Kultplus

  • Institucionet e Artit Skenik
  • Festivalet e Teatrove
  • Qendrat Kulturore
  • Festivalet e Filmit
  • Produksionet e Filmit
  • Studiot e Reklamave
  • Galeritë dhe Atelietë
  • Dizajnerët e Modës
  • Studiot Dekoruese
  • Studiot e Arkitektures
  • Studiot e Interierit
  • Bibliotekat
  • Institucionet Edukative dhe Shkencore
  • Shtëpitë Botuese
  • Institucionet muzikore
  • Studiot Muzikore
  • Institucionet kulturore – edukative për fëmijë
  • Ashkalinjtë dhe Egjiptasit
  • Trashëgimia

Të panjohurat e gjeniut, 50 fakte për Albert Einstein

24 Nëntor, 2018 - 8:00 pm

Featured Image

Albert Ajnshtajn është shkencëtari më i zgjuar që ka jetuar ndonjëherë. Një prej arritjeve që ktheu faqen e historisë së shkencës ishte ekuacioni E=mc2. Ai fitoi çmimin “Nobel” në vitin 1921 për punën në lidhje me efektin fotoelektrik.

Ai zhvilloi Teorinë e Relativitetit, të cilën e kishte përfunduar me kohë, por u deshën 25 vite që të tjerët ta kuptonin. Siç ndodhi së fundmi edhe me valët gravitacionale që u pranuan sot zyrtarisht nga shkenca, dhe që u konsiderua si “zbulimi më i madh shkencor i shekullit”.

Albert Ajnshtajni foli për ekzistencën e valëve gravitacionale 100 vjet më parë. Ajnshtajni parashikoi se nëse graviteti apo forca e rëndesës në një zonë të universit ndryshon befas si pasojë e një evenimenti të dhunshëm kozmik, si shpërthimi i një ylli, apo në këtë rast përplasja e dy vrimave të zeza, krijohen valë gravitacionale që përhapen me shpejtësinë e dritës në të gjithë universin duke deformuar kohën dhe hapësirën gjatë lëvizjes së tyre.

Kontributi i tij ndryshoi radikalisht pikëpamjen e botës. Para Ajnshtajnit, disa gjëra besoheshin si të vërteta. Mes tyre ishin dhe ligjet e gravitetit dhe trupave në rënie, të përmendur më parë nga Isak Njutoni.

Gjithashtu në atë kohë besohej se “koha” në vetvete ishte një konstante fizike: Të gjithë dhe gjithçka përjetonte kalimin e kohës ashtu si kushdo dhe gjithçka tjetër. Teoria e tij e Relativitetit special parashikonte se kjo s’ishte e vërtetë dhe më vonë u vërtetua nga eksperimentet me orën bërthamore.

Emri Ajnshtajn sot është sinonim me fjalën gjeni. Albert Ajnshtajn është një prej mendjeve më të mëdha të shekullit të 20-të. Disa prej ideve të tij për shkencën, natyrën dhe besimi mund t’ju habisin. Jo më kot është zgjedhur “Personi i Shekullit” nga revista “Time”.

albert einstein biography shqip

Kur nëna e Albertit, Pauline, e lindi, koka e tij ishte kaq e madhe dhe e shtrembëruar, sa ajo kujtonte se mos ishte i deformuar. Ngaqë fundin e kokës e kishte shumë të madhe, familja mendoi mos ishte monstër. Megjithatë, ndërsa javët kalonin ata e kuptuan se ishte një fëmijë gati normal me të tjerët. Thuhet se gjyshja e tij ka klithur “është i shëndoshë, është i shëndoshë”, kur e ka pritur të lindte. Ndryshe nga përshtypja e parë, Alberti u rrit normalisht, vetëm se ishte pak i ngadaltë.

2- Ajnshtajni kishte vështirësi në të folur

Kur ishte fëmijë, Ajnshtajni fliste rrallë. Kur e bënte, fliste shumë ngadalë. E mendonte të gjithë fjalinë në kokë dhe e pëshpëriste para se ta thoshte. Këtë e bëri rregullisht deri në moshën 9-vjeçare. Prindërit trembeshin mos ishte i vonuar, por sigurisht më vonë doli se frika e tyre ishte pa baza. Kjo është quajtur sindroma e Ajnshtajnit.

3- Kur Ajnshtajni foli për herë të parë

Një historian ka krijuar një barsoletë. Prindërit e tij ishin të shqetësuar se nuk fliste fare. Kur një mbrëmje foli dhe tha “Supa është e nxehtë”, prindërit e pyetën pse nuk kishte folur më parë. Ai i përgjigjet: Sepse deri tani gjithçka ishte në rregull.

4- Ajnshtajni është frymëzuar nga një busull

Kur Ajnshtajni ishte pesë vjeç dhe i sëmurë në shtrat, babai i tregoi diçka që i ndezi interesin në shkencë: Një busull. Ndërsa qëndronte i shtirë, babai i nxori një busull të thjeshtë xhepi. Ajo që i interesonte Ajnshtajnit të ri ishte se sa herë që kutia ndërronte pozicion, gjilpëra kthehej në të njëjtin drejtim.

Ai mendoi se duhet të kishte ndonjë forcë në atë që konsiderohej si hapësirë boshe që e bënte gjilpërën të lëvizte. Ky incident i zakonshëm në shumë “fëmijëria të famshme”, është përmendur shpesh në shumë rrëfime të jetës së tij.

5- Ajnshtajni ngeli në provimin e hyrjes për në kolegj

Në vitin 1895, në moshën 17-vjeçare, Albert Ajnshtajn aplikoi për të hyrë në Shkollën Politeknike Federale Zvicerane (Eidgenössische Technische Hochschule). Ai kaloi provimin e matematikës dhe të shkencës tek provimi i hyrjes, por ngeli tek të tjerat.

Ndër lëndët ku nuk shkonte mirë ishte historia, gjuhët e huaja, gjeografia dhe të tjera. Ajnshtajni duhet të regjistrohej në një shkollë tregtare para se ta ribënte provimin dhe më në fund u pranua tek i njëjti universitet një vit më vonë.

6- Ajnshtajni kishte një fëmijë të paligjshëm

Në vitin 1980, letrat private të Ajnshtajnit kanë zbuluar diçka të re për gjeniun. Kishte një vajzë të paligjshme me ish-studenten Mileva Mariç, të cilën më vonë u martua. Në vitin 1902, një vit para martesës, Mileva lindi në familjen e prindërve në Berne, një vajzë me emrin Lieserl, të cilën Ajnshtajni kurrë nuk e pa dhe për të cilën nuk dihet gjë.

Ajo është pagëzuar dhe jetoi me familjen e Milevës. Më vonë ajo thotë se vdiq nga ethet në shtator, 1903. Në korrespondencën e çiftit shkruhet se është dhënë për birësim pasi ka lindur. Në letrën e 19 shtatorit, 1903, Lieserl Einstein-Maric përmendet për herë të fundit.

7- Kur përjashtohej nga shkolla

Ajnshtajni ishte i ngadaltë në procesin e të folurit. Madje prindërit e tij janë konsultuar dhe me një doktor. Ai madje ka patur një rebelim “të paturp” ndaj autoriteteve, që bëri që drejtori i shkollës ku ai studionte ta përjashtonte nga shkolla dhe të shprehej rreth tij se ai nuk do të mund të arrinte shumë në jetë.

Por këto karakteristika bënë që ai të bëhej një gjeni. Mospërfillja dhe përbuzja e tij ndaj autoritetit bënë që ai të vinte në dyshim njohuritë tradicionale. Zhvillimi i tij i ngadaltë verbal, bëri që ai të bëhej kurioz për gjërat e zakonshme – si koha dhe hapësira – që pjesa më e madhe e të rriturve i marrin për të mirëqena.

I ati i dhuroi një busull në moshën pesë vjeçare, dhe hetoi mbi natyrën e fushës magnetike gjatë gjithë jetës së tij. Ai kishte prirjen të mendonte në bazë të imazheve dhe jo me fjalë.

8- Kishte Ajnshtajni probleme të në mësuar?

Disa shkencëtarë kanë pretenduar se kanë zbuluar se në fëmijëri Ajnshtajni ka shfaqur shenja të lehta të autizmit ose të sindromës së Aspergerit. Simon Baron Kohen, drejtor i qendrës kërkimore të autizmit në Universitetin e Kembrixhit, është një prej tyre. Ai shkruan se autizmi është i lidhur “me një përpjekje intensive për të kontrolluar dhe një përpjekje të vogël të pazakontë për të qenë empatik”.

Ai gjithashtu vë në dukje se kjo gjë “shpjegon ‘kufijtë e aftësisë’ që njerëzit me autizëm shfaqin në lëndë të tilla si matematika, muzika ose vizatimi – të gjitha aftësi që përfitohen nga kontrolli”’. Kjo nuk duket një diagnozë bindëse.

Edhe si adoleshent, Ajnshtajni kishte miq të ngushtë, kishte marrëdhënie intime, bëhej pjesë e debateve skolastike, komunikonte mjaft mirë verbalisht dhe ishte empatik ndaj miqve dhe njerëzimit në përgjithësi.

9- A ngeli Ajnshtajni në Matematikë?

Një besim mjaft i përhapur rreth Ajnshtajnit është se ai kishte ngelur në lëndën e matematikës. Një kërkim në Google rreth kësaj nxjerr më shumë se 500 mijë rezultate. Ky lajm madje është bërë pjesë e titujve të gazetave “besoje ose jo”.

Por historia e tij është shumë ironike: Në 1935, një lajm u botua rreth Ajnshtajnit “Matematikani më i madh i kohës, ngel në matematikë”. Duke qeshur ai është përgjigjur se nuk ka ngelur asnjëherë në matematikë, dhe se në moshën 15 vjeçare ai kishte zgjidhur ekuacione të vështira matematikore.

Në shkollë fillore ai ka qenë më i miri i klasës dhe shumë më lart rezultateve të pritshme në matematikë. Në moshën 12 vjeçare, motra e tij u shpreh se ai “gjithmonë kishte preferuar të zgjidhte probleme të vështira aritmetike”, dhe vendosi të zbulonte nëse mund të progresonte duke mësuar gjeometrinë dhe algjebrën vetë.

Prindërit i blenë libra të avancuar që ai të përgatitej gjatë verës. Ai jo vetëm që mësoi fakte në këto libra, por identifikoi disa teori në një përpjekje që t’i testonte personalisht. Ai madje pati idenë e tij personale se si mund të provonte teorinë e Pitagorës.

10- A mendonte Ajnshtajni më shumë bazuar në imazhe se sa në fjalë?

Të gjitha zbulimet e tij të mëdha ishin rezultat i eksperimenteve vizuale që ai i zhvillonte në mendjen e tij më tepër se sa në laborator. Për këtë arsye, ata u quajtën Gedankenexperiment – eksperimentet e mendimit. Në moshën 16 vjeçare, ai u mundua të përfytyronte se si mund të ishte të ecje përkrah një rreze drite. Nëse arrihej shpejtësia e dritës, a nuk do të dukeshin valët e saj të palëvizshme? Por ekuacionet e famshme të Maksuellit që përshkonin valët elektromagnetike nuk e lejonin një gjë të tillë. Ai e dinte se matematika ishte mënyra që natyra përdorte për të përshkruar mrekullitë e saj, kështu ai mund të përfytyronte në mënyrë vizuale se si ekuacionet reflektoheshin në realitet. Kështu për dhjetë vitet e ardhshme të jetës së tij, ai mendoi rreth këtij eksperimenti deri sa erdhi momenti që ai nxori teorinë e famshme të relativitetit.

11- Cilat ishin mendimet – imazhe që Ajnshtajni përdori për teorinë e relativitetit?

Ndër shumë gjëra të tjera, ai imagjinoi goditje rrezatuese në dy anët fundore të një treni në lëvizje. Një person që është në rrugë mund t’i shohë këto ndriçime në një moment të vetëm, por dikujt që është në një tren lëvizës ato do t’i shfaqen në momente të ndryshme. Për shkak se treni ecën përpara, drita rrezatuese në pjesën e përparme të trenit do të arrijë më përpara tek personi një moment përpara dritës që vjen nga fundi i trenit. Nga kjo gjë Ajnshtajni kuptoi se “njëkohshmëria” është relative me gjendjen fizike në hapësirë. Dhe prej kësaj ai hodhi idenë se nuk ekzistonte koncepti i kohës absolute. Ky ëshët relativiteti i Ajnshtajnit, dhe sigurisht teoria e relativitetit.

12- Cili ishte eksperimenti i menduar, që çoi Ajnshtajnin drejt teorisë së relativitetit?

Ai imagjinoi një njeri në rënie të lirë. Për të kuptuar atë që ai pa, mendoni një njeri të mbyllur në një ashensor që ulet në drejtim të tokës. Ai do të lëvizte në ashensor duke u ngritur lart, dhe çdo gjë që do të dilte dhe binte nga xhepat e tij do të lëviznin lirshëm rreth tij – njësoj si të ishte i mbyllur në një dhomë, në një zonë pa gravitet të hapësirës. Në anën tjetër, mendoni një grua të mbyllur në një ashensor që po ngjitet lart në hapësirë, larg çdo lloj graviteti. Ajo do të ndihej sikur po binte në tokë, njësoj sikur të ishte duke u tërhequr nga graviteti. Nga ekuivalenca e gravitetit dhe nxitimit, ai ndërtoi teorinë e përgjithshme të relativitetit.

13 – Çdo gjë është relative

Ai zbuloi se graviteti ishte një “deformim” i hapësirës dhe kohës. Ai mund të përshkruhet duke përdorur një tjetër eksperiment të menduar. Imagjinoni si do të mund të ishte hedhja e një topi bouling – u në një sipërfaqe dy dimensionale të një trampoline. Ai i jep formë strukturës ndërkohë që lëviz. Më pas rrotulloni disa topa bilardoje. Ata lëvizin drejt topit të bouling–ut jo sepse ai i tërheq ata në mënyrë të panjohur (Siç thotë teoria e Njutonit), por për shkak të formës që ai i ka dhënë strukturës së trampolinës. Tani imagjinoni gjithë këtë në një strukturë katër dimensione të hapësirës dhe kohës. Nuk është e lehtë, ndaj ne nuk jemi Ajnshtajni dhe ai ishte. Ai ishte i aftë të nxirrte ekuacionin e fushës së gravitetit që tregonte se si materia formëson hapësirën dhe si forma e hapësirës i tregon materies si të lëvizë.

14-Cila ishte mrekullia e vitit e Ajnshtajnit?

Në 1905, Ajnshtajni u diplomua, por nuk ju dha mundësia që tema e tij e doktoraturës të pranohej; as të merrte një post akademik. Kështu ai filloi të punonte me orar të zgjatur, gjashtë herë në javë, si një ekzaminues i nivelit të tretë në zyrat zviceriane të inovacionit shkencor. Gjatë kohës së lirë, ai shkruajti katër teza që lidheshin me fizikën. E para tregonte se drita mund të prodhohej si në formë valësh ashtu dhe si grimca të quajtura fotone. E dyta provonte ekzistencën e atomeve dhe molekulave. E treta, teoria e relativitetit, që thonte se nuk kishte hapësirë apo kohë absolute. Dhe e katërta tregonte një ekuivalencë ndërmjet energjisë dhe masës, që përshkruhet nga ekuacioni i famshëm i fizikës, E=mc2.

15-Si ishte jeta personale e Ajnshtajnit në atë kohë?

Ndihma që ju dha në matematikë, ishte ajo e serbes, Mileva Mari, që ishte e vetmja femër në klasën e tij të fizikës, në universitet. Ata kishin rënë marrëzisht në dashuri me njëri – tjetrin, dhe patën një vajzë të jashtëligjshme, të cilën lejoi ta jepnin për birësim para se ta shihte. Më pas ata u martuan dhe patën dy djem. Eventualisht marrëdhënia e tyre u komplikua dhe Ajnshtajni kërkoi divorcin. Ai i ofroi asaj një marrëveshje: Një nga tezat e tij të 1905, sipas tij, do të fitonin Çmimim Nobel, dhe nëse ajo i jepte divorcin, Ajnshtajni do t’i jepte paratë e fituara nga ky çmim. Pasi u mendua për një javë, ajo pranoi. Për shkak se teoritë e tij ishin mjaft radikale, ai e fitoi këtë çmim vetëm në 1922.

16- Teoria: Si u krijua relativiteti?

Shkencëtarët nuk ishin të sigurtë që herën e parë nëse teoria e relativitetit ishte e saktë. Por Ajnshtajni propozoi një eksperiment dramatik. Gjatë eklipsit të ardhshëm, në 1919, shkencëtarët mund të masnin se si drita e yjeve që kalonte në afërsi të diellit, drejtohej nga graviteti. Lajmet që pasuan ishin: “Dritat që lëvizin shtrembër në Parajsë / Njerëzit e shkencës Më shumë apo më pak të etur për rezultatet e Vëzhgimeve të Eklipsit / Teoria e Ajnshtajnit triumfon”. Dhe e gjithë kjo është shkruar në një kohë kur të paktë ishin ata që dinin të shkruanin mirë. Ajnshtajni u bë i famshëm për kontributin që dha në lindjen e një epoke të re. Ai u bë një shkencëtar i famshëm dhe një ikonë e humanizmit; një nga emrat më të njohur në planet.

17- Ajnshtajni propozon një “kontratë” të çuditshme

Pasi ai dhe Mileva u martuan, patën dy djem, Hans Albert dhe Eduard. Suksesi akademik dhe udhëtimet nëpër botë kishin çmimin e tyre. Ai u distancua nga gruaja e tij dhe për disa kohë çifti u përpoq të merrej me problemet. Ajnshtajni propozoi një “kontratë” të çuditshme për të jetuar me Milevën. Kushtet ishin që rrobat të ishin të pastra dhe të hekurosura, që t’i çonte tre vakte të ngrohta në dhomë, që dhoma dhe studioja të ishin të pastra, përveç tavolinës së punës, që ajo të pushonte së foluri kur ai t’ia kërkonte. Ajo pranoi dhe ai i premtoi se do ta konsideronte të huaj çdo grua tjetër. Pas divorcit, marrëdhënia e Ajnshtajnit me djalin e madh u lëkund. Hansi fajësonte të atin për ndarjen nga Mileva dhe pasi Ajnshtajni fitoi çmimin “Nobel” dhe paratë. Ai i dha asaj vetëm interesat dhe jo shumën e madhe të çmimit. Grindjet mes tyre u shtuan kur Ajnshtajni kundërshtoi martesën e djalit me Frieda Knecht, sepse ajo ishte “më e madhe dhe e shëmtuar”. Kur ata u martuan, Ajnshtajni i kërkoi djalit të mos bënin fëmijë, pasi kjo do ta bënte divorcin edhe më të vështirë. Edhe mamaja e Ajnshtajnit e kishte kundërshtuar martesën me Milevën. Kur i biri emigroi në Amerikë, ata mbetën të ndarë.

18- Ajnshtajni, i preferuari i grave

Kur Ajnshtajni u divorcua me Milevën në vitin 1919 (tradhtia cilësohet si një nga shkaqet), ai u martua me kushërirën, Elsa Loëenthal. Në të vërtetë ai donte të martohej edhe me vajzën e Elsës nga një martesë e mëparshme, Ilse, 18 vjet më e re se ai, por ajo e kundërshtoi. Ndryshe nga Mileva, shqetësimi kryesor i Elsës ishte të kujdesej për burrin e saj të famshëm. Ajo i dinte dhe i toleronte tradhtitë dhe lidhjet dashurore të tij, të cilat zbulohen më vonë tek letrat e tij. Fillimisht e tradhtoi me sekretaren, Betty Neumann. Korrespondenca e tij tregon se ishte i lidhur me gjashtë gra, mes tyre dhe një spiune ruse.

19- Pacifisti që shpiku bombën atomike

Në vitin 1939, i alarmuar nga shumimi i Gjermanisë naziste, Leo Szilard e bindi Ajnshtajnin t’i shkruante një letër presidentit amerikan, Franklin Roosevelt, ku e paralajmëronte se Gjermania naziste po ndërtonte një bombë atomike dhe i sugjeronte Shteteve të Bashkuara të zhvillonin bombën e tyre. Letra e Ajnshtajnit dhe Szilardit konsiderohet si një nga arsyet që Roosevelti filloi “Projektin Manhattan” për të zhvilluar bombën, edhe pse më vonë u zbulua se bombardimi i Pearl Harbor në vitin 1941 e bindi më shumë qeverinë se sa letra e tyre. Edhe pse ishte fizikant i shkëlqyer, ushtria e konsideronte si rrezik sigurie dhe nuk e ftuan në projekt.

20- Ajnshtajni në Shqipëri

E kush mund ta mendonte se fizikanti i madh ka shkelur tokën shqiptare? Dhe jo vetëm kaq. Ai u pajis me pasaportë shqiptare nga mbreti Zog, si një mbrojtje që ai i dha hebreut më të famshëm të shekullit të 20-të. Edhe pse për shumë pak orë, Ajshtajni në vitin 1931 ka qëndruar në portin e Durrësit, në pritje të anijes.

21- Truri shëtiti në kavanoz për 43 vjet

Pas vdekjes në vitin 1955, truri i Ajnshtajnit u hoq pa lejen e familjes nga Thomas Harvey që kreu autopsinë. Ai e mori trurin në shtëpi dhe më vonë u pushua nga puna për shkak se refuzoi ta dorëzonte organin. Shumë vite më vonë, kur Harvey mori leje nga Hansi ta studionte trurin, i dërgoi copëza disa shkencëtarëve në të gjithë botën. Njëra prej tyre ishte Marian Diamond nga Universiteti Berkeley, e cila zbuloi se ai kishte më shumë qeliza në atë pjesë të trurit që ishte përgjegjëse për sintetizimin e informacionit. Neuronet e trurit të tij, që ishte më i madh se normalja, komunikonin më mirë me njëri-tjetrin, për shkak se mungonte një “rrudhë” e quajtur prerja silviane. Studime të tjera sugjerojnë se truri i Ajnshtajnit ishte i dendur dhe se lobi inferior, që ka të bëjë me aftësitë për matematikë, ishte më i madh se truri normal.

22- Saga e trurit të Ajnshtajnit

Në fillim të viteve 1990, shkrimtari Michael Paterniti udhëtoi për në Kaliforni bashkë me doktorin Harvey për të takuar stërmbesën e Ajnshtajnit. Ata udhëtuan nga Neë Jersey me makinë të madhe familjare, ndërkohë që truri i Ajnshtajnit tundej brenda një kavanozi në bagazh. Paterniti disa vite më vonë shkroi për eksperiencën e tij në librin “Në makinë me zotin Albert: Një udhëtim nëpër Amerikë me trurin e Ajnshtajnit”. Në vitin 1998, 85-vjeçari Harvey ia dha trurin doktor Elliot Krauss, patologu i stafit në universitetin “Priceton”, pozicioni që Harvey kishte më parë. Ai thotë: “Pasi e ruajta trurin për dekada sikur të ishte një relike e shenjtë, dhe për shumë ashtu ishte, e lashë më në fund të lirë. Ia dhashë departamentit të patologjisë në qendrën mjekësore të “Princeton”, aty ku Ajnshtajni kaloi 2 dekadat e fundit. U lodha nga përgjegjësia që kisha. Tani jam më i qetë”.

23- S’donte ta lodhte mendjen më shumë nga sa nevojitej dhe pëlqente të rrinte zbathur

Përveç sportit të preferuar, lundrimit (sporti që kërkon më pak energji), Ajnshtajni i shmangej çdo aktiviteti çlodhjeje që kërkonte shkathtësi mendjeje. Siç tha ai për “Neë York Times”, “Sapo përfundoj projektet që kam në dorë, nuk dua të merrem me asgjë tjetër që kërkon punë mendjeje”. “Kur isha i ri, zbulova se gishti i madh i këmbës gjithmonë bënte një vrimë në çorape”, tha ai dikur. “Prandaj nuk vesha më çorape”, vazhdon ai.

24- Nuk e ndiqte asnjëherë modën dhe s’ka mësuar kurrë të shkruajë anglisht

Ajnshtajni ishte një kokëfortë fanatik. Ai refuzoi të vishej ashtu siç e këshillonin, kushdo të ishte ai apo ajo. Njerëzit ose e njihnin mirë, ose nuk e njihnin fare, arsyetonte ai, kështu që nuk kishte rëndësi në e shihni me të njëjtin kostum një vit të tërë. Edhe pse jetoi për shumë vite në Shtetet e Bashkuara dhe i fliste mirë të dyja gjuhët, Ajnshtajni thotë se kurrë nuk ka mundur të shkruajë në anglisht, për shkak të “shqiptimit të pabesë”. Kurrë nuk e humbi theksin dallues gjerman “I vill a little t’ink” (I ëill a little think”)

25- Tymoste si oxhak

Një anëtar për jetë i “Klubit të duhanxhinjve me llullë”, në Montreale, Ajnshtajni citohet të ketë thënë: “Duhani me llullë kontribuon në gjykimin më të qetë dhe objektiv të çështjeve njerëzore”. Një herë ra në ujë gjatë një ekspedite me barkë, por arriti heroikisht të mos lëshojë nga dora llullën e tij.

26- E kishte zët letërsinë fantastiko-shkencore

Në mënyrë që mos ta ngatërronte me shkencën e pastër dhe t’u jepte njerëzve iluzione false në lidhje me arsyetimin shkencor, ai rekomandoi abstinencë të plotë nga çfarëdolloj letërsie fantastiko-shkencore. Ai gjithashtu sugjeroi se njerëzit që kanë parë disqe fluturuese duhet t’i mbajnë ato për veten e tyre. Ajnshtajni qetësohej në kuzhinën e tij me violinën besnike, duke u munduar me kokëfortësi të improvizonte diçka që të ngjasonte si vijë melodike. Kur nuk ia arrinte, ai rikthehej tek Mozarti.

27- Alkooli nuk ishte droga e preferuar

Në një konferencë për shtyp me mbërritjen e tij në Nju Jork në vitin 1930, ai tha duke bërë shaka për ndalimin me ligj të alkoolit: “Unë s’pi, prandaj për mua njësoj është”. Në të vërtetë, Ajnshtajni ka qenë kritik i hapur ndaj “ligjeve që nuk mund të imponohen”.

28- E barazonte monogaminë me monotoninë

“Të gjitha martesat janë të rrezikshme”, një herë i tha intervistuesit. “Martesa është përpjekja e pasuksesshme për ta bërë diçka të zgjasë nga një incident”. Njihej botërisht se ishte burrë jobesnik, që prirej të binte në dashuri me dikë tjetër pasi sapo kishte shkëmbyer premtimet.

29- Nuk mbante mend ditëlindjet

Me besimin se datëlindjet ishin për fëmijët, qëndrimi i tij përmblidhet në një letër që i shkroi të dashurës Mileva Maric: “E dashur zemra ime e vogël …, së pari urimet e mia të përzemërta për ditëlindjen tënde dje, të cilën e harrova përsëri”.

30- Nuk kishte shtetësi për 5 vite

Ai nuk ishte shtetas i asnjë vendi për gati 5 vite! Që nga viti 1896 (kur refuzoi shtetësinë gjermane në moshën 15-vjeçare) deri në vitin 1901 (kur u bë zviceran).

31- Pse nxori gjuhën në foton e famshme

Ishte ditëlindja e Ajnshtajnit dhe i mbytur nga një mori fotografësh. I lodhur prej tyre, ai nxori gjuhën me shpresën se do t’ia prishte foton. (Sikur të ishte aktor në ditët e sotme do t’ia kishte tërhequr aparatin nga duart). Sigurisht që plani i tij doli huq. Meqë shkencëtari kishte një reputacion si njeri i çuditshëm, fotoja u konsiderua si një shembull tjetër i sharmit të tij gjaknxehtë dhe u bë një prej fotove të tij më të bukura.

32- Sa ishte kapaciteti i inteligjencës?

Kapaciteti i inteligjencës së Ajnshtajnit ishte 160. Njerëzit e konsideronin të zgjuar. Bill Clinton e ka më të lartë këtë shifër. E vërteta është se kuizet në internet për të vlerësuar inteligjentët u shpikën më vonë, kështu që Ajnshtajni kurrë s’e bëri. Është mirë të themi se ishte shumë më i zgjuar se ne të gjithë bashkë.

33- A besonte Ajnshtajni në Zot?

Ajnshtajni ishte hebre; hebre nga populli i Perëndisë. Ai kundërshtoi natyrën e rastësishme të mekanikës kuantike dhe tha “Perëndia nuk luan me zare”. Ndër frazat më të njohura të tij janë: “Para Zotit jemi të barabartë në zgjuarsi dhe të barabartë në budadallëk”, “Perëndia gjithmonë zgjedh mënyrën më të thjeshtë”, “Dua të di gjithë mendimet e Perëndisë; të gjitha të tjerat janë detaje”. Rregulli i universit ishte provë për të që Perëndia ekzistonte.

34- Pse nuk ishte prezent në çmimin “Nobel”?

