Floor Tape Store

Tuesday, May 15, 2012

  • The Six-Step Problem-Solving Process

six step problem solving example pdf

  • Select the problem to be analyzed
  • Clearly define the problem and establish aprecise problem statement
  • Set a measurable goal for the problem solving effort
  • Establish a process for coordinating with and gaining approval of leadership
  • Identify the processes that impact the problem and select one
  • List the steps in the process as it currently exists
  • Map the Process
  • Validate the map of the process
  • Identify potential cause of the problem
  • Collect and analyze data related to the problem
  • Verify or revise the original problem statement
  • Identify root causes of the problem
  • Collect additional data if needed to verify root causes
  • Establish criteria for selecting a solution
  • Generate potential solutions that will address the root causes of the problem
  • Select a solution
  • Gain approval and supporter the chosen solution
  • Plan the solution
  • Implement the chosen solution on a trial or pilot basis
  • If the Problem Solving Process is being used in conjunction with the Continuous Improvement Process, return to Step 6 of the Continuous Improvement Process
  • If the Problem Solving Process is being used as a standalone, continue to Step 5
  • Gather data on the solution
  • Analyze the data on the solution
  • Achive the desired results?
  • If YES, go to Step 6. 
  • If NO, go back to Step 1.
  • Identify systemic changes and training needs for full implementation
  • Adopt the solution
  • Plan ongoing monitoring of the solution
  • Continue to look for incremental improvements to refine the solution
  • Look for another improvement opportunity

Subscribe via Email

4 comments:

Tim, This is a good guideline for any practitioner to follow. I wish I had this a few weeks ago. A client liked a training deck I prepared but didn't want to confuse anyone with terms like Deming Cycle and such. The final version of PDCA was a 6 step process improvement method that's very similar to yours. Thanks for sharing. Cheers, Chris

Thank you for you brief and easy to understand on each step problem solving above.

Wonderful. Well Explained. Thank you for sharing

I mapped this to PDCA and observed that the first 3 steps correspond to P, the next 3 to D, C and A respectively. This Show that indeed planning is the most important step in PDCA.

Subscribe via Email

Search A Lean Journey

Twitter updates.

  • Facebook Updates
  • Advertising

Subscribe Now

six step problem solving example pdf

Get new posts by email:

A Lean Journey LinkedIn Group

Recent comments, search this blog, top 10 posts.

  • Celebrating my 500th Blog Post
  • Visual Management Board
  • Guest Post: Reduce, Reuse, Recycle...
  • What Do We Mean By True North?
  • Five Lean Games Every Company Can Benefit From
  • 10 Characteristics of a Good Measure and 7 Pitfalls to Avoid
  • DOWNTIME and the Eight Wastes
  • The 8 Common Wastes in an Office That Cause Downtime
  • Lean Leadership: Lessons from Abe Lincoln

Blog Archive

  • ►  May (1)
  • ►  April (13)
  • ►  March (13)
  • ►  February (12)
  • ►  January (14)
  • ►  December (11)
  • ►  November (13)
  • ►  October (12)
  • ►  September (13)
  • ►  August (13)
  • ►  July (8)
  • ►  June (13)
  • ►  May (14)
  • ►  April (12)
  • ►  February (13)
  • ►  January (13)
  • ►  December (12)
  • ►  October (13)
  • ►  August (14)
  • ►  July (13)
  • ►  May (13)
  • ►  August (10)
  • ►  March (14)
  • ►  July (14)
  • ►  December (10)
  • ►  June (12)
  • ►  April (9)
  • ►  December (13)
  • ►  October (14)
  • ►  September (12)
  • ►  May (12)
  • ►  January (12)
  • ►  October (15)
  • ►  December (14)
  • ►  November (12)
  • ►  January (15)
  • ►  August (17)
  • ►  July (19)
  • ►  June (16)
  • ►  May (19)
  • ►  April (18)
  • ►  March (17)
  • ►  February (16)
  • ►  January (18)
  • ►  December (19)
  • ►  November (18)
  • ►  October (20)
  • ►  September (18)
  • ►  August (22)
  • ►  July (23)
  • ►  June (21)
  • Lean Roundup #36 – May, 2012
  • Meet-up: Beyond Lean's Matt Wrye
  • Meet-up: 6 Questions to Learn of Those in Our Comm...
  • Memorial Day is a Time for Remembrance
  • Lean Quote: Change Leaders Create Constancy of Pur...
  • Celebrating A Lean Journey's Third Year With Some ...
  • Quality Improvement in Government?
  • Webinar: Checking Your Lean Progress
  • Lean Quote: Ability, Motivation, Attitude
  • Daily Lean Tips Edition #31
  • Leveraging Quality to Achieve Your Business Goals
  • Lean Quote: Continuous Improvement is About Findin...
  • Management Improvement Blog Carnival #166
  • Top 3 “Old School” Apps for Lean
  • Creating A Quality Focused Culture
  • Lean Quote: Opportunity is Dressed as Hard Work
  • Kanban Flow - A Free, Fast, & Flexible Kanban Tool
  • Demonstrating Commitment Is A Combination of Suppo...
  • ►  April (17)
  • ►  February (18)
  • ►  January (20)
  • ►  December (18)
  • ►  November (19)
  • ►  October (17)
  • ►  September (22)
  • ►  July (20)
  • ►  June (20)
  • ►  May (21)
  • ►  April (19)
  • ►  March (20)
  • ►  February (17)
  • ►  January (17)
  • ►  December (20)
  • ►  November (15)
  • ►  August (18)
  • ►  July (17)
  • ►  April (14)
  • ►  November (17)
  • ►  July (15)
  • ►  June (9)
  • ►  May (5)
  • A Lean Journey (79)
  • A Year Ago (8)
  • ASQ's Influential Voices (40)
  • Book Review (64)
  • Change Management (53)
  • Communication (13)
  • Conference (10)
  • Culture (38)
  • Customer Focus (2)
  • Daily Management (1)
  • Development/Training (13)
  • Empowerment (19)
  • Engagement (37)
  • Exercises/Games (8)
  • Facilitation (2)
  • Feedback (3)
  • Guest Post (167)
  • In the News (69)
  • Innovation (2)
  • L.A.M.E. (5)
  • Leadership (218)
  • Lean and Green (12)
  • Lean Basics (109)
  • Lean Definition (24)
  • Lean Fun (10)
  • Lean in Practice (55)
  • Lean Management (152)
  • Lean Office (14)
  • Lean Products (4)
  • Lean Quote (722)
  • Lean Resources (44)
  • Lean Roundup (198)
  • Lean Thinking (5)
  • Lean Tips (232)
  • Meet-up (25)
  • Podcast (5)
  • Problem Solving (21)
  • Product Review (2)
  • Project Management (6)
  • Quality (48)
  • Respect For People (57)
  • Sharing Best Practices (129)
  • Soft Skills (3)
  • Strategy (6)
  • Supply Chain (1)
  • Talking Lean (1)
  • Teamwork (42)
  • Visual Factory (31)
  • Webinar (23)

