• Bipolar Disorder
  • Therapy Center
  • When To See a Therapist
  • Types of Therapy
  • Best Online Therapy
  • Best Couples Therapy
  • Best Family Therapy
  • Managing Stress
  • Sleep and Dreaming
  • Understanding Emotions
  • Self-Improvement
  • Healthy Relationships
  • Student Resources
  • Personality Types
  • Guided Meditations
  • Verywell Mind Insights
  • 2024 Verywell Mind 25
  • Mental Health in the Classroom
  • Editorial Process
  • Meet Our Review Board
  • Crisis Support

How to Write a Great Hypothesis

Hypothesis Definition, Format, Examples, and Tips

Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

true statement about hypothesis

Amy Morin, LCSW, is a psychotherapist and international bestselling author. Her books, including "13 Things Mentally Strong People Don't Do," have been translated into more than 40 languages. Her TEDx talk,  "The Secret of Becoming Mentally Strong," is one of the most viewed talks of all time.

true statement about hypothesis

Verywell / Alex Dos Diaz

  • The Scientific Method

Hypothesis Format

Falsifiability of a hypothesis.

  • Operationalization

Hypothesis Types

Hypotheses examples.

  • Collecting Data

A hypothesis is a tentative statement about the relationship between two or more variables. It is a specific, testable prediction about what you expect to happen in a study. It is a preliminary answer to your question that helps guide the research process.

Consider a study designed to examine the relationship between sleep deprivation and test performance. The hypothesis might be: "This study is designed to assess the hypothesis that sleep-deprived people will perform worse on a test than individuals who are not sleep-deprived."

At a Glance

A hypothesis is crucial to scientific research because it offers a clear direction for what the researchers are looking to find. This allows them to design experiments to test their predictions and add to our scientific knowledge about the world. This article explores how a hypothesis is used in psychology research, how to write a good hypothesis, and the different types of hypotheses you might use.

The Hypothesis in the Scientific Method

In the scientific method , whether it involves research in psychology, biology, or some other area, a hypothesis represents what the researchers think will happen in an experiment. The scientific method involves the following steps:

  • Forming a question
  • Performing background research
  • Creating a hypothesis
  • Designing an experiment
  • Collecting data
  • Analyzing the results
  • Drawing conclusions
  • Communicating the results

The hypothesis is a prediction, but it involves more than a guess. Most of the time, the hypothesis begins with a question which is then explored through background research. At this point, researchers then begin to develop a testable hypothesis.

Unless you are creating an exploratory study, your hypothesis should always explain what you  expect  to happen.

In a study exploring the effects of a particular drug, the hypothesis might be that researchers expect the drug to have some type of effect on the symptoms of a specific illness. In psychology, the hypothesis might focus on how a certain aspect of the environment might influence a particular behavior.

Remember, a hypothesis does not have to be correct. While the hypothesis predicts what the researchers expect to see, the goal of the research is to determine whether this guess is right or wrong. When conducting an experiment, researchers might explore numerous factors to determine which ones might contribute to the ultimate outcome.

In many cases, researchers may find that the results of an experiment  do not  support the original hypothesis. When writing up these results, the researchers might suggest other options that should be explored in future studies.

In many cases, researchers might draw a hypothesis from a specific theory or build on previous research. For example, prior research has shown that stress can impact the immune system. So a researcher might hypothesize: "People with high-stress levels will be more likely to contract a common cold after being exposed to the virus than people who have low-stress levels."

In other instances, researchers might look at commonly held beliefs or folk wisdom. "Birds of a feather flock together" is one example of folk adage that a psychologist might try to investigate. The researcher might pose a specific hypothesis that "People tend to select romantic partners who are similar to them in interests and educational level."

Elements of a Good Hypothesis

So how do you write a good hypothesis? When trying to come up with a hypothesis for your research or experiments, ask yourself the following questions:

  • Is your hypothesis based on your research on a topic?
  • Can your hypothesis be tested?
  • Does your hypothesis include independent and dependent variables?

Before you come up with a specific hypothesis, spend some time doing background research. Once you have completed a literature review, start thinking about potential questions you still have. Pay attention to the discussion section in the  journal articles you read . Many authors will suggest questions that still need to be explored.

How to Formulate a Good Hypothesis

To form a hypothesis, you should take these steps:

  • Collect as many observations about a topic or problem as you can.
  • Evaluate these observations and look for possible causes of the problem.
  • Create a list of possible explanations that you might want to explore.
  • After you have developed some possible hypotheses, think of ways that you could confirm or disprove each hypothesis through experimentation. This is known as falsifiability.

In the scientific method ,  falsifiability is an important part of any valid hypothesis. In order to test a claim scientifically, it must be possible that the claim could be proven false.

Students sometimes confuse the idea of falsifiability with the idea that it means that something is false, which is not the case. What falsifiability means is that  if  something was false, then it is possible to demonstrate that it is false.

One of the hallmarks of pseudoscience is that it makes claims that cannot be refuted or proven false.

The Importance of Operational Definitions

A variable is a factor or element that can be changed and manipulated in ways that are observable and measurable. However, the researcher must also define how the variable will be manipulated and measured in the study.

Operational definitions are specific definitions for all relevant factors in a study. This process helps make vague or ambiguous concepts detailed and measurable.

For example, a researcher might operationally define the variable " test anxiety " as the results of a self-report measure of anxiety experienced during an exam. A "study habits" variable might be defined by the amount of studying that actually occurs as measured by time.

These precise descriptions are important because many things can be measured in various ways. Clearly defining these variables and how they are measured helps ensure that other researchers can replicate your results.

Replicability

One of the basic principles of any type of scientific research is that the results must be replicable.

Replication means repeating an experiment in the same way to produce the same results. By clearly detailing the specifics of how the variables were measured and manipulated, other researchers can better understand the results and repeat the study if needed.

Some variables are more difficult than others to define. For example, how would you operationally define a variable such as aggression ? For obvious ethical reasons, researchers cannot create a situation in which a person behaves aggressively toward others.

To measure this variable, the researcher must devise a measurement that assesses aggressive behavior without harming others. The researcher might utilize a simulated task to measure aggressiveness in this situation.

Hypothesis Checklist

  • Does your hypothesis focus on something that you can actually test?
  • Does your hypothesis include both an independent and dependent variable?
  • Can you manipulate the variables?
  • Can your hypothesis be tested without violating ethical standards?

The hypothesis you use will depend on what you are investigating and hoping to find. Some of the main types of hypotheses that you might use include:

  • Simple hypothesis : This type of hypothesis suggests there is a relationship between one independent variable and one dependent variable.
  • Complex hypothesis : This type suggests a relationship between three or more variables, such as two independent and dependent variables.
  • Null hypothesis : This hypothesis suggests no relationship exists between two or more variables.
  • Alternative hypothesis : This hypothesis states the opposite of the null hypothesis.
  • Statistical hypothesis : This hypothesis uses statistical analysis to evaluate a representative population sample and then generalizes the findings to the larger group.
  • Logical hypothesis : This hypothesis assumes a relationship between variables without collecting data or evidence.

A hypothesis often follows a basic format of "If {this happens} then {this will happen}." One way to structure your hypothesis is to describe what will happen to the  dependent variable  if you change the  independent variable .

The basic format might be: "If {these changes are made to a certain independent variable}, then we will observe {a change in a specific dependent variable}."

A few examples of simple hypotheses:

  • "Students who eat breakfast will perform better on a math exam than students who do not eat breakfast."
  • "Students who experience test anxiety before an English exam will get lower scores than students who do not experience test anxiety."​
  • "Motorists who talk on the phone while driving will be more likely to make errors on a driving course than those who do not talk on the phone."
  • "Children who receive a new reading intervention will have higher reading scores than students who do not receive the intervention."

Examples of a complex hypothesis include:

  • "People with high-sugar diets and sedentary activity levels are more likely to develop depression."
  • "Younger people who are regularly exposed to green, outdoor areas have better subjective well-being than older adults who have limited exposure to green spaces."

Examples of a null hypothesis include:

  • "There is no difference in anxiety levels between people who take St. John's wort supplements and those who do not."
  • "There is no difference in scores on a memory recall task between children and adults."
  • "There is no difference in aggression levels between children who play first-person shooter games and those who do not."

Examples of an alternative hypothesis:

  • "People who take St. John's wort supplements will have less anxiety than those who do not."
  • "Adults will perform better on a memory task than children."
  • "Children who play first-person shooter games will show higher levels of aggression than children who do not." 

Collecting Data on Your Hypothesis

Once a researcher has formed a testable hypothesis, the next step is to select a research design and start collecting data. The research method depends largely on exactly what they are studying. There are two basic types of research methods: descriptive research and experimental research.

Descriptive Research Methods

Descriptive research such as  case studies ,  naturalistic observations , and surveys are often used when  conducting an experiment is difficult or impossible. These methods are best used to describe different aspects of a behavior or psychological phenomenon.

Once a researcher has collected data using descriptive methods, a  correlational study  can examine how the variables are related. This research method might be used to investigate a hypothesis that is difficult to test experimentally.

Experimental Research Methods

Experimental methods  are used to demonstrate causal relationships between variables. In an experiment, the researcher systematically manipulates a variable of interest (known as the independent variable) and measures the effect on another variable (known as the dependent variable).

Unlike correlational studies, which can only be used to determine if there is a relationship between two variables, experimental methods can be used to determine the actual nature of the relationship—whether changes in one variable actually  cause  another to change.

The hypothesis is a critical part of any scientific exploration. It represents what researchers expect to find in a study or experiment. In situations where the hypothesis is unsupported by the research, the research still has value. Such research helps us better understand how different aspects of the natural world relate to one another. It also helps us develop new hypotheses that can then be tested in the future.

Thompson WH, Skau S. On the scope of scientific hypotheses .  R Soc Open Sci . 2023;10(8):230607. doi:10.1098/rsos.230607

Taran S, Adhikari NKJ, Fan E. Falsifiability in medicine: what clinicians can learn from Karl Popper [published correction appears in Intensive Care Med. 2021 Jun 17;:].  Intensive Care Med . 2021;47(9):1054-1056. doi:10.1007/s00134-021-06432-z

Eyler AA. Research Methods for Public Health . 1st ed. Springer Publishing Company; 2020. doi:10.1891/9780826182067.0004

Nosek BA, Errington TM. What is replication ?  PLoS Biol . 2020;18(3):e3000691. doi:10.1371/journal.pbio.3000691

Aggarwal R, Ranganathan P. Study designs: Part 2 - Descriptive studies .  Perspect Clin Res . 2019;10(1):34-36. doi:10.4103/picr.PICR_154_18

Nevid J. Psychology: Concepts and Applications. Wadworth, 2013.

By Kendra Cherry, MSEd Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

What is a scientific hypothesis?

It's the initial building block in the scientific method.

A girl looks at plants in a test tube for a science experiment. What's her scientific hypothesis?

Hypothesis basics

What makes a hypothesis testable.

  • Types of hypotheses
  • Hypothesis versus theory

Additional resources

Bibliography.

A scientific hypothesis is a tentative, testable explanation for a phenomenon in the natural world. It's the initial building block in the scientific method . Many describe it as an "educated guess" based on prior knowledge and observation. While this is true, a hypothesis is more informed than a guess. While an "educated guess" suggests a random prediction based on a person's expertise, developing a hypothesis requires active observation and background research. 

The basic idea of a hypothesis is that there is no predetermined outcome. For a solution to be termed a scientific hypothesis, it has to be an idea that can be supported or refuted through carefully crafted experimentation or observation. This concept, called falsifiability and testability, was advanced in the mid-20th century by Austrian-British philosopher Karl Popper in his famous book "The Logic of Scientific Discovery" (Routledge, 1959).

A key function of a hypothesis is to derive predictions about the results of future experiments and then perform those experiments to see whether they support the predictions.

A hypothesis is usually written in the form of an if-then statement, which gives a possibility (if) and explains what may happen because of the possibility (then). The statement could also include "may," according to California State University, Bakersfield .

Here are some examples of hypothesis statements:

  • If garlic repels fleas, then a dog that is given garlic every day will not get fleas.
  • If sugar causes cavities, then people who eat a lot of candy may be more prone to cavities.
  • If ultraviolet light can damage the eyes, then maybe this light can cause blindness.

A useful hypothesis should be testable and falsifiable. That means that it should be possible to prove it wrong. A theory that can't be proved wrong is nonscientific, according to Karl Popper's 1963 book " Conjectures and Refutations ."

An example of an untestable statement is, "Dogs are better than cats." That's because the definition of "better" is vague and subjective. However, an untestable statement can be reworded to make it testable. For example, the previous statement could be changed to this: "Owning a dog is associated with higher levels of physical fitness than owning a cat." With this statement, the researcher can take measures of physical fitness from dog and cat owners and compare the two.

Types of scientific hypotheses

Elementary-age students study alternative energy using homemade windmills during public school science class.

In an experiment, researchers generally state their hypotheses in two ways. The null hypothesis predicts that there will be no relationship between the variables tested, or no difference between the experimental groups. The alternative hypothesis predicts the opposite: that there will be a difference between the experimental groups. This is usually the hypothesis scientists are most interested in, according to the University of Miami .

For example, a null hypothesis might state, "There will be no difference in the rate of muscle growth between people who take a protein supplement and people who don't." The alternative hypothesis would state, "There will be a difference in the rate of muscle growth between people who take a protein supplement and people who don't."

If the results of the experiment show a relationship between the variables, then the null hypothesis has been rejected in favor of the alternative hypothesis, according to the book " Research Methods in Psychology " (​​BCcampus, 2015). 

There are other ways to describe an alternative hypothesis. The alternative hypothesis above does not specify a direction of the effect, only that there will be a difference between the two groups. That type of prediction is called a two-tailed hypothesis. If a hypothesis specifies a certain direction — for example, that people who take a protein supplement will gain more muscle than people who don't — it is called a one-tailed hypothesis, according to William M. K. Trochim , a professor of Policy Analysis and Management at Cornell University.

Sometimes, errors take place during an experiment. These errors can happen in one of two ways. A type I error is when the null hypothesis is rejected when it is true. This is also known as a false positive. A type II error occurs when the null hypothesis is not rejected when it is false. This is also known as a false negative, according to the University of California, Berkeley . 

A hypothesis can be rejected or modified, but it can never be proved correct 100% of the time. For example, a scientist can form a hypothesis stating that if a certain type of tomato has a gene for red pigment, that type of tomato will be red. During research, the scientist then finds that each tomato of this type is red. Though the findings confirm the hypothesis, there may be a tomato of that type somewhere in the world that isn't red. Thus, the hypothesis is true, but it may not be true 100% of the time.

Scientific theory vs. scientific hypothesis

The best hypotheses are simple. They deal with a relatively narrow set of phenomena. But theories are broader; they generally combine multiple hypotheses into a general explanation for a wide range of phenomena, according to the University of California, Berkeley . For example, a hypothesis might state, "If animals adapt to suit their environments, then birds that live on islands with lots of seeds to eat will have differently shaped beaks than birds that live on islands with lots of insects to eat." After testing many hypotheses like these, Charles Darwin formulated an overarching theory: the theory of evolution by natural selection.

"Theories are the ways that we make sense of what we observe in the natural world," Tanner said. "Theories are structures of ideas that explain and interpret facts." 

  • Read more about writing a hypothesis, from the American Medical Writers Association.
  • Find out why a hypothesis isn't always necessary in science, from The American Biology Teacher.
  • Learn about null and alternative hypotheses, from Prof. Essa on YouTube .

Encyclopedia Britannica. Scientific Hypothesis. Jan. 13, 2022. https://www.britannica.com/science/scientific-hypothesis

Karl Popper, "The Logic of Scientific Discovery," Routledge, 1959.

California State University, Bakersfield, "Formatting a testable hypothesis." https://www.csub.edu/~ddodenhoff/Bio100/Bio100sp04/formattingahypothesis.htm  

Karl Popper, "Conjectures and Refutations," Routledge, 1963.

Price, P., Jhangiani, R., & Chiang, I., "Research Methods of Psychology — 2nd Canadian Edition," BCcampus, 2015.‌

University of Miami, "The Scientific Method" http://www.bio.miami.edu/dana/161/evolution/161app1_scimethod.pdf  

William M.K. Trochim, "Research Methods Knowledge Base," https://conjointly.com/kb/hypotheses-explained/  

University of California, Berkeley, "Multiple Hypothesis Testing and False Discovery Rate" https://www.stat.berkeley.edu/~hhuang/STAT141/Lecture-FDR.pdf  

University of California, Berkeley, "Science at multiple levels" https://undsci.berkeley.edu/article/0_0_0/howscienceworks_19

Sign up for the Live Science daily newsletter now

Get the world’s most fascinating discoveries delivered straight to your inbox.

Alina Bradford

Antarctic ice hole the size of Switzerland keeps cracking open. Now scientists finally know why.

Cave of Crystals: The deadly cavern in Mexico dubbed 'the Sistine Chapel of crystals'

China launches Chang'e 6 sample-return mission to moon's far side

Most Popular

  • 2 DARPA's autonomous 'Manta Ray' drone can glide through ocean depths undetected
  • 3 2 plants randomly mated up to 1 million years ago to give rise to one of the world's most popular drinks
  • 4 Deepest blue hole in the world discovered, with hidden caves and tunnels believed to be inside
  • 5 See up to 50 'shooting stars' per hour as the Eta Aquarid meteor shower peaks this weekend
  • 2 Deepest blue hole in the world discovered, with hidden caves and tunnels believed to be inside
  • 3 See up to 50 'shooting stars' per hour as the Eta Aquarid meteor shower peaks this weekend
  • 4 Asteroid that exploded over Berlin was fastest-spinning space rock ever recorded
  • 5 Breakthrough 6G antenna could lead to high-speed communications and holograms

true statement about hypothesis

  • Privacy Policy

Research Method

Home » What is a Hypothesis – Types, Examples and Writing Guide

What is a Hypothesis – Types, Examples and Writing Guide

Table of Contents

What is a Hypothesis

Definition:

Hypothesis is an educated guess or proposed explanation for a phenomenon, based on some initial observations or data. It is a tentative statement that can be tested and potentially proven or disproven through further investigation and experimentation.

