they used.

Secondary data

If you don’t have the time or resources to collect data from the population you’re interested in, you can also choose to use secondary data that other researchers already collected—for example, datasets from government surveys or previous studies on your topic.

With this raw data, you can do your own analysis to answer new research questions that weren’t addressed by the original study.

Using secondary data can expand the scope of your research, as you may be able to access much larger and more varied samples than you could collect yourself.

However, it also means you don’t have any control over which variables to measure or how to measure them, so the conclusions you can draw may be limited.

Prevent plagiarism. Run a free check.

As well as deciding on your methods, you need to plan exactly how you’ll use these methods to collect data that’s consistent, accurate, and unbiased.

Planning systematic procedures is especially important in quantitative research, where you need to precisely define your variables and ensure your measurements are high in reliability and validity.

Operationalization

Some variables, like height or age, are easily measured. But often you’ll be dealing with more abstract concepts, like satisfaction, anxiety, or competence. Operationalization means turning these fuzzy ideas into measurable indicators.

If you’re using observations , which events or actions will you count?

If you’re using surveys , which questions will you ask and what range of responses will be offered?

You may also choose to use or adapt existing materials designed to measure the concept you’re interested in—for example, questionnaires or inventories whose reliability and validity has already been established.

Reliability and validity

Reliability means your results can be consistently reproduced, while validity means that you’re actually measuring the concept you’re interested in.

For valid and reliable results, your measurement materials should be thoroughly researched and carefully designed. Plan your procedures to make sure you carry out the same steps in the same way for each participant.

If you’re developing a new questionnaire or other instrument to measure a specific concept, running a pilot study allows you to check its validity and reliability in advance.

Sampling procedures

As well as choosing an appropriate sampling method , you need a concrete plan for how you’ll actually contact and recruit your selected sample.

That means making decisions about things like:

  • How many participants do you need for an adequate sample size?
  • What inclusion and exclusion criteria will you use to identify eligible participants?
  • How will you contact your sample—by mail, online, by phone, or in person?

If you’re using a probability sampling method , it’s important that everyone who is randomly selected actually participates in the study. How will you ensure a high response rate?

If you’re using a non-probability method , how will you avoid research bias and ensure a representative sample?

Data management

It’s also important to create a data management plan for organizing and storing your data.

Will you need to transcribe interviews or perform data entry for observations? You should anonymize and safeguard any sensitive data, and make sure it’s backed up regularly.

Keeping your data well-organized will save time when it comes to analyzing it. It can also help other researchers validate and add to your findings (high replicability ).

On its own, raw data can’t answer your research question. The last step of designing your research is planning how you’ll analyze the data.

Quantitative data analysis

In quantitative research, you’ll most likely use some form of statistical analysis . With statistics, you can summarize your sample data, make estimates, and test hypotheses.

Using descriptive statistics , you can summarize your sample data in terms of:

  • The distribution of the data (e.g., the frequency of each score on a test)
  • The central tendency of the data (e.g., the mean to describe the average score)
  • The variability of the data (e.g., the standard deviation to describe how spread out the scores are)

The specific calculations you can do depend on the level of measurement of your variables.

Using inferential statistics , you can:

  • Make estimates about the population based on your sample data.
  • Test hypotheses about a relationship between variables.

Regression and correlation tests look for associations between two or more variables, while comparison tests (such as t tests and ANOVAs ) look for differences in the outcomes of different groups.

Your choice of statistical test depends on various aspects of your research design, including the types of variables you’re dealing with and the distribution of your data.

Qualitative data analysis

In qualitative research, your data will usually be very dense with information and ideas. Instead of summing it up in numbers, you’ll need to comb through the data in detail, interpret its meanings, identify patterns, and extract the parts that are most relevant to your research question.

Two of the most common approaches to doing this are thematic analysis and discourse analysis .

There are many other ways of analyzing qualitative data depending on the aims of your research. To get a sense of potential approaches, try reading some qualitative research papers in your field.

If you want to know more about the research process , methodology , research bias , or statistics , make sure to check out some of our other articles with explanations and examples.

  • Simple random sampling
  • Stratified sampling
  • Cluster sampling
  • Likert scales
  • Reproducibility

 Statistics

  • Null hypothesis
  • Statistical power
  • Probability distribution
  • Effect size
  • Poisson distribution

Research bias

  • Optimism bias
  • Cognitive bias
  • Implicit bias
  • Hawthorne effect
  • Anchoring bias
  • Explicit bias

A research design is a strategy for answering your   research question . It defines your overall approach and determines how you will collect and analyze data.

A well-planned research design helps ensure that your methods match your research aims, that you collect high-quality data, and that you use the right kind of analysis to answer your questions, utilizing credible sources . This allows you to draw valid , trustworthy conclusions.

Quantitative research designs can be divided into two main categories:

  • Correlational and descriptive designs are used to investigate characteristics, averages, trends, and associations between variables.
  • Experimental and quasi-experimental designs are used to test causal relationships .

Qualitative research designs tend to be more flexible. Common types of qualitative design include case study , ethnography , and grounded theory designs.

The priorities of a research design can vary depending on the field, but you usually have to specify:

  • Your research questions and/or hypotheses
  • Your overall approach (e.g., qualitative or quantitative )
  • The type of design you’re using (e.g., a survey , experiment , or case study )
  • Your data collection methods (e.g., questionnaires , observations)
  • Your data collection procedures (e.g., operationalization , timing and data management)
  • Your data analysis methods (e.g., statistical tests  or thematic analysis )

A sample is a subset of individuals from a larger population . Sampling means selecting the group that you will actually collect data from in your research. For example, if you are researching the opinions of students in your university, you could survey a sample of 100 students.

In statistics, sampling allows you to test a hypothesis about the characteristics of a population.

Operationalization means turning abstract conceptual ideas into measurable observations.

For example, the concept of social anxiety isn’t directly observable, but it can be operationally defined in terms of self-rating scores, behavioral avoidance of crowded places, or physical anxiety symptoms in social situations.

Before collecting data , it’s important to consider how you will operationalize the variables that you want to measure.

A research project is an academic, scientific, or professional undertaking to answer a research question . Research projects can take many forms, such as qualitative or quantitative , descriptive , longitudinal , experimental , or correlational . What kind of research approach you choose will depend on your topic.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

McCombes, S. (2023, November 20). What Is a Research Design | Types, Guide & Examples. Scribbr. Retrieved April 10, 2024, from https://www.scribbr.com/methodology/research-design/

Is this article helpful?

Shona McCombes

Shona McCombes

Other students also liked, guide to experimental design | overview, steps, & examples, how to write a research proposal | examples & templates, ethical considerations in research | types & examples, "i thought ai proofreading was useless but..".

I've been using Scribbr for years now and I know it's a service that won't disappoint. It does a good job spotting mistakes”

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, automatically generate references for free.

  • Knowledge Base
  • Methodology

Research Design | Step-by-Step Guide with Examples

Published on 5 May 2022 by Shona McCombes . Revised on 20 March 2023.

A research design is a strategy for answering your research question  using empirical data. Creating a research design means making decisions about:

  • Your overall aims and approach
  • The type of research design you’ll use
  • Your sampling methods or criteria for selecting subjects
  • Your data collection methods
  • The procedures you’ll follow to collect data
  • Your data analysis methods

A well-planned research design helps ensure that your methods match your research aims and that you use the right kind of analysis for your data.

Table of contents

Step 1: consider your aims and approach, step 2: choose a type of research design, step 3: identify your population and sampling method, step 4: choose your data collection methods, step 5: plan your data collection procedures, step 6: decide on your data analysis strategies, frequently asked questions.

  • Introduction

Before you can start designing your research, you should already have a clear idea of the research question you want to investigate.

There are many different ways you could go about answering this question. Your research design choices should be driven by your aims and priorities – start by thinking carefully about what you want to achieve.

The first choice you need to make is whether you’ll take a qualitative or quantitative approach.

Qualitative research designs tend to be more flexible and inductive , allowing you to adjust your approach based on what you find throughout the research process.

Quantitative research designs tend to be more fixed and deductive , with variables and hypotheses clearly defined in advance of data collection.

It’s also possible to use a mixed methods design that integrates aspects of both approaches. By combining qualitative and quantitative insights, you can gain a more complete picture of the problem you’re studying and strengthen the credibility of your conclusions.

Practical and ethical considerations when designing research

As well as scientific considerations, you need to think practically when designing your research. If your research involves people or animals, you also need to consider research ethics .

  • How much time do you have to collect data and write up the research?
  • Will you be able to gain access to the data you need (e.g., by travelling to a specific location or contacting specific people)?
  • Do you have the necessary research skills (e.g., statistical analysis or interview techniques)?
  • Will you need ethical approval ?

At each stage of the research design process, make sure that your choices are practically feasible.

Prevent plagiarism, run a free check.

Within both qualitative and quantitative approaches, there are several types of research design to choose from. Each type provides a framework for the overall shape of your research.

Types of quantitative research designs

Quantitative designs can be split into four main types. Experimental and   quasi-experimental designs allow you to test cause-and-effect relationships, while descriptive and correlational designs allow you to measure variables and describe relationships between them.

With descriptive and correlational designs, you can get a clear picture of characteristics, trends, and relationships as they exist in the real world. However, you can’t draw conclusions about cause and effect (because correlation doesn’t imply causation ).

Experiments are the strongest way to test cause-and-effect relationships without the risk of other variables influencing the results. However, their controlled conditions may not always reflect how things work in the real world. They’re often also more difficult and expensive to implement.

Types of qualitative research designs

Qualitative designs are less strictly defined. This approach is about gaining a rich, detailed understanding of a specific context or phenomenon, and you can often be more creative and flexible in designing your research.

The table below shows some common types of qualitative design. They often have similar approaches in terms of data collection, but focus on different aspects when analysing the data.

Your research design should clearly define who or what your research will focus on, and how you’ll go about choosing your participants or subjects.

In research, a population is the entire group that you want to draw conclusions about, while a sample is the smaller group of individuals you’ll actually collect data from.

Defining the population

A population can be made up of anything you want to study – plants, animals, organisations, texts, countries, etc. In the social sciences, it most often refers to a group of people.

For example, will you focus on people from a specific demographic, region, or background? Are you interested in people with a certain job or medical condition, or users of a particular product?

The more precisely you define your population, the easier it will be to gather a representative sample.

Sampling methods

Even with a narrowly defined population, it’s rarely possible to collect data from every individual. Instead, you’ll collect data from a sample.

To select a sample, there are two main approaches: probability sampling and non-probability sampling . The sampling method you use affects how confidently you can generalise your results to the population as a whole.

Probability sampling is the most statistically valid option, but it’s often difficult to achieve unless you’re dealing with a very small and accessible population.

For practical reasons, many studies use non-probability sampling, but it’s important to be aware of the limitations and carefully consider potential biases. You should always make an effort to gather a sample that’s as representative as possible of the population.

Case selection in qualitative research

In some types of qualitative designs, sampling may not be relevant.

For example, in an ethnography or a case study, your aim is to deeply understand a specific context, not to generalise to a population. Instead of sampling, you may simply aim to collect as much data as possible about the context you are studying.

In these types of design, you still have to carefully consider your choice of case or community. You should have a clear rationale for why this particular case is suitable for answering your research question.

For example, you might choose a case study that reveals an unusual or neglected aspect of your research problem, or you might choose several very similar or very different cases in order to compare them.

Data collection methods are ways of directly measuring variables and gathering information. They allow you to gain first-hand knowledge and original insights into your research problem.

You can choose just one data collection method, or use several methods in the same study.

Survey methods

Surveys allow you to collect data about opinions, behaviours, experiences, and characteristics by asking people directly. There are two main survey methods to choose from: questionnaires and interviews.

Observation methods

Observations allow you to collect data unobtrusively, observing characteristics, behaviours, or social interactions without relying on self-reporting.

Observations may be conducted in real time, taking notes as you observe, or you might make audiovisual recordings for later analysis. They can be qualitative or quantitative.

Other methods of data collection

There are many other ways you might collect data depending on your field and topic.

If you’re not sure which methods will work best for your research design, try reading some papers in your field to see what data collection methods they used.

Secondary data

If you don’t have the time or resources to collect data from the population you’re interested in, you can also choose to use secondary data that other researchers already collected – for example, datasets from government surveys or previous studies on your topic.

With this raw data, you can do your own analysis to answer new research questions that weren’t addressed by the original study.

Using secondary data can expand the scope of your research, as you may be able to access much larger and more varied samples than you could collect yourself.

However, it also means you don’t have any control over which variables to measure or how to measure them, so the conclusions you can draw may be limited.

As well as deciding on your methods, you need to plan exactly how you’ll use these methods to collect data that’s consistent, accurate, and unbiased.

Planning systematic procedures is especially important in quantitative research, where you need to precisely define your variables and ensure your measurements are reliable and valid.

Operationalisation

Some variables, like height or age, are easily measured. But often you’ll be dealing with more abstract concepts, like satisfaction, anxiety, or competence. Operationalisation means turning these fuzzy ideas into measurable indicators.

If you’re using observations , which events or actions will you count?

If you’re using surveys , which questions will you ask and what range of responses will be offered?

You may also choose to use or adapt existing materials designed to measure the concept you’re interested in – for example, questionnaires or inventories whose reliability and validity has already been established.

Reliability and validity

Reliability means your results can be consistently reproduced , while validity means that you’re actually measuring the concept you’re interested in.

For valid and reliable results, your measurement materials should be thoroughly researched and carefully designed. Plan your procedures to make sure you carry out the same steps in the same way for each participant.

If you’re developing a new questionnaire or other instrument to measure a specific concept, running a pilot study allows you to check its validity and reliability in advance.

Sampling procedures

As well as choosing an appropriate sampling method, you need a concrete plan for how you’ll actually contact and recruit your selected sample.

That means making decisions about things like:

  • How many participants do you need for an adequate sample size?
  • What inclusion and exclusion criteria will you use to identify eligible participants?
  • How will you contact your sample – by mail, online, by phone, or in person?

If you’re using a probability sampling method, it’s important that everyone who is randomly selected actually participates in the study. How will you ensure a high response rate?

If you’re using a non-probability method, how will you avoid bias and ensure a representative sample?

Data management

It’s also important to create a data management plan for organising and storing your data.

Will you need to transcribe interviews or perform data entry for observations? You should anonymise and safeguard any sensitive data, and make sure it’s backed up regularly.

Keeping your data well organised will save time when it comes to analysing them. It can also help other researchers validate and add to your findings.

On their own, raw data can’t answer your research question. The last step of designing your research is planning how you’ll analyse the data.

Quantitative data analysis

In quantitative research, you’ll most likely use some form of statistical analysis . With statistics, you can summarise your sample data, make estimates, and test hypotheses.

Using descriptive statistics , you can summarise your sample data in terms of:

  • The distribution of the data (e.g., the frequency of each score on a test)
  • The central tendency of the data (e.g., the mean to describe the average score)
  • The variability of the data (e.g., the standard deviation to describe how spread out the scores are)

The specific calculations you can do depend on the level of measurement of your variables.

Using inferential statistics , you can:

  • Make estimates about the population based on your sample data.
  • Test hypotheses about a relationship between variables.

Regression and correlation tests look for associations between two or more variables, while comparison tests (such as t tests and ANOVAs ) look for differences in the outcomes of different groups.

Your choice of statistical test depends on various aspects of your research design, including the types of variables you’re dealing with and the distribution of your data.

Qualitative data analysis

In qualitative research, your data will usually be very dense with information and ideas. Instead of summing it up in numbers, you’ll need to comb through the data in detail, interpret its meanings, identify patterns, and extract the parts that are most relevant to your research question.

Two of the most common approaches to doing this are thematic analysis and discourse analysis .

There are many other ways of analysing qualitative data depending on the aims of your research. To get a sense of potential approaches, try reading some qualitative research papers in your field.

A sample is a subset of individuals from a larger population. Sampling means selecting the group that you will actually collect data from in your research.

For example, if you are researching the opinions of students in your university, you could survey a sample of 100 students.

Statistical sampling allows you to test a hypothesis about the characteristics of a population. There are various sampling methods you can use to ensure that your sample is representative of the population as a whole.

Operationalisation means turning abstract conceptual ideas into measurable observations.

For example, the concept of social anxiety isn’t directly observable, but it can be operationally defined in terms of self-rating scores, behavioural avoidance of crowded places, or physical anxiety symptoms in social situations.

Before collecting data , it’s important to consider how you will operationalise the variables that you want to measure.

The research methods you use depend on the type of data you need to answer your research question .

  • If you want to measure something or test a hypothesis , use quantitative methods . If you want to explore ideas, thoughts, and meanings, use qualitative methods .
  • If you want to analyse a large amount of readily available data, use secondary data. If you want data specific to your purposes with control over how they are generated, collect primary data.
  • If you want to establish cause-and-effect relationships between variables , use experimental methods. If you want to understand the characteristics of a research subject, use descriptive methods.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the ‘Cite this Scribbr article’ button to automatically add the citation to our free Reference Generator.

McCombes, S. (2023, March 20). Research Design | Step-by-Step Guide with Examples. Scribbr. Retrieved 9 April 2024, from https://www.scribbr.co.uk/research-methods/research-design/

Is this article helpful?

Shona McCombes

Shona McCombes

Grad Coach

Research Design 101

Everything You Need To Get Started (With Examples)

By: Derek Jansen (MBA) | Reviewers: Eunice Rautenbach (DTech) & Kerryn Warren (PhD) | April 2023

Research design for qualitative and quantitative studies

Navigating the world of research can be daunting, especially if you’re a first-time researcher. One concept you’re bound to run into fairly early in your research journey is that of “ research design ”. Here, we’ll guide you through the basics using practical examples , so that you can approach your research with confidence.

Overview: Research Design 101

What is research design.

  • Research design types for quantitative studies
  • Video explainer : quantitative research design
  • Research design types for qualitative studies
  • Video explainer : qualitative research design
  • How to choose a research design
  • Key takeaways

Research design refers to the overall plan, structure or strategy that guides a research project , from its conception to the final data analysis. A good research design serves as the blueprint for how you, as the researcher, will collect and analyse data while ensuring consistency, reliability and validity throughout your study.

Understanding different types of research designs is essential as helps ensure that your approach is suitable  given your research aims, objectives and questions , as well as the resources you have available to you. Without a clear big-picture view of how you’ll design your research, you run the risk of potentially making misaligned choices in terms of your methodology – especially your sampling , data collection and data analysis decisions.

The problem with defining research design…

One of the reasons students struggle with a clear definition of research design is because the term is used very loosely across the internet, and even within academia.

Some sources claim that the three research design types are qualitative, quantitative and mixed methods , which isn’t quite accurate (these just refer to the type of data that you’ll collect and analyse). Other sources state that research design refers to the sum of all your design choices, suggesting it’s more like a research methodology . Others run off on other less common tangents. No wonder there’s confusion!

In this article, we’ll clear up the confusion. We’ll explain the most common research design types for both qualitative and quantitative research projects, whether that is for a full dissertation or thesis, or a smaller research paper or article.

Free Webinar: Research Methodology 101

Research Design: Quantitative Studies

Quantitative research involves collecting and analysing data in a numerical form. Broadly speaking, there are four types of quantitative research designs: descriptive , correlational , experimental , and quasi-experimental . 

Descriptive Research Design

As the name suggests, descriptive research design focuses on describing existing conditions, behaviours, or characteristics by systematically gathering information without manipulating any variables. In other words, there is no intervention on the researcher’s part – only data collection.

For example, if you’re studying smartphone addiction among adolescents in your community, you could deploy a survey to a sample of teens asking them to rate their agreement with certain statements that relate to smartphone addiction. The collected data would then provide insight regarding how widespread the issue may be – in other words, it would describe the situation.

The key defining attribute of this type of research design is that it purely describes the situation . In other words, descriptive research design does not explore potential relationships between different variables or the causes that may underlie those relationships. Therefore, descriptive research is useful for generating insight into a research problem by describing its characteristics . By doing so, it can provide valuable insights and is often used as a precursor to other research design types.

Correlational Research Design

Correlational design is a popular choice for researchers aiming to identify and measure the relationship between two or more variables without manipulating them . In other words, this type of research design is useful when you want to know whether a change in one thing tends to be accompanied by a change in another thing.

For example, if you wanted to explore the relationship between exercise frequency and overall health, you could use a correlational design to help you achieve this. In this case, you might gather data on participants’ exercise habits, as well as records of their health indicators like blood pressure, heart rate, or body mass index. Thereafter, you’d use a statistical test to assess whether there’s a relationship between the two variables (exercise frequency and health).

As you can see, correlational research design is useful when you want to explore potential relationships between variables that cannot be manipulated or controlled for ethical, practical, or logistical reasons. It is particularly helpful in terms of developing predictions , and given that it doesn’t involve the manipulation of variables, it can be implemented at a large scale more easily than experimental designs (which will look at next).

That said, it’s important to keep in mind that correlational research design has limitations – most notably that it cannot be used to establish causality . In other words, correlation does not equal causation . To establish causality, you’ll need to move into the realm of experimental design, coming up next…

Need a helping hand?

introduction in research design

Experimental Research Design

Experimental research design is used to determine if there is a causal relationship between two or more variables . With this type of research design, you, as the researcher, manipulate one variable (the independent variable) while controlling others (dependent variables). Doing so allows you to observe the effect of the former on the latter and draw conclusions about potential causality.

For example, if you wanted to measure if/how different types of fertiliser affect plant growth, you could set up several groups of plants, with each group receiving a different type of fertiliser, as well as one with no fertiliser at all. You could then measure how much each plant group grew (on average) over time and compare the results from the different groups to see which fertiliser was most effective.

Overall, experimental research design provides researchers with a powerful way to identify and measure causal relationships (and the direction of causality) between variables. However, developing a rigorous experimental design can be challenging as it’s not always easy to control all the variables in a study. This often results in smaller sample sizes , which can reduce the statistical power and generalisability of the results.

Moreover, experimental research design requires random assignment . This means that the researcher needs to assign participants to different groups or conditions in a way that each participant has an equal chance of being assigned to any group (note that this is not the same as random sampling ). Doing so helps reduce the potential for bias and confounding variables . This need for random assignment can lead to ethics-related issues . For example, withholding a potentially beneficial medical treatment from a control group may be considered unethical in certain situations.

Quasi-Experimental Research Design

Quasi-experimental research design is used when the research aims involve identifying causal relations , but one cannot (or doesn’t want to) randomly assign participants to different groups (for practical or ethical reasons). Instead, with a quasi-experimental research design, the researcher relies on existing groups or pre-existing conditions to form groups for comparison.

For example, if you were studying the effects of a new teaching method on student achievement in a particular school district, you may be unable to randomly assign students to either group and instead have to choose classes or schools that already use different teaching methods. This way, you still achieve separate groups, without having to assign participants to specific groups yourself.

Naturally, quasi-experimental research designs have limitations when compared to experimental designs. Given that participant assignment is not random, it’s more difficult to confidently establish causality between variables, and, as a researcher, you have less control over other variables that may impact findings.

All that said, quasi-experimental designs can still be valuable in research contexts where random assignment is not possible and can often be undertaken on a much larger scale than experimental research, thus increasing the statistical power of the results. What’s important is that you, as the researcher, understand the limitations of the design and conduct your quasi-experiment as rigorously as possible, paying careful attention to any potential confounding variables .

The four most common quantitative research design types are descriptive, correlational, experimental and quasi-experimental.

Research Design: Qualitative Studies

There are many different research design types when it comes to qualitative studies, but here we’ll narrow our focus to explore the “Big 4”. Specifically, we’ll look at phenomenological design, grounded theory design, ethnographic design, and case study design.

Phenomenological Research Design

Phenomenological design involves exploring the meaning of lived experiences and how they are perceived by individuals. This type of research design seeks to understand people’s perspectives , emotions, and behaviours in specific situations. Here, the aim for researchers is to uncover the essence of human experience without making any assumptions or imposing preconceived ideas on their subjects.

For example, you could adopt a phenomenological design to study why cancer survivors have such varied perceptions of their lives after overcoming their disease. This could be achieved by interviewing survivors and then analysing the data using a qualitative analysis method such as thematic analysis to identify commonalities and differences.

Phenomenological research design typically involves in-depth interviews or open-ended questionnaires to collect rich, detailed data about participants’ subjective experiences. This richness is one of the key strengths of phenomenological research design but, naturally, it also has limitations. These include potential biases in data collection and interpretation and the lack of generalisability of findings to broader populations.

Grounded Theory Research Design

Grounded theory (also referred to as “GT”) aims to develop theories by continuously and iteratively analysing and comparing data collected from a relatively large number of participants in a study. It takes an inductive (bottom-up) approach, with a focus on letting the data “speak for itself”, without being influenced by preexisting theories or the researcher’s preconceptions.

As an example, let’s assume your research aims involved understanding how people cope with chronic pain from a specific medical condition, with a view to developing a theory around this. In this case, grounded theory design would allow you to explore this concept thoroughly without preconceptions about what coping mechanisms might exist. You may find that some patients prefer cognitive-behavioural therapy (CBT) while others prefer to rely on herbal remedies. Based on multiple, iterative rounds of analysis, you could then develop a theory in this regard, derived directly from the data (as opposed to other preexisting theories and models).

Grounded theory typically involves collecting data through interviews or observations and then analysing it to identify patterns and themes that emerge from the data. These emerging ideas are then validated by collecting more data until a saturation point is reached (i.e., no new information can be squeezed from the data). From that base, a theory can then be developed .

As you can see, grounded theory is ideally suited to studies where the research aims involve theory generation , especially in under-researched areas. Keep in mind though that this type of research design can be quite time-intensive , given the need for multiple rounds of data collection and analysis.

introduction in research design

Ethnographic Research Design

Ethnographic design involves observing and studying a culture-sharing group of people in their natural setting to gain insight into their behaviours, beliefs, and values. The focus here is on observing participants in their natural environment (as opposed to a controlled environment). This typically involves the researcher spending an extended period of time with the participants in their environment, carefully observing and taking field notes .

All of this is not to say that ethnographic research design relies purely on observation. On the contrary, this design typically also involves in-depth interviews to explore participants’ views, beliefs, etc. However, unobtrusive observation is a core component of the ethnographic approach.

As an example, an ethnographer may study how different communities celebrate traditional festivals or how individuals from different generations interact with technology differently. This may involve a lengthy period of observation, combined with in-depth interviews to further explore specific areas of interest that emerge as a result of the observations that the researcher has made.

As you can probably imagine, ethnographic research design has the ability to provide rich, contextually embedded insights into the socio-cultural dynamics of human behaviour within a natural, uncontrived setting. Naturally, however, it does come with its own set of challenges, including researcher bias (since the researcher can become quite immersed in the group), participant confidentiality and, predictably, ethical complexities . All of these need to be carefully managed if you choose to adopt this type of research design.

Case Study Design

With case study research design, you, as the researcher, investigate a single individual (or a single group of individuals) to gain an in-depth understanding of their experiences, behaviours or outcomes. Unlike other research designs that are aimed at larger sample sizes, case studies offer a deep dive into the specific circumstances surrounding a person, group of people, event or phenomenon, generally within a bounded setting or context .

As an example, a case study design could be used to explore the factors influencing the success of a specific small business. This would involve diving deeply into the organisation to explore and understand what makes it tick – from marketing to HR to finance. In terms of data collection, this could include interviews with staff and management, review of policy documents and financial statements, surveying customers, etc.

While the above example is focused squarely on one organisation, it’s worth noting that case study research designs can have different variation s, including single-case, multiple-case and longitudinal designs. As you can see in the example, a single-case design involves intensely examining a single entity to understand its unique characteristics and complexities. Conversely, in a multiple-case design , multiple cases are compared and contrasted to identify patterns and commonalities. Lastly, in a longitudinal case design , a single case or multiple cases are studied over an extended period of time to understand how factors develop over time.

As you can see, a case study research design is particularly useful where a deep and contextualised understanding of a specific phenomenon or issue is desired. However, this strength is also its weakness. In other words, you can’t generalise the findings from a case study to the broader population. So, keep this in mind if you’re considering going the case study route.

Case study design often involves investigating an individual to gain an in-depth understanding of their experiences, behaviours or outcomes.

How To Choose A Research Design

Having worked through all of these potential research designs, you’d be forgiven for feeling a little overwhelmed and wondering, “ But how do I decide which research design to use? ”. While we could write an entire post covering that alone, here are a few factors to consider that will help you choose a suitable research design for your study.

Data type: The first determining factor is naturally the type of data you plan to be collecting – i.e., qualitative or quantitative. This may sound obvious, but we have to be clear about this – don’t try to use a quantitative research design on qualitative data (or vice versa)!

Research aim(s) and question(s): As with all methodological decisions, your research aim and research questions will heavily influence your research design. For example, if your research aims involve developing a theory from qualitative data, grounded theory would be a strong option. Similarly, if your research aims involve identifying and measuring relationships between variables, one of the experimental designs would likely be a better option.

Time: It’s essential that you consider any time constraints you have, as this will impact the type of research design you can choose. For example, if you’ve only got a month to complete your project, a lengthy design such as ethnography wouldn’t be a good fit.

Resources: Take into account the resources realistically available to you, as these need to factor into your research design choice. For example, if you require highly specialised lab equipment to execute an experimental design, you need to be sure that you’ll have access to that before you make a decision.

Keep in mind that when it comes to research, it’s important to manage your risks and play as conservatively as possible. If your entire project relies on you achieving a huge sample, having access to niche equipment or holding interviews with very difficult-to-reach participants, you’re creating risks that could kill your project. So, be sure to think through your choices carefully and make sure that you have backup plans for any existential risks. Remember that a relatively simple methodology executed well generally will typically earn better marks than a highly-complex methodology executed poorly.

introduction in research design

Recap: Key Takeaways

We’ve covered a lot of ground here. Let’s recap by looking at the key takeaways:

  • Research design refers to the overall plan, structure or strategy that guides a research project, from its conception to the final analysis of data.
  • Research designs for quantitative studies include descriptive , correlational , experimental and quasi-experimenta l designs.
  • Research designs for qualitative studies include phenomenological , grounded theory , ethnographic and case study designs.
  • When choosing a research design, you need to consider a variety of factors, including the type of data you’ll be working with, your research aims and questions, your time and the resources available to you.

If you need a helping hand with your research design (or any other aspect of your research), check out our private coaching services .

introduction in research design

Psst… there’s more (for free)

This post is part of our dissertation mini-course, which covers everything you need to get started with your dissertation, thesis or research project. 

You Might Also Like:

Survey Design 101: The Basics

Is there any blog article explaining more on Case study research design? Is there a Case study write-up template? Thank you.