Lean Blogs I Like

  • 2 Lean Principles
  • 5S Supply Blog
  • Avoiding The Corporate Death Spiral
  • Be More Careful!
  • Curious Cat
  • Daily Kaizen
  • Evolving Excellence
  • Gemba Panta Rei
  • Gemba Tales
  • Got Boondoggle?
  • Gotta Go Lean Blog
  • Improve With Me
  • Jamie Flinchbaugh
  • Kaizen Notebook
  • Lean Builder
  • Lean Communications
  • Lean For Everyone
  • Lean Healthcare Exchange
  • Lean Homebuilding
  • Lean Insider
  • Lean Is Good
  • Lean Leadership
  • Lean Pathways
  • Lean Printing
  • Lean Reflections
  • Lean Simulations
  • Lean Six Sigma Academy
  • LeanCor Blog
  • Learn Lean Manufacturing
  • Learning About Lean
  • Old Lean Dude Blog
  • The A3 Post
  • The Lean Edge
  • The Lean Library
  • The Lean Logistics Blog
  • The Lean Thinker
  • The Lean Way Consulting
  • TimeBack Blog
  • To The Gemba
  • Training Within Industry
  • Visual Management Blog

Other Sites I like

  • AME's Target Magazine
  • AnythingLean.com
  • Art of Lean
  • Bosch Rexroth Lean Production
  • CIRAS - Theory of Constraints
  • Chasing The Rabbit
  • Corporate Event Management
  • Creative Safety Supply
  • Creative Safety Supply 5S Resource Page
  • Fuss & O'Neill SPL
  • Gemba Academy
  • Grassroots Innovation
  • IndustryWeek
  • Lean Enterprise Institute
  • Leanovations
  • Learn More McGraw-Hill
  • MEP University
  • Manufacturers BlogNotions
  • Manufacturing Business Technology
  • Manufacturing Pulse
  • Modern Machine Shop
  • Running A Hospital
  • Superfactory
  • The 5S Store
  • Unclutterer
  • Visual Workplace
  • Xtreme Lean Consulting
  • catalyst for change
  • freeleansite.com

wibiya widget

A lean journey blog - copyright © 2009-2024 tim mcmahon - all rights reserved.

Academia.edu no longer supports Internet Explorer.

To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to  upgrade your browser .

Enter the email address you signed up with and we'll email you a reset link.