Hypothesis is often used in scientific research to guide the design of experiments and the collection and analysis of data. It is an essential element of the scientific method, as it allows researchers to make predictions about the outcome of their experiments and to test those predictions to determine their accuracy.

Types of Hypothesis

Types of Hypothesis are as follows:

Research Hypothesis

A research hypothesis is a statement that predicts a relationship between variables. It is usually formulated as a specific statement that can be tested through research, and it is often used in scientific research to guide the design of experiments.

Null Hypothesis

The null hypothesis is a statement that assumes there is no significant difference or relationship between variables. It is often used as a starting point for testing the research hypothesis, and if the results of the study reject the null hypothesis, it suggests that there is a significant difference or relationship between variables.

Alternative Hypothesis

An alternative hypothesis is a statement that assumes there is a significant difference or relationship between variables. It is often used as an alternative to the null hypothesis and is tested against the null hypothesis to determine which statement is more accurate.

Directional Hypothesis

A directional hypothesis is a statement that predicts the direction of the relationship between variables. For example, a researcher might predict that increasing the amount of exercise will result in a decrease in body weight.

Non-directional Hypothesis

A non-directional hypothesis is a statement that predicts the relationship between variables but does not specify the direction. For example, a researcher might predict that there is a relationship between the amount of exercise and body weight, but they do not specify whether increasing or decreasing exercise will affect body weight.

Statistical Hypothesis

A statistical hypothesis is a statement that assumes a particular statistical model or distribution for the data. It is often used in statistical analysis to test the significance of a particular result.

Composite Hypothesis

A composite hypothesis is a statement that assumes more than one condition or outcome. It can be divided into several sub-hypotheses, each of which represents a different possible outcome.

Empirical Hypothesis

An empirical hypothesis is a statement that is based on observed phenomena or data. It is often used in scientific research to develop theories or models that explain the observed phenomena.

Simple Hypothesis

A simple hypothesis is a statement that assumes only one outcome or condition. It is often used in scientific research to test a single variable or factor.

Complex Hypothesis

A complex hypothesis is a statement that assumes multiple outcomes or conditions. It is often used in scientific research to test the effects of multiple variables or factors on a particular outcome.

Applications of Hypothesis

Hypotheses are used in various fields to guide research and make predictions about the outcomes of experiments or observations. Here are some examples of how hypotheses are applied in different fields:

  • Science : In scientific research, hypotheses are used to test the validity of theories and models that explain natural phenomena. For example, a hypothesis might be formulated to test the effects of a particular variable on a natural system, such as the effects of climate change on an ecosystem.
  • Medicine : In medical research, hypotheses are used to test the effectiveness of treatments and therapies for specific conditions. For example, a hypothesis might be formulated to test the effects of a new drug on a particular disease.
  • Psychology : In psychology, hypotheses are used to test theories and models of human behavior and cognition. For example, a hypothesis might be formulated to test the effects of a particular stimulus on the brain or behavior.
  • Sociology : In sociology, hypotheses are used to test theories and models of social phenomena, such as the effects of social structures or institutions on human behavior. For example, a hypothesis might be formulated to test the effects of income inequality on crime rates.
  • Business : In business research, hypotheses are used to test the validity of theories and models that explain business phenomena, such as consumer behavior or market trends. For example, a hypothesis might be formulated to test the effects of a new marketing campaign on consumer buying behavior.
  • Engineering : In engineering, hypotheses are used to test the effectiveness of new technologies or designs. For example, a hypothesis might be formulated to test the efficiency of a new solar panel design.

How to write a Hypothesis

Here are the steps to follow when writing a hypothesis:

Identify the Research Question

The first step is to identify the research question that you want to answer through your study. This question should be clear, specific, and focused. It should be something that can be investigated empirically and that has some relevance or significance in the field.

Conduct a Literature Review

Before writing your hypothesis, it’s essential to conduct a thorough literature review to understand what is already known about the topic. This will help you to identify the research gap and formulate a hypothesis that builds on existing knowledge.

Determine the Variables

The next step is to identify the variables involved in the research question. A variable is any characteristic or factor that can vary or change. There are two types of variables: independent and dependent. The independent variable is the one that is manipulated or changed by the researcher, while the dependent variable is the one that is measured or observed as a result of the independent variable.

Formulate the Hypothesis

Based on the research question and the variables involved, you can now formulate your hypothesis. A hypothesis should be a clear and concise statement that predicts the relationship between the variables. It should be testable through empirical research and based on existing theory or evidence.

Write the Null Hypothesis

The null hypothesis is the opposite of the alternative hypothesis, which is the hypothesis that you are testing. The null hypothesis states that there is no significant difference or relationship between the variables. It is important to write the null hypothesis because it allows you to compare your results with what would be expected by chance.

Refine the Hypothesis

After formulating the hypothesis, it’s important to refine it and make it more precise. This may involve clarifying the variables, specifying the direction of the relationship, or making the hypothesis more testable.

Examples of Hypothesis

Here are a few examples of hypotheses in different fields:

  • Psychology : “Increased exposure to violent video games leads to increased aggressive behavior in adolescents.”
  • Biology : “Higher levels of carbon dioxide in the atmosphere will lead to increased plant growth.”
  • Sociology : “Individuals who grow up in households with higher socioeconomic status will have higher levels of education and income as adults.”
  • Education : “Implementing a new teaching method will result in higher student achievement scores.”
  • Marketing : “Customers who receive a personalized email will be more likely to make a purchase than those who receive a generic email.”
  • Physics : “An increase in temperature will cause an increase in the volume of a gas, assuming all other variables remain constant.”
  • Medicine : “Consuming a diet high in saturated fats will increase the risk of developing heart disease.”

Purpose of Hypothesis

The purpose of a hypothesis is to provide a testable explanation for an observed phenomenon or a prediction of a future outcome based on existing knowledge or theories. A hypothesis is an essential part of the scientific method and helps to guide the research process by providing a clear focus for investigation. It enables scientists to design experiments or studies to gather evidence and data that can support or refute the proposed explanation or prediction.

The formulation of a hypothesis is based on existing knowledge, observations, and theories, and it should be specific, testable, and falsifiable. A specific hypothesis helps to define the research question, which is important in the research process as it guides the selection of an appropriate research design and methodology. Testability of the hypothesis means that it can be proven or disproven through empirical data collection and analysis. Falsifiability means that the hypothesis should be formulated in such a way that it can be proven wrong if it is incorrect.

In addition to guiding the research process, the testing of hypotheses can lead to new discoveries and advancements in scientific knowledge. When a hypothesis is supported by the data, it can be used to develop new theories or models to explain the observed phenomenon. When a hypothesis is not supported by the data, it can help to refine existing theories or prompt the development of new hypotheses to explain the phenomenon.

When to use Hypothesis

Here are some common situations in which hypotheses are used:

  • In scientific research , hypotheses are used to guide the design of experiments and to help researchers make predictions about the outcomes of those experiments.
  • In social science research , hypotheses are used to test theories about human behavior, social relationships, and other phenomena.
  • I n business , hypotheses can be used to guide decisions about marketing, product development, and other areas. For example, a hypothesis might be that a new product will sell well in a particular market, and this hypothesis can be tested through market research.

Characteristics of Hypothesis

Here are some common characteristics of a hypothesis:

  • Testable : A hypothesis must be able to be tested through observation or experimentation. This means that it must be possible to collect data that will either support or refute the hypothesis.
  • Falsifiable : A hypothesis must be able to be proven false if it is not supported by the data. If a hypothesis cannot be falsified, then it is not a scientific hypothesis.
  • Clear and concise : A hypothesis should be stated in a clear and concise manner so that it can be easily understood and tested.
  • Based on existing knowledge : A hypothesis should be based on existing knowledge and research in the field. It should not be based on personal beliefs or opinions.
  • Specific : A hypothesis should be specific in terms of the variables being tested and the predicted outcome. This will help to ensure that the research is focused and well-designed.
  • Tentative: A hypothesis is a tentative statement or assumption that requires further testing and evidence to be confirmed or refuted. It is not a final conclusion or assertion.
  • Relevant : A hypothesis should be relevant to the research question or problem being studied. It should address a gap in knowledge or provide a new perspective on the issue.

Advantages of Hypothesis

Hypotheses have several advantages in scientific research and experimentation:

  • Guides research: A hypothesis provides a clear and specific direction for research. It helps to focus the research question, select appropriate methods and variables, and interpret the results.
  • Predictive powe r: A hypothesis makes predictions about the outcome of research, which can be tested through experimentation. This allows researchers to evaluate the validity of the hypothesis and make new discoveries.
  • Facilitates communication: A hypothesis provides a common language and framework for scientists to communicate with one another about their research. This helps to facilitate the exchange of ideas and promotes collaboration.
  • Efficient use of resources: A hypothesis helps researchers to use their time, resources, and funding efficiently by directing them towards specific research questions and methods that are most likely to yield results.
  • Provides a basis for further research: A hypothesis that is supported by data provides a basis for further research and exploration. It can lead to new hypotheses, theories, and discoveries.
  • Increases objectivity: A hypothesis can help to increase objectivity in research by providing a clear and specific framework for testing and interpreting results. This can reduce bias and increase the reliability of research findings.

Limitations of Hypothesis

Some Limitations of the Hypothesis are as follows:

  • Limited to observable phenomena: Hypotheses are limited to observable phenomena and cannot account for unobservable or intangible factors. This means that some research questions may not be amenable to hypothesis testing.
  • May be inaccurate or incomplete: Hypotheses are based on existing knowledge and research, which may be incomplete or inaccurate. This can lead to flawed hypotheses and erroneous conclusions.
  • May be biased: Hypotheses may be biased by the researcher’s own beliefs, values, or assumptions. This can lead to selective interpretation of data and a lack of objectivity in research.
  • Cannot prove causation: A hypothesis can only show a correlation between variables, but it cannot prove causation. This requires further experimentation and analysis.
  • Limited to specific contexts: Hypotheses are limited to specific contexts and may not be generalizable to other situations or populations. This means that results may not be applicable in other contexts or may require further testing.
  • May be affected by chance : Hypotheses may be affected by chance or random variation, which can obscure or distort the true relationship between variables.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Data collection

Data Collection – Methods Types and Examples

Delimitations

Delimitations in Research – Types, Examples and...

Research Process

Research Process – Steps, Examples and Tips

Research Design

Research Design – Types, Methods and Examples

Institutional Review Board (IRB)

Institutional Review Board – Application Sample...

Evaluating Research

Evaluating Research – Process, Examples and...

PrepScholar

Choose Your Test

Sat / act prep online guides and tips, what is a hypothesis and how do i write one.

author image

General Education

body-glowing-question-mark

Think about something strange and unexplainable in your life. Maybe you get a headache right before it rains, or maybe you think your favorite sports team wins when you wear a certain color. If you wanted to see whether these are just coincidences or scientific fact, you would form a hypothesis, then create an experiment to see whether that hypothesis is true or not.

But what is a hypothesis, anyway? If you’re not sure about what a hypothesis is--or how to test for one!--you’re in the right place. This article will teach you everything you need to know about hypotheses, including: 

  • Defining the term “hypothesis” 
  • Providing hypothesis examples 
  • Giving you tips for how to write your own hypothesis

So let’s get started!

body-picture-ask-sign

What Is a Hypothesis?

Merriam Webster defines a hypothesis as “an assumption or concession made for the sake of argument.” In other words, a hypothesis is an educated guess . Scientists make a reasonable assumption--or a hypothesis--then design an experiment to test whether it’s true or not. Keep in mind that in science, a hypothesis should be testable. You have to be able to design an experiment that tests your hypothesis in order for it to be valid. 

As you could assume from that statement, it’s easy to make a bad hypothesis. But when you’re holding an experiment, it’s even more important that your guesses be good...after all, you’re spending time (and maybe money!) to figure out more about your observation. That’s why we refer to a hypothesis as an educated guess--good hypotheses are based on existing data and research to make them as sound as possible.

Hypotheses are one part of what’s called the scientific method .  Every (good) experiment or study is based in the scientific method. The scientific method gives order and structure to experiments and ensures that interference from scientists or outside influences does not skew the results. It’s important that you understand the concepts of the scientific method before holding your own experiment. Though it may vary among scientists, the scientific method is generally made up of six steps (in order):

  • Observation
  • Asking questions
  • Forming a hypothesis
  • Analyze the data
  • Communicate your results

You’ll notice that the hypothesis comes pretty early on when conducting an experiment. That’s because experiments work best when they’re trying to answer one specific question. And you can’t conduct an experiment until you know what you’re trying to prove!

Independent and Dependent Variables 

After doing your research, you’re ready for another important step in forming your hypothesis: identifying variables. Variables are basically any factor that could influence the outcome of your experiment . Variables have to be measurable and related to the topic being studied.

There are two types of variables:  independent variables and dependent variables. I ndependent variables remain constant . For example, age is an independent variable; it will stay the same, and researchers can look at different ages to see if it has an effect on the dependent variable. 

Speaking of dependent variables... dependent variables are subject to the influence of the independent variable , meaning that they are not constant. Let’s say you want to test whether a person’s age affects how much sleep they need. In that case, the independent variable is age (like we mentioned above), and the dependent variable is how much sleep a person gets. 

Variables will be crucial in writing your hypothesis. You need to be able to identify which variable is which, as both the independent and dependent variables will be written into your hypothesis. For instance, in a study about exercise, the independent variable might be the speed at which the respondents walk for thirty minutes, and the dependent variable would be their heart rate. In your study and in your hypothesis, you’re trying to understand the relationship between the two variables.

Elements of a Good Hypothesis

The best hypotheses start by asking the right questions . For instance, if you’ve observed that the grass is greener when it rains twice a week, you could ask what kind of grass it is, what elevation it’s at, and if the grass across the street responds to rain in the same way. Any of these questions could become the backbone of experiments to test why the grass gets greener when it rains fairly frequently.

As you’re asking more questions about your first observation, make sure you’re also making more observations . If it doesn’t rain for two weeks and the grass still looks green, that’s an important observation that could influence your hypothesis. You'll continue observing all throughout your experiment, but until the hypothesis is finalized, every observation should be noted.

Finally, you should consult secondary research before writing your hypothesis . Secondary research is comprised of results found and published by other people. You can usually find this information online or at your library. Additionally, m ake sure the research you find is credible and related to your topic. If you’re studying the correlation between rain and grass growth, it would help you to research rain patterns over the past twenty years for your county, published by a local agricultural association. You should also research the types of grass common in your area, the type of grass in your lawn, and whether anyone else has conducted experiments about your hypothesis. Also be sure you’re checking the quality of your research . Research done by a middle school student about what minerals can be found in rainwater would be less useful than an article published by a local university.

body-pencil-notebook-writing

Writing Your Hypothesis

Once you’ve considered all of the factors above, you’re ready to start writing your hypothesis. Hypotheses usually take a certain form when they’re written out in a research report.

When you boil down your hypothesis statement, you are writing down your best guess and not the question at hand . This means that your statement should be written as if it is fact already, even though you are simply testing it.

The reason for this is that, after you have completed your study, you'll either accept or reject your if-then or your null hypothesis. All hypothesis testing examples should be measurable and able to be confirmed or denied. You cannot confirm a question, only a statement! 

In fact, you come up with hypothesis examples all the time! For instance, when you guess on the outcome of a basketball game, you don’t say, “Will the Miami Heat beat the Boston Celtics?” but instead, “I think the Miami Heat will beat the Boston Celtics.” You state it as if it is already true, even if it turns out you’re wrong. You do the same thing when writing your hypothesis.

Additionally, keep in mind that hypotheses can range from very specific to very broad.  These hypotheses can be specific, but if your hypothesis testing examples involve a broad range of causes and effects, your hypothesis can also be broad.  

body-hand-number-two

The Two Types of Hypotheses

Now that you understand what goes into a hypothesis, it’s time to look more closely at the two most common types of hypothesis: the if-then hypothesis and the null hypothesis.

#1: If-Then Hypotheses

First of all, if-then hypotheses typically follow this formula:

If ____ happens, then ____ will happen.

The goal of this type of hypothesis is to test the causal relationship between the independent and dependent variable. It’s fairly simple, and each hypothesis can vary in how detailed it can be. We create if-then hypotheses all the time with our daily predictions. Here are some examples of hypotheses that use an if-then structure from daily life: 

  • If I get enough sleep, I’ll be able to get more work done tomorrow.
  • If the bus is on time, I can make it to my friend’s birthday party. 
  • If I study every night this week, I’ll get a better grade on my exam. 

In each of these situations, you’re making a guess on how an independent variable (sleep, time, or studying) will affect a dependent variable (the amount of work you can do, making it to a party on time, or getting better grades). 

You may still be asking, “What is an example of a hypothesis used in scientific research?” Take one of the hypothesis examples from a real-world study on whether using technology before bed affects children’s sleep patterns. The hypothesis read s:

“We hypothesized that increased hours of tablet- and phone-based screen time at bedtime would be inversely correlated with sleep quality and child attention.”

