U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Int J Environ Res Public Health
  • PMC10001968

Logo of ijerph

A Current Review of Water Pollutants in American Continent: Trends and Perspectives in Detection, Health Risks, and Treatment Technologies

Associated data.

Not applicable.

Currently, water pollution represents a serious environmental threat, causing an impact not only to fauna and flora but also to human health. Among these pollutants, inorganic and organic pollutants are predominantly important representing high toxicity and persistence and being difficult to treat using current methodologies. For this reason, several research groups are searching for strategies to detect and remedy contaminated water bodies and effluents. Due to the above, a current review of the state of the situation has been carried out. The results obtained show that in the American continent a high diversity of contaminants is present in the water bodies affecting several aspects, in which in some cases, there exists alternatives to realize the remediation of contaminated water. It is concluded that the actual challenge is to establish sanitation measures at the local level based on the specific needs of the geographical area of interest. Therefore, water treatment plants must be designed according to the contaminants present in the water of the region and tailored to the needs of the population of interest.

1. Introduction

Water contamination represents a current crisis in human and environmental health. The presence of contaminants in the water and the lack of basic sanitation hinder the eradication of extreme poverty and diseases in the poorest countries [ 1 ]. For example, water sanitation deficiency is one of the leading causes of mortality in several countries. Due to unsafe water and a lack of sanitation, there are several diseases present in the population [ 2 , 3 , 4 ]. Therefore, the sixth global objective of the United Nations, foreseen as part of its sustainable development agent 2030, aims to guarantee the availability and sustainable management of water resources. In this sense, numerous research groups have focused on proposing alternative solutions focusing on three fundamental aspects: (a) detection of contaminants present in water for human consumption, (b) assessment of risks to public and environmental health due to the presence of contaminants in the water, and (c) the proposal of water treatment technologies. In the case of the American continent, the detection of contaminants (inorganic and organic) has been studied; the research works show alarming results in which the impact of water pollution is demonstrated, how the ecosystem is being affected, and consequently the repercussion towards human health [ 5 , 6 , 7 , 8 ]. This last point becomes worrying due to the fact that there are reported cases in which newborns, children, and adults consumed drinking water from various sources (such as rivers, lakes, groundwater, and wells) without the certainty that it is free of contaminants, representing a health risk factor [ 9 , 10 , 11 ]. Some of the detected contaminants have been associated with a potential health risk, such as the case of some disinfectants with cancer [ 12 ] and NO 3 − and NO 2 − as potential carcinogens in the digestive system [ 13 ]. The lack of safe drinking water has been reported in several countries [ 3 , 14 ] since the presence of contaminants in water has demonstrated that actual quality controls are not able to detect or treat pollutants that are present [ 15 , 16 , 17 , 18 ].

In this sense, numerous research groups have focused on proposing alternative solutions focusing on three fundamental aspects: (a) the detection of contaminants present in water for human consumption, (b) assessment of risks to public and environmental health due to the presence of contaminants in the water, and (c) a proposal for water treatment technologies. This communication shows a critical review of the latest published research works. The use of Web Of Science from Clarivate Analytics was used for the bibliographic review. The bibliographic search was carried out in January 2023 using the keywords “public health pollutants/contaminants water” + “name of the American country.” The retrieved articles were filtered considering the following: (i) articles published in the period 2018–2023, (ii) articles carried out based on effluents and bodies of water belonging to the American continent, and (iii) articles that demonstrate the presence and/or treatment of organic (excluding biological contaminants) and inorganic contaminants in water. The selection of these research articles was used to carry out a critical review of the current situation to propose future challenges to achieve efficient, and sustainable water treatment processes.

2. Critical Review: Evaluation of the Current Situation, Perspectives, and Challenges in the Detection of Contaminants, Health Risk Assessment, and Water Treatment Technologies in the American Continent

2.1. detection of contaminants in water.

At present, there are various analytical techniques that have been used in the detection and quantification of inorganic and organic contaminants in aqueous matrices. Mainly, these techniques can be divided into three major groups: chromatographic, spectroscopic, and other techniques, such as electrochemical and colorimetric titration. A comparison of the advantages and disadvantages of the most commonly used analytical techniques is presented in Supplementary Table S1 . From these, techniques that have been used the most are shown below.

In chromatographic techniques, the most reported are gas chromatography-mass spectrometry (GC-MS), gas chromatography/mass spectrometry with selected ion monitoring (GC-MS/SIM), liquid chromatography-mass spectrometry (LC-MS), liquid chromatography quadrupole time-of-flight- mass spectrometry (LC-QTOF-MS), high-performance liquid chromatography-electrospray ionization-mass spectrometry (HPLC-ESI-MS), ultra-performance liquid chromatography- electrospray ionization-mass spectrometry (UPLC-ESI-MS), high-performance liquid chromatography-charged aerosol detector (HPLC-CAD), and ion chromatography (IC). In the case of spectroscopic techniques, these include inductively coupled plasma mass spectrometry (ICP-MS), atomic absorption spectrometry (AAS), inductively coupled plasma dynamic reaction cell mass spectrometry (ICP-DRC-MS), thermal ionization mass spectrometry (TIMS), high resolution inductively coupled plasma mass spectrometry (HR-ICP-MS), particle-induced X-ray emission (PIXE), fluorescence spectrometry, inductively coupled optical emission spectrometry (ICP-OES), and cold vapor atomic absorption spectrophotometry (CVAAS).

From these techniques, it has been possible to determine the concentrations of various pollutants of interest to human health and the environment.

The compilation of information from the latest scientific reports (related to the detection of inorganic contaminants present in the water) is shown in Table 1 and Figure 1 (geographical distribution). On the other hand, the comparison of the detection limits for the limits of interest using different analytical techniques is presented in Supplementary Table S2 . Among them, some works have been carried out based on water bodies in different countries, such as Canada [ 19 ], USA [ 20 , 21 , 22 ], Mexico [ 23 ], and Brazil [ 24 ], in which the presence of As, Fe, U, Zn, Na, K, Ca, Mg, HCO 3 − , and Hg with respect to interactions among water, bedrock mineralogy, and geochemical conditions of the region has been studied, so they can be classified as contamination due to a natural source. A particular case can be analyzed for U, which is present in water bodies of the southwest and west central USA, because high levels of acute exposure can be fatal for the population, and chronic exposure at low levels is associated with health problems, such as renal and cardiac risk. Although, exposure studies of surrounding communities cannot be considered conclusive, they correspond to a great advance in the field, and future studies should be carried out to assess possible damage to human health and the ecosystem.

An external file that holds a picture, illustration, etc.
Object name is ijerph-20-04499-g001.jpg

Geographical distribution of pollutants detected in the American continent in different matrices (water, blood, sediments, biota) in the last 5 years.

On the other hand, research works stand out showing that water pollution can occur due to anthropogenic activities [ 25 ], being evident that modern practices of agriculture and livestock have consequences as the indiscriminate use of fertilizers, pesticides, and hormones results in nitrates in the water, which are associated with a risk of congenital anomalies, such as heart and neural tube defects.

Within the works carried out, one of the most concurrent techniques used in the evaluation of contaminants has been performed via ICP (MS or OES) due to its high precision, low cost, low detection limits, and the advantage of analyzing a large number of elements simultaneously in a short time [ 26 ]. However, in some cases, the detection limits of the technique are above the maximum permissible limits proposed by the WHO (World Health Organization), such is the case of Hg, for which the detection limit is of 0.0025 mg L − 1 and the maximum detection limit recommended by the WHO is 0.002 mg L − 1 . Therefore, it is concluded that one of the challenges to be dealt with for metal detection in water is based in the fact that current techniques must be complemented by advanced analytical techniques, such as electrochemical tests [ 27 ]. These techniques are of great interest for their study due to the benefits they have, such as improvements in detection limits, low operating costs, short analysis times, and mobility, being able to perform analytical determinations in situ [ 27 ]. It is concluded that the contaminants with the greatest presence in the continent are As, U, Pb, Mn, Se, and Hg, mainly related to the mineralogy of the analyzed site and anthropogenic activities in the analysis areas. However, in some cases, the source of contamination is natural and occurs periodically due to seasonal changes, with the rainy season being the period with the greatest presence due to the mobility of metals contained in the rock and soil of the region [ 28 , 29 ]. Moreover, the presence of ions in solution related to the use of fertilizers and agrochemicals in crop fields has also been documented [ 30 ]. It is important to denote that the origin of the contamination source is not accurately concluded, providing a current challenge for the exact determination of the source to propose containment and sanitation actions to solve the problem.

Detection of inorganic pollutants in environmental samples.

Research studies presented in Table 1 demonstrated the potential human health risks that metal presence can have in water bodies, being important to highlight that there is still a need to evaluate the impact that inorganic contaminants have on human health. Furthermore, several research groups in different countries have detected the presence of contaminants not only in the supply sources, such as water bodies, but also in aquatic environments, such as flora and fauna being affected and representing economic importance since certain species can be traded, based on great demand to satisfy local and international markets.

On the other hand, organic contaminants can be divided into several groups; nevertheless, the principal groups are the ones denominated as persistent organic pollutants (POPs). These pollutants have an important impact on the environment and human health. Some examples are per- and polyfluoroalkyl substances (PFAS), personal care products, pharmaceutical compounds, pesticides, phenolic compounds, dyes, hormones, sweeteners, surfactants, and others.

Their detection has been primarily necessary to assess the effects that these pollutants have. Most of them are primarily obtained from industrial activities having different uses, such as flame retardants, coolants, cement, and others. Their presence represents an important contribution to water ecotoxicity (Ecuador, Argentina, Mexico) that affects the integrity of the species that inhabit that ecosystem [ 53 , 54 , 55 ].

Important issues have been detected in aquatic environments. The bioaccumulation of several organic compounds, such as polychlorinated biphenyl compounds (PBCs) and polybrominated diphenyl ethers (PBDEs), in important water bodies, such as Lake Chapala (Mexico), has been reported, through the analysis of samples recollected from water, fish, and sediments from two local seasonal periods. In this case, the fish analyzed were Cyprinus carpio , Oreochromis aureus , and Chirostoma spp., establishing that these chemical substances can reach the lake via industrial activities and strong winds and enter from the Lerma River (Mexico) [ 55 ].

In the study of Ramos et al. (2021), a water analysis was performed in the river and its treated water throughout a year in Minas-Gerais (Brazil). The detection of seventeen phenolic compounds with a single quadrupole gas chromatograph-mass spectrometer equipment (GCMS-QP2010 SE) coupled with a flame ionization detector (FID) was analyzed. From the samples analyzed, only sixteen were detected, being that 3-methylphenol was the only one not detected. In raw water, the detection of 2,3,4-trichlorophenol, 2,4-dimethylphenol, and 4-nitrophenol was found with the most frequency and for treated water, 4-nitrophenol and bisphenol A, establishing that a health risk to the environment and humans was identified with the contamination of these phenolic compounds [ 56 ]. Another study carried out in the St. Lawrence River, Quebec, (Canada), was performed based on an analysis of surface water for the detection of ultraviolet absorbents (UVAs) and industrial antioxidants (IAs). The detection was carried out via gas chromatography-mass spectrometry (GC-MS) detecting several groups of UVAs, such as organic UV filters (benzophenone (BP), 2-ethylhexyl salicylate (EHS), 2-hydroxy-4-methoxybenzophenone (BP3), 3,3,5-trimethylcyclohexylsalicylate (HMS), 2-ethylhexyl 2-cyano-3,3-diphenylacrylate (OC), and ethylhexyl methoxycinnamate (EHMC)), aromatic secondary amines (diphenylamine (DPA)), benzotriazole UV stabilizers (2-(2H-benzotriazol-2-yl)-4,6-di-tert-pentylphenol (UV238), and synthetic phenolic antioxidants (2,6-di-tert-butyl-4-methylphenol (BHT) and 2,6-di-tert-butyl-1,4-benzoquinone (BHTQ)). The field-based tissue-specific bioaccumulation factors (BAF) were analyzed to assess these contaminants in fish tissues (lake sturgeon and northern pike) in which some of the compounds that accumulated in lake sturgeon were BP3, BHT, and UV238. For northern pike, some were BP, BP3, BHT, and BHTQ, establishing an environmental risk assessment in terms of possible adverse effects on fish [ 57 ].

Finally, in the case of PAHs, several compounds have been detected (fluorene, naphthalene, anthracene, chrysene, and others) in different American countries, such as Canada, United States of America, Ecuador, Peru, Chile, and Brazil [ 58 , 59 , 60 , 61 , 62 , 63 , 64 , 65 , 66 ]. Their presence has been related to anthropogenic activities, such as aluminum smelter or oil production, having a negative impact on health, such as carcinogenic effects.

For this reason, analytical assays must be performed to establish the concentrations of these pollutants using techniques that are capable of studying a complex matrix and if it is possible, in situ. In Table 2 , the description of several studies that were able to detect organic compounds in environmental samples and the technique that was employed are provided.

Detection of organic pollutants in environmental samples.

As it can be appreciated in Table 2 , a variety of organic compounds have been identified as being associated with several disorders and diseases. Nevertheless, most of the studies analyzed correlated its contaminant of interest with previous research that evaluated its potential human health risk effect. For this reason, it is important to detect the contaminant and correlate it with its health impact in the environment (population and biota).

2.2. Presence of Pollutants in Water: Impact on Human Health and Its Possible Sources

The inorganic contaminants with the greatest presence in water bodies correspond to heavy metals. At the moment, the potential damage to health due to heavy metals has been reported as listed below: As(III) (skin damage, circulatory system issues), Cd(II) (kidney damage, carcinogenic, cardiovascular damage, hematological, and skeletal changes), Cr(III) (allergic dermatitis, diarrhea, nausea, and vomiting), Cu(II) (gastrointestinal, liver or kidney damage), Pb(II) (kidney damage, reduced neural development, behavioral disorders), Hg(II) (kidney damage, nervous system).

According to the scientific reports analyzed, it is concluded that there are two main risk factors in public health: (i) the intake of contaminated water, being the main factor due to direct exposure to the contaminant, which can produce different anomalies as those described in the previous paragraph. However, the studies presented cannot be considered conclusive, since the reports show that the impact on health is directly related to the clinical history of the exposed population [ 20 ]. (ii) The consumption of contaminated food, such as in the case of the report of da-Silva et al. (2019) [ 24 ], which reported Hg migration in water from the Western Amazon Basin (Amazon Triple Frontier: Brazil, Peru, and Colombia) to fish; being that if they are intended for human consumption, this can cause mercury intoxication (mercurialism). While the intake of contaminated food is the most likely action to occur, there are other special factors that particularly attract attention, such as the report presented by Oliveira et al. (2021) [ 87 ] studying a potential health risk in terms of a cognitive deficit due to soil intake by pre-school children aged 1 to 4 years, which presents high levels of Pb and Cd due to contact with contaminated wastewater from industries in the region of São Paulo (Brazil).

On the other hand, for organic contaminants, data analysis and comparison has been performed in different countries evidencing the necessity of establishing strategies to remediate water pollution ( Figure 1 ). These strategies are urgent, based on the potential risk that these contaminants can have on human health [ 88 , 89 , 90 ]. Although there are currently certain reports, guidance values or standards that allow establishing criteria based on the presence of these contaminants and their potential toxic effect are needed [ 43 , 91 ]. Efforts have been performed to establish international regulations since the majority of organic compounds are not quality controls [ 92 ].

For this reason, several research groups have tried to determine the impact a chemical compound has on human health. For example, atrazine, an artificial herbicide that was detected in surface water, has been associated with an impact on human health and aquatic biota [ 93 ], upon evaluating endocrine-disrupting compounds that can affect human health via cell-based assays [ 94 ]. Moreover, per and polyfluoroalkyl substances have been determined, but there are no reference points that establish a water quality criterion for its impact on human health [ 91 ]. Based on this, there is a need to establish scientific studies in a human population and evaluate the impact of water pollution on its health. Some studies have been performed (see Table 3 ) to correlate the exposure of contaminants in people’s life and if possible, establish the impact that water sources and body contamination have.

Scientific studies on the correlation between a water source and the presence of certain pollutants in a human population.

2.3. Water Treatment Technologies for the Removal of Contaminants in Water: Status and Perspectives

2.3.1. inorganic contaminants.

Taking into consideration the environmental and public health risk represented by effluents and water bodies contaminated with metals, numerous research groups have focused on proposing remediation alternatives, highlighting the adsorption process [ 104 , 105 ], coagulation/flocculation [ 106 ], chemical precipitation [ 107 ], ion exchange [ 108 ], electrochemical treatments [ 109 , 110 ], membrane use (ultrafiltration, osmosis, and nanofiltration) [ 111 , 112 ], and other alternative treatments based on the use of biopolyelectrolytes and coupled adsorption processes with electrochemical regeneration [ 113 , 114 ]. In all cases, the actual challenge consists of evaluating the scale-up process, for which studies have been performed on a small scale under controlled conditions.

Although, scientific reports have demonstrated great efficiencies in the removal of heavy metals, there has been certain problems documented for each technology, which must be addressed to present advanced remediation technologies. For the ion exchange process, it has been documented that those present with low efficiencies for the removal of high concentrations of metals [ 115 ]. For example, Malik et al. (2019) reported removal efficiencies of 55% for Pb and 30–40% for Hg [ 116 ]. In the case of membrane filtration, good removal efficiencies have been reported (around 90% for Cu and Cd) [ 116 ],;however, it requires high installation costs and maintenance [ 117 ]. Likewise, it has been reported that the electrochemical, catalysis, and coagulation/flocculation processes present high metal removal efficiencies (around 85–99% for Cd, Zn, and Mn) [ 118 ]. On the other hand, the main drawbacks are high installation costs and extra operational costs, as well as the generation of unwanted by-products (sludge) [ 119 ]. These drawbacks significantly reduce the effectiveness of water treatment processes, so a second challenge to deal with is process optimization.

Finally, the third challenge is the design of environmentally and economically sustainable treatment processes. The current paradigm of water treatment of metal contamination must be broken; the importance is not only in water sanitation, but also in recovering the metal in order to obtain valuable products and not only change the pollutant phase [ 120 ]. For all the above, adsorption and chemical precipitation have turned out to be the most used methods. However, the removal results obtained depend on each matrix used, so the materials and experimental conditions must be proposed based on the needs and the type of effluent to be treated [ 121 ].

2.3.2. Organic Contaminants

In the previous sections, the detection of these pollutants is only the first step to evaluate the environmental risk that communities and countries have in their respective water sources. The next step is to determine technologies that can establish an efficiency in the removal of these contaminants in a complex matrix without affecting the environment using novel systems [ 122 , 123 , 124 ]. In this regard, an actual challenge is the development of technologies capable of treating specific organic compounds and if it is possible, to use these treatment technologies with the current systems that governments have implemented. Some technologies that have been investigated are the use of continuous flow supercritical water (SCW) for the removal of hormones from the wastewater of a pharmaceutical industry. In their results, the technology was demonstrated to reduce 88.4% of the initial total organic carbon (TOC) value, and the presence in gas phase of H 2 , CH 4 , CO, CO 2 , C 2 H 6 , and C 2 H 4 , which could be used to produce renewable energy. Moreover, phytotoxicity assays demonstrated that there was no risk of the treated samples with respect to the germination of Cucumis sativus seeds [ 125 ]. Another technology that has been used is direct contact membrane distillation, which can be used to treat raw surface water contaminated with phenolic compounds [ 126 ]. In this case, water samples were spiked with 15 phenolic compounds. An important parameter evaluated was the recovery rate (RR) to demonstrate the stability of the direct membrane distillation, being up to a 30%. Pollutant removal reached 94.3 ± 1.9% and 95.0 ± 2.2% for 30% and 70% RR, respectively. A consideration for this technology is to work at a recovery rate in which flux does not decay (RR < 30%) to avoid performing loss and fouling.

Different approaches have been used for the removal of contaminants, such as the use of a photocatalytic paint based on TiO 2 nanoparticles and acrylate-based photopolymer resin for the removal of dyes in different water matrices [ 127 ]. Another strategy was subsurface horizontal flow-constructed wetlands (planted in polyculture and unplanted) as secondary domestic wastewater treatment to demonstrate the removal of personal care and pharmaceutical products [ 128 ].

Considering the above mentioned content, among all technologies evaluated currently to eliminate organic contaminants present in water, Advanced Oxidation Processes (AOPs) stand out, since they generate highly reactive and non-selective radicals capable of almost completely mineralizing the contaminant of interest, generating mainly CO 2 and H 2 O as an oxidation product. In this sense, the most widely studied AOPs correspond to catalytic wet peroxide oxidation, catalytic wet air oxidation, homogeneous catalyst, photo-Fenton, Fenton process, photocatalysis, Fenton-like, electro-Fenton, heterogeneous catalyst, ultrasound, and microwave [ 129 ]. Although the results show the potential use of technologies for water treatment, there are still challenges to address. The current challenge of this technology must be aimed at scaling the process, optimizing operational parameters, and designing a sustainable technology to have a low cost and be environmentally friendly, achieving the lowest generation of by-products. In this sense, two recently published research articles stand out in which AOPs have been evaluated for the treatment of contaminated water effluents in the Latin American region. Mejía-Morales et al. (2020) [ 130 ] presented the use of an AOP based on UV/H 2 O 2 /O 3 for the remediation of residual water from a hospital in Puebla (Mexico), showing the feasibility of its use to remediate effluents contaminated with a high organic load. On the other hand, Zárate-Guzmán et al. (2021) [ 131 ] presented the scale-up of a Fenton and Photo-Fenton process for the treatment of piggery wastewater in Guanajuato (Mexico). The results show that these two AOPs have great application potential for the remediation of effluents contaminated with a high organic load due to their high removal percentages (COD, TOC, and Color) and low operating costs.

3. Conclusions

The presence of contaminants in the water is a severe environmental and public health problem in the American continent. The presence of inorganic (As, Cd, Cr, Pb, Cu, Hg, and U) and organic pollutants (dyes, phenolic compounds, hormones, pesticides, and pharmaceuticals compounds) in effluents and water bodies is due to anthropogenic activities and natural factors in the region. The health risks associated with these contaminants primarily encompass skin damage, carcinogenic effects, nervous system damage, circulatory system issues, kidney damage, gastrointestinal damage, and impacts on the food chain. The critical review of the reports presented in this document identifies the following as the main challenges:

  • (i) Implement advanced analytical detection techniques, such as those based on electrochemical tests, to achieve improvements in detection limits, low operating costs, short analysis times, and mobility to perform in situ determinations.
  • (ii) Accurately determine the source of contamination in each geographic site of interest to propose containment and sanitation actions to solve the problem.
  • (iii) Evaluate water treatment technologies on a large scale and under real conditions to optimize the treatment processes.
  • (iv) Design and/or conditioning of specific water treatment plants according to the pollutant of interest in the region. The universal design paradigm of a water treatment plant must be broken; the pertinent modifications must be made according to the needs of the population of interest.
  • (v) Design environmentally and economically sustainable treatment processes. Future water treatment processes will need to integrate circular economy concepts to obtain high-quality water and valuable products, such as precious metals, and/or produce biofuels.

Acknowledgments

The authors thank the “Secretaria de Innovación, Ciencia y tecnología (SICyT)” and “Consejo Estatal de Ciencia y Tecnología de Jalisco (COECYTJAL)” for the support received through the Convocatoria del fondo de Desarrollo Científico de Jalisco para Atender Retos Sociales “FODECIJAL 2022” (Clave del Proyecto: 10169-2022).