  • We're Hiring!
  • Help Center

paper cover thumbnail

Problem Solving Overview SIX-STEP PROBLEM SOLVING MODEL

Profile image of Zia Qureshi

Related Papers

The Leadership Quarterly

Min Basadur

six step problem solving example pdf

Siti S. Salim

Diabetes Spectrum

Felicia Hill-Briggs, PhD

Jurnal Pendidikan IPA Indonesia

Muhammad Syukri

This study aimed to determine the impact of the integration of engineering design process (asking, imagining, planning, creating and improving) in an electrical & magnetism module to improve problem-solving skills in physics among secondary school students in Aceh, Indonesia. The quasi-experimental study was carried out with 82 form three (age 15 years old) students of a secondary school in Aceh Besar, Indonesia. The first author had randomly chosen two classes as the experimental group and two other classes as the control group. Independent samples t-test analysis was conducted to determine the difference between the physics teaching and learning module which integrated the five steps of engineering design process and the existing commonly used science " Pudak " teaching and learning module. The results of the independent samples t-test analysis showed that the use of the physics teaching and learning module which integrated the five steps of engineering design process was more effective compared to the use of the existing " Pudak " module in increasing the students' skills in solving physics problems. The findings of the study suggest that the science learning approach is appropriate to be applied in the teaching and learning of science to enhance science problem-solving skills among secondary school students. In addition, it can be used as a guide for teachers on how to implement the integration of the five steps of engineering design process in science teaching and learning practices.

IOSR Journals

Education and Training in Autism and Developmental Disabilities

Mark Doggett

Despite the availability of a wide range of problem solving methods, individuals continue to struggle with problems. Scientists attempt to address recurring economic, social, political, and organizational problems through the expansion of knowledge and theory. ... Cause-effect relationships advance logical explanations, predict future events,and forecast consequences. Theories and thinking based on cause-effect findings become recognized science (Goldratt, 1990) and move the field of inquiry from "art" to that of disciplined examination. In problem solving, the root cause of the problem produces an undesirable effect. Any pursuit that does not seek the root cause leads only to the symptom of the problem and, by definition, solving a symptom will not solve a problem. Problem solvers identify root causes of problems to be able to predict future cause and effect relationships. The purposeful application of an analysis method can address complex problems using a structured app...

Lecture Notes in Computer Science

Myriam Lewkowicz

Juan Sebastián Betancourt Tabares

Lauren E Rudd

Solving problems is a necessary life skill and design is a problem solving process. This study investigated whether learning to design affected college students’ awareness and perception of their problem solving ability, and whether that ability correlated to academic success. Pretest-posttest scores of The Problem Solving Inventory were compared from a design fundamentals class. Results showed significant improvement in self-appraisal of problem solving ability subsequent to learning design. Student awareness of problem solving skills development was identified through student opinions involving solving problems for design and real life. Students indicated broader thinking, simplified solution development, and improved confidence. The study clearly shows correlations between learning to design and problem solving skills, and between problem solving skills and real-life problem solving.

RELATED PAPERS

Wind Engineers, JAWE

Benito Pacheco

Javier Finat

Polgári Szemle

J. Sándor Zsarnóczai

TA'AWUN

janice pramono

Cuestiones de género: de la igualdad y la diferencia

Francisco Castilhos

Journal of Educational Research in Developing Areas

Mercy Ifunanya Ani , Festus Tafi

Optics and Photonics News

Cid Bartolomeu de Araujo

Debiana Mebe

World Journal of Nuclear Science and Technology

Zelmo de Lima

Food Additives & Contaminants: Part A

Angelina Pena

Bioconjugate Chemistry

Binata Joddar

Mafisa RestAmi

Progress in Lipid Research

trang trang trần

Developmental Biology

nieves ibarrola

Biosaintifika: Journal of Biology & Biology Education

Ulfi Faizah

The Journal of thoracic and cardiovascular surgery

pippa simpson

International Journal of Environmental Research and Public Health

Carlos Asensio

Alexandra Touroutoglou

Revue Française d'Allergologie

isabelle boccon-gibod

Uzezi Orivri

İstanbul'da Rock Kültürü: Yeraltından Yeryüzüne

Melike Aslı Sim

The Review of Laser Engineering

Prof. Ismail Abbas

Jurnal Manajemen dan Sains

albetris albetris

RELATED TOPICS

  •   We're Hiring!
  •   Help Center
  • Find new research papers in:
  • Health Sciences
  • Earth Sciences
  • Cognitive Science
  • Mathematics
  • Computer Science
  • Academia ©2024

HuddleIQ logo

Integrations

Help articles.

Online whiteboard for connecting, collaborating, creating

Related documents

5S * Foundation to Lean - dpzietlow & associates llc

Add this document to collection(s)

You can add this document to your study collection(s)

Add this document to saved

You can add this document to your saved list

Suggest us how to improve StudyLib

(For complaints, use another form )

Input it if you want to receive answer

  • Leadership Development
  • Operational Excellence
  • Industry 4.0 – Management Digitalization
  • Food & Bev
  • Construction
  • Manufacturing
  • Heavy Industry
  • The Manager's Journey
  • Cross-platform tool
  • Digital Gemba Walk
  • Collaboration and Rituals
  • Coaching and Improvement
  • Knowledge Center - New
  • All Features
  • Industry 4.0 and 5.0

Case Studies

  • Continuous Improvement
  • Frontline Managers
  • Key Behaviroral Indicators
  • Management Skills
  • Productivity
  • Free Resources

TABLE OF CONTENT

Share this article, download a pdf version., subscribe to our newsletter, 10 effective tools and problem-solving methods for manufacturers.

pro_utra

Downloaded on: May 2, 2024

Adeline de Oliveira

• April 30, 2024

Worker wearing a safety helmet, surrounded by machines, looking into the distance while holding a tablet

Variability of demand, quality management, equipment maintenance, and integration of new technologies : problems are frequent and inevitable, and manufacturers face challenges very often. Acknowledging this reality enables teams to remain vigilant, quickly identify and resolve these difficulties, and constantly improve processes and products alike.