It might not look like it, but this is an if-then statement. The researchers basically said, “If children have more screen usage at bedtime, then their quality of sleep and attention will be worse.” The sleep quality and attention are the dependent variables and the screen usage is the independent variable. (Usually, the independent variable comes after the “if” and the dependent variable comes after the “then,” as it is the independent variable that affects the dependent variable.) This is an excellent example of how flexible hypothesis statements can be, as long as the general idea of “if-then” and the independent and dependent variables are present.

#2: Null Hypotheses

Your if-then hypothesis is not the only one needed to complete a successful experiment, however. You also need a null hypothesis to test it against. In its most basic form, the null hypothesis is the opposite of your if-then hypothesis . When you write your null hypothesis, you are writing a hypothesis that suggests that your guess is not true, and that the independent and dependent variables have no relationship .

One null hypothesis for the cell phone and sleep study from the last section might say: 

“If children have more screen usage at bedtime, their quality of sleep and attention will not be worse.” 

In this case, this is a null hypothesis because it’s asking the opposite of the original thesis! 

Conversely, if your if-then hypothesis suggests that your two variables have no relationship, then your null hypothesis would suggest that there is one. So, pretend that there is a study that is asking the question, “Does the amount of followers on Instagram influence how long people spend on the app?” The independent variable is the amount of followers, and the dependent variable is the time spent. But if you, as the researcher, don’t think there is a relationship between the number of followers and time spent, you might write an if-then hypothesis that reads:

“If people have many followers on Instagram, they will not spend more time on the app than people who have less.”

In this case, the if-then suggests there isn’t a relationship between the variables. In that case, one of the null hypothesis examples might say:

“If people have many followers on Instagram, they will spend more time on the app than people who have less.”

You then test both the if-then and the null hypothesis to gauge if there is a relationship between the variables, and if so, how much of a relationship. 

feature_tips

4 Tips to Write the Best Hypothesis

If you’re going to take the time to hold an experiment, whether in school or by yourself, you’re also going to want to take the time to make sure your hypothesis is a good one. The best hypotheses have four major elements in common: plausibility, defined concepts, observability, and general explanation.

#1: Plausibility

At first glance, this quality of a hypothesis might seem obvious. When your hypothesis is plausible, that means it’s possible given what we know about science and general common sense. However, improbable hypotheses are more common than you might think. 

Imagine you’re studying weight gain and television watching habits. If you hypothesize that people who watch more than  twenty hours of television a week will gain two hundred pounds or more over the course of a year, this might be improbable (though it’s potentially possible). Consequently, c ommon sense can tell us the results of the study before the study even begins.

Improbable hypotheses generally go against  science, as well. Take this hypothesis example: 

“If a person smokes one cigarette a day, then they will have lungs just as healthy as the average person’s.” 

This hypothesis is obviously untrue, as studies have shown again and again that cigarettes negatively affect lung health. You must be careful that your hypotheses do not reflect your own personal opinion more than they do scientifically-supported findings. This plausibility points to the necessity of research before the hypothesis is written to make sure that your hypothesis has not already been disproven.

#2: Defined Concepts

The more advanced you are in your studies, the more likely that the terms you’re using in your hypothesis are specific to a limited set of knowledge. One of the hypothesis testing examples might include the readability of printed text in newspapers, where you might use words like “kerning” and “x-height.” Unless your readers have a background in graphic design, it’s likely that they won’t know what you mean by these terms. Thus, it’s important to either write what they mean in the hypothesis itself or in the report before the hypothesis.

Here’s what we mean. Which of the following sentences makes more sense to the common person?

If the kerning is greater than average, more words will be read per minute.

If the space between letters is greater than average, more words will be read per minute.

For people reading your report that are not experts in typography, simply adding a few more words will be helpful in clarifying exactly what the experiment is all about. It’s always a good idea to make your research and findings as accessible as possible. 

body-blue-eye

Good hypotheses ensure that you can observe the results. 

#3: Observability

In order to measure the truth or falsity of your hypothesis, you must be able to see your variables and the way they interact. For instance, if your hypothesis is that the flight patterns of satellites affect the strength of certain television signals, yet you don’t have a telescope to view the satellites or a television to monitor the signal strength, you cannot properly observe your hypothesis and thus cannot continue your study.

Some variables may seem easy to observe, but if you do not have a system of measurement in place, you cannot observe your hypothesis properly. Here’s an example: if you’re experimenting on the effect of healthy food on overall happiness, but you don’t have a way to monitor and measure what “overall happiness” means, your results will not reflect the truth. Monitoring how often someone smiles for a whole day is not reasonably observable, but having the participants state how happy they feel on a scale of one to ten is more observable. 

In writing your hypothesis, always keep in mind how you'll execute the experiment.

#4: Generalizability 

Perhaps you’d like to study what color your best friend wears the most often by observing and documenting the colors she wears each day of the week. This might be fun information for her and you to know, but beyond you two, there aren’t many people who could benefit from this experiment. When you start an experiment, you should note how generalizable your findings may be if they are confirmed. Generalizability is basically how common a particular phenomenon is to other people’s everyday life.

Let’s say you’re asking a question about the health benefits of eating an apple for one day only, you need to realize that the experiment may be too specific to be helpful. It does not help to explain a phenomenon that many people experience. If you find yourself with too specific of a hypothesis, go back to asking the big question: what is it that you want to know, and what do you think will happen between your two variables?

body-experiment-chemistry

Hypothesis Testing Examples

We know it can be hard to write a good hypothesis unless you’ve seen some good hypothesis examples. We’ve included four hypothesis examples based on some made-up experiments. Use these as templates or launch pads for coming up with your own hypotheses.

Experiment #1: Students Studying Outside (Writing a Hypothesis)

You are a student at PrepScholar University. When you walk around campus, you notice that, when the temperature is above 60 degrees, more students study in the quad. You want to know when your fellow students are more likely to study outside. With this information, how do you make the best hypothesis possible?

You must remember to make additional observations and do secondary research before writing your hypothesis. In doing so, you notice that no one studies outside when it’s 75 degrees and raining, so this should be included in your experiment. Also, studies done on the topic beforehand suggested that students are more likely to study in temperatures less than 85 degrees. With this in mind, you feel confident that you can identify your variables and write your hypotheses:

If-then: “If the temperature in Fahrenheit is less than 60 degrees, significantly fewer students will study outside.”

Null: “If the temperature in Fahrenheit is less than 60 degrees, the same number of students will study outside as when it is more than 60 degrees.”

These hypotheses are plausible, as the temperatures are reasonably within the bounds of what is possible. The number of people in the quad is also easily observable. It is also not a phenomenon specific to only one person or at one time, but instead can explain a phenomenon for a broader group of people.

To complete this experiment, you pick the month of October to observe the quad. Every day (except on the days where it’s raining)from 3 to 4 PM, when most classes have released for the day, you observe how many people are on the quad. You measure how many people come  and how many leave. You also write down the temperature on the hour. 

After writing down all of your observations and putting them on a graph, you find that the most students study on the quad when it is 70 degrees outside, and that the number of students drops a lot once the temperature reaches 60 degrees or below. In this case, your research report would state that you accept or “failed to reject” your first hypothesis with your findings.

Experiment #2: The Cupcake Store (Forming a Simple Experiment)

Let’s say that you work at a bakery. You specialize in cupcakes, and you make only two colors of frosting: yellow and purple. You want to know what kind of customers are more likely to buy what kind of cupcake, so you set up an experiment. Your independent variable is the customer’s gender, and the dependent variable is the color of the frosting. What is an example of a hypothesis that might answer the question of this study?

Here’s what your hypotheses might look like: 

If-then: “If customers’ gender is female, then they will buy more yellow cupcakes than purple cupcakes.”

Null: “If customers’ gender is female, then they will be just as likely to buy purple cupcakes as yellow cupcakes.”

This is a pretty simple experiment! It passes the test of plausibility (there could easily be a difference), defined concepts (there’s nothing complicated about cupcakes!), observability (both color and gender can be easily observed), and general explanation ( this would potentially help you make better business decisions ).

body-bird-feeder

Experiment #3: Backyard Bird Feeders (Integrating Multiple Variables and Rejecting the If-Then Hypothesis)

While watching your backyard bird feeder, you realized that different birds come on the days when you change the types of seeds. You decide that you want to see more cardinals in your backyard, so you decide to see what type of food they like the best and set up an experiment. 

However, one morning, you notice that, while some cardinals are present, blue jays are eating out of your backyard feeder filled with millet. You decide that, of all of the other birds, you would like to see the blue jays the least. This means you'll have more than one variable in your hypothesis. Your new hypotheses might look like this: 

If-then: “If sunflower seeds are placed in the bird feeders, then more cardinals will come than blue jays. If millet is placed in the bird feeders, then more blue jays will come than cardinals.”

Null: “If either sunflower seeds or millet are placed in the bird, equal numbers of cardinals and blue jays will come.”

Through simple observation, you actually find that cardinals come as often as blue jays when sunflower seeds or millet is in the bird feeder. In this case, you would reject your “if-then” hypothesis and “fail to reject” your null hypothesis . You cannot accept your first hypothesis, because it’s clearly not true. Instead you found that there was actually no relation between your different variables. Consequently, you would need to run more experiments with different variables to see if the new variables impact the results.

Experiment #4: In-Class Survey (Including an Alternative Hypothesis)

You’re about to give a speech in one of your classes about the importance of paying attention. You want to take this opportunity to test a hypothesis you’ve had for a while: 

If-then: If students sit in the first two rows of the classroom, then they will listen better than students who do not.

Null: If students sit in the first two rows of the classroom, then they will not listen better or worse than students who do not.

You give your speech and then ask your teacher if you can hand out a short survey to the class. On the survey, you’ve included questions about some of the topics you talked about. When you get back the results, you’re surprised to see that not only do the students in the first two rows not pay better attention, but they also scored worse than students in other parts of the classroom! Here, both your if-then and your null hypotheses are not representative of your findings. What do you do?

This is when you reject both your if-then and null hypotheses and instead create an alternative hypothesis . This type of hypothesis is used in the rare circumstance that neither of your hypotheses is able to capture your findings . Now you can use what you’ve learned to draft new hypotheses and test again! 

Key Takeaways: Hypothesis Writing

The more comfortable you become with writing hypotheses, the better they will become. The structure of hypotheses is flexible and may need to be changed depending on what topic you are studying. The most important thing to remember is the purpose of your hypothesis and the difference between the if-then and the null . From there, in forming your hypothesis, you should constantly be asking questions, making observations, doing secondary research, and considering your variables. After you have written your hypothesis, be sure to edit it so that it is plausible, clearly defined, observable, and helpful in explaining a general phenomenon.

Writing a hypothesis is something that everyone, from elementary school children competing in a science fair to professional scientists in a lab, needs to know how to do. Hypotheses are vital in experiments and in properly executing the scientific method . When done correctly, hypotheses will set up your studies for success and help you to understand the world a little better, one experiment at a time.

body-whats-next-post-it-note

What’s Next?

If you’re studying for the science portion of the ACT, there’s definitely a lot you need to know. We’ve got the tools to help, though! Start by checking out our ultimate study guide for the ACT Science subject test. Once you read through that, be sure to download our recommended ACT Science practice tests , since they’re one of the most foolproof ways to improve your score. (And don’t forget to check out our expert guide book , too.)

If you love science and want to major in a scientific field, you should start preparing in high school . Here are the science classes you should take to set yourself up for success.

If you’re trying to think of science experiments you can do for class (or for a science fair!), here’s a list of 37 awesome science experiments you can do at home

author image

Ashley Sufflé Robinson has a Ph.D. in 19th Century English Literature. As a content writer for PrepScholar, Ashley is passionate about giving college-bound students the in-depth information they need to get into the school of their dreams.

Student and Parent Forum

Our new student and parent forum, at ExpertHub.PrepScholar.com , allow you to interact with your peers and the PrepScholar staff. See how other students and parents are navigating high school, college, and the college admissions process. Ask questions; get answers.

Join the Conversation

Ask a Question Below

Have any questions about this article or other topics? Ask below and we'll reply!

Improve With Our Famous Guides

  • For All Students

The 5 Strategies You Must Be Using to Improve 160+ SAT Points

How to Get a Perfect 1600, by a Perfect Scorer

Series: How to Get 800 on Each SAT Section:

Score 800 on SAT Math

Score 800 on SAT Reading

Score 800 on SAT Writing

Series: How to Get to 600 on Each SAT Section:

Score 600 on SAT Math

Score 600 on SAT Reading

Score 600 on SAT Writing

Free Complete Official SAT Practice Tests

What SAT Target Score Should You Be Aiming For?

15 Strategies to Improve Your SAT Essay

The 5 Strategies You Must Be Using to Improve 4+ ACT Points

How to Get a Perfect 36 ACT, by a Perfect Scorer

Series: How to Get 36 on Each ACT Section:

36 on ACT English

36 on ACT Math

36 on ACT Reading

36 on ACT Science

Series: How to Get to 24 on Each ACT Section:

24 on ACT English

24 on ACT Math

24 on ACT Reading

24 on ACT Science

What ACT target score should you be aiming for?

ACT Vocabulary You Must Know

ACT Writing: 15 Tips to Raise Your Essay Score

How to Get Into Harvard and the Ivy League

How to Get a Perfect 4.0 GPA

How to Write an Amazing College Essay

What Exactly Are Colleges Looking For?

Is the ACT easier than the SAT? A Comprehensive Guide

Should you retake your SAT or ACT?

When should you take the SAT or ACT?

Stay Informed

true statement about hypothesis

Get the latest articles and test prep tips!

Looking for Graduate School Test Prep?

Check out our top-rated graduate blogs here:

GRE Online Prep Blog

GMAT Online Prep Blog

TOEFL Online Prep Blog

Holly R. "I am absolutely overjoyed and cannot thank you enough for helping me!”

Research Hypothesis In Psychology: Types, & Examples

Saul Mcleod, PhD

Editor-in-Chief for Simply Psychology

BSc (Hons) Psychology, MRes, PhD, University of Manchester

Saul Mcleod, PhD., is a qualified psychology teacher with over 18 years of experience in further and higher education. He has been published in peer-reviewed journals, including the Journal of Clinical Psychology.

Learn about our Editorial Process

Olivia Guy-Evans, MSc

Associate Editor for Simply Psychology

BSc (Hons) Psychology, MSc Psychology of Education

Olivia Guy-Evans is a writer and associate editor for Simply Psychology. She has previously worked in healthcare and educational sectors.

On This Page:

A research hypothesis, in its plural form “hypotheses,” is a specific, testable prediction about the anticipated results of a study, established at its outset. It is a key component of the scientific method .

Hypotheses connect theory to data and guide the research process towards expanding scientific understanding

Some key points about hypotheses:

  • A hypothesis expresses an expected pattern or relationship. It connects the variables under investigation.
  • It is stated in clear, precise terms before any data collection or analysis occurs. This makes the hypothesis testable.
  • A hypothesis must be falsifiable. It should be possible, even if unlikely in practice, to collect data that disconfirms rather than supports the hypothesis.
  • Hypotheses guide research. Scientists design studies to explicitly evaluate hypotheses about how nature works.
  • For a hypothesis to be valid, it must be testable against empirical evidence. The evidence can then confirm or disprove the testable predictions.
  • Hypotheses are informed by background knowledge and observation, but go beyond what is already known to propose an explanation of how or why something occurs.
Predictions typically arise from a thorough knowledge of the research literature, curiosity about real-world problems or implications, and integrating this to advance theory. They build on existing literature while providing new insight.

Types of Research Hypotheses

Alternative hypothesis.

The research hypothesis is often called the alternative or experimental hypothesis in experimental research.

It typically suggests a potential relationship between two key variables: the independent variable, which the researcher manipulates, and the dependent variable, which is measured based on those changes.

The alternative hypothesis states a relationship exists between the two variables being studied (one variable affects the other).

A hypothesis is a testable statement or prediction about the relationship between two or more variables. It is a key component of the scientific method. Some key points about hypotheses:

  • Important hypotheses lead to predictions that can be tested empirically. The evidence can then confirm or disprove the testable predictions.

In summary, a hypothesis is a precise, testable statement of what researchers expect to happen in a study and why. Hypotheses connect theory to data and guide the research process towards expanding scientific understanding.

An experimental hypothesis predicts what change(s) will occur in the dependent variable when the independent variable is manipulated.

It states that the results are not due to chance and are significant in supporting the theory being investigated.

The alternative hypothesis can be directional, indicating a specific direction of the effect, or non-directional, suggesting a difference without specifying its nature. It’s what researchers aim to support or demonstrate through their study.

Null Hypothesis

The null hypothesis states no relationship exists between the two variables being studied (one variable does not affect the other). There will be no changes in the dependent variable due to manipulating the independent variable.

It states results are due to chance and are not significant in supporting the idea being investigated.

The null hypothesis, positing no effect or relationship, is a foundational contrast to the research hypothesis in scientific inquiry. It establishes a baseline for statistical testing, promoting objectivity by initiating research from a neutral stance.

Many statistical methods are tailored to test the null hypothesis, determining the likelihood of observed results if no true effect exists.

This dual-hypothesis approach provides clarity, ensuring that research intentions are explicit, and fosters consistency across scientific studies, enhancing the standardization and interpretability of research outcomes.

Nondirectional Hypothesis

A non-directional hypothesis, also known as a two-tailed hypothesis, predicts that there is a difference or relationship between two variables but does not specify the direction of this relationship.