Nuk ishte i pranishëm në dhjetor të vitit 1922 për të marrë çmimin “Nobel” në fizikë, sepse ishte në një udhëtim në Japoni. Gjatë kësaj kohe bëri shumë vizita ndërkombëtare. Kishte vizituar Parisin para dhjetorit dhe një vit më vonë vizitoi Palestinën. Pas zbulimit të fundit shkencor, në lidhje me valët dhe materien, në vitin 1924 ai bëri vizita të tjera, por këtë herë në Amerikën e Jugut.

35- Prejardhja e përulur

Ajnshtajni ka lindur në Ulm, Gjermani, më 14 mars të vitit 1879, në adresën “135 Bahnhofstrasse”, e cila më vonë u bombardua nga forcat aleate në vitin 1944. Prindërit e tij ishin hebrenj të shtresës së mesme. Ata quheshin Hermann dhe Pauline.

36- Gjeometria dhe filozofia

Lëndët e preferuara në shkollë ishin gjeometria dhe filozofia. Ai e pëlqente kaq shumë gjeometrinë sa filloi ta studionte në moshën 12-vjeçare. Edhe filozofia ishte e rëndësishme për të, pasi ishte studimi i universit dhe kuptimit të jetës. Kjo e inkurajoi të kërkonte përgjigje. Ai studionte filozofi çdo të enjte me një student mjekësie me emrin Max Talemy, i cili bashkohej me familje e tij për darkë.

37- Puna e parë që bëri

Albertit kurrë nuk i është dashur të punojë derisa familja e tij u zhvendos në Milano, Itali. Atje gjeti punën e parë në një zyrë patentash zvicerane në Bern dhe qëndroi për shtatë vite, duke e përdorur kohën e lirë për të studiuar fizikë dhe për të shkruar artikuj për universitetet lokale.

38-Aspekte të jetës që pëlqente

Natyra dhe muzika zinin vendin e parë. Ajnshtajni pëlqente të shëtiste në natyrë. Shëtitjet e tij ishin koha kur mendohej dhe harronte gjithë botën. Dashurinë për muzikën e mori nga e ëma. Ai kurrë nuk hoqi dorë nga violina. Kur u bë shumë plak për të luajtur me të, ai ulej dhe dëgjonte muzikën e tij të regjistruar.

39- Ajnshtajni refuzon paratë dhe çfarë urrente

Universiteti “Princeton” i caktoi një shumë për rrogë. Atij i kërkuan ta vendoste vetë këtë shumë. Universiteti kishte vendosur për 10 mijë dollarë në muaj, por Ajnshtajni kërkoi vetëm 3 mijë dollarë. Ai gjithashtu refuzoi pensionin prej 7500 dollarësh në vit, duke e cilësuar si “shumë bujar”. Pensioni u reduktua në 6 mijë dollarë. Me to bleu një shtëpi modeste, ecte për në punë dhe kurrë nuk pati ndonjë makinë. Çfarë urrente? Të vetmet gjëra që nuk donte dot ishin berberi dhe çorapet. Ajnshtajni kurrë nuk e vizitonte berberin se nuk kishte nevojë për model të ri flokësh, i vjetri i pëlqente më shumë. Ai shkruan në vitin 1934: “Jam plotësisht i bindur se asnjë pasuri në botë nuk e ndihmon njerëzimin të përparojë, madje dhe në duart e punëtorit më të devotshëm për këtë punë” dhe “Paratë joshin vetëm egoizmin dhe ftojnë abuzimin”.

40- Shënimet e Teorisë së Relativitetit shiten 6 milionë dollarë

Në vitin 1944, letra e tij ku kishte shkruar Teorinë e Relativitetit, herët në vitin 1905, u nxor në ankand. Ajo mblodhi 6 milionë dollarë dhe sot manuskripti ndodhet në Librarinë e Kongresit. Në ditët e sotme me siguri do ishte shitur për më shumë, por në atë kohë kjo ishte një shifër rekord.

41- Njeriu më miqësor i kohës

Ai lindi në Ulm të Gjermanisë edhe pse familja u zhvendos në disa shtete të ndryshme për të jetuar, ai pëlqente më shumë qytetin e lindjes. Gjatë shëtitjeve të tij në qytet përshëndeste dhe u jepte dorën kujtdo që shihte.

42- Jetëgjatësia

Albert ndërroi jetë në moshën 76-vjeçare. Ai u largua më 18 prill të vitit 1955. 22 vitet e fundit të jetës i kaloi në Institutin e Studimeve të Avancuara në Princeton, Neë Jersey. Në atë qytezë të vogël të kolegjit, Alberti ishte një fytyrë e njohur. Çdo ditë, zotëria i sjellshëm me flokët gri dilte nga zyra për në shtëpi dhe gjithmonë ndalej t’u fliste kalimtarëve.

43- Pamja karakteristike

Ai njihej për mjekrën e bardhë si dëborë dhe flokët e çmendura. Por si ishin flokët natyralë? Ato ishin të zeza, ashtu siç dalin në fotografitë e moshës më të re. Duke qenë se në ato kohë të gjitha fotot ishin bardhë e zi, shumë kureshtarë e kanë vënë në dyshim këtë fakt, por ishin të zeza, tipike për hebrenjtë.

44- Pas Gjermanisë në “Oksford”

Në vitin 1921 mori çmimin “Nobel”, por me rritjen e nazizmit ai shkoi në Angli. Atje mësoi në universitetet “Oxford” dhe “Cambridge”, para se të zhvendosej për në SHBA. Me mbërritjen në SHBA Ajnshtajni lëvizi për në Kaliforni, vendi i plazheve dhe dimrave me diell. Atje u bë profesor në Institutin e Teknologjisë në Pasadena, Kaliforni. Gjithashtu dha mësim edhe në universitetin “Princeton”.

45- Kërkoi të largojë bombën atomike

Ajnshtajnit nuk ia priste mendja se ç’do të ndodhte në të ardhmen me bombat bërthamore. Në numrin e nëntorit të vitit 1945, ia adresoi këtë çështje revistës “Atlantic Monthly”; kërkesën e përsëriti në nëntor të vitit 1947. Në lidhje me bombën atomike sugjeroi që t’i dorëzohej një qeverie botërore të themeluar nga Rusia, SHBA-ja dhe Britania. Në kohën kur e shkroi, armët bërthamore nuk ishin kaq të fuqishme sa edhe sot.

46- Sa fëmijë pati dhe ku ndërroi jetë

Gjithsej Ajnshtajni pati tre fëmijë. Një vajzë, Lieserl, dhe dy djem, Eduard dhe Albert. Alberti i ri më vonë u bë profesor inxhinierie në universitetin “Berkley”. Djali i tij Eduart ishte skizofrenik. Gruaja e dytë kishte dy fëmijë, Ilse dhe Margot. Ajnshtajni vdiq në vitin 1955 në spitalin e “Princeton”. Truri iu hoq për studim dhe iu ruajt në Wichita, Kansas. Atje u vendos në laboratorin e doktor Thomas Harvey, ish-shefi patolog i universitetit “Princeton”.

47- Ç’do të thotë E=mc2 dhe çfarë tregon ekuacioni

Ajnshtajni e përmblodhi teorinë speciale të relativitetit në një revistë disa vite më vonë me ekuacionin legjendar E=mc2. Ky ekuacion përkthehet, Energjia=masa e shumëzuar me shpejtësinë e dritës në katror. Masa përmban sasi të mëdha energjie. Çfarë tregon ekuacioni? Marie Curie zbuloi se një ons (28,35 gramë) radiumi nxirrte 4 mijë kalori/në orë në mënyrë të papërcaktuar. E=mc2 është baza e zbulimit se si dielli dhe yjet kanë rrezatuar dritë dhe nxehtësi gjatë mijëvjeçarëve, dhe për tmerrin e Ajnshtajnit, ky ekuacion sjell edhe prodhimin e bombës atomike.

48- Çmimet e tjera “Nobel”

17 vite pas botimit të Relativitetit, në vitin 1922 Ajnshtajni fitoi çmimin “Nobel” për Shërbimin ndaj Fizikës Teorike. Kishte disa arsye pse çmimin “Nobel” nuk iu dha aq shpesh. Relativiteti në atë kohë ishte mjaft kontroversal dhe teorik. Nuk mund të provohej. Fakti që gjykatësit nuk mund ta kuptonin ishte problem më vete.

49- I ndjekur nga “FBI”-ja

Edgar Hoover dyshonte se Ajnshtajni ishte komunist. Ai shpenzoi mijëra orë për ta bindur “FBI”-në ta dënonte Ajnshtajnin, por pa sukses. Edhe pse Hoover dyshonte se ai ishte komunist, ai kurrë s’do të miratonte përgjimin e telefonave apo të postës. Pas shumë orëve kërkimi, Hoover e braktisi çështjen kundër tij dhe sekretares së Ajnshtajnit, Helen Dukas. Ata kishin mbledhur aq shumë dosje sa preknin tavanin, por asnjëra nuk provonte gjë. Më vonë, miqtë thonë se Ajnshtajni qeshte me këtë histori.

50- “Njeriu i Shekullit”, nga “Time”

albert einstein biography shqip

Shpërndaje artikullin

albert einstein biography shqip

Restaurohet ikona “Shën Maria me Krishtin”, e shekullit të 18-të

21 Mars, 2024

albert einstein biography shqip

Restaurohet shtëpia tradicionale e familjes Sylejmani, Çeku: Po i kushtojmë vëmendje të veçantë trashëgimisë kulturore të kryeqytetit

20 Mars, 2024

albert einstein biography shqip

Kisha e Shën Nikollës në Paftal të Beratit, vlerë e shtuar për turizmin kulturor

albert einstein biography shqip

Fortifikimi i Kratulit, pasuri arkeologjike e Shkodrës

18 Mars, 2024

albert einstein biography shqip

Çeku: Po vazhdojnë punimet në asetet e trashëgimisë kulturore

16 Mars, 2024

albert einstein biography shqip

Shtëpia në Poklek ku forcat serbe masakruan 53 civilë, po bëhet muze

albert einstein biography shqip

Fortesa e Shkodrës në gravurën e vitit 1877 të bibliotekës së Firences

albert einstein biography shqip

Vallet rituale të Ditës së Verës në Dardhën e vitit 1932

DËSHIRONI TË NJOFTOHENI PËR LAJMET MË TË RËNDËSISHME TË DITËS NGA KULTPLUS?

Unsubscribe

Të ngjajshme

albert einstein biography shqip

Muzeu i Kosovës shënon Ditët e Trashëgimisë Europiane

11 Tetor, 2019

albert einstein biography shqip

Çfarë i shkruan së bijën, gjeniu Ajnshtajn në një nga 1400 letrat mbajtur sekret për dy dekada

18 Prill, 2023

albert einstein biography shqip

Pse helmetat romake kishin nga një furçë sipër?

14 Dhjetor, 2020

  • Përfaqësuesja e Kosovës
  • Real Estate
  • Telegrafi Maqedoni
  • Maqedonia e Veriut
  • Kronika e zezë
  • Kuriozitete
  • Energjetika
  • Prodhime vendore
  • Prokurimi i hapur
  • Sportet luftarake
  • Transferimet
  • Sporte tjera
  • Bukuri dhe kujdes
  • Sport / Fitnes
  • Intimitet dhe Pasion
  • Shtëpi dhe dekor
  • Këshilla për kafshët
  • Shëndetësi lajme
  • Këshilla mjekësore
  • Temat javore
  • Ushqimi dhe dieta
  • Mjekësi alternative
  • Punime profesionale
  • Receta gatimi
  • Nga duart tua
  • Përtej shijes
  • Lajme teknologji
  • Aplikacione
  • Këshilla teknologjike
  • Media sociale
  • Interesante
  • Nga Telegrafi
  • Na Kontaktoni
  • Reklamo në Telegrafi

Shkarkoje aplikacionin:

IOS APP

14 thëniet më inspiruese të të gjitha kohërave nga Albertin Einstein

14 thëniet më inspiruese të të gjitha kohërave nga Albertin Einstein

Albert Einstein është fizikani më me ndikim i shekullit 20-të, dhe mund të jetë një nga shkencëtarët më të famshëm që ka jetuar ndonjëherë.

Kishte qenë vetëm 26-vjeçar në vitin 1905 kur kishte publikuar katër letra shkencore, duke e elektrizuar fushën e fizikës dhe duke i fituar vetës njohje botërore, transmeton Telegrafi.

Mes atyre letrave ka qenë edhe teoria e tij e njohur e relativitetit, po ashtu edhe ekuacioni i famshëm, E = mc².

Që nga periudha e Isaac Newton-it, asnjë njeri tjetër nuk e kishte ndryshuar në mënyrë drastike kuptimin tonë sa i përket mënyrës se si funksionon universi.

Emri i Einstein-it është shndërruar në sinonim të gjenialitetit dhe kreativitetit. I emëruar edhe si “Personi i Shekullit” nga revista ‘ TIME’ në vitin 1999, Einstein është ikonë e rrallë, mençuria e të cilit është shtrirë shumë përtej botës së shkencës për të zbuluar një mashkull me ndjenja thuajse fëmijërore të brengave dhe me dashuri të thellë për njerëzimin.

Më poshtë i keni disa prej thënieve më inspiruese të këtij gjeniu, të cilat patjetër se do të ndikojnë mirë te ju.

– “ Të pakët janë ata që i shohin sytë e tyre dhe i ndjejnë zemrat e tyre”

– “Imagjinata është më e rëndësishme sesa njohuritë. Njohuritë janë të kufizuara. Imagjinata e rrethon botën”

– “Përpiqu të mos bëhesh njeri i suksesit, por të bëhesh njeri i vlerave”

– “Çdo njeri është gjeni. Por, nëse e gjykoni një peshk nga aftësia e tij për t’u ngjitur në pemë, ai do ta jetojë tërë jetën duke besuar se është budalla”

– “Shikoni thellë në natyrë, dhe pastaj do të kuptoni çdo gjë më mirë”

– “Të gjitha religjionet, artet dhe shkencat janë degë të së njëjtës pemë”

– “Në mesin e vështirësive gjendet mundësia”

– “Një njeri që nuk ka gabuar kurrë, asnjëherë nuk ka provuar diçka të re”

– “Gjëja më e rëndësishme është të mos ndaleni së pyeturi. Kureshtja e ka arsyen e vet se përse ekziston”

– “Jeta është sikur biçikletë. Për ta mbajtur balancimin, ju duhet të lëvizni tërë kohën”

– “Në momentin që ndaleni së mësuari, ju filloni të vdisni”

– “Njerëzit e dobët hakmerren. Njerëzit e fortë falin. Njerëzit inteligjentë injorojnë”

– “Anija është gjithmonë e sigurt në breg, por nuk është ndërtuar për atë qëllim”

– “I flas çdo njeriu në të njëjtën mënyrë, qoftë nëse e mbledh bërllokun, qoftë nëse është dekan i fakultetit”. /Telegrafi/

  • Albert Einstein
  • Thënie inspiruese

Jumbo në Central Park më e madhja në Ballkan, sot hapi dyert për të gjithë klientët e saj

Jumbo në Central Park më e madhja në Ballkan, sot hapi dyert për të gjithë klientët e saj

Folës nga Microsoft, Meta, TikTok, Geopost do të jenë pjesë e Samitit të Tregtisë Elektronike të Ballkanit 2024 në Arena Sofia në prill

Folës nga Microsoft, Meta, TikTok, Geopost do të jenë pjesë e Samitit të Tregtisë Elektronike të Ballkanit 2024 në Arena Sofia në prill

Telegrafi Jobs – destinacion përfundimtar për punëkërkuesit

Telegrafi Jobs – destinacion përfundimtar për punëkërkuesit

Ofertat e Auto Mita t’bojnë me kerr t’ri –  filluar nga 179 euro në muaj

Ofertat e Auto Mita t’bojnë me kerr t’ri – filluar nga 179 euro në muaj

Auto Mita

Lufta Prigozhin - Putin

Pavarësisht rebelimit të Wagner-it, Rusia ende nderon mercenarët e vrarë në Ukrainë

Pavarësisht rebelimit të Wagner-it, Rusia ende nderon mercenarët e vrarë në Ukrainë

Copëza të një granate dore janë gjetur në trupat e viktimave, pas rrëzimit të aeroplanit të Yevgeny Prigozhin – thotë Vladimir Putin

Copëza të një granate dore janë gjetur në trupat e viktimave, pas rrëzimit të aeroplanit të Yevgeny Prigozhin – thotë Vladimir Putin

Pamje që nxisin spekulime: Gruaja e sozisë së Prigozhinit viziton ‘varrin e shefit të Wagner një ditë pas funeralit’

Pamje që nxisin spekulime: Gruaja e sozisë së Prigozhinit viziton ‘varrin e shefit të Wagner një ditë pas funeralit’

A e falsifikoi Prigozhin vdekjen e tij? Këto janë disa pretendimet që e mbështesin këtë teori!

A e falsifikoi Prigozhin vdekjen e tij? Këto janë disa pretendimet që e mbështesin këtë teori!

Cila ishte marrëdhënia e Putinit me Prigozhinin ndër vite?

Cila ishte marrëdhënia e Putinit me Prigozhinin ndër vite?

Prigozhin i Wagner, do të vritet nga Putin ose do të udhëheqë një grusht shteti brenda gjashtë muajsh, thotë gazetari i Bellingcat

Prigozhin i Wagner, do të vritet nga Putin ose do të udhëheqë një grusht shteti brenda gjashtë muajsh, thotë gazetari i Bellingcat

Pse Bjellorusia mund të duhet të financojë grupin Wagner?

Pse Bjellorusia mund të duhet të financojë grupin Wagner?

Marrëveshja e Putinit me mercenarët e Wagner ka të ngjarë të ‘kolapsojë’ – ata mund të ‘aktivizohen’ në fund të gushtit

Marrëveshja e Putinit me mercenarët e Wagner ka të ngjarë të ‘kolapsojë’ – ata mund të ‘aktivizohen’ në fund të gushtit

Si po e përdor Lukashenko grupin Wagner për të “shtrydhur” Putinin?

Si po e përdor Lukashenko grupin Wagner për të “shtrydhur” Putinin?

Luftëtarët e Wagner në Bjellorusi nuk kanë forcat e nevojshme për të nisur ndonjë ofensivë – imazhet e reja satelitore e dëshmojnë këtë

Luftëtarët e Wagner në Bjellorusi nuk kanë forcat e nevojshme për të nisur ndonjë ofensivë – imazhet e reja satelitore e dëshmojnë këtë

Nga Rubrika

Ndiqni trupin tuaj: Si të ushtroheni dhe të ruani nivelet e energjisë, nëse agjëroni gjatë muajit të Ramazanit

Ndiqni trupin tuaj: Si të ushtroheni dhe të ruani nivelet e energjisë, nëse agjëroni gjatë muajit të Ramazanit

Kur gjuha është më e shpejtë se truri: Këto janë gjërat më të këqija që mund të thoni gjatë seksit

Kur gjuha është më e shpejtë se truri: Këto janë gjërat më të këqija që mund të thoni gjatë seksit

Kjo është raca më e shtrenjtë e maceve në botë, vetëm të pasurit mund ta përballojnë atë

Kjo është raca më e shtrenjtë e maceve në botë, vetëm të pasurit mund ta përballojnë atë

Në trend Stil

Pse duhet të vendosni një filxhan tek dera sa herë që jeni vetëm në banesë? Ja arsyeja

Pse duhet të vendosni një filxhan tek dera sa herë që jeni vetëm në banesë? Ja arsyeja

A është e mundur të zgjidhet ky ekuacion duke lëvizur vetëm një fije shkrepëseje?

A është e mundur të zgjidhet ky ekuacion duke lëvizur vetëm një fije shkrepëseje?

Si t'i largoni cuklat e padëshiruara nga rrobat tuaja me një metodë super të thjeshtë

Si t'i largoni cuklat e padëshiruara nga rrobat tuaja me një metodë super të thjeshtë

Këto pesë shenja të horoskopit kanë më shumë gjasa të jenë në marrëdhënie afatgjata

Këto pesë shenja të horoskopit kanë më shumë gjasa të jenë në marrëdhënie afatgjata

Operations Manager

Black Forest IT Talents

Agjent Doganor - Shpediter

AutoMita shpk

Senior Full Stack Developer

AMK Solutions

Data Scientist

Banulla Bespoke Ltd

Agjent/e

EA Nordic Sales SHPK

Auto Larje

Hennessey Group Inc.

Specialist Gjenerimi i Klientëve Potencialë dhe SEO për Biznesin Solar

Profisol Bayern GmbH

shpallje aktive

pozita të lira

Investoni në të ardhmen tuaj – bli banesë në ‘Arbëri’ tani! ID-140

Më të lexuarat

Socialistët e Malit të Zi nuk pajtohen me votimin kundër Kosovës në KiE, Nikoliq: Kush e ka rrëmbyer Ministrinë e Jashtme?

Socialistët e Malit të Zi nuk pajtohen me votimin kundër Kosovës në KiE, Nikoliq: Kush e ka rrëmbyer Ministrinë e Jashtme?

Pamje të tmerrshme: Të dyshuarit për sulmin në Moskë i pritet veshi dhe i futet në gojë – supozohet se kush mund ta ketë bërë këtë

Pamje të tmerrshme: Të dyshuarit për sulmin në Moskë i pritet veshi dhe i futet në gojë – supozohet se kush mund ta ketë bërë këtë

Nëntë fakte interesante rreth Ramazanit në Turqi

Nëntë fakte interesante rreth Ramazanit në Turqi

albert einstein biography shqip

"Me shqiptarët e kemi bërë edhe më parë. I vrasim të gjithë", gjenerali Wesley Clark tregon çka i tha Millosheviqi në vitin 1998

Çfarë është ISIS-K që vrau mbi 130 njerëz në Moskë - cilat janë motivet e tyre për të sulmuar Rusinë?

Çfarë është ISIS-K që vrau mbi 130 njerëz në Moskë - cilat janë motivet e tyre për të sulmuar Rusinë?

  • Figura të rëndësishme
  • Shpikje të famshme
  • Kuptimi & Origjina Mbiemri
  • Shifrat dhe ngjarjet kryesore
  • Presidentët amerikanë
  • Fjalorth i Termeve Kryesore
  • Historia dhe Kultura
  • Origjina dhe Zhvillimi
  • Ateizmi dhe Agnosticizmi
  • Shërimi holistik
  • Ligjet Kimike
  • Projektet dhe Eksperimentet
  • Tabelë periodike
  • Tours & Konkurse
  • Pajisjet dhe Pajisjet
  • Lojtarë të famshëm
  • Profilet e Kolegjit
  • Testimi i grafikëve
  • Zgjedhja e një Kolegji
  • Testimi i Kolegjit
  • Strategjitë dhe studimet
  • Inmigracion en Espanol
  • Qeveria Kanadeze
  • Qeveria e SHBA
  • Kriminelët famëkeq

Biografia e Albert Ajnshtajnit

  • by Jennifer Rosenberg

Geni i përulur

Albert Einstein, shkencëtari më i famshëm i shekullit të 20-të, revolucionarizoi mendimin shkencor. Duke zhvilluar Teorinë e Relativitetit , Ajnshtajni hapi derën për krijimin e bombës atomike.

Datat: 14 mars 1879 - 18 prill 1955

Familja e Albert Einstein

Në vitin 1879, Albert Ajnshtajni lindi në Ulm të Gjermanisë për prindërit hebrenj, Hermann dhe Pauline Einstein. Një vit më vonë, biznesi i Hermann Einstein dështoi dhe ai e shtyu familjen e tij në Mynih për të filluar një biznes të ri elektrik me vëllain e tij Jakob.

Në Mynih, motra e Albertit Maja lindi në vitin 1881. Vetëm dy vjet në moshë, Albert adhuronte motrën e tij dhe ata kishin një marrëdhënie të ngushtë me gjithë jetën e tyre.

A ishte Einstein Lazy?

Megjithëse Ajnshtajni tani konsiderohet epitomi i gjeniut, në dy dekadat e para të jetës së tij, shumë njerëz mendonin se Ajnshtajni ishte e kundërta e saktë.

Menjëherë pas lindjes së Ajnshtajnit, të afërmit ishin të shqetësuar me kokën e Ajnshtajnit. Pastaj, kur Ajnshtajni nuk fliste derisa ishte tre vjeç, prindërit e tij shqetësoheshin se diçka nuk ishte e gabuar me të.

Ajnshtajni gjithashtu dështoi të impresiononte mësuesit e tij. Nga shkolla fillore deri në kolegj, mësuesit dhe profesorët e tij e mendonin atë të zhgënjyer, të lënguar dhe të pamëshirshëm. Shumë nga mësuesit e tij mendonin se kurrë nuk do të arrinte asgjë.

Ajo që duket të ishte përtacia në klasë ishte me të vërtetë mërzitje. Në vend që vetëm të mësuar përmendësh faktet dhe datat (mbërthimi i punës në klasë), Ajnshtajni preferonte të peshonte pyetje të tilla si ajo që e bën gjilpërën e një pike në një drejtim?

Pse është qielli blu? Çfarë do të ishte si të udhëtonit në shpejtësinë e dritës?

Për fat të keq për Einstein, këto nuk ishin llojet e temave që ai ishte mësuar në shkollë. Megjithëse notat e tij ishin të shkëlqyera, Ajnshtajni gjeti se shkollimi i rregullt ishte strikt dhe shtypës.

Gjërat ndryshuan për Ajnshtajnin kur u shoqërua me Max Talmudin, studentin mjekësor 21-vjeçar që hëngri darkë në Ajnshtajn një herë në javë.

Megjithëse Ajnshtajni ishte vetëm njëmbëdhjetë vjeç, Max futi Ajnshtajnin në libra të shumta të shkencës dhe filozofisë dhe pastaj diskutoi përmbajtjen e tyre me të.

Ajnshtajni lulëzoi në këtë mjedis të të mësuarit dhe nuk ishte e gjatë derisa Ajnshtajni të kishte tejkaluar atë që Max mund ta mësonte.

Ajnshtajni ndjek Institutin Politeknik

Kur Ajnshtajni ishte 15 vjeç, biznesi i ri i babait të tij kishte dështuar dhe familja Einstein u shpërngul në Itali. Në fillim, Albert mbeti prapa në Gjermani për të mbaruar shkollën e mesme, por ai së shpejti ishte i pakënaqur me atë marrëveshje dhe e la shkollën për t'u ribashkuar me familjen e tij.

Në vend që të mbaronte shkollën e mesme, Ajnshtajni vendosi të aplikonte drejtpërdrejt në Institutin Politeknik prestigjioz në Cyrih, Zvicër. Edhe pse e dështoi provimin e pranimit në provimin e parë, ai pastaj kaloi një vit duke studiuar në një shkollë të mesme lokale dhe e riktheu provimin pranues në tetor 1896 dhe kaloi.

Sapo në Politeknik, Ajnshtajni sërish nuk e pëlqeu shkollën. Duke besuar se profesorët e tij mësonin vetëm shkencë të vjetër, Ajnshtajni shpesh do të kalonte klasën, duke preferuar të rrinte në shtëpi dhe të lexonte për të rejat në teorinë shkencore. Kur ai mori pjesë në klasë, Ajnshtajni shpesh e bën të qartë se e gjeti klasën e shurdhër.

Disa studime të minutës së fundit lejuan Ajnshtajnin që të diplomonte në vitin 1900.

Megjithatë, një herë jashtë shkollës, Ajnshtajni nuk ishte në gjendje të gjente një punë, sepse asnjë nga mësuesit e tij nuk i pëlqente aq sa t'i shkruante një letër rekomandimi.

Për gati dy vjet, Ajnshtajni ka punuar në punë afatshkurtra derisa një mik ishte në gjendje ta ndihmonte atë të merrte një vend pune si nëpunës i patentës në zyrën zvicerane të patentave në Bernë. Së fundi, me një punë dhe disa stabilitet, Ajnshtajni ishte në gjendje të martohej me të dashurën e tij të kolegjit, Mileva Maric, të cilën prindërit e tij e kundërshtonin fuqishëm.

Çifti vazhdoi të kishte dy djem: Hans Albert (i lindur në 1904) dhe Eduard (i lindur më 1910).

Einstein, nëpunësin e patentave

Për shtatë vjet, Ajnshtajni punoi gjashtë ditë në javë si nëpunës patentash. Ai ishte përgjegjës për shqyrtimin e projekteve të shpikjeve të njerëzve të tjerë dhe pastaj përcaktimin nëse ato ishin të realizueshme. Nëse do të ishin, Ajnshtajni duhej të siguronte që askush tjetër nuk i ishte dhënë ende një patentë për të njëjtën ide.

Disi, mes punës së tij të zënë dhe jetës familjare, Ajnshtajni jo vetëm që gjeti kohë për të fituar doktoraturë nga Universiteti i Cyrihut (i dha 1905), por gjeti kohë për të menduar. Ishte duke punuar në zyrën e patentave që Ajnshtajni bëri zbulimet më tronditëse dhe mahnitëse.

Ajnshtajni ndryshoi si e shohim botën

Me vetëm stilolaps, letër dhe trurin e tij, Albert Einstein revolucionarizoi shkencën siç e njohim sot. Në vitin 1905, ndërsa punonte në zyrën e patentave, Ajnshtajni shkroi pesë dokumente shkencore, të cilat u publikuan në Annalen der Physik ( Annals of Physics ). Tre prej tyre u publikuan së bashku në shtator 1905.