Why focus on problem-solving? In the Lean philosophy , a problem isn't just a problem; it's also, and above all, an opportunity to do better. Rather than hiding or ignoring what's not working, the idea is to face up to it, to find structured methods for optimizing efficiency and quality. For this, there are a number of possible solutions and tools available.

What are the different stages of problem-solving? Which methods and tools are most effective in production environments? And how do you use them? 

This article provides all the answers and problem-solving tips.

Key takeways:

  • By scrutinizing every action and aspect of processes, it is crucial to distinguish between activities that bring value and those that don't , in order to reduce or eliminate waste.
  • Involving employees in identifying problems and suggesting solutions strengthens their sense of ownership, and improves team cohesion and efficiency.
  • Root Cause Analysis (RCA) helps to identify the underlying causes of problems to find more sustainable solutions and prevent problems from recurring.
  • The use of tools such as the PDCA cycle and the 5S method, as well as techniques such as Six Sigma , is essential for optimizing processes and improving quality and efficiency.
  • It is essential to monitor implemented changes and continuously improve them to maintain and increase Overall Equipment Effectiveness (OEE).

In a hurry? Save this article as a PDF.

Tired of scrolling? Download a PDF version for easier offline reading and sharing with coworkers.

Key steps of a problem-solving process in a factory

To better understand each of these steps, let's take the example of a factory manufacturing automotive components, faced with a sudden rise in the number of defective parts.

Graphic showing the 6 steps of the problem-solving process, each with a short explanation

1. Identify the problem

The first step is to recognize that a problem exists. This involves observing the symptoms and identifying the gaps between the current state and the desired goal.

The QQOQCCP tool enables you to identify the problem by collecting factual information on incidents.

  • Observation: Abnormal increase in the number of defective parts at the quality inspection station.
  • Action: Collect data on the number of defective parts, the types of defects, and the times when they occur.

2. Define the problem

After identification, you need to precisely define the problem. This involves determining its scope (using the Four A’s method, for example), representing it clearly, and understanding its impact on operations.

  • Analysis: 10% of parts produced have surface defects (higher than the acceptable standard of 2%).
  • Action: Clearly define the problem as a significant increase in surface defects on automotive parts.

3. Find the root cause of the problem

This step aims to analyze the factors contributing to the problem in order to identify its root cause. This is a critical process requiring in-depth examination to avoid treating symptoms alone. 

  • Investigation: After using the 5 Whys method, the root cause turns out to be premature machine wear.
  • Action: Examine maintenance records and machine operating parameters to confirm this cause.

4. Brainstorm solutions

Once the root cause has been identified, it's time to focus on finding solutions. This phase encourages creative problem-solving and innovation from the whole team. They have to explore existing ideas and generate new ones.

  • Brainstorming: Several potential solutions are considered, such as replacing tools more frequently or modifying machine parameters. 
  • Action: Evaluate the advantages, disadvantages, and feasibility of each solution using the PDCA method.

5. Test your solutions

Before implementing a solution on a large scale, it is essential to test it in a controlled environment. This enables you to assess its effectiveness in real-life situations and adjust the action plan.

  • Experimentation: Replace tools more frequently to see if this reduces the defect rate.
  • Action: Implement the test plan over a set period using the "Do" phase of PDCA, then collect data on the impact of this change.

6. Standardize and document the chosen solution

Once you’ve found the best solution, it must be standardized and integrated into the organization's procedures. Documenting the process helps prevent the problem from recurring and facilitates employee training .

  • Implementation: After confirmation that more frequent tool replacement reduces defects, this practice is standardized across the entire production line using the DMAIC method.
  • Action: Document the new process using the 8Ds, train operators in the new practice, and integrate the change into standard operating procedures.

3 Methods to Implement Now HOW TO ACHIEVE OPERATIONAL EXCELLENCE Download our Whitepaper

5 Useful problem-solving strategies for manufacturing

1. 8d (eight disciplines problem solving).

8D is a quality approach to solving complex problems requiring in-depth analysis and lasting corrective action.

The method comprises eight steps:

  • Prepare the 8D process
  • Describe the problem
  • Identify and implement immediate actions
  • Identify the real causes
  • Identify and implement permanent corrective actions
  • Validate permanent corrective actions
  • Prevent recurrence
  • Congratulate the team

Use case in the manufacturing industry

Problem: Recurrent failure of a major piece of equipment, leading to costly production stoppages.

8D would enable a multi-disciplinary team to systematically identify, analyze, and eliminate the root cause of the failure while implementing sustainable corrective actions.

2. PDCA (Plan-Do-Check-Act)

Also known as the Deming wheel, this systematic, iterative model comprises four stages or cycles: Plan, Do, Check, Act.