It merely indicates that a change or effect will occur without predicting which group will have higher or lower values.

For example, “There is a difference in performance between Group A and Group B” is a non-directional hypothesis.

Directional Hypothesis

A directional (one-tailed) hypothesis predicts the nature of the effect of the independent variable on the dependent variable. It predicts in which direction the change will take place. (i.e., greater, smaller, less, more)

It specifies whether one variable is greater, lesser, or different from another, rather than just indicating that there’s a difference without specifying its nature.

For example, “Exercise increases weight loss” is a directional hypothesis.

hypothesis

Falsifiability

The Falsification Principle, proposed by Karl Popper , is a way of demarcating science from non-science. It suggests that for a theory or hypothesis to be considered scientific, it must be testable and irrefutable.

Falsifiability emphasizes that scientific claims shouldn’t just be confirmable but should also have the potential to be proven wrong.

It means that there should exist some potential evidence or experiment that could prove the proposition false.

However many confirming instances exist for a theory, it only takes one counter observation to falsify it. For example, the hypothesis that “all swans are white,” can be falsified by observing a black swan.

For Popper, science should attempt to disprove a theory rather than attempt to continually provide evidence to support a research hypothesis.

Can a Hypothesis be Proven?

Hypotheses make probabilistic predictions. They state the expected outcome if a particular relationship exists. However, a study result supporting a hypothesis does not definitively prove it is true.

All studies have limitations. There may be unknown confounding factors or issues that limit the certainty of conclusions. Additional studies may yield different results.

In science, hypotheses can realistically only be supported with some degree of confidence, not proven. The process of science is to incrementally accumulate evidence for and against hypothesized relationships in an ongoing pursuit of better models and explanations that best fit the empirical data. But hypotheses remain open to revision and rejection if that is where the evidence leads.
  • Disproving a hypothesis is definitive. Solid disconfirmatory evidence will falsify a hypothesis and require altering or discarding it based on the evidence.
  • However, confirming evidence is always open to revision. Other explanations may account for the same results, and additional or contradictory evidence may emerge over time.

We can never 100% prove the alternative hypothesis. Instead, we see if we can disprove, or reject the null hypothesis.

If we reject the null hypothesis, this doesn’t mean that our alternative hypothesis is correct but does support the alternative/experimental hypothesis.

Upon analysis of the results, an alternative hypothesis can be rejected or supported, but it can never be proven to be correct. We must avoid any reference to results proving a theory as this implies 100% certainty, and there is always a chance that evidence may exist which could refute a theory.

How to Write a Hypothesis

  • Identify variables . The researcher manipulates the independent variable and the dependent variable is the measured outcome.
  • Operationalized the variables being investigated . Operationalization of a hypothesis refers to the process of making the variables physically measurable or testable, e.g. if you are about to study aggression, you might count the number of punches given by participants.
  • Decide on a direction for your prediction . If there is evidence in the literature to support a specific effect of the independent variable on the dependent variable, write a directional (one-tailed) hypothesis. If there are limited or ambiguous findings in the literature regarding the effect of the independent variable on the dependent variable, write a non-directional (two-tailed) hypothesis.
  • Make it Testable : Ensure your hypothesis can be tested through experimentation or observation. It should be possible to prove it false (principle of falsifiability).
  • Clear & concise language . A strong hypothesis is concise (typically one to two sentences long), and formulated using clear and straightforward language, ensuring it’s easily understood and testable.

Consider a hypothesis many teachers might subscribe to: students work better on Monday morning than on Friday afternoon (IV=Day, DV= Standard of work).

Now, if we decide to study this by giving the same group of students a lesson on a Monday morning and a Friday afternoon and then measuring their immediate recall of the material covered in each session, we would end up with the following:

  • The alternative hypothesis states that students will recall significantly more information on a Monday morning than on a Friday afternoon.
  • The null hypothesis states that there will be no significant difference in the amount recalled on a Monday morning compared to a Friday afternoon. Any difference will be due to chance or confounding factors.

More Examples

  • Memory : Participants exposed to classical music during study sessions will recall more items from a list than those who studied in silence.
  • Social Psychology : Individuals who frequently engage in social media use will report higher levels of perceived social isolation compared to those who use it infrequently.
  • Developmental Psychology : Children who engage in regular imaginative play have better problem-solving skills than those who don’t.
  • Clinical Psychology : Cognitive-behavioral therapy will be more effective in reducing symptoms of anxiety over a 6-month period compared to traditional talk therapy.
  • Cognitive Psychology : Individuals who multitask between various electronic devices will have shorter attention spans on focused tasks than those who single-task.
  • Health Psychology : Patients who practice mindfulness meditation will experience lower levels of chronic pain compared to those who don’t meditate.
  • Organizational Psychology : Employees in open-plan offices will report higher levels of stress than those in private offices.
  • Behavioral Psychology : Rats rewarded with food after pressing a lever will press it more frequently than rats who receive no reward.

Print Friendly, PDF & Email

Grad Coach

What Is A Research (Scientific) Hypothesis? A plain-language explainer + examples

By:  Derek Jansen (MBA)  | Reviewed By: Dr Eunice Rautenbach | June 2020

If you’re new to the world of research, or it’s your first time writing a dissertation or thesis, you’re probably noticing that the words “research hypothesis” and “scientific hypothesis” are used quite a bit, and you’re wondering what they mean in a research context .

“Hypothesis” is one of those words that people use loosely, thinking they understand what it means. However, it has a very specific meaning within academic research. So, it’s important to understand the exact meaning before you start hypothesizing. 

Research Hypothesis 101

  • What is a hypothesis ?
  • What is a research hypothesis (scientific hypothesis)?
  • Requirements for a research hypothesis
  • Definition of a research hypothesis
  • The null hypothesis

What is a hypothesis?

Let’s start with the general definition of a hypothesis (not a research hypothesis or scientific hypothesis), according to the Cambridge Dictionary:

Hypothesis: an idea or explanation for something that is based on known facts but has not yet been proved.

In other words, it’s a statement that provides an explanation for why or how something works, based on facts (or some reasonable assumptions), but that has not yet been specifically tested . For example, a hypothesis might look something like this:

Hypothesis: sleep impacts academic performance.

This statement predicts that academic performance will be influenced by the amount and/or quality of sleep a student engages in – sounds reasonable, right? It’s based on reasonable assumptions , underpinned by what we currently know about sleep and health (from the existing literature). So, loosely speaking, we could call it a hypothesis, at least by the dictionary definition.

But that’s not good enough…

Unfortunately, that’s not quite sophisticated enough to describe a research hypothesis (also sometimes called a scientific hypothesis), and it wouldn’t be acceptable in a dissertation, thesis or research paper . In the world of academic research, a statement needs a few more criteria to constitute a true research hypothesis .

What is a research hypothesis?

A research hypothesis (also called a scientific hypothesis) is a statement about the expected outcome of a study (for example, a dissertation or thesis). To constitute a quality hypothesis, the statement needs to have three attributes – specificity , clarity and testability .

Let’s take a look at these more closely.

Need a helping hand?

true statement about hypothesis

Hypothesis Essential #1: Specificity & Clarity

A good research hypothesis needs to be extremely clear and articulate about both what’ s being assessed (who or what variables are involved ) and the expected outcome (for example, a difference between groups, a relationship between variables, etc.).

Let’s stick with our sleepy students example and look at how this statement could be more specific and clear.

Hypothesis: Students who sleep at least 8 hours per night will, on average, achieve higher grades in standardised tests than students who sleep less than 8 hours a night.

As you can see, the statement is very specific as it identifies the variables involved (sleep hours and test grades), the parties involved (two groups of students), as well as the predicted relationship type (a positive relationship). There’s no ambiguity or uncertainty about who or what is involved in the statement, and the expected outcome is clear.

Contrast that to the original hypothesis we looked at – “Sleep impacts academic performance” – and you can see the difference. “Sleep” and “academic performance” are both comparatively vague , and there’s no indication of what the expected relationship direction is (more sleep or less sleep). As you can see, specificity and clarity are key.

A good research hypothesis needs to be very clear about what’s being assessed and very specific about the expected outcome.

Hypothesis Essential #2: Testability (Provability)

A statement must be testable to qualify as a research hypothesis. In other words, there needs to be a way to prove (or disprove) the statement. If it’s not testable, it’s not a hypothesis – simple as that.

For example, consider the hypothesis we mentioned earlier:

Hypothesis: Students who sleep at least 8 hours per night will, on average, achieve higher grades in standardised tests than students who sleep less than 8 hours a night.  

We could test this statement by undertaking a quantitative study involving two groups of students, one that gets 8 or more hours of sleep per night for a fixed period, and one that gets less. We could then compare the standardised test results for both groups to see if there’s a statistically significant difference. 

Again, if you compare this to the original hypothesis we looked at – “Sleep impacts academic performance” – you can see that it would be quite difficult to test that statement, primarily because it isn’t specific enough. How much sleep? By who? What type of academic performance?

So, remember the mantra – if you can’t test it, it’s not a hypothesis 🙂

A good research hypothesis must be testable. In other words, you must able to collect observable data in a scientifically rigorous fashion to test it.

Defining A Research Hypothesis

You’re still with us? Great! Let’s recap and pin down a clear definition of a hypothesis.

A research hypothesis (or scientific hypothesis) is a statement about an expected relationship between variables, or explanation of an occurrence, that is clear, specific and testable.

So, when you write up hypotheses for your dissertation or thesis, make sure that they meet all these criteria. If you do, you’ll not only have rock-solid hypotheses but you’ll also ensure a clear focus for your entire research project.

What about the null hypothesis?

You may have also heard the terms null hypothesis , alternative hypothesis, or H-zero thrown around. At a simple level, the null hypothesis is the counter-proposal to the original hypothesis.

For example, if the hypothesis predicts that there is a relationship between two variables (for example, sleep and academic performance), the null hypothesis would predict that there is no relationship between those variables.

At a more technical level, the null hypothesis proposes that no statistical significance exists in a set of given observations and that any differences are due to chance alone.

And there you have it – hypotheses in a nutshell. 

If you have any questions, be sure to leave a comment below and we’ll do our best to help you. If you need hands-on help developing and testing your hypotheses, consider our private coaching service , where we hold your hand through the research journey.

true statement about hypothesis

Psst... there’s more!

This post was based on one of our popular Research Bootcamps . If you're working on a research project, you'll definitely want to check this out ...

You Might Also Like:

Research limitations vs delimitations

16 Comments

Lynnet Chikwaikwai

Very useful information. I benefit more from getting more information in this regard.

Dr. WuodArek

Very great insight,educative and informative. Please give meet deep critics on many research data of public international Law like human rights, environment, natural resources, law of the sea etc

Afshin

In a book I read a distinction is made between null, research, and alternative hypothesis. As far as I understand, alternative and research hypotheses are the same. Can you please elaborate? Best Afshin

GANDI Benjamin

This is a self explanatory, easy going site. I will recommend this to my friends and colleagues.

Lucile Dossou-Yovo

Very good definition. How can I cite your definition in my thesis? Thank you. Is nul hypothesis compulsory in a research?

Pereria

It’s a counter-proposal to be proven as a rejection

Egya Salihu

Please what is the difference between alternate hypothesis and research hypothesis?

Mulugeta Tefera

It is a very good explanation. However, it limits hypotheses to statistically tasteable ideas. What about for qualitative researches or other researches that involve quantitative data that don’t need statistical tests?

Derek Jansen

In qualitative research, one typically uses propositions, not hypotheses.

Samia

could you please elaborate it more

Patricia Nyawir

I’ve benefited greatly from these notes, thank you.

Hopeson Khondiwa

This is very helpful

Dr. Andarge

well articulated ideas are presented here, thank you for being reliable sources of information

TAUNO

Excellent. Thanks for being clear and sound about the research methodology and hypothesis (quantitative research)

I have only a simple question regarding the null hypothesis. – Is the null hypothesis (Ho) known as the reversible hypothesis of the alternative hypothesis (H1? – How to test it in academic research?

Tesfaye Negesa Urge

this is very important note help me much more

Trackbacks/Pingbacks

  • What Is Research Methodology? Simple Definition (With Examples) - Grad Coach - […] Contrasted to this, a quantitative methodology is typically used when the research aims and objectives are confirmatory in nature. For example,…

Submit a Comment Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

  • Print Friendly

true statement about hypothesis

User Preferences

Content preview.

Arcu felis bibendum ut tristique et egestas quis:

  • Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris
  • Duis aute irure dolor in reprehenderit in voluptate
  • Excepteur sint occaecat cupidatat non proident

Keyboard Shortcuts

6a.1 - introduction to hypothesis testing, basic terms section  .

The first step in hypothesis testing is to set up two competing hypotheses. The hypotheses are the most important aspect. If the hypotheses are incorrect, your conclusion will also be incorrect.

The two hypotheses are named the null hypothesis and the alternative hypothesis.

The goal of hypothesis testing is to see if there is enough evidence against the null hypothesis. In other words, to see if there is enough evidence to reject the null hypothesis. If there is not enough evidence, then we fail to reject the null hypothesis.

Consider the following example where we set up these hypotheses.

Example 6-1 Section  

A man, Mr. Orangejuice, goes to trial and is tried for the murder of his ex-wife. He is either guilty or innocent. Set up the null and alternative hypotheses for this example.

Putting this in a hypothesis testing framework, the hypotheses being tested are:

  • The man is guilty
  • The man is innocent

Let's set up the null and alternative hypotheses.

\(H_0\colon \) Mr. Orangejuice is innocent

\(H_a\colon \) Mr. Orangejuice is guilty

Remember that we assume the null hypothesis is true and try to see if we have evidence against the null. Therefore, it makes sense in this example to assume the man is innocent and test to see if there is evidence that he is guilty.

The Logic of Hypothesis Testing Section  

We want to know the answer to a research question. We determine our null and alternative hypotheses. Now it is time to make a decision.

The decision is either going to be...

  • reject the null hypothesis or...
  • fail to reject the null hypothesis.

Consider the following table. The table shows the decision/conclusion of the hypothesis test and the unknown "reality", or truth. We do not know if the null is true or if it is false. If the null is false and we reject it, then we made the correct decision. If the null hypothesis is true and we fail to reject it, then we made the correct decision.

So what happens when we do not make the correct decision?

When doing hypothesis testing, two types of mistakes may be made and we call them Type I error and Type II error. If we reject the null hypothesis when it is true, then we made a type I error. If the null hypothesis is false and we failed to reject it, we made another error called a Type II error.

Types of errors

The “reality”, or truth, about the null hypothesis is unknown and therefore we do not know if we have made the correct decision or if we committed an error. We can, however, define the likelihood of these events.

\(\alpha\) and \(\beta\) are probabilities of committing an error so we want these values to be low. However, we cannot decrease both. As \(\alpha\) decreases, \(\beta\) increases.

Example 6-1 Cont'd... Section  

A man, Mr. Orangejuice, goes to trial and is tried for the murder of his ex-wife. He is either guilty or not guilty. We found before that...

  • \( H_0\colon \) Mr. Orangejuice is innocent
  • \( H_a\colon \) Mr. Orangejuice is guilty

Interpret Type I error, \(\alpha \), Type II error, \(\beta \).

As you can see here, the Type I error (putting an innocent man in jail) is the more serious error. Ethically, it is more serious to put an innocent man in jail than to let a guilty man go free. So to minimize the probability of a type I error we would choose a smaller significance level.

Try it! Section  

An inspector has to choose between certifying a building as safe or saying that the building is not safe. There are two hypotheses:

  • Building is safe
  • Building is not safe

Set up the null and alternative hypotheses. Interpret Type I and Type II error.

\( H_0\colon\) Building is not safe vs \(H_a\colon \) Building is safe

Power and \(\beta \) are complements of each other. Therefore, they have an inverse relationship, i.e. as one increases, the other decreases.

Library homepage

  • school Campus Bookshelves
  • menu_book Bookshelves
  • perm_media Learning Objects
  • login Login
  • how_to_reg Request Instructor Account
  • hub Instructor Commons
  • Download Page (PDF)
  • Download Full Book (PDF)
  • Periodic Table
  • Physics Constants
  • Scientific Calculator
  • Reference & Cite
  • Tools expand_more
  • Readability

selected template will load here

This action is not available.

Statistics LibreTexts

9.1: Null and Alternative Hypotheses

  • Last updated
  • Save as PDF
  • Page ID 23459

The actual test begins by considering two hypotheses . They are called the null hypothesis and the alternative hypothesis . These hypotheses contain opposing viewpoints.

\(H_0\): The null hypothesis: It is a statement of no difference between the variables—they are not related. This can often be considered the status quo and as a result if you cannot accept the null it requires some action.

\(H_a\): The alternative hypothesis: It is a claim about the population that is contradictory to \(H_0\) and what we conclude when we reject \(H_0\). This is usually what the researcher is trying to prove.

Since the null and alternative hypotheses are contradictory, you must examine evidence to decide if you have enough evidence to reject the null hypothesis or not. The evidence is in the form of sample data.

After you have determined which hypothesis the sample supports, you make a decision. There are two options for a decision. They are "reject \(H_0\)" if the sample information favors the alternative hypothesis or "do not reject \(H_0\)" or "decline to reject \(H_0\)" if the sample information is insufficient to reject the null hypothesis.

\(H_{0}\) always has a symbol with an equal in it. \(H_{a}\) never has a symbol with an equal in it. The choice of symbol depends on the wording of the hypothesis test. However, be aware that many researchers (including one of the co-authors in research work) use = in the null hypothesis, even with > or < as the symbol in the alternative hypothesis. This practice is acceptable because we only make the decision to reject or not reject the null hypothesis.