Në një letër, Ajnshtajni theorizoi se drita nuk duhet të udhëtojë vetëm në valë por ekziston si grimca, gjë që shpjegoi efektin fotoelektrik. Einstein vetë e përshkroi këtë teori të veçantë si "revolucionare". Kjo ishte gjithashtu teoria për të cilën Ajnshtajni fitoi çmimin Nobel në Fizikë në vitin 1921.

Në një tjetër letër, Ajnshtajni trajtoi misterin se pse poleni kurrë nuk u vendos në fund të një gote ujë, por më tepër, vazhdoi të lëvizte (lëvizja Brownian). Duke deklaruar se polen ishte duke u zhvendosur nga molekulat e ujit, Ajnshtajni zgjidhi një mister të gjatë dhe shkencor, si dhe provoi ekzistencën e molekulave.

Dokumenti i tij i tretë përshkroi "Teorinë e Veçantë të Relativitetit" të Ajnshtajnit, në të cilën Ajnshtajni zbuloi se hapësira dhe koha nuk janë absolutë. E vetmja gjë që është konstante, tha Einstein, është shpejtësia e dritës; pjesa tjetër e hapësirës dhe kohës bazohen tërësisht në pozicionin e vëzhguesit.

Për shembull, nëse një djalë i ri do të rrokulliset një top në dyshemenë e një treni lëviz, sa shpejt po lëvizte topa? Për djalin, mund të duket sikur topi lëvizte në 1 milje në orë. Sidoqoftë, tek dikush që shikon trenin të kalojë, topi do të duket të lëvizë një milje në orë plus shpejtësinë e trenit (40 milje në orë).

Për dikë që e shihte ngjarjen nga hapësira, topi do të lëvizte një milje në orë që djali kishte vënë re, plus 40 milje në orë të shpejtësisë së trenit, plus shpejtësinë e tokës.

Jo vetëm që hapësirë ​​dhe kohë nuk janë absolutë, Ajnshtajni zbuloi se energjia dhe masa, pasi mendonin gjëra plotësisht të dallueshme, ishin në të vërtetë të këmbyeshme. Në ekuacionin e tij E = mc2 (E = energjia, m = masa dhe c = shpejtësia e dritës), Ajnshtajni krijoi një formulë të thjeshtë për të përshkruar marrëdhënien midis energjisë dhe masës. Kjo formulë zbulon se një sasi shumë e vogël e masës mund të konvertohet në një sasi të madhe energjie, duke çuar në shpikjen e mëvonshme të bombës atomike.

Ajnshtajni ishte vetëm 26 vjeç kur këto artikuj ishin botuar dhe tashmë ai kishte bërë më shumë për shkencën sesa çdo individ që nga Sir Isaac Newton.

Shkencëtarët marrin njoftimin për Ajnshtajnin

Njohja nga komuniteti akademik dhe shkencor nuk erdhi shpejt. Ndoshta ishte e vështirë të merrnim seriozisht një nëpunës patentash 26-vjeçare, i cili, deri në këtë kohë, kishte fituar vetëm përbuzje nga mësuesit e tij të mëparshëm. Apo ndoshta idetë e Ajnshtajnit ishin aq të thella dhe radikale sa askush nuk ishte ende i përgatitur t'i konsideronte ato të vërteta.

Në vitin 1909, katër vjet pasi teoritë e tij u botuan për herë të parë, Ajnshtajni më në fund iu ofrua një pozicion mësimor.

Ajnshtajni gëzonte të ishte një mësues në Universitetin e Cyrihut. Ai kishte gjetur shkollimin tradicional pasi ai u rrit jashtëzakonisht i kufizuar dhe kështu ai donte të ishte një mësues tjetër i ndryshëm. Duke arritur në shkollë të çrrënjosur, me flokë të pazoti dhe rrobat e tij shumë të gjera, Ajnshtajni mësonte nga zemra.

Ndërsa fama e Ajnshtajnit në kuadër të komunitetit shkencor u rrit, ofertat për pozicione të reja dhe më të mira filluan të derdhen. Brenda vetëm pak vitesh, Ajnshtajni punoi në Universitetin e Cyrihut (Zvicër), pastaj në Universitetin Gjerman në Pragë (Republika Çeke), dhe më pas mbrapa në Cyrih për Institutin Politeknik.

Veprimet e shpeshta, konferencat e shumta që ndoqën Ajnshtajni dhe preokupimi i Ajnshtajnit me shkencën, e la Milevën (gruaja e Ajnshtajnit) të ndihej e lënë pas dore dhe e vetmuar. Kur Ajnshtajni u ofrua profesor në Universitetin e Berlinit në vitin 1913, ajo nuk donte të shkonte. Ajnshtajni e pranoi pozicionin gjithsesi.

Jo shumë kohë pasi mbërriti në Berlin, Mileva dhe Albert u ndanë. Kuptimi i martesës nuk mund të shpëtohej, Mileva i çoi fëmijët në Cyrih. Ata u divorcuan zyrtarisht në vitin 1919.

Ajnshtajni bëhet i famshëm botëror

Gjatë Luftës së Parë Botërore , Ajnshtajni qëndroi në Berlin dhe punoi me zell mbi teoritë e reja. Ai punoi si një njeri i fiksuar. Me Mileva shkuar, ai shpesh harroi të hante dhe harroi të shkonte në gjumë.

Në vitin 1917, stresi përfundimisht mori akuzat e tij dhe ai u rrëzua. Diagnostikuar me gurët e tëmthit, Ajnshtajni u tha të pushonte. Gjatë rikuperimit të tij, kushëriri i Ajnshtajnës, Elsa, ndihmoi ta jepte atë për shëndetin. Të dy u bënë shumë afër dhe kur u divorcua Albert, Albert dhe Elsa u martuan.

Ishte gjatë kësaj kohe që Ajnshtajni zbuloi Teorinë e Përgjithshme të Relativitetit, i cili konsideroi efektet e nxitimit dhe gravitetit në kohë dhe hapësirë. Nëse teoria e Ajnshtajnit ishte e saktë, atëherë graviteti i diellit do të përkulej dritë nga yjet.

Në 1919, Teoria e Përgjithshme e Ajnshtajnit e Relativitetit mund të testohej gjatë një eklips diellor. Në maj të vitit 1919, dy astronomë britanikë (Arthur Eddington dhe Sir Frances Dyson) ishin në gjendje të vendosnin një ekspeditë që vëzhgonte eklipsin diellor dhe dokumentonte dritën e vendosur. Në nëntor 1919, gjetjet e tyre u shpallën publikisht.

Bota ishte gati për disa lajme të mira. Pasi kishte vuajtur gjakderdhje monumentale gjatë Luftës së Parë Botërore, njerëzit në mbarë botën ishin të etur për lajme që shkonin përtej kufijve të vendit të tyre. Ajnshtajni u bë një njeri i famshëm në mbarë botën gjatë natës.

Nuk ishin vetëm teoritë e tij revolucionare (të cilat shumë njerëz nuk e kuptonin vërtet); ishte personi i përgjithshëm i Ajnshtajnit që iu drejtua masave. Flokët e zbrazura të Ajnshtajnit, rrobat e dobëta, sytë e bardhë dhe bukuri e mahnitshme e adhuronin atë tek personi mesatar. Po, ai ishte një gjeni, por ai ishte i arritshëm.

Menjëherë i famshëm, Ajnshtajni u hodh nga gazetarët dhe fotografët kudo që shkoi. Ai u dha diploma nderi dhe kërkoi të vizitonte vendet e botës. Albert dhe Elsa udhëtuan në Shtetet e Bashkuara, Japoni, Palestinë (tani Izrael), në Amerikën e Jugut dhe në të gjithë Evropën.

Ata ishin në Japoni kur dëgjuan lajmin se Ajnshtajni kishte fituar çmimin Nobel në Fizikë. (Ai i dha të gjitha paratë e çmimeve Milevës për të mbështetur fëmijët.)

Ajnshtajni bëhet një armik i shtetit

Të qenit një njeri i famshëm ndërkombëtar kishte përparësitë e tij, si dhe disavantazhet e tij. Megjithëse Ajnshtajni i kaloi vitet 1920 që udhëtonin dhe bënin shfaqje të veçanta, këto u larguan nga koha kur ai mund të punonte në teoritë e tij shkencore. Deri në fillim të viteve 1930, gjetja e kohës për shkencën nuk ishte problemi i tij i vetëm.

Klima politike në Gjermani po ndryshonte në mënyrë drastike. Kur Adolf Hitler mori pushtetin në vitin 1933, Ajnshtajni ishte për fat të mirë duke vizituar Shtetet e Bashkuara (ai kurrë nuk u kthye në Gjermani). Nazistët menjëherë e shpallën Ajnshtajnin një armik të shtetit, e kontrolluan shtëpinë e tij dhe i dogjën librat e tij.

Me fillimin e kërcënimeve me vdekje, Ajnshtajni përfundoi planet e tij për të marrë një pozicion në Institutin për Studime të Avancuara në Princeton, New Jersey. Ai mbërriti në Princeton më 17 tetor 1933.

Ndërsa lajmi i zymtë arriti nga gjithë Atlantiku, Ajnshtajni pësoi një humbje personale kur Elsa vdiq më 20 dhjetor 1936. Tre vjet më vonë, motra e Ajnshtajnit, Maja, iku nga Italia e Musolinit dhe erdhi të jetonte me Albertin në Princeton. Ajo qëndroi deri në vdekjen e saj në vitin 1951.

Derisa nazistët morën pushtet në Gjermani, Ajnshtajni ishte një pacifist i përkushtuar për gjithë jetën. Sidoqoftë, me tregimet tronditëse që vinin nga Europa e pushtuar nga nazistët, Ajnshtajni rivlerësoi idealet e tij pacifiste. Në rastin e nazistëve, Ajnshtajni e kuptoi se ata duhej të ndaleshin, edhe nëse kjo nënkuptonte përdorimin e fuqisë ushtarake për ta bërë këtë.

Ajnshtajn dhe bombën atomike

Në korrik të vitit 1939, shkencëtarët Leo Szilard dhe Eugene Wigner vizituan Ajnshtajnin për të diskutuar mundësinë që Gjermania po punonte në ndërtimin e një bombe atomike.

Degëzimet e Gjermanisë që ndërtonin një armë të tillë shkatërruese e nxitën Ajnshtajnin t'i shkruante një letër Presidentit Franklin D. Roosevelt për ta paralajmëruar atë për këtë armë potencialisht masive. Në përgjigje, Roosevelt krijoi Projektin e Manhatanit , i cili ishte një koleksion i shkencëtarëve amerikanë të nxitur për të mundur Gjermaninë për ndërtimin e një bombe atomike të punës.

Megjithëse letra e Ajnshtajnit nxiti projektin Manhattan, vetë Ajnshtajni nuk ka punuar kurrë në ndërtimin e bombës atomike.

Vitet e Mëvonshme të Ajnshtajnit

Nga 1922 deri në fund të jetës së tij, Ajnshtajni ka punuar për të gjetur një "teori të unifikuar të fushës". Duke besuar se "Perëndia nuk luan zare", Ajnshtajni kërkoi një teori të vetme dhe të unifikuar që mund të kombinonte të gjitha forcat themelore të fizikës midis grimcave elementare. Ajnshtajni kurrë nuk e gjeti atë.

Në vitet pas Luftës së Dytë Botërore , Ajnshtajni mbështeti një qeveri botërore dhe për të drejtat civile. Në vitin 1952, pas vdekjes së presidentit të parë të Izraelit, Chaim Weizmann, Ajnshtajnit iu ofrua presidenca e Izraelit. Duke kuptuar se ai nuk ishte i mirë në politikë dhe shumë i moshës për të filluar diçka të re, Ajnshtajni nuk pranoi nderin.

Më 12 prill 1955, Ajnshtajni u rrëzua në shtëpinë e tij. Vetëm gjashtë ditë më vonë, më 18 prill 1955, Ajnshtajni vdiq kur aneurizmi me të cilin jetonte për disa vjet më vonë kishte shpërthyer. Ai ishte 76 vjeç.

Alexander Fleming zbulon penicilinë

Personi i time-së i listës së vitit, traktati i versajës, benjamin "bugsy" siegel, biografia e gilda radner, mbreti filip vi i francës, mesjetare dhe rilindëse monarkët e anglisë, fjalor i luftës së ftohtë, papa gregori vi, pse modeli t quhet tin lizzie, fotografitë e adolf hitlerit, newest ideas, historia e gërshetimit të letrës, lutja e kurorës së adventit për javën e dytë të ardhjes, luftërat puna: beteja e zama, byu gpa, sat, dhe të dhënat act për pranimet, stairwell escherian: real ose fake, jet li është 10 filma më e mirë, lutja e prindërve për adoleshentët, 6 fakte të habitshme rreth kulturës hinduse dhe hinduizmit, historia e walkman sony, flash fiction nga baudelaire në lydia davis, lufta civile amerikane: gjeneral major george h. thomas, lyrics e 'rigoletto' aria 'kjo o quello', dinosaurët dhe kafshët parahistorike të kentakit, anglishtja pakistaneze, terminologjia e matematikës, lufta e dytë botërore: gjeneral-lejtnant james m. gavin, arai vx-pro4 rishikimi i helikopterëve të motocrossit, alternative articles, a ka mundësi fetare jo-fetare për ateistët, përcaktoni ip-në tuaj me delphi, shënime për piano - naturals & accidentals, çfarë është fluori, breshka e detit të gjelbër, çfarë është një shkollë konviktesh dhe faq të tjera, hollimet nga stock solutions, aftësi kyçe për menaxhimin e kohës së kolegjit, një biografi e compton rapper the game, 1960 kampionati olimpik skating luftëtar carol heiss, mësoni si të konjugoni foljen "heissen" (për të thirrur).

Biography Online

Biography

Albert Einstein Biography

einstein

Einstein is also well known as an original free-thinker, speaking on a range of humanitarian and global issues. After contributing to the theoretical development of nuclear physics and encouraging F.D. Roosevelt to start the Manhattan Project, he later spoke out against the use of nuclear weapons.

Born in Germany to Jewish parents, Einstein settled in Switzerland and then, after Hitler’s rise to power, the United States. Einstein was a truly global man and one of the undisputed genius’ of the Twentieth Century.

Early life Albert Einstein

Einstein was born 14 March 1879, in Ulm the German Empire. His parents were working-class (salesman/engineer) and non-observant Jews. Aged 15, the family moved to Milan, Italy, where his father hoped Albert would become a mechanical engineer. However, despite Einstein’s intellect and thirst for knowledge, his early academic reports suggested anything but a glittering career in academia. His teachers found him dim and slow to learn. Part of the problem was that Albert expressed no interest in learning languages and the learning by rote that was popular at the time.

“School failed me, and I failed the school. It bored me. The teachers behaved like Feldwebel (sergeants). I wanted to learn what I wanted to know, but they wanted me to learn for the exam.” Einstein and the Poet (1983)

At the age of 12, Einstein picked up a book on geometry and read it cover to cover. – He would later refer to it as his ‘holy booklet’. He became fascinated by maths and taught himself – becoming acquainted with the great scientific discoveries of the age.

Einstein_Albert_Elsa

Albert Einstein with wife Elsa

Despite Albert’s independent learning, he languished at school. Eventually, he was asked to leave by the authorities because his indifference was setting a bad example to other students.

He applied for admission to the Federal Institute of Technology in Zurich. His first attempt was a failure because he failed exams in botany, zoology and languages. However, he passed the next year and in 1900 became a Swiss citizen.

At college, he met a fellow student Mileva Maric, and after a long friendship, they married in 1903; they had two sons before divorcing several years later.

In 1896 Einstein renounced his German citizenship to avoid military conscription. For five years he was stateless, before successfully applying for Swiss citizenship in 1901. After graduating from Zurich college, he attempted to gain a teaching post but none was forthcoming; instead, he gained a job in the Swiss Patent Office.

While working at the Patent Office, Einstein continued his own scientific discoveries and began radical experiments to consider the nature of light and space.

Albert_Einstein_(Nobel)

Einstein in 1921

He published his first scientific paper in 1900, and by 1905 had completed his PhD entitled “ A New Determination of Molecular Dimensions . In addition to working on his PhD, Einstein also worked feverishly on other papers. In 1905, he published four pivotal scientific works, which would revolutionise modern physics. 1905 would later be referred to as his ‘ annus mirabilis .’

Einstein’s work started to gain recognition, and he was given a post at the University of Zurich (1909) and, in 1911, was offered the post of full-professor at the Charles-Ferdinand University in Prague (which was then part of Austria-Hungary Empire). He took Austrian-Hungary citizenship to accept the job. In 1914, he returned to Germany and was appointed a director of the Kaiser Wilhelm Institute for Physics. (1914–1932)

Albert Einstein’s Scientific Contributions

Quantum Theory

Einstein suggested that light doesn’t just travel as waves but as electric currents. This photoelectric effect could force metals to release a tiny stream of particles known as ‘quanta’. From this Quantum Theory, other inventors were able to develop devices such as television and movies. He was awarded the Nobel Prize in Physics in 1921.

Special Theory of Relativity

This theory was written in a simple style with no footnotes or academic references. The core of his theory of relativity is that:

“Movement can only be detected and measured as relative movement; the change of position of one body in respect to another.”

Thus there is no fixed absolute standard of comparison for judging the motion of the earth or plants. It was revolutionary because previously people had thought time and distance are absolutes. But, Einstein proved this not to be true.

He also said that if electrons travelled at close to the speed of light, their weight would increase.

This lead to Einstein’s famous equation:

Where E = energy m = mass and c = speed of light.

General Theory of Relativity 1916

Working from a basis of special relativity. Einstein sought to express all physical laws using equations based on mathematical equations.

He devoted the last period of his life trying to formulate a final unified field theory which included a rational explanation for electromagnetism. However, he was to be frustrated in searching for this final breakthrough theory.

Solar eclipse of 1919

In 1911, Einstein predicted the sun’s gravity would bend the light of another star. He based this on his new general theory of relativity. On 29 May 1919, during a solar eclipse, British astronomer and physicist Sir Arthur Eddington was able to confirm Einstein’s prediction. The news was published in newspapers around the world, and it made Einstein internationally known as a leading physicist. It was also symbolic of international co-operation between British and German scientists after the horrors of the First World War.

In the 1920s, Einstein travelled around the world – including the UK, US, Japan, Palestine and other countries. Einstein gave lectures to packed audiences and became an internationally recognised figure for his work on physics, but also his wider observations on world affairs.

Bohr-Einstein debates

During the 1920s, other scientists started developing the work of Einstein and coming to different conclusions on Quantum Physics. In 1925 and 1926, Einstein took part in debates with Max Born about the nature of relativity and quantum physics. Although the two disagreed on physics, they shared a mutual admiration.

As a German Jew, Einstein was threatened by the rise of the Nazi party. In 1933, when the Nazi’s seized power, they confiscated Einstein’s property, and later started burning his books. Einstein, then in England, took an offer to go to Princeton University in the US. He later wrote that he never had strong opinions about race and nationality but saw himself as a citizen of the world.

“I do not believe in race as such. Race is a fraud. All modern people are the conglomeration of so many ethnic mixtures that no pure race remains.”

Once in the US, Einstein dedicated himself to a strict discipline of academic study. He would spend no time on maintaining his dress and image. He considered these things ‘inessential’ and meant less time for his research. Einstein was notoriously absent-minded. In his youth, he once left his suitcase at a friends house. His friend’s parents told Einstein’s parents: “ That young man will never amount to anything, because he can’t remember anything.”

Although a bit of a loner, and happy in his own company, he had a good sense of humour. On January 3, 1943, Einstein received a letter from a girl who was having difficulties with mathematics in her studies. Einstein consoled her when he wrote in reply to her letter

“Do not worry about your difficulties in mathematics. I can assure you that mine are still greater.”

Einstein professed belief in a God “Who reveals himself in the harmony of all being”. But, he followed no established religion. His view of God sought to establish a harmony between science and religion.

“Science without religion is lame, religion without science is blind.”

– Einstein, Science and Religion (1941)

Politics of Einstein

Einstein described himself as a Zionist Socialist. He did support the state of Israel but became concerned about the narrow nationalism of the new state. In 1952, he was offered the position as President of Israel, but he declined saying he had:

“neither the natural ability nor the experience to deal with human beings.” … “I am deeply moved by the offer from our State of Israel, and at once saddened and ashamed that I cannot accept it.”

Citizen-Einstein

Einstein receiving US citizenship.

Albert Einstein was involved in many civil rights movements such as the American campaign to end lynching. He joined the National Association for the Advancement of Colored People (NAACP) and  considered racism, America’s worst disease. But he also spoke highly of the meritocracy in American society and the value of being able to speak freely.

On the outbreak of war in 1939, Einstein wrote to President Roosevelt about the prospect of Germany developing an atomic bomb. He warned Roosevelt that the Germans were working on a bomb with a devastating potential. Roosevelt headed his advice and started the Manhattan project to develop the US atom bomb. But, after the war ended, Einstein reverted to his pacifist views. Einstein said after the war.

“Had I known that the Germans would not succeed in producing an atomic bomb, I would not have lifted a finger.” (Newsweek, 10 March 1947)

In the post-war McCarthyite era, Einstein was scrutinised closely for potential Communist links. He wrote an article in favour of socialism, “Why Socialism” (1949) He criticised Capitalism and suggested a democratic socialist alternative. He was also a strong critic of the arms race. Einstein remarked:

“I do not know how the third World War will be fought, but I can tell you what they will use in the Fourth—rocks!”

Rabindranath_with_Einstein

Rabindranath Tagore and Einstein

Einstein was feted as a scientist, but he was a polymath with interests in many fields. In particular, he loved music. He wrote that if he had not been a scientist, he would have been a musician. Einstein played the violin to a high standard.

“I often think in music. I live my daydreams in music. I see my life in terms of music… I get most joy in life out of music.”

Einstein died in 1955, at his request his brain and vital organs were removed for scientific study.

Citation: Pettinger, Tejvan . “ Biography of Albert Einstein ”, Oxford, www.biographyonline.net 23 Feb. 2008. Updated 2nd March 2017.

Albert Einstein – His Life and Universe

Book Cover

Albert Einstein – His Life at Amazon

Related pages

einstein

53 Interesting and unusual facts about Albert Einstein.

Sir_Winston_S_Churchill

19 Comments

Albert E is awesome! Thanks for this website!!

  • January 11, 2019 3:00 PM

Albert Einstein is the best scientist ever! He shall live forever!

  • January 10, 2019 4:11 PM

very inspiring

  • December 23, 2018 8:06 PM

Wow it is good

  • December 08, 2018 10:14 AM

Thank u Albert for discovering all this and all the wonderful things u did!!!!

  • November 15, 2018 7:03 PM
  • By Madalyn Silva

Thank you so much, This biography really motivates me a lot. and I Have started to copy of Sir Albert Einstein’s habit.

  • November 02, 2018 3:37 PM
  • By Ankit Gupta

Sooo inspiring thanks Albert E. You helped me in my report in school I love you Albert E. 🙂 <3

  • October 17, 2018 4:39 PM
  • By brooklynn

By this inspired has been I !!!!!!!!!!!!!!!!!!!!!

  • October 12, 2018 4:25 PM
  • By Richard Clarlk

web analytics

Albert Einstein: Biography, facts and impact on science

A brief biography of Albert Einstein (March 14, 1879 - April 18, 1955), the scientist whose theories changed the way we think about the universe.

A black and white photograph of Albert Einstein wearing a suit and sitting at his desk

  • Einstein's birthday and education

Einstein's wives and children

How einstein changed physics.

  • Later years and death

Gravitational waves and relativity

Additional resources.

Albert Einstein was a German-American physicist and probably the most well-known scientist of the 20th century. He is famous for his theory of relativity , a pillar of modern physics that describes the dynamics of light and extremely massive entities, as well as his work in quantum mechanics , which focuses on the subatomic realm. 

Albert Einstein's birthday and education

Einstein was born in Ulm, in the German state of Württemberg, on March 14, 1879, according to a biography from the Nobel Prize organization . His family moved to Munich six weeks later, and in 1885, when he was 6 years old, he began attending Petersschule, a Catholic elementary school.

Contrary to popular belief, Einstein was a good student. "Yesterday Albert received his grades, he was again number one, and his report card was brilliant," his mother once wrote to her sister, according to a German website dedicated to Einstein's legacy. But when he later switched to the Luitpold grammar school, young Einstein chafed under the school's authoritarian attitude, and his teacher once said of him, "never will he get anywhere."

In 1896, at age 17, Einstein entered the Swiss Federal Polytechnic School in Zurich to be trained as a teacher in physics and mathematics. A few years later, he gained his diploma and acquired Swiss citizenship but was unable to find a teaching post. So he accepted a position as a technical assistant in the Swiss patent office. 

Related: 10 discoveries that prove Einstein was right about the universe — and 1 that proves him wrong

Einstein married Mileva Maric, his longtime love and former student, in 1903. A year prior, they had a child out of wedlock, who was discovered by scholars only in the 1980s, when private letters revealed her existence. The daughter, called Lieserl in the letters, may have been mentally challenged and either died young or was adopted when she was a year old. Einstein had two other children with Maric, Hans Albert and Eduard, born in 1904 and 1910, respectively.

Einstein divorced Maric in 1919 and soon married his cousin Elsa Löwenthal, with whom he had been in a relationship since 1912.

Einstein obtained his doctorate in physics in 1905 — a year that's often known as his annus mirabilis ("year of miracles" in Latin), according to the Library of Congress . That year, he published four groundbreaking papers of significant importance in physics.

The first incorporated the idea that light could come in discrete particles called photons. This theory describes the photoelectric effect , the concept that underpins modern solar power. The second explained Brownian motion, or the random motion of particles or molecules. Einstein looked at the case of a dust mote moving randomly on the surface of water and suggested that water is made up of tiny, vibrating molecules that kick the dust back and forth. 

The final two papers outlined his theory of special relativity, which showed how observers moving at different speeds would agree about the speed of light, which was a constant. These papers also introduced the equation E = mc^2, showing the equivalence between mass and energy. That finding is perhaps the most widely known aspect of Einstein's work. (In this infamous equation, E stands for energy, m represents mass and c is the constant speed of light).

In 1915, Einstein published four papers outlining his theory of general relativity, which updated Isaac Newton's laws of gravity by explaining that the force of gravity arose because massive objects warp the fabric of space-time. The theory was validated in 1919, when British astronomer Arthur Eddington observed stars at the edge of the sun during a solar eclipse and was able to show that their light was bent by the sun's gravitational well, causing shifts in their perceived positions.

Related: 8 Ways you can see Einstein's theory of relativity in real life

In 1921, he won the Nobel Prize in physics for his work on the photoelectric effect, though the committee members also mentioned his "services to Theoretical Physics" when presenting their award. The decision to give Einstein the award was controversial because the brilliant physicist was a Jew and a pacifist. Anti-Semitism was on the rise and relativity was not yet seen as a proven theory, according to an article from The Guardian .

Einstein was a professor at the University of Berlin for a time but fled Germany with Löwenthal in 1933, during the rise of Adolf Hitler. He renounced his German citizenship and moved to the United States to become a professor of theoretical physics at Princeton, becoming a U.S. citizen in 1940.

During this era, other researchers were creating a revolution by reformulating the rules of the smallest known entities in existence. The laws of quantum mechanics had been worked out by a group led by the Danish physicist Niels Bohr , and Einstein was intimately involved with their efforts.

Bohr and Einstein famously clashed over quantum mechanics. Bohr and his cohorts proposed that quantum particles behaved according to probabilistic laws, which Einstein found unacceptable, quipping that " God does not play dice with the universe ." Bohr's views eventually came to dominate much of contemporary thinking about quantum mechanics.

Einstein's later years and death

After he retired in 1945, Einstein spent most of his later years trying to unify gravity with electromagnetism in what's known as a unified field theory . Einstein died of a burst blood vessel near his heart on April 18, 1955, never unifying these forces.

Einstein's body was cremated and his ashes were spread in an undisclosed location, according to the American Museum of Natural History . But a doctor performed an unauthorized craniotomy before this and removed and saved Einstein's brain. 

The brain has been the subject of many tests over the decades, which suggested that it had extra folding in the gray matter, the site of conscious thinking. In particular, there were more folds in the frontal lobes, which have been tied to abstract thought and planning. However, drawing any conclusions about intelligence based on a single specimen is problematic. 

Related: Where is Einstein's brain?

In addition to his incredible legacy regarding relativity and quantum mechanics, Einstein conducted lesser-known research into a refrigeration method that required no motors, moving parts or coolant. He was also a tireless anti-war advocate, helping found the Bulletin of the Atomic Scientists , an organization dedicated to warning the public about the dangers of nuclear weapons . 