Supplementary Materials

The following supporting information can be downloaded at: https://www.mdpi.com/article/10.3390/ijerph20054499/s1 , Supplementary Table S1: Comparative table of analytical techniques most used for the detection of inorganic contaminants present in water. Supplementary Table S2: Comparison of detection limits in μg L −1 at 3 sigma [ 132 ].

Funding Statement

This research received no external funding.

Author Contributions

Conceptualization, A.I.Z.-G. and L.A.R.-C.; Methodology, all authors; Formal analysis, all authors; writing—original draft preparation, all authors; writing—review and editing, all authors. All authors have read and agreed to the published version of the manuscript.

Data Availability Statement

Conflicts of interest.

The authors declare no conflict of interest.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Scale Climate Action

Effects of Water Pollution: Causes, Consequences, & Solutions on Environment

  • June 10, 2023
  • Environment

Effects of Water Pollution: Causes, Consequences, & Solutions on Environment

Water pollution is a global environmental issue that affects the quality of our water bodies, threatening aquatic ecosystems and human health. This article explores the causes, consequences, and potential solutions to combat water pollution. By understanding the gravity of this problem, we can take necessary actions to protect and preserve our water resources for future generations.

Causes of Water Pollution:

  • Industrial Discharges: Industrial activities often release harmful chemicals and pollutants into nearby water bodies, contaminating the water and endangering aquatic life.
  • Agricultural Runoff: Excessive use of fertilizers and pesticides in agriculture results in runoff, carrying these pollutants into rivers and lakes, leading to eutrophication and the death of aquatic organisms.
  • Sewage and Wastewater: Inadequate sewage treatment systems allow untreated or poorly treated wastewater to flow into water sources, introducing disease-causing bacteria, viruses, and other pathogens.
  • Oil Spills: Accidental oil spills from shipping, offshore drilling, or transportation accidents have catastrophic effects on marine life, as oil coats and suffocates animals and birds, disrupting the entire ecosystem .

Consequences of Water Pollution:

  • Threat to Aquatic Ecosystems: Water pollution disrupts the delicate balance of aquatic ecosystems by depleting oxygen levels, destroying habitats, and reducing biodiversity . This, in turn, affects fish populations and other aquatic organisms, leading to ecosystem collapse.
  • Human Health Impacts: Contaminated water is a major source of waterborne diseases such as cholera, dysentery, and hepatitis. Additionally, long-term exposure to polluted water can lead to various health problems, including cancer, developmental disorders, and reproductive issues.
  • Economic Toll: Water pollution has significant economic implications, including the decline of fisheries, tourism, and recreational activities. Cleaning up polluted water sources and providing clean water to affected communities also incur substantial costs.

Key Consequences in Detail:

  • Eutrophication: Excessive nutrient runoff, mainly nitrogen and phosphorus, leads to eutrophication, causing algal blooms and depleting oxygen levels. This creates dead zones where marine life cannot survive.
  • Bioaccumulation: Pollutants such as heavy metals and pesticides enter the food chain and accumulate in the tissues of aquatic organisms. As larger predators consume smaller ones, these pollutants become concentrated, posing risks to human health when consumed.
  • Destruction of Coral Reefs: Water pollution, combined with factors like ocean acidification and rising temperatures, contributes to coral reef degradation. Coral reefs support a diverse range of marine life and act as natural barriers against coastal erosion.
  • Disruption of the Water Cycle: Polluted water can interfere with the natural water cycle, affecting precipitation patterns, groundwater quality, and overall water availability in a region.

Solutions to Water Pollution:

  • Enhanced Regulations: Governments should enforce stricter regulations on industrial and agricultural practices, ensuring proper waste management and reducing the release of pollutants into water bodies.
  • Improved Sewage Treatment: Investing in modern wastewater treatment facilities and infrastructure can effectively treat and purify sewage before it is released back into the environment .
  • Sustainable Agriculture: Promoting sustainable farming practices, such as organic farming and precision irrigation, can reduce the use of harmful chemicals and minimize agricultural runoff.
  • Public Awareness and Education: Raising awareness about the importance of water conservation, pollution prevention, and responsible water usage is crucial in fostering a sense of environmental responsibility among individuals and communities.

Key Takeaways:

Water pollution poses a severe threat to our environment, economy, and public health. By understanding the causes, consequences, and solutions to combat water pollution, we can work together to protect and restore our precious water resources. Implementing stricter regulations, improving wastewater treatment, adopting sustainable agricultural practices, and promoting public awareness are essential steps towards achieving clean and healthy water bodies worldwide. Let us act now to ensure a sustainable future for ourselves and the generations to come.

FAQs about Effects of Water Pollution

Q: what is water pollution.

A: Water pollution refers to the contamination of water bodies such as rivers, lakes, oceans, and groundwater with harmful substances, chemicals, or pollutants, making the water unsafe for use and threatening aquatic ecosystems.

Q: What are the main causes of water pollution?

A: Water pollution can be caused by various factors, including industrial discharges, agricultural runoff, sewage and wastewater, oil spills, and improper waste disposal.

Q: How does water pollution affect the environment?

A: Water pollution has detrimental effects on the environment. It can lead to the loss of aquatic biodiversity, destruction of habitats, disruption of ecosystems, and the formation of dead zones where marine life cannot survive.

Q: How does water pollution impact human health?

A: Water pollution can have severe consequences for human health. Consuming contaminated water can lead to waterborne diseases such as cholera, dysentery, and hepatitis. Long-term exposure to polluted water can also result in various health problems, including cancer, developmental disorders, and reproductive issues.

Q: What are the economic impacts of water pollution?

A: Water pollution has significant economic implications. It can lead to the decline of fisheries, loss of tourism revenue, and increased costs for cleaning up polluted water sources. Providing clean water to affected communities and treating waterborne diseases also incur substantial financial burdens.

Q: How can we prevent water pollution?

A: Preventing water pollution requires collective efforts. Some key solutions include enforcing stricter regulations on industrial and agricultural practices, improving sewage treatment systems, promoting sustainable farming methods, and raising public awareness about water conservation and pollution prevention.

Share this:

How 5 Cities Shape Sustainable Urban Futures? Passive Cooling Revolution

How 5 Cities Shape Sustainable Urban Futures? Passive Cooling Revolution

  • December 18, 2023

What Is The Impact of Rising Sea Levels on The Pacific Island?

  • Global Warming

What Is The Impact of Rising Sea Levels on The Pacific Island?

  • December 13, 2023

National Academies Press: OpenBook

Ground Water Vulnerability Assessment: Predicting Relative Contamination Potential Under Conditions of Uncertainty (1993)

Chapter: 5 case studies, 5 case studies, introduction.

This chapter presents six case studies of uses of different methods to assess ground water vulnerability to contamination. These case examples demonstrate the wide range of applications for which ground water vulnerability assessments are being conducted in the United States. While each application presented here is directed toward the broad goal of protecting ground water, each is unique in its particular management requirements. The intended use of the assessment, the types of data available, the scale of the assessments, the required resolution, the physical setting, and institutional factors all led to very different vulnerability assessment approaches. In only one of the cases presented here, Hawaii, are attempts made to quantify the uncertainty associated with the assessment results.

Introduction

Ground water contamination became an important political and environmental issue in Iowa in the mid-1980s. Research reports, news headlines, and public debates noted the increasing incidence of contaminants in rural and urban well waters. The Iowa Ground water Protection Strategy (Hoyer et al. 1987) indicated that levels of nitrate in both private and municipal

wells were increasing. More than 25 percent of the state's population was served by water with concentrations of nitrate above 22 milligrams per liter (as NO 3 ). Similar increases were noted in detections of pesticides in public water supplies; about 27 percent of the population was periodically consuming low concentrations of pesticides in their drinking water. The situation in private wells which tend to be shallower than public wells may have been even worse.

Defining the Question

Most prominent among the sources of ground water contamination were fertilizers and pesticides used in agriculture. Other sources included urban use of lawn chemicals, industrial discharges, and landfills. The pathways of ground water contamination were disputed. Some interests argued that contamination occurs only when a natural or human generated condition, such as sinkholes or agricultural drainage wells, provides preferential flow to underground aquifers, resulting in local contamination. Others suggested that chemicals applied routinely to large areas infiltrate through the vadose zone, leading to widespread aquifer contamination.

Mandate, Selection, and Implementation

In response to growing public concern, the state legislature passed the Iowa Ground water Protection Act in 1987. This landmark statute established the policy that further contamination should be prevented to the "maximum extent practical" and directed state agencies to launch multiyear programs of research and education to characterize the problem and identify potential solutions.

The act mandated that the Iowa Department of Natural Resources (DNR) assess the vulnerability of the state's ground water resources to contamination. In 1991, DNR released Ground water Vulnerability Regions of Iowa , a map developed specifically to depict the intrinsic susceptibility of ground water resources to contamination by surface or near-surface activities. This assessment had three very limited purposes: (1) to describe the physical setting of ground water resources in the state, (2) to educate policy makers and the public about the potential for ground water contamination, and (3) to provide guidance for planning and assigning priorities to ground water protection efforts in the state.

Unlike other vulnerability assessments, the one in Iowa took account of factors that affect both ground water recharge and well development. Ground water recharge involves issues related to aquifer contamination; well development involves issues related to contamination of water supplies in areas where sources other than bedrock aquifers are used for drinking water. This

approach considers jointly the potential impacts of contamination on the water resource in aquifers and on the users of ground water sources.

The basic principle of the Iowa vulnerability assessment involves the travel time of water from the land surface to a well or an aquifer. When the time is relatively short (days to decades), vulnerability is considered high. If recharge occurs over relatively long periods (centuries to millennia), vulnerability is low. Travel times were determined by evaluating existing contaminants and using various radiometric dating techniques. The large reliance on travel time in the Iowa assessment likely results in underestimation of the potential for eventual contamination of the aquifer over time.

The most important factor used in the assessment was thickness of overlying materials which provide natural protection to a well or an aquifer. Other factors considered included type of aquifer, natural water quality in an aquifer, patterns of well location and construction, and documented occurrences of well contamination. The resulting vulnerability map ( Plate 1 ) delineates regions having similar combinations of physical characteristics that affect ground water recharge and well development. Qualitative ratings are assigned to the contamination potential for aquifers and wells for various types and locations of water sources. For example, the contamination potential for wells in alluvial aquifers is considered high, while the potential for contamination of a variable bedrock aquifer protected by moderate drift or shale is considered low.

Although more sophisticated approaches were investigated for use in the assessment, ultimately no complex process models of contaminant transport were used and no distinction was made among Iowa's different soil types. The DNR staff suggested that since the soil cover in most of the state is such a small part of the overall aquifer or well cover, processes that take place in those first few inches are relatively similar and, therefore, insignificant in terms of relative susceptibilities to ground water contamination. The results of the vulnerability assessment followed directly from the method's assumptions and underlying principles. In general, the thicker the overlay of clayey glacial drift or shale, the less susceptible are wells or aquifers to contamination. Where overlying materials are thin or sandy, aquifer and well susceptibilities increase. Vulnerability is also greater in areas where sinkholes or agricultural drainage wells allow surface and tile water to bypass natural protective layers of soil and rapidly recharge bedrock aquifers.

Basic data on geologic patterns in the state were extrapolated to determine the potential for contamination. These data were supplemented by databases on water contamination (including the Statewide Rural Well-Water Survey conducted in 1989-1990) and by research insights into the transport, distribution, and fate of contaminants in ground water. Some of the simplest data needed for the assessment were unavailable. Depth-to-bedrock information had never been developed, so surface and bedrock topographic

maps were revised and integrated to create a new statewide depth-to-bedrock map. In addition, information from throughout the state was compiled to produce the first statewide alluvial aquifer map. All new maps were checked against available well-log data, topographic maps, outcrop records, and soil survey reports to assure the greatest confidence in this information.

While the DNR was working on the assessment, it was also asked to integrate various types of natural resource data into a new computerized geographic information system (GIS). This coincident activity became a significant contributor to the assessment project. The GIS permitted easier construction of the vulnerability map and clearer display of spatial information. Further, counties or regions in the state can use the DNR geographic data and the GIS to explore additional vulnerability parameters and examine particular areas more closely to the extent that the resolution of the data permits.

The Iowa vulnerability map was designed to provide general guidance in planning and ranking activities for preventing contamination of aquifers and wells. It is not intended to answer site-specific questions, cannot predict contaminant concentrations, and does not even rank the different areas of the state by risk of contamination. Each of these additional uses would require specific assessments of vulnerability to different activities, contaminants, and risk. The map is simply a way to communicate qualitative susceptibility to contamination from the surface, based on the depth and type of cover, natural quality of the aquifer, well location and construction, and presence of special features that may alter the transport of contaminants.

Iowa's vulnerability map is viewed as an intermediate product in an ongoing process of learning more about the natural ground water system and the effects of surface and near-surface activities on that system. New maps will contain some of the basic data generated by the vulnerability study. New research and data collection will aim to identify ground water sources not included in the analysis (e.g., buried channel aquifers and the "salt and pepper sands" of western Iowa). Further analyses of existing and new well water quality data will be used to clarify relationships between aquifer depth and ground water contamination. As new information is obtained, databases and the GIS will be updated. Over time, new vulnerability maps may be produced to reflect new data or improved knowledge of environmental processes.

The Cape Cod sand and gravel aquifer is the U.S. Environmental Protection Agency (EPA) designated sole source of drinking water for Barnstable County, Massachusetts (ca. 400 square miles, winter population 186,605 in 1990, summer population ca. 500,000) as well as the source of fresh water for numerous kettle hole ponds and marine embayments. During the past 20 years, a period of intense development of open land accompanied by well-reported ground water contamination incidents, Cape Cod has been the site of intensive efforts in ground water management and analysis by many organizations, including the Association for the Preservation of Cape Cod, the U.S. Geological Survey, the Massachusetts Department of Environmental Protection (formerly the Department of Environmental Quality Engineering), EPA, and the Cape Cod Commission (formerly the Cape Cod Planning and Economic Development Commission). An earlier NRC publication, Ground Water Quality Protection: State and Local Strategies (1986) summarizes the Cape Cod ground water protection program.

The Area Wide Water Quality Management Plan for Cape Cod (CCPEDC 1978a, b), prepared in response to section 208 of the federal Clean Water Act, established a management strategy for the Cape Cod aquifer. The plan emphasized wellhead protection of public water supplies, limited use of public sewage collection systems and treatment facilities, and continued general reliance on on-site septic systems, and relied on density controls for regulation of nitrate concentrations in public drinking water supplies. The water quality management planning program began an effort to delineate the zones of contribution (often called contributing areas) for public wells on Cape Cod that has become increasingly sophisticated over the years. The effort has grown to address a range of ground water resources and ground water dependent resources beyond the wellhead protection area, including fresh and marine surface waters, impaired areas, and water quality improvement areas (CCC 1991). Plate 2 depicts the water resources classifications for Cape Cod.

Selection and Implementation of Approaches

The first effort to delineate the contributing area to a public water supply well on Cape Cod came in 1976 as part of the initial background studies for the Draft Area Wide Water Quality Management Plan for Cape

Cod (CCPEDC 1978a). This effort used a simple mass balance ratio of a well's pumping volume to an equal volume average annual recharge evenly spread over a circular area. This approach, which neglects any hydrogeologic characteristics of the aquifer, results in a number of circles of varying radii that are centered at the wells.

The most significant milestone in advancing aquifer protection was the completion of a regional, 10 foot contour interval, water table map of the county by the USGS (LeBlanc and Guswa 1977). By the time that the Draft and Final Area Wide Water Quality Management Plans were published (CCPEDC 1978a, b), an updated method for delineating zones of contribution, using the regional water table map, had been developed. This method used the same mass balance approach to characterize a circle, but also extended the zone area by 150 percent of the circle's radius in the upgradient direction. In addition, a water quality watch area extending upgradient from the zone to the ground water divide was recommended. Although this approach used the regional water table map for information on ground water flow direction, it still neglected the aquifer's hydrogeologic parameters.

In 1981, the USGS published a digital model of the aquifer that included regional estimates of transmissivity (Guswa and LeBlanc 1981). In 1982, the CCPEDC used a simple analytical hydraulic model to describe downgradient and lateral capture limits of a well in a uniform flow field (Horsley 1983). The input parameters required for this model included hydraulic gradient data from the regional water table map and transmissivity data from the USGS digital model. The downgradient and lateral control points were determined using this method, but the area of the zone was again determined by the mass balance method. Use of the combined hydraulic and mass balance method resulted in elliptical zones of contribution that did not extend upgradient to the ground water divide. This combined approach attempted to address three-dimensional ground water flow beneath a partially penetrating pumping well in a simple manner.

At about the same time, the Massachusetts Department of Environmental Protection started the Aquifer Lands Acquisition (ALA) Program to protect land within zones of contribution that would be delineated by detailed site-specific studies. Because simple models could not address three-dimensional flow and for several other reasons, the ALA program adopted a policy that wellhead protection areas or Zone IIs (DEP-WS 1991) should be extended upgradient all the way to a ground water divide. Under this program, wells would be pump tested for site-specific aquifer parameters and more detailed water table mapping would often be required. In many cases, the capture area has been delineated by the same simple hydraulic analytical model but the zone has been extended to the divide. This method has resulted in some 1989 zones that are 3,000 feet wide and extend 4.5

miles upgradient, still without a satisfactory representation of three-dimensional flow to the well.

Most recently the USGS (Barlow 1993) has completed a detailed subregional, particle-tracking three-dimensional ground water flow model that shows the complex nature of ground water flow to wells. This approach has shown that earlier methods, in general, overestimate the area of zones of contribution (see Figure 5.1 ).

In 1988, the public agencies named above completed the Cape Cod Aquifer Management Project (CCAMP), a resource-based ground water protection study that used two towns, Barnstable and Eastham, to represent the more and less urbanized parts of Cape Cod. Among the CCAMP products were a GIS-based assessment of potential for contamination as a result of permissible land use changes in the Barnstable zones of contribution (Olimpio et al. 1991) and a ground water vulnerability assessment by Heath (1988) using DRASTIC for the same area. Olimpio et al. characterized land uses by ranking potential contaminant sources without regard to differences in vulnerability within the zones. Heath's DRASTIC analysis of the same area, shown in Figure 5.2 , delineated two distinct zones of vulnerability based on hydrogeologic setting. The Sandwich Moraine setting, with deposits of silt, sand and gravel, and depths to ground water ranging from 0 to more than 125 feet, had DRASTIC values of 140 to 185; the Barnstable Outwash Plain, with permeable sand and fine gravel deposits with beds of silt and clay and depths to ground water of less than 50 feet, yielded values of 185 to 210. The DRASTIC scores and relative contributions of the factors are shown in Tables 5.1 and 5.2 . Heath concluded that similar areas of Cape Cod would produce similar moderate to high vulnerability DRASTIC scores. The CCAMP project also addressed the potential for contamination of public water supply wells from new land uses allowable under existing zoning for the same area. The results of that effort are shown in Plate 4 .

In summary, circle zones were used initially when the hydrogeologic nature of the aquifer or of hydraulic flow to wells was little understood. The zones improved with an understanding of ground water flow and aquifer characteristics, but in recognition of the limitations of regional data, grossly conservative assumptions came into use. Currently, a truer delineation of a zone of contribution can be prepared for a given scenario using sophisticated models and highly detailed aquifer characterization. However, the area of a given zone still is highly dependent on the initial assumptions that dictate how much and in what circumstances a well is pumped. In the absence of ability to specify such conditions, conservative assumptions,

short case study on water pollution

FIGURE 5.1 Contributing areas of wells and ponds in the complex flow system determined by using the three-dimensional model with 1987 average daily pumping rates. (Barlow 1993)

such as maximum prolonged pumping, prevail, and, therefore, conservatively large zones of contribution continue to be used for wellhead protection.

The ground water management experience of Cape Cod has resulted in a better understanding of the resource and the complexity of the aquifer

short case study on water pollution

FIGURE 5.2 DRASTIC contours for Zone 1, Barnstable-Yarmouth, Massachusetts.

system, as well as the development of a more ambitious agenda for resource protection. Beginning with goals of protection of existing public water supplies, management interests have grown to include the protection of private wells, potential public supplies, fresh water ponds, and marine embayments. Public concerns over ground water quality have remained high and were a major factor in the creation of the Cape Cod Commission by the Massachusetts legislature. The commission is a land use planning and regulatory agency with broad authority over development projects and the ability to create special resource management areas. The net result of 20 years of effort by many individuals and agencies is the application of

TABLE 5.1 Ranges, Rating, and Weights for DRASTIC Study of Barnstable Outwash Plain Setting (NOTE: gpd/ft 2 = gallons per day per square foot) (Heath 1988)

TABLE 5.2 Ranges, Rating, and Weights for DRASTIC Study of Sandwich Moraine Setting (NOTE: gpd/ft 2 = gallons per day per square foot) (Heath 1988)

higher protection standards to broader areas of the Cape Cod aquifer. With some exceptions for already impaired areas, a differentiated resource protection approach in the vulnerable aquifer setting of Cape Cod has resulted in a program that approaches universal ground water protection.

Florida has 13 million residents and is the fourth most populous state (U.S. Bureau of the Census 1991). Like several other sunbelt states, Florida's population is growing steadily, at about 1,000 persons per day, and is estimated to reach 17 million by the year 2000. Tourism is the biggest industry in Florida, attracting nearly 40 million visitors each year. Ground water is the source of drinking water for about 95 percent of Florida's population; total withdrawals amount to about 1.5 billion gallons per day. An additional 3 billion gallons of ground water per day are pumped to meet the needs of agriculture—a $5 billion per year industry, second only to tourism in the state. Of the 50 states, Florida ranks eighth in withdrawal of fresh ground water for all purposes, second for public supply, first for rural domestic and livestock use, third for industrial/commercial use, and ninth for irrigation withdrawals.

Most areas in Florida have abundant ground water of good quality, but the major aquifers are vulnerable to contamination from a variety of land use activities. Overpumping of ground water to meet the growing demands of the urban centers, which accounts for about 80 percent of the state's population, contributes to salt water intrusion in coastal areas. This overpumping is considered the most significant problem for degradation of ground water quality in the state. Other major sources of ground water contaminants include: (1) pesticides and fertilizers (about 2 million tons/year) used in agriculture, (2) about 2 million on-site septic tanks, (3) more than 20,000 recharge wells used for disposing of stormwater, treated domestic wastewater, and cooling water, (4) nearly 6,000 surface impoundments, averaging one per 30 square kilometers, and (5) phosphate mining activities that are estimated to disturb about 3,000 hectares each year.

The Hydrogeologic Setting

The entire state is in the Coastal Plain physiographic province, which has generally low relief. Much of the state is underlain by the Floridan aquifer system, largely a limestone and dolomite aquifer that is found in both confined and unconfined conditions. The Floridan is overlain through most of the state by an intermediate aquifer system, consisting of predominantly clays and sands, and a surficial aquifer system, consisting of predominantly sands, limestone, and dolomite. The Floridan is one of the most productive aquifers in the world and is the most important source of drinking water for Florida residents. The Biscayne, an unconfined, shallow, limestone aquifer located in southeast Florida, is the most intensively used

aquifer and the sole source of drinking water for nearly 3 million residents in the Miami-Palm Beach coastal area. Other surficial aquifers in southern Florida and in the western panhandle region also serve as sources of ground water.