Example \(\PageIndex{1}\)

  • \(H_{0}\): No more than 30% of the registered voters in Santa Clara County voted in the primary election. \(p \leq 30\)
  • \(H_{a}\): More than 30% of the registered voters in Santa Clara County voted in the primary election. \(p > 30\)

Exercise \(\PageIndex{1}\)

A medical trial is conducted to test whether or not a new medicine reduces cholesterol by 25%. State the null and alternative hypotheses.

  • \(H_{0}\): The drug reduces cholesterol by 25%. \(p = 0.25\)
  • \(H_{a}\): The drug does not reduce cholesterol by 25%. \(p \neq 0.25\)

Example \(\PageIndex{2}\)

We want to test whether the mean GPA of students in American colleges is different from 2.0 (out of 4.0). The null and alternative hypotheses are:

  • \(H_{0}: \mu = 2.0\)
  • \(H_{a}: \mu \neq 2.0\)

Exercise \(\PageIndex{2}\)

We want to test whether the mean height of eighth graders is 66 inches. State the null and alternative hypotheses. Fill in the correct symbol \((=, \neq, \geq, <, \leq, >)\) for the null and alternative hypotheses.

  • \(H_{0}: \mu \_ 66\)
  • \(H_{a}: \mu \_ 66\)
  • \(H_{0}: \mu = 66\)
  • \(H_{a}: \mu \neq 66\)

Example \(\PageIndex{3}\)

We want to test if college students take less than five years to graduate from college, on the average. The null and alternative hypotheses are:

  • \(H_{0}: \mu \geq 5\)
  • \(H_{a}: \mu < 5\)

Exercise \(\PageIndex{3}\)

We want to test if it takes fewer than 45 minutes to teach a lesson plan. State the null and alternative hypotheses. Fill in the correct symbol ( =, ≠, ≥, <, ≤, >) for the null and alternative hypotheses.

  • \(H_{0}: \mu \_ 45\)
  • \(H_{a}: \mu \_ 45\)
  • \(H_{0}: \mu \geq 45\)
  • \(H_{a}: \mu < 45\)

Example \(\PageIndex{4}\)

In an issue of U. S. News and World Report , an article on school standards stated that about half of all students in France, Germany, and Israel take advanced placement exams and a third pass. The same article stated that 6.6% of U.S. students take advanced placement exams and 4.4% pass. Test if the percentage of U.S. students who take advanced placement exams is more than 6.6%. State the null and alternative hypotheses.

  • \(H_{0}: p \leq 0.066\)
  • \(H_{a}: p > 0.066\)

Exercise \(\PageIndex{4}\)

On a state driver’s test, about 40% pass the test on the first try. We want to test if more than 40% pass on the first try. Fill in the correct symbol (\(=, \neq, \geq, <, \leq, >\)) for the null and alternative hypotheses.

  • \(H_{0}: p \_ 0.40\)
  • \(H_{a}: p \_ 0.40\)
  • \(H_{0}: p = 0.40\)
  • \(H_{a}: p > 0.40\)

COLLABORATIVE EXERCISE

Bring to class a newspaper, some news magazines, and some Internet articles . In groups, find articles from which your group can write null and alternative hypotheses. Discuss your hypotheses with the rest of the class.

In a hypothesis test , sample data is evaluated in order to arrive at a decision about some type of claim. If certain conditions about the sample are satisfied, then the claim can be evaluated for a population. In a hypothesis test, we:

  • Evaluate the null hypothesis , typically denoted with \(H_{0}\). The null is not rejected unless the hypothesis test shows otherwise. The null statement must always contain some form of equality \((=, \leq \text{or} \geq)\)
  • Always write the alternative hypothesis , typically denoted with \(H_{a}\) or \(H_{1}\), using less than, greater than, or not equals symbols, i.e., \((\neq, >, \text{or} <)\).
  • If we reject the null hypothesis, then we can assume there is enough evidence to support the alternative hypothesis.
  • Never state that a claim is proven true or false. Keep in mind the underlying fact that hypothesis testing is based on probability laws; therefore, we can talk only in terms of non-absolute certainties.

Formula Review

\(H_{0}\) and \(H_{a}\) are contradictory.

  • If \(\alpha \leq p\)-value, then do not reject \(H_{0}\).
  • If\(\alpha > p\)-value, then reject \(H_{0}\).

\(\alpha\) is preconceived. Its value is set before the hypothesis test starts. The \(p\)-value is calculated from the data.References

Data from the National Institute of Mental Health. Available online at http://www.nimh.nih.gov/publicat/depression.cfm .

Get science-backed answers as you write with Paperpal's Research feature

How to Write a Hypothesis? Types and Examples 

how to write a hypothesis for research

All research studies involve the use of the scientific method, which is a mathematical and experimental technique used to conduct experiments by developing and testing a hypothesis or a prediction about an outcome. Simply put, a hypothesis is a suggested solution to a problem. It includes elements that are expressed in terms of relationships with each other to explain a condition or an assumption that hasn’t been verified using facts. 1 The typical steps in a scientific method include developing such a hypothesis, testing it through various methods, and then modifying it based on the outcomes of the experiments.  

A research hypothesis can be defined as a specific, testable prediction about the anticipated results of a study. 2 Hypotheses help guide the research process and supplement the aim of the study. After several rounds of testing, hypotheses can help develop scientific theories. 3 Hypotheses are often written as if-then statements. 

Here are two hypothesis examples: 

Dandelions growing in nitrogen-rich soils for two weeks develop larger leaves than those in nitrogen-poor soils because nitrogen stimulates vegetative growth. 4  

If a company offers flexible work hours, then their employees will be happier at work. 5  

Table of Contents

  • What is a hypothesis? 
  • Types of hypotheses 
  • Characteristics of a hypothesis 
  • Functions of a hypothesis 
  • How to write a hypothesis 
  • Hypothesis examples 
  • Frequently asked questions 

What is a hypothesis?

Figure 1. Steps in research design

A hypothesis expresses an expected relationship between variables in a study and is developed before conducting any research. Hypotheses are not opinions but rather are expected relationships based on facts and observations. They help support scientific research and expand existing knowledge. An incorrectly formulated hypothesis can affect the entire experiment leading to errors in the results so it’s important to know how to formulate a hypothesis and develop it carefully.

A few sources of a hypothesis include observations from prior studies, current research and experiences, competitors, scientific theories, and general conditions that can influence people. Figure 1 depicts the different steps in a research design and shows where exactly in the process a hypothesis is developed. 4  

There are seven different types of hypotheses—simple, complex, directional, nondirectional, associative and causal, null, and alternative. 

Types of hypotheses

The seven types of hypotheses are listed below: 5 , 6,7  

  • Simple : Predicts the relationship between a single dependent variable and a single independent variable. 

Example: Exercising in the morning every day will increase your productivity.  

  • Complex : Predicts the relationship between two or more variables. 

Example: Spending three hours or more on social media daily will negatively affect children’s mental health and productivity, more than that of adults.  

  • Directional : Specifies the expected direction to be followed and uses terms like increase, decrease, positive, negative, more, or less. 

Example: The inclusion of intervention X decreases infant mortality compared to the original treatment.  

  • Non-directional : Does not predict the exact direction, nature, or magnitude of the relationship between two variables but rather states the existence of a relationship. This hypothesis may be used when there is no underlying theory or if findings contradict prior research. 

Example: Cats and dogs differ in the amount of affection they express.  

  • Associative and causal : An associative hypothesis suggests an interdependency between variables, that is, how a change in one variable changes the other.  

Example: There is a positive association between physical activity levels and overall health.  

A causal hypothesis, on the other hand, expresses a cause-and-effect association between variables. 

Example: Long-term alcohol use causes liver damage.  

  • Null : Claims that the original hypothesis is false by showing that there is no relationship between the variables. 

Example: Sleep duration does not have any effect on productivity.  

  • Alternative : States the opposite of the null hypothesis, that is, a relationship exists between two variables. 

Example: Sleep duration affects productivity.  

true statement about hypothesis

Characteristics of a hypothesis

So, what makes a good hypothesis? Here are some important characteristics of a hypothesis. 8,9  

  • Testable : You must be able to test the hypothesis using scientific methods to either accept or reject the prediction. 
  • Falsifiable : It should be possible to collect data that reject rather than support the hypothesis. 
  • Logical : Hypotheses shouldn’t be a random guess but rather should be based on previous theories, observations, prior research, and logical reasoning. 
  • Positive : The hypothesis statement about the existence of an association should be positive, that is, it should not suggest that an association does not exist. Therefore, the language used and knowing how to phrase a hypothesis is very important. 
  • Clear and accurate : The language used should be easily comprehensible and use correct terminology. 
  • Relevant : The hypothesis should be relevant and specific to the research question. 
  • Structure : Should include all the elements that make a good hypothesis: variables, relationship, and outcome. 

Functions of a hypothesis

The following list mentions some important functions of a hypothesis: 1  

  • Maintains the direction and progress of the research. 
  • Expresses the important assumptions underlying the proposition in a single statement. 
  • Establishes a suitable context for researchers to begin their investigation and for readers who are referring to the final report. 
  • Provides an explanation for the occurrence of a specific phenomenon. 
  • Ensures selection of appropriate and accurate facts necessary and relevant to the research subject. 

To summarize, a hypothesis provides the conceptual elements that complete the known data, conceptual relationships that systematize unordered elements, and conceptual meanings and interpretations that explain the unknown phenomena. 1  

true statement about hypothesis

How to write a hypothesis

Listed below are the main steps explaining how to write a hypothesis. 2,4,5  

  • Make an observation and identify variables : Observe the subject in question and try to recognize a pattern or a relationship between the variables involved. This step provides essential background information to begin your research.  

For example, if you notice that an office’s vending machine frequently runs out of a specific snack, you may predict that more people in the office choose that snack over another. 

  • Identify the main research question : After identifying a subject and recognizing a pattern, the next step is to ask a question that your hypothesis will answer.  

For example, after observing employees’ break times at work, you could ask “why do more employees take breaks in the morning rather than in the afternoon?” 

  • Conduct some preliminary research to ensure originality and novelty : Your initial answer, which is your hypothesis, to the question is based on some pre-existing information about the subject. However, to ensure that your hypothesis has not been asked before or that it has been asked but rejected by other researchers you would need to gather additional information.  

For example, based on your observations you might state a hypothesis that employees work more efficiently when the air conditioning in the office is set at a lower temperature. However, during your preliminary research you find that this hypothesis was proven incorrect by a prior study. 

  • Develop a general statement : After your preliminary research has confirmed the originality of your proposed answer, draft a general statement that includes all variables, subjects, and predicted outcome. The statement could be if/then or declarative.  
  • Finalize the hypothesis statement : Use the PICOT model, which clarifies how to word a hypothesis effectively, when finalizing the statement. This model lists the important components required to write a hypothesis. 

P opulation: The specific group or individual who is the main subject of the research 

I nterest: The main concern of the study/research question 

C omparison: The main alternative group 

O utcome: The expected results  

T ime: Duration of the experiment 

Once you’ve finalized your hypothesis statement you would need to conduct experiments to test whether the hypothesis is true or false. 

Hypothesis examples

The following table provides examples of different types of hypotheses. 10 ,11  

true statement about hypothesis

Key takeaways  

Here’s a summary of all the key points discussed in this article about how to write a hypothesis. 

  • A hypothesis is an assumption about an association between variables made based on limited evidence, which should be tested. 
  • A hypothesis has four parts—the research question, independent variable, dependent variable, and the proposed relationship between the variables.   
  • The statement should be clear, concise, testable, logical, and falsifiable. 
  • There are seven types of hypotheses—simple, complex, directional, non-directional, associative and causal, null, and alternative. 
  • A hypothesis provides a focus and direction for the research to progress. 
  • A hypothesis plays an important role in the scientific method by helping to create an appropriate experimental design. 

Frequently asked questions

Hypotheses and research questions have different objectives and structure. The following table lists some major differences between the two. 9  

Here are a few examples to differentiate between a research question and hypothesis. 

Yes, here’s a simple checklist to help you gauge the effectiveness of your hypothesis. 9   1. When writing a hypothesis statement, check if it:  2. Predicts the relationship between the stated variables and the expected outcome.  3. Uses simple and concise language and is not wordy.  4. Does not assume readers’ knowledge about the subject.  5. Has observable, falsifiable, and testable results. 

As mentioned earlier in this article, a hypothesis is an assumption or prediction about an association between variables based on observations and simple evidence. These statements are usually generic. Research objectives, on the other hand, are more specific and dictated by hypotheses. The same hypothesis can be tested using different methods and the research objectives could be different in each case.     For example, Louis Pasteur observed that food lasts longer at higher altitudes, reasoned that it could be because the air at higher altitudes is cleaner (with fewer or no germs), and tested the hypothesis by exposing food to air cleaned in the laboratory. 12 Thus, a hypothesis is predictive—if the reasoning is correct, X will lead to Y—and research objectives are developed to test these predictions. 

Null hypothesis testing is a method to decide between two assumptions or predictions between variables (null and alternative hypotheses) in a statistical relationship in a sample. The null hypothesis, denoted as H 0 , claims that no relationship exists between variables in a population and any relationship in the sample reflects a sampling error or occurrence by chance. The alternative hypothesis, denoted as H 1 , claims that there is a relationship in the population. In every study, researchers need to decide whether the relationship in a sample occurred by chance or reflects a relationship in the population. This is done by hypothesis testing using the following steps: 13   1. Assume that the null hypothesis is true.  2. Determine how likely the sample relationship would be if the null hypothesis were true. This probability is called the p value.  3. If the sample relationship would be extremely unlikely, reject the null hypothesis and accept the alternative hypothesis. If the relationship would not be unlikely, accept the null hypothesis. 

true statement about hypothesis

To summarize, researchers should know how to write a good hypothesis to ensure that their research progresses in the required direction. A hypothesis is a testable prediction about any behavior or relationship between variables, usually based on facts and observation, and states an expected outcome.  

We hope this article has provided you with essential insight into the different types of hypotheses and their functions so that you can use them appropriately in your next research project. 

References  

  • Dalen, DVV. The function of hypotheses in research. Proquest website. Accessed April 8, 2024. https://www.proquest.com/docview/1437933010?pq-origsite=gscholar&fromopenview=true&sourcetype=Scholarly%20Journals&imgSeq=1  
  • McLeod S. Research hypothesis in psychology: Types & examples. SimplyPsychology website. Updated December 13, 2023. Accessed April 9, 2024. https://www.simplypsychology.org/what-is-a-hypotheses.html  
  • Scientific method. Britannica website. Updated March 14, 2024. Accessed April 9, 2024. https://www.britannica.com/science/scientific-method  
  • The hypothesis in science writing. Accessed April 10, 2024. https://berks.psu.edu/sites/berks/files/campus/HypothesisHandout_Final.pdf  
  • How to develop a hypothesis (with elements, types, and examples). Indeed.com website. Updated February 3, 2023. Accessed April 10, 2024. https://www.indeed.com/career-advice/career-development/how-to-write-a-hypothesis  
  • Types of research hypotheses. Excelsior online writing lab. Accessed April 11, 2024. https://owl.excelsior.edu/research/research-hypotheses/types-of-research-hypotheses/  
  • What is a research hypothesis: how to write it, types, and examples. Researcher.life website. Published February 8, 2023. Accessed April 11, 2024. https://researcher.life/blog/article/how-to-write-a-research-hypothesis-definition-types-examples/  
  • Developing a hypothesis. Pressbooks website. Accessed April 12, 2024. https://opentext.wsu.edu/carriecuttler/chapter/developing-a-hypothesis/  
  • What is and how to write a good hypothesis in research. Elsevier author services website. Accessed April 12, 2024. https://scientific-publishing.webshop.elsevier.com/manuscript-preparation/what-how-write-good-hypothesis-research/  
  • How to write a great hypothesis. Verywellmind website. Updated March 12, 2023. Accessed April 13, 2024. https://www.verywellmind.com/what-is-a-hypothesis-2795239  
  • 15 Hypothesis examples. Helpfulprofessor.com Published September 8, 2023. Accessed March 14, 2024. https://helpfulprofessor.com/hypothesis-examples/ 
  • Editage insights. What is the interconnectivity between research objectives and hypothesis? Published February 24, 2021. Accessed April 13, 2024. https://www.editage.com/insights/what-is-the-interconnectivity-between-research-objectives-and-hypothesis  
  • Understanding null hypothesis testing. BCCampus open publishing. Accessed April 16, 2024. https://opentextbc.ca/researchmethods/chapter/understanding-null-hypothesis-testing/#:~:text=In%20null%20hypothesis%20testing%2C%20this,said%20to%20be%20statistically%20significant  

Paperpal is a comprehensive AI writing toolkit that helps students and researchers achieve 2x the writing in half the time. It leverages 21+ years of STM experience and insights from millions of research articles to provide in-depth academic writing, language editing, and submission readiness support to help you write better, faster.  

Get accurate academic translations, rewriting support, grammar checks, vocabulary suggestions, and generative AI assistance that delivers human precision at machine speed. Try for free or upgrade to Paperpal Prime starting at US$19 a month to access premium features, including consistency, plagiarism, and 30+ submission readiness checks to help you succeed.  

Experience the future of academic writing – Sign up to Paperpal and start writing for free!  