Einstein's theories concerning relativity have so far held up spectacularly as a predictive models. Astronomers have found that, as the legendary physicist anticipated, the light of distant objects is lensed by massive, closer entities, a phenomenon known as gravitational lensing, which has helped our understanding of the universe's evolution. The James Webb Space Telescope , launched in Dec. 2021, has utilized gravitational lensing on numerous occasions to detect light emitted near the dawn of time , dating to just a few hundred million years after the Big Bang.

In 2016, the Advanced Laser Interferometer Gravitational-Wave Observatory also announced the first-ever direct detection of gravitational waves , created when massive neutron stars and black holes merge and generate ripples in the fabric of space-time. Further research published in 2023 found that the entire universe may be rippling with a faint "gravitational wave background," emitted by ancient, colliding black holes.

Find answers to frequently asked questions about Albert Einstein on the Nobel Prize website. Flip through digitized versions of Einstein's published and unpublished manuscripts at Einstein Archives Online. Learn about The Einstein Memorial at the National Academy of Sciences building in Washington, D.C. 

This article was last updated on March 11, 2024 by Live Science editor Brandon Specktor to include new information about how Einstein's theories have been validated by modern experiments.

Sign up for the Live Science daily newsletter now

Get the world’s most fascinating discoveries delivered straight to your inbox.

Adam Mann

Adam Mann is a freelance journalist with over a decade of experience, specializing in astronomy and physics stories. He has a bachelor's degree in astrophysics from UC Berkeley. His work has appeared in the New Yorker, New York Times, National Geographic, Wall Street Journal, Wired, Nature, Science, and many other places. He lives in Oakland, California, where he enjoys riding his bike. 

Rare 'super-diamonds' may already exist on other planets, and could be made on Earth, study hints

'Emergent gravity' could force us to rewrite the laws of physics

'We don't yet have the know-how to properly maintain a corpse brain': Why cryonics is a non-starter in our quest for immortality

  • Problematic Thinker His brain was eclpsed by other body parts concerning women. His wife worked to support him through school, forfeiting her own education until later, then he repaid her by having an affair with his much younger cousin and divorcing the wife. Quite an honorable little guy. Reply
Problematic Thinker said: His brain was eclpsed by other body parts concerning women. His wife worked to support him through school, forfeiting her own education until later, then he repaid her by having an affair with his much younger cousin and divorcing the wife. Quite an honorable little guy.
admin said: So much more than funny hair. Albert Einstein: The Life of a Brilliant Physicist : Read more
  • William Madden Albert Einstein was never, ever a "professor of physics" at Princeton University. At the time, Princeton, like most Ivy League universities, was highly anti-Semitic and either forbad the hiring of Jewish faculty or enforced a quota on their number. Einstein accepted a position at the newly established Institute For Advanced Study, headquartered in the the town of Princeton but legally and operationally distinct from the university. At the time, this was not known to be a particularly elite appointment, the Institute having no track record whatsoever. Its ability to attract many of the finest minds in their fields quickly changed that perception. (Nevertheless, Richard Feynman, years later, was highly critical of its cloistered atmosphere and, in science at least, its disconnection with the experimental side of the constituent disciplines. ) The Institute is a purely postdoctoral entity, granting no degrees and offering no classes (apart from ad hoc seminars). In the ensuing years, some faculty at the Institute have established collaborative relationships with faculty and postdoctoral fellows at Princeton University, including Einstein with Nathan Rosen (who later moved from the university to the Institute). However, the Institute remains to this day entirely independent of Princeton University. Reply
William Madden said: Albert Einstein was never, ever a "professor of physics" at Princeton University. At the time, Princeton, like most Ivy League universities, was highly anti-Semitic and either forbad the hiring of Jewish faculty or enforced a quota on their number. Einstein accepted a position at the newly established Institute For Advanced Study, headquartered in the the town of Princeton but legally and operationally distinct from the university. At the time, this was not known to be a particularly elite appointment, the Institute having no track record whatsoever. Its ability to attract many of the finest minds in their fields quickly changed that perception. (Nevertheless, Richard Feynman, years later, was highly critical of its cloistered atmosphere and, in science at least, its disconnection with the experimental side of the constituent disciplines. ) The Institute is a purely postdoctoral entity, granting no degrees and offering no classes (apart from ad hoc seminars). In the ensuing years, some faculty at the Institute have established collaborative relationships with faculty and postdoctoral fellows at Princeton University, including Einstein with Nathan Rosen (who later moved from the university to the Institute). However, the Institute remains to this day entirely independent of Princeton University.
  • James DeMeo Einstein's theory of relativity was negated by the positive ether-drift experiments that both preceded and followed his earliest works. Michelson-Morely got a 5 to 7.5 kps ether-drift, Dayton Miller got 11.2 kps, and in more recent years Munera got an 18 kps ether wind detection. Each progressively higher value was at higher altitudes, indicating an altitude-velocity dependency, which affirmed a material, entrainable and dynamic ether. Einstein knew these experimental detections would destroy both his general and special relativity theories, and wrote in June 1921, to Robert Millikan: "I believe that I have really found the relationship between gravitation and electricity, assuming that the Miller experiments are based on a fundamental error. Otherwise, the whole relativity theory collapses like a house of cards" In July 1925, Einstein wrote to Edwin Slosson: "My opinion about Miller's experiments is the following ... Should the positive result be confirmed, then the special theory of relativity and with it the general theory of relativity, in its current form, would be invalid. Experimentum summus judex." Miller's ether-drift work was carried out over many years, using a far more sensitive apparatus than M-M, including high atop Mount Wilson. The Mt.Wilson experiments ran over four seasonal epochs, detecting variations in net ether-wind velocity, and overall proving that space is not empty, and light-speed is variable according to direction, and in accordance with the velocity of the emitter and receiver. Experimentum summus judex? In spite of a slap-jack amateurish effort to "prove" Miller's work was due to thermal artifacts -- an unethical effort supported by Einstein in the year before he died -- Miller's findings, and those of other ether-drift experimenters (there are many) who got positive results stand unchallenged. By ignoring such empirical results, the discipline of astrophysics has run itself into a metaphysical cul-de-sac, and today uses brute force firings of professors, dismissals of students and censorship to maintain its assertions of an increasingly complicated and bizarre universe. A prime example is how Halton Arp's findings challenging redshifts as distance indicators was systematically ignored, censored, and he then being forbidden additional telescope time. He was forced to move to Germany to sustain an academic post. There are other examples, many, who didn't have Arp's good reputation prior to making his heresy, and who suffered far worse. Einstein's "space time gravity warps", the "big bang", "black holes", and other bizarre metaphysical fantasies of modern astrophysics will eventually go the way of the Ptolemaic astrologer's epicycles. A good introduction to these facts of science history is found in the book "The Dynamic Ether of Cosmic Space: Correcting a Major Error in Modern Science". https://www.amazon.com/Dynamic-Ether-Cosmic-Space-Correcting/dp/0997405716 Reply
James DeMeo said: Einstein's theory of relativity was negated by the positive ether-drift experiments that both preceded and followed his earliest works. Michelson-Morely got a 5 to 7.5 kps ether-drift, Dayton Miller got 11.2 kps, and in more recent years Munera got an 18 kps ether wind detection. Each progressively higher value was at higher altitudes, indicating an altitude-velocity dependency, which affirmed a material, entrainable and dynamic ether. Einstein knew these experimental detections would destroy both his general and special relativity theories, and wrote in June 1921, to Robert Millikan: "I believe that I have really found the relationship between gravitation and electricity, assuming that the Miller experiments are based on a fundamental error. Otherwise, the whole relativity theory collapses like a house of cards" In July 1925, Einstein wrote to Edwin Slosson: "My opinion about Miller's experiments is the following ... Should the positive result be confirmed, then the special theory of relativity and with it the general theory of relativity, in its current form, would be invalid. Experimentum summus judex." Miller's ether-drift work was carried out over many years, using a far more sensitive apparatus than M-M, including high atop Mount Wilson. The Mt.Wilson experiments ran over four seasonal epochs, detecting variations in net ether-wind velocity, and overall proving that space is not empty, and light-speed is variable according to direction, and in accordance with the velocity of the emitter and receiver. Experimentum summus judex? In spite of a slap-jack amateurish effort to "prove" Miller's work was due to thermal artifacts -- an unethical effort supported by Einstein in the year before he died -- Miller's findings, and those of other ether-drift experimenters (there are many) who got positive results stand unchallenged. By ignoring such empirical results, the discipline of astrophysics has run itself into a metaphysical cul-de-sac, and today uses brute force firings of professors, dismissals of students and censorship to maintain its assertions of an increasingly complicated and bizarre universe. A prime example is how Halton Arp's findings challenging redshifts as distance indicators was systematically ignored, censored, and he then being forbidden additional telescope time. He was forced to move to Germany to sustain an academic post. There are other examples, many, who didn't have Arp's good reputation prior to making his heresy, and who suffered far worse. Einstein's "space time gravity warps", the "big bang", "black holes", and other bizarre metaphysical fantasies of modern astrophysics will eventually go the way of the Ptolemaic astrologer's epicycles. A good introduction to these facts of science history is found in the book "The Dynamic Ether of Cosmic Space: Correcting a Major Error in Modern Science". https://www.amazon.com/Dynamic-Ether-Cosmic-Space-Correcting/dp/0997405716
Mario Sanchez said: Thanks, for these irrelevant informations that are nothing important to understand the matter.
Pifou said: Feminist zealots in despair fellows. They think that there is always someone smarter that is being exploited while the other one steals all the glory. Do not worry about them here they are just dumb as bricks. They have been trying to push this story about Einstein for the last 40 years while themselves cant even make a good sandwich
  • Mario Sanchez Who is really this participant adopting these names? (Shwinger_Feinmann) Reply
  • View All 16 Comments

Most Popular

By Anna Gora December 27, 2023

By Anna Gora December 26, 2023

By Anna Gora December 25, 2023

By Emily Cooke December 23, 2023

By Victoria Atkinson December 22, 2023

By Anna Gora December 16, 2023

By Anna Gora December 15, 2023

By Anna Gora November 09, 2023

By Donavyn Coffey November 06, 2023

By Anna Gora October 31, 2023

By Anna Gora October 26, 2023

  • 2 Mass grave of plague victims may be largest ever found in Europe, archaeologists say
  • 3 India's evolutionary past tied to huge migration 50,000 years ago and to now-extinct human relatives
  • 4 1,900-year-old coins from Jewish revolt against the Romans discovered in the Judaen desert
  • 5 Dying SpaceX rocket creates glowing, galaxy-like spiral in the middle of the Northern Lights
  • 2 Watch bizarre video of termites trapped in 'death spiral'
  • 3 'Potentially hazardous' asteroid Bennu contains the building blocks of life and minerals unseen on Earth, scientists reveal in 1st comprehensive analysis
  • 4 Speck of light spotted by Hubble is one of the most enormous galaxies in the early universe, James Webb telescope reveals
  • 5 8-hour intermittent fasting tied to 90% higher risk of cardiovascular death, early data hint

 MacTutor

Albert einstein.

If I were to have the good fortune to pass my examinations, I would go to Zürich. I would stay there for four years in order to study mathematics and physics. I imagine myself becoming a teacher in those branches of the natural sciences, choosing the theoretical part of them. Here are the reasons which lead me to this plan. Above all, it is my disposition for abstract and mathematical thought, and my lack of imagination and practical ability.
I have given up the ambition to get to a university ...
To my great joy, I completely succeeded in convincing Hilbert and Klein .
Revolution in science - New theory of the Universe - Newtonian ideas overthrown.
... a German national with or without swastika instead of a Jew with liberal international convictions...
I never realised that so many Americans were interested in tensor analysis.
... said hardly anything beyond presenting a very simple objection to the probability interpretation .... Then he fell back into silence ...
I have locked myself into quite hopeless scientific problems - the more so since, as an elderly man, I have remained estranged from the society here...

References ( show )