Aquifers in Florida are overlain by layers of sand, clay, marl, and limestone whose thickness may vary considerably. For example, the thickness of layers above the Floridan aquifer range from a few meters in parts of west-central and northern Florida to several hundred meters in south-central Florida and in the extreme western panhandle of the state. Four major groups of soils (designated as soil orders under the U.S. Soil Taxonomy) occur extensively in Florida. Soils in the western highlands are dominated by well-drained sandy and loamy soils and by sandy soils with loamy subsoils; these are classified as Ultisols and Entisols. In the central ridge of the Florida peninsula, are found deep, well-drained, sandy soils (Entisols) as well as sandy soils underlain by loamy subsoils or phosphatic limestone (Alfisols and Ultisols). Poorly drained sandy soils with organic-rich and clay-rich subsoils, classified as Spodosols, occur in the Florida flatwoods. Organic-rich muck soils (Histosols) underlain by muck or limestone are found primarily in an area extending south of Lake Okeechobee.

Rainfall is the primary source of ground water in Florida. Annual rainfall in the state ranges from 100 to 160 cm/year, averaging 125 cm/year, with considerable spatial (both local and regional) and seasonal variations in rainfall amounts and patterns. Evapotranspiration (ET) represents the largest loss of water; ET ranges from about 70 to 130 cm/year, accounting for between 50 and 100 percent of the average annual rainfall. Surface runoff and ground water discharge to streams averages about 30 cm/year. Annual recharge to surficial aquifers ranges from near zero in perennially wet, lowland areas to as much as 50 cm/year in well-drained areas; however, only a fraction of this water recharges the underlying Floridan aquifer. Estimates of recharge to the Floridan aquifer vary from less than 3 cm/year to more than 25 cm/year, depending on such factors as weather patterns (e.g., rainfall-ET balance), depth to water table, soil permeability, land use, and local hydrogeology.

Permeable soils, high net recharge rates, intensively managed irrigated agriculture, and growing demands from urban population centers all pose considerable threat of ground water contamination. Thus, protection of this valuable natural resource while not placing unreasonable constraints on agricultural production and urban development is the central focus of environmental regulation and growth management in Florida.

Along with California, Florida has played a leading role in the United

States in development and enforcement of state regulations for environmental protection. Detection in 1983 of aldicarb and ethylene dibromide, two nematocides used widely in Florida's citrus groves, crystallized the growing concerns over ground water contamination and the need to protect this vital natural resource. In 1983, the Florida legislature passed the Water Quality Assurance Act, and in 1984 adopted the State and Regional Planning Act. These and subsequent legislative actions provide the legal basis and guidance for the Ground Water Strategy developed by the Florida Department of Environmental Regulation (DER).

Ground water protection programs in Florida are implemented at federal, state, regional, and local levels and involve both regulatory and nonregulatory approaches. The most significant nonregulatory effort involves more than 30 ground water studies being conducted in collaboration with the Water Resources Division of the U.S. Geological Survey. At the state level, Florida statutes and administrative codes form the basis for regulatory actions. Although DER is the primary agency responsible for rules and statutes designed to protect ground water, the following state agencies participate to varying degrees in their implementation: five water management districts, the Florida Geological Survey, the Department of Health and Rehabilitative Services (HRS), the Department of Natural Resources, and the Florida Department of Agriculture and Consumer Services (DACS). In addition, certain interagency committees help coordinate the development and implementation of environmental codes in the state. A prominent example is the Pesticide Review Council which offers guidance to the DACS in developing pesticide use regulation. A method for screening pesticides in terms of their chronic toxicity and environmental behavior has been developed through collaborative efforts of the DACS, the DER, and the HRS (Britt et al. 1992). This method will be used to grant registration for pesticide use in Florida or to seek additional site-specific field data.

Selecting an Approach

The emphasis of the DER ground water program has shifted in recent years from primarily enforcement activity to a technically based, quantifiable, planned approach for resource protection.

The administrative philosophy for ground water protection programs in Florida is guided by the following principles:

Ground water is a renewable resource, necessitating a balance between withdrawals and natural or artificial recharge.

Ground water contamination should be prevented to the maximum degree possible because cleanup of contaminated aquifers is technically or economically infeasible.

It is impractical, perhaps unnecessary, to require nondegradation standards for all ground water in all locations and at all times.

The principle of ''most beneficial use" is to be used in classifying ground water into four classes on the basis of present quality, with the goal of attaining the highest level protection of potable water supplies (Class I aquifers).

Part of the 1983 Water Quality Assurance Act requires Florida DER to "establish a ground water quality monitoring network designed to detect and predict contamination of the State's ground water resources" via collaborative efforts with other state and federal agencies. The three basic goals of the ground water quality monitoring program are to:

Establish the baseline water quality of major aquifer systems in the state,

Detect and predict changes in ground water quality resulting from the effects of various land use activities and potential sources of contamination, and

Disseminate to local governments and the public, water quality data generated by the network.

The ground water monitoring network established by DER to meet the goals stated above consists of two major subnetworks and one survey (Maddox and Spicola 1991). Approximately 1,700 wells that tap all major potable aquifers in the state form the Background Network, which was designed to help define the background water quality. The Very Intensively Studied Area (VISA) network was established to monitor specific areas of the state considered highly vulnerable to contamination; predominant land use and hydrogeology were the primary attributes used to evaluate vulnerability. The DRASTIC index, developed by EPA, served as the basis for statewide maps depicting ground water vulnerability. Data from the VISA wells will be compared to like parameters sampled from Background Network wells in the same aquifer segment. The final element of the monitoring network is the Private Well Survey, in which up to 70 private wells per county will be sampled. The sampling frequency and chemical parameters to be monitored at each site are based on several factors, including network well classification, land use activities, hydrogeologic sensitivity, and funding. In Figure 5.3 , the principal aquifers in Florida are shown along with the distribution of the locations of the monitoring wells in the Florida DER network.

The Preservation 2000 Act, enacted in 1990, mandated that the Land Acquisition Advisory Council (LAAC) "provide for assessing the importance

short case study on water pollution

FIGURE 5.3 Principal aquifers in Florida and the network of sample wells as of March 1990 (1642 wells sampled). (Adapted from Maddox and Spicola 1991, and Maddox et al. 1993.)

of acquiring lands which can serve to protect or recharge ground water, and the degree to which state land acquisition programs should focus on purchasing such land." The Ground Water Resources Committee, a subcommittee of the LAAC, produced a map depicting areas of ground water significance at regional scale (1:500,000) (see Figure 5.4 ) to give decision makers the basis for considering ground water as a factor in land acquisition under the Preservation 2000 Act (LAAC 1991). In developing maps for their districts, each of the five water management districts (WMDs) used the following criteria: ground water recharge, ground water quality, aquifer vulnerability, ground water availability, influence of existing uses on the resource, and ground water supply. The specific approaches used by

short case study on water pollution

FIGURE 5.4 General areas of ground water significance in Florida. (Map provided by Florida Department of Environmental Regulation, Bureau of Drinking Water and Ground Water Resources.)

the WMDs varied, however. For example, the St. Johns River WMD used a GIS-based map overlay and DRASTIC-like numerical index approach that rated the following attributes: recharge, transmissivity, water quality, thickness of potable water, potential water expansion areas, and spring flow capture zones. The Southwest Florida WMD also used a map overlay and index approach which considered four criteria, and GIS tools for mapping. Existing databases were considered inadequate to generate a DRASTIC map for the Suwannee River WMD, but the map produced using an overlay approach was considered to be similar to DRASTIC maps in providing a general depiction of aquifer vulnerability.

In the November 1988, Florida voters approved an amendment to the Florida Constitution allowing land producing high recharge to Florida's aquifers to be classified and assessed for ad valorem tax purposes based on character or use. Such recharge areas are expected to be located primarily in the upland, sandy ridge areas. The Bluebelt Commission appointed by the 1989 Florida Legislature, studied the complex issues involved and recommended that the tax incentive be offered to owners of such high recharge areas if their land is left undeveloped (SFWMD 1991). The land eligible

for classification as "high water recharge land" must meet the following criteria established by the commission:

The parcel must be located in the high recharge areas designated on maps supplied by each of the five WMDs.

The high recharge area of the parcel must be at least 10 acres.

The land use must be vacant or single-family residential.

The parcel must not be receiving any other special assessment, such as Greenbelt classification for agricultural lands.

Two bills related to the implementation of the Bluebelt program are being considered by the 1993 Florida legislation.

THE SAN JOAQUIN VALLEY

Pesticide contamination of ground water resources is a serious concern in California's San Joaquin Valley (SJV). Contamination of the area's aquifer system has resulted from a combination of natural geologic conditions and human intervention in exploiting the SJV's natural resources. The SJV is now the principal target of extensive ground water monitoring activities in the state.

Agriculture has imposed major environmental stresses on the SJV. Natural wetlands have been drained and the land reclaimed for agricultural purposes. Canal systems convey water from the northern, wetter parts of the state to the south, where it is used for irrigation and reclamation projects. Tens of thousands of wells tap the sole source aquifer system to supply water for domestic consumption and crop irrigation. Cities and towns have sprouted throughout the region and supply the human resources necessary to support the agriculture and petroleum industries.

Agriculture is the principal industry in California. With 1989 cash receipts of more than $17.6 billion, the state's agricultural industry produced more than 50 percent of the nation's fruits, nuts, and vegetables on 3 percent of the nation's farmland. California agriculture is a diversified industry that produces more than 250 crop and livestock commodities, most of which can be found in the SJV.

Fresno County, the largest agricultural county in the state, is situated in the heart of the SJV, between the San Joaquin River to the north and the Kings River on the south. Grapes, stone fruits, and citrus are important commodities in the region. These and many other commodities important to the region are susceptible to nematodes which thrive in the county's coarse-textured soils.

While agricultural diversity is a sound economic practice, it stimulates the growth of a broad range of pest complexes, which in turn dictates greater reliance on agricultural chemicals to minimize crop losses to pests, and maintain productivity and profit. Domestic and foreign markets demand high-quality and cosmetically appealing produce, which require pesticide use strategies that rely on pest exclusion and eradication rather than pest management.

Hydrogeologic Setting

The San Joaquin Valley (SJV) is at the southern end of California's Central Valley. With its northern boundary just south of Sacramento, the Valley extends in a southeasterly direction about 400 kilometers (250 miles) into Kern County. The SJV averages 100 kilometers (60 miles) in width and drains the area between the Sierra Nevada on the east and the California Coastal Range on the west. The rain shadow caused by the Coastal Range results in the predominantly xeric habitat covering the greater part of the valley floor where the annual rainfall is about 25 centimeters (10 inches). The San Joaquin River is the principal waterway that drains the SJV northward into the Sacramento Delta region.

The soils of the SJV vary significantly. On the west side of the valley, soils are composed largely of sedimentary materials derived from the Coastal Range; they are generally fine-textured and slow to drain. The arable soils of the east side developed on relatively unweathered, granitic sediments. Many of these soils are wind-deposited sands underlain by deep coarse-textured alluvial materials.

From the mid-1950s until 1977, dibromochloropropane (DBCP) was the primary chemical used to control nematodes. DBCP has desirable characteristics for a nematocide. It is less volatile than many other soil fumigants, such as methylbromide; remains active in the soil for a long time, and is effective in killing nematodes. However, it also causes sterility in human males, is relatively mobile in soil, and is persistent. Because of the health risks associated with consumption of DBCP treated foods, the nematocide was banned from use in the United States in 1979. After the ban, several well water studies were conducted in the SJV by state, county and local authorities. Thirteen years after DBCP was banned, contamination of well waters by the chemical persists as a problem in Fresno County.

Public concern over pesticides in ground water resulted in passage of the California Pesticide Contamination Prevention Act (PCPA) of 1985. It is a broad law that establishes the California Department of Pesticide Regulation

as the lead agency in dealing with issues of ground water contamination by pesticides. The PCPA specifically requires:

pesticide registrants to collect and submit specific chemical and environmental fate data (e.g., water solubility, vapor pressure, octanol-water partition coefficient, soil sorption coefficient, degradation half-lives for aerobic and anaerobic metabolism, Henry's Law constant, hydrolysis rate constant) as part of the terms for registration and continued use of their products in California.

establishment of numerical criteria or standards for physical-chemical characteristics and environmental fate data to determine whether a pesticide can be registered in the state that are at least as stringent as those standards set by the EPA,

soil and water monitoring investigations be conducted on:

pesticides with properties that are in violation of the physical-chemical standards set in 2 above, and

pesticides, toxic degradation products or other ingredients that are:

contaminants of the state's ground waters, or

found at the deepest of the following soil depths:

2.7 meters (8 feet) below the soil surface,

below the crop root zone, or

below the microbial zone, and

creation of a database of wells sampled for pesticides with a provision requiring all agencies to submit data to the California Department of Pesticide Regulation (CDPR).

Difficulties associated with identifying the maximum depths of root zone and microbial zone have led to the establishment of 8 feet as a somewhat arbitrary but enforceable criterion for pesticide leaching in soils.

Selection and Implementation of an Approach

Assessment of ground water vulnerability to pesticides in California is a mechanical rather than a scientific process. Its primary goal is compliance with the mandates established in the PCPA. One of these mandates requires that monitoring studies be conducted in areas of the state where the contaminant pesticide is used, in other areas exhibiting high risk portraits (e.g., low organic carbon, slow soil hydrolysis, metabolism, or dissipation), and in areas where pesticide use practices present a risk to the state's ground water resources.

The numerical value for assessments was predetermined by the Pesticide Use Report (PUR) system employed in the state. Since the early

1970s, California has required pesticide applicators to give local authorities information on the use of restricted pesticides. This requirement was extended to all pesticides beginning in 1990. Application information reported includes names of the pesticide(s) and commodities, the amount applied, the formulation used, and the location of the commodity to the nearest section (approximately 1 square mile) as defined by the U.S. Rectangular Coordinate System. In contrast to most other states that rely on county pesticide sales in estimating pesticide use, California can track pesticide use based on quantities applied to each section. Thus, the section, already established as a political management unit, became the basic assessment unit.

The primary criteria that subject a pesticide to investigation as a ground water pollutant are:

detection of the pesticide or its metabolites in well samples, or

its failure to conform to the physical-chemical standards set in accordance with the PCPA, hence securing its position on the PCPA's Ground Water Protection List of pesticides having a potential to pollute ground water.

In either case, relatively large areas surrounding the original detection site or, in the latter case, high use regions are monitored via well surveys. Positive findings automatically increase the scope of the surveys, and since no tolerance levels are specified in the PCPA, any detectable and confirmed result establishes a pesticide as a contaminant.

When a pesticide or its degradation products is detected in a well water sample and the pesticide is judged to have contaminated the water source as a result of a legal agricultural use, the section the well is in is declared a Pesticide Management Zone (PMZ). Further application of the detected pesticide within PMZ boundaries may be prohibited or restricted, depending on the degree of contamination and subject to the availability of tried and tested modifications in management practices addressing environmental safety in use of the pesticide. PMZs are pesticide-specific—each contaminant pesticide has its own set of PMZs which may or may not overlap PMZs assigned another pesticide. Currently, consideration is being given to the extension of PMZs established for one chemical to other potential pesticide pollutants. In addition to monitoring activities in PMZs, protocols have been written to monitor ground water in sections adjacent to a PMZ. Monitoring of adjacent sections has resulted in many new PMZs. Currently, California has 182 PMZs involving five registered pesticides.

California has pursued this mechanical approach to assessing ground water vulnerability to pesticides for reasons that cover a spectrum of political, economic, and practical concerns. As noted earlier, the scale of the assessment unit was set at the section level because it is a well-defined

geopolitical unit used in the PUR system. Section boundaries frequently are marked by roads and highways, which allows the section to be located readily and makes enforcement of laws and regulations more practical. California law also requires that well logs be recorded by drillers for all wells in the state. Well-site information conforms to the U.S. Rectangular Coordinate System's township, range, and section system.

The suitability and reliability of databases available for producing vulnerability assessments was a great concern before passage of the PCPA in 1985. Soil survey information holds distinct advantages for producing assessments and developing best management practices strategies, but it was not available in a format that could work in harmony with PUR sections. To date, several areas of the SJV are not covered by a modern soil survey; they include the western part of Tulare County, which contains 34 PMZs. Other vadose zone data were sparse, it available at all.

The use of models was not considered appropriate, given the available data and because no single model could cope with the circumstances in which contaminated ground water sources were being discovered in the state. While most cases of well contamination were associated with the coarse-textured soils of the SJV and the Los Angeles Basin, several cases were noted in areas of the Central Valley north of the SJV, where very dense fine-textured soils (vertisols and other cracking clays) were dominant.

The potential vagaries and uncertainties associated with more scientific approaches to vulnerability assessment, given the tools available when the PCPA was enacted, presented too large a risk for managers to consider endorsing their use. In contrast, the basic definition of the PMZ is difficult to challenge (pesticide contamination has been detected or not detected) in the legal sense. And the logic of investing economic resources in areas immediately surrounding areas of acknowledged contamination are relatively undisputable. The eastern part of the SJV contains more than 50 percent of the PMZs in the state. Coarse-textured soils of low carbon content are ubiquitous in this area and are represented in more than 3,000 sections. The obvious contamination scenario is the normal scenario in the eastern SJV, and because of its size it creates a huge management problem. While more sophisticated methods for assessing ground water vulnerability have been developed, a question that begs to be asked is "How would conversion to the use of enhanced techniques for evaluating ground water vulnerability improve ground water protection policy and management in the SJV?"

More than 90 percent of the population of Hawaii depends on ground water (nearly 200 billion gallons per day) for their domestic supply (Au 1991). Ground water contamination is of special concern in Hawaii, as in other insular systems, where alternative fresh water resources are not readily available or economically practical. Salt water encroachment, caused by pumping, is by far the biggest source of ground water contamination in Hawaii; however, nonpoint source contamination from agricultural chemicals is increasingly a major concern. On Oahu, where approximately 80 percent of Hawaii's million-plus population resides, renewable ground water resources are almost totally exploited; therefore, management action to prevent contamination is essential.

Each of the major islands in the Hawaiian chain is formed from one or more shield volcanoes composed primarily of extremely permeable thin basaltic lava flows. On most of the Hawaiian islands the margins of the volcanic mountains are overlapped by coastal plain sediments of alluvial and marine origin that were deposited during periods of volcanic quiescence. In general, the occurrence of ground water in Hawaii, shown in Figure 5.5 , falls into three categories: (1) basal water bodies floating on and displacing salt water, (2) high-level water bodies impounded within compartments formed by impermeable dikes that intrude the lava flows, and (3) high-level water bodies perched on ash beds or soils interbedded with

short case study on water pollution

FIGURE 5.5 Cross section of a typical volcanic dome showing the occurrence of ground water in Hawaii (After Peterson 1972. Reprinted, by permission, from Water Well Journal Publishing Company, 1972.)

thin lava flows on unconformities or on other relatively impervious lava flows (Peterson 1972).

A foundation of the tourist industry in Hawaii is the pristine environment. The excellent quality of Hawaii's water is well known. The public has demanded, and regulatory agencies have adopted, a very conservative, zero-tolerance policy on ground water contamination. The reality, however, is that past, present, and future agricultural, industrial, and military activities present potentially significant ground water contamination problems in Hawaii.

Since 1977 when 1,874 liters of ethylene dibromide (EDB) where spilled within 18 meters of a well near Kunia on the island of Oahu, the occurrence and distribution of contaminants in Hawaii's ground water has been carefully documented by Oki and Giambelluca (1985, 1987) and Lau and Mink (1987). Before 1981, when the nematocide dibromochloropropane (DBCP) was found in wells in central Oahu, the detection limit for most chemicals was too high to reveal the low level of contamination that probably had existed for many years.

Concern about the fate of agriculture chemicals led the Hawaii State Department of Agriculture to initiate a large sampling program to characterize the sources of nonpoint ground water contamination. In July 1983, 10 wells in central Oahu were closed because of DBCP and EDB contamination. The public has been kept well informed of possible problems through the publication of maps of chemicals detected in ground water in the local newspaper. Updated versions of these maps are shown in Figures 5.6a , b , c , and d .

In Hawaii, interagency committees, with representation from the Departments of Health and Agriculture, have been formed to address the complex technical and social questions associated with ground water contamination from agricultural chemicals. The Hawaii legislature has provided substantial funding to groups at the University of Hawaii to develop the first GIS-based regional scale chemical leaching assessment approach to aid in pesticide regulation. This effort, described below, has worked to identify geographic areas of concern, but the role the vulnerability maps generated by this system will play in the overall regulatory process is still unclear.

Agrichemicals are essential to agriculture in Hawaii. It is not possible to maintain a large pineapple monoculture in Hawaii without nematode control using pesticides. Pineapple and sugar growers in Hawaii have generally employed well controlled management practices in their use of fertilizers, herbicides, and insecticides. In the early 1950s, it was thought that organic chemicals such as DBCP and EDB would not leach to ground water

short case study on water pollution

FIGURE 5.6a The occurrence and distribution of ground water contamination on the Island of Oahu. (Map provided by Hawaii State Department of Health.)

short case study on water pollution

FIGURE 5.6b The occurrence and distribution of ground water contamination on the Island of Hawaii. (Map provided by Hawaii State Department of Health.)

short case study on water pollution

FIGURE 5.6c The occurrence and distribution of ground water contamination on the Island of Maui. (Map provided by Hawaii State Department of Health.)

short case study on water pollution

FIGURE 5.6d The occurrence and distribution of ground water contamination on the Island of Kauai. (Map provided by Hawaii State Department of Health.)

because (1) the chemicals are highly sorbed in soils with high organic carbon contents, (2) the chemicals are highly volatile, and (3) the water table is several hundred meters below the surface. Measured concentrations of DBCP and EDB down to 30 meters at several locations have shown the original assessment to be wrong. They have resulted in an urgent need to understand processes such as preferential flow better and to predict if the replacement chemicals used today, such as Telon II, will also leach to significant depths.

Leaching of pesticides to ground water in Hawaii could take decades. This time lag could lead to a temporary false sense of security, as happened in the past and potentially result in staggering costs for remedial action. For this reason, mathematical models that permit the user to ask ''what if" questions have been developed to help understand what the future may hold under certain management options. One needs to know what the fate of chemicals applied in the past will be and how to regulate the chemicals considered for use in the future; models are now being developed and used to help make these vulnerability assessments.

Researchers have embarked on several parallel approaches to quantitatively assess the vulnerability of Hawaii's ground water resources, including: (1) sampling, (2) physically-based numerical modeling, and (3) vulnerability mapping based on a simple chemical leaching index. Taken together these approaches have provided insight and guidance for work on a complex, spatially and temporally variable problem.

The sampling programs (Wong 1983 and 1987, Peterson et al. 1985) have shown that the chemicals applied in the past do, in fact, leach below the root zone, contrary to the original predictions, and can eventually reach the ground water. Experiments designed to characterize the nuances of various processes, such as volatilization, sorption, and degradation, have been conducted recently and will improve the conceptualization of mathematical models in the future.

The EPA's Pesticide Root Zone Model (PRZM), a deterministic-empirical/conceptual fluid flow/solute transport model, has been tested by Loague and co-workers (Loague et al. 1989a, b; Loague 1992) against measured concentration profiles for DBCP and EDB in central Oahu. These simulations illustrate that the chemicals used in the past can indeed move to considerable depths. Models of this kind, once properly validated, can be used to simulate the predicted fate of future pesticide applications. One must always remember, however, that numerical simulations must be interpreted in terms of the limiting assumptions associated with model and data errors.