Solly Khan

Thanks this was quite valuable to clarify such an important concept.

hetty

Thanks for this simplified explanations. it is quite very helpful.

Belz

This was really helpful. thanks

Imur

Thank you for your explanation. I think case study research design and the use of secondary data in researches needs to be talked about more in your videos and articles because there a lot of case studies research design tailored projects out there.

Please is there any template for a case study research design whose data type is a secondary data on your repository?

Sam Msongole

This post is very clear, comprehensive and has been very helpful to me. It has cleared the confusion I had in regard to research design and methodology.

Robyn Pritchard

This post is helpful, easy to understand, and deconstructs what a research design is. Thanks

kelebogile

how to cite this page

Peter

Thank you very much for the post. It is wonderful and has cleared many worries in my mind regarding research designs. I really appreciate .

Submit a Comment Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

  • Print Friendly
  • Privacy Policy

Buy Me a Coffee

Research Method

Home » Research Design – Types, Methods and Examples

Research Design – Types, Methods and Examples

Table of Contents

Research Design

Research Design

Definition:

Research design refers to the overall strategy or plan for conducting a research study. It outlines the methods and procedures that will be used to collect and analyze data, as well as the goals and objectives of the study. Research design is important because it guides the entire research process and ensures that the study is conducted in a systematic and rigorous manner.

Types of Research Design

Types of Research Design are as follows:

Descriptive Research Design

This type of research design is used to describe a phenomenon or situation. It involves collecting data through surveys, questionnaires, interviews, and observations. The aim of descriptive research is to provide an accurate and detailed portrayal of a particular group, event, or situation. It can be useful in identifying patterns, trends, and relationships in the data.

Correlational Research Design

Correlational research design is used to determine if there is a relationship between two or more variables. This type of research design involves collecting data from participants and analyzing the relationship between the variables using statistical methods. The aim of correlational research is to identify the strength and direction of the relationship between the variables.

Experimental Research Design

Experimental research design is used to investigate cause-and-effect relationships between variables. This type of research design involves manipulating one variable and measuring the effect on another variable. It usually involves randomly assigning participants to groups and manipulating an independent variable to determine its effect on a dependent variable. The aim of experimental research is to establish causality.

Quasi-experimental Research Design

Quasi-experimental research design is similar to experimental research design, but it lacks one or more of the features of a true experiment. For example, there may not be random assignment to groups or a control group. This type of research design is used when it is not feasible or ethical to conduct a true experiment.

Case Study Research Design

Case study research design is used to investigate a single case or a small number of cases in depth. It involves collecting data through various methods, such as interviews, observations, and document analysis. The aim of case study research is to provide an in-depth understanding of a particular case or situation.

Longitudinal Research Design

Longitudinal research design is used to study changes in a particular phenomenon over time. It involves collecting data at multiple time points and analyzing the changes that occur. The aim of longitudinal research is to provide insights into the development, growth, or decline of a particular phenomenon over time.

Structure of Research Design

The format of a research design typically includes the following sections:

  • Introduction : This section provides an overview of the research problem, the research questions, and the importance of the study. It also includes a brief literature review that summarizes previous research on the topic and identifies gaps in the existing knowledge.
  • Research Questions or Hypotheses: This section identifies the specific research questions or hypotheses that the study will address. These questions should be clear, specific, and testable.
  • Research Methods : This section describes the methods that will be used to collect and analyze data. It includes details about the study design, the sampling strategy, the data collection instruments, and the data analysis techniques.
  • Data Collection: This section describes how the data will be collected, including the sample size, data collection procedures, and any ethical considerations.
  • Data Analysis: This section describes how the data will be analyzed, including the statistical techniques that will be used to test the research questions or hypotheses.
  • Results : This section presents the findings of the study, including descriptive statistics and statistical tests.
  • Discussion and Conclusion : This section summarizes the key findings of the study, interprets the results, and discusses the implications of the findings. It also includes recommendations for future research.
  • References : This section lists the sources cited in the research design.

Example of Research Design

An Example of Research Design could be:

Research question: Does the use of social media affect the academic performance of high school students?

Research design:

  • Research approach : The research approach will be quantitative as it involves collecting numerical data to test the hypothesis.
  • Research design : The research design will be a quasi-experimental design, with a pretest-posttest control group design.
  • Sample : The sample will be 200 high school students from two schools, with 100 students in the experimental group and 100 students in the control group.
  • Data collection : The data will be collected through surveys administered to the students at the beginning and end of the academic year. The surveys will include questions about their social media usage and academic performance.
  • Data analysis : The data collected will be analyzed using statistical software. The mean scores of the experimental and control groups will be compared to determine whether there is a significant difference in academic performance between the two groups.
  • Limitations : The limitations of the study will be acknowledged, including the fact that social media usage can vary greatly among individuals, and the study only focuses on two schools, which may not be representative of the entire population.
  • Ethical considerations: Ethical considerations will be taken into account, such as obtaining informed consent from the participants and ensuring their anonymity and confidentiality.

How to Write Research Design

Writing a research design involves planning and outlining the methodology and approach that will be used to answer a research question or hypothesis. Here are some steps to help you write a research design:

  • Define the research question or hypothesis : Before beginning your research design, you should clearly define your research question or hypothesis. This will guide your research design and help you select appropriate methods.
  • Select a research design: There are many different research designs to choose from, including experimental, survey, case study, and qualitative designs. Choose a design that best fits your research question and objectives.
  • Develop a sampling plan : If your research involves collecting data from a sample, you will need to develop a sampling plan. This should outline how you will select participants and how many participants you will include.
  • Define variables: Clearly define the variables you will be measuring or manipulating in your study. This will help ensure that your results are meaningful and relevant to your research question.
  • Choose data collection methods : Decide on the data collection methods you will use to gather information. This may include surveys, interviews, observations, experiments, or secondary data sources.
  • Create a data analysis plan: Develop a plan for analyzing your data, including the statistical or qualitative techniques you will use.
  • Consider ethical concerns : Finally, be sure to consider any ethical concerns related to your research, such as participant confidentiality or potential harm.

When to Write Research Design

Research design should be written before conducting any research study. It is an important planning phase that outlines the research methodology, data collection methods, and data analysis techniques that will be used to investigate a research question or problem. The research design helps to ensure that the research is conducted in a systematic and logical manner, and that the data collected is relevant and reliable.

Ideally, the research design should be developed as early as possible in the research process, before any data is collected. This allows the researcher to carefully consider the research question, identify the most appropriate research methodology, and plan the data collection and analysis procedures in advance. By doing so, the research can be conducted in a more efficient and effective manner, and the results are more likely to be valid and reliable.

Purpose of Research Design

The purpose of research design is to plan and structure a research study in a way that enables the researcher to achieve the desired research goals with accuracy, validity, and reliability. Research design is the blueprint or the framework for conducting a study that outlines the methods, procedures, techniques, and tools for data collection and analysis.

Some of the key purposes of research design include:

  • Providing a clear and concise plan of action for the research study.
  • Ensuring that the research is conducted ethically and with rigor.
  • Maximizing the accuracy and reliability of the research findings.
  • Minimizing the possibility of errors, biases, or confounding variables.
  • Ensuring that the research is feasible, practical, and cost-effective.
  • Determining the appropriate research methodology to answer the research question(s).
  • Identifying the sample size, sampling method, and data collection techniques.
  • Determining the data analysis method and statistical tests to be used.
  • Facilitating the replication of the study by other researchers.
  • Enhancing the validity and generalizability of the research findings.

Applications of Research Design

There are numerous applications of research design in various fields, some of which are:

  • Social sciences: In fields such as psychology, sociology, and anthropology, research design is used to investigate human behavior and social phenomena. Researchers use various research designs, such as experimental, quasi-experimental, and correlational designs, to study different aspects of social behavior.
  • Education : Research design is essential in the field of education to investigate the effectiveness of different teaching methods and learning strategies. Researchers use various designs such as experimental, quasi-experimental, and case study designs to understand how students learn and how to improve teaching practices.
  • Health sciences : In the health sciences, research design is used to investigate the causes, prevention, and treatment of diseases. Researchers use various designs, such as randomized controlled trials, cohort studies, and case-control studies, to study different aspects of health and healthcare.
  • Business : Research design is used in the field of business to investigate consumer behavior, marketing strategies, and the impact of different business practices. Researchers use various designs, such as survey research, experimental research, and case studies, to study different aspects of the business world.
  • Engineering : In the field of engineering, research design is used to investigate the development and implementation of new technologies. Researchers use various designs, such as experimental research and case studies, to study the effectiveness of new technologies and to identify areas for improvement.

Advantages of Research Design

Here are some advantages of research design:

  • Systematic and organized approach : A well-designed research plan ensures that the research is conducted in a systematic and organized manner, which makes it easier to manage and analyze the data.
  • Clear objectives: The research design helps to clarify the objectives of the study, which makes it easier to identify the variables that need to be measured, and the methods that need to be used to collect and analyze data.
  • Minimizes bias: A well-designed research plan minimizes the chances of bias, by ensuring that the data is collected and analyzed objectively, and that the results are not influenced by the researcher’s personal biases or preferences.
  • Efficient use of resources: A well-designed research plan helps to ensure that the resources (time, money, and personnel) are used efficiently and effectively, by focusing on the most important variables and methods.
  • Replicability: A well-designed research plan makes it easier for other researchers to replicate the study, which enhances the credibility and reliability of the findings.
  • Validity: A well-designed research plan helps to ensure that the findings are valid, by ensuring that the methods used to collect and analyze data are appropriate for the research question.
  • Generalizability : A well-designed research plan helps to ensure that the findings can be generalized to other populations, settings, or situations, which increases the external validity of the study.

Research Design Vs Research Methodology

About the author.

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Research Paper Citation

How to Cite Research Paper – All Formats and...

Data collection

Data Collection – Methods Types and Examples

Delimitations

Delimitations in Research – Types, Examples and...

Research Paper Formats

Research Paper Format – Types, Examples and...

Research Process

Research Process – Steps, Examples and Tips

Institutional Review Board (IRB)

Institutional Review Board – Application Sample...

Leave a comment x.

Save my name, email, and website in this browser for the next time I comment.

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Perspect Clin Res
  • v.9(4); Oct-Dec 2018

Study designs: Part 1 – An overview and classification

Priya ranganathan.

Department of Anaesthesiology, Tata Memorial Centre, Mumbai, Maharashtra, India

Rakesh Aggarwal

1 Department of Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India

There are several types of research study designs, each with its inherent strengths and flaws. The study design used to answer a particular research question depends on the nature of the question and the availability of resources. In this article, which is the first part of a series on “study designs,” we provide an overview of research study designs and their classification. The subsequent articles will focus on individual designs.

INTRODUCTION

Research study design is a framework, or the set of methods and procedures used to collect and analyze data on variables specified in a particular research problem.

Research study designs are of many types, each with its advantages and limitations. The type of study design used to answer a particular research question is determined by the nature of question, the goal of research, and the availability of resources. Since the design of a study can affect the validity of its results, it is important to understand the different types of study designs and their strengths and limitations.

There are some terms that are used frequently while classifying study designs which are described in the following sections.

A variable represents a measurable attribute that varies across study units, for example, individual participants in a study, or at times even when measured in an individual person over time. Some examples of variables include age, sex, weight, height, health status, alive/dead, diseased/healthy, annual income, smoking yes/no, and treated/untreated.

Exposure (or intervention) and outcome variables

A large proportion of research studies assess the relationship between two variables. Here, the question is whether one variable is associated with or responsible for change in the value of the other variable. Exposure (or intervention) refers to the risk factor whose effect is being studied. It is also referred to as the independent or the predictor variable. The outcome (or predicted or dependent) variable develops as a consequence of the exposure (or intervention). Typically, the term “exposure” is used when the “causative” variable is naturally determined (as in observational studies – examples include age, sex, smoking, and educational status), and the term “intervention” is preferred where the researcher assigns some or all participants to receive a particular treatment for the purpose of the study (experimental studies – e.g., administration of a drug). If a drug had been started in some individuals but not in the others, before the study started, this counts as exposure, and not as intervention – since the drug was not started specifically for the study.

Observational versus interventional (or experimental) studies

Observational studies are those where the researcher is documenting a naturally occurring relationship between the exposure and the outcome that he/she is studying. The researcher does not do any active intervention in any individual, and the exposure has already been decided naturally or by some other factor. For example, looking at the incidence of lung cancer in smokers versus nonsmokers, or comparing the antenatal dietary habits of mothers with normal and low-birth babies. In these studies, the investigator did not play any role in determining the smoking or dietary habit in individuals.

For an exposure to determine the outcome, it must precede the latter. Any variable that occurs simultaneously with or following the outcome cannot be causative, and hence is not considered as an “exposure.”

Observational studies can be either descriptive (nonanalytical) or analytical (inferential) – this is discussed later in this article.

Interventional studies are experiments where the researcher actively performs an intervention in some or all members of a group of participants. This intervention could take many forms – for example, administration of a drug or vaccine, performance of a diagnostic or therapeutic procedure, and introduction of an educational tool. For example, a study could randomly assign persons to receive aspirin or placebo for a specific duration and assess the effect on the risk of developing cerebrovascular events.

Descriptive versus analytical studies

Descriptive (or nonanalytical) studies, as the name suggests, merely try to describe the data on one or more characteristics of a group of individuals. These do not try to answer questions or establish relationships between variables. Examples of descriptive studies include case reports, case series, and cross-sectional surveys (please note that cross-sectional surveys may be analytical studies as well – this will be discussed in the next article in this series). Examples of descriptive studies include a survey of dietary habits among pregnant women or a case series of patients with an unusual reaction to a drug.

Analytical studies attempt to test a hypothesis and establish causal relationships between variables. In these studies, the researcher assesses the effect of an exposure (or intervention) on an outcome. As described earlier, analytical studies can be observational (if the exposure is naturally determined) or interventional (if the researcher actively administers the intervention).

Directionality of study designs

Based on the direction of inquiry, study designs may be classified as forward-direction or backward-direction. In forward-direction studies, the researcher starts with determining the exposure to a risk factor and then assesses whether the outcome occurs at a future time point. This design is known as a cohort study. For example, a researcher can follow a group of smokers and a group of nonsmokers to determine the incidence of lung cancer in each. In backward-direction studies, the researcher begins by determining whether the outcome is present (cases vs. noncases [also called controls]) and then traces the presence of prior exposure to a risk factor. These are known as case–control studies. For example, a researcher identifies a group of normal-weight babies and a group of low-birth weight babies and then asks the mothers about their dietary habits during the index pregnancy.

Prospective versus retrospective study designs

The terms “prospective” and “retrospective” refer to the timing of the research in relation to the development of the outcome. In retrospective studies, the outcome of interest has already occurred (or not occurred – e.g., in controls) in each individual by the time s/he is enrolled, and the data are collected either from records or by asking participants to recall exposures. There is no follow-up of participants. By contrast, in prospective studies, the outcome (and sometimes even the exposure or intervention) has not occurred when the study starts and participants are followed up over a period of time to determine the occurrence of outcomes. Typically, most cohort studies are prospective studies (though there may be retrospective cohorts), whereas case–control studies are retrospective studies. An interventional study has to be, by definition, a prospective study since the investigator determines the exposure for each study participant and then follows them to observe outcomes.

The terms “prospective” versus “retrospective” studies can be confusing. Let us think of an investigator who starts a case–control study. To him/her, the process of enrolling cases and controls over a period of several months appears prospective. Hence, the use of these terms is best avoided. Or, at the very least, one must be clear that the terms relate to work flow for each individual study participant, and not to the study as a whole.

Classification of study designs

Figure 1 depicts a simple classification of research study designs. The Centre for Evidence-based Medicine has put forward a useful three-point algorithm which can help determine the design of a research study from its methods section:[ 1 ]

An external file that holds a picture, illustration, etc.
Object name is PCR-9-184-g001.jpg

Classification of research study designs

  • Does the study describe the characteristics of a sample or does it attempt to analyze (or draw inferences about) the relationship between two variables? – If no, then it is a descriptive study, and if yes, it is an analytical (inferential) study
  • If analytical, did the investigator determine the exposure? – If no, it is an observational study, and if yes, it is an experimental study
  • If observational, when was the outcome determined? – at the start of the study (case–control study), at the end of a period of follow-up (cohort study), or simultaneously (cross sectional).

In the next few pieces in the series, we will discuss various study designs in greater detail.

Financial support and sponsorship

Conflicts of interest.

There are no conflicts of interest.

Logo for Open Educational Resources

Chapter 2. Research Design

Getting started.

When I teach undergraduates qualitative research methods, the final product of the course is a “research proposal” that incorporates all they have learned and enlists the knowledge they have learned about qualitative research methods in an original design that addresses a particular research question. I highly recommend you think about designing your own research study as you progress through this textbook. Even if you don’t have a study in mind yet, it can be a helpful exercise as you progress through the course. But how to start? How can one design a research study before they even know what research looks like? This chapter will serve as a brief overview of the research design process to orient you to what will be coming in later chapters. Think of it as a “skeleton” of what you will read in more detail in later chapters. Ideally, you will read this chapter both now (in sequence) and later during your reading of the remainder of the text. Do not worry if you have questions the first time you read this chapter. Many things will become clearer as the text advances and as you gain a deeper understanding of all the components of good qualitative research. This is just a preliminary map to get you on the right road.

Null

Research Design Steps

Before you even get started, you will need to have a broad topic of interest in mind. [1] . In my experience, students can confuse this broad topic with the actual research question, so it is important to clearly distinguish the two. And the place to start is the broad topic. It might be, as was the case with me, working-class college students. But what about working-class college students? What’s it like to be one? Why are there so few compared to others? How do colleges assist (or fail to assist) them? What interested me was something I could barely articulate at first and went something like this: “Why was it so difficult and lonely to be me?” And by extension, “Did others share this experience?”

Once you have a general topic, reflect on why this is important to you. Sometimes we connect with a topic and we don’t really know why. Even if you are not willing to share the real underlying reason you are interested in a topic, it is important that you know the deeper reasons that motivate you. Otherwise, it is quite possible that at some point during the research, you will find yourself turned around facing the wrong direction. I have seen it happen many times. The reason is that the research question is not the same thing as the general topic of interest, and if you don’t know the reasons for your interest, you are likely to design a study answering a research question that is beside the point—to you, at least. And this means you will be much less motivated to carry your research to completion.

Researcher Note

Why do you employ qualitative research methods in your area of study? What are the advantages of qualitative research methods for studying mentorship?

Qualitative research methods are a huge opportunity to increase access, equity, inclusion, and social justice. Qualitative research allows us to engage and examine the uniquenesses/nuances within minoritized and dominant identities and our experiences with these identities. Qualitative research allows us to explore a specific topic, and through that exploration, we can link history to experiences and look for patterns or offer up a unique phenomenon. There’s such beauty in being able to tell a particular story, and qualitative research is a great mode for that! For our work, we examined the relationships we typically use the term mentorship for but didn’t feel that was quite the right word. Qualitative research allowed us to pick apart what we did and how we engaged in our relationships, which then allowed us to more accurately describe what was unique about our mentorship relationships, which we ultimately named liberationships ( McAloney and Long 2021) . Qualitative research gave us the means to explore, process, and name our experiences; what a powerful tool!

How do you come up with ideas for what to study (and how to study it)? Where did you get the idea for studying mentorship?

Coming up with ideas for research, for me, is kind of like Googling a question I have, not finding enough information, and then deciding to dig a little deeper to get the answer. The idea to study mentorship actually came up in conversation with my mentorship triad. We were talking in one of our meetings about our relationship—kind of meta, huh? We discussed how we felt that mentorship was not quite the right term for the relationships we had built. One of us asked what was different about our relationships and mentorship. This all happened when I was taking an ethnography course. During the next session of class, we were discussing auto- and duoethnography, and it hit me—let’s explore our version of mentorship, which we later went on to name liberationships ( McAloney and Long 2021 ). The idea and questions came out of being curious and wanting to find an answer. As I continue to research, I see opportunities in questions I have about my work or during conversations that, in our search for answers, end up exposing gaps in the literature. If I can’t find the answer already out there, I can study it.

—Kim McAloney, PhD, College Student Services Administration Ecampus coordinator and instructor

When you have a better idea of why you are interested in what it is that interests you, you may be surprised to learn that the obvious approaches to the topic are not the only ones. For example, let’s say you think you are interested in preserving coastal wildlife. And as a social scientist, you are interested in policies and practices that affect the long-term viability of coastal wildlife, especially around fishing communities. It would be natural then to consider designing a research study around fishing communities and how they manage their ecosystems. But when you really think about it, you realize that what interests you the most is how people whose livelihoods depend on a particular resource act in ways that deplete that resource. Or, even deeper, you contemplate the puzzle, “How do people justify actions that damage their surroundings?” Now, there are many ways to design a study that gets at that broader question, and not all of them are about fishing communities, although that is certainly one way to go. Maybe you could design an interview-based study that includes and compares loggers, fishers, and desert golfers (those who golf in arid lands that require a great deal of wasteful irrigation). Or design a case study around one particular example where resources were completely used up by a community. Without knowing what it is you are really interested in, what motivates your interest in a surface phenomenon, you are unlikely to come up with the appropriate research design.

These first stages of research design are often the most difficult, but have patience . Taking the time to consider why you are going to go through a lot of trouble to get answers will prevent a lot of wasted energy in the future.

There are distinct reasons for pursuing particular research questions, and it is helpful to distinguish between them.  First, you may be personally motivated.  This is probably the most important and the most often overlooked.   What is it about the social world that sparks your curiosity? What bothers you? What answers do you need in order to keep living? For me, I knew I needed to get a handle on what higher education was for before I kept going at it. I needed to understand why I felt so different from my peers and whether this whole “higher education” thing was “for the likes of me” before I could complete my degree. That is the personal motivation question. Your personal motivation might also be political in nature, in that you want to change the world in a particular way. It’s all right to acknowledge this. In fact, it is better to acknowledge it than to hide it.

There are also academic and professional motivations for a particular study.  If you are an absolute beginner, these may be difficult to find. We’ll talk more about this when we discuss reviewing the literature. Simply put, you are probably not the only person in the world to have thought about this question or issue and those related to it. So how does your interest area fit into what others have studied? Perhaps there is a good study out there of fishing communities, but no one has quite asked the “justification” question. You are motivated to address this to “fill the gap” in our collective knowledge. And maybe you are really not at all sure of what interests you, but you do know that [insert your topic] interests a lot of people, so you would like to work in this area too. You want to be involved in the academic conversation. That is a professional motivation and a very important one to articulate.

Practical and strategic motivations are a third kind. Perhaps you want to encourage people to take better care of the natural resources around them. If this is also part of your motivation, you will want to design your research project in a way that might have an impact on how people behave in the future. There are many ways to do this, one of which is using qualitative research methods rather than quantitative research methods, as the findings of qualitative research are often easier to communicate to a broader audience than the results of quantitative research. You might even be able to engage the community you are studying in the collecting and analyzing of data, something taboo in quantitative research but actively embraced and encouraged by qualitative researchers. But there are other practical reasons, such as getting “done” with your research in a certain amount of time or having access (or no access) to certain information. There is nothing wrong with considering constraints and opportunities when designing your study. Or maybe one of the practical or strategic goals is about learning competence in this area so that you can demonstrate the ability to conduct interviews and focus groups with future employers. Keeping that in mind will help shape your study and prevent you from getting sidetracked using a technique that you are less invested in learning about.

STOP HERE for a moment

I recommend you write a paragraph (at least) explaining your aims and goals. Include a sentence about each of the following: personal/political goals, practical or professional/academic goals, and practical/strategic goals. Think through how all of the goals are related and can be achieved by this particular research study . If they can’t, have a rethink. Perhaps this is not the best way to go about it.

You will also want to be clear about the purpose of your study. “Wait, didn’t we just do this?” you might ask. No! Your goals are not the same as the purpose of the study, although they are related. You can think about purpose lying on a continuum from “ theory ” to “action” (figure 2.1). Sometimes you are doing research to discover new knowledge about the world, while other times you are doing a study because you want to measure an impact or make a difference in the world.

Purpose types: Basic Research, Applied Research, Summative Evaluation, Formative Evaluation, Action Research

Basic research involves research that is done for the sake of “pure” knowledge—that is, knowledge that, at least at this moment in time, may not have any apparent use or application. Often, and this is very important, knowledge of this kind is later found to be extremely helpful in solving problems. So one way of thinking about basic research is that it is knowledge for which no use is yet known but will probably one day prove to be extremely useful. If you are doing basic research, you do not need to argue its usefulness, as the whole point is that we just don’t know yet what this might be.

Researchers engaged in basic research want to understand how the world operates. They are interested in investigating a phenomenon to get at the nature of reality with regard to that phenomenon. The basic researcher’s purpose is to understand and explain ( Patton 2002:215 ).

Basic research is interested in generating and testing hypotheses about how the world works. Grounded Theory is one approach to qualitative research methods that exemplifies basic research (see chapter 4). Most academic journal articles publish basic research findings. If you are working in academia (e.g., writing your dissertation), the default expectation is that you are conducting basic research.

Applied research in the social sciences is research that addresses human and social problems. Unlike basic research, the researcher has expectations that the research will help contribute to resolving a problem, if only by identifying its contours, history, or context. From my experience, most students have this as their baseline assumption about research. Why do a study if not to make things better? But this is a common mistake. Students and their committee members are often working with default assumptions here—the former thinking about applied research as their purpose, the latter thinking about basic research: “The purpose of applied research is to contribute knowledge that will help people to understand the nature of a problem in order to intervene, thereby allowing human beings to more effectively control their environment. While in basic research the source of questions is the tradition within a scholarly discipline, in applied research the source of questions is in the problems and concerns experienced by people and by policymakers” ( Patton 2002:217 ).

Applied research is less geared toward theory in two ways. First, its questions do not derive from previous literature. For this reason, applied research studies have much more limited literature reviews than those found in basic research (although they make up for this by having much more “background” about the problem). Second, it does not generate theory in the same way as basic research does. The findings of an applied research project may not be generalizable beyond the boundaries of this particular problem or context. The findings are more limited. They are useful now but may be less useful later. This is why basic research remains the default “gold standard” of academic research.

Evaluation research is research that is designed to evaluate or test the effectiveness of specific solutions and programs addressing specific social problems. We already know the problems, and someone has already come up with solutions. There might be a program, say, for first-generation college students on your campus. Does this program work? Are first-generation students who participate in the program more likely to graduate than those who do not? These are the types of questions addressed by evaluation research. There are two types of research within this broader frame; however, one more action-oriented than the next. In summative evaluation , an overall judgment about the effectiveness of a program or policy is made. Should we continue our first-gen program? Is it a good model for other campuses? Because the purpose of such summative evaluation is to measure success and to determine whether this success is scalable (capable of being generalized beyond the specific case), quantitative data is more often used than qualitative data. In our example, we might have “outcomes” data for thousands of students, and we might run various tests to determine if the better outcomes of those in the program are statistically significant so that we can generalize the findings and recommend similar programs elsewhere. Qualitative data in the form of focus groups or interviews can then be used for illustrative purposes, providing more depth to the quantitative analyses. In contrast, formative evaluation attempts to improve a program or policy (to help “form” or shape its effectiveness). Formative evaluations rely more heavily on qualitative data—case studies, interviews, focus groups. The findings are meant not to generalize beyond the particular but to improve this program. If you are a student seeking to improve your qualitative research skills and you do not care about generating basic research, formative evaluation studies might be an attractive option for you to pursue, as there are always local programs that need evaluation and suggestions for improvement. Again, be very clear about your purpose when talking through your research proposal with your committee.

Action research takes a further step beyond evaluation, even formative evaluation, to being part of the solution itself. This is about as far from basic research as one could get and definitely falls beyond the scope of “science,” as conventionally defined. The distinction between action and research is blurry, the research methods are often in constant flux, and the only “findings” are specific to the problem or case at hand and often are findings about the process of intervention itself. Rather than evaluate a program as a whole, action research often seeks to change and improve some particular aspect that may not be working—maybe there is not enough diversity in an organization or maybe women’s voices are muted during meetings and the organization wonders why and would like to change this. In a further step, participatory action research , those women would become part of the research team, attempting to amplify their voices in the organization through participation in the action research. As action research employs methods that involve people in the process, focus groups are quite common.

If you are working on a thesis or dissertation, chances are your committee will expect you to be contributing to fundamental knowledge and theory ( basic research ). If your interests lie more toward the action end of the continuum, however, it is helpful to talk to your committee about this before you get started. Knowing your purpose in advance will help avoid misunderstandings during the later stages of the research process!

The Research Question

Once you have written your paragraph and clarified your purpose and truly know that this study is the best study for you to be doing right now , you are ready to write and refine your actual research question. Know that research questions are often moving targets in qualitative research, that they can be refined up to the very end of data collection and analysis. But you do have to have a working research question at all stages. This is your “anchor” when you get lost in the data. What are you addressing? What are you looking at and why? Your research question guides you through the thicket. It is common to have a whole host of questions about a phenomenon or case, both at the outset and throughout the study, but you should be able to pare it down to no more than two or three sentences when asked. These sentences should both clarify the intent of the research and explain why this is an important question to answer. More on refining your research question can be found in chapter 4.

Chances are, you will have already done some prior reading before coming up with your interest and your questions, but you may not have conducted a systematic literature review. This is the next crucial stage to be completed before venturing further. You don’t want to start collecting data and then realize that someone has already beaten you to the punch. A review of the literature that is already out there will let you know (1) if others have already done the study you are envisioning; (2) if others have done similar studies, which can help you out; and (3) what ideas or concepts are out there that can help you frame your study and make sense of your findings. More on literature reviews can be found in chapter 9.

In addition to reviewing the literature for similar studies to what you are proposing, it can be extremely helpful to find a study that inspires you. This may have absolutely nothing to do with the topic you are interested in but is written so beautifully or organized so interestingly or otherwise speaks to you in such a way that you want to post it somewhere to remind you of what you want to be doing. You might not understand this in the early stages—why would you find a study that has nothing to do with the one you are doing helpful? But trust me, when you are deep into analysis and writing, having an inspirational model in view can help you push through. If you are motivated to do something that might change the world, you probably have read something somewhere that inspired you. Go back to that original inspiration and read it carefully and see how they managed to convey the passion that you so appreciate.

At this stage, you are still just getting started. There are a lot of things to do before setting forth to collect data! You’ll want to consider and choose a research tradition and a set of data-collection techniques that both help you answer your research question and match all your aims and goals. For example, if you really want to help migrant workers speak for themselves, you might draw on feminist theory and participatory action research models. Chapters 3 and 4 will provide you with more information on epistemologies and approaches.