  • N L Balazs, M J Klein, Biography in Dictionary of Scientific Biography ( New York 1970 - 1990) . See THIS LINK .
  • Biography in Encyclopaedia Britannica. http://www.britannica.com/biography/Albert-Einstein
  • P C Aichelburg and Roman U Sexl ( ed. ) , Albert Einstein: his influence on physics, philosophy and politics ( Braunschweig, 1979) .
  • L Barnett, The Universe and Dr Einstein (1974) .
  • M Beller, J Renn and R S Cohen ( eds. ) , Einstein in context ( Cambridge, 1993) .
  • J Bernstein, Einstein (1973) .
  • D Brian, Einstein - a life ( New York, 1996) .
  • E Broda, The intellectual quadrangle : Mach - Boltzmann - Planck - Einstein ( Geneva, 1981) .
  • W Buchheim, Albert Einstein als Wegbereiter nachklassischer Physik ( Berlin, 1981) .
  • U Charpa, Albert Einstein ( Frankfurt, 1993) .
  • E M Chudinov ( ed. ) , Einstein and philosophical problems of physics of the twentieth century ( Russian ) 'Nauka' ( Moscow, 1979) .
  • R W Clark, Einstein: The Life and Times (1979) .
  • H Dukas and B Hoffmann ( eds. ) , Albert Einstein : the human side. New glimpses from his archives ( Princeton, N.J., 1979) .
  • J Earman, M Janssen and J D Norton ( eds. ) , The attraction of gravitation : new studies in the history of general relativity ( Boston, 1993) .
  • A Einstein, The collected papers of Albert Einstein. Vol. 1 : The early years, 1879 - 1902 ( Princeton, NJ, 1987) .
  • A Einstein, The collected papers of Albert Einstein. Vol. 2 : The Swiss years: writings, 1900 - 1909 ( Princeton, NJ, 1989) .
  • A Einstein, The collected papers of Albert Einstein. Vol. 3 : The Swiss years: writings, 1909 - 1911 ( German ) ( Princeton, NJ, 1993) .
  • A Einstein, The collected papers of Albert Einstein. Vol. 3 : The Swiss years: writings, 1909 - 1911 ( Princeton, NJ, 1993) .
  • A Einstein, The collected papers of Albert Einstein. Vol. 4 . The Swiss years: writings, 1912 - 1914 ( German ) ( Princeton, NJ, 1995) .
  • A Einstein, The collected papers of Albert Einstein. Vol. 4 : The Swiss years: writings, 1912 - 1914 ( Princeton, NJ, 1996) .
  • A Einstein, The collected papers of Albert Einstein. Vol. 5 : The Swiss years : correspondence, 1902 - 1914 ( German ) ( Princeton, NJ, 1993) .
  • A Einstein, The collected papers of Albert Einstein. Vol. 5 : The Swiss years: correspondence, 1902 - 1914 ( Princeton, NJ, 1995) .
  • A Einstein, The collected papers of Albert Einstein. Vol. 6 : The Berlin years: writings, 1914 - 1917 ( German ) ( Princeton, NJ, 1996) .
  • A Forsee, Albert Einstein : theoretical physicist ( New York, 1963) .
  • P Frank, Einstein : His Life and Times (1972) .
  • P Frank, Einstein : Sein Leben und seine Zeit ( Braunschweig, 1979) .
  • A P French ( ed. ) , Einstein. A centenary volume ( Cambridge, Mass., 1979) .
  • V Ya Frenkel and B E Yavelov, Einstein the inventor ( Russian ) 'Nauka' ( Moscow, 1981) .
  • V Ya Frenkel and B E Yavelov, Einstein : inventions and experiment ( Russian ) 'Nauka' ( Moscow, 1990) .
  • H Freudenthal, Inleiding tot het denken van Einstein ( Assen, 1952) .
  • D P Gribanov, Albert Einstein's philosophical views and the theory of relativity 'Progress' ( Moscow, 1987) .
  • D P Gribanov, The philosophical views of A Einstein and the development of the theory of relativity ( Russian ) 'Nauka' ( Moscow, 1987) .
  • W Heisenberg, Encounters with Einstein. And other essays on people, places, and particles ( Princeton, NJ, 1989) .
  • F Herneck, Albert Einstein. Zweite, durchgesehene Auflage ( Leipzig, 1975) .
  • T Hey and P Walters, Einstein's mirror ( Cambridge, 1997) .
  • G Holton and Y Elkana ( eds. ) , Albert Einstein : Historical and cultural perspectives ( Princeton, NJ, 1982) .
  • G Holton, Einstein, history, and other passions ( Woodbury, NY, 1995) .
  • D Howard and J Stachel ( eds. ) , Einstein and the history of general relativity ( Boston, MA, 1989) .
  • C Jungnickel and R McCormmach, Intellectual Mastery of Nature 2 Vols ( Chicago, 1986) .
  • B Khofman, Albert Einstein : creator and rebel ( Russian ) 'Progress' ( Moscow, 1983) .
  • C Kirsten and H-J Treder ( eds. ) , Albert Einstein in Berlin 1913 - 1933 . Teil I. Darstellung und Dokumente ( Berlin, 1979) .
  • C Kirsten and H-J Treder ( eds. ) , Albert Einstein in Berlin 1913 - 1933 . Teil II. Spezialinventar ( Berlin, 1979) .
  • B G Kuznetsov, Einstein ( French ) ( Moscow, 1989) .
  • B G Kuznetsov, Einstein. Life, death, immortality ( Rusian ) 'Nauka', ( Moscow, 1979) .
  • B G Kuznetsov, Einstein: Leben -Tod - Unsterblichkeit ( German ) ( Berlin, 1979) .
  • B G Kuznetsov, Einstein ( Moscow, 1965) .
  • B G Kuznetsov, Einstein : Vida. Muerte. Inmortalidad ( Moscow, 1990) .
  • C Lánczos, The Einstein decade (1905 - 1915) ( New York-London, 1974) .
  • H Melcher, Albert Einstein wider Vorurteile und Denkgewohnheiten ( Berlin, 1979) .
  • A I Miller, Albert Einstein's special theory of relativity : Emergence (1905) and early interpretation (1905 - 1911) ( Reading, Mass., 1981) .
  • L Navarro Veguillas, Einstein, profeta y hereje ( Barcelona, 1990) .
  • A Pais , 'Subtle is the Lord...' The Science and the life of Albert Einstein ( Oxford, 1982) .
  • A Pais, The science and life of Albert Einstein ( Russian ) 'Nauka' ( Moscow, 1989) .
  • A Pais, Raffiniert ist der Herrgott ... : Albert Einstein-eine wissenschaftliche Biographie ( Braunschweig, 1986) .
  • M Pantaleo and F de Finis ( ed. ) , Relativity, quanta, and cosmology in the development of the scientific thought of Albert Einstein. Vol. I, II. ( New York, 1979) .
  • W Pauli, Wissenschaftlicher Briefwechsel mit Bohr, Einstein, Heisenberg u.a. Band I: 1919 - 1929 ( New York-Berlin, 1979) .
  • W Pauli, Wissenschaftlicher Briefwechsel mit Bohr, Einstein, Heisenberg u.a. Band II ( Berlin-New York, 1985) .
  • I Rosenthal-Schneider, Begegnungen mit Einstein, von Laue und Planck ( Braunschweig, 1988) .
  • P A Schilipp ( ed. ) , Albert Einstein : Philosopher- Scientist (2 Vols ) (1969) .
  • P A Schilpp ( ed. ) , Albert Einstein als Philosoph und Naturforscher ( Braunschweig, 1979) .
  • P A Schilpp ( ed. ) , Albert Einstein : Philosopher-Scientist ( Evanston, Ill., 1949) .
  • C Seelig, Albert Einstein : A Documentary Biography ( London, 1956) .
  • H-J Treder ( ed. ) , Einstein-Centenarium 1979 ( German ) ( Berlin, 1979) .
  • A Whitaker, Einstein, Bohr and the quantum dilemma ( Cambridge, 1996) .
  • M White, Albert Einstein : a life in science ( London, 1993) .
  • J Wickert, Albert Einstein ( German ) ( Reinbek, 1983) .
  • J Wickert, Albert Einstein in Selbstzeugnissen und Bilddokumenten ( Reinbek bei Hamburg, 1972) .
  • G Wolters, Mach I, Mach II, Einstein und die Relativitätstheorie ( Berlin-New York, 1987) .
  • A I Akhiezer, Einstein and modern physics ( Russian ) , in The scientific picture of the world 'Naukova Dumka' ( Kiev, 1983) , 175 - 194 .
  • R A Aronov, B M Bolotovskii and N V Mickevic, Elements of materialism and dialectics in shaping A Einstein's philosophical views ( Russian ) , Voprosy Filos. (11) (1979) , 56 - 66 ; 187 .
  • R A Aronov and B Ya Pakhomov, Philosophy and physics in the discussions of N Bohr and A Einstein ( Russian ) , Voprosy Filos. (10) (1985) , 59 - 73 ; 172 - 173 .
  • A Avramesco, The Einstein-Bohr debate. I. The background, in Microphysical reality and quantum formalism ( Dordrecht, 1988) , 299 - 308 .
  • A Bach, Eine Fehlinterpretation mit Folgen : Albert Einstein und der Welle-Teilchen Dualismus, Arch. Hist. Exact Sci. 40 (2) (1989) , 173 - 206 .
  • N L Balazs, The acceptability of physical theories : Poincaré versus Einstein, in General relativity : papers in honour of J. L Synge ( Oxford, 1972) , 21 - 34 .
  • A Baracca and R Rechtman, Einstein's statistical mechanics, Rev. Mexicana Fis. 31 (4) (1985) , 695 - 722 .
  • J B Barbour, Einstein and Mach's principle, in Studies in the history of general relativity ( Boston, MA, 1992) , 125 - 153 , 460 .
  • M Beller, Einstein and Bohr's rhetoric of complementarity, in Einstein in context ( Cambridge, 1993) , 241 - 255 .
  • D W Belousek, Einstein's 1927 unpublished hidden-variable theory : its background, context and significance, Stud. Hist. Philos. Sci. B Stud. Hist. Philos. Modern Phys. 27 (4) (1996) , 437 - 461 .
  • Y Ben-Menahem, Struggling with causality : Einstein's case, in Einstein in context ( Cambridge, 1993) , 291 - 310 .
  • G Berg, On the origin of the concept of an Einstein space, in Studies in the history of general relativity ( Boston, MA, 1992) , 336 - 343 ; 460 .
  • S Bergia and L Navarro, Recurrences and continuity in Einstein's research on radiation between 1905 and 1916 , Arch. Hist. Exact Sci. 38 (1) (1988) , 79 - 99 .
  • S Bergia, Who discovered the Bose-Einstein statistics?, in Symmetries in physics (1600 - 1980) ( Barcelona, 1987) , 221 - 250 .
  • P Bernardini, Einstein's statistics and second quantization : what continuity? ( Italian ) , Physis-Riv. Internaz. Storia Sci. 23 (3) (1981) , 337 - 374 .
  • J Bicák, Einstein's Prague articles on gravitation, in Proceedings of the Fifth Marcel Grossmann Meeting on General Relativity ( Teaneck, NJ, 1989) , 1325 - 1333 .
  • M Biezunski, Inside the coconut : the Einstein-Cartan discussion on distant parallelism, in Einstein and the history of general relativity ( Boston, MA, 1989) , 315 - 324 .
  • J Blackmore, Mach competes with Planck for Einstein's favor, Historia Sci. No. 35 (1988) , 45 - 89 .
  • M Born, Erinnerungen an Albert Einstein, Math. Naturwiss. Unterricht 9 (1956 / 57) , 97 - 105 .
  • M Born, Recollections of Einstein ( Bulgarian ) , Fiz.-Mat. Spis. Bulgar. Akad. Nauk. 22(55) (3) (1979) , 204 - 216 .
  • M Born, Albert Einstein und das Lichtquantum, Naturwissenschaften 42 (1955) , 425 - 431 .
  • J Bosquet, Théophile De Donder et la gravifique einsteinienne, Acad. Roy. Belg. Bull. Cl. Sci. (5) 73 (5) (1987) , 209 - 253 .
  • E Broda, The intellectual quadrangle Mach-Boltzmann-Planck-Einstein ( Bulgarian ) , Fiz.-Mat. Spis. Bulgar. Akad. Nauk. 25(58) (3) (1983) , 195 - 211 .
  • P H Byrne, Statistical and causal concepts in Einstein's early thought, Ann. of Sci. 37 (2) (1980) , 215 - 228 .
  • P H Byrne, The origins of Einstein's use of formal asymmetries, Ann. of Sci. 38 (2) (1981) , 191 - 206 .
  • P H Byrne, The significance of Einstein's use of the history of science, Dialectica 34 (4) (1980) , 263 - 276 .
  • B Carazza, Historical considerations on the conceptual experiment by Einstein, Podolsky and Rosen, in The nature of quantum paradoxes ( Dordrecht, 1988) , 355 - 369 .
  • D C Cassidy, Biographies of Einstein ( Polish ) , Kwart. Hist. Nauk. Tech. 24 (4) (1979) , 813 - 822 .
  • D C Cassidy, Biographies of Einstein, in Einstein Symposion, Berlin 1979 ( Berlin-New York, 1979) , 490 - 500 .
  • C Cattani and M De Maria, Einstein's path toward the generally covariant formulation of gravitational field equations : the contribution of Tullio Levi-Civita, in Proceedings of the fourth Marcel Grossmann meeting on general relativity ( Amsterdam-New York, 1986) , 1805 - 1826 .
  • C Cattani and M De Maria, Gravitational waves and conservation laws in general relativity : A Einstein and T Levi-Civita, 1917 correspondence, in Proceedings of the Fifth Marcel Grossmann Meeting on General Relativity ( Teaneck, NJ, 1989) , 1335 - 1342 .
  • C Cattani and M De Maria, Max Abraham and the reception of relativity in Italy : his 1912 and 1914 controversies with Einstein, in Einstein and the history of general relativity ( Boston, MA, 1989) , 160 - 174 .
  • C Cattani and M De Maria, The 1915 epistolary controversy between Einstein and Tullio Levi-Civita, in Einstein and the history of general relativity ( Boston, MA, 1989) , 175 - 200 .
  • S Chandrasekhar, Einstein and general relativity : historical perspectives, Amer. J. Phys. 47 (3) (1979) , 212 - 217 .
  • S D Chatterji, Two documents on Albert Einstein, in Yearbook : surveys of mathematics 1980 ( Mannheim, 1980) , 143 - 154 .
  • B Cimbleris, Einstein's works on thermodynamics (1902 - 1904) and the statistical mechanics of Gibbs ( Portuguese ) , in The XIXth century : the birth of modern science ( Campinas, 1992) , 405 - 412 .
  • D M Clark, Einstein-Podolsky-Rosen paradox : a mathematically complete exposition, Bol. Soc. Parana. Mat. (2) 15 (1 - 2) (1995) , 67 - 81 .
  • L F Cook, Einstein and DtDE, Amer. J. Phys. 48 (2) (1980) , 142 - 145 .
  • Correspondence of A Einstein and M Besso, 1903 - 1955 ( Russian ) , in Einstein collection, 1977 'Nauka' ( Moscow, 1980) , 5 - 72 ; 327 .
  • O Costa de Beauregard, The 1927 Einstein and 1935 EPR paradox, Physis-Riv. Internaz. Storia Sci. 22 (2) (1980) , 211 - 242 .
  • C Curry, The naturalness of the cosmological constant in the general theory of relativity, Stud. Hist. Philos. Sci. 23 (4) (1992) , 657 - 664 .
  • S D'Agostino and L Orlando, The correspondence principle and the origin of Einstein's theory of gravity ( Italian ) , Riv. Stor. Sci. (2) 2 (1) (1994) , 51 - 74 .
  • S D'Agostino, The problem of the empirical bases of Einstein's general theory of relativity : some recent historico-critical research ( Italian ) , Riv. Stor. Sci. (2) 3 (2) (1995) , 191 - 207 .
  • B d'Espagnat, Einstein et la causalité, in Einstein : 1879 - 1955 ( Paris, 1980) , 31 - 44 .
  • B K Datta, Development of Einstein's general theory of relativity (1907 - 1916) , Bull. Satyendranath Bose Inst. Phys. Sci. 5 (2) (1980) , 3 - 20 .
  • M De Maria, The first reactions to general relativity in Italy : the polemics between Max Abraham and Albert Einstein ( Italian ) , in Italian mathematics between the two world wars ( Bologna, 1987) , 143 - 159 .
  • L de Broglie, Notice nécrologique sur Albert Einstein, C. R. Acad. Sci. Paris 240 (1955) , 1741 - 1745 .
  • B de Finetti, Einstein : originality and intuition, Scientia ( Milano ) 113 (1 - 4) (1978) , 115 - 128 .
  • R Debever, Publication de la correspondance Cartan-Einstein, Acad. Roy. Belg. Bull. Cl. Sci. (5) (3) 64 (1978) , 61 - 63 .
  • L Debnath, Albert Einstein-scientific epistemology, in Selected studies : physics-astrophysics, mathematics, history of science ( Amsterdam-New York, 1982) , 315 - 327 .
  • L Debnath, and N C Debnath, Albert Einstein-the man-scientist duality, Internat. J. Math. Ed. Sci. Tech. 10 (4) (1979) , 475 - 491 .
  • R Deltete and R Guy, Einstein and EPR, Philos. Sci. 58 (3) (1991) , 377 - 397 .
  • P A M Dirac, The perfection of Einstein's theory of gravitation ( Bulgarian ) , Fiz.-Mat. Spis. Bulgar. Akad. Nauk. 22(55) (3) (1979) , 216 - 218 .
  • R Disalle, Gereon Wolters' 'Mach I, Mach II, Einstein, und die Relativitätstheorie', Philos. Sci. 57 (4) (1990) , 712 - 723 .
  • R Dugas, Einstein et Gibbs devant la thermodynamique statistique, C. R. Acad. Sci. Paris 241 (1955) , 1685 - 1687 .
  • J Earman and C Glymour, Einstein and Hilbert : two months in the history of general relativity, Arch. Hist. Exact Sci. 19 (3) (1978 / 79) , 291 - 308 .
  • Einstein and quantum theory : Excerpts from the correspondence of A Einstein with M Besso ( Russian ) , Voprosy Istor. Estestvoznan. i Tehn. (3)(52) (1975) , 30 - 37 ; 101 .
  • A Einstein, Le memorie fondamentali di Albert Einstein ( Italian ) , in Cinquant'anni di Relatività, 1905 - 1955 ( Firenze, 1955) , 477 - 611 .
  • J Eisenstaedt, Toward a history of Einstein's theory of gravitation, in Fifth Brazilian School of Cosmology and Gravitation ( Teaneck, NJ, 1987) , 552 - 565 .
  • M A Elyashevich, Einstein's part in the development of quantum concepts, Soviet Phys. Uspekhi 22 (7) (1979) , 555 - 575 .
  • M A Elyashevich, Einstein's part in the development of quantum concepts ( Russian ) , Uspekhi Fiz. Nauk 128 (3) (1979) , 503 - 536 .
  • H Ezawa, Einstein's contribution to statistical mechanics, classical and quantum, Japan. Stud. Hist. Sci. No. 18 (1979) , 27 - 72 .
  • Y Ezrahi, Einstein and the light of reason, in Albert Einstein, Jerusalem, 1979 ( Princeton, NJ, 1982) , 253 - 278 .
  • W L Fadner, Did Einstein really discover E=mc€?, Amer. J. Phys. 56 (2) (1988) , 114 - 122 .
  • E L Feinberg, The relation between science and art in Einstein's world view ( Russian ) , in Einstein collection, 1977 'Nauka' ( Moscow, 1980) , 187 - 213 ; 327 .
  • M Ferraris, M Francaviglia and C Reina, Variational formulation of general relativity from 1915 to 1925 : 'Palatini's method' discovered by Einstein in 1925 , Gen. Relativity Gravitation 14 (3) (1982) , 243 - 254 .
  • P K Feyerabend, Mach's theory of research and its relation to Einstein, Stud. Hist. Philos. Sci. 15 (1) (1984) , 1 - 22 .
  • P K Feyerabend, Machs Theorie der Forschung und ihre Beziehung zu Einstein, in Ernst Mach-Werk und Wirkung ( Vienna, 1988) , 435 - 462 .
  • A Fine, Einstein's interpretations of the quantum theory, in Einstein in context ( Cambridge, 1993) , 257 - 273 .
  • A Fine, What is Einstein's statistical interpretation, or, is it Einstein for whom Bell's theorem tolls?, Topoi 3 (1) (1984) , 23 - 36 .
  • B Finzi, Commemorazione di Alberto Einstein, Ist. Lombardo Sci. Lett. Rend. Parte Gen. Atti Ufficiali (3) 19 (88) (1955) , 106 - 120 .
  • A D Fokker, Albert Einstein, inventor of chronogeometry, Synthese 9 (1954) , 442 - 444 .
  • A D Fokker, Albert Einstein : 14 March 1878 - 18 April 1955 ( Dutch ) , Nederl. Tijdschr. Natuurk. 21 (1955) , 125 - 129 .
  • M Francaviglia, History of a work of Albert Einstein ( Italian ) , Atti Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur. 112 (1 - 2) (1978) , 43 - 48 .
  • I M Frank, Einstein und die Probleme der Optik, Astronom. Nachr. 301 (6) (1980) , 261 - 275 .
  • P G Frank, Einstein, Synthese 9 (1954) , 435 - 437 .
  • A Franke and F Franke, Paul Langevin und Albert Einstein-eine Freundschaft zwischen Relativitätstheorie und politischer Realität, Ber. Wiss.-Gesch. 20 (2 - 3) (1997) , 199 - 215 .
  • V Ya Frenkel, Einstein and the Soviet physicists ( Russian ) , Voprosy Istor. Estestvoznan. i Tehn. (3)(52) (1975) , 25 - 30 ; 101 .
  • V Ya Frenkel, A Einstein's doctoral dissertation ( Russian ) , Voprosy Istor. Estestvoznan. i Tekhn. (2) (1983) , 136 - 141 .
  • H Freudenthal, Einstein und das wissenschaftliche Weltbild des 20 . Jahrhunderts, Janus 46 (1957) , 63 - 76 .
  • D Galletto, The ideas of Einstein in the works of Guido Fubini and Francesco Severi ( Italian ) , Atti Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur. 115 ( Suppl. ) (1981) , 205 - 216 .
  • M Garcia Doncel, The genesis of special relativity and Einstein's epistemology ( Spanish ) , Three lectures about Albert Einstein, Mem. Real Acad. Cienc. Artes Barcelona 45 (4) (1981) , 7 - 35 .
  • C Gearhart, A Einstein before 1905 : the early papers on statistical mechanics, Amer. J. Phys. 58 (5) (1990) , 468 - 480 .
  • Gh Gheorghiev, Albert Einstein and the development of differential geometry ( Romanian ) , An. Stiint. Univ. 'Al. I. Cuza' Iasi Sect. I a Mat. ( N.S. ) 25 (2) (1979) , 435 - 438 .
  • O Godart, and M Heller, Einstein-Lemaitre: rencontre d'idées, Rev. Questions Sci. 150 (1) (1979) , 23 - 43 .
  • H Goenner, The reaction to relativity theory. I. The anti-Einstein campaign in Germany in 1920 , in Einstein in context ( Cambridge, 1993) , 107 - 133 .
  • H Goenner and G Castagnetti, Albert Einstein as pacifist and Democrat during World War I, Sci. Context 9 (4) (1996) , 325 - 386 .
  • I Gottlieb, Albert Einstein-a pathfinder in physics, An. Stiint. Univ. 'Al. I. Cuza' Iasi Sect. I b Fiz. ( N.S. ) 25 (1979) , i-v.
  • L R Graham, The reception of Einstein's ideas : two examples from contrasting political cultures, in Albert Einstein, Jerusalem, 1979 ( Princeton, NJ, 1982) , 107 - 136 .
  • J J Gray, Poincaré, Einstein, and the theory of special relativity, Math. Intelligencer 17 (1) (1995) , 65 - 67 ; 75 .
  • D P Gribanov, The relationship between the empirical and the rational in Einstein's scientific creation ( Russian ) , Voprosy Filos. (9) (1980) , 40 - 50 ; 185 - 186 .
  • D Gribanov, The philosophy of Albert Einstein, in Science and technology: humanism and progress I ( Moscow, 1981) , 158 - 180 .
  • A T Grigorian, On the centenary of Einstein's birth ( Polish ) , Kwart. Hist. Nauk. Tech. 24 (4) (1979) , 805 - 811 .
  • A T Grigorjan, Albert Einstein as a historian of natural science ( Russian ) , Vestnik Akad. Nauk SSSR (4) (1979) , 99 - 104 .
  • A T Grigoryan, Albert Einstein as a historian of natural science ( Russian ) , Voprosy Istor. Estestvoznan. i Tekhn. (1) (1990) , 85 - 89 .
  • F Gürsey, Obituary : Albert Einstein (1879 - 1955) , Rev. Fac. Sci. Univ. Istanbul. Sér. A. 20 (1955) , 101 - 104 .
  • A Harder, The Copernican character of Einstein's cosmology, Ann. of Sci. 29 (1972) , 339 - 347 .
  • K Hentschel, Die Korrespondenz Einstein - Schlick : zum Verhältnis der Physik zur Philosophie, Ann. of Sci. 43 (5) (1986) , 475 - 488 .
  • K Hentschel, Einstein's attitude towards experiments : testing relativity theory 1907 - 1927 , Stud. Hist. Philos. Sci. 23 (4) (1992) , 593 - 624 .
  • K Hentschel, Erwin Finlay Freundlich and testing Einstein's theory of relativity, Arch. Hist. Exact Sci. 47 (2) (1994) , 143 - 201 .
  • A Hermann, Einstein und Deutschland, in Einstein Symposion, Berlin 1979 ( Berlin-New York, 1979) , 537 - 550 .
  • F Herneck, Die Einstein-Dokumente im Archiv der Humboldt-Universität zu Berlin, NTM Schr. Geschichte Naturwiss. Tech. Medizin 10 (2) (1973) , 32 - 38 .
  • F R Hickman, Electrodynamical origins of Einstein's theory of general relativity, Internat. J. Theoret. Phys. 23 (6) (1984) , 535 - 566 .
  • C Hoefer, Einstein's struggle for a Machian gravitation theory, Stud. Hist. Philos. Sci. 25 (3) (1994) , 287 - 335 .
  • C Hoenselaers, Correspondence: Einstein - Kaluza, in Unified field theories of more than 4 dimensions ( Singapore, 1983) , 447 - 457 .
  • B Hoffmann, Einstein and Zionism, in General relativity and gravitation , in Proc. Seventh Internat. Conf. ( GR 7) Ramat-Aviv, 1974 ( New York, 1975) , 233 - 242 .
  • B Hoffmann, Some Einstein anomalies, in Albert Einstein, Jerusalem, 1979 ( Princeton, NJ, 1982) , 91 - 105 .
  • S H Hollingdale, Albert Einstein, born March 14 th, 1879 , Bull. Inst. Math. Appl. 15 (2 - 3) (1979) , 34 - 50 .
  • G Holton, Introduction : Einstein and the shaping of our imagination, in Albert Einstein, Jerusalem, 1979 ( Princeton, NJ, 1982) , vii-xxxii.
  • G Holton, Spengler, Einstein and the controversy over the end of science, Physis Riv. Internaz. Storia Sci. ( N.S. ) 28 (2) (1991) , 543 - 556 .
  • G Hon, Disturbing, but not surprising : did Gödel surprise Einstein with a rotating universe and time travel?, Found. Phys. 26 (4) (1996) , 501 - 521 .
  • C A Hooker, Projection, physical intelligibility, objectivity and completeness : the divergent ideals of Bohr and Einstein, British J. Philos. Sci. 42 (4) (1991) , 491 - 511 .
  • H Hora, Einstein's photon distribution for blackbodies and the discovery of the laser, in General relativity and gravitation 1 ( New York-London, 1980) , 17 - 21 .
  • D Howard, Einstein and Eindeutigkeit : a neglected theme in the philosophical background to general relativity, in Studies in the history of general relativity ( Boston, MA, 1992) , 154 - 243 ; 462 .
  • D Howard, Einstein on locality and separability, Stud. Hist. Philos. Sci. 16 (3) (1985) , 171 - 201 .
  • D Howard, Realism and conventionalism in Einstein's philosophy of science : the Einstein - Schlick correspondence, Philos. Natur. 21 (2 - 4) (1984) , 616 - 629 .
  • D Howard, Was Einstein really a realist?, Perspect. Sci. 1 (2) (1993) , 204 - 251 .
  • T P Hughes, Einstein, inventors, and invention, in Einstein in context ( Cambridge, 1993) , 25 - 42 .
  • J Illy, Albert Einstein and Prague ( Czech ) , DVT-Dejiny Ved Tech. 12 (2) (1979) , 65 - 79 .
  • J Illy, Albert Einstein in Prague, Isis 70 (251) (1979) , 76 - 84 .
  • J Illy, Einstein teaches Lorentz, Lorentz teaches Einstein : Their collaboration in general relativity, 1913 - 1920 , Arch. Hist. Exact Sci. 39 (3) (1989) , 247 - 289 .
  • J Illy, Einstein und der Eotvos-Versuch : Ein Brief Albert Einsteins an Willy Wien, Ann. of Sci. 46 (4) (1989) , 17 - 422 .
  • J Illy, The correspondence of Albert Einstein and Gustav Mie, 1917 - 1918 , in Studies in the history of general relativity ( Boston, MA, 1992) , 244 - 259 ; 462 .
  • In commemoration of the centenary of the birth of Einstein ( Chinese ) , J. Huazhong Inst. Tech. 7 (1) (1979) , 1 - 6 .
  • J Ishiwara, Jun Ishiwaras Text über Albert Einsteins Gastvortrag an der Universität zu Kyoto am 14 . Dezember 1922 , Arch. Hist. Exact Sci. 36 (3) (1986) , 271 - 279 .
  • T Isnardi, Albert Einstein ( Spanish ) , An. Soc. Ci. Argentina 159 (1955) , 3 - 8 .
  • D D Ivanenko, The timeliness of Einstein's works ( Russian ) , Voprosy Istor. Estestvoznan. i Tehn. (3)(52) (1975) , 13 - 16 ; 101 .
  • M Jammer, Albert Einstein und das Quantenproblem, in Einstein Symposion, Berlin 1979 ( Berlin-New York, 1979) , 146 - 167 .
  • M Jammer, Einstein and quantum physics, in Albert Einstein, Jerusalem, 1979 ( Princeton, NJ, 1982) , 59 - 76 .
  • D Jedinák, Statements of Albert Einstein ( Slovak ) , Pokroky Mat. Fyz. Astronom. 20 (6) (1975) , 315 - 319 .
  • J L Jiménez and G del Valle, The Einstein and Hopf work revisited, Rev. Mexicana Fis. 29 (2) (1983) , 259 - 266 .
  • R Jost, Boltzmann und Planck : die Krise des Atomismus um die Jahrhundertwende und ihre überwindung durch Einstein, in Einstein Symposion, Berlin 1979 ( Berlin-New York, 1979) , 128 - 145 .
  • N Kalicin, Albert Einstein ( on the occasion of the ninetieth anniversary of his birth ) ( Bulgarian ) , Fiz.-Mat. Spis. Bulgar. Akad. Nauk. 12 (45) (1969) , 169 - 171 .
  • N V Karlov and A M Prokhorov, Quantum electronics and Einstein's theory of radiation, Soviet Phys. Uspekhi 22 (7) (1979) , 576 - 579 .
  • N V Karlov and A M Prokhorov, Quantum electronics and Einstein's theory of radiation ( Russian ) , Uspekhi Fiz. Nauk 128 (3) (1979) , 537 - 543 .
  • A S Karmin, Scientific thought and intuition: Einstein's formulation of the problem ( Russian ) , in The scientific picture of the world 'Naukova Dumka' ( Kiev, 1983) , 240 - 259 .
  • A Kastler, Albert Einstein, à propos du centenaire de sa naissance, Acad. Roy. Belg. Cl. Sci. Mém. Collect. (2) 44 (1) (1981) , 13 - 27 .
  • M Katsumori, Einstein's philosophical turn and the theory of relativity, in Grenzfragen zwischen Philosophie und Naturwissenschaft ( Vienna, 1989) , 98 - 101 .
  • M Katsumori, The theories of relativity and Einstein's philosophical turn, Stud. Hist. Philos. Sci. 23 (4) (1992) , 557 - 592 .
  • P Kerszberg, The Einstein-de Sitter controversy of 1916 - 1917 and the rise of relativistic cosmology, in Einstein and the history of general relativity ( Boston, MA, 1989) , 325 - 366 .
  • B Khofman, V Bargman, P Bergman and E Shtraus, Working with Einstein ( Russian ) , in Einstein collection, 1982 - 1983 'Nauka' ( Moscow, 1986) , 170 - 195 .
  • B Khofman, V Bargman, P Bergman and E Shtraus, Working with Einstein, in Some strangeness in the proportion ( Reading, Mass., 1980) , 475 - 489 .
  • D Khofman, Albert Einstein as a patent referee ( a new Einstein document ) ( Russian ) , in Einstein collection, 1984 - 1985 'Nauka' ( Moscow, 1988) , 143 - 147 .
  • M J Klein, Fluctuations and statistical physics in Einstein's early work, in Albert Einstein, Jerusalem, 1979 ( Princeton, NJ, 1982) , 39 - 58 .
  • M J Klein and A Needell, Some unnoticed publications by Einstein, Isis 68 (244) (1977) , 601 - 604 .
  • A Kleinert, Nationalistische und antisemitische Ressentiments von Wissenschaftlern gegen Einstein, in Einstein Symposion, Berlin 1979 ( Berlin-New York, 1979) , 501 - 516 .
  • L Kostro, An outline of the history of Einstein's relativistic ether concept, in Studies in the history of general relativity ( Boston, MA, 1992) , 260 - 280 ; 463 .
  • L Kostro, Einstein's relativistic ether, its history, physical meaning and updated applications, Organon No. 24 (1988) , 219 - 235 .
  • A J Kox, Einstein and Lorentz: more than just good colleagues, in Einstein in context ( Cambridge, 1993) , 43 - 56 .
  • A J Kox, Einstein, Lorentz, Leiden and general relativity, Classical Quantum Gravity 10 ( Suppl. ) (1993) S 187 -S 191 .
  • A J Kox, Einstein, specific heats, and residual rays : the history of a retracted paper, in No truth except in the details ( Dordrecht, 1995) , 245 - 257 .
  • A B Kozhevnikov, Einstein's formula for fluctuations and particle-wave dualism ( Russian ) , in Einstein collection, 1986 - 1990 'Nauka' ( Moscow, 1990) , 102 - 124 .
  • F Krull, Albert Einstein in seinen erkenntnistheoretischen Auss erungen, Sudhoffs Arch. 78 (2) (1994) , 154 - 170 .
  • B G Kuznetsov, Einstein and classical science ( Russian ) , Vestnik Akad. Nauk SSSR (4) (1979) , 91 - 98 .
  • B G Kuznetsov, Einstein and de Broglie : Historico-scientific and historico-philosophical notes ( Russian ) , Voprosy Istor. Estestvoznan. i Tekhn. (1) (1981) , 47 - 57 .
  • B G Kuznetsov, From Einstein's correspondence with de Broglie ( Russian ) , Voprosy Istor. Estestvoznan. i Tekhn. (1) (1981) , 58 - 59 .
  • B G Kuznetsov, The Einstein - Bohr dispute, the Einstein - Bergson dispute and the science of the second half of the twentieth century ( Russian ) , in Einstein collection, 1980 - 1981 'Nauka' ( Moscow, 1985) , 49 - 85 , 334 .
  • C Lanczos, Albert Einstein and the theory of relativity, Nuovo Cimento (10) 2 ( Suppl. ) (1955) 1193 - 1220 .
  • C Lanczos, Einstein's path from special to general relativity, in General relativity : papers in honour of J L Synge ( Oxford, 1972) , 5 - 19 .
  • P T Landsberg, Einstein and statistical thermodynamics. I. Relativistic thermodynamics, European J. Phys. 2 (4) (1981) , 203 - 207 .
  • P T Landsberg, Einstein and statistical thermodynamics. II. Oscillator quantisation, European J. Phys. 2 (4) (1981) , 208 - 212 .
  • P T Landsberg, Einstein and statistical thermodynamics. III. The diffusion-mobility relation in semiconductors, European J. Phys. 2 (4) (1981) , 213 - 219 .
  • P T Landsberg, Einstein and statistical thermodynamics, in Proceedings of the Einstein Centennial Symposium on Fundamental Physics ( Bogotá, 1981) , 73 - 117 .
  • F Laudisa, Physical reality and the principle of separability in the Einstein-Bohr debate ( Italian ) , Riv. Stor. Sci. (2) 3 (2) (1995) , 47 - 76 .
  • K V Laurikainen, Albert Einstein, 14 . 3 . 1879 ( Finnish ) , Arkhimedes 31 (2) (1979) , 61 - 67 .
  • N B Lavrova, The works by Einstein and the Russian-language papers about him published in the USSR ( Russian ) , Voprosy Istor. Estestvoznan. i Tehn. (3)(52) (1975) , 38 - 42 ; 101 .
  • F Le Lionnais, Descartes et Einstein, Rev. Hist. Sci. Appl. 5 (1952) , 139 - 154 .
  • G Lemaitre, L'oeuvre scientifique d'Albert Einstein, Rev. Questions Sci. (5) 16 (1955) , 475 - 487 .
  • T Levi-Chivita, Analytic expression for the gravitation tensor in Einstein's theory ( Russian ) , in Einstein collection, 1980 - 1981 'Nauka' ( Moscow, 1985) , 191 - 203 , 335 .
  • N A Licis and V A Markov, Lobacevskii and Einstein. Sources of the general theory of relativity ( Russian ) , Latvijas PSR Zinatn. Akad. Vestis (12)(389) (1979) , 18 - 32 .
  • C Liu, Einstein and relativistic thermodynamics in 1952 : a historical and critical study of a strange episode in the history of modern physics, British J. Hist. Sci. 25 (85)(2) (1992) , 185 - 206 .
  • G A Lorentz, On Einstein's theory of gravitation ( Russian ) , in Einstein collection, 1980 - 1981 'Nauka' ( Moscow, 1985) , 169 - 190 ; 335 .
  • A S Luchins and E H Luchins, The Einstein-Wertheimer correspondence on geometric proofs and mathematical puzzles, Math. Intelligencer 12 (2) (1990) , 35 - 43 .
  • V S Lukyanets, The problem of the justification of physics in the works of Einstein ( Russian ) , in The scientific picture of the world 'Naukova Dumka' ( Kiev, 1983) , 195 - 211 .
  • G Maltese, The rejection of the Ricci tensor in Einstein's first tensorial theory of gravitation, Arch. Hist. Exact Sci. 41 (4) (1991) , 363 - 381 .
  • G Mannoury, The cultural phenomenon Albert Einstein, Synthese 9 (1954) , 438 - 441 .
  • N Maxwell, Induction and scientific realism : Einstein versus van Fraassen. I. How to solve the problem of induction, British J. Philos. Sci. 44 (1) (1993) , 61 - 79 .
  • N Maxwell, Induction and scientific realism : Einstein versus van Fraassen. II. Aim-oriented empiricism and scientific essentialism, British J. Philos. Sci. 44 (1) (1993) , 81 - 101 .
  • N Maxwell, Induction and scientific realism : Einstein versus van Fraassen. III. Einstein, aim-oriented empiricism and the discovery of special and general relativity, British J. Philos. Sci. 44 (2) (1993) , 275 - 305 .
  • W H McCrea and R W Lawson, Obituary : Albert Einstein, Nature 175 (1955) , 925 - 927 .
  • H A Medicus, A comment on the relations between Einstein and Hilbert, Amer. J. Phys. 52 (3) (1984) , 206 - 208 .
  • J Mehra, Niels Bohr's discussions with Albert Einstein, Werner Heisenberg, and Erwin Schrödinger : the origins of the principles of uncertainty and complementarity, Found. Phys. 17 (5) (1987) , 461 - 506 .
  • J Mehra, Niels Bohr's discussions with Albert Einstein, Werner Heisenberg, and Erwin Schrödinger: the origins of the principles of uncertainty and complementarity, in Symposium on the Foundations of Modern Physics 1987 ( Teaneck, NJ, 1987) , 19 - 64 .
  • H Melcher, Some supplements to Einstein-documents, in Proceedings of the ninth international conference on general relativity and gravitation ( Cambridge, 1983) , 271 - 284 .
  • H Melcher, Atherdrift und Relativität : Michelson, Einstein, Fizeau und Hoek, NTM Schr. Geschichte Natur. Tech. Medizin 19 (1) (1982) , 46 - 67 .
  • D Michelson Livingston, Einstein and Michelson-artists in science, Astronom. Nachr. 303 (1) (1982) , 15 - 16 .
  • A I Miller, Albert Einstein's 1907 Jahrbuch paper : the first step from SRT to GRT, in Studies in the history of general relativity ( Boston, MA, 1992) , 319 - 335 ; 464 .
  • A I Miller, Symmetry and imagery in the physics of Bohr, Einstein and Heisenberg, in Symmetries in physics (1600 - 1980) ( Barcelona, 1987) , 299 - 327 .
  • A I Miller, The special relativity theory : Einstein's response to the physics of 1905 , in Albert Einstein, Jerusalem, 1979 ( Princeton, NJ, 1982) , 3 - 26 .
  • V V Narlikar, Einstein and the unity of nature, in Gravitation, quanta and the universe ( New York, 1980) , 1 - 12 .
  • L Navarro, On Einstein's statistical-mechanical approach to the early quantum theory (1904 - 1916) , Historia Sci. (2) 1 (1) (1991) , 39 - 58 .
  • Z Nikol, Einstein and Langevin ( Russian ) , Voprosy Istor. Estestvoznan. i Tehn. (3)(52) (1975) , 37 - 38 ; 101 .
  • D J F Nonnenmacher, T F Nonnenmacher and P F Zweifel, Kepler, Einstein, and Ulm, Math. Intelligencer 15 (2) (1993) , 50 - 51 .
  • D Norton, Einstein's battle for general covariance ( Russian ) , in Einstein collection, 1982 - 1983 'Nauka' ( Moscow, 1986) , 57 - 84 .
  • J Norton, Erratum: 'What was Einstein's principle of equivalence?', Stud. Hist. Philos. Sci. 17 (1) (1986) , 131 .
  • J Norton, Coordinates and covariance : Einstein's view of space-time and the modern view, Found. Phys. 19 (10) (1989) , 1215 - 1263 .
  • J D Norton, Did Einstein stumble? The debate over general covariance. Reflections on spacetime : foundations, philosophy, history, Erkenntnis 42 (2) (1995) , 223 - 245 .
  • J D Norton, Einstein, Nordstrom and the early demise of scalar, Lorentz-covariant theories of gravitation, Arch. Hist. Exact Sci. 45 (1) (1992) , 17 - 94 .
  • J Norton, John Einstein's discovery of the field equations of general relativity : some milestones, in Proceedings of the fourth Marcel Grossmann meeting on general relativity ( Amsterdam-New York, 1986) , 1837 - 1848 .
  • J Norton, How Einstein found his field equations, 1912 - 1915 , in Einstein and the history of general relativity ( Boston, MA, 1989) , 101 - 159 .
  • J Norton, What was Einstein's principle of equivalence?, Stud. Hist. Philos. Sci. 16 (3) (1985) , 203 - 246 .
  • J Norton, What was Einstein's principle of equivalence?, in Einstein and the history of general relativity ( Boston, MA, 1989) , 5 - 47 .
  • R M Nugayev, The history of quantum mechanics as a decisive argument favoring Einstein over Lorentz, Philos. Sci. 52 (1) (1985) , 44 - 63 .
  • Obituary : Albert Einstein (1879 - 1955) ( Russian ) , Z. Eksper. Teoret. Fiz. 28 (1955) , 637 - 638 .
  • T Ogawa, Japanese evidence for Einstein's knowledge of the Michelson-Morley experiment, Japan. Stud. Hist. Sci. No. 18 (1979) , 73 - 81 .
  • M E Omeljanovskii, Einstein, the foundations of modern physics and dialectics ( Russian ) , Vestnik Akad. Nauk SSSR (4) (1979) , 74 - 90 .
  • Y A Ono, Einstein's speech at Kyoto University, December 14 , 1922 , NTM Schr. Geschichte Natur. Tech. Medizin 20 (1) (1983) , 25 - 28 .
  • N F Ovcinnikov, On the problem of the formation of Einstein's creative personality ( Russian ) , Voprosy Filos. (9) (1979) , 70 - 84 ; 186 .
  • A Pais, Einstein and the quantum theory, Rev. Modern Phys. 51 (4) (1979) , 863 - 914 .
  • A Pais, How Einstein got the Nobel prize ( Russian ) , in Einstein collection, 1982 - 1983 'Nauka' ( Moscow, 1986) , 85 - 105 .
  • A Pais, How Einstein got the Nobel Prize, Amer. Sci. 70 (4) (1982) , 358 - 365 .
  • P Pascual, Einstein and the development of cosmology ( Spanish ) , Three lectures about Albert Einstein, Mem. Real Acad. Cienc. Artes Barcelona 45 (4) (1981) , 53 - 72 .
  • M Paty, Einstein et la complémentarité au sens de Bohr: du retrait dans le tumulte aux arguments d'incomplétude, Bohr et la complémentarité, Rev. Histoire Sci. 38 (3 - 4) (1985) , 325 - 351 .
  • M Paty, Physical geometry and special relativity. Einstein et Poincaré, 1830 - 1930 : a century of geometry ( Berlin, 1992) , 127 - 149 .
  • M Paty, The nature of Einstein's objections to the Copenhagen interpretation of quantum mechanics, Found. Phys. 25 (1) (1995) , 183 - 204 .
  • G Petiau, Albert Einstein, 1879 - 1955 , Rev. Gén. Sci. Pures Appl. 62 (1955) , 227 - 236 .
  • A Polikarov, Über den Charakter von Einsteins philosophischem Realismus, Philos. Natur. 26 (1) (1989) , 135 - 158 .
  • A Popovici, Albert Einstein ( Romanian ) , Gaz. Mat. Fiz. Ser. A 9 (62) (1957) , 207 - 213 .
  • W Purkert, Die Bedeutung von A Einsteins Arbeit über Brownsche Bewegung für die Entwicklung der modernen Wahrscheinlichkeitstheorie, Mitt. Math. Ges. DDR No. 3 (1983) , 41 - 49 .
  • L Pyenson, Einstein's education : mathematics and the laws of nature, Isis 71 (258) (1980) , 399 - 425 .
  • C Ray, The cosmological constant : Einstein's greatest mistake?, Stud. Hist. Philos. Sci. 21 (4) (1990) , 589 - 604 .
  • T Regge, Albert Einstein in the centenary of his birth ( Italian ) , Rend. Accad. Naz. Sci. XL Mem. Sci. Fis. Natur. 4 (1979 / 80) , 41 - 47 .
  • J Renn, Einstein as a disciple of Galileo : a comparative study of concept development in physics, in Einstein in context ( Cambridge, 1993) , 311 - 341 .
  • J Renn, Von der klassischen Trägheit zur dynamischen Raumzeit : Albert Einstein und Ernst Mach, Ber. Wiss.-Gesch. 20 (2 - 3) (1997) , 189 - 198 .
  • J Renn, T Sauer, and J Stachel, The origin of gravitational lensing. A postscript to Einstein's 1936 Science paper: 'Lens-like action of a star by the deviation of light in the gravitational field', Science 275 (5297) (1997) , 184 - 186 .
  • A Rossi, Mach and Einstein : Influence of Mach's 'Mechanics' on Einstein's thought ( Italian ) , Physis-Riv. Internaz. Storia Sci. 22 (2) (1980) , 279 - 292 .
  • M Sachs, Einstein and the evolution of twentieth-century physics, Phys. Essays 3 (1) (1990) , 80 - 85 .
  • M Sachs, On Einstein's later view of the twin paradox, Found. Phys. 15 (9) (1985) , 977 - 980 .
  • A Salam, Einstein's last project : the unification of the basic interactions and properties of space-time ( Russian ) , in Einstein collection, 1980 - 1981 'Nauka' ( Moscow, 1985) , 102 - 110 ; 334 .
  • H E Salzer, Two letters from Einstein concerning his distant parallelism field theory, Arch. History Exact Sci. 12 (1974) , 89 - 96 .
  • R A Sardaryan, The first translations of A Einstein's work into Armenian ( Russian ) , in Einstein collection, 1986 - 1990 'Nauka' ( Moscow, 1990) , 98 - 101 .
  • W Schlicker, Albert Einstein and the political reaction in imperialist Germany after the First World War ( Czech ) , Pokroky Mat. Fyz. Astronom. 24 (3) (1979) , 153 - 160 .
  • W Schlicker, Genesis and duration of quarrels about Albert Einstein in Germany from 1920 to 1922 / 23 ( Polish ) , Kwart. Hist. Nauk. Tech. 24 (4) (1979) , 789 - 804 .
  • H-G Schöpf, Albert Einstein und die ersten Anfänge der Quantentheorie, Wiss. Z. Tech. Univ. Dresden 28 (1) (1979) , 79 - 83 .
  • H-G Schöpf, Zum 100 . Geburtstag von A Einstein : Albert Einsteins annus mirabilis 1905 , NTM Schr. Geschichte Natur. Tech. Medizin 15 (2) (1978) , 1 - 17 .
  • W Schroder, Albert Einstein in seinen Beziehungen zu Mitgliedern der Gesellschaft der Wissenschaften in Göttingen, Arch. Hist. Exact Sci. 39 (2) (1988) , 157 - 171 .
  • W Schröder and H-J Treder, Zu Einsteins letzter Vorlesung-Beobachtbarkeit, Realität und Vollständigkeit in Quanten- und Relativitätstheorie, Arch. Hist. Exact Sci. 48 (2) (1994) , 149 - 154 .
  • R Schulmann, Einstein at the Patent Office : exile, salvation, or tactical retreat?, in Einstein in context ( Cambridge, 1993) , 17 - 24 .
  • R Schulmann, From periphery to center : Einstein's path from Bern to Berlin (1902 - 1914) , in No truth except in the details ( Dordrecht, 1995) , 259 - 271 .
  • K K Sen, Life of Einstein, Math. Medley 7 (1) (1979) , 8 - 12 .
  • F Severi, An effort to clarify Einstein's doctrine, recalling the man ( Italian ) , Archimede 31 (4) (1979) , 238 - 244 .
  • J Shelton, The role of observation and simplicity in Einstein's epistemology, Stud. Hist. Philos. Sci. 19 (1) (1988) , 103 - 118 .
  • J Soucek and V Soucek, 'Einstein's model A' deduced by de Sitter is not that of Einstein, Astrophys. Space Sci. 159 (2) (1989) , 317 - 331 .
  • J Stachel, Einstein and Michelson : the context of discovery and the context of justification, Astronom. Nachr. 303 (1) (1982) , 47 - 53 .
  • J Stachel, How Einstein discovered general relativity : a historical tale with some contemporary morals, in General relativity and gravitation ( Cambridge-New York, 1987) , 200 - 208 .
  • J Stachel, 'A man of my type'-editing the Einstein papers, British J. Hist. Sci. 20 (64)(1) (1987) , 57 - 66 .
  • J Stachel, Einstein and quantum mechanics, in Conceptual problems of quantum gravity ( Boston, MA, 1991) , 13 - 42 .
  • J Stachel, Einstein and the quantum : fifty years of struggle, in From quarks to quasars ( Pittsburgh, PA, 1986) , 349 - 385 .
  • J Stachel, Einstein's search for general covariance, 1912 - 1915 , in Einstein and the history of general relativity ( Boston, MA, 1989) , 63 - 100 .
  • J Stachel, Lanczos's early contributions to relativity and his relationship with Einstein, in Proceedings of the Cornelius Lanczos International Centenary Conference, Raleigh 1993 ( Philadelphia, PA, 1994) , 201 - 221 .
  • J Stachel, The other Einstein : Einstein contra field theory., in Einstein in context ( Cambridge, 1993) , 275 - 290 .
  • J Stachel and R Torretti, Einstein's first derivation of mass-energy equivalence, Amer. J. Phys. 50 (8) (1982) , 760 - 763 .
  • E Stipanich, Boskovic and Einstein ( Russian ) , in Investigations in the history of mechanics 'Nauka' ( Moscow, 1983) , 219 - 245 .
  • P Straneo, Genesi ed evoluzione della concezione relativistica di Albert Einstein, in Cinquant'anni di Relatività, 1905 - 1955 ( Firenze, 1955) , 29 - 134 .
  • J Strnad, Einstein and Planck's law ( Slovenian ) , Obzornik Mat. Fiz. 26 (3) (1979) , 74 - 85 .
  • J Strnad, Einstein and quanta ( Slovenian ) , Obzornik Mat. Fiz. 42 (3) (1995) , 80 - 87 .
  • S G Suvorov, Einstein : the creation of the theory of relativity and some gnosiological lessons, Soviet Phys. Uspekhi 22 (7) (1979) , 528 - 554 .
  • S G Suvorov, Einstein : the creation of the theory of relativity and some gnosiological lessons ( Russian ) , Uspekhi Fiz. Nauk 128 (3) (1979) , 459 - 501 .
  • Y Tanaka, Einstein and Whitehead : The principle of relativity reconsidered, Historia Sci. No. 32 (1987) , 43 - 61 .
  • G Temple, Obituary : Albert Einstein, J. London Math. Soc. 31 (1956) , 501 - 507 .
  • J Thiele, Briefe Albert Einsteins an Joseph Petzoldt, NTM Schr. Geschichte Naturwiss. Tech. Medizin 8 (1) (1971) , 70 - 74 .
  • V Tonini, Continuity and discontinuity : the Einstein-Bohr conflict of ideas and the Bohr-Fock discussion, in The nature of quantum paradoxes ( Dordrecht, 1988) , 371 - 384 .
  • M-A Tonnelat, Einstein : les influences philosophiques, in Einstein : 1879 - 1955 ( Paris, 1980) , 11 - 30 .
  • M-A Tonnelat, Science et philosophie : Einstein et Spinoza, Bull. Soc. Math. Belg. Sér. A 33 (2) (1981) , 183 - 205 .
  • M-A Tonnelat, Einstein, mythe et réalité, Scientia ( Milano ) 114 (5 - 8) (1979) , 297 - 369 .
  • I Toth, Spekulationen über die Möglichkeit eines nicht euklidischen Raumes vor Einstein, in Einstein Symposion, Berlin 1979 ( Berlin-New York, 1979) , 46 - 83 .
  • H-J Treder, Antimatter and the particle problem in Einstein's cosmology and field theory of elementary particles : an historical essay on Einstein's work at the Akademie der Wissenschaften zu Berlin, Astronom. Nachr. 296 (4) (1975) , 149 - 161 .
  • Tres conferencias sobre Albert Einstein, Mem. Real Acad. Cienc. Artes Barcelona 45 (4) (1981) , 1 - 72 .
  • I Z Tsekhmistro, The Einstein - Podolsky - Rosen paradox and the concept of integrity ( Russian ) , Voprosy Filos. (4) (1985) , 84 - 94 .
  • J M Vidal Llenas, Einstein and his nonrelativistic contributions to physics ( Spanish ) , Three lectures about Albert Einstein, Mem. Real Acad. Cienc. Artes Barcelona 45 (4) (1981) , 37 - 51 .
  • E Vigner, Thirty years of knowing Einstein ( Russian ) , in Einstein collection, 1982 - 1983 'Nauka' ( Moscow, 1986) , 149 - 169 .
  • E Vigner, Thirty years of knowing Einstein, Some strangeness in the proportion ( Reading, Mass., 1980)) , 461 - 472
  • V P Vizgin, Einstein, Hilbert, Weyl : Genesis des Programms der einheitlichen geometrischen Feldtheorien, NTM Schr. Geschichte Natur. Tech. Medizin 21 (2) (1984) , 23 - 33 .
  • V P Vizgin, Einstein, Hilbert, Weyl: the genesis of the program of unified geometrized field theories ( Russian ) , in Einstein collection, 1980 - 1981 'Nauka' ( Moscow, 1985) , 86 - 101 ; 334 .
  • V P Vizgin, Correspondence between Einstein and de Broglie in the early fifties ( Russian ) , Voprosy Istor. Estestvoznan. i Tekhn. (3) (1982) 169 - 170 .
  • V P Vizgin, Eötvös and Einstein ( Russian ) , in History of science 'Metsniereba' ( Tbilisi, 1984) , 86 - 89 .
  • V P Vizgin, On the history of the discovery of equations of gravitation ( Einstein and Hilbert ) ( Russian ) , Istor.-Mat. Issled. No. 25 (1980) , 261 - 265 ; 379 .
  • V P Vizgin, One of the aspects of Einstein's methodology ( Russian ) , Voprosy Istor. Estestvoznan. i Tehn. (3)(52) (1975) , 16 - 24 ; 101 .
  • V P Vizgin, Einstein, Hilbert, and Weyl : the genesis of the geometrical unified field theory program, in Einstein and the history of general relativity ( Boston, MA, 1989) , 300 - 314 .
  • M von Laue, Einstein und die Relativitätstheorie, Naturwissenschaften 43 (1956) , 1 - 8 .
  • K von Meyenn, Einsteins Dialog mit den Kollegen, in Einstein Symposion, Berlin 1979 ( Berlin-New York, 1979) , 464 - 489 .
  • E T Whittaker, Aristotle, Newton, Einstein, Philos. Mag. (7) 34 (1943) , 266 - 280 .
  • E T Whittaker, Aristotle, Newton, Einstein, Proc. Roy. Soc. Edinburgh A 61 (1942) , 231 - 246 .
  • J Wickert, Zum produktiven Denken bei Einstein. Ein Beitrag zur Erkenntnispsychologie, in Einstein Symposion, Berlin 1979 ( Berlin-New York, 1979) , 443 - 463 .
  • C M Will, General relativity at 75 : how right was Einstein?, in The Sixth Marcel Grossmann Meeting, Kyoto 1991 ( River Edge, NJ, 1992) , 769 - 786 .
  • A M Yaglom, Einstein's 1914 paper on the theory of randomly fluctuating series of observations ( Russian ) , Problemy Peredachi Informatsii 21 (4) (1985) , 101 - 107 .
  • C N Yang, Einstein and the physics of the second half of the twentieth century, in Selected studies : physics-astrophysics, mathematics, history of science ( Amsterdam-New York, 1982) , 139 - 146 .
  • C N Yang, Einstein's impact on theoretical physics, Phys. Today 33 (6) (1980) , 42 - 44 ; 48 - 49 .
  • L V Yatsenko, The problem of scientific work and A Einstein ( Russian ) , in The scientific picture of the world 'Naukova Dumka' ( Kiev, 1983) , 211 - 240 .
  • B E Yavelov, Einstein and the problem of superconductivity ( Russian ) , in Einstein collection, 1977 'Nauka' ( Moscow, 1980) , 158 - 186 ; 327 .
  • B E Yavelov, Einstein's Zurich colloquium ( Russian ) , in Einstein collection, 1982 - 1983 'Nauka' ( Moscow, 1986) , 106 - 148 .
  • E Zahar, Einstein, Meyerson and the role of mathematics in physical discovery, British J. Philos. Sci. 31 (1) (1980) , 1 - 43 .
  • R Zajac, Albert Einstein and twentieth century physics ( Czech ) , Pokroky Mat. Fyz. Astronom. 24 (2) (1979) , 61 - 77 .
  • A Zeilinger, Physik und Wirklichkeit-neuere Entwicklungen zum Einstein-Podolsky-Rosen Paradoxon, in Naturwissenschaft und Weltbild ( Vienna, 1992) , 99 - 121 .
  • Ja B Zeldovic, A Einstein and modern science ( Russian ) , Vestnik Akad. Nauk SSSR (7) (1980) , 40 - 46 .
  • R E Zimmermann, Albert Einstein-Versuch einer totalisierenden Würdigung, Philos. Natur. 21 (1) (1984) , 126 - 138 .
  • P F Zweifel, The scientific work of Albert Einstein, Ann. Nuclear Energy 7 (4 - 5) (1980) , 279 - 287 .