Ground water vulnerability maps and assessments of their uncertainty were pioneered at the University of Hawaii in the Department of Agriculture Engineering (Khan and Liang 1989, Loague and Green 1990a). These pesticide leaching assessments were made by coupling a simple mobility index to a geographic information system. Loague and coworkers have investigated the uncertainty in these maps owing to data and model errors (Loague and Green 1988; Loague et al. 1989c, 1990; Loague and Green 1990b, 1990c; Loague 1991; Kleveno et al. 1992; Yost et al. 1993). The Hawaiian database on soils, climate, and chemicals is neither perfect nor poor for modeling applications; it is typical of what exists in most states—major extrapolations are required to estimate the input parameters required for almost any chemical fate model.

Sampling from wells in Hawaii has shown the concentrations of various chemicals, both from agriculture and industrial sources, which have leached to ground water in Hawaii. These concentrations, in general, are low compared to the levels detected in other states and for the most part are below health advisory levels established by EPA. In some instances contamination has not resulted from agriculture, but rather from point sources such as chemical loading and mixing areas and possibly from ruptured fuel lines. The widespread presence of trichloropropane (TCP) in Hawaii's ground water and deep soil cores at concentrations higher than DBCP was totally unexpected. TCP was never applied as a pesticide, but results from the manufacture of the fumigant DD, which was used until 1977 in pineapple culture. The occurrence of TCP illustrates that one must be aware of the chemicals applied as well as their components and transformation products.

Wells have been closed in Hawaii even though the measured contaminant concentrations have been below those considered to pose a significant health risk. At municipal well locations in central Oahu, where DBCP, EDB, and/or TCP have been detected, the water is now passed through carbon filters before it is put into the distribution system. The cost of this treatment is passed on to the water users, rather than to those who applied the chemicals.

The pesticide leaching assessment maps developed by Khan and Liang (1989) are intended for incorporation into the regulatory process. Decisions are not made on the basis of the red and green shaded areas for different chemicals (see Plate 3 ), but this information is considered. The uncertainty analysis by Loague and coworkers has shown some of the limitations of deterministic assessments in the form of vulnerability maps and provided initial guidance on data shortfalls.

APPLICATION OF A VULNERABILITY INDEX FOR DECISION-MAKING AT THE NATIONAL LEVEL

Need for a vulnerability index.

A vulnerability index for ground water contamination by pesticides has been developed and used by USDA as a decision aid to help attain the objectives of the President's Water Quality Initiative (see Box 1.1 ). A vulnerability index was needed for use in program management and to provide insight for policy development. Motivation for the development of the vulnerability index was provided by two specific questions:

Given limited resources and the geographic diversity of the water quality problems associated with agricultural production, what areas of the country have the highest priority for study and program implementation?

What policy implications emerge from the spatial patterns of the potential for conamination from a national perspective, given information currently available about farming practices and chemical use in agriculture?

Description of the Vulnerability Index

A vulnerability index was derived to evaluate the likelihood of shallow ground water contamination by pesticides used in agriculture in one area compared to another area. Because of the orientation of Initiative policies to farm management practices, it was necessary that the vulnerability measure incorporate field level information on climate, soils, and chemical use. It also needed to be general enough to include all areas of the country and all types of crops grown.

A Ground Water Vulnerability Index for Pesticides (GWVIP) was developed by applying the Soil-Pesticide Interaction Screening Procedure (SPISP) developed by the Soil Conservation Service to the National Resource Inventory (NRI) land use database for 1982 and the state level pesticide use database created by Resources for the Future (Gianessi and Puffer 1991). Details of the computational scheme and databases used are described by Kellogg et al. (1992). The 1982 NRI and the associated SOIL-5 database provide information on soil properties and land use at about 800,000 sample points throughout the continental United States. This information is sufficient to apply the SPISP to each point and thus obtain a relative measure of the soil leaching potential throughout the country. The RFF pesticide use database was used to infer chemical use at each point on the basis of the crop type recorded in the NRI database. By taking advantage of the statistical properties of the NRI database, which is based on a statistical survey

sampling design, the GWVIP score at each of the sample points can be statistically aggregated for making comparisons among regions.

Since the GWVIP is an extension of a screening procedure, it is designed to minimize the likelihood of incorrectly identifying an area as having a low potential for contamination—that is, false negatives are minimized and false positives are tolerated. The GWVIP is designed to classify an area as having a potential problem even if the likelihood is small.

GWVIP scores were graphically displayed after embedding them in a national cartographic database consisting of 13,172 polygons created by overlaying the boundaries of 3,041 counties, 189 Major Land Resource Areas (MLRAs), 2,111 hydrologic units, and federal lands.

Three caveats are especially important in using the GWVIP and its aggregates as a decision aid:

Land use data are for 1982 and do not represent current cropping patterns in some parts of the country. Although total cropland acreage has remained fairly stable over the past 10 years, there has been a pronounced shift from harvested cropland to cropland idled in government programs.

The approach uses a simulation model that predicts the amount of chemical that leaches past the root zone. In areas where the water table is near the surface, these predictions relate directly to shallow ground water contamination. In other areas a time lag is involved. No adjustment was made for areas with deep water tables.

No adjustment in chemical use is made to account for farm management factors, such as chemical application rates and crop rotations. The approach assumes that chemical use is the same for a crop grown as part of a rotation cropping system as for continuous cropping. Since the chemical use variable in the GWVIP calculation is based on acres of land treated with pesticides, application rates are also not factored into the analysis.

Application to Program Management

By identifying areas of the country that have the highest potential for leaching of agrichemicals, the GWVIP can serve as a basis for selecting sites for implementation of government programs and for more in-depth research on the environmental impact of agrichemical use. These sites cannot be selected exclusively on the basis of the GWVIP score, however, because other factors, such as surface water impacts and economic and demographic factors, are also important.

For example, the GWVIP has been used as a decision aid in selecting sites for USDA's Area Study Program, which is designed to provide chemical use and farming practice information to aid in understanding the relationships among farming activities, soil properties, and ground water quality.

The National Agricultural Statistics Service interviews farm operators in 12 major watersheds where the U.S. Geological Survey is working to measure the quality of surface and ground water resources under its National Water Quality Assessment Program. At the conclusion of the project, survey information will be combined with what is learned in other elements of the President's Water Quality Initiative to assess the magnitude of the agriculture-related water quality problem for the nation as a whole and used to evaluate the potential economic and environmental effects of Initiative policies of education, technical assistance, and financial assistance if implemented nationwide.

To meet these objectives, each Area Study site must have a high potential for ground water contamination relative to other areas of the country. A map showing the average GWVIP for each of the 13,172 polygons comprising the continental United States, shown in Plate 3 , was used to help select the sites. As this map shows, areas more likely to have leaching problems with agrichemicals than other areas of the country occur principally along the coastal plains stretching from Alabama and Georgia north to the Chesapeake Bay area, the corn belt states, the Mississippi River Valley, and the irrigated areas in the West. Sites selected for study in 1991 and 1992 include four from the eastern coastal plain (Delmarva Peninsula, southeastern Pennsylvania, Virginia and North Carolina, and southern Georgia), four from the corn belt states (Nebraska, Iowa, Illinois, and Indiana), and two from the irrigated areas in the West (eastern Washington and southeastern Idaho). Four additional sites will be selected for study in 1993.

Application to Policy Analysis and Development

The GWVIP has also been used by USDA to provide a national perspective on agricultural use of pesticides and the potential for ground water contamination to aid in policy analysis and development.

The geographic distribution of GWVIP scores has shown that the potential for ground water contamination is diverse both nationally and regionally. Factors that determine intrinsic vulnerability differ in virtually every major agricultural region of the country. Whether an impact is realized in these intrinsically vulnerable areas depends on the activities of producers—such as the type of crop planted, chemical use, and irrigation practices—which also vary both nationally and regionally. High vulnerability areas are those where a confluence of these factors is present. But not all cropland is vulnerable to leaching. About one-fourth of all cropland has GWVIP scores that indicate very low potential for ground water contamination from the use of agrichemicals. Nearly all agricultural states have significant acreage that meets this low vulnerability criterion. Areas of the country identified as being in a high vulnerability group relative to potential

for agrichemical leaching also have significant acreages that appear to have low vulnerability.

This mix of relative vulnerabilities both nationally and regionally has important policy implications. With the potential problem so diverse, it is not likely that simple, across-the-board solutions will work. Simple policies—such as selective banning of chemicals—may reduce the potential for ground water contamination in problem areas while imposing unnecessary costs on farming in nonproblem areas. The geographic diversity of the GWVIP suggests that the best solutions will come from involvement of both local governments and scientists with their state and national counter-parts to derive policies that are tailored to the unique features of each problem area.

In the future, USDA plans to use vulnerability indexes, like the GWVIP, in conjunction with economic models to evaluate the potential for solving agriculture-related water quality problems with a nationwide program to provide farmers with the knowledge and technical means to respond voluntarily to water quality concerns.

These six case studies illustrate how different approaches to vulnerability assessment have evolved under diverse sets of management requirements, data constraints, and other technical considerations. In addition, each of these examples shows that vulnerability assessment is an ongoing process through which information about a region's ground water resources and its quality can be organized and examined methodically.

In Iowa, the Iowa DNR staff elected to keep their vulnerability characterization efforts as simple as possible, and to use only properties for which data already existed or could be easily checked. They assumed that surficial features such as the soil are too thin and too disrupted by human activities (e.g., tillage, abandoned wells) to provide effective ground water protection at any particular location and sought to identify a surrogate measure for average travel time from the land surface to the aquifer. Thus, a ground water vulnerability map was produced which represents vulnerability primarily on the basis of depth to ground water and extent of overlying materials. Wells and sinkholes are also shown. The results are to be used for informing resource managers and the public of the vulnerability of the resource and to determine the type of information most needed to develop an even better understanding of the vulnerability of Iowa's ground water.

The Cape Cod approach to ground water vulnerability assessment is perhaps one of the oldest and most sophisticated in the United States. Driven by the need to protect the sole source drinking water aquifer underlying this sandy peninsula, the vulnerability assessment effort has focused on the identification

and delineation of the primary recharge areas for the major aquifers. This effort began with a simple mass balance approach which assumed even recharge within a circular area around each drinking water well. It has since evolved to the development of a complex, particle-tracking three-dimensional model that uses site-specific data to delineate zones of contribution. Bolstered by strong public concern, Cape Cod has been able to pursue an ambitious and sophisticated agenda for resource protection, and now boasts a sophisticated differential management ground water protection program.

In Florida, ground water resource managers rely on a combination of monitoring and vulnerability assessment techniques to identify high recharge areas the develop the state ground water protection program. Overlay and index methods, including several modified DRASTIC maps were produced to identify areas of ground water significance in support of decision making in state land acquisition programs aimed at ground water protection. In addition, several monitoring networks have been established to assess background water quality and monitor actual effects in areas identified as highly vulnerable. The coupling of ground water vulnerability assessments with monitoring and research efforts, provides the basis of an incremental and evolving ground water protection program in Florida.

The programs to protect ground water in California's intensely agricultural San Joaquin Valley are driven largely by compliance with the state Pesticide Contamination Prevention Act. The California Department of Pesticide Regulation determined that no model would be sufficient to cover their specific regulatory needs and that the available data bases were neither suitable nor reliable for regulatory purposes. Thus, a ground water protection program was built on the extensive existing pesticide use reporting system and the significant ground water monitoring requirements of the act. Using farm sections as management units, the state declares any section in which a pesticide or its degradation product is detected as a pesticide management zone and establishes further restrictions and monitoring requirements. Thus, the need to devise a defensible regulatory approach led California to pursue a mechanistic monitoring based approach rather than a modeling approach that would have inherent and difficult to quantify uncertainties.

In contrast, the approach taken in Hawaii involves an extensive effort to understand the uncertainty associated with the assessment models used. The purpose of this is to provide guidance to, but not the sole basis for, the pesticide regulation program. The combined use of sampling, physically-based numerical modeling, and a chemical leaching index has led to extensive improvements in the understanding of the fate of pesticides in the subsurface environment. Uncertainty analyses are used to determine where additional information would be most useful.

Finally, USDA's Ground Water Vulnerability Index for Pesticides illustrates a national scale vulnerability assessment developed for use as a decision aid and analytical tool for national policies regarding farm management and water quality. This approach combines nationally available statistical information on pesticide usage and soil properties with a simulation model to predict the relative likelihood of contamination in cropland areas. USDA has used this approach to target sites for its Area Study Program which is designed to provide information to farmers about the relationships between farm management practices and water quality. The results of the GWVIP have also indicated that, even at the regional level, there is often an mix of high and low vulnerability areas. This result suggests that effective ground water policies should be tailored to local conditions.

Au, L.K.L. 1991. The Relative Safety of Hawaii's Drinking Water. Hawaii Medical Journal 50(3): 71-80.

Barlow, P.M. 1993. Particle-Tracking Analysis of Contributing Areas of Public-Supply Wells in Simple and Complex Flow Systems, Cape Cod, Massachusetts. USGS Open File Report 93-159. Marlborough, Massachusetts: U.S. Geological Survey.

Britt, J.K., S.E. Dwinell, and T.C. McDowell. 1992. Matrix decision procedure to assess new pesticides based on relative ground water leaching potential and chronic toxicity. Environ. Toxicol. Chem. 11: 721-728.

Cape Cod Commission (CCC). 1991. Regional Policy Plan. Barnstable, Massachusetts: Cape Cod Commission.

Cape Cod Planning and Economic Development Commission (CCPEDC). March 1978a. Draft Area Wide Water Quality Management Plan for Cape Cod. Barnstable, Massachusetts: Cape Cod Commission.

Cape Cod Planning and Economic Development Commission (CCPEDC). September 1978b. Final Area Wide Water Quality Management Plan for Cape Cod. Barnstable, Massachusetts: Cape Cod Commission.

Department of Environmental Protection, Division of Water Supply (DEP-WS). 1991. Guidelines and Policies for Public Water Supply Systems. Massachusetts Department of Environmental Protection.

Gianessi, L.P., and C.A. Puffer. 1991. Herbicide Use in the United States: National Summary Report. Washington, D.C.: Resources for the Future.

Guswa, J.H., and D.R. LeBlanc. 1981. Digital Models of Ground water Flow in the Cape Cod Aquifer System, MA. USGS Water Supply Paper 2209. U.S. Geological Survey.

Heath, D.L. 1988. DRASTIC mapping of aquifer vulnerability in eastern Barnstable and western Yarmouth, Cape Cod, Massachusetts. In Appendix D, Cape Cod Aquifer Management Project, Final Report, G.A. Zoto and T. Gallagher, eds. Boston: Massachusetts Department of Environmental Quality Engineering.

Horsely, S.W. 1983. Delineating zones of contribution of public supply wells to protect ground water . In Proceedings of the National Water Well Association Eastern Regional Conference, Ground-Water Management, Orlando, Florida.

Hoyer, B.E. 1991. Ground water vulnerability map of Iowa. Pp. 13-15 in Iowa Geology, no. 16. Iowa City, Iowa: Iowa Department of Natural Resources.

Hoyer, B.E., J.E. Combs, R.D. Kelley, C. Cousins-Leatherman, and J.H. Seyb. 1987. Iowa Ground water Protection Strategy. Des Moines: Iowa Department of Natural Resources.

Kellogg, R.L., M.S. Maizel, and D.W. Goss. 1992. Agricultural Chemical Use and Ground Water Quality: Where Are the Potential Problems? Washington, D.C.: U.S. Department of Agriculture, Soil Conservation Service.

Khan, M.A., and T. Liang. 1989. Mapping pesticide contamination potential. Environmental Management 13(2):233-242.

Kleveno, J.J., K. Loague, and R.E. Green. 1992. An evaluation of a pesticide mobility index: Impact of recharge variation and soil profile heterogeneity. Journal of Contaminant Hydrology 11(1-2):83-99.

Land Acquisition Advisory Council (LAAC). 1991. Ground Water Resources Committee Final Report: Florida Preservation 2000 Needs Assessment. Tallahassee, Florida: Department of Environmental Regulation. 39 pp.

Lau, L.S., and J.F. Mink. 1987. Organic contamination of ground water: A learning experience. J. American Water Well Association 79(8):37-42.

LeBlanc, D.R., and J.H. Guswa. 1977. Water-Table Map of Cape Cod, MA. May 23-27, 1976, USGS Open File Report 77-419, scale 1:48,000.

Loague, K. 1991. The impact of land use on estimates of pesticide leaching potential: Assessments and uncertainties. Journal of Contaminant Hydrology 8: 157-175.

Loague, K. 1992. Simulation of organic chemical movement in Hawaii soils with PRZM: 3. Calibration. Pacific Science 46(3):353-373.

Loague, K.M., and R.E. Green. 1988. Impact of data-related uncertainties in a pesticide leaching assessment. Pp. 98-119 in Methods for Ground Water Quality Studies, D.W. Nelson and R.H. Dowdy, eds. Lincoln, Nebraska: Agricultural Research Division, University of Nebraska.

Loague, K., and R.E. Green. 1990a. Comments on "Mapping pesticide contamination potential," by M.A. Khan and T. Liang. Environmental Management 4:149-150.

Loague, K., and R.E. Green. 1990b. Uncertainty in Areal Estimates of Pesticide Leaching Potential. Pp. 62-67 in Transactions of 14th International Congress of Soil Science. Kyoto, Japan: International Soil Science Society.

Loague, K., and R.E. Green. 1990c. Criteria for evaluating pesticide leaching models. Pp. 175-207 in Field-Scale Water and Solute Flux in Soils, K. Roth, H. Flühler, W.A. Jury, and J.C. Parker, eds. Basel, Switzerland: Birkhauser Verlag.

Loague, K.M., R.E. Green, C.C.K. Liu, and T.C. Liang. 1989a. Simulation of organic chemical movement in Hawaii soils with PRZM: 1. Preliminary results for ethylene dibromide. Pacific Science 43(1):67-95.

Loague, K., T.W. Giambelluca, R.E. Green, C.C.K. Liu, T.C. Liang, and D.S. Oki. 1989b. Simulation of organic chemical movement in Hawaii soils with PRZM: 2. Predicting deep penetration of DBCP, EDB, and TCP. Pacific Science 43(4):362-383.

Loague, K.M., R.S. Yost, R.E. Green, and T.C. Liang. 1989c. Uncertainty in a pesticide leaching assessment for Hawaii. Journal of Contaminant Hydrology 4:139-161.

Loague, K., R.E. Green, T.W. Giambelluca, T.C. Liang, and R.S. Yost. 1990. Impact of uncertainty in soil, climatic, and chemical information in a pesticide leaching assessment. Journal of Contaminant Hydrology 5:171-194.

Maddox, G., and J. Spicola. 1991. Ground Water Quality Monitoring Network. Tallahassee, Florida: Florida Department of Environmental Regulation. 20 pp.

Maddox, G., J. Lloyd, T. Scott, S. Upchurch, and R. Copeland, eds. 1993. Florida's Ground Water Quality monitoring Program: Background Hydrogeochemistry. Florida Geological Survey Special Publication #34. Tallahassee, Florida: Florida Department of Environmental Regulation in cooperation with Florida Geological Survey.

National Research Council (NRC). 1986. Ground Water Quality Protection: State and Local Strategies. Washington, D.C.: National Academy Press.

Oki, D.S., and T.W. Giambelluca. 1985. Subsurface Water and Soil Quality Data Base for State of Hawaii: Part 1. Spec. Rept. 7. Manoa, Hawaii: Water Resources Research Center, University of Hawaii at Manoa.

Oki, D.S., and T.W. Giambelluca. 1987. DBCP, EDB, and TCP contamination of ground water in Hawaii. Ground Water 25:693-702.

Olimpio, J.C., E.C. Flynn, S. Tso, and P.A. Steeves. 1991. Use of a Geographic Information System to Assess Risk to Ground-Water Quality at Public-Supply Wells, Cape Cod, Massachusetts. Boston, Massachusetts: U.S. Geological Survey.

Peterson, F.L. 1972. Water development on tropic volcanic islands—Type example: Hawaii. Ground Water 5:18-23.

Peterson, F.L., K.R. Green, R.E. Green, and J.N. Ogata. 1985. Drilling program and pesticide analysis of core samples from pineapple fields in central Oahu. Water Resources Research Center, University of Hawaii at Manoa, Special Report 7.5. Photocopy.

Southwest Florida Water Management Districts (SFWMD). 1991. The Bluebelt Commission. Brooksville, Florida: Southwest Florida Water Management Districts.

U.S. Bureau of the Census. 1991. Statistical Abstracts of the United States: 1991, 111th edition. Washington, D.C.: U.S. Government Printing Office.

Wong, L. 1983. Preliminary report on soil sampling EDB on Oahu. Pesticide Branch, Div. of Plant Industry, Department of Agriculture, State of Hawaii. Photocopy.

Wong, L. 1987. Analysis of ethylene dibromide distribution in the soil profile following shank injection for nematode control in pineapple culture. Pp. 28-40 in Toxic Organic Chemicals in Hawaii's Water Resources, P.S.C. Rao and R.E. Green, eds. Ser. 086. Honolulu: Hawaii Inst. Trop Agric. Hum. Resources Res. Exten. University of Hawaii.

Yost, R.S., K. Loague, and R.E. Green. 1993. Reducing variance in soil organic carbon estimates—soil classification and geostatistical approaches. Geoderma 57(3):247-262

Since the need to protect ground water from pollution was recognized, researchers have made progress in understanding the vulnerability of ground water to contamination. Yet, there are substantial uncertainties in the vulnerability assessment methods now available.

With a wealth of detailed information and practical advice, this volume will help decision-makers derive the most benefit from available assessment techniques. It offers:

  • Three laws of ground water vulnerability.
  • Six case studies of vulnerability assessment.
  • Guidance for selecting vulnerability assessments and using the results.
  • Reviews of the strengths and limitations of assessment methods.
  • Information on available data bases, primarily at the federal level.

This book will be indispensable to policymakers and resource managers, environmental professionals, researchers, faculty, and students involved in ground water issues, as well as investigators developing new assessment methods.

READ FREE ONLINE

Welcome to OpenBook!

You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

Do you want to take a quick tour of the OpenBook's features?

Show this book's table of contents , where you can jump to any chapter by name.

...or use these buttons to go back to the previous chapter or skip to the next one.

Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

Switch between the Original Pages , where you can read the report as it appeared in print, and Text Pages for the web version, where you can highlight and search the text.

To search the entire text of this book, type in your search term here and press Enter .

Share a link to this book page on your preferred social network or via email.

View our suggested citation for this chapter.

Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

Get Email Updates

Do you enjoy reading reports from the Academies online for free ? Sign up for email notifications and we'll let you know about new publications in your areas of interest when they're released.

  • Random article
  • Teaching guide
  • Privacy & cookies

Photo of polluted stormwater draining into a creek from an overflow

Water pollution: an introduction

by Chris Woodford . Last updated: October 1, 2023.

O ver two thirds of Earth's surface is covered by water ; less than a third is taken up by land. As Earth's population continues to grow, people are putting ever-increasing pressure on the planet's water resources. In a sense, our oceans, rivers , and other inland waters are being "squeezed" by human activities—not so they take up less room, but so their quality is reduced. Poorer water quality means water pollution .