Next, you have to clarify your “units of analysis.” What is the level at which you are focusing your study? Often, the unit in qualitative research methods is individual people, or “human subjects.” But your units of analysis could just as well be organizations (colleges, hospitals) or programs or even whole nations. Think about what it is you want to be saying at the end of your study—are the insights you are hoping to make about people or about organizations or about something else entirely? A unit of analysis can even be a historical period! Every unit of analysis will call for a different kind of data collection and analysis and will produce different kinds of “findings” at the conclusion of your study. [2]

Regardless of what unit of analysis you select, you will probably have to consider the “human subjects” involved in your research. [3] Who are they? What interactions will you have with them—that is, what kind of data will you be collecting? Before answering these questions, define your population of interest and your research setting. Use your research question to help guide you.

Let’s use an example from a real study. In Geographies of Campus Inequality , Benson and Lee ( 2020 ) list three related research questions: “(1) What are the different ways that first-generation students organize their social, extracurricular, and academic activities at selective and highly selective colleges? (2) how do first-generation students sort themselves and get sorted into these different types of campus lives; and (3) how do these different patterns of campus engagement prepare first-generation students for their post-college lives?” (3).

Note that we are jumping into this a bit late, after Benson and Lee have described previous studies (the literature review) and what is known about first-generation college students and what is not known. They want to know about differences within this group, and they are interested in ones attending certain kinds of colleges because those colleges will be sites where academic and extracurricular pressures compete. That is the context for their three related research questions. What is the population of interest here? First-generation college students . What is the research setting? Selective and highly selective colleges . But a host of questions remain. Which students in the real world, which colleges? What about gender, race, and other identity markers? Will the students be asked questions? Are the students still in college, or will they be asked about what college was like for them? Will they be observed? Will they be shadowed? Will they be surveyed? Will they be asked to keep diaries of their time in college? How many students? How many colleges? For how long will they be observed?

Recommendation

Take a moment and write down suggestions for Benson and Lee before continuing on to what they actually did.

Have you written down your own suggestions? Good. Now let’s compare those with what they actually did. Benson and Lee drew on two sources of data: in-depth interviews with sixty-four first-generation students and survey data from a preexisting national survey of students at twenty-eight selective colleges. Let’s ignore the survey for our purposes here and focus on those interviews. The interviews were conducted between 2014 and 2016 at a single selective college, “Hilltop” (a pseudonym ). They employed a “purposive” sampling strategy to ensure an equal number of male-identifying and female-identifying students as well as equal numbers of White, Black, and Latinx students. Each student was interviewed once. Hilltop is a selective liberal arts college in the northeast that enrolls about three thousand students.

How did your suggestions match up to those actually used by the researchers in this study? It is possible your suggestions were too ambitious? Beginning qualitative researchers can often make that mistake. You want a research design that is both effective (it matches your question and goals) and doable. You will never be able to collect data from your entire population of interest (unless your research question is really so narrow to be relevant to very few people!), so you will need to come up with a good sample. Define the criteria for this sample, as Benson and Lee did when deciding to interview an equal number of students by gender and race categories. Define the criteria for your sample setting too. Hilltop is typical for selective colleges. That was a research choice made by Benson and Lee. For more on sampling and sampling choices, see chapter 5.

Benson and Lee chose to employ interviews. If you also would like to include interviews, you have to think about what will be asked in them. Most interview-based research involves an interview guide, a set of questions or question areas that will be asked of each participant. The research question helps you create a relevant interview guide. You want to ask questions whose answers will provide insight into your research question. Again, your research question is the anchor you will continually come back to as you plan for and conduct your study. It may be that once you begin interviewing, you find that people are telling you something totally unexpected, and this makes you rethink your research question. That is fine. Then you have a new anchor. But you always have an anchor. More on interviewing can be found in chapter 11.

Let’s imagine Benson and Lee also observed college students as they went about doing the things college students do, both in the classroom and in the clubs and social activities in which they participate. They would have needed a plan for this. Would they sit in on classes? Which ones and how many? Would they attend club meetings and sports events? Which ones and how many? Would they participate themselves? How would they record their observations? More on observation techniques can be found in both chapters 13 and 14.

At this point, the design is almost complete. You know why you are doing this study, you have a clear research question to guide you, you have identified your population of interest and research setting, and you have a reasonable sample of each. You also have put together a plan for data collection, which might include drafting an interview guide or making plans for observations. And so you know exactly what you will be doing for the next several months (or years!). To put the project into action, there are a few more things necessary before actually going into the field.

First, you will need to make sure you have any necessary supplies, including recording technology. These days, many researchers use their phones to record interviews. Second, you will need to draft a few documents for your participants. These include informed consent forms and recruiting materials, such as posters or email texts, that explain what this study is in clear language. Third, you will draft a research protocol to submit to your institutional review board (IRB) ; this research protocol will include the interview guide (if you are using one), the consent form template, and all examples of recruiting material. Depending on your institution and the details of your study design, it may take weeks or even, in some unfortunate cases, months before you secure IRB approval. Make sure you plan on this time in your project timeline. While you wait, you can continue to review the literature and possibly begin drafting a section on the literature review for your eventual presentation/publication. More on IRB procedures can be found in chapter 8 and more general ethical considerations in chapter 7.

Once you have approval, you can begin!

Research Design Checklist

Before data collection begins, do the following:

  • Write a paragraph explaining your aims and goals (personal/political, practical/strategic, professional/academic).
  • Define your research question; write two to three sentences that clarify the intent of the research and why this is an important question to answer.
  • Review the literature for similar studies that address your research question or similar research questions; think laterally about some literature that might be helpful or illuminating but is not exactly about the same topic.
  • Find a written study that inspires you—it may or may not be on the research question you have chosen.
  • Consider and choose a research tradition and set of data-collection techniques that (1) help answer your research question and (2) match your aims and goals.
  • Define your population of interest and your research setting.
  • Define the criteria for your sample (How many? Why these? How will you find them, gain access, and acquire consent?).
  • If you are conducting interviews, draft an interview guide.
  •  If you are making observations, create a plan for observations (sites, times, recording, access).
  • Acquire any necessary technology (recording devices/software).
  • Draft consent forms that clearly identify the research focus and selection process.
  • Create recruiting materials (posters, email, texts).
  • Apply for IRB approval (proposal plus consent form plus recruiting materials).
  • Block out time for collecting data.
  • At the end of the chapter, you will find a " Research Design Checklist " that summarizes the main recommendations made here ↵
  • For example, if your focus is society and culture , you might collect data through observation or a case study. If your focus is individual lived experience , you are probably going to be interviewing some people. And if your focus is language and communication , you will probably be analyzing text (written or visual). ( Marshall and Rossman 2016:16 ). ↵
  • You may not have any "live" human subjects. There are qualitative research methods that do not require interactions with live human beings - see chapter 16 , "Archival and Historical Sources." But for the most part, you are probably reading this textbook because you are interested in doing research with people. The rest of the chapter will assume this is the case. ↵

One of the primary methodological traditions of inquiry in qualitative research, ethnography is the study of a group or group culture, largely through observational fieldwork supplemented by interviews. It is a form of fieldwork that may include participant-observation data collection. See chapter 14 for a discussion of deep ethnography. 

A methodological tradition of inquiry and research design that focuses on an individual case (e.g., setting, institution, or sometimes an individual) in order to explore its complexity, history, and interactive parts.  As an approach, it is particularly useful for obtaining a deep appreciation of an issue, event, or phenomenon of interest in its particular context.

The controlling force in research; can be understood as lying on a continuum from basic research (knowledge production) to action research (effecting change).

In its most basic sense, a theory is a story we tell about how the world works that can be tested with empirical evidence.  In qualitative research, we use the term in a variety of ways, many of which are different from how they are used by quantitative researchers.  Although some qualitative research can be described as “testing theory,” it is more common to “build theory” from the data using inductive reasoning , as done in Grounded Theory .  There are so-called “grand theories” that seek to integrate a whole series of findings and stories into an overarching paradigm about how the world works, and much smaller theories or concepts about particular processes and relationships.  Theory can even be used to explain particular methodological perspectives or approaches, as in Institutional Ethnography , which is both a way of doing research and a theory about how the world works.

Research that is interested in generating and testing hypotheses about how the world works.

A methodological tradition of inquiry and approach to analyzing qualitative data in which theories emerge from a rigorous and systematic process of induction.  This approach was pioneered by the sociologists Glaser and Strauss (1967).  The elements of theory generated from comparative analysis of data are, first, conceptual categories and their properties and, second, hypotheses or generalized relations among the categories and their properties – “The constant comparing of many groups draws the [researcher’s] attention to their many similarities and differences.  Considering these leads [the researcher] to generate abstract categories and their properties, which, since they emerge from the data, will clearly be important to a theory explaining the kind of behavior under observation.” (36).

An approach to research that is “multimethod in focus, involving an interpretative, naturalistic approach to its subject matter.  This means that qualitative researchers study things in their natural settings, attempting to make sense of, or interpret, phenomena in terms of the meanings people bring to them.  Qualitative research involves the studied use and collection of a variety of empirical materials – case study, personal experience, introspective, life story, interview, observational, historical, interactional, and visual texts – that describe routine and problematic moments and meanings in individuals’ lives." ( Denzin and Lincoln 2005:2 ). Contrast with quantitative research .

Research that contributes knowledge that will help people to understand the nature of a problem in order to intervene, thereby allowing human beings to more effectively control their environment.

Research that is designed to evaluate or test the effectiveness of specific solutions and programs addressing specific social problems.  There are two kinds: summative and formative .

Research in which an overall judgment about the effectiveness of a program or policy is made, often for the purpose of generalizing to other cases or programs.  Generally uses qualitative research as a supplement to primary quantitative data analyses.  Contrast formative evaluation research .

Research designed to improve a program or policy (to help “form” or shape its effectiveness); relies heavily on qualitative research methods.  Contrast summative evaluation research

Research carried out at a particular organizational or community site with the intention of affecting change; often involves research subjects as participants of the study.  See also participatory action research .

Research in which both researchers and participants work together to understand a problematic situation and change it for the better.

The level of the focus of analysis (e.g., individual people, organizations, programs, neighborhoods).

The large group of interest to the researcher.  Although it will likely be impossible to design a study that incorporates or reaches all members of the population of interest, this should be clearly defined at the outset of a study so that a reasonable sample of the population can be taken.  For example, if one is studying working-class college students, the sample may include twenty such students attending a particular college, while the population is “working-class college students.”  In quantitative research, clearly defining the general population of interest is a necessary step in generalizing results from a sample.  In qualitative research, defining the population is conceptually important for clarity.

A fictional name assigned to give anonymity to a person, group, or place.  Pseudonyms are important ways of protecting the identity of research participants while still providing a “human element” in the presentation of qualitative data.  There are ethical considerations to be made in selecting pseudonyms; some researchers allow research participants to choose their own.

A requirement for research involving human participants; the documentation of informed consent.  In some cases, oral consent or assent may be sufficient, but the default standard is a single-page easy-to-understand form that both the researcher and the participant sign and date.   Under federal guidelines, all researchers "shall seek such consent only under circumstances that provide the prospective subject or the representative sufficient opportunity to consider whether or not to participate and that minimize the possibility of coercion or undue influence. The information that is given to the subject or the representative shall be in language understandable to the subject or the representative.  No informed consent, whether oral or written, may include any exculpatory language through which the subject or the representative is made to waive or appear to waive any of the subject's rights or releases or appears to release the investigator, the sponsor, the institution, or its agents from liability for negligence" (21 CFR 50.20).  Your IRB office will be able to provide a template for use in your study .

An administrative body established to protect the rights and welfare of human research subjects recruited to participate in research activities conducted under the auspices of the institution with which it is affiliated. The IRB is charged with the responsibility of reviewing all research involving human participants. The IRB is concerned with protecting the welfare, rights, and privacy of human subjects. The IRB has the authority to approve, disapprove, monitor, and require modifications in all research activities that fall within its jurisdiction as specified by both the federal regulations and institutional policy.

Introduction to Qualitative Research Methods Copyright © 2023 by Allison Hurst is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License , except where otherwise noted.

  • How it works

How to Write a Research Design – Guide with Examples

Published by Alaxendra Bets at August 14th, 2021 , Revised On October 3, 2023

A research design is a structure that combines different components of research. It involves the use of different data collection and data analysis techniques logically to answer the  research questions .

It would be best to make some decisions about addressing the research questions adequately before starting the research process, which is achieved with the help of the research design.

Below are the key aspects of the decision-making process:

  • Data type required for research
  • Research resources
  • Participants required for research
  • Hypothesis based upon research question(s)
  • Data analysis  methodologies
  • Variables (Independent, dependent, and confounding)
  • The location and timescale for conducting the data
  • The time period required for research

The research design provides the strategy of investigation for your project. Furthermore, it defines the parameters and criteria to compile the data to evaluate results and conclude.

Your project’s validity depends on the data collection and  interpretation techniques.  A strong research design reflects a strong  dissertation , scientific paper, or research proposal .

Steps of research design

Step 1: Establish Priorities for Research Design

Before conducting any research study, you must address an important question: “how to create a research design.”

The research design depends on the researcher’s priorities and choices because every research has different priorities. For a complex research study involving multiple methods, you may choose to have more than one research design.

Multimethodology or multimethod research includes using more than one data collection method or research in a research study or set of related studies.

If one research design is weak in one area, then another research design can cover that weakness. For instance, a  dissertation analyzing different situations or cases will have more than one research design.

For example:

  • Experimental research involves experimental investigation and laboratory experience, but it does not accurately investigate the real world.
  • Quantitative research is good for the  statistical part of the project, but it may not provide an in-depth understanding of the  topic .
  • Also, correlational research will not provide experimental results because it is a technique that assesses the statistical relationship between two variables.

While scientific considerations are a fundamental aspect of the research design, It is equally important that the researcher think practically before deciding on its structure. Here are some questions that you should think of;

  • Do you have enough time to gather data and complete the write-up?
  • Will you be able to collect the necessary data by interviewing a specific person or visiting a specific location?
  • Do you have in-depth knowledge about the  different statistical analysis and data collection techniques to address the research questions  or test the  hypothesis ?

If you think that the chosen research design cannot answer the research questions properly, you can refine your research questions to gain better insight.

Step 2: Data Type you Need for Research

Decide on the type of data you need for your research. The type of data you need to collect depends on your research questions or research hypothesis. Two types of research data can be used to answer the research questions:

Primary Data Vs. Secondary Data

Qualitative vs. quantitative data.

Also, see; Research methods, design, and analysis .

Need help with a thesis chapter?

  • Hire an expert from ResearchProspect today!
  • Statistical analysis, research methodology, discussion of the results or conclusion – our experts can help you no matter how complex the requirements are.

analysis image

Step 3: Data Collection Techniques

Once you have selected the type of research to answer your research question, you need to decide where and how to collect the data.

It is time to determine your research method to address the  research problem . Research methods involve procedures, techniques, materials, and tools used for the study.

For instance, a dissertation research design includes the different resources and data collection techniques and helps establish your  dissertation’s structure .

The following table shows the characteristics of the most popularly employed research methods.

Research Methods

Step 4: Procedure of Data Analysis

Use of the  correct data and statistical analysis technique is necessary for the validity of your research. Therefore, you need to be certain about the data type that would best address the research problem. Choosing an appropriate analysis method is the final step for the research design. It can be split into two main categories;

Quantitative Data Analysis

The quantitative data analysis technique involves analyzing the numerical data with the help of different applications such as; SPSS, STATA, Excel, origin lab, etc.

This data analysis strategy tests different variables such as spectrum, frequencies, averages, and more. The research question and the hypothesis must be established to identify the variables for testing.

Qualitative Data Analysis

Qualitative data analysis of figures, themes, and words allows for flexibility and the researcher’s subjective opinions. This means that the researcher’s primary focus will be interpreting patterns, tendencies, and accounts and understanding the implications and social framework.

You should be clear about your research objectives before starting to analyze the data. For example, you should ask yourself whether you need to explain respondents’ experiences and insights or do you also need to evaluate their responses with reference to a certain social framework.

Step 5: Write your Research Proposal

The research design is an important component of a research proposal because it plans the project’s execution. You can share it with the supervisor, who would evaluate the feasibility and capacity of the results  and  conclusion .

Read our guidelines to write a research proposal  if you have already formulated your research design. The research proposal is written in the future tense because you are writing your proposal before conducting research.

The  research methodology  or research design, on the other hand, is generally written in the past tense.

How to Write a Research Design – Conclusion

A research design is the plan, structure, strategy of investigation conceived to answer the research question and test the hypothesis. The dissertation research design can be classified based on the type of data and the type of analysis.

Above mentioned five steps are the answer to how to write a research design. So, follow these steps to  formulate the perfect research design for your dissertation .

ResearchProspect writers have years of experience creating research designs that align with the dissertation’s aim and objectives. If you are struggling with your dissertation methodology chapter, you might want to look at our dissertation part-writing service.

Our dissertation writers can also help you with the full dissertation paper . No matter how urgent or complex your need may be, ResearchProspect can help. We also offer PhD level research paper writing services.

Frequently Asked Questions

What is research design.

Research design is a systematic plan that guides the research process, outlining the methodology and procedures for collecting and analysing data. It determines the structure of the study, ensuring the research question is answered effectively, reliably, and validly. It serves as the blueprint for the entire research project.

How to write a research design?

To write a research design, define your research question, identify the research method (qualitative, quantitative, or mixed), choose data collection techniques (e.g., surveys, interviews), determine the sample size and sampling method, outline data analysis procedures, and highlight potential limitations and ethical considerations for the study.

How to write the design section of a research paper?

In the design section of a research paper, describe the research methodology chosen and justify its selection. Outline the data collection methods, participants or samples, instruments used, and procedures followed. Detail any experimental controls, if applicable. Ensure clarity and precision to enable replication of the study by other researchers.

How to write a research design in methodology?

To write a research design in methodology, clearly outline the research strategy (e.g., experimental, survey, case study). Describe the sampling technique, participants, and data collection methods. Detail the procedures for data collection and analysis. Justify choices by linking them to research objectives, addressing reliability and validity.

You May Also Like

Find how to write research questions with the mentioned steps required for a perfect research question. Choose an interesting topic and begin your research.

How to write a hypothesis for dissertation,? A hypothesis is a statement that can be tested with the help of experimental or theoretical research.

Not sure how to approach a company for your primary research study? Don’t worry. Here we have some tips for you to successfully gather primary study.

USEFUL LINKS

LEARNING RESOURCES

secure connection

COMPANY DETAILS

Research-Prospect-Writing-Service

  • How It Works

An Introduction to Experimental Design Research

  • First Online: 18 May 2016

Cite this chapter

Book cover

  • Philip Cash 4 ,
  • Tino Stanković 5 &
  • Mario Štorga 6  

5864 Accesses

4 Citations

Design research brings together influences from the whole gamut of social, psychological, and more technical sciences to create a tradition of empirical study stretching back over 50 years (Horvath 2004 ; Cross 2007 ). A growing part of this empirical tradition is experimental, which has gained in importance as the field has matured. As in other evolving disciplines, e.g. behavioural psychology, this maturation brings with it ever-greater scientific and methodological demands (Reiser 1939 ; Dorst 2008 ). In particular, the experimental paradigm holds distinct and significant challenges for the modern design researcher. Thus, this book brings together leading researchers from across design research in order to provide the reader with a foundation in experimental design research; an appreciation of possible experimental perspectives; and insight into how experiments can be used to build robust and significant scientific knowledge. This chapter sets the stage for these discussions by introducing experimental design research, outlining the various types of experimental approach, and explaining the role of this book in the wider methodological context.

  • Design science
  • Experimental studies
  • Research methods

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
  • Available as EPUB and PDF
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
  • Durable hardcover edition

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Keyword: experiment in abstract , title or keywords from 1990 to 2015.

American Psychological Association (2010) Ethical principles of psychologists and code of conduct. Am Psychol 57:1060–1073

Google Scholar  

Ball LJ, Ormerod TC (2000a) Putting ethnography to work: the case for a cognitive ethnography of design. Int J Hum Comput Stud 53:147–168

Ball LJ, Ormerod TC (2000b) Applying ethnography in the analysis and support of expertise in engineering design. Des Stud 21:403–421

Berdichevsky D, Neuenschwander E (1999) Toward an ethics of persuasive technology. Commun ACM 42:51–58. doi: 10.1145/301353.301410

Article   Google Scholar  

Blessing LTM, Chakrabarti A (2009) DRM, a Design Research Methodology. Springer, New York

Book   Google Scholar  

Brandt E, Binder T (2007) Experimental design research: genealogy, intervention, argument. In: IASDR international association of societies of design research, pp 1–18

Carroll JM, Swatman PA (2000) Structured-case: a methodological framework for building theory in information systems research. Eur J Inf Syst 9:235–242

Cash P, Culley S (2014) The role of experimental studies in design research. In: Rodgers P, Yee J (eds) The Routledge companion to design research. Routledge, New York, pp 175–189

Cash P, Elias EWA, Dekoninck E, Culley SJ (2012) Methodological insights from a rigorous small scale design experiment. Des Stud 33:208–235

Cash P, Piirainen KA (2015) Building a cohesive body of design knowledge: developments from a design science research perspective. In ICED 15 international conference on engineering design. Milan, Italy (in press)

Cross N (2007) Forty years of design research. Des Stud 28:1–4

Dong A, Lovallo D, Mounarath R (2015) The effect of abductive reasoning on concept selection decisions. Des Stud 37:37–58. doi: 10.1016/j.destud.2014.12.004

Dorst K (2008) Design research: a revolution-waiting-to-happen. Des Stud 29:4–11

Dyba T, Dingsoyr T (2008) Empirical studies of agile software development: a systematic review. Inf Softw Technol 50:833–859

Ernst Eder W (2011) Engineering design science and theory of technical systems: legacy of Vladimir Hubka. J Eng Des 25:361–385

Eisenhardt KM (1989) Building theories from case study research. Acad Manag Rev 14:532–550

Eisenhardt KM, Graebner ME (2007) Theory building from cases: opportunities and challenges. Acad Manag J 50:25–32

Glasgow RE, Emmons KM (2007) How can we increase translation of research into practice? Types of evidence needed. Annu Rev Public Health 28:413–433

Gorard S, Cook TD (2007) Where does good evidence come from? Int J Res Method Educ 30:307–323

Guala F (2005) The methodology of experimental economics. Cambridge University Press, Cambridge

Horvath I (2004) A treatise on order in engineering design research. Res Eng Design 15:155–181

Hubka V (1984) Theory of technical systems: fundamentals of scientific Konstruktionslehre. Springer, Berlin

Kirk RE (2009) Experimental design. Sage Publications, London, UK

Kitchenham BA, Pfleeger SL, Pickard LM, Jones PW, Hoaglin DC, El-Emam K, Rosenberg J (2002) Preliminary guidelines for empirical research in software engineering. IEEE Trans Softw Eng 28:721–734

Levin JR, O’Donnell AM (1999) What to do about educational research’s credibility gaps? Issues Educ 5:177–229

Lilley D, Wilson GT (2013) Integrating ethics into design for sustainable behaviour. J Des Res 11:278–299

National Academy of Sciences (2009) On being a scientist: a guide to responsible conduct in research

Nesselroade JR, Cattell RB (2013) Handbook of multivariate experimental psychology, vol 11. Springer Science & Business Media

Radder H (2003) The philosophy of scientific experimentation. University of Pittsburgh Press, Pittsburgh

Reiser OL (1939) Aristotelian, Galilean and non-Aristotelian modes of thinking. Psychol Rev 46:151–162

Robson C (2002) Real world research, vol 2nd. Wiley, Chichester

Saunders MNK, Lewis P, Thornhill A (2009) Research methods for business students, vol 3rd. Pearson, Essex

ScienceDirect (2015) Science Direct: paper repository (Online). www.sciencedirect.com

Shadish WR, Cook TD, Campbell DT (2002) Experimental and quasi-experimental designs for generalized causal inference. Mifflin and Company, Boston

Simon HA (1978) The science of the artificial. Harvard University Press

Snow CC, Thomas JB (2007) Field research methods in strategic management: contributions to theory building and testing. J Manage Stud 31:457–480

Tiles M, Oberdiek H (1995) Living in a technological culture: human tools and human values. Routledge

Wacker JG (1998) A definition of theory: research guidelines for different theory-building research methods in operations management. J Oper Manage 16:361–385

Weisberg RW (2006) Creativity: understanding innovation in problem solving, science, invention, and the arts. John Wiley & Sons

Winston AS, Blais DJ (1996) What counts as an experiment? A transdisciplinary analysis of textbooks, 1930–1970. Am J Psychol 109:599–616

Download references

Author information

Authors and affiliations.

Department of Management Engineering, Technical University of Denmark, Diplomvej, 2800, Lyngby, Denmark

Philip Cash

Engineering Design and Computing Laboratory, Department of Mechanical and Process Engineering, Swiss Federal Institute of Technology Zurich, Zurich, Switzerland

Tino Stanković

Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, Zagreb, Croatia

Mario Štorga

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Philip Cash .

Editor information

Editors and affiliations.

Technical University of Denmark, Lyngby, Denmark

Swiss Federal Institute of Tech. Zürich, Zurich, Switzerland

University of Zagreb, Zagreb, Croatia

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cash, P., Stanković, T., Štorga, M. (2016). An Introduction to Experimental Design Research. In: Cash, P., Stanković, T., Štorga, M. (eds) Experimental Design Research. Springer, Cham. https://doi.org/10.1007/978-3-319-33781-4_1

Download citation

DOI : https://doi.org/10.1007/978-3-319-33781-4_1

Published : 18 May 2016

Publisher Name : Springer, Cham

Print ISBN : 978-3-319-33779-1

Online ISBN : 978-3-319-33781-4

eBook Packages : Engineering Engineering (R0)

Share this chapter

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research
  • USC Libraries
  • Research Guides

Organizing Your Social Sciences Research Paper

  • Types of Research Designs
  • Purpose of Guide
  • Design Flaws to Avoid
  • Independent and Dependent Variables
  • Glossary of Research Terms
  • Reading Research Effectively
  • Narrowing a Topic Idea
  • Broadening a Topic Idea
  • Extending the Timeliness of a Topic Idea
  • Academic Writing Style
  • Applying Critical Thinking
  • Choosing a Title
  • Making an Outline
  • Paragraph Development
  • Research Process Video Series
  • Executive Summary
  • The C.A.R.S. Model
  • Background Information
  • The Research Problem/Question
  • Theoretical Framework
  • Citation Tracking
  • Content Alert Services
  • Evaluating Sources
  • Primary Sources
  • Secondary Sources
  • Tiertiary Sources
  • Scholarly vs. Popular Publications
  • Qualitative Methods
  • Quantitative Methods
  • Insiderness
  • Using Non-Textual Elements
  • Limitations of the Study
  • Common Grammar Mistakes
  • Writing Concisely
  • Avoiding Plagiarism
  • Footnotes or Endnotes?
  • Further Readings
  • Generative AI and Writing
  • USC Libraries Tutorials and Other Guides
  • Bibliography

Introduction

Before beginning your paper, you need to decide how you plan to design the study .

The research design refers to the overall strategy and analytical approach that you have chosen in order to integrate, in a coherent and logical way, the different components of the study, thus ensuring that the research problem will be thoroughly investigated. It constitutes the blueprint for the collection, measurement, and interpretation of information and data. Note that the research problem determines the type of design you choose, not the other way around!

De Vaus, D. A. Research Design in Social Research . London: SAGE, 2001; Trochim, William M.K. Research Methods Knowledge Base. 2006.

General Structure and Writing Style

The function of a research design is to ensure that the evidence obtained enables you to effectively address the research problem logically and as unambiguously as possible . In social sciences research, obtaining information relevant to the research problem generally entails specifying the type of evidence needed to test the underlying assumptions of a theory, to evaluate a program, or to accurately describe and assess meaning related to an observable phenomenon.

With this in mind, a common mistake made by researchers is that they begin their investigations before they have thought critically about what information is required to address the research problem. Without attending to these design issues beforehand, the overall research problem will not be adequately addressed and any conclusions drawn will run the risk of being weak and unconvincing. As a consequence, the overall validity of the study will be undermined.

The length and complexity of describing the research design in your paper can vary considerably, but any well-developed description will achieve the following :

  • Identify the research problem clearly and justify its selection, particularly in relation to any valid alternative designs that could have been used,
  • Review and synthesize previously published literature associated with the research problem,
  • Clearly and explicitly specify hypotheses [i.e., research questions] central to the problem,
  • Effectively describe the information and/or data which will be necessary for an adequate testing of the hypotheses and explain how such information and/or data will be obtained, and
  • Describe the methods of analysis to be applied to the data in determining whether or not the hypotheses are true or false.

The research design is usually incorporated into the introduction of your paper . You can obtain an overall sense of what to do by reviewing studies that have utilized the same research design [e.g., using a case study approach]. This can help you develop an outline to follow for your own paper.

NOTE : Use the SAGE Research Methods Online and Cases and the SAGE Research Methods Videos databases to search for scholarly resources on how to apply specific research designs and methods . The Research Methods Online database contains links to more than 175,000 pages of SAGE publisher's book, journal, and reference content on quantitative, qualitative, and mixed research methodologies. Also included is a collection of case studies of social research projects that can be used to help you better understand abstract or complex methodological concepts. The Research Methods Videos database contains hours of tutorials, interviews, video case studies, and mini-documentaries covering the entire research process.

Creswell, John W. and J. David Creswell. Research Design: Qualitative, Quantitative, and Mixed Methods Approaches . 5th edition. Thousand Oaks, CA: Sage, 2018; De Vaus, D. A. Research Design in Social Research . London: SAGE, 2001; Gorard, Stephen. Research Design: Creating Robust Approaches for the Social Sciences . Thousand Oaks, CA: Sage, 2013; Leedy, Paul D. and Jeanne Ellis Ormrod. Practical Research: Planning and Design . Tenth edition. Boston, MA: Pearson, 2013; Vogt, W. Paul, Dianna C. Gardner, and Lynne M. Haeffele. When to Use What Research Design . New York: Guilford, 2012.

Action Research Design

Definition and Purpose

The essentials of action research design follow a characteristic cycle whereby initially an exploratory stance is adopted, where an understanding of a problem is developed and plans are made for some form of interventionary strategy. Then the intervention is carried out [the "action" in action research] during which time, pertinent observations are collected in various forms. The new interventional strategies are carried out, and this cyclic process repeats, continuing until a sufficient understanding of [or a valid implementation solution for] the problem is achieved. The protocol is iterative or cyclical in nature and is intended to foster deeper understanding of a given situation, starting with conceptualizing and particularizing the problem and moving through several interventions and evaluations.