The PDCA method helps companies test changes under controlled conditions, evaluate the results, and then implement improvements progressively to optimize production and ensure consistent product quality.

Problem: Variation in the quality of the finished product, which does not always meet standards.

PDCA would address this problem by planning improvements, testing them, evaluating their effectiveness, and adjusting the production process to stabilize product quality.

Circle-shaped graphic describing a step of the PDCA method in each quadrant

3. DMAIC (Define, Measure, Analyze, Improve, Control)

This Six Sigma method is highly effective in optimizing production processes, reducing variation, and eliminating defects by focusing on data and statistical analysis.

It involves clearly defining the problem (Define), measuring (Measure), and analyzing process data to identify root causes (Analyze), then implementing improvements (Improve) and controlling processes to ensure sustainable quality gains (Control).

Problem: High scrap and rework rates on an assembly line.

DMAIC would be used to specify the problem, measure performance, analyze data to find the cause, implement improvements, and control the process to reduce defects.

4. QRQC (Quick Response Quality Control)

This fast, effective method inspired by Lean Management, consists in identifying, analyzing and solving problems directly on the shop floor. It is particularly well suited to fast-paced production environments where immediate detection and resolution are necessary to maintain production continuity and efficiency.

Problem: Frequent safety incidents in the workplace.

QRQC would enable rapid reaction to identify and resolve the causes of such incidents immediately, thereby reducing their frequency and improving overall safety.

5. Four A’s

The Four A’s method is a structured approach that is designed to systematically address and solve problems within an organization. 

  • Assess: This step involves identifying and understanding the problem. 
  • Analyze: Once the problem is assessed, the next step is to analyze it to find the root causes.  
  • Address: With a clear understanding of the root causes, the third “A” involves developing and implementing solutions to address these causes.  
  • Act: The final “A” focuses on standardizing the correct solution and integrating it into the organization’s processes.   

It is used where problems need to be solved quickly and efficiently while ensuring that lessons learned are integrated into standard practices.

Problem: Missed delivery deadlines due to production bottlenecks.

The Four A’s method would help to quickly detect bottlenecks, analyze their causes, find and implement effective solutions, and then integrate these changes into regular operations to improve on-time delivery.

How to choose the right problem-solving method

The choice of problem-solving method depends on several factors:

  • The nature and complexity of the problem: Before choosing a problem-solving approach, you need to understand exactly what is wrong. If it's a complex and multifactorial problem, structured, in-depth methods such as 8D or DMAIC may be appropriate. For more immediate or quality-related problems, QRQC or Four A’s may be more appropriate.
  • Company objectives: Look at the big picture; align the method with your strategic objectives, such as improving quality, reducing costs, or increasing customer satisfaction. For example, DMAIC is often chosen for defect reduction and process optimization objectives.
  • Available resources: Think about the resources you can allocate to problem-solving processes (time, skills, budget). For example, PDCA can be implemented more quickly when resources are limited.
  • Team expertise and problem-solving skills: Use a method that matches your team's qualifications. Training may be required for more complex approaches such as DMAIC or 8D.
  • The need for standardization and documentation: If documentation and standardization of processes are essential, opt for methods that integrate these aspects, such as 8D or DMAIC.

IMPROVE YOUR SUPERVISION TOURS Gemba: Ultimate GuideDownload now

5 Tools for structuring your problem-solving methods

Now it's time for the problem-solving tools! These will help structure the process and keep it moving in the right direction.

1. The 5 Whys

This problem-solving technique, created by Toyota founder Sakichi Toyoda, involves repeatedly asking the question "Why?" until the root cause of a given problem is revealed. It's a simple but powerful tool for finding root causes.

A factory has a problem with late delivery of finished products:

  • Why is the plant experiencing delays in the delivery of finished products? Because the production of final units is often late.
  • Why is the production of final units behind schedule? Because assembly takes longer than expected.
  • Why does assembly take longer than expected? Because parts needed to complete assembly are often missing.
  • Why are parts often missing? Because supplies regularly arrive late from the supplier.
  • Why do supplies arrive late from the supplier? Because orders are placed too late, due to an inefficient procurement process.

2. The Ishikawa diagram (5M)

Also known as the "fishbone diagram" or "5M", this tool developed by Kaoru Ishikawa helps to systematically visualize all the potential causes of a specific problem, as well as the contributing factors.

Causes are divided into 5 main categories.

A factory encounters a problem with a drop in product quality:

  • Problem or "Effect" (fish head): Decline in product quality
  • Categories of causes (main branches):
  • Manpower: Operator skills , training, motivation.
  • Methods: Work procedures, quality standards, operating instructions.
  • Materials: Raw material quality, batch variability, supplier specifications.
  • Environment: Working conditions, temperature, humidity, dust.
  • Equipment: Equipment wear, machine calibration, maintenance. 

This evolution of the Ishikawa diagram focuses on not five, but seven major problem areas: Manpower, Method, Materials, Environment, Equipment, Management, Measurement.