We know that pollution is a human problem because it is a relatively recent development in the planet's history: before the 19th century Industrial Revolution, people lived more in harmony with their immediate environment. As industrialization has spread around the globe, so the problem of pollution has spread with it. When Earth's population was much smaller, no one believed pollution would ever present a serious problem. It was once popularly believed that the oceans were far too big to pollute. Today, with around 7 billion people on the planet, it has become apparent that there are limits. Pollution is one of the signs that humans have exceeded those limits.

Photo: Stormwater pollution entering a river from a drain. Photo by Peter C Van Metre courtesy of US Geological Survey .

What is water pollution?

Water pollution can be defined in many ways. Usually, it means one or more substances have built up in water to such an extent that they cause problems for animals or people. Oceans, lakes, rivers, and other inland waters can naturally clean up a certain amount of pollution by dispersing it harmlessly. If you poured a cup of black ink into a river, the ink would quickly disappear into the river's much larger volume of clean water. The ink would still be there in the river, but in such a low concentration that you would not be able to see it. At such low levels, the chemicals in the ink probably would not present any real problem. However, if you poured gallons of ink into a river every few seconds through a pipe, the river would quickly turn black. The chemicals in the ink could very quickly have an effect on the quality of the water. This, in turn, could affect the health of all the plants, animals, and humans whose lives depend on the river.

Photo: Pollution means adding substances to the environment that don't belong there—like the air pollution from this smokestack. Pollution is not always as obvious as this, however.

Thus, water pollution is all about quantities : how much of a polluting substance is released and how big a volume of water it is released into. A small quantity of a toxic chemical may have little impact if it is spilled into the ocean from a ship. But the same amount of the same chemical can have a much bigger impact pumped into a lake or river, where there is less clean water to disperse it.

"The introduction by man, directly or indirectly, of substances or energy into the marine environment (including estuaries) resulting in such deleterious effects as harm to living resources, hazards to human health, hindrance to marine activities, including fishing, impairment of quality for use of sea water and reduction of amenities." [1]

What are the main types of water pollution?

When we think of Earth's water resources, we think of huge oceans, lakes, and rivers. Water resources like these are called surface waters . The most obvious type of water pollution affects surface waters. For example, a spill from an oil tanker creates an oil slick that can affect a vast area of the ocean.

Photo of detergent pollution in a creek

Photo: Detergent pollution entering a river—an example of surface water pollution. Photo courtesy of US Fish & Wildlife Service Photo Library.

Not all of Earth's water sits on its surface, however. A great deal of water is held in underground rock structures known as aquifers, which we cannot see and seldom think about. Water stored underground in aquifers is known as groundwater . Aquifers feed our rivers and supply much of our drinking water. They too can become polluted, for example, when weed killers used in people's gardens drain into the ground. Groundwater pollution is much less obvious than surface-water pollution, but is no less of a problem. In 1996, a study in Iowa in the United States found that over half the state's groundwater wells were contaminated with weed killers. You might think things would have improved since then, but, two decades on, all that's really changed is the name of the chemicals we're using. Today, numerous scientific studies are still finding weed killers in groundwater in worrying quantities: a 2012 study discovered glyphosate in 41 percent of 140 groundwater samples from Catalonia, Spain; scientific opinion differs on whether this is safe or not. [2]

Surface waters and groundwater are the two types of water resources that pollution affects. There are also two different ways in which pollution can occur. If pollution comes from a single location, such as a discharge pipe attached to a factory, it is known as point-source pollution . Other examples of point source pollution include an oil spill from a tanker, a discharge from a smoke stack (factory chimney), or someone pouring oil from their car down a drain. A great deal of water pollution happens not from one single source but from many different scattered sources. This is called nonpoint-source pollution .

When point-source pollution enters the environment, the place most affected is usually the area immediately around the source. For example, when a tanker accident occurs, the oil slick is concentrated around the tanker itself and, in the right ocean conditions, the pollution disperses the further away from the tanker you go. This is less likely to happen with nonpoint source pollution which, by definition, enters the environment from many different places at once.

Sometimes pollution that enters the environment in one place has an effect hundreds or even thousands of miles away. This is known as transboundary pollution . One example is the way radioactive waste travels through the oceans from nuclear reprocessing plants in England and France to nearby countries such as Ireland and Norway.

How do we know when water is polluted?

Some forms of water pollution are very obvious: everyone has seen TV news footage of oil slicks filmed from helicopters flying overhead. Water pollution is usually less obvious and much harder to detect than this. But how can we measure water pollution when we cannot see it? How do we even know it's there?

There are two main ways of measuring the quality of water. One is to take samples of the water and measure the concentrations of different chemicals that it contains. If the chemicals are dangerous or the concentrations are too great, we can regard the water as polluted. Measurements like this are known as chemical indicators of water quality. Another way to measure water quality involves examining the fish, insects, and other invertebrates that the water will support. If many different types of creatures can live in a river, the quality is likely to be very good; if the river supports no fish life at all, the quality is obviously much poorer. Measurements like this are called biological indicators of water quality.

What are the causes of water pollution?

Most water pollution doesn't begin in the water itself. Take the oceans: around 80 percent of ocean pollution enters our seas from the land. [16] Virtually any human activity can have an effect on the quality of our water environment. When farmers fertilize the fields, the chemicals they use are gradually washed by rain into the groundwater or surface waters nearby. Sometimes the causes of water pollution are quite surprising. Chemicals released by smokestacks (chimneys) can enter the atmosphere and then fall back to earth as rain, entering seas, rivers, and lakes and causing water pollution. That's called atmospheric deposition . Water pollution has many different causes and this is one of the reasons why it is such a difficult problem to solve.

With billions of people on the planet, disposing of sewage waste is a major problem. According to 2017 figures from the World Health Organization, some 2 billion people (about a quarter of the world's population) don't have access to safe drinking water or the most basic sanitation, 3.4 billion (60 people of the population) lack "safely managed" sanitation (unshared, with waste properly treated). Although there have been great improvements in securing access to clean water, relatively little, genuine progress has been made on improving global sanitation in the last decade. [20] Sewage disposal affects people's immediate environments and leads to water-related illnesses such as diarrhea that kills 525,000 children under five each year. [3] (Back in 2002, the World Health Organization estimated that water-related diseases could kill as many as 135 million people by 2020; in 2019, the WHO was still estimating the annual death toll from poor water and sanitation at over 800,000 people a year.) In developed countries, most people have flush toilets that take sewage waste quickly and hygienically away from their homes.

Yet the problem of sewage disposal does not end there. When you flush the toilet, the waste has to go somewhere and, even after it leaves the sewage treatment works, there is still waste to dispose of. Sometimes sewage waste is pumped untreated into the sea. Until the early 1990s, around 5 million tons of sewage was dumped by barge from New York City each year. [4] According to 2002 figures from the UK government's Department for the Environment, Food, and Rural Affairs (DEFRA), the sewers of Britain collect around 11 billion liters of waste water every day; there are still 31,000 sewage overflow pipes through which, in certain circumstances, such as heavy storms, raw sewage is pumped untreated into the sea. [5] The New River that crosses the border from Mexico into California once carried with it 20–25 million gallons (76–95 million liters) of raw sewage each day; a new waste water plant on the US-Mexico border, completed in 2007, substantially solved that problem. [6] Unfortunately, even in some of the richest nations, the practice of dumping sewage into the sea continues. In early 2012, it was reported that the tiny island of Guernsey (between Britain and France) has decided to continue dumping 16,000 tons of raw sewage into the sea each day.

In theory, sewage is a completely natural substance that should be broken down harmlessly in the environment: 90 percent of sewage is water. [7] In practice, sewage contains all kinds of other chemicals, from the pharmaceutical drugs people take to the paper , plastic , and other wastes they flush down their toilets. When people are sick with viruses, the sewage they produce carries those viruses into the environment. It is possible to catch illnesses such as hepatitis, typhoid, and cholera from river and sea water.

Photo: Nutrients make crops grow, but cause pollution when they seep into rivers and other watercourses. Photo courtesy of US Department of Agriculture (Flickr) .

Suitably treated and used in moderate quantities, sewage can be a fertilizer: it returns important nutrients to the environment, such as nitrogen and phosphorus, which plants and animals need for growth. The trouble is, sewage is often released in much greater quantities than the natural environment can cope with. Chemical fertilizers used by farmers also add nutrients to the soil, which drain into rivers and seas and add to the fertilizing effect of the sewage. Together, sewage and fertilizers can cause a massive increase in the growth of algae or plankton that overwhelms huge areas of oceans, lakes, or rivers. This is known as a harmful algal bloom (also known as an HAB or red tide, because it can turn the water red). It is harmful because it removes oxygen from the water that kills other forms of life, leading to what is known as a dead zone . The Gulf of Mexico has one of the world's most spectacular dead zones. Each summer, according to studies by the NOAA , it typically grows to an area of around 5500–6500 square miles (14,000–16,800 square kilometers), which is about the same size as the state of Connecticut. [21]

Waste water

A few statistics illustrate the scale of the problem that waste water (chemicals washed down drains and discharged from factories) can cause. Around half of all ocean pollution is caused by sewage and waste water. Each year, the world generates perhaps 5–10 billion tons of industrial waste, much of which is pumped untreated into rivers, oceans, and other waterways. [8] In the United States alone, around 400,000 factories take clean water from rivers, and many pump polluted waters back in their place. However, there have been major improvements in waste water treatment recently. Since 1970, in the United States, the Environmental Protection Agency (EPA) has invested about $70 billion in improving water treatment plants that, as of 2021, serve around 90 percent of the US population (compared to just 69 percent in 1972). However, another $271 billion is still needed to update and upgrade the system. [15]

Factories are point sources of water pollution, but quite a lot of water is polluted by ordinary people from nonpoint sources; this is how ordinary water becomes waste water in the first place. Virtually everyone pours chemicals of one sort or another down their drains or toilets. Even detergents used in washing machines and dishwashers eventually end up in our rivers and oceans. So do the pesticides we use on our gardens. A lot of toxic pollution also enters waste water from highway runoff . Highways are typically covered with a cocktail of toxic chemicals—everything from spilled fuel and brake fluids to bits of worn tires (themselves made from chemical additives) and exhaust emissions. When it rains, these chemicals wash into drains and rivers. It is not unusual for heavy summer rainstorms to wash toxic chemicals into rivers in such concentrations that they kill large numbers of fish overnight. It has been estimated that, in one year, the highway runoff from a single large city leaks as much oil into our water environment as a typical tanker spill. Some highway runoff runs away into drains; others can pollute groundwater or accumulate in the land next to a road, making it increasingly toxic as the years go by.

Chemical waste

Detergents are relatively mild substances. At the opposite end of the spectrum are highly toxic chemicals such as polychlorinated biphenyls (PCBs) . They were once widely used to manufacture electronic circuit boards , but their harmful effects have now been recognized and their use is highly restricted in many countries. Nevertheless, an estimated half million tons of PCBs were discharged into the environment during the 20th century. [9] In a classic example of transboundary pollution, traces of PCBs have even been found in birds and fish in the Arctic. They were carried there through the oceans, thousands of miles from where they originally entered the environment. Although PCBs are widely banned, their effects will be felt for many decades because they last a long time in the environment without breaking down.

Another kind of toxic pollution comes from heavy metals , such as lead, cadmium, and mercury. Lead was once commonly used in gasoline (petrol), though its use is now restricted in some countries. Mercury and cadmium are still used in batteries (though some brands now use other metals instead). Until recently, a highly toxic chemical called tributyltin (TBT) was used in paints to protect boats from the ravaging effects of the oceans. Ironically, however, TBT was gradually recognized as a pollutant: boats painted with it were doing as much damage to the oceans as the oceans were doing to the boats.

The best known example of heavy metal pollution in the oceans took place in 1938 when a Japanese factory discharged a significant amount of mercury metal into Minamata Bay, contaminating the fish stocks there. It took a decade for the problem to come to light. By that time, many local people had eaten the fish and around 2000 were poisoned. Hundreds of people were left dead or disabled. [10]

Radioactive waste

People view radioactive waste with great alarm—and for good reason. At high enough concentrations it can kill; in lower concentrations it can cause cancers and other illnesses. The biggest sources of radioactive pollution in Europe are two factories that reprocess waste fuel from nuclear power plants : Sellafield on the north-west coast of Britain and Cap La Hague on the north coast of France. Both discharge radioactive waste water into the sea, which ocean currents then carry around the world. Countries such as Norway, which lie downstream from Britain, receive significant doses of radioactive pollution from Sellafield. [19] The Norwegian government has repeatedly complained that Sellafield has increased radiation levels along its coast by 6–10 times. Both the Irish and Norwegian governments continue to press for the plant's closure. [11]

Oil pollution

Photo: Oil-tanker spills are the most spectacular forms of pollution and the ones that catch public attention, but only a fraction of all water pollution happens this way. Photo by Lamar Gore courtesy of US Fish & Wildlife Service Photo Library and US National Archive .

When we think of ocean pollution, huge black oil slicks often spring to mind, yet these spectacular accidents represent only a tiny fraction of all the pollution entering our oceans. Even considering oil by itself, tanker spills are not as significant as they might seem: only 12 percent of the oil that enters the oceans comes from tanker accidents; over 70 percent of oil pollution at sea comes from routine shipping and from the oil people pour down drains on land. [12] However, what makes tanker spills so destructive is the sheer quantity of oil they release at once — in other words, the concentration of oil they produce in one very localized part of the marine environment. The biggest oil spill in recent years (and the biggest ever spill in US waters) occurred when the tanker Exxon Valdez broke up in Prince William Sound in Alaska in 1989. Around 12 million gallons (44 million liters) of oil were released into the pristine wilderness—enough to fill your living room 800 times over! Estimates of the marine animals killed in the spill vary from approximately 1000 sea otters and 34,000 birds to as many as 2800 sea otters and 250,000 sea birds. Several billion salmon and herring eggs are also believed to have been destroyed. [13]

If you've ever taken part in a community beach clean, you'll know that plastic is far and away the most common substance that washes up with the waves. There are three reasons for this: plastic is one of the most common materials, used for making virtually every kind of manufactured object from clothing to automobile parts; plastic is light and floats easily so it can travel enormous distances across the oceans; most plastics are not biodegradable (they do not break down naturally in the environment), which means that things like plastic bottle tops can survive in the marine environment for a long time. (A plastic bottle can survive an estimated 450 years in the ocean and plastic fishing line can last up to 600 years.)

While plastics are not toxic in quite the same way as poisonous chemicals, they nevertheless present a major hazard to seabirds, fish, and other marine creatures. For example, plastic fishing lines and other debris can strangle or choke fish. (This is sometimes called ghost fishing .) About half of all the world's seabird species are known to have eaten plastic residues. In one study of 450 shearwaters in the North Pacific, over 80 percent of the birds were found to contain plastic residues in their stomachs. In the early 1990s, marine scientist Tim Benton collected debris from a 2km (1.5 mile) length of beach in the remote Pitcairn islands in the South Pacific. His study recorded approximately a thousand pieces of garbage including 268 pieces of plastic, 71 plastic bottles, and two dolls heads. [14]

Alien species

Most people's idea of water pollution involves things like sewage, toxic metals, or oil slicks, but pollution can be biological as well as chemical. In some parts of the world, alien species are a major problem. Alien species (sometimes known as invasive species ) are animals or plants from one region that have been introduced into a different ecosystem where they do not belong. Outside their normal environment, they have no natural predators, so they rapidly run wild, crowding out the usual animals or plants that thrive there. Common examples of alien species include zebra mussels in the Great Lakes of the USA, which were carried there from Europe by ballast water (waste water flushed from ships ). The Mediterranean Sea has been invaded by a kind of alien algae called Caulerpa taxifolia . In the Black Sea, an alien jellyfish called Mnemiopsis leidyi reduced fish stocks by 90 percent after arriving in ballast water. In San Francisco Bay, Asian clams called Potamocorbula amurensis, also introduced by ballast water, have dramatically altered the ecosystem. In 1999, Cornell University's David Pimentel estimated that alien invaders like this cost the US economy $123 billion a year; in 2014, the European Commission put the cost to Europe at €12 billion a year and "growing all the time. [18]

Other forms of pollution

These are the most common forms of pollution—but by no means the only ones. Heat or thermal pollution from factories and power plants also causes problems in rivers. By raising the temperature, it reduces the amount of oxygen dissolved in the water, thus also reducing the level of aquatic life that the river can support. Another type of pollution involves the disruption of sediments (fine-grained powders) that flow from rivers into the sea. Dams built for hydroelectric power or water reservoirs can reduce the sediment flow. This reduces the formation of beaches, increases coastal erosion (the natural destruction of cliffs by the sea), and reduces the flow of nutrients from rivers into seas (potentially reducing coastal fish stocks). Increased sediments can also present a problem. During construction work, soil, rock, and other fine powders sometimes enters nearby rivers in large quantities, causing it to become turbid (muddy or silted). The extra sediment can block the gills of fish, effectively suffocating them. Construction firms often now take precautions to prevent this kind of pollution from happening.

What are the effects of water pollution?

Some people believe pollution is an inescapable result of human activity: they argue that if we want to have factories, cities, ships, cars, oil, and coastal resorts, some degree of pollution is almost certain to result. In other words, pollution is a necessary evil that people must put up with if they want to make progress. Fortunately, not everyone agrees with this view. One reason people have woken up to the problem of pollution is that it brings costs of its own that undermine any economic benefits that come about by polluting.

Take oil spills, for example. They can happen if tankers are too poorly built to survive accidents at sea. But the economic benefit of compromising on tanker quality brings an economic cost when an oil spill occurs. The oil can wash up on nearby beaches, devastate the ecosystem, and severely affect tourism. The main problem is that the people who bear the cost of the spill (typically a small coastal community) are not the people who caused the problem in the first place (the people who operate the tanker). Yet, arguably, everyone who puts gasoline (petrol) into their car—or uses almost any kind of petroleum-fueled transport—contributes to the problem in some way. So oil spills are a problem for everyone, not just people who live by the coast and tanker operates.

Sewage is another good example of how pollution can affect us all. Sewage discharged into coastal waters can wash up on beaches and cause a health hazard. People who bathe or surf in the water can fall ill if they swallow polluted water—yet sewage can have other harmful effects too: it can poison shellfish (such as cockles and mussels) that grow near the shore. People who eat poisoned shellfish risk suffering from an acute—and sometimes fatal—illness called paralytic shellfish poisoning. Shellfish is no longer caught along many shores because it is simply too polluted with sewage or toxic chemical wastes that have discharged from the land nearby.

Pollution matters because it harms the environment on which people depend. The environment is not something distant and separate from our lives. It's not a pretty shoreline hundreds of miles from our homes or a wilderness landscape that we see only on TV. The environment is everything that surrounds us that gives us life and health. Destroying the environment ultimately reduces the quality of our own lives—and that, most selfishly, is why pollution should matter to all of us.

How can we stop water pollution?

There is no easy way to solve water pollution; if there were, it wouldn't be so much of a problem. Broadly speaking, there are three different things that can help to tackle the problem—education, laws, and economics—and they work together as a team.

Making people aware of the problem is the first step to solving it. In the early 1990s, when surfers in Britain grew tired of catching illnesses from water polluted with sewage, they formed a group called Surfers Against Sewage to force governments and water companies to clean up their act. People who've grown tired of walking the world's polluted beaches often band together to organize community beach-cleaning sessions. Anglers who no longer catch so many fish have campaigned for tougher penalties against factories that pour pollution into our rivers. Greater public awareness can make a positive difference.

One of the biggest problems with water pollution is its transboundary nature. Many rivers cross countries, while seas span whole continents. Pollution discharged by factories in one country with poor environmental standards can cause problems in neighboring nations, even when they have tougher laws and higher standards. Environmental laws can make it tougher for people to pollute, but to be really effective they have to operate across national and international borders. This is why we have international laws governing the oceans, such as the 1982 UN Convention on the Law of the Sea (signed by over 120 nations), the 1972 London (Dumping) Convention , the 1978 MARPOL International Convention for the Prevention of Pollution from Ships , and the 1998 OSPAR Convention for the Protection of the Marine Environment of the North East Atlantic . The European Union has water-protection laws (known as directives) that apply to all of its member states. They include the 1976 Bathing Water Directive (updated 2006), which seeks to ensure the quality of the waters that people use for recreation. Most countries also have their own water pollution laws. In the United States, for example, there is the 1972 Clean Water Act and the 1974 Safe Drinking Water Act .

Most environmental experts agree that the best way to tackle pollution is through something called the polluter pays principle . This means that whoever causes pollution should have to pay to clean it up, one way or another. Polluter pays can operate in all kinds of ways. It could mean that tanker owners should have to take out insurance that covers the cost of oil spill cleanups, for example. It could also mean that shoppers should have to pay for their plastic grocery bags, as is now common in Ireland, to encourage recycling and minimize waste. Or it could mean that factories that use rivers must have their water inlet pipes downstream of their effluent outflow pipes, so if they cause pollution they themselves are the first people to suffer. Ultimately, the polluter pays principle is designed to deter people from polluting by making it less expensive for them to behave in an environmentally responsible way.

Our clean future

Life is ultimately about choices—and so is pollution. We can live with sewage-strewn beaches, dead rivers, and fish that are too poisonous to eat. Or we can work together to keep the environment clean so the plants, animals, and people who depend on it remain healthy. We can take individual action to help reduce water pollution, for example, by using environmentally friendly detergents , not pouring oil down drains, reducing pesticides, and so on. We can take community action too, by helping out on beach cleans or litter picks to keep our rivers and seas that little bit cleaner. And we can take action as countries and continents to pass laws that will make pollution harder and the world less polluted. Working together, we can make pollution less of a problem—and the world a better place.

If you liked this article...

Find out more, on this site.

  • Air pollution (introduction)
  • Climate change and global warming
  • Environmentalism (introduction)
  • Land pollution
  • Organic food and farming

For older readers

For younger readers.

  • Earth Matters by Lynn Dicks et al. Dorling Kindersley, 2008: A more general guide to problems Earth faces, with each major biome explored separately. In case you're interested, I contributed the polar regions chapter. The book is mostly a simple read and probably suitable for 7–10 (and maybe 9–12).

Selected news articles

Water pollution videos, notes and references.

Text copyright © Chris Woodford 2006, 2022. All rights reserved. Full copyright notice and terms of use .

This article was originally written for the UK Rivers Network and first published on their website in April 2006. It is revised and updated every year.

Rate this page

Tell your friends, cite this page, can't find what you want search our site below, more to explore on our website....

  • Get the book
  • Send feedback

Pollution in the Yellow River, Mongolia

Discharge from a Chinese fertilizer factory winds its way toward the Yellow River. Like many of the world's rivers, pollution remains an ongoing problem.

Water pollution is a rising global crisis. Here’s what you need to know.

The world's freshwater sources receive contaminants from a wide range of sectors, threatening human and wildlife health.

From big pieces of garbage to invisible chemicals, a wide range of pollutants ends up in our planet's lakes, rivers, streams, groundwater, and eventually the oceans. Water pollution—along with drought, inefficiency, and an exploding population—has contributed to a freshwater crisis , threatening the sources we rely on for drinking water and other critical needs.

Research has revealed that one pollutant in particular is more common in our tap water than anyone had previously thought: PFAS, short for poly and perfluoroalkyl substances. PFAS is used to make everyday items resistant to moisture, heat, and stains; some of these chemicals have such long half-lives that they are known as "the forever chemical."