Related Reads:

  • Empirical Research: A Comprehensive Guide for Academics 
  • How to Write a Scientific Paper in 10 Steps 
  • What is a Literature Review? How to Write It (with Examples)
  • What are Journal Guidelines on Using Generative AI Tools

Measuring Academic Success: Definition & Strategies for Excellence

What are scholarly sources and where can you find them , you may also like, 4 ways paperpal encourages responsible writing with ai, what are scholarly sources and where can you..., what is academic writing: tips for students, why traditional editorial process needs an upgrade, paperpal’s new ai research finder empowers authors to..., what is hedging in academic writing  , how to use ai to enhance your college..., ai + human expertise – a paradigm shift..., how to use paperpal to generate emails &....

AP Statistics Question 236: Answer and Explanation

Test information.

Use your browser's back button to return to your test results.

  • » Do AP Statistics Practice Tests
  • » Download AP Statistics Practice Tests
  • » Best AP Statistics Books

More AP Tests

  • AP Statistics Test 1
  • AP Statistics Test 2
  • AP Statistics Test 3
  • AP Statistics Test 4
  • AP Statistics Test 5
  • AP Statistics Test 6
  • AP Statistics Test 7
  • AP Statistics Test 8
  • AP Statistics Test 9
  • AP Statistics Test 10
  • AP Statistics Test 11
  • AP Statistics Test 12
  • AP Statistics Test 13
  • AP Statistics Test 14
  • AP Statistics Test 15
  • AP Statistics Test 16
  • AP Statistics Test 17
  • AP Statistics Test 18
  • AP Statistics Test 19
  • AP Statistics Test 20
  • AP Statistics Test 21
  • AP Statistics Test 22
  • AP Statistics Test 23
  • AP Statistics Test 24
  • AP Statistics Test 25
  • AP Statistics Test 26
  • AP Statistics Test 27
  • AP Statistics Test 28
  • AP Statistics Test 29
  • AP Statistics Test 30
  • AP Statistics Test 31
  • AP Statistics Test 32
  • AP Statistics Test 33
  • AP Statistics Test 34
  • AP Statistics Test 35
  • AP Statistics Test 36
  • AP Statistics Test 37
  • AP Statistics Test 38
  • AP Statistics Test 39
  • AP Statistics Test 40
  • AP Statistics Questions: Graphical Displays
  • AP Statistics Questions: Summarizing Distributions 1
  • AP Statistics Questions: Summarizing Distributions 2
  • AP Statistics Questions: Summarizing Distributions 3
  • AP Statistics Questions: Exploring Bivariate Data 1
  • AP Statistics Questions: Exploring Bivariate Data 2
  • AP Statistics Questions: Exploring Categorical Data: Two-Way Tables
  • AP Statistics Questions: Planning and Conducting Surveys 1
  • AP Statistics Questions: Planning and Conducting Surveys 2
  • AP Statistics Questions: Planning and Conducting Experiments 1
  • AP Statistics Questions: Planning and Conducting Experiments 2
  • AP Statistics Questions: Probability as Relative Frequency 1
  • AP Statistics Questions: Probability as Relative Frequency 2
  • AP Statistics Questions: Probability as Relative Frequency 3
  • AP Statistics Questions: Probability as Relative Frequency 4
  • AP Statistics Questions: Combining and Transforming Random Variables
  • AP Statistics Questions: The Normal Distribution 1
  • AP Statistics Questions: The Normal Distribution 2
  • AP Statistics Questions: Sampling Distributions 1
  • AP Statistics Questions: Sampling Distributions 2
  • AP Statistics Questions: Confidence Intervals 1
  • AP Statistics Questions: Confidence Intervals 2
  • AP Statistics Questions: Confidence Intervals 3
  • AP Statistics Questions: Tests of Significance-Proportions and Means 1
  • AP Statistics Questions: Tests of Significance-Proportions and Means 2
  • AP Statistics Questions: Tests of Significance-Chi-Square and Slope of Least Squares Line

Question: 236

6. Which of the following is a true statement about hypothesis testing?

  • A. If there is sufficient evidence to reject a null hypothesis at the 10% level, then there is sufficient evidence to reject it at the 5% level.
  • B. Whether to use a one- or a two-sided test is typically decided after the data are gathered.
  • C. If a hypothesis test is conducted at the 1% level, there is a 1% chance of rejecting the null hypothesis.
  • D. The probability of a Type I error plus the probability of a Type II error always equal 1.
  • E. The power of a test concerns its ability to detect an alternative hypothesis.

Correct Answer: E

Explanation:

(E) If the P -value is less than 0.10, it does not follow that it is less than 0.05. Decisions such as whether a test should be one- or two-sided are made before the data are gathered. If α = 0.01, there is a 1% chance of rejecting the null hypothesis if the null hypothesis is true. There is one probability of a Type I error, the significance level, while there is a different probability of a Type II error associated with each possible correct alternative, so the sum does not equal 1.

Library homepage

  • school Campus Bookshelves
  • menu_book Bookshelves
  • perm_media Learning Objects
  • login Login
  • how_to_reg Request Instructor Account
  • hub Instructor Commons
  • Download Page (PDF)
  • Download Full Book (PDF)
  • Periodic Table
  • Physics Constants
  • Scientific Calculator
  • Reference & Cite
  • Tools expand_more
  • Readability

selected template will load here

This action is not available.

Mathematics LibreTexts

1.1: Statements and Conditional Statements

  • Last updated
  • Save as PDF
  • Page ID 7034

  • Ted Sundstrom
  • Grand Valley State University via ScholarWorks @Grand Valley State University

Much of our work in mathematics deals with statements. In mathematics, a statement is a declarative sentence that is either true or false but not both. A statement is sometimes called a proposition . The key is that there must be no ambiguity. To be a statement, a sentence must be true or false, and it cannot be both. So a sentence such as "The sky is beautiful" is not a statement since whether the sentence is true or not is a matter of opinion. A question such as "Is it raining?" is not a statement because it is a question and is not declaring or asserting that something is true.

Some sentences that are mathematical in nature often are not statements because we may not know precisely what a variable represents. For example, the equation 2\(x\)+5 = 10 is not a statement since we do not know what \(x\) represents. If we substitute a specific value for \(x\) (such as \(x\) = 3), then the resulting equation, 2\(\cdot\)3 +5 = 10 is a statement (which is a false statement). Following are some more examples:

  • There exists a real number \(x\) such that 2\(x\)+5 = 10. This is a statement because either such a real number exists or such a real number does not exist. In this case, this is a true statement since such a real number does exist, namely \(x\) = 2.5.
  • For each real number \(x\), \(2x +5 = 2 \left( x + \dfrac{5}{2}\right)\). This is a statement since either the sentence \(2x +5 = 2 \left( x + \dfrac{5}{2}\right)\) is true when any real number is substituted for \(x\) (in which case, the statement is true) or there is at least one real number that can be substituted for \(x\) and produce a false statement (in which case, the statement is false). In this case, the given statement is true.
  • Solve the equation \(x^2 - 7x +10 =0\). This is not a statement since it is a directive. It does not assert that something is true.
  • \((a+b)^2 = a^2+b^2\) is not a statement since it is not known what \(a\) and \(b\) represent. However, the sentence, “There exist real numbers \(a\) and \(b\) such that \((a+b)^2 = a^2+b^2\)" is a statement. In fact, this is a true statement since there are such integers. For example, if \(a=1\) and \(b=0\), then \((a+b)^2 = a^2+b^2\).
  • Compare the statement in the previous item to the statement, “For all real numbers \(a\) and \(b\), \((a+b)^2 = a^2+b^2\)." This is a false statement since there are values for \(a\) and \(b\) for which \((a+b)^2 \ne a^2+b^2\). For example, if \(a=2\) and \(b=3\), then \((a+b)^2 = 5^2 = 25\) and \(a^2 + b^2 = 2^2 +3^2 = 13\).

Progress Check 1.1: Statements

Which of the following sentences are statements? Do not worry about determining whether a statement is true or false; just determine whether each sentence is a statement or not.

  • 2\(\cdot\)7 + 8 = 22.
  • \((x-1) = \sqrt(x + 11)\).
  • \(2x + 5y = 7\).
  • There are integers \(x\) and \(y\) such that \(2x + 5y = 7\).
  • There are integers \(x\) and \(y\) such that \(23x + 27y = 52\).
  • Given a line \(L\) and a point \(P\) not on that line, there is a unique line through \(P\) that does not intersect \(L\).
  • \((a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3\).
  • \((a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3\) for all real numbers \(a\) and \(b\).
  • The derivative of \(f(x) = \sin x\) is \(f' (x) = \cos x\).
  • Does the equation \(3x^2 - 5x - 7 = 0\) have two real number solutions?
  • If \(ABC\) is a right triangle with right angle at vertex \(B\), and if \(D\) is the midpoint of the hypotenuse, then the line segment connecting vertex \(B\) to \(D\) is half the length of the hypotenuse.
  • There do not exist three integers \(x\), \(y\), and \(z\) such that \(x^3 + y^2 = z^3\).

Add texts here. Do not delete this text first.

How Do We Decide If a Statement Is True or False?

In mathematics, we often establish that a statement is true by writing a mathematical proof. To establish that a statement is false, we often find a so-called counterexample. (These ideas will be explored later in this chapter.) So mathematicians must be able to discover and construct proofs. In addition, once the discovery has been made, the mathematician must be able to communicate this discovery to others who speak the language of mathematics. We will be dealing with these ideas throughout the text.

For now, we want to focus on what happens before we start a proof. One thing that mathematicians often do is to make a conjecture beforehand as to whether the statement is true or false. This is often done through exploration. The role of exploration in mathematics is often difficult because the goal is not to find a specific answer but simply to investigate. Following are some techniques of exploration that might be helpful.

Techniques of Exploration

  • Guesswork and conjectures . Formulate and write down questions and conjectures. When we make a guess in mathematics, we usually call it a conjecture.

For example, if someone makes the conjecture that \(\sin(2x) = 2 \sin(x)\), for all real numbers \(x\), we can test this conjecture by substituting specific values for \(x\). One way to do this is to choose values of \(x\) for which \(\sin(x)\)is known. Using \(x = \frac{\pi}{4}\), we see that

\(\sin(2(\frac{\pi}{4})) = \sin(\frac{\pi}{2}) = 1,\) and

\(2\sin(\frac{\pi}{4}) = 2(\frac{\sqrt2}{2}) = \sqrt2\).

Since \(1 \ne \sqrt2\), these calculations show that this conjecture is false. However, if we do not find a counterexample for a conjecture, we usually cannot claim the conjecture is true. The best we can say is that our examples indicate the conjecture is true. As an example, consider the conjecture that

If \(x\) and \(y\) are odd integers, then \(x + y\) is an even integer.

We can do lots of calculation, such as \(3 + 7 = 10\) and \(5 + 11 = 16\), and find that every time we add two odd integers, the sum is an even integer. However, it is not possible to test every pair of odd integers, and so we can only say that the conjecture appears to be true. (We will prove that this statement is true in the next section.)

  • Use of prior knowledge. This also is very important. We cannot start from square one every time we explore a statement. We must make use of our acquired mathematical knowledge. For the conjecture that \(\sin (2x) = 2 \sin(x)\), for all real numbers \(x\), we might recall that there are trigonometric identities called “double angle identities.” We may even remember the correct identity for \(\sin (2x)\), but if we do not, we can always look it up. We should recall (or find) that for all real numbers \(x\), \[\sin(2x) = 2 \sin(x)\cos(x).\]
  • We could use this identity to argue that the conjecture “for all real numbers \(x\), \(\sin (2x) = 2 \sin(x)\)” is false, but if we do, it is still a good idea to give a specific counterexample as we did before.
  • Cooperation and brainstorming . Working together is often more fruitful than working alone. When we work with someone else, we can compare notes and articulate our ideas. Thinking out loud is often a useful brainstorming method that helps generate new ideas.

Progress Check 1.2: Explorations

Use the techniques of exploration to investigate each of the following statements. Can you make a conjecture as to whether the statement is true or false? Can you determine whether it is true or false?

  • \((a + b)^2 = a^2 + b^2\), for all real numbers a and b.
  • There are integers \(x\) and \(y\) such that \(2x + 5y = 41\).
  • If \(x\) is an even integer, then \(x^2\) is an even integer.
  • If \(x\) and \(y\) are odd integers, then \(x \cdot y\) is an odd integer.

Conditional Statements

One of the most frequently used types of statements in mathematics is the so-called conditional statement. Given statements \(P\) and \(Q\), a statement of the form “If \(P\) then \(Q\)” is called a conditional statement . It seems reasonable that the truth value (true or false) of the conditional statement “If \(P\) then \(Q\)” depends on the truth values of \(P\) and \(Q\). The statement “If \(P\) then \(Q\)” means that \(Q\) must be true whenever \(P\) is true. The statement \(P\) is called the hypothesis of the conditional statement, and the statement \(Q\) is called the conclusion of the conditional statement. Since conditional statements are probably the most important type of statement in mathematics, we give a more formal definition.

A conditional statement is a statement that can be written in the form “If \(P\) then \(Q\),” where \(P\) and \(Q\) are sentences. For this conditional statement, \(P\) is called the hypothesis and \(Q\) is called the conclusion .

Intuitively, “If \(P\) then \(Q\)” means that \(Q\) must be true whenever \(P\) is true. Because conditional statements are used so often, a symbolic shorthand notation is used to represent the conditional statement “If \(P\) then \(Q\).” We will use the notation \(P \to Q\) to represent “If \(P\) then \(Q\).” When \(P\) and \(Q\) are statements, it seems reasonable that the truth value (true or false) of the conditional statement \(P \to Q\) depends on the truth values of \(P\) and \(Q\). There are four cases to consider:

  • \(P\) is true and \(Q\) is true.
  • \(P\) is false and \(Q\) is true.
  • \(P\) is true and \(Q\) is false.
  • \(P\) is false and \(Q\) is false.

The conditional statement \(P \to Q\) means that \(Q\) is true whenever \(P\) is true. It says nothing about the truth value of \(Q\) when \(P\) is false. Using this as a guide, we define the conditional statement \(P \to Q\) to be false only when \(P\) is true and \(Q\) is false, that is, only when the hypothesis is true and the conclusion is false. In all other cases, \(P \to Q\) is true. This is summarized in Table 1.1 , which is called a truth table for the conditional statement \(P \to Q\). (In Table 1.1 , T stands for “true” and F stands for “false.”)

Table 1.1: Truth Table for \(P \to Q\)

The important thing to remember is that the conditional statement \(P \to Q\) has its own truth value. It is either true or false (and not both). Its truth value depends on the truth values for \(P\) and \(Q\), but some find it a bit puzzling that the conditional statement is considered to be true when the hypothesis P is false. We will provide a justification for this through the use of an example.

Example 1.3:

Suppose that I say

“If it is not raining, then Daisy is riding her bike.”

We can represent this conditional statement as \(P \to Q\) where \(P\) is the statement, “It is not raining” and \(Q\) is the statement, “Daisy is riding her bike.”

Although it is not a perfect analogy, think of the statement \(P \to Q\) as being false to mean that I lied and think of the statement \(P \to Q\) as being true to mean that I did not lie. We will now check the truth value of \(P \to Q\) based on the truth values of \(P\) and \(Q\).

  • Suppose that both \(P\) and \(Q\) are true. That is, it is not raining and Daisy is riding her bike. In this case, it seems reasonable to say that I told the truth and that\(P \to Q\) is true.
  • Suppose that \(P\) is true and \(Q\) is false or that it is not raining and Daisy is not riding her bike. It would appear that by making the statement, “If it is not raining, then Daisy is riding her bike,” that I have not told the truth. So in this case, the statement \(P \to Q\) is false.
  • Now suppose that \(P\) is false and \(Q\) is true or that it is raining and Daisy is riding her bike. Did I make a false statement by stating that if it is not raining, then Daisy is riding her bike? The key is that I did not make any statement about what would happen if it was raining, and so I did not tell a lie. So we consider the conditional statement, “If it is not raining, then Daisy is riding her bike,” to be true in the case where it is raining and Daisy is riding her bike.
  • Finally, suppose that both \(P\) and \(Q\) are false. That is, it is raining and Daisy is not riding her bike. As in the previous situation, since my statement was \(P \to Q\), I made no claim about what would happen if it was raining, and so I did not tell a lie. So the statement \(P \to Q\) cannot be false in this case and so we consider it to be true.

Progress Check 1.4: xplorations with Conditional Statements

1 . Consider the following sentence:

If \(x\) is a positive real number, then \(x^2 + 8x\) is a positive real number.

Although the hypothesis and conclusion of this conditional sentence are not statements, the conditional sentence itself can be considered to be a statement as long as we know what possible numbers may be used for the variable \(x\). From the context of this sentence, it seems that we can substitute any positive real number for \(x\). We can also substitute 0 for \(x\) or a negative real number for x provided that we are willing to work with a false hypothesis in the conditional statement. (In Chapter 2 , we will learn how to be more careful and precise with these types of conditional statements.)

(a) Notice that if \(x = -3\), then \(x^2 + 8x = -15\), which is negative. Does this mean that the given conditional statement is false?

(b) Notice that if \(x = 4\), then \(x^2 + 8x = 48\), which is positive. Does this mean that the given conditional statement is true?

(c) Do you think this conditional statement is true or false? Record the results for at least five different examples where the hypothesis of this conditional statement is true.

2 . “If \(n\) is a positive integer, then \(n^2 - n +41\) is a prime number.” (Remember that a prime number is a positive integer greater than 1 whose only positive factors are 1 and itself.) To explore whether or not this statement is true, try using (and recording your results) for \(n = 1\), \(n = 2\), \(n = 3\), \(n = 4\), \(n = 5\), and \(n = 10\). Then record the results for at least four other values of \(n\). Does this conditional statement appear to be true?