A factory is experiencing machine failure problems:

  • Manpower: Inadequate operator training, human error due to fatigue, or lack of experience.
  • Methods: Obsolete production processes, and lack of standardized operating and maintenance procedures.
  • Materials: Inconsistent quality of raw materials, premature wear of spare parts.
  • Environment: Unsuitable working conditions, disturbances due to excessive noise or vibration.
  • Equipment: Outdated equipment, neglected or inadequate preventive maintenance.
  • Management: Inadequate decision-making, and insufficient communication between departments.
  • Measurement: Uncalibrated or faulty measuring instruments, lack of regular quality controls.

4. The Pareto principe

The Pareto or 80/20 principle is very useful for focusing on the problems that will have the greatest impact once solved, and for making informed decisions.

In a factory producing electronic components, 80% of production defects stem from just 20% of the manufacturing processes.

By analyzing production data, the company could discover that the majority of defects are linked to errors in the soldering and PCB inspection stages. These two stages, although representing a small part of the total manufacturing process, are crucial and require special attention to reduce the overall number of defects.

Two circular diagrams displayed side-by-side, showing the 80/20 rule

5. The QQOQCCP

This tool helps gather comprehensive information on a problem by answering these key questions: Who, What, Where, When, How, How much, Why. Thus, it provides an in-depth understanding of the situation.

There is a delay in production at a furniture manufacturing plant:

  • Who is affected by the problem? Assembly line operators and production managers are directly affected by the delay.
  • What exactly is the problem? Deliveries of finished furniture to customers are several days behind schedule.
  • Where exactly is the problem occurring? The problem occurs in the final assembly shop, where the furniture is prepared for shipment.
  • When was the problem detected or when does it occur? The delay has been observed over the past two weeks, mainly during the third shift.
  • How does the problem occur? The delay is due to a bottleneck in the finishing and packing stage, where there is a lack of personnel and problems with the packing equipment.
  • How often has the problem occurred, or what is the scale of the problem? The problem caused a 30% delay in orders during this period.
  • Why does the problem occur? The problem could be due to inadequate staff planning and recurring packaging equipment failures.

Other tools can also be useful for structuring problem-solving methods:

  • Brainstorming
  • Gemba Walks
  • SWOT analysis
  • Control charts
  • Prioritization matrices

Tips for effective implementation of problem-solving techniques

Integrate problem-solving into daily routines.

Instead of seeing problem-solving as a separate activity, integrate it into daily routines. For example, set up SIM meetings to discuss ongoing problems as a group and monitor progress on solutions.

Use technology for your benefit

Adopt a Daily Management System (DMS) like UTrakk to quickly identify problems, track corrective actions, facilitate collaboration between teams, and document solutions in a centralized repository.

Develop specific key performance indicators for problem resolution

Define Lean KPIs that measure the effectiveness of the problem-solving process (average time to solve the problem, problem recurrence rate, and impact of solutions on business performance).

Practice problem-solving on the shop floor

To understand problems, you need to go where value is created. Encourage managers to go on the shop floor to directly observe processes, interact with operators, and identify possible improvements.

Create cross-functional problem-solving groups

Form teams with members from different departments to tackle complex problem-solving. Integrating different angles, perspectives, and expertise broadens the point of view on the subject, enriches the analysis, and generates more creative ideas.

Adopt a coaching approach to skills development

In addition to basic training, use mentoring and coaching to develop problem-solving skills . Experienced employees can guide less experienced ones, sharing their know-how.

Conduct post-mortem reviews

When a problem is solved, conduct a post-mortem to discuss what went well, what didn't, and how processes can be improved.

Tracking and evaluating each solution implemented allows you to adjust strategies as needed, learn from past experiences, and foster continuous improvement .

TRACK AND MEASURE YOUR PERFORMANCE UTrakk DMeSDownload our brochure

UTrakk: Your ally in structuring and optimizing problem-solving

Using organized methods and analytical tools to tackle challenges is essential for manufacturers seeking to improve operational efficiency and product quality. UTrakk DMS is the perfect solution for this structured approach to daily problem-solving. With its multiple functionalities – rituals, actions, dashboards, and more – this Daily Management System can adapt to any problem-solving method to optimize every step of the process. Once a solution is standardized, it can be documented in UTrakk’s Knowledge Center to ensure compliance and prevent recurrence.

Adopting these problem-solving techniques not only enables manufacturers to respond effectively to today's challenges, but it also lays the foundations for continuous improvement, ensuring their competitiveness in an ever-changing industrial environment .

FAQ on tools and problem-solving methods

What are the key problem-solving methods for manufacturers.

The key problem-solving methods for manufacturers include Lean manufacturing, Six Sigma, and the PDCA (Plan-Do-Check-Act) cycle. These methodologies focus on eliminating waste, optimizing processes, and implementing continuous improvement to enhance operational efficiency.

How can manufacturers effectively implement Lean principles?

Manufacturers can effectively implement Lean principles by identifying and eliminating waste, optimizing workflows, and improving overall efficiency through techniques like Kanban and 5S. Training employees and involving them in the continuous improvement process are also critical steps​.