Safeguarding water supplies is important because even though nearly 70 percent of the world is covered by water, only 2.5 percent of it is fresh. And just one percent of freshwater is easily accessible, with much of it trapped in remote glaciers and snowfields.

Water pollution causes

Water pollution can come from a variety of sources. Pollution can enter water directly, through both legal and illegal discharges from factories, for example, or imperfect water treatment plants. Spills and leaks from oil pipelines or hydraulic fracturing (fracking) operations can degrade water supplies. Wind, storms, and littering—especially of plastic waste —can also send debris into waterways.

Thanks largely to decades of regulation and legal action against big polluters, the main cause of U.S. water quality problems is now " nonpoint source pollution ," when pollutants are carried across or through the ground by rain or melted snow. Such runoff can contain fertilizers, pesticides, and herbicides from farms and homes; oil and toxic chemicals from roads and industry; sediment; bacteria from livestock; pet waste; and other pollutants .

Finally, drinking water pollution can happen via the pipes themselves if the water is not properly treated, as happened in the case of lead contamination in Flint, Michigan , and other towns. Another drinking water contaminant, arsenic , can come from naturally occurring deposits but also from industrial waste.

Freshwater pollution effects

the dry riverbed of the Colorado River

Water pollution can result in human health problems, poisoned wildlife, and long-term ecosystem damage. When agricultural and industrial runoff floods waterways with excess nutrients such as nitrogen and phosphorus, these nutrients often fuel algae blooms that then create dead zones , or low-oxygen areas where fish and other aquatic life can no longer thrive.

Algae blooms can create health and economic effects for humans, causing rashes and other ailments, while eroding tourism revenue for popular lake destinations thanks to their unpleasant looks and odors. High levels of nitrates in water from nutrient pollution can also be particularly harmful to infants , interfering with their ability to deliver oxygen to tissues and potentially causing " blue baby syndrome ." The United Nations Food and Agriculture Organization estimates that 38 percent of the European Union's water bodies are under pressure from agricultural pollution.

Globally, unsanitary water supplies also exact a health toll in the form of disease. At least 2 billion people drink water from sources contaminated by feces, according to the World Health Organization , and that water may transmit dangerous diseases such as cholera and typhoid.

Freshwater pollution solutions

In many countries, regulations have restricted industry and agricultural operations from pouring pollutants into lakes, streams, and rivers, while treatment plants make our drinking water safe to consume. Researchers are working on a variety of other ways to prevent and clean up pollution. National Geographic grantee Africa Flores , for example, has created an artificial intelligence algorithm to better predict when algae blooms will happen. A number of scientists are looking at ways to reduce and cleanup plastic pollution .

There have been setbacks, however. Regulation of pollutants is subject to changing political winds, as has been the case in the United States with the loosening of environmental protections that prevented landowners from polluting the country’s waterways.

Anyone can help protect watersheds by disposing of motor oil, paints, and other toxic products properly , keeping them off pavement and out of the drain. Be careful about what you flush or pour down the sink, as it may find its way into the water. The U.S. Environmental Protection Agency recommends using phosphate-free detergents and washing your car at a commercial car wash, which is required to properly dispose of wastewater. Green roofs and rain gardens can be another way for people in built environments to help restore some of the natural filtering that forests and plants usually provide.

FREE BONUS ISSUE

Related topics.

  • WATER POLLUTION
  • ENVIRONMENT AND CONSERVATION
  • FRESH WATER
  • GROUNDWATER
  • WATER QUALITY
  • WATER RESOURCES

You May Also Like

short case study on water pollution

Here’s what worries engineers the most about U.S. infrastructure

short case study on water pollution

Are you drinking water all wrong? Here’s what you need to know about hydrating.

short case study on water pollution

Is tap water safe to drink? Here’s what you really need to know.

short case study on water pollution

England’s chalk streams were millions of years in the making. Can they survive today?

short case study on water pollution

Japan releases nuclear wastewater into the Pacific. How worried should we be?

  • Environment
  • Perpetual Planet

History & Culture

  • History & Culture
  • Mind, Body, Wonder
  • Paid Content
  • Terms of Use
  • Privacy Policy
  • Your US State Privacy Rights
  • Children's Online Privacy Policy
  • Interest-Based Ads
  • About Nielsen Measurement
  • Do Not Sell or Share My Personal Information
  • Nat Geo Home
  • Attend a Live Event
  • Book a Trip
  • Inspire Your Kids
  • Shop Nat Geo
  • Visit the D.C. Museum
  • Learn About Our Impact
  • Support Our Mission
  • Advertise With Us
  • Customer Service
  • Renew Subscription
  • Manage Your Subscription
  • Work at Nat Geo
  • Sign Up for Our Newsletters
  • Contribute to Protect the Planet

Copyright © 1996-2015 National Geographic Society Copyright © 2015-2024 National Geographic Partners, LLC. All rights reserved

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • 18 July 2023

Water pollution ‘timebomb’ threatens global health

  • Lilly Tozer

You can also search for this author in PubMed   Google Scholar

Boosting water quality will require improvements to infrastructure as populations grow, researchers say. Credit: John Wessels/AFP via Getty

Up to 5.5 billion people worldwide could be exposed to polluted water by 2100, a modelling study has found.

Access options

Access Nature and 54 other Nature Portfolio journals

Get Nature+, our best-value online-access subscription

24,99 € / 30 days

cancel any time

Subscribe to this journal

Receive 51 print issues and online access

185,98 € per year

only 3,65 € per issue

Rent or buy this article

Prices vary by article type

Prices may be subject to local taxes which are calculated during checkout

doi: https://doi.org/10.1038/d41586-023-02337-7

Jones, E. R. et al. Nature Water https://doi.org/10.1038/s44221-023-00105-5 (2023).

Article   Google Scholar  

Download references

Reprints and permissions

Related Articles

short case study on water pollution

Europe sounds alarm over freshwater pollution

Study role of climate change in extreme threats to water quality

  • Environmental sciences
  • Water resources

Epic blazes threaten Arctic permafrost. Can fire-fighters save it?

Epic blazes threaten Arctic permafrost. Can fire-fighters save it?

News 29 APR 24

Want to make a difference? Try working at an environmental non-profit organization

Want to make a difference? Try working at an environmental non-profit organization

Career Feature 26 APR 24

Hello puffins, goodbye belugas: changing Arctic fjord hints at our climate future

Hello puffins, goodbye belugas: changing Arctic fjord hints at our climate future

News 25 APR 24

How to achieve safe water access for all: work with local communities

How to achieve safe water access for all: work with local communities

Comment 22 MAR 24

The Solar System has a new ocean — it’s buried in a small Saturn moon

The Solar System has a new ocean — it’s buried in a small Saturn moon

News 07 FEB 24

Groundwater decline is global but not universal

Groundwater decline is global but not universal

News & Views 24 JAN 24

W2 Professorship with tenure track to W3 in Animal Husbandry (f/m/d)

The Faculty of Agricultural Sciences at the University of Göttingen invites applications for a temporary professorship with civil servant status (g...

Göttingen (Stadt), Niedersachsen (DE)

Georg-August-Universität Göttingen

short case study on water pollution

W1 professorship for „Tissue Aspects of Immunity and Inflammation“

Kiel University (CAU) and the University of Lübeck (UzL) are striving to increase the proportion of qualified female scientists in research and tea...

University of Luebeck

short case study on water pollution

W1 professorship for "Bioinformatics and artificial intelligence that preserve privacy"

Kiel, Schleswig-Holstein (DE)

Universität Kiel - Medizinische Fakultät

short case study on water pollution

W1 professorship for "Central Metabolic Inflammation“

short case study on water pollution

W1 professorship for "Congenital and adaptive lymphocyte regulation"

short case study on water pollution

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

Case Studies

Our cutting-edge research builds a body of science with direct, actionable results. View the case studies below to learn more.

Practical Considerations for the Incorporation of Biomass Fermentation into Enhanced Biological Phosphorus Removal

Utility analysis and improvement methodology: case studies, food waste co-digestion at derry township municipal authority (pa): business case analysis case study, food waste co-digestion at los angeles county sanitation districts (ca): business case analysis case study, food waste co-digestion at east bay municipal utility district (ca): business case analysis snapshot, food waste co-digestion at oneida county water pollution control plant (ny): business case analysis snapshot, food waste co-digestion at central marin sanitation agency (ca): business case analysis case study, food waste co-digestion at hermitage municipal authority (pa): business case analysis snapshot, food waste co-digestion at city of stevens point public utilities department (wi): business case analysis case study, distributed water case studies.

Story of the Ganga River: Its Pollution and Rejuvenation

  • First Online: 08 February 2022

Cite this chapter

short case study on water pollution

  • Monika Simon 2 &
  • Himanshu Joshi 2  

539 Accesses

3 Citations

Water is indispensable for the basic subsistence of human beings. No wonder, most of the civilisations have come upon the banks of rivers or in the river valleys as elsewhere in the world (Chaturvedi, 2019). India is a blessed country in terms of having numerous rivers in this regard (Hudda, 2011). Unfortunately, in 2017, the Ganga River, the National Legacy, and the life support of millions of people was classified as the world’s highly polluted river (Mariya et al., 2019). Ganga, with over 2,525 km long main-stem along with her tributaries has constantly provided material, spiritual and cultural sustenance to millions of people living in and around its basin. The riverine water resources provide irrigation, drinking water, economical transportation, electricity, recreation and religious fulfilment, support to the aquatic ecosystem as well as livelihoods for many stakeholders. The myths and anecdotes about the river and its connection with the people and nature date back to ancient times (Kaushal et al., 2019).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
  • Available as EPUB and PDF
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abhilash, P.C., and Singh, N. (2009). Pesticide use and application: An Indian scenario. J. Hazard Mater, 165: 1-12. https://doi.org/10.1016/j.jhazmat.2008.10.061

Article   Google Scholar  

Acharya, S., Pandey, A., Mishra, S.K. and Chaube, U.C. (2016) GIS based graphical user interface for irrigation Management. Water Sci Technol Water Supply, 16: 1536-1551. https://doi.org/10.2166/ws.2016.081

Agrawal, A., Pandey, R.S., Sharma, B. (2010). Water Pollution with Special Reference to Pesticide Contamination in India. J Water Resour Prot, 02: 432-448. https://doi.org/10.4236/jwarp.2010.25050

Alam, P., and Ahmade, K. (2013). Impact of Solid Waste on Health and the Environment. Int J Sustain Dev …, 2: 165-168.

Google Scholar  

Bhattacharya, S., Bera, A., Dutta, A. and Ghosh, U.C. (2014). Effects of Idol Immersion on the Water Quality Parameters of Indian Water Bodies: Environmental Health Perspectives. Int Lett Chem Phys Astron, 39: 234-263. https://doi.org/10.18052/www.scipress.com/ilcpa.39.234 .

Bhutiani, R., Khanna, D.R., Kulkarni, D.B. and Ruhela, M. (2016). Assessment of Ganga river ecosystem at Haridwar, Uttarakhand, India with reference to water quality indices. Appl Water Sci, 6: 107-113. https://doi.org/10.1007/s13201-014-0206-6 .

Birol, E. and Das, S. (2010). Estimating the value of improved wastewater treatment: The case of River Ganga, India. J Environ Manage ., 91: 2163-2171. https://doi.org/10.1016/j.jenvman.2010.05.008

Boon, P.J. and Raven, P.J. (2012). River Conservation and Management. River Conserv Manag, 1-412. https://doi.org/10.1002/9781119961819 .

CAG (2017). Rejuvenation of River Ganga (Namami Gange).

CGWA (2020). Notification-Regulation and control of Ground Water management and development.

Chakraborty, P. (2020). Ganga Rejuvenation Enhancing Urban Renewal Conditions. BW Businessworld 1-3.

Chaturvedi, A.K. (2019). River Water Pollution—A New Threat to India: A Case Study of River Ganga.

Chaudhary, M. and Walker, T.R. (2019). River Ganga pollution: Causes and failed management plans (correspondence on Dwivedi et al., 2018. Ganga water pollution: A potential health threat to inhabitants of Ganga basin. Environment International, 117: 327-338). Environmental International 126: 202-206. https://doi.org/10.1016/j.envint.2019.02.033 .

Chauhan, P. and Bhardwaj, N. (2018). Assessment of Ganga water contamination at Haridwar: Studies on Some Physico-Chemical and Microbiological Characteristics. 12: 65-73. https://doi.org/10.9790/2402-1212016573

Ching, L. and Mukherjee, M. (2015). Managing the socio-ecology of very large rivers: Collective choice rules in IWRM narratives. Glob Environ Chang , 34: 172-184. https://doi.org/10.1016/j.gloenvcha.2015.06.012

Conley, D.J., Paerl, H.W., Howarth, R.W., et al. (2009). Ecology - Controlling eutrophication: Nitrogen and phosphorus. Science , (80- ) 323: 1014-1015. https://doi.org/10.1126/science.1167755 .

CPCB (2013a). Performance Evaluation of Sewage Treatment Plant Under NRCD

CPCB (2016a). Restoration/rejuvenation of River Ganga. 2016.

CPCB (2013b). Pollution Assessment: River Ganga.

CPCB (2016b). CPCB Bulletin Vol. I. CPCB Bull Vol. I, 1-26

CPCB (2020). In-situ Bioremediation Techniques for Wastewater Treatment.

CWMI (2018). Composite water management index India.

Das, K.K., Panigrahi, T. and Panda, R.B. (2012). Idol Immersion Activities Cause Heavy Metal Contamination in River. Int J Mod Eng Res , 2: 4540-4542.

Das, P. and Tamminga, K.R. (2012). The ganges and the GAP: An assessment of efforts to clean a sacred river. Sustainability , 4: 1647-1668. https://doi.org/10.3390/su4081647

Das, S. (2011). Cleaning of the Ganga. J Geol Soc India , 78: 124-130. https://doi.org/10.1007/s12594-011-0073-9

Del Bello, L. (2018). Indian scientists race to map Ganges river in 3D. Nature , 560: 149-150. https://doi.org/10.1038/d41586-018-05872-w

Diaz, R.J., Rosenberg, R. (2008). Spreading dead zones and consequences for marine ecosystems. Science , (80- ) 321: 926-929. https://doi.org/10.1126/science.1156401

Dourojeanni, A. (2001). Water management at the river basin level: Challenges in Latin America.

Downtoearth (2019). Aquifer mapping programme critical to raise groundwater levels. 1-25.

Dubey, R.S. and Dubey, A.R. (2016). Comparative Effects of Idols Immersion on the Quality of Flowing Holy Ganga Water and Stagnant Water of Ganga Sarovar: A Case Study at Varanasi. 1-9.

Dutta, V. (2019). 10 critical steps for Ganga revival. 1-5.

Dutta, V., Dubey, D. and Kumar, S. (2020). Cleaning the River Ganga: Impact of lockdown on water quality and future implications on river rejuvenation strategies. Sci Total Environ 743: 140756. https://doi.org/10.1016/j.scitotenv.2020.140756 .

Dwivedi, S., Chauhan, P.S., Mishra, S., et al. (2020). Self-cleansing properties of Ganga during Maha-Kumbh. Env Monit Assess 15.

Dwivedi, S., Mishra, S. and Tripathi, R.D. (2018). Ganga water pollution: A potential health threat to inhabitants of Ganga basin. Environ Int J , 117: 327-338. https://doi.org/10.1016/j.envint.2018.05.015

Ejaz, S., Akram, W., Lim, C.W. et al. (2004) Endocrine disrupting pesticides: A leading cause of cancer among rural people in Pakistan. Exp Oncol , 26: 98-105.

Environment Agency (2015). Water for life and livelihoods Part 1: Humber river basin district river basin management plan. 107.

Euler, J. and Heldt, S. (2018). From information to participation and self-organization: Visions for European river basin management. Sci Total Environ , 621: 905-914. https://doi.org/10.1016/j.scitotenv.2017.11.072

Fang, K. Sivakumar, B. and Woldemeskel, F.M. (2017) Complex networks, community structure, and catchment classification in a large-scale river basin. J Hydrol , 545: 478-493. https://doi.org/10.1016/j.jhydrol.2016.11.056

FAO (2020) AQUASTAT _ Land & Water _ Food and Agriculture Organization of the United Nations _ Land & Water _ Food and Agriculture Organization of the United Nations. In: FAO.

FAO (1992). Wastewater characteristics and effluent quality parameters.

FAO (2015). AQUASTAT Transboundary River Basin Overview – Amazon.

FAO (2016). Transboundary River Basin Overview - La Plata.

GAP (2020). Restoration of Flow. In: Ganga Action Parivar. https://www.gangaaction.org/restoration-of-flow/

Ghose, N.C., Saha, D. and Gupta, A. (2009). Synthetic Detergents (Surfactants) and Organochlorine Pesticide Signatures in Surface Water and Groundwater of Greater Kolkata, India. J Water Resour Prot , 01: 290-298. https://doi.org/10.4236/jwarp.2009.14036

Gopal, B. (2000). River conservation in the Indian subcontinent. Glob Perspect River Conserv Sci , 233-261.

Goswami, K., Gachhui, R. and Goswami, I. (2012). The Idol Immersion in Ganges Cause Heavy Metal Contamination. 84: 54-56.

Guzzella, L., Roscioli, C. and Viganò, L., et al. (2005). Evaluation of the concentration of HCH, DDT, HCB, PCB and PAH in the sediments along the lower stretch of Hugli estuary, West Bengal, northeast India. Environ Int , 31: 523-534. https://doi.org/10.1016/j.envint.2004.10.014

Hamner, S., Tripathi, A. and Mishra, R.K., et al. (2006). The role of water use patterns and sewage pollution in incidence of water-borne/enteric diseases along the Ganges River in Varanasi, India. Int J Environ Health Res, 16: 113-132. https://doi.org/10.1080/09603120500538226

Heinz, I., Pulido-Velazquez, M., Lund, J.R. and Andreu, J. (2007). Hydro-economic modeling in river basin management: Implications and applications for the European water framework directive. Water Resour Manag , 21: 1103-1125. https://doi.org/10.1007/s11269-006-9101-8

Hoag, H.J. and Mohamoda, D.Y. (2003). Nile Basin Cooperation: A Review of the Literature.

Hoffman, E., Lyons, J. and Boxall, J., et al. (2017). Spatiotemporal assessment (quarter century) of pulp mill metal(loid) contaminated sediment to inform remediation decisions. Environ Monit Assess , 189:. https://doi.org/10.1007/s10661-017-5952-0

Homa, D., Haile, E. and Washe, A.P. (2016). Determination of Spatial Chromium Contamination of the Environment around Industrial Zones. Int J Anal Chem , 2016:. https://doi.org/10.1155/2016/7214932

Hooper, B.P. (2012). Advancing integrated river basin management in the Mississippi basin.

Hudda, S. (2011). River Pollution: Causes and Actions “For a better tomorrow, act today”.

IITs (2013). Ganga River Basin environment management plan: interim report.

Kaur, B. (2018). Namami Gange: Five reasons why Ganga will not be clean by 2020. Down To Earth 1-16.

Kaur, B.J., George, M.P. and Mishra, S. (2013). Water quality assessment of river Yamuna in Delhi stretch during Idol immersion. Int J Environ Sci , 3: 2122-130. https://doi.org/10.6088/ijes.2013030600028

Kaushal, N., Babu, S. and Mishra, A., et al (2019). Improving River Flows- Towards a Healthy Ganga. Front Environ Sci , 7.

Khan, M.R., Voss, CI., Yu, W. and Michael, H.A. (2014). Water Resources Management in the Ganges Basin: A Comparison of Three Strategies for Conjunctive Use of Groundwater and Surface Water. Water Resour Manag , 28: 1235-1250. https://doi.org/10.1007/s11269-014-0537-y

Khanna, D.R., Bhutiani, R. and Tyagi, B., et al (2012). Assessment of water quality of River Ganges during Kumbh mela 2010. 2-7.

Kulshrestha, H. and Sharma, S. (2006). Impact of mass bathing during Ardhkumbh on water quality status of river Ganga. J Environ Biol , 27: 437-440.

Kumar, B., Verma, V.K. and Naskar, A.K., et al (2013). Human health risk from hexachlorocyclohexane and dichlorodiphenyltrichloroethane pesticides, through consumption of vegetables: estimation of daily intake and hazard quotients. J Xenobiotics , 3: 6. https://doi.org/10.4081/xeno.2013.e6

Kumari, A., Sinha, R.K. and Gopal, K. (2001). Concentration of organochlorine pesticide residues in Ganga water in Bihar, India. Environ Ecol , 19: 351-356.

Lamond, J., Bhattacharya, N. and Bloch, R. (2012). The role of solid waste management as a response to urban flood risk in developing countries, a case study analysis. WIT Trans Ecol Environ , 159: 193-204. https://doi.org/10.2495/FRIAR120161

Mariya, A., Kumar, C., Masood, M. and Kumar, N. (2019). The pristine nature of river Ganges: its qualitative deterioration and suggestive restoration strategies. Environ Monit Assess , 191:. https://doi.org/10.1007/s10661-019-7625-7

Mathew, R.A. and Kanmani, S. (2020). A review on emerging contaminants in Indian waters and their treatment technologies. Nat Environ Pollut Technol , 19:549–562. https://doi.org/10.46488/NEPT.2020.V19I02.010

MDEQ (2020). Mississippi’s Basin Management Approach. https://www.mdeq.ms.gov/water/surface-water/watershed-management/basin-management-approach/

Misgan, S. (2013). The Nile Basin States: The need for genuine cooperation.

Mishra, N.K. and Mohapatra, S.C. (2009). Effect of Gangetic Pollution on Water Borne Diseases in Varanasi: A Case Study. Indian J Prev Soc Med , 40: 39-42.

Mishra, S., Kumar, A., Yadav, S. and Singhal, M.K. (2015). Assessment of heavy metal contamination in Kali river, Uttar Pradesh, India. J Appl Nat Sci , 7: 1016-1020. https://doi.org/10.31018/jans.v7i2.724

Misra, A.K. (2010). A River about to Die: Yamuna. J Water Resour Prot , 02: 489-500. https://doi.org/10.4236/jwarp.2010.25056

MoEF (2016). Swachh Bharat and Ganga Rejuvenation.

Mohan, V. (2017). Centre turns to ‘sewage- eating’ microbes to treat Ganga water at 54 new sites. Dev. News 1-3

Mohapatra, S.P., Gajbhiye, V.T., Agnihotri, N.P. and Raina, M. (1995). Insecticide pollution of Indian rivers. Environmentalist , 15: 41-44. https://doi.org/10.1007/BF01888888

MoHUA (2020). Assessment of 97 Ganga Towns.

Molle, F. (2009). River-basin planning and management: The social life of a concept. Geoforum 40:484–494. https://doi.org/10.1016/j.geoforum.2009.03.004

MoWRRD & GR (2018). Achievements of four years (2014-15 to 2017-18).

Mutiyar, P.K. and Mittal, A.K. (2013). Status of organochlorine pesticides in Ganga river basin: Anthropogenic or glacial? Drink Water Eng Sci , 6: 69–80. https://doi.org/10.5194/dwes-6-69-2013 .

Nandi, I., Tewari, A. and Shah, K. (2016). Evolving human dimensions and the need for continuous health assessment of Indian rivers. Curr Sci , 111: 263-271. https://doi.org/10.18520/cs/v111/i2/263-271

NEERI (2020). Sustainable Treatment Options for Sewage, In-situ Drain and Lake / River Rejuvenation in Indian context.