What do these studies tell you ?

  • This is a collaborative and adaptive research design that lends itself to use in work or community situations.
  • Design focuses on pragmatic and solution-driven research outcomes rather than testing theories.
  • When practitioners use action research, it has the potential to increase the amount they learn consciously from their experience; the action research cycle can be regarded as a learning cycle.
  • Action research studies often have direct and obvious relevance to improving practice and advocating for change.
  • There are no hidden controls or preemption of direction by the researcher.

What these studies don't tell you ?

  • It is harder to do than conducting conventional research because the researcher takes on responsibilities of advocating for change as well as for researching the topic.
  • Action research is much harder to write up because it is less likely that you can use a standard format to report your findings effectively [i.e., data is often in the form of stories or observation].
  • Personal over-involvement of the researcher may bias research results.
  • The cyclic nature of action research to achieve its twin outcomes of action [e.g. change] and research [e.g. understanding] is time-consuming and complex to conduct.
  • Advocating for change usually requires buy-in from study participants.

Coghlan, David and Mary Brydon-Miller. The Sage Encyclopedia of Action Research . Thousand Oaks, CA:  Sage, 2014; Efron, Sara Efrat and Ruth Ravid. Action Research in Education: A Practical Guide . New York: Guilford, 2013; Gall, Meredith. Educational Research: An Introduction . Chapter 18, Action Research. 8th ed. Boston, MA: Pearson/Allyn and Bacon, 2007; Gorard, Stephen. Research Design: Creating Robust Approaches for the Social Sciences . Thousand Oaks, CA: Sage, 2013; Kemmis, Stephen and Robin McTaggart. “Participatory Action Research.” In Handbook of Qualitative Research . Norman Denzin and Yvonna S. Lincoln, eds. 2nd ed. (Thousand Oaks, CA: SAGE, 2000), pp. 567-605; McNiff, Jean. Writing and Doing Action Research . London: Sage, 2014; Reason, Peter and Hilary Bradbury. Handbook of Action Research: Participative Inquiry and Practice . Thousand Oaks, CA: SAGE, 2001.

Case Study Design

A case study is an in-depth study of a particular research problem rather than a sweeping statistical survey or comprehensive comparative inquiry. It is often used to narrow down a very broad field of research into one or a few easily researchable examples. The case study research design is also useful for testing whether a specific theory and model actually applies to phenomena in the real world. It is a useful design when not much is known about an issue or phenomenon.

  • Approach excels at bringing us to an understanding of a complex issue through detailed contextual analysis of a limited number of events or conditions and their relationships.
  • A researcher using a case study design can apply a variety of methodologies and rely on a variety of sources to investigate a research problem.
  • Design can extend experience or add strength to what is already known through previous research.
  • Social scientists, in particular, make wide use of this research design to examine contemporary real-life situations and provide the basis for the application of concepts and theories and the extension of methodologies.
  • The design can provide detailed descriptions of specific and rare cases.
  • A single or small number of cases offers little basis for establishing reliability or to generalize the findings to a wider population of people, places, or things.
  • Intense exposure to the study of a case may bias a researcher's interpretation of the findings.
  • Design does not facilitate assessment of cause and effect relationships.
  • Vital information may be missing, making the case hard to interpret.
  • The case may not be representative or typical of the larger problem being investigated.
  • If the criteria for selecting a case is because it represents a very unusual or unique phenomenon or problem for study, then your interpretation of the findings can only apply to that particular case.

Case Studies. Writing@CSU. Colorado State University; Anastas, Jeane W. Research Design for Social Work and the Human Services . Chapter 4, Flexible Methods: Case Study Design. 2nd ed. New York: Columbia University Press, 1999; Gerring, John. “What Is a Case Study and What Is It Good for?” American Political Science Review 98 (May 2004): 341-354; Greenhalgh, Trisha, editor. Case Study Evaluation: Past, Present and Future Challenges . Bingley, UK: Emerald Group Publishing, 2015; Mills, Albert J. , Gabrielle Durepos, and Eiden Wiebe, editors. Encyclopedia of Case Study Research . Thousand Oaks, CA: SAGE Publications, 2010; Stake, Robert E. The Art of Case Study Research . Thousand Oaks, CA: SAGE, 1995; Yin, Robert K. Case Study Research: Design and Theory . Applied Social Research Methods Series, no. 5. 3rd ed. Thousand Oaks, CA: SAGE, 2003.

Causal Design

Causality studies may be thought of as understanding a phenomenon in terms of conditional statements in the form, “If X, then Y.” This type of research is used to measure what impact a specific change will have on existing norms and assumptions. Most social scientists seek causal explanations that reflect tests of hypotheses. Causal effect (nomothetic perspective) occurs when variation in one phenomenon, an independent variable, leads to or results, on average, in variation in another phenomenon, the dependent variable.

Conditions necessary for determining causality:

  • Empirical association -- a valid conclusion is based on finding an association between the independent variable and the dependent variable.
  • Appropriate time order -- to conclude that causation was involved, one must see that cases were exposed to variation in the independent variable before variation in the dependent variable.
  • Nonspuriousness -- a relationship between two variables that is not due to variation in a third variable.
  • Causality research designs assist researchers in understanding why the world works the way it does through the process of proving a causal link between variables and by the process of eliminating other possibilities.
  • Replication is possible.
  • There is greater confidence the study has internal validity due to the systematic subject selection and equity of groups being compared.
  • Not all relationships are causal! The possibility always exists that, by sheer coincidence, two unrelated events appear to be related [e.g., Punxatawney Phil could accurately predict the duration of Winter for five consecutive years but, the fact remains, he's just a big, furry rodent].
  • Conclusions about causal relationships are difficult to determine due to a variety of extraneous and confounding variables that exist in a social environment. This means causality can only be inferred, never proven.
  • If two variables are correlated, the cause must come before the effect. However, even though two variables might be causally related, it can sometimes be difficult to determine which variable comes first and, therefore, to establish which variable is the actual cause and which is the  actual effect.

Beach, Derek and Rasmus Brun Pedersen. Causal Case Study Methods: Foundations and Guidelines for Comparing, Matching, and Tracing . Ann Arbor, MI: University of Michigan Press, 2016; Bachman, Ronet. The Practice of Research in Criminology and Criminal Justice . Chapter 5, Causation and Research Designs. 3rd ed. Thousand Oaks, CA: Pine Forge Press, 2007; Brewer, Ernest W. and Jennifer Kubn. “Causal-Comparative Design.” In Encyclopedia of Research Design . Neil J. Salkind, editor. (Thousand Oaks, CA: Sage, 2010), pp. 125-132; Causal Research Design: Experimentation. Anonymous SlideShare Presentation; Gall, Meredith. Educational Research: An Introduction . Chapter 11, Nonexperimental Research: Correlational Designs. 8th ed. Boston, MA: Pearson/Allyn and Bacon, 2007; Trochim, William M.K. Research Methods Knowledge Base. 2006.

Cohort Design

Often used in the medical sciences, but also found in the applied social sciences, a cohort study generally refers to a study conducted over a period of time involving members of a population which the subject or representative member comes from, and who are united by some commonality or similarity. Using a quantitative framework, a cohort study makes note of statistical occurrence within a specialized subgroup, united by same or similar characteristics that are relevant to the research problem being investigated, rather than studying statistical occurrence within the general population. Using a qualitative framework, cohort studies generally gather data using methods of observation. Cohorts can be either "open" or "closed."

  • Open Cohort Studies [dynamic populations, such as the population of Los Angeles] involve a population that is defined just by the state of being a part of the study in question (and being monitored for the outcome). Date of entry and exit from the study is individually defined, therefore, the size of the study population is not constant. In open cohort studies, researchers can only calculate rate based data, such as, incidence rates and variants thereof.
  • Closed Cohort Studies [static populations, such as patients entered into a clinical trial] involve participants who enter into the study at one defining point in time and where it is presumed that no new participants can enter the cohort. Given this, the number of study participants remains constant (or can only decrease).
  • The use of cohorts is often mandatory because a randomized control study may be unethical. For example, you cannot deliberately expose people to asbestos, you can only study its effects on those who have already been exposed. Research that measures risk factors often relies upon cohort designs.
  • Because cohort studies measure potential causes before the outcome has occurred, they can demonstrate that these “causes” preceded the outcome, thereby avoiding the debate as to which is the cause and which is the effect.
  • Cohort analysis is highly flexible and can provide insight into effects over time and related to a variety of different types of changes [e.g., social, cultural, political, economic, etc.].
  • Either original data or secondary data can be used in this design.
  • In cases where a comparative analysis of two cohorts is made [e.g., studying the effects of one group exposed to asbestos and one that has not], a researcher cannot control for all other factors that might differ between the two groups. These factors are known as confounding variables.
  • Cohort studies can end up taking a long time to complete if the researcher must wait for the conditions of interest to develop within the group. This also increases the chance that key variables change during the course of the study, potentially impacting the validity of the findings.
  • Due to the lack of randominization in the cohort design, its external validity is lower than that of study designs where the researcher randomly assigns participants.

Healy P, Devane D. “Methodological Considerations in Cohort Study Designs.” Nurse Researcher 18 (2011): 32-36; Glenn, Norval D, editor. Cohort Analysis . 2nd edition. Thousand Oaks, CA: Sage, 2005; Levin, Kate Ann. Study Design IV: Cohort Studies. Evidence-Based Dentistry 7 (2003): 51–52; Payne, Geoff. “Cohort Study.” In The SAGE Dictionary of Social Research Methods . Victor Jupp, editor. (Thousand Oaks, CA: Sage, 2006), pp. 31-33; Study Design 101. Himmelfarb Health Sciences Library. George Washington University, November 2011; Cohort Study. Wikipedia.

Cross-Sectional Design

Cross-sectional research designs have three distinctive features: no time dimension; a reliance on existing differences rather than change following intervention; and, groups are selected based on existing differences rather than random allocation. The cross-sectional design can only measure differences between or from among a variety of people, subjects, or phenomena rather than a process of change. As such, researchers using this design can only employ a relatively passive approach to making causal inferences based on findings.

  • Cross-sectional studies provide a clear 'snapshot' of the outcome and the characteristics associated with it, at a specific point in time.
  • Unlike an experimental design, where there is an active intervention by the researcher to produce and measure change or to create differences, cross-sectional designs focus on studying and drawing inferences from existing differences between people, subjects, or phenomena.
  • Entails collecting data at and concerning one point in time. While longitudinal studies involve taking multiple measures over an extended period of time, cross-sectional research is focused on finding relationships between variables at one moment in time.
  • Groups identified for study are purposely selected based upon existing differences in the sample rather than seeking random sampling.
  • Cross-section studies are capable of using data from a large number of subjects and, unlike observational studies, is not geographically bound.
  • Can estimate prevalence of an outcome of interest because the sample is usually taken from the whole population.
  • Because cross-sectional designs generally use survey techniques to gather data, they are relatively inexpensive and take up little time to conduct.
  • Finding people, subjects, or phenomena to study that are very similar except in one specific variable can be difficult.
  • Results are static and time bound and, therefore, give no indication of a sequence of events or reveal historical or temporal contexts.
  • Studies cannot be utilized to establish cause and effect relationships.
  • This design only provides a snapshot of analysis so there is always the possibility that a study could have differing results if another time-frame had been chosen.
  • There is no follow up to the findings.

Bethlehem, Jelke. "7: Cross-sectional Research." In Research Methodology in the Social, Behavioural and Life Sciences . Herman J Adèr and Gideon J Mellenbergh, editors. (London, England: Sage, 1999), pp. 110-43; Bourque, Linda B. “Cross-Sectional Design.” In  The SAGE Encyclopedia of Social Science Research Methods . Michael S. Lewis-Beck, Alan Bryman, and Tim Futing Liao. (Thousand Oaks, CA: 2004), pp. 230-231; Hall, John. “Cross-Sectional Survey Design.” In Encyclopedia of Survey Research Methods . Paul J. Lavrakas, ed. (Thousand Oaks, CA: Sage, 2008), pp. 173-174; Helen Barratt, Maria Kirwan. Cross-Sectional Studies: Design Application, Strengths and Weaknesses of Cross-Sectional Studies. Healthknowledge, 2009. Cross-Sectional Study. Wikipedia.

Descriptive Design

Descriptive research designs help provide answers to the questions of who, what, when, where, and how associated with a particular research problem; a descriptive study cannot conclusively ascertain answers to why. Descriptive research is used to obtain information concerning the current status of the phenomena and to describe "what exists" with respect to variables or conditions in a situation.

  • The subject is being observed in a completely natural and unchanged natural environment. True experiments, whilst giving analyzable data, often adversely influence the normal behavior of the subject [a.k.a., the Heisenberg effect whereby measurements of certain systems cannot be made without affecting the systems].
  • Descriptive research is often used as a pre-cursor to more quantitative research designs with the general overview giving some valuable pointers as to what variables are worth testing quantitatively.
  • If the limitations are understood, they can be a useful tool in developing a more focused study.
  • Descriptive studies can yield rich data that lead to important recommendations in practice.
  • Appoach collects a large amount of data for detailed analysis.
  • The results from a descriptive research cannot be used to discover a definitive answer or to disprove a hypothesis.
  • Because descriptive designs often utilize observational methods [as opposed to quantitative methods], the results cannot be replicated.
  • The descriptive function of research is heavily dependent on instrumentation for measurement and observation.

Anastas, Jeane W. Research Design for Social Work and the Human Services . Chapter 5, Flexible Methods: Descriptive Research. 2nd ed. New York: Columbia University Press, 1999; Given, Lisa M. "Descriptive Research." In Encyclopedia of Measurement and Statistics . Neil J. Salkind and Kristin Rasmussen, editors. (Thousand Oaks, CA: Sage, 2007), pp. 251-254; McNabb, Connie. Descriptive Research Methodologies. Powerpoint Presentation; Shuttleworth, Martyn. Descriptive Research Design, September 26, 2008; Erickson, G. Scott. "Descriptive Research Design." In New Methods of Market Research and Analysis . (Northampton, MA: Edward Elgar Publishing, 2017), pp. 51-77; Sahin, Sagufta, and Jayanta Mete. "A Brief Study on Descriptive Research: Its Nature and Application in Social Science." International Journal of Research and Analysis in Humanities 1 (2021): 11; K. Swatzell and P. Jennings. “Descriptive Research: The Nuts and Bolts.” Journal of the American Academy of Physician Assistants 20 (2007), pp. 55-56; Kane, E. Doing Your Own Research: Basic Descriptive Research in the Social Sciences and Humanities . London: Marion Boyars, 1985.

Experimental Design

A blueprint of the procedure that enables the researcher to maintain control over all factors that may affect the result of an experiment. In doing this, the researcher attempts to determine or predict what may occur. Experimental research is often used where there is time priority in a causal relationship (cause precedes effect), there is consistency in a causal relationship (a cause will always lead to the same effect), and the magnitude of the correlation is great. The classic experimental design specifies an experimental group and a control group. The independent variable is administered to the experimental group and not to the control group, and both groups are measured on the same dependent variable. Subsequent experimental designs have used more groups and more measurements over longer periods. True experiments must have control, randomization, and manipulation.

  • Experimental research allows the researcher to control the situation. In so doing, it allows researchers to answer the question, “What causes something to occur?”
  • Permits the researcher to identify cause and effect relationships between variables and to distinguish placebo effects from treatment effects.
  • Experimental research designs support the ability to limit alternative explanations and to infer direct causal relationships in the study.
  • Approach provides the highest level of evidence for single studies.
  • The design is artificial, and results may not generalize well to the real world.
  • The artificial settings of experiments may alter the behaviors or responses of participants.
  • Experimental designs can be costly if special equipment or facilities are needed.
  • Some research problems cannot be studied using an experiment because of ethical or technical reasons.
  • Difficult to apply ethnographic and other qualitative methods to experimentally designed studies.

Anastas, Jeane W. Research Design for Social Work and the Human Services . Chapter 7, Flexible Methods: Experimental Research. 2nd ed. New York: Columbia University Press, 1999; Chapter 2: Research Design, Experimental Designs. School of Psychology, University of New England, 2000; Chow, Siu L. "Experimental Design." In Encyclopedia of Research Design . Neil J. Salkind, editor. (Thousand Oaks, CA: Sage, 2010), pp. 448-453; "Experimental Design." In Social Research Methods . Nicholas Walliman, editor. (London, England: Sage, 2006), pp, 101-110; Experimental Research. Research Methods by Dummies. Department of Psychology. California State University, Fresno, 2006; Kirk, Roger E. Experimental Design: Procedures for the Behavioral Sciences . 4th edition. Thousand Oaks, CA: Sage, 2013; Trochim, William M.K. Experimental Design. Research Methods Knowledge Base. 2006; Rasool, Shafqat. Experimental Research. Slideshare presentation.

Exploratory Design

An exploratory design is conducted about a research problem when there are few or no earlier studies to refer to or rely upon to predict an outcome . The focus is on gaining insights and familiarity for later investigation or undertaken when research problems are in a preliminary stage of investigation. Exploratory designs are often used to establish an understanding of how best to proceed in studying an issue or what methodology would effectively apply to gathering information about the issue.

The goals of exploratory research are intended to produce the following possible insights:

  • Familiarity with basic details, settings, and concerns.
  • Well grounded picture of the situation being developed.
  • Generation of new ideas and assumptions.
  • Development of tentative theories or hypotheses.
  • Determination about whether a study is feasible in the future.
  • Issues get refined for more systematic investigation and formulation of new research questions.
  • Direction for future research and techniques get developed.
  • Design is a useful approach for gaining background information on a particular topic.
  • Exploratory research is flexible and can address research questions of all types (what, why, how).
  • Provides an opportunity to define new terms and clarify existing concepts.
  • Exploratory research is often used to generate formal hypotheses and develop more precise research problems.
  • In the policy arena or applied to practice, exploratory studies help establish research priorities and where resources should be allocated.
  • Exploratory research generally utilizes small sample sizes and, thus, findings are typically not generalizable to the population at large.
  • The exploratory nature of the research inhibits an ability to make definitive conclusions about the findings. They provide insight but not definitive conclusions.
  • The research process underpinning exploratory studies is flexible but often unstructured, leading to only tentative results that have limited value to decision-makers.
  • Design lacks rigorous standards applied to methods of data gathering and analysis because one of the areas for exploration could be to determine what method or methodologies could best fit the research problem.

Cuthill, Michael. “Exploratory Research: Citizen Participation, Local Government, and Sustainable Development in Australia.” Sustainable Development 10 (2002): 79-89; Streb, Christoph K. "Exploratory Case Study." In Encyclopedia of Case Study Research . Albert J. Mills, Gabrielle Durepos and Eiden Wiebe, editors. (Thousand Oaks, CA: Sage, 2010), pp. 372-374; Taylor, P. J., G. Catalano, and D.R.F. Walker. “Exploratory Analysis of the World City Network.” Urban Studies 39 (December 2002): 2377-2394; Exploratory Research. Wikipedia.

Field Research Design

Sometimes referred to as ethnography or participant observation, designs around field research encompass a variety of interpretative procedures [e.g., observation and interviews] rooted in qualitative approaches to studying people individually or in groups while inhabiting their natural environment as opposed to using survey instruments or other forms of impersonal methods of data gathering. Information acquired from observational research takes the form of “ field notes ” that involves documenting what the researcher actually sees and hears while in the field. Findings do not consist of conclusive statements derived from numbers and statistics because field research involves analysis of words and observations of behavior. Conclusions, therefore, are developed from an interpretation of findings that reveal overriding themes, concepts, and ideas. More information can be found HERE .

  • Field research is often necessary to fill gaps in understanding the research problem applied to local conditions or to specific groups of people that cannot be ascertained from existing data.
  • The research helps contextualize already known information about a research problem, thereby facilitating ways to assess the origins, scope, and scale of a problem and to gage the causes, consequences, and means to resolve an issue based on deliberate interaction with people in their natural inhabited spaces.
  • Enables the researcher to corroborate or confirm data by gathering additional information that supports or refutes findings reported in prior studies of the topic.
  • Because the researcher in embedded in the field, they are better able to make observations or ask questions that reflect the specific cultural context of the setting being investigated.
  • Observing the local reality offers the opportunity to gain new perspectives or obtain unique data that challenges existing theoretical propositions or long-standing assumptions found in the literature.

What these studies don't tell you

  • A field research study requires extensive time and resources to carry out the multiple steps involved with preparing for the gathering of information, including for example, examining background information about the study site, obtaining permission to access the study site, and building trust and rapport with subjects.
  • Requires a commitment to staying engaged in the field to ensure that you can adequately document events and behaviors as they unfold.
  • The unpredictable nature of fieldwork means that researchers can never fully control the process of data gathering. They must maintain a flexible approach to studying the setting because events and circumstances can change quickly or unexpectedly.
  • Findings can be difficult to interpret and verify without access to documents and other source materials that help to enhance the credibility of information obtained from the field  [i.e., the act of triangulating the data].
  • Linking the research problem to the selection of study participants inhabiting their natural environment is critical. However, this specificity limits the ability to generalize findings to different situations or in other contexts or to infer courses of action applied to other settings or groups of people.
  • The reporting of findings must take into account how the researcher themselves may have inadvertently affected respondents and their behaviors.

Historical Design

The purpose of a historical research design is to collect, verify, and synthesize evidence from the past to establish facts that defend or refute a hypothesis. It uses secondary sources and a variety of primary documentary evidence, such as, diaries, official records, reports, archives, and non-textual information [maps, pictures, audio and visual recordings]. The limitation is that the sources must be both authentic and valid.

  • The historical research design is unobtrusive; the act of research does not affect the results of the study.
  • The historical approach is well suited for trend analysis.
  • Historical records can add important contextual background required to more fully understand and interpret a research problem.
  • There is often no possibility of researcher-subject interaction that could affect the findings.
  • Historical sources can be used over and over to study different research problems or to replicate a previous study.
  • The ability to fulfill the aims of your research are directly related to the amount and quality of documentation available to understand the research problem.
  • Since historical research relies on data from the past, there is no way to manipulate it to control for contemporary contexts.
  • Interpreting historical sources can be very time consuming.
  • The sources of historical materials must be archived consistently to ensure access. This may especially challenging for digital or online-only sources.
  • Original authors bring their own perspectives and biases to the interpretation of past events and these biases are more difficult to ascertain in historical resources.
  • Due to the lack of control over external variables, historical research is very weak with regard to the demands of internal validity.
  • It is rare that the entirety of historical documentation needed to fully address a research problem is available for interpretation, therefore, gaps need to be acknowledged.

Howell, Martha C. and Walter Prevenier. From Reliable Sources: An Introduction to Historical Methods . Ithaca, NY: Cornell University Press, 2001; Lundy, Karen Saucier. "Historical Research." In The Sage Encyclopedia of Qualitative Research Methods . Lisa M. Given, editor. (Thousand Oaks, CA: Sage, 2008), pp. 396-400; Marius, Richard. and Melvin E. Page. A Short Guide to Writing about History . 9th edition. Boston, MA: Pearson, 2015; Savitt, Ronald. “Historical Research in Marketing.” Journal of Marketing 44 (Autumn, 1980): 52-58;  Gall, Meredith. Educational Research: An Introduction . Chapter 16, Historical Research. 8th ed. Boston, MA: Pearson/Allyn and Bacon, 2007.

Longitudinal Design

A longitudinal study follows the same sample over time and makes repeated observations. For example, with longitudinal surveys, the same group of people is interviewed at regular intervals, enabling researchers to track changes over time and to relate them to variables that might explain why the changes occur. Longitudinal research designs describe patterns of change and help establish the direction and magnitude of causal relationships. Measurements are taken on each variable over two or more distinct time periods. This allows the researcher to measure change in variables over time. It is a type of observational study sometimes referred to as a panel study.

  • Longitudinal data facilitate the analysis of the duration of a particular phenomenon.
  • Enables survey researchers to get close to the kinds of causal explanations usually attainable only with experiments.
  • The design permits the measurement of differences or change in a variable from one period to another [i.e., the description of patterns of change over time].
  • Longitudinal studies facilitate the prediction of future outcomes based upon earlier factors.
  • The data collection method may change over time.
  • Maintaining the integrity of the original sample can be difficult over an extended period of time.
  • It can be difficult to show more than one variable at a time.
  • This design often needs qualitative research data to explain fluctuations in the results.
  • A longitudinal research design assumes present trends will continue unchanged.
  • It can take a long period of time to gather results.
  • There is a need to have a large sample size and accurate sampling to reach representativness.

Anastas, Jeane W. Research Design for Social Work and the Human Services . Chapter 6, Flexible Methods: Relational and Longitudinal Research. 2nd ed. New York: Columbia University Press, 1999; Forgues, Bernard, and Isabelle Vandangeon-Derumez. "Longitudinal Analyses." In Doing Management Research . Raymond-Alain Thiétart and Samantha Wauchope, editors. (London, England: Sage, 2001), pp. 332-351; Kalaian, Sema A. and Rafa M. Kasim. "Longitudinal Studies." In Encyclopedia of Survey Research Methods . Paul J. Lavrakas, ed. (Thousand Oaks, CA: Sage, 2008), pp. 440-441; Menard, Scott, editor. Longitudinal Research . Thousand Oaks, CA: Sage, 2002; Ployhart, Robert E. and Robert J. Vandenberg. "Longitudinal Research: The Theory, Design, and Analysis of Change.” Journal of Management 36 (January 2010): 94-120; Longitudinal Study. Wikipedia.

Meta-Analysis Design

Meta-analysis is an analytical methodology designed to systematically evaluate and summarize the results from a number of individual studies, thereby, increasing the overall sample size and the ability of the researcher to study effects of interest. The purpose is to not simply summarize existing knowledge, but to develop a new understanding of a research problem using synoptic reasoning. The main objectives of meta-analysis include analyzing differences in the results among studies and increasing the precision by which effects are estimated. A well-designed meta-analysis depends upon strict adherence to the criteria used for selecting studies and the availability of information in each study to properly analyze their findings. Lack of information can severely limit the type of analyzes and conclusions that can be reached. In addition, the more dissimilarity there is in the results among individual studies [heterogeneity], the more difficult it is to justify interpretations that govern a valid synopsis of results. A meta-analysis needs to fulfill the following requirements to ensure the validity of your findings:

  • Clearly defined description of objectives, including precise definitions of the variables and outcomes that are being evaluated;
  • A well-reasoned and well-documented justification for identification and selection of the studies;
  • Assessment and explicit acknowledgment of any researcher bias in the identification and selection of those studies;
  • Description and evaluation of the degree of heterogeneity among the sample size of studies reviewed; and,
  • Justification of the techniques used to evaluate the studies.
  • Can be an effective strategy for determining gaps in the literature.
  • Provides a means of reviewing research published about a particular topic over an extended period of time and from a variety of sources.
  • Is useful in clarifying what policy or programmatic actions can be justified on the basis of analyzing research results from multiple studies.
  • Provides a method for overcoming small sample sizes in individual studies that previously may have had little relationship to each other.
  • Can be used to generate new hypotheses or highlight research problems for future studies.
  • Small violations in defining the criteria used for content analysis can lead to difficult to interpret and/or meaningless findings.
  • A large sample size can yield reliable, but not necessarily valid, results.
  • A lack of uniformity regarding, for example, the type of literature reviewed, how methods are applied, and how findings are measured within the sample of studies you are analyzing, can make the process of synthesis difficult to perform.
  • Depending on the sample size, the process of reviewing and synthesizing multiple studies can be very time consuming.

Beck, Lewis W. "The Synoptic Method." The Journal of Philosophy 36 (1939): 337-345; Cooper, Harris, Larry V. Hedges, and Jeffrey C. Valentine, eds. The Handbook of Research Synthesis and Meta-Analysis . 2nd edition. New York: Russell Sage Foundation, 2009; Guzzo, Richard A., Susan E. Jackson and Raymond A. Katzell. “Meta-Analysis Analysis.” In Research in Organizational Behavior , Volume 9. (Greenwich, CT: JAI Press, 1987), pp 407-442; Lipsey, Mark W. and David B. Wilson. Practical Meta-Analysis . Thousand Oaks, CA: Sage Publications, 2001; Study Design 101. Meta-Analysis. The Himmelfarb Health Sciences Library, George Washington University; Timulak, Ladislav. “Qualitative Meta-Analysis.” In The SAGE Handbook of Qualitative Data Analysis . Uwe Flick, editor. (Los Angeles, CA: Sage, 2013), pp. 481-495; Walker, Esteban, Adrian V. Hernandez, and Micheal W. Kattan. "Meta-Analysis: It's Strengths and Limitations." Cleveland Clinic Journal of Medicine 75 (June 2008): 431-439.

Mixed-Method Design

  • Narrative and non-textual information can add meaning to numeric data, while numeric data can add precision to narrative and non-textual information.
  • Can utilize existing data while at the same time generating and testing a grounded theory approach to describe and explain the phenomenon under study.
  • A broader, more complex research problem can be investigated because the researcher is not constrained by using only one method.
  • The strengths of one method can be used to overcome the inherent weaknesses of another method.
  • Can provide stronger, more robust evidence to support a conclusion or set of recommendations.
  • May generate new knowledge new insights or uncover hidden insights, patterns, or relationships that a single methodological approach might not reveal.
  • Produces more complete knowledge and understanding of the research problem that can be used to increase the generalizability of findings applied to theory or practice.
  • A researcher must be proficient in understanding how to apply multiple methods to investigating a research problem as well as be proficient in optimizing how to design a study that coherently melds them together.
  • Can increase the likelihood of conflicting results or ambiguous findings that inhibit drawing a valid conclusion or setting forth a recommended course of action [e.g., sample interview responses do not support existing statistical data].
  • Because the research design can be very complex, reporting the findings requires a well-organized narrative, clear writing style, and precise word choice.
  • Design invites collaboration among experts. However, merging different investigative approaches and writing styles requires more attention to the overall research process than studies conducted using only one methodological paradigm.
  • Concurrent merging of quantitative and qualitative research requires greater attention to having adequate sample sizes, using comparable samples, and applying a consistent unit of analysis. For sequential designs where one phase of qualitative research builds on the quantitative phase or vice versa, decisions about what results from the first phase to use in the next phase, the choice of samples and estimating reasonable sample sizes for both phases, and the interpretation of results from both phases can be difficult.
  • Due to multiple forms of data being collected and analyzed, this design requires extensive time and resources to carry out the multiple steps involved in data gathering and interpretation.