What is the importance of Six Sigma in manufacturing?

Six Sigma is important in manufacturing because it provides a data-driven approach for reducing defects and variability in processes. This methodology helps in improving product quality and operational efficiency by following the DMAIC (Define-Measure-Analyze-Improve-Control) framework.

Can technology enhance problem-solving in manufacturing?

Technology plays a crucial role in enhancing problem-solving in manufacturing. Digital twins, augmented reality, and collaborative robotics are technologies that help improve precision, efficiency, and safety, facilitating better decision-making and process optimization​.

What benefits do continuous improvement practices offer to manufacturers?

Continuous improvement practices offer several benefits, including increased operational efficiency, reduced waste and costs, and improved employee engagement and customer satisfaction. These practices encourage a proactive approach to addressing inefficiencies and fostering innovation.

Turn your production challenges into opportunities for improvement!

In addition to providing the UTrakk solution, Proaction International supports you in implementing the best problem-solving methods and helps you achieve operational excellence.

Adeline de Oliveira

Writer and editorial manager for about 15 years, Adeline de Oliveira is passionate about human behavior and communication dynamics. At Proaction International, she covers topics ranging from Industry 5.0 to operational excellence, with a focus on leadership development. This expertise enables her to offer insights and advice on employee engagement and continuous improvement of managerial skills.

PAI+UT_C4_PDF_Telechargeable_EN

Déli-Porc Develops an Agile, Digitalized Culture Focused on Optimization

Kefor maximizes its performance by optimizing manager skills, le goupe maurice: motivate and retain talents by focusing on the leadership development of managers.

© 2023 Proaction International Inc. All rights reserved. Terms of Use | Privacy Notice | Cookie Notice

IMAGES

  1. 6 steps of the problem solving process

    six step problem solving example pdf

  2. the 6 step problem solving model

    six step problem solving example pdf

  3. the 6 step problem solving model

    six step problem solving example pdf

  4. SOLUTION: The Six Step Problem Solving Model

    six step problem solving example pdf

  5. Six steps problem-solving process infographic. Stock Vector

    six step problem solving example pdf

  6. SOLUTION: The Six Step Problem Solving Model

    six step problem solving example pdf

VIDEO

  1. 06 Problem Solving Equivalent Fractions 2

  2. #33 Free Lean Six Sigma Green Belt

  3. Force Problems (Setup/Strategies & 5 Examples)

  4. Problem Solving Lesson #5

  5. Solving Ratio Word Problem the Easy Way #shorts

  6. When No One Brings Soap to the Trip

COMMENTS

  1. PDF www.free-management-ebooks.com/news/six-step-problem-solving-model/ The

    Determine the Root Cause(s) of the Problem", the group may return to the first step to redefine the problem. The Six Steps . 1. Define the Problem 2. Determine the Root Cause(s) of the Problem 3. Develop Alternative Solutions 4. Select a Solution 5. Implement the Solution 6. Evaluate the Outcome The process is one of continuous improvement.

  2. PDF Six-step Problem Solving Model

    Problem Solving Overview SIX-STEP PROBLEM SOLVING MODEL Problem solving models are used to address many issues that come up on a daily basis in the workplace. These problems may be technical or issue-based. ... For example, "identifying" and "diagnosing" a problem are two steps that may frequently overlap. Let's look at each of the ...

  3. PDF 6 Step Problem Solving Using the A3 as a Guide

    In the Lean Operating System, we achieve operational excellence by: Defining our standards. Continuously compare our operations against those standards. Engaging in aggressive and rigorous problem-solving when there is any deviation from the standard. Step 1: Identify the Problem. Step 2: Set the Target.

  4. PDF Six Step Process for Resolving Unstructured Problems

    Six Step Process. Problem Definition. surprisingly complex first step is to determine the exact nature of the problem at hand. One part of this is to separate root causes from symptoms for example treating the infection and not just the fever. separate issue has to do with scope.

  5. PDF SIX STEP PROBLEM SOLVING PROCESS

    1.Identify the problem 2.Analyse the problem 3.Generate potential solution. 4.Select the best solution. 5.Impleme nt /test the solution 6.Evaluate the solution. g15j0543. 1.Identify the problem. What is really causing the problem? Identifying the problem is the first step in the six step solving process. There is need to think of what the ...

  6. PDF 7-step approach to problem solving

    Problem statements should commence with a question or a firm hypothesis. Be specific, actionable and focus on what the decision maker needs to move forward. Break a problem into component parts so that problems can be divided and allocated. The parts should be MECE. Do it as a team, share with Experts and client to get input and alignment.

  7. PDF Problem Solving Six-Step Problem-Solving Process

    Problem Solving. Six-Step Problem-Solving Process (continued) Step Four: Select the Best Solutions. • Establish criteria for selecting a solution. • Evaluate the potential solutions against your criteria. • Once solutions have been selected, ask each other: "What could possibly go wrong if we do this?"

  8. PDF The 6 Step Problem Solving Process

    There are many problem-solving methods, and the six-step method is just one of them.. •The problem for most people is that they do not use one process to solve problems and issues or simply just to make decisions. •People are not consistent in how they solve problems. •We do not find something that works and then do it the same way over and over to be successful.