Further Remarks about Conditional Statements

Suppose that Ed has exactly $52 in his wallet. The following four statements will use the four possible truth combinations for the hypothesis and conclusion of a conditional statement.

  • If Ed has exactly $52 in his wallet, then he has $20 in his wallet. This is a true statement. Notice that both the hypothesis and the conclusion are true.
  • If Ed has exactly $52 in his wallet, then he has $100 in his wallet. This statement is false. Notice that the hypothesis is true and the conclusion is false.
  • If Ed has $100 in his wallet, then he has at least $50 in his wallet. This statement is true regardless of how much money he has in his wallet. In this case, the hypothesis is false and the conclusion is true.

This is admittedly a contrived example but it does illustrate that the conventions for the truth value of a conditional statement make sense. The message is that in order to be complete in mathematics, we need to have conventions about when a conditional statement is true and when it is false.

If \(n\) is a positive integer, then \((n^2 - n + 41)\) is a prime number.

Perhaps for all of the values you tried for \(n\), \((n^2 - n + 41)\) turned out to be a prime number. However, if we try \(n = 41\), we ge \(n^2 - n + 41 = 41^2 - 41 + 41\) \(n^2 - n + 41 = 41^2\) So in the case where \(n = 41\), the hypothesis is true (41 is a positive integer) and the conclusion is false \(41^2\) is not prime. Therefore, 41 is a counterexample for this conjecture and the conditional statement “If \(n\) is a positive integer, then \((n^2 - n + 41)\) is a prime number” is false. There are other counterexamples (such as \(n = 42\), \(n = 45\), and \(n = 50\)), but only one counterexample is needed to prove that the statement is false.

  • Although one example can be used to prove that a conditional statement is false, in most cases, we cannot use examples to prove that a conditional statement is true. For example, in Progress Check 1.4 , we substituted values for \(x\) for the conditional statement “If \(x\) is a positive real number, then \(x^2 + 8x\) is a positive real number.” For every positive real number used for \(x\), we saw that \(x^2 + 8x\) was positive. However, this does not prove the conditional statement to be true because it is impossible to substitute every positive real number for \(x\). So, although we may believe this statement is true, to be able to conclude it is true, we need to write a mathematical proof. Methods of proof will be discussed in Section 1.2 and Chapter 3 .

Progress Check 1.5: Working with a Conditional Statement

The following statement is a true statement, which is proven in many calculus texts.

If the function \(f\) is differentiable at \(a\), then the function \(f\) is continuous at \(a\).

Using only this true statement, is it possible to make a conclusion about the function in each of the following cases?

  • It is known that the function \(f\), where \(f(x) = \sin x\), is differentiable at 0.
  • It is known that the function \(f\), where \(f(x) = \sqrt[3]x\), is not differentiable at 0.
  • It is known that the function \(f\), where \(f(x) = |x|\), is continuous at 0.
  • It is known that the function \(f\), where \(f(x) = \dfrac{|x|}{x}\) is not continuous at 0.

Closure Properties of Number Systems

The primary number system used in algebra and calculus is the real number system . We usually use the symbol R to stand for the set of all real numbers. The real numbers consist of the rational numbers and the irrational numbers. The rational numbers are those real numbers that can be written as a quotient of two integers (with a nonzero denominator), and the irrational numbers are those real numbers that cannot be written as a quotient of two integers. That is, a rational number can be written in the form of a fraction, and an irrational number cannot be written in the form of a fraction. Some common irrational numbers are \(\sqrt2\), \(\pi\) and \(e\). We usually use the symbol \(\mathbb{Q}\) to represent the set of all rational numbers. (The letter \(\mathbb{Q}\) is used because rational numbers are quotients of integers.) There is no standard symbol for the set of all irrational numbers.

Perhaps the most basic number system used in mathematics is the set of natural numbers . The natural numbers consist of the positive whole numbers such as 1, 2, 3, 107, and 203. We will use the symbol \(\mathbb{N}\) to stand for the set of natural numbers. Another basic number system that we will be working with is the set of integers . The integers consist of zero, the positive whole numbers, and the negatives of the positive whole numbers. If \(n\) is an integer, we can write \(n = \dfrac{n}{1}\). So each integer is a rational number and hence also a real number.

We will use the letter \(\mathbb{Z}\) to stand for the set of integers. (The letter \(\mathbb{Z}\) is from the German word, \(Zahlen\), for numbers.) Three of the basic properties of the integers are that the set \(\mathbb{Z}\) is closed under addition , the set \(\mathbb{Z}\) is closed under multiplication , and the set of integers is closed under subtraction. This means that

  • If \(x\) and \(y\) are integers, then \(x + y\) is an integer;
  • If \(x\) and \(y\) are integers, then \(x \cdot y\) is an integer; and
  • If \(x\) and \(y\) are integers, then \(x - y\) is an integer.

Notice that these so-called closure properties are defined in terms of conditional statements. This means that if we can find one instance where the hypothesis is true and the conclusion is false, then the conditional statement is false.

Example 1.6: Closure

  • In order for the set of natural numbers to be closed under subtraction, the following conditional statement would have to be true: If \(x\) and \(y\) are natural numbers, then \(x - y\) is a natural number. However, since 5 and 8 are natural numbers, \(5 - 8 = -3\), which is not a natural number, this conditional statement is false. Therefore, the set of natural numbers is not closed under subtraction.
  • We can use the rules for multiplying fractions and the closure rules for the integers to show that the rational numbers are closed under multiplication. If \(\dfrac{a}{b}\) and \(\dfrac{c}{d}\) are rational numbers (so \(a\), \(b\), \(c\), and \(d\) are integers and \(b\) and \(d\) are not zero), then \(\dfrac{a}{b} \cdot \dfrac{c}{d} = \dfrac{ac}{bd}.\) Since the integers are closed under multiplication, we know that \(ac\) and \(bd\) are integers and since \(b \ne 0\) and \(d \ne 0\), \(bd \ne 0\). Hence, \(\dfrac{ac}{bd}\) is a rational number and this shows that the rational numbers are closed under multiplication.

Progress Check 1.7: Closure Properties

Answer each of the following questions.

  • Is the set of rational numbers closed under addition? Explain.
  • Is the set of integers closed under division? Explain.
  • Is the set of rational numbers closed under subtraction? Explain.
  • Which of the following sentences are statements? (a) \(3^2 + 4^2 = 5^2.\) (b) \(a^2 + b^2 = c^2.\) (c) There exists integers \(a\), \(b\), and \(c\) such that \(a^2 + b^2 = c^2.\) (d) If \(x^2 = 4\), then \(x = 2.\) (e) For each real number \(x\), if \(x^2 = 4\), then \(x = 2.\) (f) For each real number \(t\), \(\sin^2t + \cos^2t = 1.\) (g) \(\sin x < \sin (\frac{\pi}{4}).\) (h) If \(n\) is a prime number, then \(n^2\) has three positive factors. (i) 1 + \(\tan^2 \theta = \text{sec}^2 \theta.\) (j) Every rectangle is a parallelogram. (k) Every even natural number greater than or equal to 4 is the sum of two prime numbers.
  • Identify the hypothesis and the conclusion for each of the following conditional statements. (a) If \(n\) is a prime number, then \(n^2\) has three positive factors. (b) If \(a\) is an irrational number and \(b\) is an irrational number, then \(a \cdot b\) is an irrational number. (c) If \(p\) is a prime number, then \(p = 2\) or \(p\) is an odd number. (d) If \(p\) is a prime number and \(p \ne 2\) or \(p\) is an odd number. (e) \(p \ne 2\) or \(p\) is a even number, then \(p\) is not prime.
  • Determine whether each of the following conditional statements is true or false. (a) If 10 < 7, then 3 = 4. (b) If 7 < 10, then 3 = 4. (c) If 10 < 7, then 3 + 5 = 8. (d) If 7 < 10, then 3 + 5 = 8.
  • Determine the conditions under which each of the following conditional sentences will be a true statement. (a) If a + 2 = 5, then 8 < 5. (b) If 5 < 8, then a + 2 = 5.
  • Let \(P\) be the statement “Student X passed every assignment in Calculus I,” and let \(Q\) be the statement “Student X received a grade of C or better in Calculus I.” (a) What does it mean for \(P\) to be true? What does it mean for \(Q\) to be true? (b) Suppose that Student X passed every assignment in Calculus I and received a grade of B-, and that the instructor made the statement \(P \to Q\). Would you say that the instructor lied or told the truth? (c) Suppose that Student X passed every assignment in Calculus I and received a grade of C-, and that the instructor made the statement \(P \to Q\). Would you say that the instructor lied or told the truth? (d) Now suppose that Student X did not pass two assignments in Calculus I and received a grade of D, and that the instructor made the statement \(P \to Q\). Would you say that the instructor lied or told the truth? (e) How are Parts ( 5b ), ( 5c ), and ( 5d ) related to the truth table for \(P \to Q\)?

Theorem If f is a quadratic function of the form \(f(x) = ax^2 + bx + c\) and a < 0, then the function f has a maximum value when \(x = \dfrac{-b}{2a}\). Using only this theorem, what can be concluded about the functions given by the following formulas? (a) \(g (x) = -8x^2 + 5x - 2\) (b) \(h (x) = -\dfrac{1}{3}x^2 + 3x\) (c) \(k (x) = 8x^2 - 5x - 7\) (d) \(j (x) = -\dfrac{71}{99}x^2 +210\) (e) \(f (x) = -4x^2 - 3x + 7\) (f) \(F (x) = -x^4 + x^3 + 9\)

Theorem If \(f\) is a quadratic function of the form \(f(x) = ax^2 + bx + c\) and ac < 0, then the function \(f\) has two x-intercepts.

Using only this theorem, what can be concluded about the functions given by the following formulas? (a) \(g (x) = -8x^2 + 5x - 2\) (b) \(h (x) = -\dfrac{1}{3}x^2 + 3x\) (c) \(k (x) = 8x^2 - 5x - 7\) (d) \(j (x) = -\dfrac{71}{99}x^2 +210\) (e) \(f (x) = -4x^2 - 3x + 7\) (f) \(F (x) = -x^4 + x^3 + 9\)

Theorem A. If \(f\) is a cubic function of the form \(f (x) = x^3 - x + b\) and b > 1, then the function \(f\) has exactly one \(x\)-intercept. Following is another theorem about \(x\)-intercepts of functions: Theorem B . If \(f\) and \(g\) are functions with \(g (x) = k \cdot f (x)\), where \(k\) is a nonzero real number, then \(f\) and \(g\) have exactly the same \(x\)-intercepts.

Using only these two theorems and some simple algebraic manipulations, what can be concluded about the functions given by the following formulas? (a) \(f (x) = x^3 -x + 7\) (b) \(g (x) = x^3 + x +7\) (c) \(h (x) = -x^3 + x - 5\) (d) \(k (x) = 2x^3 + 2x + 3\) (e) \(r (x) = x^4 - x + 11\) (f) \(F (x) = 2x^3 - 2x + 7\)

  • (a) Is the set of natural numbers closed under division? (b) Is the set of rational numbers closed under division? (c) Is the set of nonzero rational numbers closed under division? (d) Is the set of positive rational numbers closed under division? (e) Is the set of positive real numbers closed under subtraction? (f) Is the set of negative rational numbers closed under division? (g) Is the set of negative integers closed under addition? Explorations and Activities
  • Exploring Propositions . In Progress Check 1.2 , we used exploration to show that certain statements were false and to make conjectures that certain statements were true. We can also use exploration to formulate a conjecture that we believe to be true. For example, if we calculate successive powers of \(2, (2^1, 2^2, 2^3, 2^4, 2^5, ...)\) and examine the units digits of these numbers, we could make the following conjectures (among others): \(\bullet\) If \(n\) is a natural number, then the units digit of \(2^n\) must be 2, 4, 6, or 8. \(\bullet\) The units digits of the successive powers of 2 repeat according to the pattern “2, 4, 8, 6.” (a) Is it possible to formulate a conjecture about the units digits of successive powers of \(4 (4^1, 4^2, 4^3, 4^4, 4^5,...)\)? If so, formulate at least one conjecture. (b) Is it possible to formulate a conjecture about the units digit of numbers of the form \(7^n - 2^n\), where \(n\) is a natural number? If so, formulate a conjecture in the form of a conditional statement in the form “If \(n\) is a natural number, then ... .” (c) Let \(f (x) = e^(2x)\). Determine the first eight derivatives of this function. What do you observe? Formulate a conjecture that appears to be true. The conjecture should be written as a conditional statement in the form, “If n is a natural number, then ... .”

U.S. flag

An official website of the United States government

Here’s how you know

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Take action

  • Report an antitrust violation
  • File adjudicative documents
  • Find banned debt collectors
  • View competition guidance
  • Competition Matters Blog

New HSR thresholds and filing fees for 2024

View all Competition Matters Blog posts

We work to advance government policies that protect consumers and promote competition.

View Policy

Search or browse the Legal Library

Find legal resources and guidance to understand your business responsibilities and comply with the law.

Browse legal resources

  • Find policy statements
  • Submit a public comment

true statement about hypothesis

Vision and Priorities

Memo from Chair Lina M. Khan to commission staff and commissioners regarding the vision and priorities for the FTC.

Technology Blog

Consumer facing applications: a quote book from the tech summit on ai.

View all Technology Blog posts

Advice and Guidance

Learn more about your rights as a consumer and how to spot and avoid scams. Find the resources you need to understand how consumer protection law impacts your business.

  • Report fraud
  • Report identity theft
  • Register for Do Not Call
  • Sign up for consumer alerts
  • Get Business Blog updates
  • Get your free credit report
  • Find refund cases
  • Order bulk publications
  • Consumer Advice
  • Shopping and Donating
  • Credit, Loans, and Debt
  • Jobs and Making Money
  • Unwanted Calls, Emails, and Texts
  • Identity Theft and Online Security
  • Business Guidance
  • Advertising and Marketing
  • Credit and Finance
  • Privacy and Security
  • By Industry
  • For Small Businesses
  • Browse Business Guidance Resources
  • Business Blog

Servicemembers: Your tool for financial readiness

Visit militaryconsumer.gov

Get consumer protection basics, plain and simple

Visit consumer.gov

Learn how the FTC protects free enterprise and consumers

Visit Competition Counts

Looking for competition guidance?

  • Competition Guidance

News and Events

Latest news, ftc to host compliance webinar on rule banning noncompetes.

View News and Events

Upcoming Event

Older adults and fraud: what you need to know.

View more Events

Sign up for the latest news

Follow us on social media

-->   -->   -->   -->   -->  

gaming controller illustration

Playing it Safe: Explore the FTC's Top Video Game Cases

Learn about the FTC's notable video game cases and what our agency is doing to keep the public safe.

Latest Data Visualization

Visualization of FTC Refunds to Consumers

FTC Refunds to Consumers

Explore refund statistics including where refunds were sent and the dollar amounts refunded with this visualization.

About the FTC

Our mission is protecting the public from deceptive or unfair business practices and from unfair methods of competition through law enforcement, advocacy, research, and education.

Learn more about the FTC

Lina M. Khan

Meet the Chair

Lina M. Khan was sworn in as Chair of the Federal Trade Commission on June 15, 2021.

Chair Lina M. Khan

Looking for legal documents or records? Search the Legal Library instead.

  • Cases and Proceedings
  • Premerger Notification Program
  • Merger Review
  • Anticompetitive Practices
  • Competition and Consumer Protection Guidance Documents
  • Warning Letters
  • Consumer Sentinel Network
  • Criminal Liaison Unit
  • FTC Refund Programs
  • Notices of Penalty Offenses
  • Advocacy and Research
  • Advisory Opinions
  • Cooperation Agreements
  • Federal Register Notices
  • Public Comments
  • Policy Statements
  • International
  • Office of Technology Blog
  • Military Consumer
  • Consumer.gov
  • Bulk Publications
  • Data and Visualizations
  • Stay Connected
  • Commissioners and Staff
  • Bureaus and Offices
  • Budget and Strategy
  • Office of Inspector General
  • Careers at the FTC

Fact Sheet on FTC’s Proposed Final Noncompete Rule

Facebook

  • Competition
  • Office of Policy Planning
  • Bureau of Competition

The following outline provides a high-level overview of the FTC’s proposed final rule :

  • Specifically, the final rule provides that it is an unfair method of competition—and therefore a violation of Section 5 of the FTC Act—for employers to enter into noncompetes with workers after the effective date.
  • Fewer than 1% of workers are estimated to be senior executives under the final rule.
  • Specifically, the final rule defines the term “senior executive” to refer to workers earning more than $151,164 annually who are in a “policy-making position.”
  • Reduced health care costs: $74-$194 billion in reduced spending on physician services over the next decade.
  • New business formation: 2.7% increase in the rate of new firm formation, resulting in over 8,500 additional new businesses created each year.
  • This reflects an estimated increase of about 3,000 to 5,000 new patents in the first year noncompetes are banned, rising to about 30,000-53,000 in the tenth year.
  • This represents an estimated increase of 11-19% annually over a ten-year period.
  • The average worker’s earnings will rise an estimated extra $524 per year. 

The Federal Trade Commission develops policy initiatives on issues that affect competition, consumers, and the U.S. economy. The FTC will never demand money, make threats, tell you to transfer money, or promise you a prize. Follow the  FTC on social media , read  consumer alerts  and the  business blog , and  sign up to get the latest FTC news and alerts .

Press Release Reference

Contact information, media contact.