Newson, M. (1992). Land, water and development. River basin systems and their sustainable management. Land, water Dev River basin Syst their Sustain Manag 505378. https://doi.org/10.1016/0022-1694(93)90292-h

NFHS (2015). National Family Health Survey-4 (NFHS-4). New Delhi: Ministry of Health and Family Welfare, Government of India

NGM (2020). Namami Gange Programme: The key achievements under Namami Gange programme [Online]. Available: https://nmcg.nic.in/hi/NamamiGanga.aspx . (Accessed 5 Nov. 2020)

NMCG-NEERI (2017). Assessment of Water Quality and Sediment to understand the Special Properties of River Ganga.

NMCG (2017). Reference Note.

NMCG (2020a). Leading River Rejuvenation A case of Namami Gange.

NMCG (2020b). Treatment of sewage carrying drains joining Ribver ganga. https://nmcg.nic.in/csr/biodrains.aspx

NRCD, MoEF (2009). STATUS PAPER ON RIVER GANGA State of Environment and Water Quality.

O’Reilly, K., Dhanju, R. and Goel, A. (2017). Exploring “ The Remote” and “The Rural”: Open Defecation and Latrine Use in Uttarakhand, India. 93: 193-205. https://doi.org/10.1016/j.worlddev.2016.12.022

Pandey, J. and Singh, R. (2017). Heavy metals in sediments of Ganga River: up- and downstream urban influences. Appl Water Sci , 7: 1669-1678. https://doi.org/10.1007/s13201-015-0334-7

Pandey, K. (2019). Grossly polluting industries more than doubled in 8 years: SOE in Figures. Down to Earth.

Panigrahi, A.K. and Pattnaik, S. (2019). A Review on Pollution Status of River Bhagirathi-Hooghly in the Stretch of West Bengal, India. 9: 5

Pathak, D., Whitehead, P.G., Futter, M.N. and Sinha, R. (2018). Water quality assessment and catchment-scale nutrient flux modeling in the Ramganga River Basin in north India: An application of INCA model. Sci Total Environ 631-632: 201-215. https://doi.org/10.1016/j.scitotenv.2018.03.022

Paul, D. (2017). Research on heavy metal pollution of river Ganga: A review. Ann Agrar Sci , 15: 278-286. https://doi.org/10.1016/j.aasci.2017.04.001

PIB (2018). Achievements of ministry of water resources-river development and ganga rejuvenation during 2018. Press Inf. Bur. 1-15

PIB (2017). Ministry of Water Resources, River Development and Ganga Rejuvenation During the Last Three Years. 1-5

PIB (2019). Management of Ground Water. J. Am. Water Works Assoc ., 60: 640-644.

Rani, N., Vajpayee, P. and Bhatti, S., et al (2014). Quantification of Salmonella Typhi in water and sediments by molecular-beacon based qPCR. Ecotoxicol Environ Saf 108: 58-64. https://doi.org/10.1016/j.ecoenv.2014.06.033

Sah, R., Baroth, A. and Hussain, S.A. (2020). First account of spatio-temporal analysis, historical trends, source apportionment and ecological risk assessment of banned organochlorine pesticides along the Ganga River. Environ Pollut , 263: 114229. https://doi.org/10.1016/j.envpol.2020.114229

Sahoo, K.C., Hulland, K.R.S. and Caruso, B.A., et al (2015). Sanitation-related psychosocial stress: A grounded theory study of women across the life-course in Odisha, India. Soc Sci Med 139:80–89. https://doi.org/10.1016/j.socscimed.2015.06.031

SANDRP (2018). Is there hope from National Mission for Clean Ganga ? Listen to official agencies. 1-6.

Sanghi, R. and Kaushal, N. (2014). Introduction to Our National River Ganga via cmaps.

Book   Google Scholar  

Sarkar, R. (2013). Study on the Impact of Idol Immersion on Water Quality of River Ganga At Ranighat, Chandernagore (W.B.). 3: 24-29.

Schletterer, M., Shaporenko, S.I., and Kuzovlev, V.V., et al (2018). The Volga: Management issues in the largest river basin in Europe. River Res Appl , 35: 510-529.

Shah, T., Makin, I. and Sakthivadivel, R. (2001). Limits to leapfrogging: Issues in transposing successful river basin management institutions in the developing world. Irrig River Basin Manag Options Gov Institutions 31-49. https://doi.org/10.1079/9780851996721.0031

Shah, T. and Rajan, A. (2019). Cleaning the Ganga. Econ Polit Wkly 39: 57-66.

Sharmila, S. and Arockiarani, I. (2016). A pollution model of the river ganges through inter criteria analysis. Int J Ocean Oceanogr , 10: 81-91.

Singh, L., Choudhary, S. and Singh, P. (2012). Pesticide concentration in water and sediment of River Ganga at selected sites in middle Ganga plain. Int J Environ Sci , 3: 260-274. https://doi.org/10.6088/ijes.2012030131026

Sinha, S.N. and Paul, D. (2012). Detoxification of Heavy Metals by Biosurfactants. Bull Environ Sci Res , 1: 1-3. https://doi.org/10.6084/m9.figshare.1352038

Souza-Filho PWM, de Souza, E.B. and Silva Júnior, R.O., et al (2016). Four decades of land-cover, land-use and hydroclimatology changes in the Itacaiúnas River watershed, southeastern Amazon. J Environ Manage , 167: 175-184. https://doi.org/10.1016/j.jenvman.2015.11.039

Spears, D., Ghosh, A. and Cumming, O. (2013). Open Defecation and Childhood Stunting in India: An Ecological Analysis of New Data from 112 Districts. PLoS One 8:1–9. https://doi.org/10.1371/journal.pone.0073784

Srinivas, R., Singh, A.P. and Shankar, D. (2020). Understanding the threats and challenges concerning Ganges River basin for effective policy recommendations towards sustainable development. Springer Netherlands.

Srivastava, P., Burande, A. and Sharma, N. (2013). Fuzzy Environmental Model for Evaluating Water Quality of Sangam Zone during Maha Kumbh 2013. Appl Comput Intell Soft Comput 2013: 1-7. https://doi.org/10.1155/2013/265924

SwachhindiaNDTV (2019). All 97 Ganga Towns Will Achieve ODF Status By March 2019. SwachhindiaNDTV

Tare, V. (2010). River Ganga at a Glance: Identification of Issues and Priority Actions for Restoration.

Tare, V., Bose, P. and Gupta, S.K. (2003). Suggestions for a modified approach towards implementation and assessment of Ganga action plan and other similar river action plans in India. Water Qual Res J Canada, 38: 607-626. https://doi.org/10.2166/wqrj.2003.039

TOI (2017). NGT asks NMCG to give detail of industrial clusters near Ganga. 18-19.

Tripathi, A., Tripathi, D.K., Chauhan, D.K. and Kumar, N. (2016). Chromium (VI)-induced phytotoxicity in river catchment agriculture: evidence from physiological, biochemical and anatomical alterations in Cucumis sativus (L.) used as model species. 7540:. https://doi.org/10.1080/02757540.2015.1115841

Tripathi, B.D. and Tripathi, S. (2014). Issues and Challenges of River Ganga. In: Our National River Ganga: Lifeline of Millions. pp 211-220

Trivedi, A. (2020). River Rejuvenation: An Innovative and Logistic Approach. In: Recent Trends in Agricultural Sciences & Technology. pp 195-207

Trivedi, R.C. (2010). Water quality of the Ganga River - An overview. Aquat Ecosyst Heal Manag , 13: 347–351. https://doi.org/10.1080/14634988.2010.528740

Tyagi, V.K., Bhatia, A. and Gaur, R.Z., et al (2013). Impairment in water quality of Ganges River and consequential health risks on account of mass ritualistic bathing. Desalin Water Treat , 51: 2121-2129. https://doi.org/10.1080/19443994.2013.734677

UrbanUpdate (2018). Solid waste management projects in 97 towns along Ganga. UrbanUpdate 3-5.

Vega, M., Pardo, R., Barrado, E. and Debán, L. (1998). Assessment of seasonal and polluting effects on the quality of river water by exploratory data analysis. Water Res , 32: 3581-3592. https://doi.org/10.1016/S0043-1354(98)00138-9

Vijgen, J., Abhilash, P.C. and Li, Y.F., et al (2011). Hexachlorocyclohexane (HCH) as new Stockholm Convention POPs-a global perspective on the management of Lindane and its waste isomers. Environ Sci Pollut Res , 18: 152-162. https://doi.org/10.1007/s11356-010-0417-9

Villar, P.C., Ribeiro, W.C. and Sant’Anna, F.M. (2018). Transboundary governance in the La Plata River basin: status and prospects. Water Int , 43: 978-995. https://doi.org/10.1080/02508060.2018.1490879

Walker, T.R., Willis, R. and Gray, T., et al (2015). Ecological Risk Assessment of Sediments in Sydney Harbour, Nova Scotia, Canada. Soil Sediment Contam , 24: 471-493. https://doi.org/10.1080/15320383.2015.982244

Welcomme, R.L. (1985). River Fisheries.

WHO (2003). Characteristics and quality assessment of surface water and groundwater resources of Akwa Town, Southeast, Nigeria. J Niger Assoc Hydrol Geol, 14:71-77.

WII-GACMC (2017). Aquatic fauna of the ganga river-Status and Conservation.

WWF, INTACH, Toxic link, SANDRP (2019). Rejuvenating Ganga—A Citizen’s Report.

Zhang, S.Y., Tsementzi, D. and Hatt, J.K., et al (2019). Intensive allochthonous inputs along the Ganges River and their effect on microbial community composition and dynamics.

Zhang, W., Jin, X., Liu, D., et al (2017). Temporal and spatial variation of nitrogen and phosphorus and eutrophication assessment for a typical arid river—Fuyang River in northern China. J Environ Sci (China), 55: 41-48. https://doi.org/10.1016/j.jes.2016.07.004

Download references

Author information

Authors and affiliations.

Department of Hydrology, Indian Institute of Technology Roorkee, Haridwar, India

Monika Simon & Himanshu Joshi

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Monika Simon .

Editor information

Editors and affiliations.

Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India

Abhijit Mukherjee

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Capital Publishing Company, New Delhi, India

About this chapter

Simon, M., Joshi, H. (2022). Story of the Ganga River: Its Pollution and Rejuvenation. In: Mukherjee, A. (eds) Riverine Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-87067-6_2

Download citation

DOI : https://doi.org/10.1007/978-3-030-87067-6_2

Published : 08 February 2022

Publisher Name : Springer, Cham

Print ISBN : 978-3-030-87066-9

Online ISBN : 978-3-030-87067-6

eBook Packages : Earth and Environmental Science Earth and Environmental Science (R0)

Share this chapter

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research

A herd of bison moves through a grassy valley in Yellowstone National Park

Donate to Defend Our Planet

Drilling on public lands, mass wildlife extinctions, worsening climate change—our planet is in crisis. Help us fight back and your gift will be matched $1 for $1.

Water Pollution: Everything You Need to Know

Our rivers, reservoirs, lakes, and seas are drowning in chemicals, waste, plastic, and other pollutants. Here’s why―and what you can do to help.

Effluent pours out of a large pipe

  • Share this page block

What is water pollution?

What are the causes of water pollution, categories of water pollution, what are the effects of water pollution, what can you do to prevent water pollution.

Water pollution occurs when harmful substances—often chemicals or microorganisms—contaminate a stream, river, lake, ocean, aquifer, or other body of water, degrading water quality and rendering it toxic to humans or the environment.

This widespread problem of water pollution is jeopardizing our health. Unsafe water kills more people each year than war and all other forms of violence combined. Meanwhile, our drinkable water sources are finite: Less than 1 percent of the earth’s freshwater is actually accessible to us. Without action, the challenges will only increase by 2050, when global demand for freshwater is expected to be one-third greater than it is now.

Water is uniquely vulnerable to pollution. Known as a “universal solvent,” water is able to dissolve more substances than any other liquid on earth. It’s the reason we have Kool-Aid and brilliant blue waterfalls. It’s also why water is so easily polluted. Toxic substances from farms, towns, and factories readily dissolve into and mix with it, causing water pollution.

Here are some of the major sources of water pollution worldwide:

Agricultural

A small boat in the middle of a body of water that is a deep, vibrant shade of green

Toxic green algae in Copco Reservoir, northern California

Aurora Photos/Alamy

Not only is the agricultural sector the biggest consumer of global freshwater resources, with farming and livestock production using about 70 percent of the earth’s surface water supplies , but it’s also a serious water polluter. Around the world, agriculture is the leading cause of water degradation. In the United States, agricultural pollution is the top source of contamination in rivers and streams, the second-biggest source in wetlands, and the third main source in lakes. It’s also a major contributor of contamination to estuaries and groundwater. Every time it rains, fertilizers, pesticides, and animal waste from farms and livestock operations wash nutrients and pathogens—such bacteria and viruses—into our waterways. Nutrient pollution , caused by excess nitrogen and phosphorus in water or air, is the number-one threat to water quality worldwide and can cause algal blooms , a toxic soup of blue-green algae that can be harmful to people and wildlife.

Sewage and wastewater

Used water is wastewater. It comes from our sinks, showers, and toilets (think sewage) and from commercial, industrial, and agricultural activities (think metals, solvents, and toxic sludge). The term also includes stormwater runoff , which occurs when rainfall carries road salts, oil, grease, chemicals, and debris from impermeable surfaces into our waterways

More than 80 percent of the world’s wastewater flows back into the environment without being treated or reused, according to the United Nations; in some least-developed countries, the figure tops 95 percent. In the United States, wastewater treatment facilities process about 34 billion gallons of wastewater per day . These facilities reduce the amount of pollutants such as pathogens, phosphorus, and nitrogen in sewage, as well as heavy metals and toxic chemicals in industrial waste, before discharging the treated waters back into waterways. That’s when all goes well. But according to EPA estimates, our nation’s aging and easily overwhelmed sewage treatment systems also release more than 850 billion gallons of untreated wastewater each year.

Oil pollution

Big spills may dominate headlines, but consumers account for the vast majority of oil pollution in our seas, including oil and gasoline that drips from millions of cars and trucks every day. Moreover, nearly half of the estimated 1 million tons of oil that makes its way into marine environments each year comes not from tanker spills but from land-based sources such as factories, farms, and cities. At sea, tanker spills account for about 10 percent of the oil in waters around the world, while regular operations of the shipping industry—through both legal and illegal discharges—contribute about one-third. Oil is also naturally released from under the ocean floor through fractures known as seeps.

Radioactive substances

Radioactive waste is any pollution that emits radiation beyond what is naturally released by the environment. It’s generated by uranium mining, nuclear power plants, and the production and testing of military weapons, as well as by universities and hospitals that use radioactive materials for research and medicine. Radioactive waste can persist in the environment for thousands of years, making disposal a major challenge. Consider the decommissioned Hanford nuclear weapons production site in Washington, where the cleanup of 56 million gallons of radioactive waste is expected to cost more than $100 billion and last through 2060. Accidentally released or improperly disposed of contaminants threaten groundwater, surface water, and marine resources.

To address pollution and protect water we need to understand where the pollution is coming from (point source or nonpoint source) and the type of water body its impacting (groundwater, surface water, or ocean water).

Where is the pollution coming from?

Point source pollution.

When contamination originates from a single source, it’s called point source pollution. Examples include wastewater (also called effluent) discharged legally or illegally by a manufacturer, oil refinery, or wastewater treatment facility, as well as contamination from leaking septic systems, chemical and oil spills, and illegal dumping. The EPA regulates point source pollution by establishing limits on what can be discharged by a facility directly into a body of water. While point source pollution originates from a specific place, it can affect miles of waterways and ocean.

Nonpoint source

Nonpoint source pollution is contamination derived from diffuse sources. These may include agricultural or stormwater runoff or debris blown into waterways from land. Nonpoint source pollution is the leading cause of water pollution in U.S. waters, but it’s difficult to regulate, since there’s no single, identifiable culprit.

Transboundary

It goes without saying that water pollution can’t be contained by a line on a map. Transboundary pollution is the result of contaminated water from one country spilling into the waters of another. Contamination can result from a disaster—like an oil spill—or the slow, downriver creep of industrial, agricultural, or municipal discharge.

What type of water is being impacted?

Groundwater pollution.

When rain falls and seeps deep into the earth, filling the cracks, crevices, and porous spaces of an aquifer (basically an underground storehouse of water), it becomes groundwater—one of our least visible but most important natural resources. Nearly 40 percent of Americans rely on groundwater, pumped to the earth’s surface, for drinking water. For some folks in rural areas, it’s their only freshwater source. Groundwater gets polluted when contaminants—from pesticides and fertilizers to waste leached from landfills and septic systems—make their way into an aquifer, rendering it unsafe for human use. Ridding groundwater of contaminants can be difficult to impossible, as well as costly. Once polluted, an aquifer may be unusable for decades, or even thousands of years. Groundwater can also spread contamination far from the original polluting source as it seeps into streams, lakes, and oceans.

Surface water pollution

Covering about 70 percent of the earth, surface water is what fills our oceans, lakes, rivers, and all those other blue bits on the world map. Surface water from freshwater sources (that is, from sources other than the ocean) accounts for more than 60 percent of the water delivered to American homes. But a significant pool of that water is in peril. According to the most recent surveys on national water quality from the U.S. Environmental Protection Agency, nearly half of our rivers and streams and more than one-third of our lakes are polluted and unfit for swimming, fishing, and drinking. Nutrient pollution, which includes nitrates and phosphates, is the leading type of contamination in these freshwater sources. While plants and animals need these nutrients to grow, they have become a major pollutant due to farm waste and fertilizer runoff. Municipal and industrial waste discharges contribute their fair share of toxins as well. There’s also all the random junk that industry and individuals dump directly into waterways.

Ocean water pollution

Eighty percent of ocean pollution (also called marine pollution) originates on land—whether along the coast or far inland. Contaminants such as chemicals, nutrients, and heavy metals are carried from farms, factories, and cities by streams and rivers into our bays and estuaries; from there they travel out to sea. Meanwhile, marine debris— particularly plastic —is blown in by the wind or washed in via storm drains and sewers. Our seas are also sometimes spoiled by oil spills and leaks—big and small—and are consistently soaking up carbon pollution from the air. The ocean absorbs as much as a quarter of man-made carbon emissions .

On human health

To put it bluntly: Water pollution kills. In fact, it caused 1.8 million deaths in 2015, according to a study published in The Lancet . Contaminated water can also make you ill. Every year, unsafe water sickens about 1 billion people. And low-income communities are disproportionately at risk because their homes are often closest to the most polluting industries.

Waterborne pathogens, in the form of disease-causing bacteria and viruses from human and animal waste, are a major cause of illness from contaminated drinking water . Diseases spread by unsafe water include cholera, giardia, and typhoid. Even in wealthy nations, accidental or illegal releases from sewage treatment facilities, as well as runoff from farms and urban areas, contribute harmful pathogens to waterways. Thousands of people across the United States are sickened every year by Legionnaires’ disease (a severe form of pneumonia contracted from water sources like cooling towers and piped water), with cases cropping up from California’s Disneyland to Manhattan’s Upper East Side.

A woman washes a baby in an infant bath seat in a kitchen sink, with empty water bottles in the foreground.

A woman using bottled water to wash her three-week-old son at their home in Flint, Michigan

Todd McInturf/The Detroit News/AP

Meanwhile, the plight of residents in Flint, Michigan —where cost-cutting measures and aging water infrastructure created a lead contamination crisis—offers a stark look at how dangerous chemical and other industrial pollutants in our water can be. The problem goes far beyond Flint and involves much more than lead, as a wide range of chemical pollutants—from heavy metals such as arsenic and mercury to pesticides and nitrate fertilizers —are getting into our water supplies. Once they’re ingested, these toxins can cause a host of health issues, from cancer to hormone disruption to altered brain function. Children and pregnant women are particularly at risk.

Even swimming can pose a risk. Every year, 3.5 million Americans contract health issues such as skin rashes, pinkeye, respiratory infections, and hepatitis from sewage-laden coastal waters, according to EPA estimates.

On the environment

In order to thrive, healthy ecosystems rely on a complex web of animals, plants, bacteria, and fungi—all of which interact, directly or indirectly, with each other. Harm to any of these organisms can create a chain effect, imperiling entire aquatic environments.

When water pollution causes an algal bloom in a lake or marine environment, the proliferation of newly introduced nutrients stimulates plant and algae growth, which in turn reduces oxygen levels in the water. This dearth of oxygen, known as eutrophication , suffocates plants and animals and can create “dead zones,” where waters are essentially devoid of life. In certain cases, these harmful algal blooms can also produce neurotoxins that affect wildlife, from whales to sea turtles.

Chemicals and heavy metals from industrial and municipal wastewater contaminate waterways as well. These contaminants are toxic to aquatic life—most often reducing an organism’s life span and ability to reproduce—and make their way up the food chain as predator eats prey. That’s how tuna and other big fish accumulate high quantities of toxins, such as mercury.

Marine ecosystems are also threatened by marine debris , which can strangle, suffocate, and starve animals. Much of this solid debris, such as plastic bags and soda cans, gets swept into sewers and storm drains and eventually out to sea, turning our oceans into trash soup and sometimes consolidating to form floating garbage patches. Discarded fishing gear and other types of debris are responsible for harming more than 200 different species of marine life.

Meanwhile, ocean acidification is making it tougher for shellfish and coral to survive. Though they absorb about a quarter of the carbon pollution created each year by burning fossil fuels, oceans are becoming more acidic. This process makes it harder for shellfish and other species to build shells and may impact the nervous systems of sharks, clownfish, and other marine life.

With your actions

We’re all accountable to some degree for today’s water pollution problem. Fortunately, there are some simple ways you can prevent water contamination or at least limit your contribution to it:

  • Learn about the unique qualities of water where you live . Where does your water come from? Is the wastewater from your home treated? Where does stormwater flow to? Is your area in a drought? Start building a picture of the situation so you can discover where your actions will have the most impact—and see if your neighbors would be interested in joining in!
  • Reduce your plastic consumption and reuse or recycle plastic when you can.
  • Properly dispose of chemical cleaners, oils, and nonbiodegradable items to keep them from going down the drain.
  • Maintain your car so it doesn’t leak oil, antifreeze, or coolant.
  • If you have a yard, consider landscaping that reduces runoff and avoid applying pesticides and herbicides .
  • Don’t flush your old medications! Dispose of them in the trash to prevent them from entering local waterways.
  • Be mindful of anything you pour into storm sewers, since that waste often won’t be treated before being released into local waterways. If you notice a storm sewer blocked by litter, clean it up to keep that trash out of the water. (You’ll also help prevent troublesome street floods in a heavy storm.)
  • If you have a pup, be sure to pick up its poop .

With your voice

One of the most effective ways to stand up for our waters is to speak out in support of the Clean Water Act, which has helped hold polluters accountable for five decades—despite attempts by destructive industries to gut its authority. But we also need regulations that keep pace with modern-day challenges, including microplastics, PFAS , pharmaceuticals, and other contaminants our wastewater treatment plants weren’t built to handle, not to mention polluted water that’s dumped untreated.

Tell the federal government, the U.S. Army Corps of Engineers, and your local elected officials that you support water protections and investments in infrastructure, like wastewater treatment, lead-pipe removal programs, and stormwater-abating green infrastructure. Also, learn how you and those around you can get involved in the policymaking process . Our public waterways serve every one of us. We should all have a say in how they’re protected.