  9. Six-Step Problem-Solving Model

    It emphasizes the cyclical, continuous nature of the problem-solving process. The model describes in detail the following steps: Step One: Define the Problem. Step Two: Determine the Root Cause (s) of the Problem. Step Three: Develop Alternative Solutions. Step Four: Select a Solution. Step Five: Implement the Solution.

  10. PDF Problem Solving

    The study of team problem solving uses descriptive, functional, and prescriptive approaches to understand and improve the problem-solving process. The descriptive approach looks at how a team solves a problem. The problem-solving process goes through developmental stages similar to stages of group development.

  11. A Lean Journey: The Six-Step Problem-Solving Process

    The problem for most people is that they do not use one process to solve problems and issues or to make decisions. Another problem is that people are not consistent in how they solve problems. They do not find something that works and then do it the same way over and over to be successful. The Six-Step Problem-Solving Process is described below ...

  12. PDF Problem solving

    The six steps. The next few pages of this workbook will guide you through the six steps of problem solving. Step 1 - Write down the problem. Step 2 - Write down as many solutions as you can think of. Step 3 - Decide which solution is most effective. Step 4 - Choose a solution. Step 5 - Create an action plan. Step 6 - Evaluate ...

  13. PDF THIRTEEN PROBLEM-SOLVING MODELS

    The Six-Step method provides a focused procedure for the problem solving (PS) group. It ensures consistency, as everyone understands the approach to be used. By using data, it helps eliminate bias and preconceptions, leading to greater objectivity. It helps to remove divisions and encourages collaborative working.

  14. PDF Six Step Problem solving process

    The 6-Step Problem Solving Process Engaging others in solving problems helps build connection and better communication skills. This process can be used to manage anger, discuss family challenges, or other relationship concerns. 1) State the problem: Describe what happened, figure out the problem and state it.

  15. Problem Solving Overview SIX-STEP PROBLEM SOLVING MODEL

    Define the Problem 2. Determine the Root Cause (s) of the Problem 5. Implement the Solution 4. Select a Solution 3. Develop Alternative Solutions The steps in this sequence are arranged in a circle to emphasize the cyclical, continuous nature of the problem solving process.

  16. PDF The 7 Steps Of Problem Solving

    Ensures identification of any potential problems with solutions. 6 Identify critical concerns "A mini problem solve" Overcomes the critical part of the concern. Looks for ideas that are acceptable rather than perfect. May require selected ideas to be modified or replaced. 7 Get action plan/next steps ^Who does what by when _.

  17. PDF Six Sigma: A Complete Step-by-Step Guide

    The Six Sigma method lets organizations identify problems, validate assumptions, brainstorm solutions, and plan for implementation to avoid unintended consequences. By applying tools such as statistical analysis and process mapping to problems and solutions,

  18. PDF A Problem Solving Approach to Designing and Implementing a Strategy to

    PEL-083 A PELP Problem-Solving Approach . 2 . Teams rarely move through each step sequentially, and might get stuck and revisit earlier steps throughout the process. However, each step is critical to improving system-wide performance. Steps . Identify the Problem. The first and most critical step of solving a performance problem is to

  19. The McKinsey guide to problem solving

    The McKinsey guide to problem solving. Become a better problem solver with insights and advice from leaders around the world on topics including developing a problem-solving mindset, solving problems in uncertain times, problem solving with AI, and much more.

  20. A Six-Step Plan For Problem Solving

    Problem SolvingDefine the problem and find the right solution. Research & DesignVisualize ideas, share designs and gather feedback. Strategic PlanningSet goals, organize, prioritize and stay on track. Features. Problem-solving skills are extremely valuable when running your own business, as you will have many different challenges to overcome.

  21. SIX-STEP PROBLEM SOLVING MODEL

    The six steps in the problem solving model provide a focus for the group and help set the. agenda: everybody can work on following the model, rather than use their individual. approaches all at the same time. Following a method and using data to make decisions. makes it easier for a group to reach consensus.

  22. PDF Creative Problem Solving

    Problem Solving as the sum of its parts: Creative means having an element of newness and innovation, and relevance. Problem encompasses any situation that presents a challenge, offers an opportunity or is a concern. Solving means devising ways to answer, to meet or satisfy the problem. It can also mean adapting yourself to the situation or ...

  23. PDF Future Problem Solving Step 6

    Step 6 - Developing and Writing the Action Plan. Objective: To develop an Action Plan to explain/sell the best solution, and to show the best solution's relevance and importance to the UP and future scene. Missouri Standards. GOAL 3: Students in Missouri public schools will acquire the knowledge and skills to recognize and solve problems.

  24. 10 Effective Problem-Solving Methods for Manufacturers

    Key steps of a problem-solving process in a factory. To better understand each of these steps, let's take the example of a factory manufacturing automotive components, faced with a sudden rise in the number of defective parts. ... This Six Sigma method is highly effective in optimizing production processes, reducing variation, ...