Burch, Patricia and Carolyn J. Heinrich. Mixed Methods for Policy Research and Program Evaluation . Thousand Oaks, CA: Sage, 2016; Creswell, John w. et al. Best Practices for Mixed Methods Research in the Health Sciences . Bethesda, MD: Office of Behavioral and Social Sciences Research, National Institutes of Health, 2010Creswell, John W. Research Design: Qualitative, Quantitative, and Mixed Methods Approaches . 4th edition. Thousand Oaks, CA: Sage Publications, 2014; Domínguez, Silvia, editor. Mixed Methods Social Networks Research . Cambridge, UK: Cambridge University Press, 2014; Hesse-Biber, Sharlene Nagy. Mixed Methods Research: Merging Theory with Practice . New York: Guilford Press, 2010; Niglas, Katrin. “How the Novice Researcher Can Make Sense of Mixed Methods Designs.” International Journal of Multiple Research Approaches 3 (2009): 34-46; Onwuegbuzie, Anthony J. and Nancy L. Leech. “Linking Research Questions to Mixed Methods Data Analysis Procedures.” The Qualitative Report 11 (September 2006): 474-498; Tashakorri, Abbas and John W. Creswell. “The New Era of Mixed Methods.” Journal of Mixed Methods Research 1 (January 2007): 3-7; Zhanga, Wanqing. “Mixed Methods Application in Health Intervention Research: A Multiple Case Study.” International Journal of Multiple Research Approaches 8 (2014): 24-35 .

Observational Design

This type of research design draws a conclusion by comparing subjects against a control group, in cases where the researcher has no control over the experiment. There are two general types of observational designs. In direct observations, people know that you are watching them. Unobtrusive measures involve any method for studying behavior where individuals do not know they are being observed. An observational study allows a useful insight into a phenomenon and avoids the ethical and practical difficulties of setting up a large and cumbersome research project.

  • Observational studies are usually flexible and do not necessarily need to be structured around a hypothesis about what you expect to observe [data is emergent rather than pre-existing].
  • The researcher is able to collect in-depth information about a particular behavior.
  • Can reveal interrelationships among multifaceted dimensions of group interactions.
  • You can generalize your results to real life situations.
  • Observational research is useful for discovering what variables may be important before applying other methods like experiments.
  • Observation research designs account for the complexity of group behaviors.
  • Reliability of data is low because seeing behaviors occur over and over again may be a time consuming task and are difficult to replicate.
  • In observational research, findings may only reflect a unique sample population and, thus, cannot be generalized to other groups.
  • There can be problems with bias as the researcher may only "see what they want to see."
  • There is no possibility to determine "cause and effect" relationships since nothing is manipulated.
  • Sources or subjects may not all be equally credible.
  • Any group that is knowingly studied is altered to some degree by the presence of the researcher, therefore, potentially skewing any data collected.

Atkinson, Paul and Martyn Hammersley. “Ethnography and Participant Observation.” In Handbook of Qualitative Research . Norman K. Denzin and Yvonna S. Lincoln, eds. (Thousand Oaks, CA: Sage, 1994), pp. 248-261; Observational Research. Research Methods by Dummies. Department of Psychology. California State University, Fresno, 2006; Patton Michael Quinn. Qualitiative Research and Evaluation Methods . Chapter 6, Fieldwork Strategies and Observational Methods. 3rd ed. Thousand Oaks, CA: Sage, 2002; Payne, Geoff and Judy Payne. "Observation." In Key Concepts in Social Research . The SAGE Key Concepts series. (London, England: Sage, 2004), pp. 158-162; Rosenbaum, Paul R. Design of Observational Studies . New York: Springer, 2010;Williams, J. Patrick. "Nonparticipant Observation." In The Sage Encyclopedia of Qualitative Research Methods . Lisa M. Given, editor.(Thousand Oaks, CA: Sage, 2008), pp. 562-563.

Philosophical Design

Understood more as an broad approach to examining a research problem than a methodological design, philosophical analysis and argumentation is intended to challenge deeply embedded, often intractable, assumptions underpinning an area of study. This approach uses the tools of argumentation derived from philosophical traditions, concepts, models, and theories to critically explore and challenge, for example, the relevance of logic and evidence in academic debates, to analyze arguments about fundamental issues, or to discuss the root of existing discourse about a research problem. These overarching tools of analysis can be framed in three ways:

  • Ontology -- the study that describes the nature of reality; for example, what is real and what is not, what is fundamental and what is derivative?
  • Epistemology -- the study that explores the nature of knowledge; for example, by what means does knowledge and understanding depend upon and how can we be certain of what we know?
  • Axiology -- the study of values; for example, what values does an individual or group hold and why? How are values related to interest, desire, will, experience, and means-to-end? And, what is the difference between a matter of fact and a matter of value?
  • Can provide a basis for applying ethical decision-making to practice.
  • Functions as a means of gaining greater self-understanding and self-knowledge about the purposes of research.
  • Brings clarity to general guiding practices and principles of an individual or group.
  • Philosophy informs methodology.
  • Refine concepts and theories that are invoked in relatively unreflective modes of thought and discourse.
  • Beyond methodology, philosophy also informs critical thinking about epistemology and the structure of reality (metaphysics).
  • Offers clarity and definition to the practical and theoretical uses of terms, concepts, and ideas.
  • Limited application to specific research problems [answering the "So What?" question in social science research].
  • Analysis can be abstract, argumentative, and limited in its practical application to real-life issues.
  • While a philosophical analysis may render problematic that which was once simple or taken-for-granted, the writing can be dense and subject to unnecessary jargon, overstatement, and/or excessive quotation and documentation.
  • There are limitations in the use of metaphor as a vehicle of philosophical analysis.
  • There can be analytical difficulties in moving from philosophy to advocacy and between abstract thought and application to the phenomenal world.

Burton, Dawn. "Part I, Philosophy of the Social Sciences." In Research Training for Social Scientists . (London, England: Sage, 2000), pp. 1-5; Chapter 4, Research Methodology and Design. Unisa Institutional Repository (UnisaIR), University of South Africa; Jarvie, Ian C., and Jesús Zamora-Bonilla, editors. The SAGE Handbook of the Philosophy of Social Sciences . London: Sage, 2011; Labaree, Robert V. and Ross Scimeca. “The Philosophical Problem of Truth in Librarianship.” The Library Quarterly 78 (January 2008): 43-70; Maykut, Pamela S. Beginning Qualitative Research: A Philosophic and Practical Guide . Washington, DC: Falmer Press, 1994; McLaughlin, Hugh. "The Philosophy of Social Research." In Understanding Social Work Research . 2nd edition. (London: SAGE Publications Ltd., 2012), pp. 24-47; Stanford Encyclopedia of Philosophy . Metaphysics Research Lab, CSLI, Stanford University, 2013.

Sequential Design

  • The researcher has a limitless option when it comes to sample size and the sampling schedule.
  • Due to the repetitive nature of this research design, minor changes and adjustments can be done during the initial parts of the study to correct and hone the research method.
  • This is a useful design for exploratory studies.
  • There is very little effort on the part of the researcher when performing this technique. It is generally not expensive, time consuming, or workforce intensive.
  • Because the study is conducted serially, the results of one sample are known before the next sample is taken and analyzed. This provides opportunities for continuous improvement of sampling and methods of analysis.
  • The sampling method is not representative of the entire population. The only possibility of approaching representativeness is when the researcher chooses to use a very large sample size significant enough to represent a significant portion of the entire population. In this case, moving on to study a second or more specific sample can be difficult.
  • The design cannot be used to create conclusions and interpretations that pertain to an entire population because the sampling technique is not randomized. Generalizability from findings is, therefore, limited.
  • Difficult to account for and interpret variation from one sample to another over time, particularly when using qualitative methods of data collection.

Betensky, Rebecca. Harvard University, Course Lecture Note slides; Bovaird, James A. and Kevin A. Kupzyk. "Sequential Design." In Encyclopedia of Research Design . Neil J. Salkind, editor. (Thousand Oaks, CA: Sage, 2010), pp. 1347-1352; Cresswell, John W. Et al. “Advanced Mixed-Methods Research Designs.” In Handbook of Mixed Methods in Social and Behavioral Research . Abbas Tashakkori and Charles Teddle, eds. (Thousand Oaks, CA: Sage, 2003), pp. 209-240; Henry, Gary T. "Sequential Sampling." In The SAGE Encyclopedia of Social Science Research Methods . Michael S. Lewis-Beck, Alan Bryman and Tim Futing Liao, editors. (Thousand Oaks, CA: Sage, 2004), pp. 1027-1028; Nataliya V. Ivankova. “Using Mixed-Methods Sequential Explanatory Design: From Theory to Practice.” Field Methods 18 (February 2006): 3-20; Bovaird, James A. and Kevin A. Kupzyk. “Sequential Design.” In Encyclopedia of Research Design . Neil J. Salkind, ed. Thousand Oaks, CA: Sage, 2010; Sequential Analysis. Wikipedia.

Systematic Review

  • A systematic review synthesizes the findings of multiple studies related to each other by incorporating strategies of analysis and interpretation intended to reduce biases and random errors.
  • The application of critical exploration, evaluation, and synthesis methods separates insignificant, unsound, or redundant research from the most salient and relevant studies worthy of reflection.
  • They can be use to identify, justify, and refine hypotheses, recognize and avoid hidden problems in prior studies, and explain data inconsistencies and conflicts in data.
  • Systematic reviews can be used to help policy makers formulate evidence-based guidelines and regulations.
  • The use of strict, explicit, and pre-determined methods of synthesis, when applied appropriately, provide reliable estimates about the effects of interventions, evaluations, and effects related to the overarching research problem investigated by each study under review.
  • Systematic reviews illuminate where knowledge or thorough understanding of a research problem is lacking and, therefore, can then be used to guide future research.
  • The accepted inclusion of unpublished studies [i.e., grey literature] ensures the broadest possible way to analyze and interpret research on a topic.
  • Results of the synthesis can be generalized and the findings extrapolated into the general population with more validity than most other types of studies .
  • Systematic reviews do not create new knowledge per se; they are a method for synthesizing existing studies about a research problem in order to gain new insights and determine gaps in the literature.
  • The way researchers have carried out their investigations [e.g., the period of time covered, number of participants, sources of data analyzed, etc.] can make it difficult to effectively synthesize studies.
  • The inclusion of unpublished studies can introduce bias into the review because they may not have undergone a rigorous peer-review process prior to publication. Examples may include conference presentations or proceedings, publications from government agencies, white papers, working papers, and internal documents from organizations, and doctoral dissertations and Master's theses.

Denyer, David and David Tranfield. "Producing a Systematic Review." In The Sage Handbook of Organizational Research Methods .  David A. Buchanan and Alan Bryman, editors. ( Thousand Oaks, CA: Sage Publications, 2009), pp. 671-689; Foster, Margaret J. and Sarah T. Jewell, editors. Assembling the Pieces of a Systematic Review: A Guide for Librarians . Lanham, MD: Rowman and Littlefield, 2017; Gough, David, Sandy Oliver, James Thomas, editors. Introduction to Systematic Reviews . 2nd edition. Los Angeles, CA: Sage Publications, 2017; Gopalakrishnan, S. and P. Ganeshkumar. “Systematic Reviews and Meta-analysis: Understanding the Best Evidence in Primary Healthcare.” Journal of Family Medicine and Primary Care 2 (2013): 9-14; Gough, David, James Thomas, and Sandy Oliver. "Clarifying Differences between Review Designs and Methods." Systematic Reviews 1 (2012): 1-9; Khan, Khalid S., Regina Kunz, Jos Kleijnen, and Gerd Antes. “Five Steps to Conducting a Systematic Review.” Journal of the Royal Society of Medicine 96 (2003): 118-121; Mulrow, C. D. “Systematic Reviews: Rationale for Systematic Reviews.” BMJ 309:597 (September 1994); O'Dwyer, Linda C., and Q. Eileen Wafford. "Addressing Challenges with Systematic Review Teams through Effective Communication: A Case Report." Journal of the Medical Library Association 109 (October 2021): 643-647; Okoli, Chitu, and Kira Schabram. "A Guide to Conducting a Systematic Literature Review of Information Systems Research."  Sprouts: Working Papers on Information Systems 10 (2010); Siddaway, Andy P., Alex M. Wood, and Larry V. Hedges. "How to Do a Systematic Review: A Best Practice Guide for Conducting and Reporting Narrative Reviews, Meta-analyses, and Meta-syntheses." Annual Review of Psychology 70 (2019): 747-770; Torgerson, Carole J. “Publication Bias: The Achilles’ Heel of Systematic Reviews?” British Journal of Educational Studies 54 (March 2006): 89-102; Torgerson, Carole. Systematic Reviews . New York: Continuum, 2003.

  • << Previous: Purpose of Guide
  • Next: Design Flaws to Avoid >>
  • Last Updated: Apr 9, 2024 1:19 PM
  • URL: https://libguides.usc.edu/writingguide
  • University Libraries
  • Research Guides
  • Topic Guides
  • Research Methods Guide
  • Research Design & Method

Research Methods Guide: Research Design & Method

  • Introduction
  • Survey Research
  • Interview Research
  • Data Analysis
  • Resources & Consultation

Tutorial Videos: Research Design & Method

Research Methods (sociology-focused)

Qualitative vs. Quantitative Methods (intro)

Qualitative vs. Quantitative Methods (advanced)

introduction in research design

FAQ: Research Design & Method

What is the difference between Research Design and Research Method?

Research design is a plan to answer your research question.  A research method is a strategy used to implement that plan.  Research design and methods are different but closely related, because good research design ensures that the data you obtain will help you answer your research question more effectively.

Which research method should I choose ?

It depends on your research goal.  It depends on what subjects (and who) you want to study.  Let's say you are interested in studying what makes people happy, or why some students are more conscious about recycling on campus.  To answer these questions, you need to make a decision about how to collect your data.  Most frequently used methods include:

  • Observation / Participant Observation
  • Focus Groups
  • Experiments
  • Secondary Data Analysis / Archival Study
  • Mixed Methods (combination of some of the above)

One particular method could be better suited to your research goal than others, because the data you collect from different methods will be different in quality and quantity.   For instance, surveys are usually designed to produce relatively short answers, rather than the extensive responses expected in qualitative interviews.

What other factors should I consider when choosing one method over another?

Time for data collection and analysis is something you want to consider.  An observation or interview method, so-called qualitative approach, helps you collect richer information, but it takes time.  Using a survey helps you collect more data quickly, yet it may lack details.  So, you will need to consider the time you have for research and the balance between strengths and weaknesses associated with each method (e.g., qualitative vs. quantitative).

  • << Previous: Introduction
  • Next: Survey Research >>
  • Last Updated: Aug 21, 2023 10:42 AM

Popular searches

  • How to Get Participants For Your Study
  • How to Do Segmentation?
  • Conjoint Preference Share Simulator
  • MaxDiff Analysis
  • Likert Scales
  • Reliability & Validity

Request consultation

Do you need support in running a pricing or product study? We can help you with agile consumer research and conjoint analysis.

Looking for an online survey platform?

Conjointly offers a great survey tool with multiple question types, randomisation blocks, and multilingual support. The Basic tier is always free.

Research Methods Knowledge Base

  • Navigating the Knowledge Base
  • Foundations
  • Measurement
  • Internal Validity

Introduction to Design

  • Types of Designs
  • Experimental Design
  • Quasi-Experimental Design
  • Pre-Post Design Relationships
  • Designing Designs for Research
  • Quasi-Experimentation Advances
  • Table of Contents

Fully-functional online survey tool with various question types, logic, randomisation, and reporting for unlimited number of surveys.

Completely free for academics and students .

What is Research Design?

Research design can be thought of as the structure of research – it is the “glue” that holds all of the elements in a research project together. There are many different types of designs that you will be introduced to, often having rather exotic-sounding (if not somewhat obscure!) names like ’the nonequivalent groups design’, the ‘randomized experimental design’, or the ‘regression-discontinuity design’.

We often describe a design using a concise notation that enables us to summarize a complex design structure efficiently. What are the “elements” that a design includes? They are:

Observations or Measures

These are symbolized by an ‘ O ’ in design notation. An O can refer to a single measure (e.g., a measure of body weight), a single instrument with multiple items (e.g., a 10-item self-esteem scale), a complex multi-part instrument (e.g., a survey), or a whole battery of tests or measures given out on one occasion. If you need to distinguish among specific measures, you can use subscripts with the O , as in O1, O2 , and so on.

Treatments or Programs

These are symbolized with an ‘ X ’ in design notations. The X can refer to a simple intervention (e.g., a one-time surgical technique) or to a complex hodgepodge program (e.g., an employment training program). Usually, a no-treatment control or comparison group has no symbol for the treatment (some researchers use X+ and X- to indicate the treatment and control respectively). As with observations, you can use subscripts to distinguish different programs or program variations.

Each group in a design is given its own line in the design structure. if the design notation has three lines, there are three groups in the design.

Assignment to Group

Assignment to group is designated by a letter at the beginning of each line (i.e., group) that describes how the group was assigned. The major types of assignment are:

  • R = random assignment
  • N = nonequivalent groups
  • C = assignment by cutoff

Time moves from left to right. Elements that are listed on the left occur before elements that are listed on the right.

Design Notation Examples

It’s always easier to explain design notation through examples than it is to describe it in words. The figure shows the design notation for a pretest-posttest (or before-after) treatment versus comparison group randomized experimental design . Let’s go through each of the parts of the design. There are two lines in the notation, so you should realize that the study has two groups. There are four O s in the notation, two on each line and two for each group. When the O s are stacked vertically on top of each other it means they are collected at the same time. In the notation you can see that we have two O s that are taken before (i.e., to the left of) any treatment is given – the pretest – and two O s taken after the treatment is given – the posttest. The R at the beginning of each line signifies that the two groups are randomly assigned (making it an experimental design).

The design is a treatment versus comparison group one because the top line (treatment group) has an X while the bottom line (control group) does not. You should be able to see why many of my students have called this type of notation the “tic-tac-toe” method of design notation – there are lots of X s and O s! Sometimes we have to be more specific in describing the O s or X s than just using a single letter. In the second figure, we have the identical research design with some subscripting of the O s. What does this mean? Because all of the O s have a subscript of 1 , there is some measure or set of measures that is collected for both groups on both occasions. But the design also has two O s with a subscript of 2 , both taken at the posttest. This means that there was some measure or set of measures that were collected only at the posttest.

With this simple set of rules for describing a research design in notational form, you can concisely explain even complex design structures. And, using a notation helps to show common design sub-structures across different designs that we might not recognize as easily without the notation.

Cookie Consent

Conjointly uses essential cookies to make our site work. We also use additional cookies in order to understand the usage of the site, gather audience analytics, and for remarketing purposes.

For more information on Conjointly's use of cookies, please read our Cookie Policy .

Which one are you?

I am new to conjointly, i am already using conjointly.

Logo for Kwantlen Polytechnic University

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

2 A brief introduction to research design

To consult the statistician after an experiment is finished is often merely to ask him to conduct a post mortem examination. He can perhaps say what the experiment died of. – Sir Ronald Fisher 6

In this chapter, we’re going to start thinking about the basic ideas that go into designing a study, collecting data, checking whether your data collection works, and so on. It won’t give you enough information to allow you to design studies of your own, but it will give you a lot of the basic tools that you need to assess the studies done by other people. However, since the focus of this book is much more on data analysis than on data collection, I’m only giving a very brief overview. Note that this chapter is “special” in two ways. Firstly, it’s much more psychology-specific than the later chapters. Secondly, it focuses much more heavily on the scientific problem of research methodology, and much less on the statistical problem of data analysis. Nevertheless, the two problems are related to one another, so it’s traditional for stats textbooks to discuss the problem in a little detail. This chapter relies heavily on Campbell and Stanley ( 1963 ) for the discussion of study design, and Stevens ( 1946 ) for the discussion of scales of measurement. Later versions will attempt to be more precise in the citations.

2.1 Introduction to psychological measurement

The first thing to understand is data collection can be thought of as a kind of measurement . That is, what we’re trying to do here is measure something about human behaviour or the human mind. What do I mean by “measurement”?

2.1.1 Some thoughts about psychological measurement

Measurement itself is a subtle concept, but basically it comes down to finding some way of assigning numbers, or labels, or some other kind of well-defined descriptions to “stuff”. So, any of the following would count as a psychological measurement:

  • My age is 33 years .
  • I do not like anchovies .
  • My chromosomal gender is male .
  • My self-identified gender is male . 7

In the short list above, the bolded part is “the thing to be measured”, and the italicised part is “the measurement itself”. In fact, we can expand on this a little bit, by thinking about the set of possible measurements that could have arisen in each case:

  • My age (in years) could have been 0, 1, 2, 3 … , etc. The upper bound on what my age could possibly be is a bit fuzzy, but in practice you’d be safe in saying that the largest possible age is 150 , since no human has ever lived that long.
  • When asked if I like anchovies , I might have said that I do , or I do not , or I have no opinion , or I sometimes do .
  • My chromosomal gender is almost certainly going to be male (XY) or female (XX) , but there are a few other possibilities. I could also have Klinfelter’s syndrome (XXY) , which is more similar to male than to female. And I imagine there are other possibilities too.
  • My self-identified gender is also very likely to be male or female , but it doesn’t have to agree with my chromosomal gender. I may also choose to identify with neither , or to explicitly call myself transgender .

As you can see, for some things (like age) it seems fairly obvious what the set of possible measurements should be, whereas for other things it gets a bit tricky. But I want to point out that even in the case of someone’s age, it’s much more subtle than this. For instance, in the example above, I assumed that it was okay to measure age in years. But if you’re a developmental psychologist, that’s way too crude, and so you often measure age in years and months (if a child is 2 years and 11 months, this is usually written as “2;11”). If you’re interested in newborns, you might want to measure age in days since birth , maybe even hours since birth . In other words, the way in which you specify the allowable measurement values is important.

Looking at this a bit more closely, you might also realise that the concept of “age” isn’t actually all that precise. In general, when we say “age” we implicitly mean “the length of time since birth”. But that’s not always the right way to do it. Suppose you’re interested in how newborn babies control their eye movements. If you’re interested in kids that young, you might also start to worry that “birth” is not the only meaningful point in time to care about. If Baby Alice is born 3 weeks premature and Baby Bianca is born 1 week late, would it really make sense to say that they are the “same age” if we encountered them “2 hours after birth”? In one sense, yes: by social convention, we use birth as our reference point for talking about age in everyday life, since it defines the amount of time the person has been operating as an independent entity in the world, but from a scientific perspective that’s not the only thing we care about. When we think about the biology of human beings, it’s often useful to think of ourselves as organisms that have been growing and maturing since conception, and from that perspective Alice and Bianca aren’t the same age at all. So you might want to define the concept of “age” in two different ways: the length of time since conception, and the length of time since birth. When dealing with adults, it won’t make much difference, but when dealing with newborns it might.

Moving beyond these issues, there’s the question of methodology. What specific “measurement method” are you going to use to find out someone’s age? As before, there are lots of different possibilities:

  • You could just ask people “how old are you?” The method of self-report is fast, cheap and easy, but it only works with people old enough to understand the question, and some people lie about their age.
  • You could ask an authority (e.g., a parent) “how old is your child?” This method is fast, and when dealing with kids it’s not all that hard since the parent is almost always around. It doesn’t work as well if you want to know “age since conception”, since a lot of parents can’t say for sure when conception took place. For that, you might need a different authority (e.g., an obstetrician).
  • You could look up official records, like birth certificates. This is time consuming and annoying, but it has its uses (e.g., if the person is now dead).

2.1.2 Operationalisation: defining your measurement

All of the ideas discussed in the previous section all relate to the concept of operationalisation . To be a bit more precise about the idea, operationalisation is the process by which we take a meaningful but somewhat vague concept, and turn it into a precise measurement. The process of operationalisation can involve several different things:

  • Being precise about what you are trying to measure. For instance, does “age” mean “time since birth” or “time since conception” in the context of your research?
  • Determining what method you will use to measure it. Will you use self-report to measure age, ask a parent, or look up an official record? If you’re using self-report, how will you phrase the question?
  • Defining the set of the allowable values that the measurement can take. Note that these values don’t always have to be numerical, though they often are. When measuring age, the values are numerical, but we still need to think carefully about what numbers are allowed. Do we want age in years, years and months, days, hours? Etc. For other types of measurements (e.g., gender), the values aren’t numerical. But, just as before, we need to think about what values are allowed. If we’re asking people to self-report their gender, what options to we allow them to choose between? Is it enough to allow only “male” or “female”? Do you need an “other” option? Or should we not give people any specific options, and let them answer in their own words? And if you open up the set of possible values to include all verbal response, how will you interpret their answers?

Operationalisation is a tricky business, and there’s no “one, true way” to do it. The way in which you choose to operationalise the informal concept of “age” or “gender” into a formal measurement depends on what you need to use the measurement for. Often you’ll find that the community of scientists who work in your area have some fairly well-established ideas for how to go about it. In other words, operationalisation needs to be thought through on a case by case basis. Nevertheless, while there a lot of issues that are specific to each individual research project, there are some aspects to it that are pretty general.

Before moving on, I want to take a moment to clear up our terminology, and in the process introduce one more term. Here are four different things that are closely related to each other:

  • A theoretical construct . This is the thing that you’re trying to take a measurement of, like “age”, “gender” or an “opinion”. A theoretical construct can’t be directly observed, and often they’re actually a bit vague.
  • A measure . The measure refers to the method or the tool that you use to make your observations. A question in a survey, a behavioural observation or a brain scan could all count as a measure.
  • An operationalisation . The term “operationalisation” refers to the logical connection between the measure and the theoretical construct, or to the process by which we try to derive a measure from a theoretical construct.
  • A variable . Finally, a new term. A variable is what we end up with when we apply our measure to something in the world. That is, variables are the actual “data” that we end up with in our data sets.

In practice, even scientists tend to blur the distinction between these things, but it’s very helpful to try to understand the differences.

2.2 Scales of measurement

As the previous section indicates, the outcome of a psychological measurement is called a variable. But not all variables are of the same qualitative type, and it’s very useful to understand what types there are. A very useful concept for distinguishing between different types of variables is what’s known as scales of measurement .

2.2.1 Nominal scale

A nominal scale variable (also referred to as a categorical variable) is one in which there is no particular relationship between the different possibilities: for these kinds of variables it doesn’t make any sense to say that one of them is “bigger’ or”better” than any other one, and it absolutely doesn’t make any sense to average them. The classic example for this is “eye colour”. Eyes can be blue, green and brown, among other possibilities, but none of them is any “better” than any other one. As a result, it would feel really weird to talk about an “average eye colour”. Similarly, gender is nominal too: male isn’t better or worse than female, neither does it make sense to try to talk about an “average gender”. In short, nominal scale variables are those for which the only thing you can say about the different possibilities is that they are different. That’s it.

Let’s take a slightly closer look at this. Suppose I was doing research on how people commute to and from work. One variable I would have to measure would be what kind of transportation people use to get to work. This “transport type” variable could have quite a few possible values, including: “train”, “bus”, “car”, “bicycle”, etc. For now, let’s suppose that these four are the only possibilities, and suppose that when I ask 100 people how they got to work today, and I get this:

So, what’s the average transportation type? Obviously, the answer here is that there isn’t one. It’s a silly question to ask. You can say that travel by car is the most popular method, and travel by train is the least popular method, but that’s about all. Similarly, notice that the order in which I list the options isn’t very interesting. I could have chosen to display the data like this

and nothing really changes.

2.2.2 Ordinal scale

Ordinal scale variables have a bit more structure than nominal scale variables, but not by a lot. An ordinal scale variable is one in which there is a natural, meaningful way to order the different possibilities, but you can’t do anything else. The usual example given of an ordinal variable is “finishing position in a race”. You can say that the person who finished first was faster than the person who finished second, but you don’t know how much faster. As a consequence we know that 1st > 2nd, and we know that 2nd > 3rd, but the difference between 1st and 2nd might be much larger than the difference between 2nd and 3rd.

Here’s an more psychologically interesting example. Suppose I’m interested in people’s attitudes to climate change, and I ask them to pick one of these four statements that most closely matches their beliefs:

Temperatures are rising, because of human activity Temperatures are rising, but we don’t know why Temperatures are rising, but not because of humans Temperatures are not rising

Notice that these four statements actually do have a natural ordering, in terms of “the extent to which they agree with the current science”. Statement 1 is a close match, statement 2 is a reasonable match, statement 3 isn’t a very good match, and statement 4 is in strong opposition to the science. So, in terms of the thing I’m interested in (the extent to which people endorse the science), I can order the items as 1 > 2 > 3 > 4. Since this ordering exists, it would be very weird to list the options like this…

Temperatures are rising, but not because of humans Temperatures are rising, because of human activity Temperatures are not rising Temperatures are rising, but we don’t know why

… because it seems to violate the natural “structure” to the question.

So, let’s suppose I asked 100 people these questions, and got the following answers:

When analysing these data, it seems quite reasonable to try to group (1), (2) and (3) together, and say that 81 of 100 people were willing to at least partially endorse the science. And it’s also quite reasonable to group (2), (3) and (4) together and say that 49 of 100 people registered at least some disagreement with the dominant scientific view. However, it would be entirely bizarre to try to group (1), (2) and (4) together and say that 90 of 100 people said… what? There’s nothing sensible that allows you to group those responses together at all.

That said, notice that while we can use the natural ordering of these items to construct sensible groupings, what we can’t do is average them. For instance, in my simple example here, the “average” response to the question is 1.97. If you can tell me what that means, I’d love to know. Because that sounds like gibberish to me!

2.2.3 Interval scale

In contrast to nominal and ordinal scale variables, interval scale and ratio scale variables are variables for which the numerical value is genuinely meaningful. In the case of interval scale variables, the differences between the numbers are interpretable, but the variable doesn’t have a “natural” zero value. A good example of an interval scale variable is measuring temperature in degrees celsius. For instance, if it was 15 \(^\circ\) yesterday and 18 \(^\circ\) today, then the 3 \(^\circ\) difference between the two is genuinely meaningful. Moreover, that 3 \(^\circ\) difference is exactly the same as the 3 \(^\circ\) difference between 7 \(^\circ\) and 10 \(^\circ\) . In short, addition and subtraction are meaningful for interval scale variables. 8

However, notice that the 0 \(^\circ\) does not mean “no temperature at all”: it actually means “the temperature at which water freezes”, which is pretty arbitrary. As a consequence, it becomes pointless to try to multiply and divide temperatures. It is wrong to say that \(20^\circ\) is twice as hot as 10 \(^\circ\) , just as it is weird and meaningless to try to claim that 20 \(^\circ\) is negative two times as hot as -10 \(^\circ\) .