Additional Resources ( show )

Other pages about Albert Einstein:

  • A meeting with Einstein
  • Ether and Relativity
  • Geometry and Experience
  • Einstein; the Nazis and the German Academies
  • Max Herzberger on Albert Einstein
  • Times obituary
  • Multiple entries in The Mathematical Gazetteer of the British Isles ,
  • Astronomy: The Infinite Universe
  • Astronomy: The Reaches of the Milky Way
  • Einstein's 1929 New York Times article
  • Carlos Graef argues with Albert Einstein
  • D D Kosambi on Einstein
  • Miller's postage stamps

Other websites about Albert Einstein:

  • Dictionary of Scientific Biography
  • Encyclopaedia Britannica
  • History of Computing Project
  • Princeton University Press
  • American Institute of Physics
  • Albert Einstein Online
  • Plus Magazine ( Einstein and relativity )
  • Kevin Brown ( Reflections on Relativity )
  • Mathematics Today
  • Nobel prizes site ( A biography of Einstein and his Nobel prize presentation speech )
  • Mathematical Genealogy Project
  • MathSciNet Author profile
  • zbMATH entry

Honours ( show )

Honours awarded to Albert Einstein

  • Nobel Prize 1921
  • Fellow of the Royal Society 1921
  • LMS Honorary Member 1924
  • Royal Society Copley Medal 1925
  • Fellow of the Royal Society of Edinburgh 1927
  • AMS Gibbs Lecturer 1934
  • Lunar features Crater Einstein
  • Popular biographies list Number 13

Cross-references ( show )

  • History Topics: A brief history of cosmology
  • History Topics: A history of Quantum Mechanics
  • History Topics: A history of time: 20 th century time
  • History Topics: A visit to James Clerk Maxwell's house
  • History Topics: General relativity
  • History Topics: Greek astronomy
  • History Topics: Light through the ages: Relativity and quantum era
  • History Topics: Newton's bucket
  • History Topics: Orbits and gravitation
  • History Topics: Special relativity
  • History Topics: The development of the 'black hole' concept
  • History Topics: Wave versus matrix mechanics
  • Societies: Brazilian Academy of Sciences
  • Societies: Canadian Mathematical Society
  • Societies: Irish Royal Academy
  • Societies: Israel Academy of Sciences
  • Societies: Kaiser Wilhelm Society
  • Societies: Max Planck Society for Advancement of Science
  • Societies: Pontifical Academy of Sciences
  • Societies: Zurich Scientific Research Society
  • Student Projects: James Clerk Maxwell - The Great Unknown: Chapter 1
  • Student Projects: James Clerk Maxwell - The Great Unknown: Chapter 7
  • Student Projects: James Clerk Maxwell - The Great Unknown: Chapter 8
  • Other: 14th September
  • Other: 1932 ICM - Zurich
  • Other: 2009 Most popular biographies
  • Other: 25th November
  • Other: 29th May
  • Other: 2nd April
  • Other: 4th June
  • Other: 4th May
  • Other: 5th April
  • Other: 9th June
  • Other: Cambridge Individuals
  • Other: Earliest Known Uses of Some of the Words of Mathematics (B)
  • Other: Earliest Known Uses of Some of the Words of Mathematics (E)
  • Other: Earliest Known Uses of Some of the Words of Mathematics (G)
  • Other: Earliest Known Uses of Some of the Words of Mathematics (T)
  • Other: Fellows of the Royal Society of Edinburgh
  • Other: Jeff Miller's postage stamps
  • Other: London Learned Societies
  • Other: London Museums
  • Other: London individuals H-M
  • Other: Most popular biographies – 2024
  • Other: Oxford Institutions and Colleges
  • Other: Oxford individuals
  • Other: Popular biographies 2018
  • Other: The Infinite Universe
  • Other: The Reaches of the Milky Way

Albert Einstein

One of the most influential scientists of the 20 th century, Albert Einstein was a physicist who developed the theory of relativity.

preview for Einstein's Real Role in the Manhattan Project

We may earn commission from links on this page, but we only recommend products we back.

Quick Facts

Early life, family, and education, einstein’s iq, patent clerk, inventions and discoveries, nobel prize in physics, wives and children, travel diaries, becoming a u.s. citizen, einstein and the atomic bomb, time travel and quantum theory, personal life, death and final words, einstein’s brain, einstein in books and movies: "oppenheimer" and more, who was albert einstein.

Albert Einstein was a German mathematician and physicist who developed the special and general theories of relativity. In 1921, he won the Nobel Prize in Physics for his explanation of the photoelectric effect. In the following decade, he immigrated to the United States after being targeted by the German Nazi Party. His work also had a major impact on the development of atomic energy. In his later years, Einstein focused on unified field theory. He died in April 1955 at age 76. With his passion for inquiry, Einstein is generally considered the most influential physicist of the 20 th century.

FULL NAME: Albert Einstein BORN: March 14, 1879 DIED: April 18, 1955 BIRTHPLACE: Ulm, Württemberg, Germany SPOUSES: Mileva Einstein-Maric (1903-1919) and Elsa Einstein (1919-1936) CHILDREN: Lieserl, Hans, and Eduard ASTROLOGICAL SIGN: Pisces

Albert Einstein was born on March 14, 1879, in Ulm, Württemberg, Germany. He grew up in a secular Jewish family. His father, Hermann Einstein, was a salesman and engineer who, with his brother, founded Elektrotechnische Fabrik J. Einstein & Cie, a Munich-based company that mass-produced electrical equipment. Einstein’s mother, the former Pauline Koch, ran the family household. Einstein had one sister, Maja, born two years after him.

Einstein attended elementary school at the Luitpold Gymnasium in Munich. However, he felt alienated there and struggled with the institution’s rigid pedagogical style. He also had what were considered speech challenges. However, he developed a passion for classical music and playing the violin, which would stay with him into his later years. Most significantly, Einstein’s youth was marked by deep inquisitiveness and inquiry.

Toward the end of the 1880s, Max Talmud, a Polish medical student who sometimes dined with the Einstein family, became an informal tutor to young Einstein. Talmud had introduced his pupil to a children’s science text that inspired Einstein to dream about the nature of light. Thus, during his teens, Einstein penned what would be seen as his first major paper, “The Investigation of the State of Aether in Magnetic Fields.”

Hermann relocated the family to Milan, Italy, in the mid-1890s after his business lost out on a major contract. Einstein was left at a relative’s boarding house in Munich to complete his schooling at the Luitpold.

Faced with military duty when he turned of age, Einstein allegedly withdrew from classes, using a doctor’s note to excuse himself and claim nervous exhaustion. With their son rejoining them in Italy, his parents understood Einstein’s perspective but were concerned about his future prospects as a school dropout and draft dodger.

Einstein was eventually able to gain admission into the Swiss Federal Institute of Technology in Zurich, specifically due to his superb mathematics and physics scores on the entrance exam. He was still required to complete his pre-university education first and thus attended a high school in Aarau, Switzerland, helmed by Jost Winteler. Einstein lived with the schoolmaster’s family and fell in love with Winteler’s daughter Marie. Einstein later renounced his German citizenship and became a Swiss citizen at the dawn of the new century.

Einstein’s intelligence quotient was estimated to be around 160, but there are no indications he was ever actually tested.

Psychologist David Wechsler didn’t release the first edition of the WAIS cognitive test, which evolved into the WAIS-IV test commonly used today, until 1955—shortly before Einstein’s death. The maximum score of the current version is 160, with an IQ of 135 or higher ranking in the 99 th percentile.

Magazine columnist Marilyn vos Savant has the highest-ever recorded IQ at 228 and was featured in the Guinness Book of World Records in the late 1980s. However, Guinness discontinued the category because of debates about testing accuracy. According to Parade , individuals believed to have higher IQs than Einstein include Leonardo Da Vinci , Marie Curie , Nikola Tesla , and Nicolaus Copernicus .

After graduating from university, Einstein faced major challenges in terms of finding academic positions, having alienated some professors over not attending class more regularly in lieu of studying independently.

Einstein eventually found steady work in 1902 after receiving a referral for a clerk position in a Swiss patent office. While working at the patent office, Einstein had the time to further explore ideas that had taken hold during his university studies and thus cemented his theorems on what would be known as the principle of relativity.

In 1905—seen by many as a “miracle year” for the theorist—Einstein had four papers published in the Annalen der Physik , one of the best-known physics journals of the era. Two focused on the photoelectric effect and Brownian motion. The two others, which outlined E=MC 2 and the special theory of relativity, were defining for Einstein’s career and the course of the study of physics.

As a physicist, Einstein had many discoveries, but he is perhaps best known for his theory of relativity and the equation E=MC 2 , which foreshadowed the development of atomic power and the atomic bomb.

Theory of Relativity

Einstein first proposed a special theory of relativity in 1905 in his paper “On the Electrodynamics of Moving Bodies,” which took physics in an electrifying new direction. The theory explains that space and time are actually connected, and Einstein called this joint structure space-time.

By November 1915, Einstein completed the general theory of relativity, which accounted for gravity’s relationship to space-time. Einstein considered this theory the culmination of his life research. He was convinced of the merits of general relativity because it allowed for a more accurate prediction of planetary orbits around the sun, which fell short in Isaac Newton ’s theory. It also offered a more expansive, nuanced explanation of how gravitational forces worked.

Einstein’s assertions were affirmed via observations and measurements by British astronomers Sir Frank Dyson and Sir Arthur Eddington during the 1919 solar eclipse, and thus a global science icon was born. Today, the theories of relativity underpin the accuracy of GPS technology, among other phenomena.

Even so, Einstein did make one mistake when developing his general theory, which naturally predicted the universe is either expanding or contracting. Einstein didn’t believe this prediction initially, instead holding onto the belief that the universe was a fixed, static entity. To account for, this he factored in a “cosmological constant” to his equation. His later theories directly contracted this idea and asserted that the universe could be in a state of flux. Then, astronomer Edwin Hubble deduced that we indeed inhabit an expanding universe. Hubble and Einstein met at the Mount Wilson Observatory near Los Angeles in 1931.

Decades after Einstein’s death, in 2018, a team of scientists confirmed one aspect of Einstein’s general theory of relativity: that the light from a star passing close to a black hole would be stretched to longer wavelengths by the overwhelming gravitational field. Tracking star S2, their measurements indicated that the star’s orbital velocity increased to over 25 million kph as it neared the supermassive black hole at the center of the galaxy, its appearance shifting from blue to red as its wavelengths stretched to escape the pull of gravity.

Einstein’s E=MC²

Einstein’s 1905 paper on the matter-energy relationship proposed the equation E=MC²: the energy of a body (E) is equal to the mass (M) of that body times the speed of light squared (C²). This equation suggested that tiny particles of matter could be converted into huge amounts of energy, a discovery that heralded atomic power.

Famed quantum theorist Max Planck backed up the assertions of Einstein, who thus became a star of the lecture circuit and academia, taking on various positions before becoming director of the Kaiser Wilhelm Institute for Physics (today is known as the Max Planck Institute for Physics) from 1917 to 1933.

In 1921, Einstein won the Nobel Prize in Physics for his explanation of the photoelectric effect, since his ideas on relativity were still considered questionable. He wasn’t actually given the award until the following year due to a bureaucratic ruling, and during his acceptance speech, he still opted to speak about relativity.

albert einstein holding his hat next to his wife elsa

Einstein married Mileva Maric on January 6, 1903. While attending school in Zurich, Einstein met Maric, a Serbian physics student. Einstein continued to grow closer to Maric, but his parents were strongly against the relationship due to her ethnic background.

Nonetheless, Einstein continued to see her, with the two developing a correspondence via letters in which he expressed many of his scientific ideas. Einstein’s father passed away in 1902, and the couple married shortly thereafter.

Einstein and Mavic had three children. Their daughter, Lieserl, was born in 1902 before their wedding and might have been later raised by Maric’s relatives or given up for adoption. Her ultimate fate and whereabouts remain a mystery. The couple also had two sons: Hans Albert Einstein, who became a well-known hydraulic engineer, and Eduard “Tete” Einstein, who was diagnosed with schizophrenia as a young man.

The Einsteins’ marriage would not be a happy one, with the two divorcing in 1919 and Maric having an emotional breakdown in connection to the split. Einstein, as part of a settlement, agreed to give Maric any funds he might receive from possibly winning the Nobel Prize in the future.

During his marriage to Maric, Einstein had also begun an affair some time earlier with a cousin, Elsa Löwenthal . The couple wed in 1919, the same year of Einstein’s divorce. He would continue to see other women throughout his second marriage, which ended with Löwenthal’s death in 1936.

In his 40s, Einstein traveled extensively and journaled about his experiences. Some of his unfiltered private thoughts are shared two volumes of The Travel Diaries of Albert Einstein .

The first volume , published in 2018, focuses on his five-and-a-half month trip to the Far East, Palestine, and Spain. The scientist started a sea journey to Japan in Marseille, France, in autumn of 1922, accompanied by his second wife, Elsa. They journeyed through the Suez Canal, then to Sri Lanka, Singapore, Hong Kong, Shanghai, and Japan. The couple returned to Germany via Palestine and Spain in March 1923.

The second volume , released in 2023, covers three months that he spent lecturing and traveling in Argentina, Uruguay, and Brazil in 1925.

The Travel Diaries contain unflattering analyses of the people he came across, including the Chinese, Sri Lankans, and Argentinians, a surprise coming from a man known for vehemently denouncing racism in his later years. In an entry for November 1922, Einstein refers to residents of Hong Kong as “industrious, filthy, lethargic people.”

In 1933, Einstein took on a position at the Institute for Advanced Study in Princeton, New Jersey, where he would spend the rest of his life.

At the time the Nazis, led by Adolf Hitler , were gaining prominence with violent propaganda and vitriol in an impoverished post-World War I Germany. The Nazi Party influenced other scientists to label Einstein’s work “Jewish physics.” Jewish citizens were barred from university work and other official jobs, and Einstein himself was targeted to be killed. Meanwhile, other European scientists also left regions threatened by Germany and immigrated to the United States, with concern over Nazi strategies to create an atomic weapon.

Not long after moving and beginning his career at IAS, Einstein expressed an appreciation for American meritocracy and the opportunities people had for free thought, a stark contrast to his own experiences coming of age. In 1935, Einstein was granted permanent residency in his adopted country and became an American citizen five years later.

In America, Einstein mostly devoted himself to working on a unified field theory, an all-embracing paradigm meant to unify the varied laws of physics. However, during World War II, he worked on Navy-based weapons systems and made big monetary donations to the military by auctioning off manuscripts worth millions.

albert einstein pointing while giving a speech in front of tv microphones

In 1939, Einstein and fellow physicist Leo Szilard wrote to President Franklin D. Roosevelt to alert him of the possibility of a Nazi bomb and to galvanize the United States to create its own nuclear weapons.

The United States would eventually initiate the Manhattan Project , though Einstein wouldn’t take a direct part in its implementation due to his pacifist and socialist affiliations. Einstein was also the recipient of much scrutiny and major distrust from FBI director J. Edgar Hoover . In July 1940, the U.S. Army Intelligence office denied Einstein a security clearance to participate in the project, meaning J. Robert Oppenheimer and the scientists working in Los Alamos were forbidden from consulting with him.