Victoria Graham Office of Public Affairs 415-848-5121

Stormy Daniels' lawyer says 'extremely strict reading' of her earlier Trump affair denial was true because the relationship wasn't 'romantic'

  • Keith Davidson, a lawyer for Stormy Daniels, is testifying in Donald Trump's hush-money trials.
  • He crafted statements for Daniels denying an affair with Trump.
  • Davidson said the statements were "technically" true because the relationship wasn't "romantic."

Insider Today

Sexual? Sure. Romantic? That's something else.

Keith Davidson — the lawyer who brokered a hush-money agreement for Stormy Daniels over the affair she says she had with Donald Trump — continued his testimony in the former president's Manhattan criminal trial on Thursday.

Under questioning from prosecutor Joshua Steinglass, Davidson discussed a pair of statements Daniels made in January 2018. Around that time, The Wall Street Journal was preparing to publish a series of stories about the affair between the porn star and Trump, and the contract she signed that was designed to keep her quiet ahead of the 2016 presidential election.

On the recommendation of Trump's personal lawyer, Michael Cohen, Davidson wrote a "strong denial" on Daniels' behalf, which would deny the existence of a hush-money agreement as well as the affair itself.

Daniels signed the letter, published on January 10, 2018 — but Davison testified he wrote it himself.

"TO WHOM IT MAY CONCERN: I recently became aware that certain news outlets are alleging that I had a sexual and/or romantic affair with Donald Trump many, many, many years ago," the statement began. "I am stating with complete clarity that this is absolutely false."

Davidson testified on Thursday that "an extremely strict reading of this statement would technically be true" based on how he would parse "affair," "romantic," and "and/or."

"I don't think that anyone had ever alleged that any interaction between she and Mr. Trump was romantic," Davidson said, to laughter in the court's overflow room.

Davidson said that letters like the one he wrote are a "tactic" used by lawyers wrangling with the press to try to throw them off a story.

Asked by Steinglass whether "there was a sexual encounter" between Daniels and Trump, Davidson said he believed there was.

"That was my understanding," he said.

Related stories

Davidson also said the statement's denial of rumors that Daniels "received hush money" from Trump was also true because he "would never use that word."

"There wasn't hush money. It was a consideration in a civil settlement agreement," Davidson said.

The Manhattan District Attorney's Office has charged Trump with violating criminal business-recordkeeping laws 34 times by disguising reimbursements to Cohen, who paid the hush money to Daniels on Trump's behalf.

Trump has pleaded not guilty to the charges and laid the blame at Cohen's feet, saying he arranged the payments.

Davidson testified Thursday about the chaotic atmosphere surrounding the hush-money arrangement. Cohen repeatedly pushed back payment deadlines ahead of the 2016 election, he said. And on election night, as the results pointed to Trump winning the presidency, Davidson was surprised.

"What have we done?" Davidson texted Dylan Howard, the editor of the National Enquirer, on election night.

The arrangement between Trump and Daniels remained dormant until early 2018, when the Journal prepared to publish its stories revealing the scandal to the public. Cohen worked at all hours trying to keep the narrative under control, sending text messages "with little regard for my schedule," Davidson testified.

When the 2018 State of the Union address rolled around on January 30, Daniels saw an opportunity to reinvigorate her career as an adult-film actor and director, he said.

She was set to appear on ABC's "Jimmy Kimmel Live!"

Cohen insisted that Daniels publish another statement denying the affair.

Davidson crafted the statement with Daniels in the Marilyn Monroe Suite in the Hollywood Roosevelt Hotel, which Kimmel's production team had booked for her. The statement referred to an "alleged sexual relationship" with Trump.

"I am not denying this affair because I was paid 'hush money' as has been reported in overseas owned tabloids," the statement read. "I am denying this affair because it never happened."

Davidson explained Thursday he thought the statement was "technically true" because of how he personally defined "relationship."

"I don't think anyone had ever alleged that there was a relationship with Stormy Daniels and Donald Trump," he said. "I believe a relationship is an ongoing interaction."

Daniels recanted both statements later in 2018 , saying she agreed to them only because of the nondisclosure agreement and believed she had no choice but to make them.

She has also said her interactions with Trump were neither "romantic" nor an "affair."

"It was not romantic," she testified in a different trial . "I don't consider getting cornered coming out of a bathroom to be an affair."

Watch: Donald Trump was indicted in New York. Here's what we know so far.

true statement about hypothesis

  • Main content
  • International

live news

College protests across the US

live news

Trump's hush money trial

live news

April jobs report

Stormy Daniels' former lawyer testifies in Trump's hush money trial

From CNN's Kara Scannell, Lauren Del Valle and Jeremy Herb at the courthouse

Texts show Cohen and Davidson agreeing on a statement to CNN about the hush money payment

Prosecutor Joshua Steinglass is continuing to show 2018 texts from then-Trump attorney Michael Cohen to Keith Davidson, who helped arrange the hush money payment to Stormy Daniels.

On February 13, Cohen texted Davidson an email address for Chris Cuomo, then a CNN anchor.

When asked about the context of the message, Davidson testified that he thinks Cohen "was under some fire and wanted validation or cooperation" that the $130,000 payment to Daniels "was in fact paid from him, not anyone else."

Davidson texted Cohen a statement, which said he agreed that Cohen's public comments that the $130,000 was paid from Cohen's personal funds was "in complete harmony with what he informed me of at the time of the transaction."

"Perfect. Send to Cuomo," Cohen responded.

Davidson confirmed he sent that statement to the anchor.

Cohen wanted Daniels to deny her story, Davidson testifies

Keith Davidson is testifying about the pressure that Michael Cohen was applying on Stormy Daniels.

Davidson says that "he wanted her to deny her story to protect his client."

Michael Cohen threatened to "rain legal hell down upon" Stormy Daniels, Davidson says

Michael Cohen threatened to sue Stormy Daniels "many times," Keith Davidson testifies, adding, "He can be a very aggressive guy."

"We were trying to thread a needle and hold off a breach and all the penalties that would come with that where Cohen could file an arbitration or sue Stormy. That would be a whole other disaster," he said.

"We’re trying to placate him while also trying to meet Stormy’s desires," Davidson said of Cohen.

Cohen threatened to "rain legal hell down upon her," Davidson said.

Cohen texts Davidson: "This is not a comedy show!"

The texts from Michael Cohen continued the next day, on January 31, Keith Davidson says.

In one text, Cohen asked Davidson to tell Stormy Daniels' publicist to talk to Daniels.

"Please tell Gina to ensure she responds the same as your statement tomorrow when she does 'The View.' This is not a comedy show!" Cohen wrote to Davidson.

Jurors are smiling as Davidson explains the "WTF" text

"It’s a signal of exasperation," Keith Davidson said when asked to explain the "WTF" text.

Davidson said he wasn't watching Kimmel at the time and was learning this all for the first time from Michael Cohen in these texts.

Some of the jurors were smiling as Davidson explained the text message and what he meant by "WTF."

Remember:  The jury is comprised of 12 seated jurors, along with six alternate jurors. Read about them here.

Prosecutor shows texts from Cohen on the night of Stormy Daniels' appearance on "Kimmel"

Prosecutor Joshua Steinglass is now showing a series of texts from then-Trump attorney Michael Cohen on the evening of January 30, 2018, when Stormy Daniels appeared on "Jimmy Kimmel Live!"

During the interview, Kimmel repeatedly tried to pin Daniels down on whether or not the signature on her January 30 statement denying an affair with Donald Trump was actually her signature.

"She just denied the letter," Cohen wrote to Davidson, according to the texts shown in court. "Claiming it’s not her signature."

"You said she did it in front of you," he added.

"She did. Impossible – she posted it on her own Twitter page," Davidson responded.

"They showed her signature and she claimed it was not hers on Kimmel," Cohen responded.

Davidson calls another Daniels statement "technically true"

Keith Davidson digs in on this statement of Stormy Daniels denying an affair with Donald Trump.

"I think it's technically true," he says.

Asked how that is true, Davidson says, "Because I don’t think that anyone had ever alleged that there was a relationship between Stormy Daniels and Donald Trump. I believe a relationship is an ongoing interaction."

Davidson says he would give the same explanation as earlier for why he does not believe Daniels was paid "hush money" in the agreement.

Davidson testifies he wrote second statement for Daniels denying affair

Keith Davidson is now explaining there was "another statement" that was prepared for Stormy Daniels and released on January 30, 2018.

Prosecutor Joshua Steinglass is showing the statement now. "I am denying this affair because it never happened," Daniels said in the statement.

Davidson says he wrote the statement while in the Marylin Monroe suite at the Roosevelt Hotel in Los Angeles. He was there with Daniels, her publicist Gina Rodriquez and hair and makeup artists.

The "Jimmy Kimmel Live!" team put Daniels up in the hotel before she went on the show, Davidson says.

Davidson recalls receiving "hundreds" of calls from reporters

Keith Davidson is now going through texts from January 30, 2018, after a news article was published and he was receiving "hundreds" of calls from reporters.

“She’s stating she authored it & she released it of her own volition," Davidson texted Cohen about Stormy Daniels. Davidson explains that Cohen had requested another statement from Daniels on the day she appeared on Jimmy Kimmel and he wanted to know whether she was going to release it.

Please enable JavaScript for a better experience.

COMMENTS

  1. Hypothesis: Definition, Examples, and Types

    A hypothesis is a tentative statement about the relationship between two or more variables. It is a specific, testable prediction about what you expect to happen in a study. It is a preliminary answer to your question that helps guide the research process. Consider a study designed to examine the relationship between sleep deprivation and test ...

  2. Scientific hypothesis

    scientific hypothesis, an idea that proposes a tentative explanation about a phenomenon or a narrow set of phenomena observed in the natural world.The two primary features of a scientific hypothesis are falsifiability and testability, which are reflected in an "If…then" statement summarizing the idea and in the ability to be supported or refuted through observation and experimentation.

  3. How to Write a Strong Hypothesis

    Developing a hypothesis (with example) Step 1. Ask a question. Writing a hypothesis begins with a research question that you want to answer. The question should be focused, specific, and researchable within the constraints of your project. Example: Research question.

  4. What is a scientific hypothesis?

    A hypothesis is usually written in the form of an if-then statement, which gives a possibility (if) and explains what may happen because of the possibility (then). ... Thus, the hypothesis is true ...

  5. What is a Hypothesis

    Definition: Hypothesis is an educated guess or proposed explanation for a phenomenon, based on some initial observations or data. It is a tentative statement that can be tested and potentially proven or disproven through further investigation and experimentation. Hypothesis is often used in scientific research to guide the design of experiments ...

  6. What Is a Hypothesis and How Do I Write One?

    Merriam Webster defines a hypothesis as "an assumption or concession made for the sake of argument.". In other words, a hypothesis is an educated guess. Scientists make a reasonable assumption--or a hypothesis--then design an experiment to test whether it's true or not.

  7. Hypothesis

    The hypothesis of Andreas Cellarius, showing the planetary motions in eccentric and epicyclical orbits.. A hypothesis (pl.: hypotheses) is a proposed explanation for a phenomenon.For a hypothesis to be a scientific hypothesis, the scientific method requires that one can test it. Scientists generally base scientific hypotheses on previous observations that cannot satisfactorily be explained ...

  8. Research Hypothesis In Psychology: Types, & Examples

    A hypothesis is a testable statement or prediction about the relationship between two or more variables. It is a key component of the scientific method. ... Many statistical methods are tailored to test the null hypothesis, determining the likelihood of observed results if no true effect exists. This dual-hypothesis approach provides clarity ...

  9. What Is A Research Hypothesis? A Simple Definition

    A research hypothesis (also called a scientific hypothesis) is a statement about the expected outcome of a study (for example, a dissertation or thesis). To constitute a quality hypothesis, the statement needs to have three attributes - specificity, clarity and testability. Let's take a look at these more closely.

  10. What is a Research Hypothesis: How to Write it, Types, and Examples

    It seeks to explore and understand a particular aspect of the research subject. In contrast, a research hypothesis is a specific statement or prediction that suggests an expected relationship between variables. It is formulated based on existing knowledge or theories and guides the research design and data analysis. 7.

  11. Hypothesis Testing

    There are 5 main steps in hypothesis testing: State your research hypothesis as a null hypothesis and alternate hypothesis (H o) and (H a or H 1 ). Collect data in a way designed to test the hypothesis. Perform an appropriate statistical test. Decide whether to reject or fail to reject your null hypothesis. Present the findings in your results ...

  12. 6a.1

    The alternative hypothesis is typically denoted as \(H_a\) or \(H_1\). This is the statement that one wants to conclude. It is also called the research hypothesis. ... The reason is that we are assuming the null hypothesis is true and trying to see if there is evidence against it. Therefore, the conclusion should be in terms of rejecting the null.

  13. 3.1: The Fundamentals of Hypothesis Testing

    Components of a Formal Hypothesis Test. The null hypothesis is a statement about the value of a population parameter, such as the population mean (µ) or the population proportion (p).It contains the condition of equality and is denoted as H 0 (H-naught).. H 0: µ = 157 or H0 : p = 0.37. The alternative hypothesis is the claim to be tested, the opposite of the null hypothesis.

  14. 7.1: Basics of Hypothesis Testing

    Test Statistic: z = ¯ x − μo σ / √n since it is calculated as part of the testing of the hypothesis. Definition 7.1.4. p - value: probability that the test statistic will take on more extreme values than the observed test statistic, given that the null hypothesis is true.

  15. 9.1: Null and Alternative Hypotheses

    The actual test begins by considering two hypotheses.They are called the null hypothesis and the alternative hypothesis.These hypotheses contain opposing viewpoints. \(H_0\): The null hypothesis: It is a statement of no difference between the variables—they are not related. This can often be considered the status quo and as a result if you cannot accept the null it requires some action.

  16. How to Write a Hypothesis? Types and Examples

    Assume that the null hypothesis is true. 2. Determine how likely the sample relationship would be if the null hypothesis were true. This probability is called the p value. 3. If the sample relationship would be extremely unlikely, reject the null hypothesis and accept the alternative hypothesis.

  17. Null & Alternative Hypotheses

    The alternative hypothesis (H a) is the other answer to your research question. It claims that there's an effect in the population. Often, your alternative hypothesis is the same as your research hypothesis. In other words, it's the claim that you expect or hope will be true. The alternative hypothesis is the complement to the null hypothesis.

  18. AP Statistics Question 236: Answer and Explanation

    6. Which of the following is a true statement about hypothesis testing? A. If there is sufficient evidence to reject a null hypothesis at the 10% level, then there is sufficient evidence to reject it at the 5% level. B. Whether to use a one- or a two-sided test is typically decided after the data are gathered. C. If a hypothesis test is conducted at the 1% level, there is a 1% chance of ...

  19. Hypothesis Testing: EOCQ Flashcards

    Which of the following statements about hypothesis testing is correct? a. the null hypothesis is the condition a researcher hopes to support b. the alternative hypothesis is the proposition considered true without conclusive evidence to the contrary c. the alternative hypothesis exhausts all potential parameter values not accounted for by the null hypothesis

  20. Chpt 8 Flashcards

    The _____ hypothesis is a statement that the value of a population parameter is equal to some claimed value. null. See an expert-written answer! ... Which of the following is NOT true about P-values in hypothesis testing? A. If the P is low, the null must go. B. The P-value separates the critical region from the values that do not lead to ...

  21. Solved Select the true statement(s) about hypothesis tests ...

    Step 1. Select the true statement (s) about hypothesis tests. In a test of a statistical hypothesis, there may be more than one alternative hypothesis. If the value of the test statistic lies in the nonrejection region, then the null hypothesis is true. In a test of a statistical hypothesis, we attempt to find evidence in favor of the null ...

  22. 1.1: Statements and Conditional Statements

    A conditional statement is a statement that can be written in the form "If P then Q ," where P and Q are sentences. For this conditional statement, P is called the hypothesis and Q is called the conclusion. Intuitively, "If P then Q " means that Q must be true whenever P is true.

  23. Chapter 1 Practice Questions Chem.1211 Flashcards

    E) All of the above statements are false. Answer C. 3) Which statement about a hypothesis is TRUE? A) It is a tentative interpretation or explanation. B) It has the potential to be proven wrong. C) It can be tested by experiments. D) It is part of the scientific method. E) All of the above statements are true. Answer: E.

  24. Fact Sheet on FTC's Proposed Final Noncompete Rule

    Fewer than 1% of workers are estimated to be senior executives under the final rule. Specifically, the final rule defines the term "senior executive" to refer to workers earning more than $151,164 annually who are in a "policy-making position.". The FTC estimates that banning noncompetes will result in: Reduced health care costs: $74 ...

  25. Biden-Harris Administration Approves $6.1 Billion Group Student Loan

    The Biden-Harris Administration today announced the approval of more than $6.1 billion in automatic student loan relief to nearly 317,000 borrowers who enrolled at any Art Institute campus on or after Jan. 1, 2004, through Oct. 16, 2017.

  26. Stormy Daniels' Lawyer Said Trump Affair Not 'Romantic'

    Keith Davidson, a lawyer for Stormy Daniels, is testifying in Donald Trump's hush-money trials. He crafted statements for Daniels denying an affair with Trump. Davidson said the statements were ...

  27. Texts show Cohen and Davidson agreeing on a statement to CNN about the

    Prosecutor Joshua Steinglass is continuing to show 2018 texts from then-Trump attorney Michael Cohen to Keith Davidson, who helped arrange the hush money payment to Stormy Daniels.

  28. Davidson is asked about Stormy Daniels' 2018 statement in ...

    "An extremely strict reading of this denial would technically be true," Daniels' former lawyer said.