Again, lets look at a more psychological example. Suppose I’m interested in looking at how the attitudes of first-year university students have changed over time. Obviously, I’m going to want to record the year in which each student started. This is an interval scale variable. A student who started in 2003 did arrive 5 years before a student who started in 2008. However, it would be completely insane for me to divide 2008 by 2003 and say that the second student started “1.0024 times later” than the first one. That doesn’t make any sense at all.

2.2.4 Ratio scale

The fourth and final type of variable to consider is a ratio scale variable, in which zero really means zero, and it’s okay to multiply and divide. A good psychological example of a ratio scale variable is response time (RT). In a lot of tasks it’s very common to record the amount of time somebody takes to solve a problem or answer a question, because it’s an indicator of how difficult the task is. Suppose that Alan takes 2.3 seconds to respond to a question, whereas Ben takes 3.1 seconds. As with an interval scale variable, addition and subtraction are both meaningful here. Ben really did take 3.1 – 2.3 = 0.8 seconds longer than Alan did. However, notice that multiplication and division also make sense here too: Ben took 3.1 / 2.3 = 1.35 times as long as Alan did to answer the question. And the reason why you can do this is that, for a ratio scale variable such as RT, “zero seconds” really does mean “no time at all”.

2.2.5 Continuous versus discrete variables

There’s a second kind of distinction that you need to be aware of, regarding what types of variables you can run into. This is the distinction between continuous variables and discrete variables. The difference between these is as follows:

  • A continuous variable is one in which, for any two values that you can think of, it’s always logically possible to have another value in between.
  • A discrete variable is, in effect, a variable that isn’t continuous. For a discrete variable, it’s sometimes the case that there’s nothing in the middle.

These definitions probably seem a bit abstract, but they’re pretty simple once you see some examples. For instance, response time is continuous. If Alan takes 3.1 seconds and Ben takes 2.3 seconds to respond to a question, then it’s possible for Cameron’s response time to lie in between, by taking 3.0 seconds. And of course it would also be possible for David to take 3.031 seconds to respond, meaning that his RT would lie in between Cameron’s and Alan’s. And while in practice it might be impossible to measure RT that precisely, it’s certainly possible in principle. Because we can always find a new value for RT in between any two other ones, we say that RT is continuous.

Discrete variables occur when this rule is violated. For example, nominal scale variables are always discrete: there isn’t a type of transportation that falls “in between” trains and bicycles, not in the strict mathematical way that 2.3 falls in between 2 and 3. So transportation type is discrete. Similarly, ordinal scale variables are always discrete: although “2nd place” does fall between “1st place” and “3rd place”, there’s nothing that can logically fall in between “1st place” and “2nd place”. Interval scale and ratio scale variables can go either way. As we saw above, response time (a ratio scale variable) is continuous. Temperature in degrees celsius (an interval scale variable) is also continuous. However, the year you went to school (an interval scale variable) is discrete. There’s no year in between 2002 and 2003. The number of questions you get right on a true-or-false test (a ratio scale variable) is also discrete: since a true-or-false question doesn’t allow you to be “partially correct”, there’s nothing in between 5/10 and 6/10. Table 2.1 summarises the relationship between the scales of measurement and the discrete/continuity distinction. Cells with a tick mark correspond to things that are possible. I’m trying to hammer this point home, because (a) some textbooks get this wrong, and (b) people very often say things like “discrete variable” when they mean “nominal scale variable”. It’s very unfortunate.

2.2.6 Some complexities

Okay, I know you’re going to be shocked to hear this, but … the real world is much messier than this little classification scheme suggests. Very few variables in real life actually fall into these nice neat categories, so you need to be kind of careful not to treat the scales of measurement as if they were hard and fast rules. It doesn’t work like that: they’re guidelines, intended to help you think about the situations in which you should treat different variables differently. Nothing more.

So let’s take a classic example, maybe the classic example, of a psychological measurement tool: the Likert scale . The humble Likert scale is the bread and butter tool of all survey design. You yourself have filled out hundreds, maybe thousands of them, and odds are you’ve even used one yourself. Suppose we have a survey question that looks like this:

Which of the following best describes your opinion of the statement that “all pirates are freaking awesome” …

and then the options presented to the participant are these:

Strongly disagree Disagree Neither agree nor disagree Agree Strongly agree

This set of items is an example of a 5-point Likert scale: people are asked to choose among one of several (in this case 5) clearly ordered possibilities, generally with a verbal descriptor given in each case. However, it’s not necessary that all items be explicitly described. This is a perfectly good example of a 5-point Likert scale too:

Strongly disagree Strongly agree

Likert scales are very handy, if somewhat limited, tools. The question is, what kind of variable are they? They’re obviously discrete, since you can’t give a response of 2.5. They’re obviously not nominal scale, since the items are ordered; and they’re not ratio scale either, since there’s no natural zero.

But are they ordinal scale or interval scale? One argument says that we can’t really prove that the difference between “strongly agree” and “agree” is of the same size as the difference between “agree” and “neither agree nor disagree”. In fact, in everyday life it’s pretty obvious that they’re not the same at all. So this suggests that we ought to treat Likert scales as ordinal variables. On the other hand, in practice most participants do seem to take the whole “on a scale from 1 to 5” part fairly seriously, and they tend to act as if the differences between the five response options were fairly similar to one another. As a consequence, a lot of researchers treat Likert scale data as if it were interval scale. It’s not interval scale, but in practice it’s close enough that we usually think of it as being quasi-interval scale .

2.3 Assessing the reliability of a measurement

At this point we’ve thought a little bit about how to operationalise a theoretical construct and thereby create a psychological measure; and we’ve seen that by applying psychological measures we end up with variables, which can come in many different types. At this point, we should start discussing the obvious question: is the measurement any good? We’ll do this in terms of two related ideas: reliability and validity . Put simply, the reliability of a measure tells you how precisely you are measuring something, whereas the validity of a measure tells you how accurate the measure is. In this section I’ll talk about reliability; we’ll talk about validity in the next chapter.

Reliability is actually a very simple concept: it refers to the repeatability or consistency of your measurement. The measurement of my weight by means of a “bathroom scale” is very reliable: if I step on and off the scales over and over again, it’ll keep giving me the same answer. Measuring my intelligence by means of “asking my mum” is very unreliable: some days she tells me I’m a bit thick, and other days she tells me I’m a complete moron. Notice that this concept of reliability is different to the question of whether the measurements are correct (the correctness of a measurement relates to it’s validity). If I’m holding a sack of potatos when I step on and off of the bathroom scales, the measurement will still be reliable: it will always give me the same answer. However, this highly reliable answer doesn’t match up to my true weight at all, therefore it’s wrong. In technical terms, this is a reliable but invalid measurement. Similarly, while my mum’s estimate of my intelligence is a bit unreliable, she might be right. Maybe I’m just not too bright, and so while her estimate of my intelligence fluctuates pretty wildly from day to day, it’s basically right. So that would be an unreliable but valid measure. Of course, to some extent, notice that if my mum’s estimates are too unreliable, it’s going to be very hard to figure out which one of her many claims about my intelligence is actually the right one. To some extent, then, a very unreliable measure tends to end up being invalid for practical purposes; so much so that many people would say that reliability is necessary (but not sufficient) to ensure validity.

Okay, now that we’re clear on the distinction between reliability and validity, let’s have a think about the different ways in which we might measure reliability:

  • Test-retest reliability . This relates to consistency over time: if we repeat the measurement at a later date, do we get a the same answer?
  • Inter-rater reliability . This relates to consistency across people: if someone else repeats the measurement (e.g., someone else rates my intelligence) will they produce the same answer?
  • Parallel forms reliability . This relates to consistency across theoretically-equivalent measurements: if I use a different set of bathroom scales to measure my weight, does it give the same answer?
  • Internal consistency reliability . If a measurement is constructed from lots of different parts that perform similar functions (e.g., a personality questionnaire result is added up across several questions) do the individual parts tend to give similar answers.

Not all measurements need to possess all forms of reliability. For instance, educational assessment can be thought of as a form of measurement. One of the subjects that I teach, Computational Cognitive Science , has an assessment structure that has a research component and an exam component (plus other things). The exam component is intended to measure something different from the research component, so the assessment as a whole has low internal consistency. However, within the exam there are several questions that are intended to (approximately) measure the same things, and those tend to produce similar outcomes; so the exam on its own has a fairly high internal consistency. Which is as it should be. You should only demand reliability in those situations where you want to be measure the same thing!

2.4 The “role” of variables: predictors and outcomes

Okay, I’ve got one last piece of terminology that I need to explain to you before moving away from variables. Normally, when we do some research we end up with lots of different variables. Then, when we analyse our data we usually try to explain some of the variables in terms of some of the other variables. It’s important to keep the two roles “thing doing the explaining” and “thing being explained” distinct. So let’s be clear about this now. Firstly, we might as well get used to the idea of using mathematical symbols to describe variables, since it’s going to happen over and over again. Let’s denote the “to be explained” variable \(Y\) , and denote the variables “doing the explaining” as \(X_1\) , \(X_2\) , etc.

Now, when we doing an analysis, we have different names for \(X\) and \(Y\) , since they play different roles in the analysis. The classical names for these roles are independent variable (IV) and dependent variable (DV). The IV is the variable that you use to do the explaining (i.e., \(X\) ) and the DV is the variable being explained (i.e., \(Y\) ). The logic behind these names goes like this: if there really is a relationship between \(X\) and \(Y\) then we can say that \(Y\) depends on \(X\) , and if we have designed our study “properly” then \(X\) isn’t dependent on anything else. However, I personally find those names horrible: they’re hard to remember and they’re highly misleading, because (a) the IV is never actually “independent of everything else” and (b) if there’s no relationship, then the DV doesn’t actually depend on the IV. And in fact, because I’m not the only person who thinks that IV and DV are just awful names, there are a number of alternatives that I find more appealing. The terms that I’ll use in these notes are predictors and outcomes . The idea here is that what you’re trying to do is use \(X\) (the predictors) to make guesses about \(Y\) (the outcomes). 9 This is summarised in Table 2.2 .

2.5 Experimental and non-experimental research

One of the big distinctions that you should be aware of is the distinction between “experimental research” and “non-experimental research”. When we make this distinction, what we’re really talking about is the degree of control that the researcher exercises over the people and events in the study.

2.5.1 Experimental research

The key features of experimental research is that the researcher controls all aspects of the study, especially what participants experience during the study. In particular, the researcher manipulates or varies the predictor variables (IVs), and then allows the outcome variable (DV) to vary naturally. The idea here is to deliberately vary the predictors (IVs) to see if they have any causal effects on the outcomes. Moreover, in order to ensure that there’s no chance that something other than the predictor variables is causing the outcomes, everything else is kept constant or is in some other way “balanced” to ensure that they have no effect on the results. In practice, it’s almost impossible to think of everything else that might have an influence on the outcome of an experiment, much less keep it constant. The standard solution to this is randomisation : that is, we randomly assign people to different groups, and then give each group a different treatment (i.e., assign them different values of the predictor variables). We’ll talk more about randomisation later in this course, but for now, it’s enough to say that what randomisation does is minimise (but not eliminate) the chances that there are any systematic difference between groups.

Let’s consider a very simple, completely unrealistic and grossly unethical example. Suppose you wanted to find out if smoking causes lung cancer. One way to do this would be to find people who smoke and people who don’t smoke, and look to see if smokers have a higher rate of lung cancer. This is not a proper experiment, since the researcher doesn’t have a lot of control over who is and isn’t a smoker. And this really matters: for instance, it might be that people who choose to smoke cigarettes also tend to have poor diets, or maybe they tend to work in asbestos mines, or whatever. The point here is that the groups (smokers and non-smokers) actually differ on lots of things, not just smoking. So it might be that the higher incidence of lung cancer among smokers is caused by something else, not by smoking per se. In technical terms, these other things (e.g. diet) are called “confounds”, and we’ll talk about those in just a moment.

In the meantime, let’s now consider what a proper experiment might look like. Recall that our concern was that smokers and non-smokers might differ in lots of ways. The solution, as long as you have no ethics, is to control who smokes and who doesn’t. Specifically, if we randomly divide participants into two groups, and force half of them to become smokers, then it’s very unlikely that the groups will differ in any respect other than the fact that half of them smoke. That way, if our smoking group gets cancer at a higher rate than the non-smoking group, then we can feel pretty confident that (a) smoking does cause cancer and (b) we’re murderers.

2.5.2 Non-experimental research

Non-experimental research is a broad term that covers “any study in which the researcher doesn’t have quite as much control as they do in an experiment”. Obviously, control is something that scientists like to have, but as the previous example illustrates, there are lots of situations in which you can’t or shouldn’t try to obtain that control. Since it’s grossly unethical (and almost certainly criminal) to force people to smoke in order to find out if they get cancer, this is a good example of a situation in which you really shouldn’t try to obtain experimental control. But there are other reasons too. Even leaving aside the ethical issues, our “smoking experiment” does have a few other issues. For instance, when I suggested that we “force” half of the people to become smokers, I must have been talking about starting with a sample of non-smokers, and then forcing them to become smokers. While this sounds like the kind of solid, evil experimental design that a mad scientist would love, it might not be a very sound way of investigating the effect in the real world. For instance, suppose that smoking only causes lung cancer when people have poor diets, and suppose also that people who normally smoke do tend to have poor diets. However, since the “smokers” in our experiment aren’t “natural” smokers (i.e., we forced non-smokers to become smokers; they didn’t take on all of the other normal, real life characteristics that smokers might tend to possess) they probably have better diets. As such, in this silly example they wouldn’t get lung cancer, and our experiment will fail, because it violates the structure of the “natural” world (the technical name for this is an “artifactual” result; see later).

One distinction worth making between two types of non-experimental research is the difference between quasi-experimental research and case studies . The example I discussed earlier – in which we wanted to examine incidence of lung cancer among smokers and non-smokers, without trying to control who smokes and who doesn’t – is a quasi-experimental design. That is, it’s the same as an experiment, but we don’t control the predictors (IVs). We can still use statistics to analyse the results, it’s just that we have to be a lot more careful.

The alternative approach, case studies, aims to provide a very detailed description of one or a few instances. In general, you can’t use statistics to analyse the results of case studies, and it’s usually very hard to draw any general conclusions about “people in general” from a few isolated examples. However, case studies are very useful in some situations. Firstly, there are situations where you don’t have any alternative: neuropsychology has this issue a lot. Sometimes, you just can’t find a lot of people with brain damage in a specific area, so the only thing you can do is describe those cases that you do have in as much detail and with as much care as you can. However, there’s also some genuine advantages to case studies: because you don’t have as many people to study, you have the ability to invest lots of time and effort trying to understand the specific factors at play in each case. This is a very valuable thing to do. As a consequence, case studies can complement the more statistically-oriented approaches that you see in experimental and quasi-experimental designs. We won’t talk much about case studies in these lectures, but they are nevertheless very valuable tools!

2.6 Assessing the validity of a study

More than any other thing, a scientist wants their research to be “valid”. The conceptual idea behind validity is very simple: can you trust the results of your study? If not, the study is invalid. However, while it’s easy to state, in practice it’s much harder to check validity than it is to check reliability. And in all honesty, there’s no precise, clearly agreed upon notion of what validity actually is. In fact, there’s lots of different kinds of validity, each of which raises it’s own issues, and not all forms of validity are relevant to all studies. I’m going to talk about five different types:

  • Internal validity
  • External validity
  • Construct validity
  • Face validity
  • Ecological validity

To give you a quick guide as to what matters here… (1) Internal and external validity are the most important, since they tie directly to the fundamental question of whether your study really works. (2) Construct validity asks whether you’re measuring what you think you are. (3) Face validity isn’t terribly important except insofar as you care about “appearances”. (4) Ecological validity is a special case of face validity that corresponds to a kind of appearance that you might care about a lot.

2.6.1 Internal validity

Internal validity refers to the extent to which you are able draw the correct conclusions about the causal relationships between variables. It’s called “internal” because it refers to the relationships between things “inside” the study. Let’s illustrate the concept with a simple example. Suppose you’re interested in finding out whether a university education makes you write better. To do so, you get a group of first year students, ask them to write a 1000 word essay, and count the number of spelling and grammatical errors they make. Then you find some third-year students, who obviously have had more of a university education than the first-years, and repeat the exercise. And let’s suppose it turns out that the third-year students produce fewer errors. And so you conclude that a university education improves writing skills. Right? Except… the big problem that you have with this experiment is that the third-year students are older, and they’ve had more experience with writing things. So it’s hard to know for sure what the causal relationship is: Do older people write better? Or people who have had more writing experience? Or people who have had more education? Which of the above is the true cause of the superior performance of the third-years? Age? Experience? Education? You can’t tell. This is an example of a failure of internal validity, because your study doesn’t properly tease apart the causal relationships between the different variables.

2.6.2 External validity

External validity relates to the generalisability of your findings. That is, to what extent do you expect to see the same pattern of results in “real life” as you saw in your study. To put it a bit more precisely, any study that you do in psychology will involve a fairly specific set of questions or tasks, will occur in a specific environment, and will involve participants that are drawn from a particular subgroup. So, if it turns out that the results don’t actually generalise to people and situations beyond the ones that you studied, then what you’ve got is a lack of external validity.

The classic example of this issue is the fact that a very large proportion of studies in psychology will use undergraduate psychology students as the participants. Obviously, however, the researchers don’t care only about psychology students; they care about people in general. Given that, a study that uses only psych students as participants always carries a risk of lacking external validity. That is, if there’s something “special” about psychology students that makes them different to the general populace in some relevant respect, then we may start worrying about a lack of external validity.

That said, it is absolutely critical to realise that a study that uses only psychology students does not necessarily have a problem with external validity. I’ll talk about this again later, but it’s such a common mistake that I’m going to mention it here. The external validity is threatened by the choice of population if (a) the population from which you sample your participants is very narrow (e.g., psych students), and (b) the narrow population that you sampled from is systematically different from the general population, in some respect that is relevant to the psychological phenomenon that you intend to study . The italicised part is the bit that lots of people forget: it is true that psychology undergraduates differ from the general population in lots of ways, and so a study that uses only psych students may have problems with external validity. However, if those differences aren’t very relevant to the phenomenon that you’re studying, then there’s nothing to worry about. To make this a bit more concrete, here’s two extreme examples:

  • You want to measure “attitudes of the general public towards psychotherapy”, but all of your participants are psychology students. This study would almost certainly have a problem with external validity.
  • You want to measure the effectiveness of a visual illusion, and your participants are all psychology students. This study is very unlikely to have a problem with external validity

Having just spent the last couple of paragraphs focusing on the choice of participants (since that’s the big issue that everyone tends to worry most about), it’s worth remembering that external validity is a broader concept. The following are also examples of things that might pose a threat to external validity, depending on what kind of study you’re doing:

  • People might answer a “psychology questionnaire” in a manner that doesn’t reflect what they would do in real life.
  • Your lab experiment on (say) “human learning” has a different structure to the learning problems people face in real life.

2.6.3 Construct validity

Construct validity is basically a question of whether you’re measuring what you want to be measuring. A measurement has good construct validity if it is actually measuring the correct theoretical construct, and bad construct validity if it doesn’t. To give very simple (if ridiculous) example, suppose I’m trying to investigate the rates with which university students cheat on their exams. And the way I attempt to measure it is by asking the cheating students to stand up in the lecture theatre so that I can count them. When I do this with a class of 300 students, 0 people claim to be cheaters. So I therefore conclude that the proportion of cheaters in my class is 0%. Clearly this is a bit ridiculous. But the point here is not that this is a very deep methodological example, but rather to explain what construct validity is. The problem with my measure is that while I’m trying to measure “the proportion of people who cheat” what I’m actually measuring is “the proportion of people stupid enough to own up to cheating, or bloody minded enough to pretend that they do”. Obviously, these aren’t the same thing! So my study has gone wrong, because my measurement has very poor construct validity.

2.6.4 Face validity

Face validity simply refers to whether or not a measure “looks like” it’s doing what it’s supposed to, nothing more. If I design a test of intelligence, and people look at it and they say “no, that test doesn’t measure intelligence”, then the measure lacks face validity. It’s as simple as that. Obviously, face validity isn’t very important from a pure scientific perspective. After all, what we care about is whether or not the measure actually does what it’s supposed to do, not whether it looks like it does what it’s supposed to do. As a consequence, we generally don’t care very much about face validity. That said, the concept of face validity serves three useful pragmatic purposes:

  • Sometimes, an experienced scientist will have a “hunch” that a particular measure won’t work. While these sorts of hunches have no strict evidentiary value, it’s often worth paying attention to them. Because often times people have knowledge that they can’t quite verbalise, so there might be something to worry about even if you can’t quite say why. In other words, when someone you trust criticises the face validity of your study, it’s worth taking the time to think more carefully about your design to see if you can think of reasons why it might go awry. Mind you, if you don’t find any reason for concern, then you should probably not worry: after all, face validity really doesn’t matter much.
  • Often (very often), completely uninformed people will also have a “hunch” that your research is crap. And they’ll criticise it on the internet or something. On close inspection, you’ll often notice that these criticisms are actually focused entirely on how the study “looks”, but not on anything deeper. The concept of face validity is useful for gently explaining to people that they need to substantiate their arguments further.
  • Expanding on the last point, if the beliefs of untrained people are critical (e.g., this is often the case for applied research where you actually want to convince policy makers of something or other) then you have to care about face validity. Simply because – whether you like it or not – a lot of people will use face validity as a proxy for real validity. If you want the government to change a law on scientific, psychological grounds, then it won’t matter how good your studies “really” are. If they lack face validity, you’ll find that politicians ignore you. Of course, it’s somewhat unfair that policy often depends more on appearance than fact, but that’s how things go.

2.6.5 Ecological validity

Ecological validity is a different notion of validity, which is similar to external validity, but less important. The idea is that, in order to be ecologically valid, the entire set up of the study should closely approximate the real world scenario that is being investigated. In a sense, ecological validity is a kind of face validity – it relates mostly to whether the study “looks” right, but with a bit more rigour to it. To be ecologically valid, the study has to look right in a fairly specific way. The idea behind it is the intuition that a study that is ecologically valid is more likely to be externally valid. It’s no guarantee, of course. But the nice thing about ecological validity is that it’s much easier to check whether a study is ecologically valid than it is to check whether a study is externally valid. An simple example would be eyewitness identification studies. Most of these studies tend to be done in a university setting, often with fairly simple array of faces to look at rather than a line up. The length of time between seeing the “criminal” and being asked to identify the suspect in the “line up” is usually shorter. The “crime” isn’t real, so there’s no chance that the witness being scared, and there’s no police officers present, so there’s not as much chance of feeling pressured. These things all mean that the study definitely lacks ecological validity. They might (but might not) mean that it also lacks external validity.

2.7 Confounds, artifacts and other threats to validity

If we look at the issue of validity in the most general fashion, the two biggest worries that we have are confounds and artifact . These two terms are defined in the following way:

  • Confound : A confound is an additional, often unmeasured variable 10 that turns out to be related to both the predictors and the outcomes. The existence of confounds threatens the internal validity of the study because you can’t tell whether the predictor causes the outcome, or if the confounding variable causes it, etc.
  • Artifact : A result is said to be “artifactual” if it only holds in the special situation that you happened to test in your study. The possibility that your result is an artifact describes a threat to your external validity, because it raises the possibility that you can’t generalise your results to the actual population that you care about.

As a general rule confounds are a bigger concern for non-experimental studies, precisely because they’re not proper experiments: by definition, you’re leaving lots of things uncontrolled, so there’s a lot of scope for confounds working their way into your study. Experimental research tends to be much less vulnerable to confounds: the more control you have over what happens during the study, the more you can prevent confounds from appearing.

However, there’s always swings and roundabouts, and when we start thinking about artifacts rather than confounds, the shoe is very firmly on the other foot. For the most part, artifactual results tend to be a concern for experimental studies than for non-experimental studies. To see this, it helps to realise that the reason that a lot of studies are non-experimental is precisely because what the researcher is trying to do is examine human behaviour in a more naturalistic context. By working in a more real-world context, you lose experimental control (making yourself vulnerable to confounds) but because you tend to be studying human psychology “in the wild” you reduce the chances of getting an artifactual result. Or, to put it another way, when you take psychology out of the wild and bring it into the lab (which we usually have to do to gain our experimental control), you always run the risk of accidentally studying something different than you wanted to study: which is more or less the definition of an artifact.

Be warned though: the above is a rough guide only. It’s absolutely possible to have confounds in an experiment, and to get artifactual results with non-experimental studies. This can happen for all sorts of reasons, not least of which is researcher error. In practice, it’s really hard to think everything through ahead of time, and even very good researchers make mistakes. But other times it’s unavoidable, simply because the researcher has ethics (e.g., see 2.7.5 ).

Okay. There’s a sense in which almost any threat to validity can be characterised as a confound or an artifact: they’re pretty vague concepts. So let’s have a look at some of the most common examples…

2.7.1 History effects

History effects refer to the possibility that specific events may occur during the study itself that might influence the outcomes. For instance, something might happen in between a pre-test and a post-test. Or, in between testing participant 23 and participant 24. Alternatively, it might be that you’re looking at an older study, which was perfectly valid for its time, but the world has changed enough since then that the conclusions are no longer trustworthy. Examples of things that would count as history effects:

  • You’re interested in how people think about risk and uncertainty. You started your data collection in December 2010. But finding participants and collecting data takes time, so you’re still finding new people in February 2011. Unfortunately for you (and even more unfortunately for others), the Queensland floods occurred in January 2011, causing billions of dollars of damage and killing many people. Not surprisingly, the people tested in February 2011 express quite different beliefs about handling risk than the people tested in December 2010. Which (if any) of these reflects the “true” beliefs of participants? I think the answer is probably both: the Queensland floods genuinely changed the beliefs of the Australian public, though possibly only temporarily. The key thing here is that the “history” of the people tested in February is quite different to people tested in December.
  • You’re testing the psychological effects of a new anti-anxiety drug. So what you do is measure anxiety before administering the drug (e.g., by self-report, and taking physiological measures, let’s say), then you administer the drug, and then you take the same measures afterwards. In the middle, however, because your labs are in Los Angeles, there’s an earthquake, which increases the anxiety of the participants.

2.7.2 Maturation effects

As with history effects, maturational effects are fundamentally about change over time. However, maturation effects aren’t in response to specific events. Rather, they relate to how people change on their own over time: we get older, we get tired, we get bored, etc. Some examples of maturation effects:

  • When doing developmental psychology research, you need to be aware that children grow up quite rapidly. So, suppose that you want to find out whether some educational trick helps with vocabulary size among 3 year olds. One thing that you need to be aware of is that the vocabulary size of children that age is growing at an incredible rate (multiple words per day), all on its own. If you design your study without taking this maturational effect into account, then you won’t be able to tell if your educational trick works.
  • When running a very long experiment in the lab (say, something that goes for 3 hours), it’s very likely that people will begin to get bored and tired, and that this maturational effect will cause performance to decline, regardless of anything else going on in the experiment

2.7.3 Repeated testing effects

An important type of history effect is the effect of repeated testing . Suppose I want to take two measurements of some psychological construct (e.g., anxiety). One thing I might be worried about is if the first measurement has an effect on the second measurement. In other words, this is a history effect in which the “event” that influences the second measurement is the first measurement itself! This is not at all uncommon. Examples of this include:

  • Learning and practice : e.g., “intelligence” at time 2 might appear to go up relative to time 1 because participants learned the general rules of how to solve “intelligence-test-style” questions during the first testing session.
  • Familiarity with the testing situation : e.g., if people are nervous at time 1, this might make performance go down; after sitting through the first testing situation, they might calm down a lot precisely because they’ve seen what the testing looks like.
  • Auxiliary changes caused by testing : e.g., if a questionnaire assessing mood is boring, then mood at measurement at time 2 is more likely to become “bored”, precisely because of the boring measurement made at time 1.

2.7.4 Selection bias

Selection bias is a pretty broad term. Suppose that you’re running an experiment with two groups of participants, where each group gets a different “treatment”, and you want to see if the different treatments lead to different outcomes. However, suppose that, despite your best efforts, you’ve ended up with a gender imbalance across groups (say, group A has 80% females and group B has 50% females). It might sound like this could never happen, but trust me, it can. This is an example of a selection bias, in which the people “selected into” the two groups have different characteristics. If any of those characteristics turns out to be relevant (say, your treatment works better on females than males) then you’re in a lot of trouble.

2.7.5 Differential attrition

One quite subtle danger to be aware of is called differential attrition , which is a kind of selection bias that is caused by the study itself. Suppose that, for the first time ever in the history of psychology, I manage to find the perfectly balanced and representative sample of people. I start running “Dan’s incredibly long and tedious experiment” on my perfect sample, but then, because my study is incredibly long and tedious, lots of people start dropping out. I can’t stop this: as we’ll discuss later in the chapter on research ethics, participants absolutely have the right to stop doing any experiment, any time, for whatever reason they feel like, and as researchers we are morally (and professionally) obliged to remind people that they do have this right. So, suppose that “Dan’s incredibly long and tedious experiment” has a very high drop out rate. What do you suppose the odds are that this drop out is random? Answer: zero. Almost certainly, the people who remain are more conscientious, more tolerant of boredom etc than those that leave. To the extent that (say) conscientiousness is relevant to the psychological phenomenon that I care about, this attrition can decrease the validity of my results.

When thinking about the effects of differential attrition, it is sometimes helpful to distinguish between two different types. The first is homogeneous attrition , in which the attrition effect is the same for all groups, treatments or conditions. In the example I gave above, the differential attrition would be homogeneous if (and only if) the easily bored participants are dropping out of all of the conditions in my experiment at about the same rate. In general, the main effect of homogeneous attrition is likely to be that it makes your sample unrepresentative. As such, the biggest worry that you’ll have is that the generalisability of the results decreases: in other words, you lose external validity.

The second type of differential attrition is heterogeneous attrition , in which the attrition effect is different for different groups. This is a much bigger problem: not only do you have to worry about your external validity, you also have to worry about your internal validity too. To see why this is the case, let’s consider a very dumb study in which I want to see if insulting people makes them act in a more obedient way. Why anyone would actually want to study that I don’t know, but let’s suppose I really, deeply cared about this. So, I design my experiment with two conditions. In the “treatment” condition, the experimenter insults the participant and then gives them a questionnaire designed to measure obedience. In the “control” condition, the experimenter engages in a bit of pointless chitchat and then gives them the questionnaire. Leaving aside the questionable scientific merits and dubious ethics of such a study, let’s have a think about what might go wrong here. As a general rule, when someone insults me to my face, I tend to get much less co-operative. So, there’s a pretty good chance that a lot more people are going to drop out of the treatment condition than the control condition. And this drop out isn’t going to be random. The people most likely to drop out would probably be the people who don’t care all that much about the importance of obediently sitting through the experiment. Since the most bloody minded and disobedient people all left the treatment group but not the control group, we’ve introduced a confound: the people who actually took the questionnaire in the treatment group were already more likely to be dutiful and obedient than the people in the control group. In short, in this study insulting people doesn’t make them more obedient: it makes the more disobedient people leave the experiment! The internal validity of this experiment is completely shot.