Einstein had no knowledge of the U.S. plan to use atomic bombs in Japan in 1945. When he heard of the first bombing at Hiroshima, he reportedly said, “Ach! The world is not ready for it.”

Einstein became a major player in efforts to curtail usage of the A-bomb. The following year, he and Szilard founded the Emergency Committee of Atomic Scientists, and in 1947, via an essay for The Atlantic Monthly , Einstein espoused working with the United Nations to maintain nuclear weapons as a deterrent to conflict.

After World War II, Einstein continued to work on his unified field theory and key aspects of his general theory of relativity, including time travel, wormholes, black holes, and the origins of the universe.

However, he felt isolated in his endeavors since the majority of his colleagues had begun focusing their attention on quantum theory. In the last decade of his life, Einstein, who had always seen himself as a loner, withdrew even further from any sort of spotlight, preferring to stay close to Princeton and immerse himself in processing ideas with colleagues.

In the late 1940s, Einstein became a member of the National Association for the Advancement of Colored People (NAACP), seeing the parallels between the treatment of Jews in Germany and Black people in the United States. He corresponded with scholar and activist W.E.B. Du Bois as well as performer Paul Robeson and campaigned for civil rights, calling racism a “disease” in a 1946 Lincoln University speech.

Einstein was very particular about his sleep schedule, claiming he needed 10 hours of sleep per day to function well. His theory of relativity allegedly came to him in a dream about cows being electrocuted. He was also known to take regular naps. He is said to have held objects like a spoon or pencil in his hand while falling asleep. That way, he could wake up before hitting the second stage of sleep—a hypnagogic process believed to boost creativity and capture sleep-inspired ideas.

Although sleep was important to Einstein, socks were not. He was famous for refusing to wear them. According to a letter he wrote to future wife Elsa, he stopped wearing them because he was annoyed by his big toe pushing through the material and creating a hole.

albert einstein sticking out his tongue

One of the most recognizable photos of the 20 th century shows Einstein sticking out his tongue while leaving his 72 nd birthday party on March 14, 1951.

According to Discovery.com , Einstein was leaving his party at Princeton when a swarm of reporters and photographers approached and asked him to smile. Tired from doing so all night, he refused and rebelliously stuck his tongue out at the crowd for a moment before turning away. UPI photographer Arthur Sasse captured the shot.

Einstein was amused by the picture and ordered several prints to give to his friends. He also signed a copy of the photo that sold for $125,000 at a 2017 auction.

Einstein died on April 18, 1955, at age 76 at the University Medical Center at Princeton. The previous day, while working on a speech to honor Israel’s seventh anniversary, Einstein suffered an abdominal aortic aneurysm.

He was taken to the hospital for treatment but refused surgery, believing that he had lived his life and was content to accept his fate. “I want to go when I want,” he stated at the time. “It is tasteless to prolong life artificially. I have done my share, it is time to go. I will do it elegantly.”

According to the BBC, Einstein muttered a few words in German at the moment of his death. However, the nurse on duty didn’t speak German so their translation was lost forever.

In a 2014 interview , Life magazine photographer Ralph Morse said the hospital was swarmed by journalists, photographers, and onlookers once word of Einstein’s death spread. Morse decided to travel to Einstein’s office at the Institute for Advanced Studies, offering the superintendent alcohol to gain access. He was able to photograph the office just as Einstein left it.

After an autopsy, Einstein’s corpse was moved to a Princeton funeral home later that afternoon and then taken to Trenton, New Jersey, for a cremation ceremony. Morse said he was the only photographer present for the cremation, but Life managing editor Ed Thompson decided not to publish an exclusive story at the request of Einstein’s son Hans.

During Einstein’s autopsy, pathologist Thomas Stoltz Harvey had removed his brain, reportedly without his family’s consent, for preservation and future study by doctors of neuroscience.

However, during his life, Einstein participated in brain studies, and at least one biography claimed he hoped researchers would study his brain after he died. Einstein’s brain is now located at the Princeton University Medical Center. In keeping with his wishes, the rest of his body was cremated and the ashes scattered in a secret location.

In 1999, Canadian scientists who were studying Einstein’s brain found that his inferior parietal lobe, the area that processes spatial relationships, 3D-visualization, and mathematical thought, was 15 percent wider than in people who possess normal intelligence. According to The New York Times , the researchers believe it might help explain why Einstein was so intelligent.

In 2011, the Mütter Museum in Philadelphia received thin slices of Einstein’s brain from Dr. Lucy Rorke-Adams, a neuropathologist at the Children’s Hospital of Philadelphia, and put them on display. Rorke-Adams said she received the brain slides from Harvey.

Since Einstein’s death, a veritable mountain of books have been written on the iconic thinker’s life, including Einstein: His Life and Universe by Walter Isaacson and Einstein: A Biography by Jürgen Neffe, both from 2007. Einstein’s own words are presented in the collection The World As I See It .

Einstein has also been portrayed on screen. Michael Emil played a character called “The Professor,” clearly based on Einstein, in the 1985 film Insignificance —in which alternate versions of Einstein, Marilyn Monroe , Joe DiMaggio , and Joseph McCarthy cross paths in a New York City hotel.

Walter Matthau portrayed Einstein in the fictional 1994 comedy I.Q. , in which he plays matchmaker for his niece played by Meg Ryan . Einstein was also a character in the obscure comedy films I Killed Einstein, Gentlemen (1970) and Young Einstein (1988).

A much more historically accurate depiction of Einstein came in 2017, when he was the subject of the first season of Genius , a 10-part scripted miniseries by National Geographic. Johnny Flynn played a younger version of the scientist, while Geoffrey Rush portrayed Einstein in his later years after he had fled Germany. Ron Howard was the director.

Tom Conti plays Einstein in the 2023 biopic Oppenheimer , directed by Christopher Nolan and starring Cillian Murphy as scientist J. Robert Oppenheimer during his involvement with the Manhattan Project.

  • The world is a dangerous place to live; not because of the people who are evil, but because of the people who don’t do anything about it.
  • A question that sometimes drives me hazy: Am I or are the others crazy?
  • A person who never made a mistake never tried anything new.
  • Logic will get you from A to B. Imagination will take you everywhere.
  • I want to go when I want. It is tasteless to prolong life artificially. I have done my share, it is time to go. I will do it elegantly.
  • If you can’t explain it simply, you don’t understand it well enough.
  • Nature shows us only the tail of the lion. But there is no doubt in my mind that the lion belongs with it even if he cannot reveal himself to the eye all at once because of his huge dimension. We see him only the way a louse sitting upon him would.
  • [T]he distinction between past, present, and future is only an illusion, however persistent.
  • Living in this “great age,” it is hard to understand that we belong to this mad, degenerate species, which imputes free will to itself. If only there were somewhere an island for the benevolent and the prudent! Then also I would want to be an ardent patriot.
  • I, at any rate, am convinced that He [God] is not playing at dice.
  • How strange is the lot of us mortals! Each of us is here for a brief sojourn; for what purpose he knows not, though he sometimes thinks he senses it.
  • I regard class differences as contrary to justice and, in the last resort, based on force.
  • I have never looked upon ease and happiness as ends in themselves—this critical basis I call the ideal of a pigsty. The ideals that have lighted my way, and time after time have given me new courage to face life cheerfully, have been Kindness, Beauty, and Truth.
  • My political ideal is democracy. Let every man be respected as an individual and no man idolized. It is an irony of fate that I myself have been the recipient of excessive admiration and reverence from my fellow-beings, through no fault and no merit of my own.
  • The most beautiful experience we can have is the mysterious. It is the fundamental emotion that stands at the cradle of true art and true science. Whoever does not know it and can no longer wonder, no longer marvel, is as good as dead, and his eyes are dimmed.
  • An autocratic system of coercion, in my opinion, soon degenerates. For force always attracts men of low morality, and I believe it to be an invariable rule that tyrants of genius are succeeded by scoundrels.
  • My passionate interest in social justice and social responsibility has always stood in curious contrast to a marked lack of desire for direct association with men and women. I am a horse for single harness, not cut out for tandem or team work. I have never belonged wholeheartedly to country or state, to my circle of friends, or even to my own family.
  • Everybody is a genius.
Fact Check: We strive for accuracy and fairness. If you see something that doesn’t look right, contact us !

Headshot of Biography.com Editors

The Biography.com staff is a team of people-obsessed and news-hungry editors with decades of collective experience. We have worked as daily newspaper reporters, major national magazine editors, and as editors-in-chief of regional media publications. Among our ranks are book authors and award-winning journalists. Our staff also works with freelance writers, researchers, and other contributors to produce the smart, compelling profiles and articles you see on our site. To meet the team, visit our About Us page: https://www.biography.com/about/a43602329/about-us

Headshot of Tyler Piccotti

Tyler Piccotti joined the Biography.com staff in 2023, and before that had worked almost eight years as a newspaper reporter and copy editor. He is a graduate of Syracuse University, an avid sports fan, a frequent moviegoer, and trivia buff.

Nobel Prize Winners

frida kahlo sits on a table while wearing a floral head piece, large earrings, a plaid blouse and striped pants, she looks off to the right

Marie Curie

martin luther king jr

Martin Luther King Jr.

henry kissinger smiles at the camera, he wears a black suit with a black bowtie and a white collared shirt, he holds onto a cane while standing in a room

Henry Kissinger

malala yousafzai posing for a photo at a film screening red carpet

Malala Yousafzai

jimmy carter

Jimmy Carter

maya angelou wearing a red dress and gesturing with her hands as she reads poetry at a podium

10 Famous Poets Whose Enduring Works We Still Read

stephen hawking smiles at the camera while sitting in his wheelchair in front of a green chalkboard with written equations, he wears a dark suit jacket and blue collared shirt with white pinstripes

22 Famous Scientists You Should Know

wole soyinka

Wole Soyinka

jean paul sartre

Jean-Paul Sartre

albert camus

Albert Camus

barack obama smiles at the camera with his arms crossed, he is wearing a dark navy suit coat, white collared shirt, blue tied with white polka dots, and an american flag pin on his lap, behind him are sienna curtains, an american flag, and a flag with the presidential seal

Barack Obama

Biography: Albert Einstein

  • Famous Inventions
  • Famous Inventors
  • Patents & Trademarks
  • Invention Timelines
  • Computers & The Internet
  • American History
  • African American History
  • African History
  • Ancient History and Culture
  • Asian History
  • European History
  • Latin American History
  • Medieval & Renaissance History
  • Military History
  • The 20th Century
  • Women's History

Legendary scientist Albert Einstein (1879 - 1955) first gained worldwide prominence in 1919 after British astronomers verified predictions of Einstein's general theory of relativity through measurements taken during a total eclipse. Einstein's theories expanded upon universal laws formulated by physicist Isaac Newton in the late seventeenth century.

Before E=MC2

Einstein was born in Germany in 1879. Growing up, he enjoyed classical music and played the violin. One story Einstein liked to tell about his childhood was when he came across a magnetic compass. The needle's invariable northward swing, guided by an invisible force, profoundly impressed him as a child. The compass convinced him that there had to be "something behind things, something deeply hidden."

Even as a small boy Einstein was self-sufficient and thoughtful. According to one account, he was a slow talker, often pausing to consider what he would say next. His sister would recount the concentration and perseverance with which he would build houses of cards.

Einstein's first job was that of patent clerk. In 1933, he joined the staff of the newly created Institute for Advanced Study in Princeton, New Jersey. He accepted this position for life, and lived there until his death. Einstein is probably familiar to most people for his mathematical equation about the nature of energy, E = MC2.

E = MC2, Light and Heat

The formula E=MC2 is probably the most famous calculation from Einstein's special theory of relativity . The formula basically states that energy (E) equals mass (m) times the speed of light (c) squared (2). In essence, it means mass is just one form of energy. Since the speed of light squared is an enormous number, a small amount of mass can be converted to a phenomenal amount of energy. Or if there's a lot of energy available, some energy can be converted to mass and a new particle can be created. Nuclear reactors, for instance, work because nuclear reactions convert small amounts of mass into large amounts of energy.

Einstein wrote a paper based on the new understanding of the structure of light. He argued that light can act as though it consists of discrete, independent particles of energy similar to particles of a gas. A few years before, Max Planck's work had contained the first suggestion of discrete particles in energy. Einstein went far beyond this though and his revolutionary proposal seemed to contradict the universally accepted theory that light consists of smoothly oscillating electromagnetic waves. Einstein showed that light quanta, as he called the particles of energy, could help to explain phenomena being studied by experimental physicists. For example, he explained how light ejects electrons from metals.

While there was a well-known kinetic energy theory that explained heat as an effect of the ceaseless motion of atoms, it was Einstein who proposed a way to put the theory to a new and crucial experimental test. If tiny but visible particles were suspended in a liquid, he argued, the irregular bombardment by the liquid's invisible atoms should cause the suspended particles to move in a random jittering pattern. This should be observable through a microscope. If the predicted motion is not seen, the whole kinetic theory would be in grave danger. But such a random dance of microscopic particles had long since been observed. With the motion demonstrated in detail, Einstein had reinforced the kinetic theory and created a powerful new tool for studying the movement of atoms.

  • The Life and Work of Albert Einstein
  • Kinetic Molecular Theory of Gases
  • Einstein's Theory of Relativity
  • What Is a Photon in Physics?
  • Introduction to the Major Laws of Physics
  • Fundamental Physical Constants
  • Quantum Physics Overview
  • Top 10 Weird but Cool Physics Ideas
  • 10 Things You Don't Know About Albert Einstein
  • Topics Typically Covered in Grade 11 Chemistry
  • Wave Particle Duality and How It Works
  • The Physics of a Car Collision
  • An Introduction to Black Holes
  • An Introduction to Brownian Motion
  • Albert Einstein Printables
  • Newton's Law of Gravity

albert einstein biography shqip

  • History Classics
  • Your Profile
  • Find History on Facebook (Opens in a new window)
  • Find History on Twitter (Opens in a new window)
  • Find History on YouTube (Opens in a new window)
  • Find History on Instagram (Opens in a new window)
  • Find History on TikTok (Opens in a new window)
  • This Day In History
  • History Podcasts
  • History Vault

Albert Einstein

By: History.com Editors

Updated: May 16, 2019 | Original: October 27, 2009

Albert EinsteinPortrait of physicist Albert Einstein, sitting at a table holding a pipe, circa 1933. (Photo by Lambert/Keystone/Getty Images)

The German-born physicist Albert Einstein developed the first of his groundbreaking theories while working as a clerk in the Swiss patent office in Bern. After making his name with four scientific articles published in 1905, he went on to win worldwide fame for his general theory of relativity and a Nobel Prize in 1921 for his explanation of the phenomenon known as the photoelectric effect. An outspoken pacifist who was publicly identified with the Zionist movement, Einstein emigrated from Germany to the United States when the Nazis took power before World War II. He lived and worked in Princeton, New Jersey, for the remainder of his life.

Einstein’s Early Life (1879-1904)

Born on March 14, 1879, in the southern German city of Ulm, Albert Einstein grew up in a middle-class Jewish family in Munich. As a child, Einstein became fascinated by music (he played the violin), mathematics and science. He dropped out of school in 1894 and moved to Switzerland, where he resumed his schooling and later gained admission to the Swiss Federal Polytechnic Institute in Zurich. In 1896, he renounced his German citizenship, and remained officially stateless before becoming a Swiss citizen in 1901.

Did you know? Almost immediately after Albert Einstein learned of the atomic bomb's use in Japan, he became an advocate for nuclear disarmament. He formed the Emergency Committee of Atomic Scientists and backed Manhattan Project scientist J. Robert Oppenheimer in his opposition to the hydrogen bomb.

While at Zurich Polytechnic, Einstein fell in love with his fellow student Mileva Maric, but his parents opposed the match and he lacked the money to marry. The couple had an illegitimate daughter, Lieserl, born in early 1902, of whom little is known. After finding a position as a clerk at the Swiss patent office in Bern, Einstein married Maric in 1903; they would have two more children, Hans Albert (born 1904) and Eduard (born 1910).

Einstein’s Miracle Year (1905)

While working at the patent office, Einstein did some of the most creative work of his life, producing no fewer than four groundbreaking articles in 1905 alone. In the first paper, he applied the quantum theory (developed by German physicist Max Planck) to light in order to explain the phenomenon known as the photoelectric effect, by which a material will emit electrically charged particles when hit by light. The second article contained Einstein’s experimental proof of the existence of atoms, which he got by analyzing the phenomenon of Brownian motion, in which tiny particles were suspended in water.

In the third and most famous article, titled “On the Electrodynamics of Moving Bodies,” Einstein confronted the apparent contradiction between two principal theories of physics: Isaac Newton’s concepts of absolute space and time and James Clerk Maxwell’s idea that the speed of light was a constant. To do this, Einstein introduced his special theory of relativity, which held that the laws of physics are the same even for objects moving in different inertial frames (i.e. at constant speeds relative to each other), and that the speed of light is a constant in all inertial frames. A fourth paper concerned the fundamental relationship between mass and energy, concepts viewed previously as completely separate. Einstein’s famous equation E = mc2 (where “c” was the constant speed of light) expressed this relationship.

From Zurich to Berlin (1906-1932)

Einstein continued working at the patent office until 1909, when he finally found a full-time academic post at the University of Zurich. In 1913, he arrived at the University of Berlin, where he was made director of the Kaiser Wilhelm Institute for Physics. The move coincided with the beginning of Einstein’s romantic relationship with a cousin of his, Elsa Lowenthal, whom he would eventually marry after divorcing Mileva. In 1915, Einstein published the general theory of relativity, which he considered his masterwork. This theory found that gravity, as well as motion, can affect time and space. According to Einstein’s equivalence principle–which held that gravity’s pull in one direction is equivalent to an acceleration of speed in the opposite direction–if light is bent by acceleration, it must also be bent by gravity. In 1919, two expeditions sent to perform experiments during a solar eclipse found that light rays from distant stars were deflected or bent by the gravity of the sun in just the way Einstein had predicted.

The general theory of relativity was the first major theory of gravity since Newton’s, more than 250 years before, and the results made a tremendous splash worldwide, with the London Times proclaiming a “Revolution in Science” and a “New Theory of the Universe.” Einstein began touring the world, speaking in front of crowds of thousands in the United States, Britain, France and Japan. In 1921, he won the Nobel Prize for his work on the photoelectric effect, as his work on relativity remained controversial at the time. Einstein soon began building on his theories to form a new science of cosmology, which held that the universe was dynamic instead of static, and was capable of expanding and contracting.

Einstein Moves to the United States (1933-39)

A longtime pacifist and a Jew, Einstein became the target of hostility in Weimar Germany, where many citizens were suffering plummeting economic fortunes in the aftermath of defeat in the Great War. In December 1932, a month before Adolf Hitler became chancellor of Germany, Einstein made the decision to emigrate to the United States, where he took a position at the newly founded Institute for Advanced Study in Princeton, New Jersey . He would never again enter the country of his birth.

By the time Einstein’s wife Elsa died in 1936, he had been involved for more than a decade with his efforts to find a unified field theory, which would incorporate all the laws of the universe, and those of physics, into a single framework. In the process, Einstein became increasingly isolated from many of his colleagues, who were focused mainly on the quantum theory and its implications, rather than on relativity.

Einstein’s Later Life (1939-1955)

In the late 1930s, Einstein’s theories, including his equation E=mc2, helped form the basis of the development of the atomic bomb. In 1939, at the urging of the Hungarian physicist Leo Szilard, Einstein wrote to President Franklin D. Roosevelt advising him to approve funding for the development of uranium before Germany could gain the upper hand. Einstein, who became a U.S. citizen in 1940 but retained his Swiss citizenship, was never asked to participate in the resulting Manhattan Project , as the U.S. government suspected his socialist and pacifist views. In 1952, Einstein declined an offer extended by David Ben-Gurion, Israel’s premier, to become president of Israel .

Throughout the last years of his life, Einstein continued his quest for a unified field theory. Though he published an article on the theory in Scientific American in 1950, it remained unfinished when he died, of an aortic aneurysm, five years later. In the decades following his death, Einstein’s reputation and stature in the world of physics only grew, as physicists began to unravel the mystery of the so-called “strong force” (the missing piece of his unified field theory) and space satellites further verified the principles of his cosmology.

albert einstein biography shqip

HISTORY Vault: Secrets of Einstein's Brain

Originally stolen by the doctor trusted to perform his autopsy, scientists over the decades have examined the brain of Albert Einstein to try and determine what made this seemingly normal man tick.

albert einstein biography shqip

Sign up for Inside History

Get HISTORY’s most fascinating stories delivered to your inbox three times a week.

By submitting your information, you agree to receive emails from HISTORY and A+E Networks. You can opt out at any time. You must be 16 years or older and a resident of the United States.

More details : Privacy Notice | Terms of Use | Contact Us

Culture History

Albert Einstein

albert einstein biography shqip

Albert Einstein (1879-1955) was a renowned theoretical physicist, best known for developing the theory of relativity, which revolutionized our understanding of space, time, and gravity. He was awarded the Nobel Prize in Physics in 1921 for his explanation of the photoelectric effect. Einstein’s work laid the foundation for many advancements in modern physics.

Early Life and Education

Albert Einstein’s early life and education laid the foundation for a revolutionary career in physics. Born on March 14, 1879, in the city of Ulm in the Kingdom of Württemberg, which was part of the German Empire, Einstein was the first child of Hermann and Pauline Einstein. His father, a salesman and engineer, and his mother, a homemaker, provided a modest yet supportive environment for their son’s intellectual development.

Einstein’s early years were marked by curiosity and a fascination with the mysteries of the natural world. He showed an early interest in mathematics and began to explore the subject on his own. The family’s move to Munich in 1880 coincided with the start of Einstein’s formal education. At the age of six, he entered the Luitpold Gymnasium, a Catholic elementary school, where his unconventional behavior and independent thinking sometimes clashed with the traditional educational methods.

Einstein’s teachers noted his exceptional mathematical abilities, but his rebellious spirit and refusal to conform to authority created a challenging academic environment. Frustrated by the rigid structure of the school, Einstein often clashed with his teachers, earning a reputation as a nonconformist. His dissatisfaction with the educational system ultimately led his parents to consider removing him from the Gymnasium.

In 1889, Einstein’s family faced a significant change with the relocation to Italy due to financial challenges. While his parents and sister settled in Pavia, Albert remained in Munich to complete his education. At the age of 15, Einstein applied to the Swiss Federal Institute of Technology (ETH) in Zurich, seeking admission to the prestigious institution. Despite excelling in mathematics and physics, he failed the entrance exam, and his application was rejected.

Undeterred, Einstein enrolled in the Swiss Cantonal School in Aarau, Switzerland, to complete his secondary education. Under the guidance of Jost Winteler, a supportive and understanding teacher, Einstein thrived in this new environment. He immersed himself in his studies, delving into advanced topics in mathematics and physics. It was during this period that Einstein developed a deep appreciation for the works of classical physicists, including Isaac Newton and James Clerk Maxwell .

In 1896, Einstein graduated from the Swiss Cantonal School with excellent grades, earning his diploma. His success paved the way for his acceptance into the ETH Zurich, where he pursued his passion for physics. Einstein’s time at the ETH marked a crucial phase in his intellectual development. He studied under renowned physicists such as Heinrich Friedrich Weber and Hermann Minkowski, delving into the latest advancements in theoretical physics.

While at the ETH, Einstein faced financial challenges, often struggling to make ends meet. He earned money by tutoring classmates and discovered a passion for teaching. Despite the financial hardships, his dedication to his studies remained unwavering. In 1900, Einstein graduated from the ETH with a teaching diploma in physics and mathematics.

After completing his formal education, Einstein faced the challenge of entering the professional world. His initial attempts to secure a university position were unsuccessful, leading him to accept a position as a technical assistant at the Swiss Patent Office in Bern in 1902. The patent office provided a stable income for Einstein, allowing him to marry Mileva Maric, a fellow student from the ETH, in 1903. The couple had two sons, Hans Albert and Eduard.

While working at the patent office, Einstein continued to explore his scientific interests during his free time. He published several scientific papers, including his groundbreaking work on the photoelectric effect in 1905, which laid the foundation for the concept of photons and earned him a Ph.D. from the University of Zurich. This period, often referred to as Einstein’s “miracle year,” saw the publication of four influential papers that had a profound impact on various branches of physics.

Einstein’s success in 1905 marked a turning point in his career. Recognizing his contributions, the scientific community began to take notice of the young physicist. In 1908, he was appointed as a lecturer at the University of Bern. This marked the beginning of his transition from the patent office to an academic career.

As Einstein’s reputation grew, so did his opportunities. In 1911, he accepted a position as a professor at the German University in Prague. His time in Prague was productive, leading to further advancements in his theoretical work. However, in 1912, he returned to Switzerland, accepting a position at the ETH Zurich, where he had once been a student.

Einstein’s journey from a rebellious schoolboy in Munich to a renowned physicist at the ETH Zurich showcased not only his intellectual prowess but also his resilience in the face of challenges. His early life and education set the stage for the remarkable scientific contributions that would follow, forever changing our understanding of the universe.

Special Theory of Relativity

Albert Einstein’s Special Theory of Relativity, published in 1905, stands as one of the most revolutionary achievements in the history of physics . Building on the foundation laid by Isaac Newton’s classical mechanics, Einstein’s theory introduced profound changes to our understanding of space, time, and the nature of the universe.

At the heart of the Special Theory of Relativity is the principle of relativity itself. Einstein proposed that the laws of physics are the same for all observers in uniform motion, regardless of their relative velocities. This concept challenged the classical notion of absolute space and time, as described by Newtonian physics. Instead, Einstein proposed a new framework in which the laws of physics are consistent for all observers, regardless of their state of motion.

One of the most iconic consequences of the theory is the equivalence of mass and energy, expressed by the famous equation E=mc². This equation states that energy (E) is proportional to mass (m) and is equivalent to the speed of light (c) squared. The realization that mass could be converted into energy and vice versa had profound implications for our understanding of the physical world. It laid the groundwork for advancements in nuclear physics and played a crucial role in the development of nuclear energy.

The theory also introduced a novel perspective on space and time, merging them into a single entity known as spacetime. According to Special Relativity, space and time are interconnected, and the fabric of spacetime can be curved by the presence of mass and energy. This concept set the stage for Einstein’s later development of the General Theory of Relativity, which extended the principles of Special Relativity to include gravity.

One of the key postulates of Special Relativity is the constancy of the speed of light in a vacuum. Einstein proposed that the speed of light is the same for all observers, regardless of their relative motion. This departure from classical physics was experimentally confirmed by the famous Michelson-Morley experiment, which aimed to detect variations in the speed of light due to the Earth’s motion through space. The experiment’s results supported Einstein’s theory and led to a fundamental shift in our understanding of the nature of light and motion.

Special Relativity also introduced the concept of time dilation, a phenomenon in which time appears to pass more slowly for an observer in motion relative to a stationary observer. This effect becomes significant at speeds approaching the speed of light and has been experimentally verified through measurements of particles moving at high velocities.

Einstein’s Special Theory of Relativity not only reshaped the foundations of physics but also had broader implications for philosophy and our conception of reality. It challenged classical notions of absolute space and time, paving the way for a more nuanced understanding of the dynamic relationship between matter, energy, space, and time.

The profound impact of Special Relativity continues to be felt today. Its principles are integrated into the framework of modern physics, influencing a wide range of scientific disciplines, from particle physics to cosmology. Einstein’s ability to question fundamental assumptions and propose groundbreaking ideas in 1905 has left an enduring legacy, shaping the trajectory of scientific inquiry and expanding our comprehension of the universe.

Nobel Prize in Physics (1921)

Albert Einstein was awarded the Nobel Prize in Physics in 1921, marking a significant recognition of his groundbreaking contributions to theoretical physics. However, the circumstances surrounding the prize and its specific focus highlight the complex relationship between Einstein and the scientific establishment of the time.

The Nobel Prize in Physics for 1921 was awarded to Albert Einstein “for his services to Theoretical Physics, and especially for his discovery of the law of the photoelectric effect.” The photoelectric effect, a phenomenon where light falling on a material surface ejects electrons from it, had been a subject of scientific inquiry for many years. Einstein’s work on the photoelectric effect, published in 1905, provided a theoretical framework that not only explained the experimental observations but also laid the foundation for the concept of photons—particles of light.

Einstein’s explanation of the photoelectric effect departed from classical wave theory, proposing that light is quantized and composed of discrete packets of energy, or quanta. Each quantum of light (later termed a photon) carries energy proportional to its frequency. This groundbreaking idea, combined with his equation E=hf (where E is energy, h is Planck’s constant, and f is frequency), revolutionized the understanding of light and paved the way for the development of quantum theory.

The choice of the photoelectric effect for the Nobel Prize was not without controversy. At the time, Einstein’s theories were still gaining acceptance within the scientific community. Some physicists, notably Max Planck , had embraced the quantum nature of light, but others were hesitant to fully embrace these revolutionary ideas. The Nobel Committee’s decision to recognize Einstein’s work on the photoelectric effect rather than his more famous theories of special and general relativity reflected a certain caution within the scientific establishment.