2.7.6 Non-response bias

Non-response bias is closely related to selection bias, and to differential attrition. The simplest version of the problem goes like this. You mail out a survey to 1000 people, and only 300 of them reply. The 300 people who replied are almost certainly not a random subsample. People who respond to surveys are systematically different to people who don’t. This introduces a problem when trying to generalise from those 300 people who replied, to the population at large; since you now have a very non-random sample. The issue of non-response bias is more general than this, though. Among the (say) 300 people that did respond to the survey, you might find that not everyone answers every question. If (say) 80 people chose not to answer one of your questions, does this introduce problems? As always, the answer is maybe. If the question that wasn’t answered was on the last page of the questionnaire, and those 80 surveys were returned with the last page missing, there’s a good chance that the missing data isn’t a big deal: probably the pages just fell off. However, if the question that 80 people didn’t answer was the most confrontational or invasive personal question in the questionnaire, then almost certainly you’ve got a problem. In essence, what you’re dealing with here is what’s called the problem of missing data . If the data that is missing was “lost” randomly, then it’s not a big problem. If it’s missing systematically, then it can be a big problem.

2.7.7 Regression to the mean

Regression to the mean is a curious variation on selection bias. It refers to any situation where you select data based on an extreme value on some measure. Because the measure has natural variation, it almost certainly means that when you take a subsequent measurement, that later measurement will be less extreme than the first one, purely by chance.

Here’s an example. Suppose I’m interested in whether a psychology education has an adverse effect on very smart kids. To do this, I find the 20 psych I students with the best high school grades and look at how well they’re doing at university. It turns out that they’re doing a lot better than average, but they’re not topping the class at university, even though they did top their classes at high school. What’s going on? The natural first thought is that this must mean that the psychology classes must be having an adverse effect on those students. However, while that might very well be the explanation, it’s more likely that what you’re seeing is an example of “regression to the mean”. To see how it works, let’s take a moment to think about what is required to get the best mark in a class, regardless of whether that class be at high school or at university. When you’ve got a big class, there are going to be lots of very smart people enrolled. To get the best mark you have to be very smart, work very hard, and be a bit lucky. The exam has to ask just the right questions for your idiosyncratic skills, and you have to not make any dumb mistakes (we all do that sometimes) when answering them. And that’s the thing: intelligence and hard work are transferrable from one class to the next. Luck isn’t. The people who got lucky in high school won’t be the same as the people who get lucky at university. That’s the very definition of “luck”. The consequence of this is that, when you select people at the very extreme values of one measurement (the top 20 students), you’re selecting for hard work, skill and luck. But because the luck doesn’t transfer to the second measurement (only the skill and work), these people will all be expected to drop a little bit when you measure them a second time (at university). So their scores fall back a little bit, back towards everyone else. This is regression to the mean.

Regression to the mean is surprisingly common. For instance, if two very tall people have kids, their children will tend to be taller than average, but not as tall as the parents. The reverse happens with very short parents: two very short parents will tend to have short children, but nevertheless those kids will tend to be taller than the parents. It can also be extremely subtle. For instance, there have been studies done that suggested that people learn better from negative feedback than from positive feedback. However, the way that people tried to show this was to give people positive reinforcement whenever they did good, and negative reinforcement when they did bad. And what you see is that after the positive reinforcement, people tended to do worse; but after the negative reinforcement they tended to do better. But! Notice that there’s a selection bias here: when people do very well, you’re selecting for “high” values, and so you should expect (because of regression to the mean) that performance on the next trial should be worse, regardless of whether reinforcement is given. Similarly, after a bad trial, people will tend to improve all on their own. The apparent superiority of negative feedback is an artifact caused by regression to the mean (see Kahneman and Tversky 1973 for discussion) .

2.7.8 Experimenter bias

Experimenter bias can come in multiple forms. The basic idea is that the experimenter, despite the best of intentions, can accidentally end up influencing the results of the experiment by subtly communicating the “right answer” or the “desired behaviour” to the participants. Typically, this occurs because the experimenter has special knowledge that the participant does not – either the right answer to the questions being asked, or knowledge of the expected pattern of performance for the condition that the participant is in, and so on. The classic example of this happening is the case study of “Clever Hans”, which dates back to 1907 (Pfungst 1911 ; Hothersall 2004 ) . Clever Hans was a horse that apparently was able to read and count, and perform other human like feats of intelligence. After Clever Hans became famous, psychologists started examining his behaviour more closely. It turned out that – not surprisingly – Hans didn’t know how to do maths. Rather, Hans was responding to the human observers around him. Because they did know how to count, and the horse had learned to change its behaviour when people changed theirs.

The general solution to the problem of experimenter bias is to engage in double blind studies, where neither the experimenter nor the participant knows which condition the participant is in, or knows what the desired behaviour is. This provides a very good solution to the problem, but it’s important to recognise that it’s not quite ideal, and hard to pull off perfectly. For instance, the obvious way that I could try to construct a double blind study is to have one of my Ph.D. students (one who doesn’t know anything about the experiment) run the study. That feels like it should be enough. The only person (me) who knows all the details (e.g., correct answers to the questions, assignments of participants to conditions) has no interaction with the participants, and the person who does all the talking to people (the Ph.D. student) doesn’t know anything. Except, that last part is very unlikely to be true. In order for the Ph.D. student to run the study effectively, they need to have been briefed by me, the researcher. And, as it happens, the Ph.D. student also knows me, and knows a bit about my general beliefs about people and psychology (e.g., I tend to think humans are much smarter than psychologists give them credit for). As a result of all this, it’s almost impossible for the experimenter to avoid knowing a little bit about what expectations I have. And even a little bit of knowledge can have an effect: suppose the experimenter accidentally conveys the fact that the participants are expected to do well in this task. Well, there’s a thing called the “Pygmalion effect”: if you expect great things of people, they’ll rise to the occasion; but if you expect them to fail, they’ll do that too. In other words, the expectations become a self-fulfilling prophesy.

2.7.9 Demand effects and reactivity

When talking about experimenter bias, the worry is that the experimenter’s knowledge or desires for the experiment are communicated to the participants, and that these effect people’s behaviour (Rosenthal 1966 ) . However, even if you manage to stop this from happening, it’s almost impossible to stop people from knowing that they’re part of a psychological study. And the mere fact of knowing that someone is watching/studying you can have a pretty big effect on behaviour. This is generally referred to as reactivity or demand effects . The basic idea is captured by the Hawthorne effect: people alter their performance because of the attention that the study focuses on them. The effect takes its name from a the “Hawthorne Works” factory outside of Chicago (see Adair 1984 ) . A study done in the 1920s looking at the effects of lighting on worker productivity at the factory turned out to be an effect of the fact that the workers knew they were being studied, rather than the lighting.

To get a bit more specific about some of the ways in which the mere fact of being in a study can change how people behave, it helps to think like a social psychologist and look at some of the roles that people might adopt during an experiment, but might not adopt if the corresponding events were occurring in the real world:

  • The good participant tries to be too helpful to the researcher: he or she seeks to figure out the experimenter’s hypotheses and confirm them.
  • The negative participant does the exact opposite of the good participant: he or she seeks to break or destroy the study or the hypothesis in some way.
  • The faithful participant is unnaturally obedient: he or she seeks to follow instructions perfectly, regardless of what might have happened in a more realistic setting.
  • The apprehensive participant gets nervous about being tested or studied, so much so that his or her behaviour becomes highly unnatural, or overly socially desirable.

2.7.10 Placebo effects

The placebo effect is a specific type of demand effect that we worry a lot about. It refers to the situation where the mere fact of being treated causes an improvement in outcomes. The classic example comes from clinical trials: if you give people a completely chemically inert drug and tell them that it’s a cure for a disease, they will tend to get better faster than people who aren’t treated at all. In other words, it is people’s belief that they are being treated that causes the improved outcomes, not the drug.

2.7.11 Situation, measurement and subpopulation effects

In some respects, these terms are a catch-all term for “all other threats to external validity”. They refer to the fact that the choice of subpopulation from which you draw your participants, the location, timing and manner in which you run your study (including who collects the data) and the tools that you use to make your measurements might all be influencing the results. Specifically, the worry is that these things might be influencing the results in such a way that the results won’t generalise to a wider array of people, places and measures.

2.7.12 Fraud, deception and self-deception

It is difficult to get a man to understand something, when his salary depends on his not understanding it. – Upton Sinclair

One final thing that I feel like I should mention. While reading what the textbooks often have to say about assessing the validity of the study, I couldn’t help but notice that they seem to make the assumption that the researcher is honest. I find this hilarious. While the vast majority of scientists are honest, in my experience at least, some are not. 11 Not only that, as I mentioned earlier, scientists are not immune to belief bias – it’s easy for a researcher to end up deceiving themselves into believing the wrong thing, and this can lead them to conduct subtly flawed research, and then hide those flaws when they write it up. So you need to consider not only the (probably unlikely) possibility of outright fraud, but also the (probably quite common) possibility that the research is unintentionally “slanted”. I opened a few standard textbooks and didn’t find much of a discussion of this problem, so here’s my own attempt to list a few ways in which these issues can arise are:

  • Data fabrication . Sometimes, people just make up the data. This is occasionally done with “good” intentions. For instance, the researcher believes that the fabricated data do reflect the truth, and may actually reflect “slightly cleaned up” versions of actual data. On other occasions, the fraud is deliberate and malicious. Some high-profile examples where data fabrication has been alleged or shown include Cyril Burt (a psychologist who is thought to have fabricated some of his data), Andrew Wakefield (who has been accused of fabricating his data connecting the MMR vaccine to autism) and Hwang Woo-suk (who falsified a lot of his data on stem cell research).
  • Hoaxes . Hoaxes share a lot of similarities with data fabrication, but they differ in the intended purpose. A hoax is often a joke, and many of them are intended to be (eventually) discovered. Often, the point of a hoax is to discredit someone or some field. There’s quite a few well known scientific hoaxes that have occurred over the years (e.g., Piltdown man) some of were deliberate attempts to discredit particular fields of research (e.g., the Sokal affair).
  • Data misrepresentation . While fraud gets most of the headlines, it’s much more common in my experience to see data being misrepresented. When I say this, I’m not referring to newspapers getting it wrong (which they do, almost always). I’m referring to the fact that often, the data don’t actually say what the researchers think they say. My guess is that, almost always, this isn’t the result of deliberate dishonesty, it’s due to a lack of sophistication in the data analyses. For instance, think back to the example of Simpson’s paradox that I discussed in the beginning of these notes. It’s very common to see people present “aggregated” data of some kind; and sometimes, when you dig deeper and find the raw data yourself, you find that the aggregated data tell a different story to the disaggregated data. Alternatively, you might find that some aspect of the data is being hidden, because it tells an inconvenient story (e.g., the researcher might choose not to refer to a particular variable). There’s a lot of variants on this; many of which are very hard to detect.
  • Study “misdesign” . Okay, this one is subtle. Basically, the issue here is that a researcher designs a study that has built-in flaws, and those flaws are never reported in the paper. The data that are reported are completely real, and are correctly analysed, but they are produced by a study that is actually quite wrongly put together. The researcher really wants to find a particular effect, and so the study is set up in such a way as to make it “easy” to (artifactually) observe that effect. One sneaky way to do this – in case you’re feeling like dabbling in a bit of fraud yourself – is to design an experiment in which it’s obvious to the participants what they’re “supposed” to be doing, and then let reactivity work its magic for you. If you want, you can add all the trappings of double blind experimentation etc. It won’t make a difference, since the study materials themselves are subtly telling people what you want them to do. When you write up the results, the fraud won’t be obvious to the reader: what’s obvious to the participant when they’re in the experimental context isn’t always obvious to the person reading the paper. Of course, the way I’ve described this makes it sound like it’s always fraud: probably there are cases where this is done deliberately, but in my experience the bigger concern has been with unintentional misdesign. The researcher believes … and so the study just happens to end up with a built in flaw, and that flaw then magically erases itself when the study is written up for publication.
  • Data mining & post hoc hypothesising . Another way in which the authors of a study can more or less lie about what they found is by engaging in what’s referred to as “data mining”. As we’ll discuss later in the class, if you keep trying to analyse your data in lots of different ways, you’ll eventually find something that “looks” like a real effect but isn’t. This is referred to as “data mining”. It used to be quite rare because data analysis used to take weeks, but now that everyone has very powerful statistical software on their computers, it’s becoming very common. Data mining per se isn’t “wrong”, but the more that you do it, the bigger the risk you’re taking. The thing that is wrong, and I suspect is very common, is unacknowledged data mining. That is, the researcher run every possible analysis known to humanity, finds the one that works, and then pretends that this was the only analysis that they ever conducted. Worse yet, they often “invent” a hypothesis after looking at the data, to cover up the data mining. To be clear: it’s not wrong to change your beliefs after looking at the data, and to reanalyse your data using your new “post hoc” hypotheses. What is wrong (and, I suspect, common) is failing to acknowledge that you’ve done so. If you acknowledge that you did it, then other researchers are able to take your behaviour into account. If you don’t, then they can’t. And that makes your behaviour deceptive. Bad!
  • Publication bias & self-censoring . Finally, a pervasive bias is “non-reporting” of negative results. This is almost impossible to prevent. Journals don’t publish every article that is submitted to them: they prefer to publish articles that find “something”. So, if 20 people run an experiment looking at whether reading Finnegans Wake causes insanity in humans, and 19 of them find that it doesn’t, which one do you think is going to get published? Obviously, it’s the one study that did find that Finnegans Wake causes insanity. 12 This is an example of a publication bias : since no-one ever published the 19 studies that didn’t find an effect, a naive reader would never know that they existed. Worse yet, most researchers “internalise” this bias, and end up self-censoring their research. Knowing that negative results aren’t going to be accepted for publication, they never even try to report them. As a friend of mine says “for every experiment that you get published, you also have 10 failures”. And she’s right. The catch is, while some (maybe most) of those studies are failures for boring reasons (e.g. you stuffed something up) others might be genuine “null” results that you ought to acknowledge when you write up the “good” experiment. And telling which is which is often hard to do. A good place to start is a paper by Ioannidis ( 2005 ) with the depressing title “Why most published research findings are false”. I’d also suggest taking a look at work by Kühberger, Fritz, and Scherndl ( 2014 ) presenting statistical evidence that this actually happens in psychology.

There’s probably a lot more issues like this to think about, but that’ll do to start with. What I really want to point out is the blindingly obvious truth that real world science is conducted by actual humans, and only the most gullible of people automatically assumes that everyone else is honest and impartial. Actual scientists aren’t usually that naive, but for some reason the world likes to pretend that we are, and the textbooks we usually write seem to reinforce that stereotype.

2.8 Summary

This chapter isn’t really meant to provide a comprehensive discussion of psychological research methods: it would require another volume just as long as this one to do justice to the topic. However, in real life statistics and study design are tightly intertwined, so it’s very handy to discuss some of the key topics. In this chapter, I’ve briefly discussed the following topics:

  • Introduction to psychological measurement . What does it mean to operationalise a theoretical construct? What does it mean to have variables and take measurements?
  • Scales of measurement and types of variables . Remember that there are two different distinctions here: there’s the difference between discrete and continuous data, and there’s the difference between the four different scale types (nominal, ordinal, interval and ratio).
  • Reliability of a measurement . If I measure the “same” thing twice, should I expect to see the same result? Only if my measure is reliable. But what does it mean to talk about doing the “same” thing? Well, that’s why we have different types of reliability. Make sure you remember what they are.
  • Terminology: predictors and outcomes . What roles do variables play in an analysis? Can you remember the difference between predictors and outcomes? Dependent and independent variables? Etc.
  • Experimental and non-experimental research designs . What makes an experiment an experiment? Is it a nice white lab coat, or does it have something to do with researcher control over variables?
  • Validity and its threats . Does your study measure what you want it to? How might things go wrong? And is it my imagination, or was that a very long list of possible ways in which things can go wrong?

All this should make clear to you that study design is a critical part of research methodology. I built this chapter from the classic little book by Campbell and Stanley ( 1963 ) , but there are of course a large number of textbooks out there on research design. Spend a few minutes with your favourite search engine and you’ll find dozens.

Campbell, D. T., and J. C. Stanley. 1963. Experimental and Quasi-Experimental Designs for Research . Boston, MA: Houghton Mifflin.

Stevens, S. S. 1946. “On the Theory of Scales of Measurement.” Science 103: 677–80.

Kahneman, D., and A. Tversky. 1973. “On the Psychology of Prediction.” Psychological Review 80: 237–51.

Pfungst, O. 1911. Clever Hans (the Horse of Mr. von Osten): A Contribution to Experimental Animal and Human Psychology . Translated by C. L. Rahn. New York: Henry Holt.

Hothersall, D. 2004. History of Psychology . McGraw-Hill.

Rosenthal, R. 1966. Experimenter Effects in Behavioral Research . New York: Appleton.

Adair, G. 1984. “The Hawthorne Effect: A Reconsideration of the Methodological Artifact.” Journal of Applied Psychology 69: 334–45.

Ioannidis, John P. A. 2005. “Why Most Published Research Findings Are False.” PLoS Med 2 (8). Public Library of Science: 697–701.

Kühberger, A, A Fritz, and T. Scherndl. 2014. “Publication Bias in Psychology: A Diagnosis Based on the Correlation Between Effect Size and Sample Size.” Public Library of Science One 9: 1–8.

  • Presidential Address to the First Indian Statistical Congress, 1938. Source: http://en.wikiquote.org/wiki/Ronald_Fisher ↩
  • Well… now this is awkward, isn’t it? This section is one of the oldest parts of the book, and it’s outdated in a rather embarrassing way. I wrote this in 2010, at which point all of those facts were true. Revisiting this in 2018… well I’m not 33 any more, but that’s not surprising I suppose. I can’t imagine my chromosomes have changed, so I’m going to guess my karyotype was then and is now XY. The self-identified gender, on the other hand… ah. I suppose the fact that the title page now refers to me as Danielle rather than Daniel might possibly be a giveaway, but I don’t typically identify as “male” on a gender questionnaire these days, and I prefer “she/her” pronouns as a default (it’s a long story)! I did think a little about how I was going to handle this in the book, actually. The book has a somewhat distinct authorial voice to it, and I feel like it would be a rather different work if I went back and wrote everything as Danielle and updated all the pronouns in the work. Besides, it would be a lot of work, so I’ve left my name as “Dan” throughout the book, and in ant case “Dan” is a perfectly good nickname for “Danielle”, don’t you think? In any case, it’s not a big deal. I only wanted to mention it to make life a little easier for readers who aren’t sure how to refer to me. I still don’t like anchovies though 🙂 ↩
  • Actually, I’ve been informed by readers with greater physics knowledge than I that temperature isn’t strictly an interval scale, in the sense that the amount of energy required to heat something up by 3 \(^\circ\) depends on it’s current temperature. So in the sense that physicists care about, temperature isn’t actually interval scale. But it still makes a cute example, so I’m going to ignore this little inconvenient truth. ↩
  • Annoyingly, though, there’s a lot of different names used out there. I won’t list all of them – there would be no point in doing that – other than to note that R often uses “response variable” where I’ve used “outcome”, and a traditionalist would use “dependent variable”. Sigh. This sort of terminological confusion is very common, I’m afraid. ↩
  • The reason why I say that it’s unmeasured is that if you have measured it, then you can use some fancy statistical tricks to deal with the confound. Because of the existence of these statistical solutions to the problem of confounds, we often refer to a confound that we have measured and dealt with as a covariate . Dealing with covariates is a topic for a more advanced course, but I thought I’d mention it in passing, since it’s kind of comforting to at least know that this stuff exists. ↩
  • Some people might argue that if you’re not honest then you’re not a real scientist. Which does have some truth to it I guess, but that’s disingenuous (google the “No true Scotsman” fallacy). The fact is that there are lots of people who are employed ostensibly as scientists, and whose work has all of the trappings of science, but who are outright fraudulent. Pretending that they don’t exist by saying that they’re not scientists is just childish. ↩
  • Clearly, the real effect is that only insane people would even try to read Finnegans Wake. ↩

Learning Statistics with R Copyright © by Danielle Navarro is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License , except where otherwise noted.

Share This Book

Open Access is an initiative that aims to make scientific research freely available to all. To date our community has made over 100 million downloads. It’s based on principles of collaboration, unobstructed discovery, and, most importantly, scientific progression. As PhD students, we found it difficult to access the research we needed, so we decided to create a new Open Access publisher that levels the playing field for scientists across the world. How? By making research easy to access, and puts the academic needs of the researchers before the business interests of publishers.

We are a community of more than 103,000 authors and editors from 3,291 institutions spanning 160 countries, including Nobel Prize winners and some of the world’s most-cited researchers. Publishing on IntechOpen allows authors to earn citations and find new collaborators, meaning more people see your work not only from your own field of study, but from other related fields too.

Brief introduction to this section that descibes Open Access especially from an IntechOpen perspective

Want to get in touch? Contact our London head office or media team here

Our team is growing all the time, so we’re always on the lookout for smart people who want to help us reshape the world of scientific publishing.

Home > Books > Cyberspace

Research Design and Methodology

Submitted: 23 January 2019 Reviewed: 08 March 2019 Published: 07 August 2019

DOI: 10.5772/intechopen.85731

Cite this chapter

There are two ways to cite this chapter:

From the Edited Volume

Edited by Evon Abu-Taieh, Abdelkrim El Mouatasim and Issam H. Al Hadid

To purchase hard copies of this book, please contact the representative in India: CBS Publishers & Distributors Pvt. Ltd. www.cbspd.com | [email protected]

Chapter metrics overview

30,666 Chapter Downloads

Impact of this chapter

Total Chapter Downloads on intechopen.com

IntechOpen

Total Chapter Views on intechopen.com

Overall attention for this chapters

There are a number of approaches used in this research method design. The purpose of this chapter is to design the methodology of the research approach through mixed types of research techniques. The research approach also supports the researcher on how to come across the research result findings. In this chapter, the general design of the research and the methods used for data collection are explained in detail. It includes three main parts. The first part gives a highlight about the dissertation design. The second part discusses about qualitative and quantitative data collection methods. The last part illustrates the general research framework. The purpose of this section is to indicate how the research was conducted throughout the study periods.

  • research design
  • methodology
  • data sources

Author Information

Kassu jilcha sileyew *.

  • School of Mechanical and Industrial Engineering, Addis Ababa Institute of Technology, Addis Ababa University, Addis Ababa, Ethiopia

*Address all correspondence to: [email protected]

1. Introduction

Research methodology is the path through which researchers need to conduct their research. It shows the path through which these researchers formulate their problem and objective and present their result from the data obtained during the study period. This research design and methodology chapter also shows how the research outcome at the end will be obtained in line with meeting the objective of the study. This chapter hence discusses the research methods that were used during the research process. It includes the research methodology of the study from the research strategy to the result dissemination. For emphasis, in this chapter, the author outlines the research strategy, research design, research methodology, the study area, data sources such as primary data sources and secondary data, population consideration and sample size determination such as questionnaires sample size determination and workplace site exposure measurement sample determination, data collection methods like primary data collection methods including workplace site observation data collection and data collection through desk review, data collection through questionnaires, data obtained from experts opinion, workplace site exposure measurement, data collection tools pretest, secondary data collection methods, methods of data analysis used such as quantitative data analysis and qualitative data analysis, data analysis software, the reliability and validity analysis of the quantitative data, reliability of data, reliability analysis, validity, data quality management, inclusion criteria, ethical consideration and dissemination of result and its utilization approaches. In order to satisfy the objectives of the study, a qualitative and quantitative research method is apprehended in general. The study used these mixed strategies because the data were obtained from all aspects of the data source during the study time. Therefore, the purpose of this methodology is to satisfy the research plan and target devised by the researcher.

2. Research design

The research design is intended to provide an appropriate framework for a study. A very significant decision in research design process is the choice to be made regarding research approach since it determines how relevant information for a study will be obtained; however, the research design process involves many interrelated decisions [ 1 ].

This study employed a mixed type of methods. The first part of the study consisted of a series of well-structured questionnaires (for management, employee’s representatives, and technician of industries) and semi-structured interviews with key stakeholders (government bodies, ministries, and industries) in participating organizations. The other design used is an interview of employees to know how they feel about safety and health of their workplace, and field observation at the selected industrial sites was undertaken.

Hence, this study employs a descriptive research design to agree on the effects of occupational safety and health management system on employee health, safety, and property damage for selected manufacturing industries. Saunders et al. [ 2 ] and Miller [ 3 ] say that descriptive research portrays an accurate profile of persons, events, or situations. This design offers to the researchers a profile of described relevant aspects of the phenomena of interest from an individual, organizational, and industry-oriented perspective. Therefore, this research design enabled the researchers to gather data from a wide range of respondents on the impact of safety and health on manufacturing industries in Ethiopia. And this helped in analyzing the response obtained on how it affects the manufacturing industries’ workplace safety and health. The research overall design and flow process are depicted in Figure 1 .

introduction in research design

Research methods and processes (author design).

3. Research methodology

To address the key research objectives, this research used both qualitative and quantitative methods and combination of primary and secondary sources. The qualitative data supports the quantitative data analysis and results. The result obtained is triangulated since the researcher utilized the qualitative and quantitative data types in the data analysis. The study area, data sources, and sampling techniques were discussed under this section.

3.1 The study area

According to Fraenkel and Warren [ 4 ] studies, population refers to the complete set of individuals (subjects or events) having common characteristics in which the researcher is interested. The population of the study was determined based on random sampling system. This data collection was conducted from March 07, 2015 to December 10, 2016, from selected manufacturing industries found in Addis Ababa city and around. The manufacturing companies were selected based on their employee number, established year, and the potential accidents prevailing and the manufacturing industry type even though all criterions were difficult to satisfy.

3.2 Data sources

3.2.1 primary data sources.

It was obtained from the original source of information. The primary data were more reliable and have more confidence level of decision-making with the trusted analysis having direct intact with occurrence of the events. The primary data sources are industries’ working environment (through observation, pictures, and photograph) and industry employees (management and bottom workers) (interview, questionnaires and discussions).

3.2.2 Secondary data

Desk review has been conducted to collect data from various secondary sources. This includes reports and project documents at each manufacturing sectors (more on medium and large level). Secondary data sources have been obtained from literatures regarding OSH, and the remaining data were from the companies’ manuals, reports, and some management documents which were included under the desk review. Reputable journals, books, different articles, periodicals, proceedings, magazines, newsletters, newspapers, websites, and other sources were considered on the manufacturing industrial sectors. The data also obtained from the existing working documents, manuals, procedures, reports, statistical data, policies, regulations, and standards were taken into account for the review.

In general, for this research study, the desk review has been completed to this end, and it had been polished and modified upon manuals and documents obtained from the selected companies.

4. Population and sample size

4.1 population.

The study population consisted of manufacturing industries’ employees in Addis Ababa city and around as there are more representative manufacturing industrial clusters found. To select representative manufacturing industrial sector population, the types of the industries expected were more potential to accidents based on random and purposive sampling considered. The population of data was from textile, leather, metal, chemicals, and food manufacturing industries. A total of 189 sample sizes of industries responded to the questionnaire survey from the priority areas of the government. Random sample sizes and disproportionate methods were used, and 80 from wood, metal, and iron works; 30 from food, beverage, and tobacco products; 50 from leather, textile, and garments; 20 from chemical and chemical products; and 9 from other remaining 9 clusters of manufacturing industries responded.

4.2 Questionnaire sample size determination

A simple random sampling and purposive sampling methods were used to select the representative manufacturing industries and respondents for the study. The simple random sampling ensures that each member of the population has an equal chance for the selection or the chance of getting a response which can be more than equal to the chance depending on the data analysis justification. Sample size determination procedure was used to get optimum and reasonable information. In this study, both probability (simple random sampling) and nonprobability (convenience, quota, purposive, and judgmental) sampling methods were used as the nature of the industries are varied. This is because of the characteristics of data sources which permitted the researchers to follow the multi-methods. This helps the analysis to triangulate the data obtained and increase the reliability of the research outcome and its decision. The companies’ establishment time and its engagement in operation, the number of employees and the proportion it has, the owner types (government and private), type of manufacturing industry/production, types of resource used at work, and the location it is found in the city and around were some of the criteria for the selections.

The determination of the sample size was adopted from Daniel [ 5 ] and Cochran [ 6 ] formula. The formula used was for unknown population size Eq. (1) and is given as

introduction in research design

where n  = sample size, Z  = statistic for a level of confidence, P  = expected prevalence or proportion (in proportion of one; if 50%, P  = 0.5), and d  = precision (in proportion of one; if 6%, d  = 0.06). Z statistic ( Z ): for the level of confidence of 95%, which is conventional, Z value is 1.96. In this study, investigators present their results with 95% confidence intervals (CI).

The expected sample number was 267 at the marginal error of 6% for 95% confidence interval of manufacturing industries. However, the collected data indicated that only 189 populations were used for the analysis after rejecting some data having more missing values in the responses from the industries. Hence, the actual data collection resulted in 71% response rate. The 267 population were assumed to be satisfactory and representative for the data analysis.

4.3 Workplace site exposure measurement sample determination

The sample size for the experimental exposure measurements of physical work environment has been considered based on the physical data prepared for questionnaires and respondents. The response of positive were considered for exposure measurement factors to be considered for the physical environment health and disease causing such as noise intensity, light intensity, pressure/stress, vibration, temperature/coldness, or hotness and dust particles on 20 workplace sites. The selection method was using random sampling in line with purposive method. The measurement of the exposure factors was done in collaboration with Addis Ababa city Administration and Oromia Bureau of Labour and Social Affair (AACBOLSA). Some measuring instruments were obtained from the Addis Ababa city and Oromia Bureau of Labour and Social Affair.

5. Data collection methods

Data collection methods were focused on the followings basic techniques. These included secondary and primary data collections focusing on both qualitative and quantitative data as defined in the previous section. The data collection mechanisms are devised and prepared with their proper procedures.

5.1 Primary data collection methods

Primary data sources are qualitative and quantitative. The qualitative sources are field observation, interview, and informal discussions, while that of quantitative data sources are survey questionnaires and interview questions. The next sections elaborate how the data were obtained from the primary sources.

5.1.1 Workplace site observation data collection

Observation is an important aspect of science. Observation is tightly connected to data collection, and there are different sources for this: documentation, archival records, interviews, direct observations, and participant observations. Observational research findings are considered strong in validity because the researcher is able to collect a depth of information about a particular behavior. In this dissertation, the researchers used observation method as one tool for collecting information and data before questionnaire design and after the start of research too. The researcher made more than 20 specific observations of manufacturing industries in the study areas. During the observations, it found a deeper understanding of the working environment and the different sections in the production system and OSH practices.

5.1.2 Data collection through interview

Interview is a loosely structured qualitative in-depth interview with people who are considered to be particularly knowledgeable about the topic of interest. The semi-structured interview is usually conducted in a face-to-face setting which permits the researcher to seek new insights, ask questions, and assess phenomena in different perspectives. It let the researcher to know the in-depth of the present working environment influential factors and consequences. It has provided opportunities for refining data collection efforts and examining specialized systems or processes. It was used when the researcher faces written records or published document limitation or wanted to triangulate the data obtained from other primary and secondary data sources.

This dissertation is also conducted with a qualitative approach and conducting interviews. The advantage of using interviews as a method is that it allows respondents to raise issues that the interviewer may not have expected. All interviews with employees, management, and technicians were conducted by the corresponding researcher, on a face-to-face basis at workplace. All interviews were recorded and transcribed.

5.1.3 Data collection through questionnaires

The main tool for gaining primary information in practical research is questionnaires, due to the fact that the researcher can decide on the sample and the types of questions to be asked [ 2 ].

In this dissertation, each respondent is requested to reply to an identical list of questions mixed so that biasness was prevented. Initially the questionnaire design was coded and mixed up from specific topic based on uniform structures. Consequently, the questionnaire produced valuable data which was required to achieve the dissertation objectives.

The questionnaires developed were based on a five-item Likert scale. Responses were given to each statement using a five-point Likert-type scale, for which 1 = “strongly disagree” to 5 = “strongly agree.” The responses were summed up to produce a score for the measures.

5.1.4 Data obtained from experts’ opinion

The data was also obtained from the expert’s opinion related to the comparison of the knowledge, management, collaboration, and technology utilization including their sub-factors. The data obtained in this way was used for prioritization and decision-making of OSH, improving factor priority. The prioritization of the factors was using Saaty scales (1–9) and then converting to Fuzzy set values obtained from previous researches using triangular fuzzy set [ 7 ].

5.1.5 Workplace site exposure measurement

The researcher has measured the workplace environment for dust, vibration, heat, pressure, light, and noise to know how much is the level of each variable. The primary data sources planned and an actual coverage has been compared as shown in Table 1 .

introduction in research design

Planned versus actual coverage of the survey.

The response rate for the proposed data source was good, and the pilot test also proved the reliability of questionnaires. Interview/discussion resulted in 87% of responses among the respondents; the survey questionnaire response rate obtained was 71%, and the field observation response rate was 90% for the whole data analysis process. Hence, the data organization quality level has not been compromised.

This response rate is considered to be representative of studies of organizations. As the study agrees on the response rate to be 30%, it is considered acceptable [ 8 ]. Saunders et al. [ 2 ] argued that the questionnaire with a scale response of 20% response rate is acceptable. Low response rate should not discourage the researchers, because a great deal of published research work also achieves low response rate. Hence, the response rate of this study is acceptable and very good for the purpose of meeting the study objectives.

5.1.6 Data collection tool pretest

The pretest for questionnaires, interviews, and tools were conducted to validate that the tool content is valid or not in the sense of the respondents’ understanding. Hence, content validity (in which the questions are answered to the target without excluding important points), internal validity (in which the questions raised answer the outcomes of researchers’ target), and external validity (in which the result can generalize to all the population from the survey sample population) were reflected. It has been proved with this pilot test prior to the start of the basic data collections. Following feedback process, a few minor changes were made to the originally designed data collect tools. The pilot test made for the questionnaire test was on 10 sample sizes selected randomly from the target sectors and experts.

5.2 Secondary data collection methods

The secondary data refers to data that was collected by someone other than the user. This data source gives insights of the research area of the current state-of-the-art method. It also makes some sort of research gap that needs to be filled by the researcher. This secondary data sources could be internal and external data sources of information that may cover a wide range of areas.

Literature/desk review and industry documents and reports: To achieve the dissertation’s objectives, the researcher has conducted excessive document review and reports of the companies in both online and offline modes. From a methodological point of view, literature reviews can be comprehended as content analysis, where quantitative and qualitative aspects are mixed to assess structural (descriptive) as well as content criteria.

A literature search was conducted using the database sources like MEDLINE; Emerald; Taylor and Francis publications; EMBASE (medical literature); PsycINFO (psychological literature); Sociological Abstracts (sociological literature); accident prevention journals; US Statistics of Labor, European Safety and Health database; ABI Inform; Business Source Premier (business/management literature); EconLit (economic literature); Social Service Abstracts (social work and social service literature); and other related materials. The search strategy was focused on articles or reports that measure one or more of the dimensions within the research OSH model framework. This search strategy was based on a framework and measurement filter strategy developed by the Consensus-Based Standards for the Selection of Health Measurement Instruments (COSMIN) group. Based on screening, unrelated articles to the research model and objectives were excluded. Prior to screening, researcher (principal investigator) reviewed a sample of more than 2000 articles, websites, reports, and guidelines to determine whether they should be included for further review or reject. Discrepancies were thoroughly identified and resolved before the review of the main group of more than 300 articles commenced. After excluding the articles based on the title, keywords, and abstract, the remaining articles were reviewed in detail, and the information was extracted on the instrument that was used to assess the dimension of research interest. A complete list of items was then collated within each research targets or objectives and reviewed to identify any missing elements.

6. Methods of data analysis

Data analysis method follows the procedures listed under the following sections. The data analysis part answered the basic questions raised in the problem statement. The detailed analysis of the developed and developing countries’ experiences on OSH regarding manufacturing industries was analyzed, discussed, compared and contrasted, and synthesized.

6.1 Quantitative data analysis

Quantitative data were obtained from primary and secondary data discussed above in this chapter. This data analysis was based on their data type using Excel, SPSS 20.0, Office Word format, and other tools. This data analysis focuses on numerical/quantitative data analysis.

Before analysis, data coding of responses and analysis were made. In order to analyze the data obtained easily, the data were coded to SPSS 20.0 software as the data obtained from questionnaires. This task involved identifying, classifying, and assigning a numeric or character symbol to data, which was done in only one way pre-coded [ 9 , 10 ]. In this study, all of the responses were pre-coded. They were taken from the list of responses, a number of corresponding to a particular selection was given. This process was applied to every earlier question that needed this treatment. Upon completion, the data were then entered to a statistical analysis software package, SPSS version 20.0 on Windows 10 for the next steps.

Under the data analysis, exploration of data has been made with descriptive statistics and graphical analysis. The analysis included exploring the relationship between variables and comparing groups how they affect each other. This has been done using cross tabulation/chi square, correlation, and factor analysis and using nonparametric statistic.

6.2 Qualitative data analysis

Qualitative data analysis used for triangulation of the quantitative data analysis. The interview, observation, and report records were used to support the findings. The analysis has been incorporated with the quantitative discussion results in the data analysis parts.

6.3 Data analysis software

The data were entered using SPSS 20.0 on Windows 10 and analyzed. The analysis supported with SPSS software much contributed to the finding. It had contributed to the data validation and correctness of the SPSS results. The software analyzed and compared the results of different variables used in the research questionnaires. Excel is also used to draw the pictures and calculate some analytical solutions.

7. The reliability and validity analysis of the quantitative data

7.1 reliability of data.

The reliability of measurements specifies the amount to which it is without bias (error free) and hence ensures consistent measurement across time and across the various items in the instrument [ 8 ]. In reliability analysis, it has been checked for the stability and consistency of the data. In the case of reliability analysis, the researcher checked the accuracy and precision of the procedure of measurement. Reliability has numerous definitions and approaches, but in several environments, the concept comes to be consistent [ 8 ]. The measurement fulfills the requirements of reliability when it produces consistent results during data analysis procedure. The reliability is determined through Cranach’s alpha as shown in Table 2 .

introduction in research design

Internal consistency and reliability test of questionnaires items.

K stands for knowledge; M, management; T, technology; C, collaboration; P, policy, standards, and regulation; H, hazards and accident conditions; PPE, personal protective equipment.

7.2 Reliability analysis

Cronbach’s alpha is a measure of internal consistency, i.e., how closely related a set of items are as a group [ 11 ]. It is considered to be a measure of scale reliability. The reliability of internal consistency most of the time is measured based on the Cronbach’s alpha value. Reliability coefficient of 0.70 and above is considered “acceptable” in most research situations [ 12 ]. In this study, reliability analysis for internal consistency of Likert-scale measurement after deleting 13 items was found similar; the reliability coefficients were found for 76 items were 0.964 and for the individual groupings made shown in Table 2 . It was also found internally consistent using the Cronbach’s alpha test. Table 2 shows the internal consistency of the seven major instruments in which their reliability falls in the acceptable range for this research.

7.3 Validity

Face validity used as defined by Babbie [ 13 ] is an indicator that makes it seem a reasonable measure of some variables, and it is the subjective judgment that the instrument measures what it intends to measure in terms of relevance [ 14 ]. Thus, the researcher ensured, in this study, when developing the instruments that uncertainties were eliminated by using appropriate words and concepts in order to enhance clarity and general suitability [ 14 ]. Furthermore, the researcher submitted the instruments to the research supervisor and the joint supervisor who are both occupational health experts, to ensure validity of the measuring instruments and determine whether the instruments could be considered valid on face value.

In this study, the researcher was guided by reviewed literature related to compliance with the occupational health and safety conditions and data collection methods before he could develop the measuring instruments. In addition, the pretest study that was conducted prior to the main study assisted the researcher to avoid uncertainties of the contents in the data collection measuring instruments. A thorough inspection of the measuring instruments by the statistician and the researcher’s supervisor and joint experts, to ensure that all concepts pertaining to the study were included, ensured that the instruments were enriched.

8. Data quality management

Insight has been given to the data collectors on how to approach companies, and many of the questionnaires were distributed through MSc students at Addis Ababa Institute of Technology (AAiT) and manufacturing industries’ experience experts. This made the data quality reliable as it has been continually discussed with them. Pretesting for questionnaire was done on 10 workers to assure the quality of the data and for improvement of data collection tools. Supervision during data collection was done to understand how the data collectors are handling the questionnaire, and each filled questionnaires was checked for its completeness, accuracy, clarity, and consistency on a daily basis either face-to-face or by phone/email. The data expected in poor quality were rejected out of the acting during the screening time. Among planned 267 questionnaires, 189 were responded back. Finally, it was analyzed by the principal investigator.

9. Inclusion criteria

The data were collected from the company representative with the knowledge of OSH. Articles written in English and Amharic were included in this study. Database information obtained in relation to articles and those who have OSH area such as interventions method, method of accident identification, impact of occupational accidents, types of occupational injuries/disease, and impact of occupational accidents, and disease on productivity and costs of company and have used at least one form of feedback mechanism. No specific time period was chosen in order to access all available published papers. The questionnaire statements which are similar in the questionnaire have been rejected from the data analysis.

10. Ethical consideration

Ethical clearance was obtained from the School of Mechanical and Industrial Engineering, Institute of Technology, Addis Ababa University. Official letters were written from the School of Mechanical and Industrial Engineering to the respective manufacturing industries. The purpose of the study was explained to the study subjects. The study subjects were told that the information they provided was kept confidential and that their identities would not be revealed in association with the information they provided. Informed consent was secured from each participant. For bad working environment assessment findings, feedback will be given to all manufacturing industries involved in the study. There is a plan to give a copy of the result to the respective study manufacturing industries’ and ministries’ offices. The respondents’ privacy and their responses were not individually analyzed and included in the report.

11. Dissemination and utilization of the result

The result of this study will be presented to the Addis Ababa University, AAiT, School of Mechanical and Industrial Engineering. It will also be communicated to the Ethiopian manufacturing industries, Ministry of Labor and Social Affair, Ministry of Industry, and Ministry of Health from where the data was collected. The result will also be availed by publication and online presentation in Google Scholars. To this end, about five articles were published and disseminated to the whole world.

12. Conclusion

The research methodology and design indicated overall process of the flow of the research for the given study. The data sources and data collection methods were used. The overall research strategies and framework are indicated in this research process from problem formulation to problem validation including all the parameters. It has laid some foundation and how research methodology is devised and framed for researchers. This means, it helps researchers to consider it as one of the samples and models for the research data collection and process from the beginning of the problem statement to the research finding. Especially, this research flow helps new researchers to the research environment and methodology in particular.

Conflict of interest

There is no “conflict of interest.”

  • 1. Aaker A, Kumar VD, George S. Marketing Research. New York: John Wiley & Sons Inc; 2000
  • 2. Saunders M, Lewis P, Thornhill A. Research Methods for Business Student. 5th ed. Edinburgh Gate: Pearson Education Limited; 2009
  • 3. Miller P. Motivation in the Workplace. Work and Organizational Psychology. Oxford: Blackwell Publishers; 1991
  • 4. Fraenkel FJ, Warren NE. How to Design and Evaluate Research in Education. 4th ed. New York: McGraw-Hill; 2002
  • 5. Danniel WW. Biostatist: A Foundation for Analysis in the Health Science. 7th ed. New York: John Wiley & Sons; 1999
  • 6. Cochran WG. Sampling Techniques. 3rd ed. New York: John Wiley & Sons; 1977
  • 7. Saaty TL. The Analytical Hierarchy Process. Pittsburg: PWS Publications; 1990
  • 8. Sekaran U, Bougie R. Research Methods for Business: A Skill Building Approach. 5th ed. New Delhi: John Wiley & Sons, Ltd; 2010. pp. 1-468
  • 9. Luck DJ, Rubin RS. Marketing Research. 7th ed. New Jersey: Prentice-Hall International; 1987
  • 10. Wong TC. Marketing Research. Oxford, UK: Butterworth-Heinemann; 1999
  • 11. Cronbach LJ. Coefficient alpha and the internal structure of tests. Psychometrika. 1951; 16 :297-334
  • 12. Tavakol M, Dennick R. Making sense of Cronbach’s alpha. International Journal of Medical Education. 2011; 2 :53-55. DOI: 10.5116/ijme.4dfb.8dfd
  • 13. Babbie E. The Practice of Social Research. 12th ed. Belmont, CA: Wadsworth; 2010
  • 14. Polit DF, Beck CT. Generating and Assessing Evidence for Nursing Practice. 8th ed. Williams and Wilkins: Lippincott; 2008

© 2019 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative Commons Attribution 3.0 License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Continue reading from the same book

Edited by Evon Abu-Taieh

Published: 17 June 2020

By Sabína Gáliková Tolnaiová and Slavomír Gálik

1001 downloads

By Carlos Pedro Gonçalves

1539 downloads

By Konstantinos-George Thanos, Andrianna Polydouri, A...

1040 downloads

Your Article Library

Research design: introduction, contents and types.

introduction in research design

ADVERTISEMENTS:

A research design is a broad plan that states objectives of research project and provides the guidelines what is to be done to realize those objectives. It is, in other words, a master plan for executing a research project.

Introduction:

The word ‘design’ has various meanings. But, in relation to the subject concern, it is a pattern or an outline of research project’s workings. It is the statement of essential elements of a study that provides basic guidelines of conducting the project. It is same as the blue print of architect’s work.

The research design is similar to broad plan or model that states how the entire research project would be conducted. It is desirable that it must be in written form and must be simple and clearly stated. The real project is carried out as per the research design laid down in advance.

Definitions :

1. We can define the term as:

Research design is a broad framework that states the total pattern of conducting research project. It specifies objectives, data collection and analysis methods, time, costs, responsibility, probable outcomes, and actions.

2. More clearly, research design can be defined as:

Contents of Research Design :

The most common aspects involved in research design include at least followings:

1. Statement of research objectives, i.e., why the research project is to be conducted

2. Type of data needed

3. Definition of population and sampling procedures to be followed

4. Time, costs, and responsibility specification

5. Methods, ways, and procedures used for collection of data

6. Data analysis – tools or methods used to analyze data

7. Probable output or research outcomes and possible actions to be taken based on those outcomes

Types of Research Designs:

The research design is a broad framework that describes how the entire research project is carried out. Basically, there can be three types of research designs – exploratory research design, descriptive research design, and experimental (or causal) research design. Use of particular research design depends upon type of problem under study.

Let’s have glimpse of each of them:

1. Exploratory Research Design:

This design is followed to discover ideas and insights to generate possible explanations. It helps in exploring the problem or situation. It is, particularly, emphasized to break a broad vague problem statement into smaller pieces or sub-problem statements that help forming specific hypothesis.

The hypothesis is a conjectural (imaginary, speculative, or abstract) statement about the relationship between two or more variables. Naturally, in initial state of the study, we lack sufficient understanding about problem to formulate a specific hypothesis. Similarly, we have several competitive explanations of marketing phenomenon. Exploratory research design is used to establish priorities among those competitive explanations.

The exploratory research design is used to increase familiarity of the analyst with problem under investigation. This is particularly true when researcher is new in area, or when problem is of different type.

This design is followed to realize following purposes:

1. Clarifying concepts and defining problem

2. Formulating problem for more precise investigation

3. Increasing researcher’s familiarity with problem

4. Developing hypotheses

5. Establishing priorities for further investigation

Exploratory research design is characterized by flexibility to gain insights and develop hypotheses. It does not follow a planned questionnaire or sampling. It is based on literature survey, experimental survey, and analysis of selected cases. Unstructured interviews are used to offer respondents a great deal of freedom. No research project is purely and solely based on this design. It is used as complementary to descriptive design and causal design.

2. Descriptive Research Design :

Descriptive research design is typically concerned with describing problem and its solution. It is more specific and purposive study. Before rigorous attempts are made for descriptive study, the well-defined problem must be on hand. Descriptive study rests on one or more hypotheses.

For example, “our brand is not much familiar,” “sales volume is stable,” etc. It is more precise and specific. Unlike exploratory research, it is not flexible. Descriptive research requires clear specification of who, why, what, when, where, and how of the research. Descriptive design is directed to answer these problems.

3. Causal or Experimental Research Design :

Causal research design deals with determining cause and effect relationship. It is typically in form of experiment. In causal research design, attempt is made to measure impact of manipulation on independent variables (like price, products, advertising and selling efforts or marketing strategies in general) on dependent variables (like sales volume, profits, and brand image and brand loyalty). It has more practical value in resolving marketing problems. We can set and test hypotheses by conducting experiments.

Test marketing is the most suitable example of experimental marketing in which the independent variable like price, product, promotional efforts, etc., are manipulated (changed) to measure its impact on the dependent variables, such as sales, profits, brand loyalty, competitive strengths product differentiation and so on.

Related Articles:

  • Marketing Research: Nature and Scope of Marketing Research
  • Different Studies of Marketing Research

Comments are closed.

web statistics

Design & Make with Autodesk

  • Architecture, Engineering, Construction & Operations
  • Product Design & Manufacturing
  • Media & Entertainment
  • Emerging Tech
  • Point of View
  • Report home

Introduction

  • About the report
  • Key theme: Business Resilience
  • — Optimism returns
  • — Cost control
  • — Digital maturity
  • — All-in on AI
  • Key theme: Talent
  • — Upskilling
  • — Talent crunch
  • Key theme: Sustainability
  • — Sustainability actions
  • — Business health
  • AECO industry
  • D&M industry
  • M&E industry

2024 STATE OF DESIGN & MAKE REPORT

The industries that design and make represent a unique category that connects the digital to the physical., architecture, engineering, construction, built asset operations, product design, manufacturing, game development, and filmmaking all require complex human collaboration throughout a digital design process and delivery of a physical result..

Executives in these industries share their approaches and points of view on the challenges unique to their organizations and the opportunities they are identifying. 

Key areas of focus for this research include: a macro view of the industries; staying resilient and relevant in an ever-changing world; attracting, training, and retaining a skilled workforce; and achieving sustainable outcomes. 

Autodesk surveyed and interviewed 5,399 industry leaders, futurists, and experts from the following industries: architecture, engineering, construction, and operations (AECO); design and manufacturing (D&M); and media and entertainment (M&E).

Survey data has been broken down by global region: Asia-Pacific (APAC), which includes responses from Australia, China, India, Japan, and South Korea; Europe, Middle East, and Africa (EMEA), with responses from France, Germany, Italy, the Middle East, the Netherlands, the Nordics, Spain, Turkey, and the United Kingdom; and the Americas (AMER), with responses from Brazil, Canada, Mexico, and the United States. This report contains key findings from this research, including details at the sector and regional level.

The quantitative data (n= 5,368) was collected between July and September 2023, through a 20-minute online survey. In addition, 31 qualitative interviews with business leaders and futurists were conducted in October and November 2023. In some instances, Autodesk references analysis of its own aggregated and anonymized product data.

Leaders and experts in the design and make industries report a seismic shift in sentiment from last year to this year, causing big changes in the findings from Autodesk’s 2023 State of Design & Make report.

 The group is far more optimistic about the global landscape, as well as their companies’ resilience, preparedness, performance, investment, and level of digital transformation. In qualitative interviews they said that the economy’s seemingly soft landing after years of recession fears inspired much of their confidence, but with that confidence came a new concern—cost control, which pushed talent acquisition and retention down from first place to second on their list of top challenges.  

Although talent is now second to cost control, it remains daunting and difficult to address. Even with increased recognition of the need for upskilling programs, most leaders say they don’t have the internal resources to meet that need. Leaders are tackling the issue via multiple avenues that may yield dividends by the time we field next year’s survey.  

Also new this year was the understanding that artificial intelligence (AI) is a current tool rather than a futuristic pipe dream, and with that understanding, a surprising degree of trust. As one leader remarked, that trust may come from the fact that AI has not caused harm to businesses quite yet. Nonetheless, leaders find productivity gains to be a promising effect of AI and are pushing their teams to pilot use cases in hopes of converting opportunities early. One benefit of this urgency is improved sustainability. AI has risen to the top spot in terms of technologies leaders are using to make their businesses better able to meet sustainability goals. Read on to discover how leaders and experts are rising to meet this year’s top business challenges in design and make.

A stylized rendering of three people working in an open office space.

Explore themes

KEY THEME 1

Business resilience

Digitization boosts business resilience amid continued challenges.

KEY THEME 2

Companies tackle talent challenges with upskilling, digitization, and sustainability initiatives.

KEY THEME 3

Sustainability

Business value drives sustainability actions.

Download report

The complete report is provided in pdf format and is optimized for horizontal screen viewing..

Privacy | Do not sell or share my personal information | Cookie preferences | Report noncompliance | Terms of use | Legal  |  © 2024 Autodesk Inc. All rights reserved

IMAGES

  1. Qualitative Research Introduction

    introduction in research design

  2. PPT

    introduction in research design

  3. How to Write a Research Paper Introduction: Tips & Examples

    introduction in research design

  4. How to Create a Strong Research Design: 2-Minute Summary

    introduction in research design

  5. chapter 3 research methodology quantitative

    introduction in research design

  6. (PDF) Introduction: Theoretical framework and research design

    introduction in research design

VIDEO

  1. Types of Research Design- Exploratory Research Design

  2. Social Media Introduction, Research & Strategy for Social Media

  3. Lecture#17| intro to Research design| Reseach Methodology| elements of research design

  4. 0 introduction research method Doctoral Program

  5. Research Assistant|Research Designs|Types of research design|Educationsimplified by OCDC|

  6. concepts in research design

COMMENTS

  1. What Is a Research Design

    A research design is a strategy for answering your research question using empirical data. Creating a research design means making decisions about: Your overall research objectives and approach. Whether you'll rely on primary research or secondary research. Your sampling methods or criteria for selecting subjects. Your data collection methods.

  2. PDF WHAT IS RESEARCH DESIGN?

    what research design is and what it is not. We need to know where design fits into the whole research process from framing a question to finally analysing and reporting data. This is the purpose of this chapter. Description and explanation Social researchers ask two fundamental types of research questions: 1 What is going on (descriptive ...

  3. Research Design

    Step 1: Consider your aims and approach. Step 2: Choose a type of research design. Step 3: Identify your population and sampling method. Step 4: Choose your data collection methods. Step 5: Plan your data collection procedures. Step 6: Decide on your data analysis strategies. Frequently asked questions.

  4. What Is Research Design? 8 Types + Examples

    Research design refers to the overall plan, structure or strategy that guides a research project, from its conception to the final analysis of data. Research designs for quantitative studies include descriptive, correlational, experimental and quasi-experimenta l designs. Research designs for qualitative studies include phenomenological ...

  5. What is a Research Design? Definition, Types, Methods and Examples

    A research design is defined as the overall plan or structure that guides the process of conducting research. It is a critical component of the research process and serves as a blueprint for how a study will be carried out, including the methods and techniques that will be used to collect and analyze data.

  6. Research Design

    Introduction: This section provides an overview of the research problem, the research questions, and the importance of the study. It also includes a brief literature review that summarizes previous research on the topic and identifies gaps in the existing knowledge. ... Research design: The research design will be a quasi-experimental design ...

  7. Introducing Research Designs

    We define research design as a combination of decisions within a research process. These decisions enable us to make a specific type of argument by answering the research question. It is the implementation plan for the research study that allows reaching the desired (type of) conclusion. Different research designs make it possible to draw ...

  8. PDF Introduction to Research Design and Methods

    Part II - Setting up a Research Design Week 4 Research Design, Theory Building, and Methods Goals: To learn how to think scientifically about a research design. This includes learning about theory building and deriving hypothesizes, setting up a research design, and determining dependent and independent variables. Readings: Shively, The Craft ...

  9. Research design

    A research design is a framework that has been created to find answers to research questions. Design types and sub-types. There are many ways to classify research designs. Nonetheless, the list below offers a number of useful distinctions between possible research designs. A research design is an arrangement of conditions or collection.

  10. Study designs: Part 1

    INTRODUCTION. Research study design is a framework, or the set of methods and procedures used to collect and analyze data on variables specified in a particular research problem. Research study designs are of many types, each with its advantages and limitations. The type of study design used to answer a particular research question is ...

  11. Chapter 2. Research Design

    Chapter 2. Research Design Getting Started. When I teach undergraduates qualitative research methods, the final product of the course is a "research proposal" that incorporates all they have learned and enlists the knowledge they have learned about qualitative research methods in an original design that addresses a particular research question.

  12. How to Write a Research Design

    A research design is a structure that combines different components of research. It involves the use of different data collection and data analysis techniques logically to answer the research questions. It would be best to make some decisions about addressing the research questions adequately before starting the research process, which is achieved with the help of the research design.

  13. An Introduction to Experimental Design Research

    Over the last 50 years, design research has seen a number of paradigm shifts in its scientific and empirical culture. Starting in the 1960s and 1970s, researchers were concerned with answering what design science actually meant and how scientific practices should be adapted to fit this emerging field where problem-solving and scientific understanding shared priority (Simon 1978; Hubka 1984 ...

  14. Organizing Your Social Sciences Research Paper

    Before beginning your paper, you need to decide how you plan to design the study.. The research design refers to the overall strategy and analytical approach that you have chosen in order to integrate, in a coherent and logical way, the different components of the study, thus ensuring that the research problem will be thoroughly investigated. It constitutes the blueprint for the collection ...

  15. Research Methods Guide: Research Design & Method

    Research design is a plan to answer your research question. A research method is a strategy used to implement that plan. Research design and methods are different but closely related, because good research design ensures that the data you obtain will help you answer your research question more effectively. Which research method should I choose?

  16. Introduction to Design

    Introduction to Design What is Research Design? Research design can be thought of as the structure of research - it is the "glue" that holds all of the elements in a research project together. There are many different types of designs that you will be introduced to, often having rather exotic-sounding (if not somewhat obscure!) names like 'the nonequivalent groups design', the ...

  17. (PDF) Basics of Research Design: A Guide to selecting appropriate

    Introduction . Research is a ... The choice of the research design is influenced by the type of evidence needed to answer the research question (Akhtar, 2016), and it can be qualitative ...

  18. A brief introduction to research design

    A brief introduction to research design. 2.1 Introduction to psychological measurement; 2.2 Scales of measurement; 2.3 Assessing the reliability of a measurement ... , but there are of course a large number of textbooks out there on research design. Spend a few minutes with your favourite search engine and you'll find dozens. References ...

  19. Research Design and Methodology

    There are a number of approaches used in this research method design. The purpose of this chapter is to design the methodology of the research approach through mixed types of research techniques. The research approach also supports the researcher on how to come across the research result findings. In this chapter, the general design of the research and the methods used for data collection are ...

  20. Introduction to Research Design

    In this program, Dr. Patton introduces the topic of research in the context of a scholar-practitioner model and discusses the terms of epistemology and ontol...

  21. Research Design: Introduction, Contents and Types

    A research design is a broad plan that states objectives of research project and provides the guidelines what is to be done to realize those objectives. It is, in other words, a master plan for executing a research project. Introduction: The word 'design' has various meanings. But, in relation to the subject concern, it is a pattern or an ...

  22. (PDF) CHAPTER FIVE RESEARCH DESIGN AND METHODOLOGY 5.1. Introduction

    Research Design A research design is the 'procedures for collecting, analyzing, interpreting and reporting data in research studies' (Creswell & Plano Clark 2007, p.58). ... Introduction . This ...

  23. (PDF) Research Design

    Cook "A resear ch design is the arrangement of conditions for the. collection and a nalysis of data in a manner that aims to combine. relev ance to the research purpose with economy and ...

  24. Introduction

    This report contains key findings from this research, including details at the sector and regional level. The quantitative data (n= 5,368) was collected between July and September 2023, through a 20-minute online survey. In addition, 31 qualitative interviews with business leaders and futurists were conducted in October and November 2023.

  25. Threat of mining to African great apes

    The IUCN Red List recently estimated that only 2 to 13% of all primate species were threatened by road and rail construction, oil and gas drilling, and mining, whereas 76 and 60% were negatively affected by agriculture and logging, and wood harvesting, respectively ().Similarly, mining currently ranks only fourth in the frequency of reported threats across African ape sites documented in the ...

  26. Sustainability

    The environmental, social and governance (ESG) performance of construction enterprises still needs to be improved. Therefore, in order to better utilize resources effectively to improve enterprise ESG performance, this paper explores the configuration paths for Chinese construction enterprises to improve their ESG performance using the (fuzzy set qualitative comparative analysis) fsQCA method ...