Einstein himself had reservations about the Nobel Committee’s choice. In his acceptance speech, he acknowledged the award but expressed his hope that future Nobel Prizes would be awarded for achievements in relativity theory. The decision to focus on the photoelectric effect instead of relativity may have been influenced by a desire to avoid controversies surrounding the acceptance of the more radical aspects of Einstein’s work at that time.

The recognition of the photoelectric effect in 1921 marked a turning point in Einstein’s relationship with the scientific community. While he had faced skepticism and resistance to his ideas, the Nobel Prize provided a measure of validation for his contributions to theoretical physics. It also brought him greater visibility on the international stage.

The impact of Einstein’s work on the photoelectric effect extended far beyond the Nobel Prize. The development of quantum theory, influenced by his ideas, became a cornerstone of modern physics. The photoelectric effect played a crucial role in the experimental verification of quantum principles, providing empirical support for the concept of quantized energy levels.

Emigration to the United States

Albert Einstein’s emigration to the United States in 1933 marked a significant chapter in his life, shaped by a combination of personal and political factors. Fleeing the rising Nazi regime in Germany, Einstein sought refuge in America, where he would continue his scientific work, contribute to academia, and become an influential public figure.

As Adolf Hitler and the National Socialist Party gained power in Germany, Einstein, who was of Jewish heritage and known for his outspoken views, became a target of increasing persecution. The Nazi regime’s anti-Semitic policies and restrictions on intellectuals compelled Einstein to reassess his situation. His opposition to authoritarianism, coupled with concerns for his safety, prompted him to make the difficult decision to leave his homeland.

In March 1933, Einstein and his wife, Elsa, left Germany for Belgium, where they briefly resided before continuing to the United States. At the time, Einstein was a professor at the Kaiser Wilhelm Institute for Physics in Berlin. The decision to abandon his position and the academic environment he had contributed to for many years underscored the urgency and gravity of the situation.

Einstein’s emigration to the United States was facilitated by the Institute for Advanced Study (IAS) in Princeton, New Jersey. In 1932, he had accepted an offer to join the IAS as a resident professor, which provided him with an academic home and a haven from the political turmoil in Europe. The IAS, founded by philanthropists Louis Bamberger and Caroline Bamberger Fuld, became a refuge for scholars fleeing persecution.

Upon arriving in the United States, Einstein settled into his new role at the IAS and began an era of scientific productivity. He continued his theoretical work, collaborating with other prominent physicists at the institute. Princeton offered him not only a sanctuary from political unrest but also a vibrant intellectual community that fueled his scientific endeavors.

Einstein’s presence in the United States also had a profound impact on the American scientific landscape. He became a sought-after figure in both academic and public circles, lending his support to various causes. His emigration coincided with the increasing awareness of the threat posed by fascist ideologies, and Einstein’s advocacy for democracy, pacifism, and civil rights resonated with many.

In addition to his scientific pursuits, Einstein embraced a more public role in American society. He became involved in political and social issues, speaking out against racism and discrimination. Einstein’s commitment to civil rights was reflected in his association with the NAACP (National Association for the Advancement of Colored People), where he collaborated with activists such as W.E.B. Du Bois. His support for Zionism and the establishment of a Jewish homeland in Palestine also became part of his public discourse.

Einstein’s emigration to the United States not only allowed him to escape the immediate dangers of Nazi persecution but also provided him with a platform to influence the course of history. His contributions extended beyond the realm of theoretical physics to encompass broader issues of social justice, human rights, and global peace.

The United States, in turn, benefited greatly from Einstein’s presence. His work at the IAS and his engagement with American society left an indelible mark, contributing to the country’s scientific and cultural landscape. Einstein’s emigration underscored the complex interplay between personal circumstances, political upheaval, and the enduring impact of a brilliant mind on the world stage.

World War II and Manhattan Project

World War II and the Manhattan Project represent a crucial period in the life of Albert Einstein and his indirect involvement in the development of nuclear weapons. While Einstein did not directly participate in the Manhattan Project, his contributions to the field of theoretical physics laid the groundwork for the scientific understanding that made the project possible.

As World War II unfolded, the scientific community became increasingly aware of the potential for harnessing atomic energy for destructive purposes. In 1939, physicists Leo Szilard and Eugene Wigner, both refugees from Europe, approached Einstein with concerns about the possibility of Nazi Germany developing atomic weapons. Recognizing the grave implications, they urged Einstein to write a letter to President Franklin D. Roosevelt, urging the United States to initiate its own atomic research.

Einstein, along with physicist Leó Szilárd, drafted a letter to President Roosevelt in August 1939. This letter emphasized the theoretical possibility of atomic bombs and the urgency of American efforts to develop this technology. Einstein’s prestige and global reputation lent significant weight to the appeal. This letter, often referred to as the Einstein-Szilárd letter, played a pivotal role in the establishment of the Manhattan Project.

The Manhattan Project, officially initiated in 1942, was a top-secret research and development project aimed at producing nuclear weapons. The project brought together some of the world’s leading physicists, including J. Robert Oppenheimer, Enrico Fermi, and Richard Feynman, to work on the complexities of nuclear fission and the construction of atomic bombs.

Despite his initial advocacy for nuclear research in the face of Nazi threats, Einstein did not play a direct role in the Manhattan Project. The U.S. government, considering him a security risk due to his outspoken political views and associations with leftist causes, did not involve him in the classified research efforts. Instead, Einstein continued his academic work at Princeton and remained on the periphery of the project.

Einstein’s indirect involvement in the Manhattan Project became a source of internal conflict for him. While he initially supported the idea of nuclear research as a deterrent against Nazi aggression, he later became increasingly uneasy about the destructive potential of atomic weapons. Einstein’s commitment to pacifism and his desire for global disarmament clashed with the realization that the very scientific principles he had helped establish were being used to create immensely powerful and destructive weapons.

Following the successful test of the first atomic bomb in July 1945, Einstein’s concerns deepened. The bombings of Hiroshima and Nagasaki in August 1945, which played a decisive role in ending World War II, further fueled his unease. Einstein, grappling with the ethical implications of his earlier involvement, became an advocate for peace and disarmament in the post-war era.

Einstein’s reflections on the consequences of atomic weapons were encapsulated in his famous remark: “The release of atomic energy has not created a new problem. It has merely made more urgent the necessity of solving an existing one.” In the aftermath of World War II, Einstein devoted considerable effort to promoting nuclear disarmament and advocating for peaceful coexistence.

The juxtaposition of Einstein’s early support for atomic research, driven by fears of Nazi Germany, and his later advocacy for disarmament underscored the moral dilemmas associated with scientific advancements during times of war. While Einstein’s scientific contributions were instrumental in shaping the theoretical foundations of the atomic bomb, his later reflections reflected a deep concern for the ethical implications of the use of nuclear weapons and the imperative of preventing their catastrophic consequences.

Civil Rights Advocacy

Albert Einstein’s advocacy for civil rights in the United States was a defining aspect of his public persona during the mid-20th century. Emigrating to the U.S. in 1933 to escape Nazi persecution, Einstein, who was of Jewish heritage, became increasingly aware of racial injustice and discrimination prevalent in his new homeland. Throughout his life, he used his platform and influence to champion civil rights, leaving a lasting impact on the struggle for racial equality.

Einstein’s engagement with civil rights issues can be traced back to the 1930s when he became increasingly disturbed by the racial segregation and discrimination faced by African Americans. His experiences with racism in the United States, combined with his commitment to principles of justice and equality, prompted him to take a stand against racial injustice.

In 1937, Einstein accepted an invitation to join the American Crusade to End Lynching, a campaign aimed at raising awareness and mobilizing public opinion against the horrific practice of racial violence in the form of lynchings. Einstein’s involvement brought attention to the cause and underscored the need for collective action to combat racial hatred.

As the civil rights movement gained momentum in the 1950s and 1960s, Einstein’s commitment to the cause deepened. He developed a friendship and collaboration with prominent African American civil rights leader W.E.B. Du Bois, supporting the NAACP (National Association for the Advancement of Colored People) and contributing financially to the organization’s efforts to fight racial discrimination.

Einstein’s association with the NAACP included serving on the board of directors and using his influential voice to advocate for equal rights. He spoke out against segregation and racial discrimination, emphasizing the importance of addressing systemic inequalities. Einstein believed that racism was not only a moral injustice but also an impediment to the progress and unity of the nation.

One of Einstein’s notable contributions to the civil rights movement was his critique of segregation in the southern United States. In 1946, he delivered a commencement address at Lincoln University in Pennsylvania, becoming the first white person to receive an honorary degree from the historically Black university. In his speech, Einstein condemned racial segregation, calling it a “disease of white people,” and expressed his hope for a future of racial harmony.

Einstein’s commitment to civil rights extended beyond public statements. He corresponded with political leaders and engaged in dialogue with fellow intellectuals on the need for social change. In 1948, he wrote a letter to the then-President of the United States, Harry S. Truman, urging him to take a stand against racism and lynching.

While Einstein’s involvement in civil rights advocacy was primarily focused on racial issues, he also expressed concern for broader social justice causes. He was an advocate for pacifism, disarmament, and international cooperation, reflecting his deep commitment to building a more just and peaceful world.

Albert Einstein’s legacy as a civil rights advocate transcends his contributions to science. His willingness to use his platform to challenge racial injustice demonstrated the power of prominent figures to influence societal attitudes and policies. Einstein’s commitment to civil rights continues to inspire those who recognize the importance of using one’s influence to combat discrimination and promote equality in all its forms.

Personal Life and Family

Albert Einstein’s personal life and family played a significant role in shaping the experiences and perspectives of one of the most iconic figures in the history of science. Beyond his groundbreaking work in theoretical physics, Einstein’s relationships, marriages, and family dynamics offer glimpses into the private life of a complex and multifaceted individual.

Einstein’s first marriage was to Mileva Maric, a fellow student at the Swiss Federal Institute of Technology in Zurich. The couple married in 1903 and had two sons, Hans Albert and Eduard. Mileva, herself a physicist, collaborated with Einstein on scientific work during the early years of their marriage. However, the relationship faced challenges, both personal and professional. The demands of Einstein’s career and the strain of a troubled marriage eventually led to their separation in 1914 and divorce in 1919.

Einstein’s relationship with his two sons was marked by the complexities of his professional commitments and the upheavals of the time. Hans Albert, the elder son, pursued a career in hydraulic engineering. Eduard, the younger son, faced mental health challenges, and his struggles had a profound impact on the family. Einstein, despite his global fame and intellectual pursuits, navigated the intricate balance between his public life and personal responsibilities.

In 1919, the same year as his divorce from Mileva, Einstein remarried. His second wife was Elsa Löwenthal, a cousin on his maternal side. Elsa, a widow with two daughters, brought her own family into the union. This second marriage provided Einstein with a supportive companion who understood the challenges and demands of his life. Elsa, instrumental in managing Einstein’s affairs and social engagements, provided stability and support throughout their marriage.

The Einstein-Löwenthal household became a blended family, with Albert and Elsa navigating the complexities of raising a stepdaughter, Ilse, and a stepson, Margot. The dynamics of this extended family reflected Einstein’s ability to adapt to evolving personal circumstances. Elsa, often described as Einstein’s anchor, played a vital role in maintaining a harmonious domestic environment.

While Einstein’s professional life soared to new heights, his personal life faced additional challenges. Eduard, his younger son, struggled with mental health issues, eventually leading to his institutionalization. This period marked a difficult chapter for the family, and Einstein, despite his brilliance in physics, grappled with the complexities of mental health within his own household.

The family faced further trials with the rise of the Nazi regime in Germany. Einstein’s Jewish heritage and outspoken views made him a target for persecution. Fearing for their safety, the Einstein family emigrated to the United States in 1933. This move marked a significant transition in their lives, as they sought refuge from the political turmoil in Europe.

In the United States, Einstein’s family life continued to evolve. Elsa passed away in 1936, leaving Einstein to navigate the challenges of his personal and professional life as a widower. Despite personal losses and the global upheaval of World War II, Einstein’s commitment to scientific inquiry and advocacy for peace remained steadfast.

Albert Einstein’s personal life, marked by the complexities of family dynamics, relationships, and personal challenges, adds depth to our understanding of this towering figure in the world of science. His ability to balance the demands of a tumultuous personal life with his groundbreaking scientific contributions reflects the intricate interplay between the private and public dimensions of his extraordinary existence.

Unified Field Theory

Albert Einstein’s pursuit of a Unified Field Theory (UFT) was a lifelong scientific endeavor aimed at unifying the fundamental forces of nature into a single, comprehensive framework. This ambitious quest consumed much of Einstein’s later career, as he sought to reconcile the principles of general relativity and electromagnetism, ultimately aiming for a unified description of the gravitational and electromagnetic forces.

Einstein’s interest in unifying the forces of nature was sparked by the success of his earlier theories. In 1915, he had formulated the General Theory of Relativity, which provided a groundbreaking understanding of gravity as the curvature of spacetime caused by mass and energy. This theory successfully explained gravitational phenomena on large scales, such as the motion of planets and the bending of light around massive objects.

However, as quantum mechanics emerged in the early 20th century, describing the behavior of particles on very small scales, a tension arose between Einstein’s theory of gravity and the quantum framework. Quantum mechanics, which successfully explained the behavior of subatomic particles, relied on probabilistic principles and seemed incompatible with the determinism inherent in Einstein’s general relativity.

Einstein’s initial attempts at unification focused on incorporating electromagnetism into his gravitational framework. In the 1920s, he collaborated with mathematician Theodor Kaluza, who proposed a five-dimensional extension of general relativity that included electromagnetism. This Kaluza-Klein theory, while elegant in its mathematical formulation, did not gain widespread acceptance during Einstein’s lifetime.

Einstein’s pursuit of a unified theory gained momentum in the 1930s and 1940s, particularly after the discovery of nuclear forces. His vision extended beyond gravity and electromagnetism to include the strong and weak nuclear forces, seeking a theory that could encompass all fundamental interactions in a single, elegant framework.

One of Einstein’s notable attempts was the Einstein-Cartan theory, developed in collaboration with mathematician Élie Cartan. This theory incorporated torsion—a measure of twisting or distortion in spacetime—into the gravitational field equations. While intriguing, this theory did not achieve the desired unification and faced challenges in reconciling with experimental observations.

Einstein’s last major attempt at a unified theory was the development of the “unified field theory of gravitation and electricity” in the 1950s. Collaborating with physicist Walther Mayer, Einstein sought a theory that could describe both gravitational and electromagnetic phenomena. However, the challenges of combining quantum principles with general relativity persisted, and the theory remained incomplete.

Despite the lack of success in formulating a complete Unified Field Theory, Einstein’s contributions to the pursuit of unification had a lasting impact. His efforts inspired subsequent generations of physicists to explore new avenues for understanding the fundamental forces of nature. The quest for a unified theory continues today, with ongoing research in areas such as string theory and quantum gravity.

Einstein’s vision for a unified theory reflected his deep conviction in the elegance and simplicity of the laws governing the universe. While he did not achieve the ultimate goal of unification during his lifetime, his legacy as a pioneer in the quest for a unified understanding of nature endures, challenging scientists to explore the frontiers of theoretical physics in pursuit of a comprehensive theory that encompasses all fundamental forces.

Political Activism

Albert Einstein’s political activism was a prominent and impactful facet of his public life, reflecting his commitment to social justice, pacifism, and human rights. Throughout the turbulent events of the 20th century, Einstein used his fame and influence to address pressing political and moral issues, leaving a lasting legacy as a global advocate for peace and equality.

Einstein’s political engagement was sparked by the rise of fascism in Europe during the 1920s and 1930s. As Adolf Hitler and the Nazi Party gained power in Germany, Einstein, who was of Jewish heritage and known for his progressive views, became a target for persecution. Faced with the threat of anti-Semitic oppression, Einstein emigrated to the United States in 1933, seeking refuge from the political turmoil in Europe.

In his new homeland, Einstein embraced his role as a public intellectual and began to speak out on a range of political issues. He became an outspoken critic of fascism, totalitarianism, and militarism. Einstein’s early anti-war stance was evident in his involvement with the anti-war movement during World War I, but it gained renewed urgency as the world descended into the chaos of World War II.

Einstein’s commitment to pacifism, however, faced a complex dilemma with the outbreak of World War II and the rise of the Nazi regime. While he advocated for peaceful solutions to conflicts, he recognized the threat posed by Hitler and the necessity of confronting fascist aggression. Einstein supported the Allied war effort against Nazi Germany and actively collaborated with other scientists on projects related to military defense, such as the development of radar technology.

Following World War II, Einstein’s focus shifted toward broader issues of peace, disarmament, and international cooperation. He played a central role in the formation of the Emergency Committee of Atomic Scientists, an organization that sought to promote nuclear disarmament and prevent the proliferation of nuclear weapons. Einstein’s concerns about the devastating consequences of atomic warfare led him to become a prominent advocate for global peace.

In 1946, Einstein delivered a powerful commencement address at Lincoln University in Pennsylvania, addressing the moral implications of science and technology. He emphasized the responsibility of scientists to use their knowledge for the benefit of humanity, stressing the importance of ethics and social responsibility in scientific pursuits.

Einstein’s involvement with political causes extended beyond the realm of science. He became an active supporter of civil rights in the United States, using his influence to speak out against racial segregation and discrimination. Einstein joined the NAACP (National Association for the Advancement of Colored People) and collaborated with civil rights leaders such as W.E.B. Du Bois. His commitment to civil rights was reflected in his advocacy for racial equality and his critique of racism as a disease that afflicted white society.

In the realm of international affairs, Einstein supported the establishment of the United Nations and became an advocate for global governance and diplomacy. He recognized the need for collective efforts to address global challenges and prevent future conflicts. Einstein’s engagement with political issues underscored his belief in the interconnectedness of humanity and the importance of fostering a just and harmonious world.

Albert Einstein’s political activism, marked by his courageous stand against fascism, commitment to pacifism, and advocacy for civil rights, demonstrated the power of intellectual influence in shaping public discourse and promoting social change. His legacy as a principled advocate for peace and justice continues to inspire those who recognize the moral responsibility of individuals, particularly those with influence, to contribute to the betterment of society.

Legacy and Impact

Albert Einstein’s legacy and impact extend far beyond the realm of theoretical physics, leaving an indelible mark on science, philosophy, and culture. His groundbreaking theories revolutionized our understanding of the universe, and his intellectual influence resonates across diverse fields. Einstein’s legacy encompasses scientific achievements, cultural contributions, and a lasting imprint on the collective imagination.

At the heart of Einstein’s legacy are his revolutionary theories of relativity. The Special Theory of Relativity, published in 1905, transformed our understanding of space and time, challenging long-standing notions of absolute measurements and introducing the concept of spacetime. This theory laid the groundwork for subsequent developments in physics and had profound implications for our understanding of the cosmos.

Einstein’s crowning achievement, the General Theory of Relativity, published in 1915, provided a new understanding of gravity as the curvature of spacetime caused by mass and energy. This theory not only explained gravitational phenomena with unprecedented precision but also predicted phenomena such as gravitational waves, later confirmed by experimental observations. General relativity has become a cornerstone of modern physics, influencing fields as diverse as astrophysics, cosmology, and the study of black holes.

The iconic equation E=mc², arising from Einstein’s work on the equivalence of mass and energy, became a symbol of the profound interconnections between matter and energy. This equation laid the foundation for advancements in nuclear physics and led to the development of nuclear energy. Einstein’s contributions to the understanding of quantum mechanics, despite his initial reservations about its probabilistic nature, also left a lasting impact on the field.

Beyond his scientific achievements, Einstein’s cultural and philosophical contributions shaped the intellectual landscape of the 20th century. His reflections on the nature of reality, the limitations of human knowledge, and the quest for a unified theory captivated the public imagination. Einstein’s philosophical musings, often expressed in his writings and public pronouncements, influenced debates on determinism, free will, and the nature of scientific inquiry.

Einstein’s fame transcended the scientific community, turning him into a global symbol of intellect, curiosity, and moral integrity. His public persona, marked by his iconic image with disheveled hair and thoughtful gaze, became synonymous with genius. Einstein’s popularity reached unprecedented heights, making him a cultural icon whose influence extended beyond the scientific realm.

Einstein’s advocacy for social justice and political causes further enhanced his legacy. His outspoken stance against fascism, commitment to pacifism, and advocacy for civil rights demonstrated a moral responsibility that went beyond the laboratory. Einstein’s involvement in political and social issues showcased the potential for individuals with intellectual influence to shape public discourse and contribute to the betterment of society.

Einstein’s legacy also manifests in the enduring pursuit of a unified theory, a quest that continues to captivate physicists today. While Einstein did not achieve this goal during his lifetime, his exploration of the connections between fundamental forces laid the groundwork for subsequent generations of researchers, inspiring ongoing efforts to unravel the mysteries of the universe.

In popular culture, Einstein’s name has become synonymous with genius, and his image is often used as a symbol of intellectual prowess. The “Einstein effect” has permeated literature, art, and entertainment, reflecting the fascination with the brilliant mind behind the theories of relativity.

Leave a Reply Cancel reply

You must be logged in to post a comment.

Lasted Stories

albert einstein biography shqip

IMAGES

  1. Albert Einstein

    albert einstein biography shqip

  2. biography of albert einstein

    albert einstein biography shqip

  3. A Biography Of Albert Einstein And His Work

    albert einstein biography shqip

  4. Albert Einstein Biography, Education, Career, Personal Life, Family

    albert einstein biography shqip

  5. Albert Einstein: A Biography

    albert einstein biography shqip

  6. Albert Einstein

    albert einstein biography shqip

VIDEO

  1. Albert Einstein

  2. Albert Einstein 😊

  3. Albert Einstein

  4. Albert Einstein Biography #mythicbiographies

  5. 10 Fakta Albert Einstein #fakta #faktadunia #faktamenarik #faktaunik #serbaserbi #alberteinstein

  6. Short Biography on Albert Einstein || Albert Einstein Biography #shorts

COMMENTS

  1. Albert Ajnshtajni

    Albert Ajnshtajni. Albert Einstein ( shqip: Albert Ajnshtajn, 14 mars 1879 - 18 prill 1955) ishte një fizikant i cili llogaritet si një nga shkencëtarët më të rëndësishëm të shekullit XX. [1] Ai përcaktoi teorinë e relativitetit dhe dha shumë kontribute në fushat e mekanikës kuantike, mekanikës statistikore dhe kozmologjisë. [2]

  2. Albert Ajnshtajni

    Albert Einstein ishte një fizikant i cili llogaritet si një nga shkencëtarët më të rëndësishëm të shekullit XX. Ai përcaktoi teorinë e relativitetit dhe dha shumë kontribute në fushat e mekanikës kuantike, mekanikës statistikore dhe kozmologjisë. Në vitin 1921 fitoi çmimin Nobel për fizikë për shpjegimin e efektit fotoelektrik dhe për shërbimin në fushën e "fizikës ...

  3. Të panjohurat e gjeniut, 50 fakte për Albert Einstein

    Të panjohurat e gjeniut, 50 fakte për Albert Einstein. Albert Ajnshtajn është shkencëtari më i zgjuar që ka jetuar ndonjëherë. Një prej arritjeve që ktheu faqen e historisë së shkencës ishte ekuacioni E=mc2. Ai fitoi çmimin "Nobel" në vitin 1921 për punën në lidhje me efektin fotoelektrik.

  4. 14 thëniet më inspiruese të të gjitha kohërave nga Albertin Einstein

    Albert Einstein është fizikani më me ndikim i shekullit 20-të, dhe mund të jetë një nga shkencëtarët më të famshëm që ka jetuar ndonjëherë. Kishte qenë vetëm 26-vjeçar në vitin 1905 kur kishte publikuar katër letra shkencore, duke e elektrizuar fushën e fizikës dhe duke i fituar vetës njohje botërore, transmeton Telegrafi.

  5. Albert Einstein

    Biografia e Albert Ajnshtajnit. by Jennifer Rosenberg. Geni i përulur. Albert Einstein, shkencëtari më i famshëm i shekullit të 20-të, revolucionarizoi mendimin shkencor. Duke zhvilluar Teorinë e Relativitetit , Ajnshtajni hapi derën për krijimin e bombës atomike. Datat: 14 mars 1879 - 18 prill 1955.

  6. Albert Einstein

    Signature. Albert Einstein ( / ˈaɪnstaɪn / EYEN-styne; [4] German: [ˈalbɛɐt ˈʔaɪnʃtaɪn] ⓘ; 14 March 1879 - 18 April 1955) was a German-born theoretical physicist who is widely held to be one of the greatest and most influential scientists of all time. Best known for developing the theory of relativity, Einstein also made ...

  7. BBC në Shqip| BBC World Service

    Albert Einstein (1879 -- 1955) Born in Ulm, Germany. Physicist, creator of the theory of relativity.In 1921, Einstein was awarded the Nobel Prize in physics.

  8. Albert Ajnshtajni

    Albert Ajnshtajni | Historia e tij e plotë | Dokumentar Shqip #DokumentarShqip#AlbertEinstein #HistoriaeTij

  9. Albert Einstein

    Biographical. Albert Einstein was born at Ulm, in Württemberg, Germany, on March 14, 1879. Six weeks later the family moved to Munich, where he later on began his schooling at the Luitpold Gymnasium. Later, they moved to Italy and Albert continued his education at Aarau, Switzerland and in 1896 he entered the Swiss Federal Polytechnic School ...

  10. Albert Einstein

    Albert Einstein. The Nobel Prize in Physics 1921. Born: 14 March 1879, Ulm, Germany. Died: 18 April 1955, Princeton, NJ, USA. Affiliation at the time of the award: Kaiser-Wilhelm-Institut (now Max-Planck-Institut) für Physik, Berlin, Germany. Prize motivation: "for his services to Theoretical Physics, and especially for his discovery of the ...

  11. Albert Einstein

    Albert Einstein (born March 14, 1879, Ulm, Württemberg, Germany—died April 18, 1955, Princeton, New Jersey, U.S.) German-born physicist who developed the special and general theories of relativity and won the Nobel Prize for Physics in 1921 for his explanation of the photoelectric effect.

  12. Albert Einstein

    Albert Einstein was a German-born theoretical physicist who is widely held to be one of the greatest and most influential scientists of all time. Best known for developing the theory of relativity, Einstein also made important contributions to quantum mechanics, and was thus a central figure in the revolutionary reshaping of the scientific understanding of nature that modern physics ...

  13. Albert Einstein Biography

    Albert Einstein Biography. Born in Germany in 1879, Albert Einstein is one of the most celebrated scientists of the Twentieth Century. His theories on relativity laid the framework for a new branch of physics, and Einstein's E = mc2 on mass-energy equivalence is one of the most famous formulas in the world.

  14. Albert Einstein: Biography, facts and impact on science

    A brief biography of Albert Einstein (March 14, 1879 - April 18, 1955), the scientist whose theories changed the way we think about the universe.

  15. Biography of Albert Einstein, Theoretical Physicist

    Jennifer Rosenberg. Updated on August 26, 2019. Albert Einstein (March 14, 1879-April 18, 1955), a German-born theoretical physicist who lived during the 20th century, revolutionized scientific thought. Having developed the Theory of Relativity, Einstein opened the door for the development of atomic power and the creation of the atomic bomb.

  16. Albert Einstein (1879

    It is fitting that one of his last acts was to argue, as he had done all his life, for international peace. Einstein was cremated at Trenton, New Jersey at 4 pm on 18 April 1955 (the day of his death). His ashes were scattered at an undisclosed place. Quotations by Albert Einstein. Other Mathematicians born in Germany.

  17. Albert Einstein

    Albert Einstein (14 March 1879 - 18 April 1955) was a German-born American Jewish scientist. [5] He worked on theoretical physics. [6] He developed the theory of relativity. [4] [7] He won the Nobel Prize in Physics in 1921 for theoretical physics. His most famous equation is in which E is for Energy, m for mass, c is the speed of light is ...

  18. Albert Einstein: Biography, Physicist, Nobel Prize Winner

    Physicist Albert Einstein developed the theory of relativity and won the 1921 Nobel Prize in Physics. Read about his inventions, IQ, wives, death, and more.

  19. The Life and Achievements of Albert Einstein

    Before E=MC2. Einstein was born in Germany in 1879. Growing up, he enjoyed classical music and played the violin. One story Einstein liked to tell about his childhood was when he came across a magnetic compass. The needle's invariable northward swing, guided by an invisible force, profoundly impressed him as a child.

  20. Albert Einstein

    Einstein's Later Life (1939-1955) The German-born physicist Albert Einstein developed the first of his groundbreaking theories while working as a clerk in the Swiss patent office in Bern. After ...

  21. Albert Einstein: Biography, Scientist, & Legacy

    Albert Einstein (1879-1955) was a renowned theoretical physicist, best known for developing the theory of relativity, which revolutionized our understanding of space, time, and gravity. He was awarded the Nobel Prize in Physics in 1921 for his explanation of the photoelectric effect.

  22. Albert Einstein

    Albert Einstein was one of the greatest geniuses in the history of science. His theories, or ideas, led to new ways of thinking about the universe .

  23. Albert Einstein

    Teoria e Relativitetit sipas Albert Einstein-it e shpjeguar.Animacioni i huazuar nga Vinit Masram.Einstein's Special Theory of Relativity .Shpjegim:'S' duhet...