This story was originally published on May 14, 2018, and has been updated with new information and links.

This NRDC.org story is available for online republication by news media outlets or nonprofits under these conditions: The writer(s) must be credited with a byline; you must note prominently that the story was originally published by NRDC.org and link to the original; the story cannot be edited (beyond simple things such as grammar); you can’t resell the story in any form or grant republishing rights to other outlets; you can’t republish our material wholesale or automatically—you need to select stories individually; you can’t republish the photos or graphics on our site without specific permission; you should drop us a note to let us know when you’ve used one of our stories.

Related Stories

A Black woman holding a cloth shopping bag filled with produce is looking at fish on ice at a market.

​​The Smart Seafood and Sustainable Fish Buying Guide

An illustration shows people using a telescope, taking a photo of a bee on a flower, and working on a laptop

How to Become a Community Scientist

short case study on water pollution

How to Start Saving the Planet in 100 Days: the Joe Biden Edition

When you sign up, you’ll become a member of NRDC’s Activist Network. We will keep you informed with the latest alerts and progress reports.

  • Reference Manager
  • Simple TEXT file

People also looked at

Review article, effects of water pollution on human health and disease heterogeneity: a review.

www.frontiersin.org

  • 1 Research Center for Economy of Upper Reaches of the Yangtse River/School of Economics, Chongqing Technology and Business University, Chongqing, China
  • 2 School of Economics and Management, Huzhou University, Huzhou, China

Background: More than 80% of sewage generated by human activities is discharged into rivers and oceans without any treatment, which results in environmental pollution and more than 50 diseases. 80% of diseases and 50% of child deaths worldwide are related to poor water quality.

Methods: This paper selected 85 relevant papers finally based on the keywords of water pollution, water quality, health, cancer, and so on.

Results: The impact of water pollution on human health is significant, although there may be regional, age, gender, and other differences in degree. The most common disease caused by water pollution is diarrhea, which is mainly transmitted by enteroviruses in the aquatic environment.

Discussion: Governments should strengthen water intervention management and carry out intervention measures to improve water quality and reduce water pollution’s impact on human health.

Introduction

Water is an essential resource for human survival. According to the 2021 World Water Development Report released by UNESCO, the global use of freshwater has increased six-fold in the past 100 years and has been growing by about 1% per year since the 1980s. With the increase of water consumption, water quality is facing severe challenges. Industrialization, agricultural production, and urban life have resulted in the degradation and pollution of the environment, adversely affecting the water bodies (rivers and oceans) necessary for life, ultimately affecting human health and sustainable social development ( Xu et al., 2022a ). Globally, an estimated 80% of industrial and municipal wastewater is discharged into the environment without any prior treatment, with adverse effects on human health and ecosystems. This proportion is higher in the least developed countries, where sanitation and wastewater treatment facilities are severely lacking.

Sources of Water Pollution

Water pollution are mainly concentrated in industrialization, agricultural activities, natural factors, and insufficient water supply and sewage treatment facilities. First, industry is the main cause of water pollution, these industries include distillery industry, tannery industry, pulp and paper industry, textile industry, food industry, iron and steel industry, nuclear industry and so on. Various toxic chemicals, organic and inorganic substances, toxic solvents and volatile organic chemicals may be released in industrial production. If these wastes are released into aquatic ecosystems without adequate treatment, they will cause water pollution ( Chowdhary et al., 2020 ). Arsenic, cadmium, and chromium are vital pollutants discharged in wastewater, and the industrial sector is a significant contributor to harmful pollutants ( Chen et al., 2019 ). With the acceleration of urbanization, wastewater from industrial production has gradually increased. ( Wu et al., 2020 ). In addition, water pollution caused by industrialization is also greatly affected by foreign direct investment. Industrial water pollution in less developed countries is positively correlated with foreign direct investment ( Jorgenson, 2009 ). Second, water pollution is closely related to agriculture. Pesticides, nitrogen fertilizers and organic farm wastes from agriculture are significant causes of water pollution (RCEP, 1979). Agricultural activities will contaminate the water with nitrates, phosphorus, pesticides, soil sediments, salts and pathogens ( Parris, 2011 ). Furthermore, agriculture has severely damaged all freshwater systems in their pristine state ( Moss, 2008 ). Untreated or partially treated wastewater is widely used for irrigation in water-scarce regions of developing countries, including China and India, and the presence of pollutants in sewage poses risks to the environment and health. Taking China as an example, the imbalance in the quantity and quality of surface water resources has led to the long-term use of wastewater irrigation in some areas in developing countries to meet the water demand of agricultural production, resulting in serious agricultural land and food pollution, pesticide residues and heavy metal pollution threatening food safety and Human Health ( Lu et al., 2015 ). Pesticides have an adverse impact on health through drinking water. Comparing pesticide use with health life Expectancy Longitudinal Survey data, it was found that a 10% increase in pesticide use resulted in a 1% increase in the medical disability index over 65 years of age ( Lai, 2017 ). The case of the Musi River in India shows a higher incidence of morbidity in wastewater-irrigated villages than normal-water households. Third, water pollution is related to natural factors. Taking Child Loess Plateau as an example, the concentration of trace elements in water quality is higher than the average world level, and trace elements come from natural weathering and manufacture causes. Poor river water quality is associated with high sodium and salinity hazards ( Xiao et al., 2019 ). The most typical water pollution in the middle part of the loess Plateau is hexavalent chromium pollution, which is caused by the natural environment and human activities. Loess and mudstone are the main sources, and groundwater with high concentrations of hexavalent chromium is also an important factor in surface water pollution (He et al., 2020). Finally, water supply and sewage treatment facilities are also important factors affecting drinking water quality, especially in developing countries. In parallel with China rapid economic growth, industrialization and urbanization, underinvestment in basic water supply and treatment facilities has led to water pollution, increased incidence of infectious and parasitic diseases, and increased exposure to industrial chemicals, heavy metals and algal toxins ( Wu et al., 1999 ). An econometric model predicts the impact of water purification equipment on water quality and therefore human health. When the proportion of household water treated with water purification equipment is reduced from 100% to 90%, the expected health benefits are reduced by up to 96%.. When the risk of pretreatment water quality is high, the decline is even more significant ( Brown and Clasen, 2012 ).

To sum up, water pollution results from both human and natural factors. Various human activities will directly affect water quality, including urbanization, population growth, industrial production, climate change, and other factors ( Halder and Islam, 2015 ) and religious activities ( Dwivedi et al., 2018 ). Improper disposal of solid waste, sand, and gravel is also one reason for decreasing water quality ( Ustaoğlua et al., 2020 ).

Impact of Water Pollution on Human Health

Unsafe water has severe implications for human health. According to UNESCO 2021 World Water Development Report , about 829,000 people die each year from diarrhea caused by unsafe drinking water, sanitation, and hand hygiene, including nearly 300,000 children under the age of five, representing 5.3 percent of all deaths in this age group. Data from Palestine suggest that people who drink municipal water directly are more likely to suffer from diseases such as diarrhea than those who use desalinated and household-filtered drinking water ( Yassin et al., 2006 ). In a comparative study of tap water, purified water, and bottled water, tap water was an essential source of gastrointestinal disease ( Payment et al., 1997 ). Lack of water and sanitation services also increases the incidence of diseases such as cholera, trachoma, schistosomiasis, and helminthiasis. Data from studies in developing countries show a clear relationship between cholera and contaminated water, and household water treatment and storage can reduce cholera ( Gundry et al., 2004 ). In addition to disease, unsafe drinking water, and poor environmental hygiene can lead to gastrointestinal illness, inhibiting nutrient absorption and malnutrition. These effects are especially pronounced for children.

Purpose of This Paper

More than two million people worldwide die each year from diarrhoeal diseases, with poor sanitation and unsafe drinking water being the leading cause of nearly 90% of deaths and affecting children the most (United Nations, 2016). More than 50 kinds of diseases are caused by poor drinking water quality, and 80% of diseases and 50% of child deaths are related to poor drinking water quality in the world. However, water pollution causes diarrhea, skin diseases, malnutrition, and even cancer and other diseases related to water pollution. Therefore, it is necessary to study the impact of water pollution on human health, especially disease heterogeneity, and clarify the importance of clean drinking water, which has important theoretical and practical significance for realizing sustainable development goals. Unfortunately, although many kinds of literature focus on water pollution and a particular disease, there is still a lack of research results that systematically analyze the impact of water pollution on human health and the heterogeneity of diseases. Based on the above background and discussion, this paper focuses on the effect of water pollution on human health and its disease heterogeneity.

Materials and Methods

Search process.

This article uses keywords such as “water,” “water pollution,” “water quality,” “health,” “diarrhea,” “skin disease,” “cancer” and “children” to search Web of Science and Google Scholar include SCI and SSCI indexed papers, research reports, and works from 1990 to 2021.

Inclusion-Exclusion Criteria and Data Extraction Process

The existing literature shows that water pollution and human health are important research topics in health economics, and scholars have conducted in-depth research. As of 30 December 2021, 104 related literatures were searched, including research papers, reviews and conference papers. Then, according to the content relevancy, 19 papers were eliminated, and 85 papers remained. The purpose of this review is to summarize the impact of water pollution on human health and its disease heterogeneity and to explore how to improve human health by improving water pollution control measures.

Information extracted from all included papers included: author, publication date, sample country, study methodology, study purpose, and key findings. All analysis results will be analyzed according to the process in Figure 1 .

www.frontiersin.org

FIGURE 1 . Data extraction process (PRISMA).

The relevant information of the paper is exported to the Excel database through Endnote, and the duplicates are deleted. The results were initially extracted by one researcher and then cross-checked by another researcher to ensure that all data had been filtered and reviewed. If two researchers have different opinions, the two researchers will review together until a final agreement is reached.

Quality Assessment of the Literature

The JBI Critical Appraisal Checklist was used to evaluate the quality of each paper. The JBI (Joanna Briggs Institute) key assessment tool was developed by the JBI Scientific Committee after extensive peer review and is designed for system review. All features of the study that meet the following eight criteria are included in the final summary:1) clear purpose; 2) Complete information of sample variables; 3) Data basis; 4) the validity of data sorting; 5) ethical norms; (6); 7) Effective results; 8) Apply appropriate quantitative methods and state the results clearly. Method quality is evaluated by the Yes/No questions listed in the JBI Key Assessment List. Each analysis paper received 6 out of 8.

The quality of drinking water is an essential factor affecting human health. Poor drinking water quality has led to the occurrence of water-borne diseases. According to the World Health Organization (WHO) survey, 80% of the world’s diseases and 50% of the world’s child deaths are related to poor drinking water quality, and there are more than 50 diseases caused by poor drinking water quality. The quality of drinking water in developing countries is worrying. The negative health effects of water pollution remain the leading cause of morbidity and mortality in developing countries. Different from the existing literature review, this paper mainly studies the impact of water pollution on human health according to the heterogeneity of diseases. We focuses on diarrhea, skin diseases, cancer, child health, etc., and sorts out the main effects of water pollution on human health ( Table 1 ).

www.frontiersin.org

TABLE 1 . Major studies on the relationship between water pollution and health.

Water Pollution and Diarrhea

Diarrhea is a common symptom of gastrointestinal diseases and the most common disease caused by water pollution. Diarrhea is a leading cause of illness and death in young children in low-income countries. Diarrhoeal diseases account for 21% of annual deaths among children under 5 years of age in developing countries ( Waddington et al., 2009 ). Many infectious agents associated with diarrhea are directly related to contaminated water ( Ahmed and Ismail, 2018 ). Parasitic worms present in non-purifying drinking water when is consumed by human beings causes diseases ( Ansari and Akhmatov., 2020 ) . It was found that treated water from water treatment facilities was associated with a lower risk of diarrhea than untreated water for all ages ( Clasen et al., 2015 ). For example, in the southern region of Brazil, a study found that factors significantly associated with an increased risk of mortality from diarrhoea included lack of plumbed water, lack of flush toilets, poor housing conditions, and overcrowded households. Households without access to piped water had a 4.8 times higher risk of infant death from diarrhea than households with access to piped water ( Victora et al., 1988 )

Enteroviruses exist in the aquatic environment. More than 100 pathogenic viruses are excreted in human and animal excreta and spread in the environment through groundwater, estuarine water, seawater, rivers, sewage treatment plants, insufficiently treated water, drinking water, and private wells ( Fong and Lipp., 2005 ). A study in Pakistan showed that coliform contamination was found in some water sources. Improper disposal of sewage and solid waste, excessive use of pesticides and fertilizers, and deteriorating pipeline networks are the main causes of drinking water pollution. The main source of water-borne diseases such as gastroenteritis, dysentery, diarrhea, and viral hepatitis in this area is the water pollution of coliform bacteria ( Khan et al., 2013 ). Therefore, the most important role of water and sanitation health interventions is to hinder the transmission of diarrheal pathogens from the environment to humans ( Waddington et al., 2009 ).

Meta-analyses are the most commonly used method for water quality and diarrhea studies. It was found that improving water supply and sanitation reduced the overall incidence of diarrhea by 26%. Among Malaysian infants, having clean water and sanitation was associated with an 82% reduction in infant mortality, especially among infants who were not breastfed ( Esrey et al., 1991 ). All water quality and sanitation interventions significantly reduced the risk of diarrhoeal disease, and water quality interventions were found to be more effective than previously thought. Multiple interventions (including water, sanitation, and sanitation measures) were not more effective than single-focus interventions ( Fewtrell and Colford., 2005 ). Water quality interventions reduced the risk of diarrhoea in children and reduced the risk of E. coli contamination of stored water ( Arnold and Colford., 2007 ). Interventions to improve water quality are generally effective in preventing diarrhoea in children of all ages and under 5. However, some trials showed significant heterogeneity, which may be due to the research methods and their conditions ( Clasen et al., 2007 ).

Water Pollution and Skin Diseases

Contrary to common sense that swimming is good for health, studies as early as the 1950s found that the overall disease incidence in the swimming group was significantly higher than that in the non-swimming group. The survey shows that the incidence of the disease in people under the age of 10 is about 100% higher than that of people over 10 years old. Skin diseases account for a certain proportion ( Stevenson, 1953 ). A prospective epidemiological study of beach water pollution was conducted in Hong Kong in the summer of 1986–1987. The study found that swimmers on Hong Kong’s coastal beaches were more likely than non-swimmers to complain of systemic ailments such as skin and eyes. And swimming in more polluted beach waters has a much higher risk of contracting skin diseases and other diseases. Swimming-related disease symptom rates correlated with beach cleanliness ( Cheung et al., 1990 ).

A study of arsenic-affected villages in the southern Sindh province of Pakistan emphasized that skin diseases were caused by excessive water quality. By studying the relationship between excessive arsenic in drinking water caused by water pollution and skin diseases (mainly melanosis and keratosis), it was found that compared with people who consumed urban low-arsenic drinking water, the hair of people who consumed high-arsenic drinking water arsenic concentration increased significantly. The level of arsenic in drinking water directly affects the health of local residents, and skin disease is the most common clinical complication of arsenic poisoning. There is a correlation between arsenic concentrations in biological samples (hair and blood) from patients with skin diseases and intake of arsenic-contaminated drinking water ( Kazi et al., 2009 ). Another Bangladesh study showed that many people suffer from scabies due to river pollution ( Hanif et al., 2020 ). Not only that, but water pollution from industry can also cause skin cancer ( Arif et al., 2020 ).

Studies using meta-analysis have shown that exposure to polluted Marine recreational waters can have adverse consequences, including frequent skin discomfort (such as rash or itching). Skin diseases in swimmers may be caused by a variety of pathogenic microorganisms ( Yau et al., 2009 ). People (swimmers and non-swimmers) exposed to waters above threshold levels of bacteria had a higher relative risk of developing skin disease, and levels of bacteria in seawater were highly correlated with skin symptoms.

Studies have also suggested that swimmers are 3.5 times more likely to report skin diseases than non-swimmers. This difference may be a “risk perception bias” at work on swimmers, who are generally aware that such exposure may lead to health effects and are more likely to detect and report skin disorders. It is also possible that swimmers exaggerated their symptoms, reporting conditions that others would not classify as true skin disorders ( Fleisher and Kay. 2006 ).

Water Pollution and Cancer

According to WHO statistics, the number of cancer patients diagnosed in 2020 reached 19.3 million, while the number of deaths from cancer increased to 10 million. Currently, one-fifth of all global fevers will develop cancer during their lifetime. The types and amounts of carcinogens present in drinking water will vary depending on where they enter: contamination of the water source, water treatment processes, or when the water is delivered to users ( Morris, 1995 ).

From the perspective of water sources, arsenic, nitrate, chromium, etc. are highly associated with cancer. Ingestion of arsenic from drinking water can cause skin cancer and kidney and bladder cancer ( Marmot et al., 2007 ). The risk of cancer in the population from arsenic in the United States water supply may be comparable to the risk from tobacco smoke and radon in the home environment. However, individual susceptibility to the carcinogenic effects of arsenic varies ( Smith et al., 1992 ). A high association of arsenic in drinking water with lung cancer was demonstrated in a northern Chilean controlled study involving patients diagnosed with lung cancer and a frequency-matched hospital between 1994 and 1996. Studies have also shown a synergistic effect of smoking and arsenic intake in drinking water in causing lung cancer ( Ferreccio et al., 2000 ). Exposure to high arsenic levels in drinking water was also associated with the development of liver cancer, but this effect was not significant at exposure levels below 0.64 mg/L ( Lin et al., 2013 ).

Nitrates are a broader contaminant that is more closely associated with human cancers, especially colorectal cancer. A study in East Azerbaijan confirmed a significant association between colorectal cancer and nitrate in men, but not in women (Maleki et al., 2021). The carcinogenic risk of nitrates is concentration-dependent. The risk increases significantly when drinking water levels exceed 3.87 mg/L, well below the current drinking water standard of 50 mg/L. Drinking water with nitrate concentrations lower than current drinking water standards also increases the risk of colorectal cancer ( Schullehner et al., 2018 ).

Drinking water with high chromium content will bring high carcinogenicity caused by hexavalent chromium to residents. Drinking water intake of hexavalent chromium experiments showed that hexavalent chromium has the potential to cause human respiratory cancer. ( Zhitkovich, 2011 ). A case from Changhua County, Taiwan also showed that high levels of chromium pollution were associated with gastric cancer incidence ( Tseng et al., 2018 ).

There is a correlation between trihalomethane (THM) levels in drinking water and cancer mortality. Bladder and brain cancers in both men and women and non-Hodgkin’s lymphoma and kidney cancer in men were positively correlated with THM levels, and bladder cancer mortality had the strongest and most consistent association with THM exposure index ( Cantor et al., 1978 ).

From the perspective of water treatment process, carcinogens may be introduced during chlorine treatment, and drinking water is associated with all cancers, urinary cancers and gastrointestinal cancers ( Page et al., 1976 ). Chlorinated byproducts from the use of chlorine in water treatment are associated with an increased risk of bladder and rectal cancer, with perhaps 5,000 cases of bladder and 8,000 cases of rectal cancer occurring each year in the United States (Morris, 1995).

The impact of drinking water pollutants on cancer is complex. Epidemiological studies have shown that drinking water contaminants, such as chlorinated by-products, nitrates, arsenic, and radionuclides, are associated with cancer in humans ( Cantor, 1997 ). Pb, U, F- and no3- are the main groundwater pollutants and one of the potential causes of cancer ( Kaur et al., 2021 ). In addition, many other water pollutants are also considered carcinogenic, including herbicides and pesticides, and fertilizers that contain and release nitrates ( Marmot et al., 2007 ). A case from Hebei, China showed that the contamination of nitrogen compounds in well water was closely related to the use of nitrogen fertilizers in agriculture, and the levels of three nitrogen compounds in well water were significantly positively correlated with esophageal cancer mortality ( Zhang et al., 2003 ).

In addition, due to the time-lag effect, the impact of watershed water pollution on cancer is spatially heterogeneous. The mortality rate of esophageal cancer caused by water pollution is significantly higher downstream than in other regions due to the impact of historical water pollution ( Xu et al., 2019 ). A study based on changes in water quality in the watershed showed that a grade 6 deterioration in water quality resulted in a 9.3% increase in deaths from digestive cancer. ( Ebenstein, 2012 ).

Water Pollution and Child Health

Diarrhea is a common disease in children. Diarrhoeal diseases (including cholera) kill 1.8 million people each year, 90 per cent of them children under the age of five, mostly in developing countries. 88% of diarrhoeal diseases are caused by inadequate water supply, sanitation and hygiene (Team, 2004). A large proportion of these are caused by exposure to microbially infected water and food, and diarrhea in infants and young children can lead to malnutrition and reduced immune resistance, thereby increasing the likelihood of prolonged and recurrent diarrhea ( Marino, 2007 ). Pollution exposure experienced by children during critical periods of development is associated with height loss in adulthood ( Zaveri et al., 2020 ). Diseases directly related to water and sanitation, combined with malnutrition, also lead to other causes of death, such as measles and pneumonia. Child malnutrition and stunting due to inadequate water and sanitation will continue to affect more than one-third of children in the world ( Bartlett, 2003 ). A study from rural India showed that children living in households with tap water had significantly lower disease prevalence and duration ( Jalan and Ravallion, 2003 ).

In conclusion, water pollution is a significant cause of childhood diseases. Air, water, and soil pollution together killed 940,000 children worldwide in 2016, two-thirds of whom were under the age of 5, and the vast majority occurred in low- and middle-income countries ( Landrigan et al., 2018 ). The intensity of industrial organic water pollution is positively correlated with infant mortality and child mortality in less developed countries, and industrial water pollution is an important cause of infant and child mortality in less developed countries ( Jorgenson, 2009 ). In addition, arsenic in drinking water is a potential carcinogenic risk in children (García-Rico et al., 2018). Nitrate contamination in drinking water may cause goiter in children ( Vladeva et al.., 2000 ).

Discussions

This paper reviews the environmental science, health, and medical literature, with a particular focus on epidemiological studies linking water quality, water pollution, and human disease, as well as studies on water-related disease morbidity and mortality. At the same time, special attention is paid to publications from the United Nations and the World Health Organization on water and sanitation health research. The purpose of this paper is to clarify the relationship between water pollution and human health, including: The relationship between water pollution and diarrhea, the mechanism of action, and the research situation of meta-analysis; The relationship between water pollution and skin diseases, pathogenic factors, and meta-analysis research; The relationship between water pollution and cancer, carcinogenic factors, and types of cancer; The relationship between water pollution and Child health, and the major childhood diseases caused.

A study of more than 100 literatures found that although factors such as country, region, age, and gender may have different influences, in general, water pollution has a huge impact on human health. Water pollution is the cause of many human diseases, mainly diarrhoea, skin diseases, cancer and various childhood diseases. The impact of water pollution on different diseases is mainly reflected in the following aspects. Firstly, diarrhea is the most easily caused disease by water pollution, mainly transmitted by enterovirus existing in the aquatic environment. The transmission environment of enterovirus depends on includes groundwater, river, seawater, sewage, drinking water, etc. Therefore, it is necessary to prevent the transmission of enterovirus from the environment to people through drinking water intervention. Secondly, exposure to or use of heavily polluted water is associated with a risk of skin diseases. Excessive bacteria in seawater and heavy metals in drinking water are the main pathogenic factors of skin diseases. Thirdly, water pollution can pose health risks to humans through any of the three links: the source of water, the treatment of water, and the delivery of water. Arsenic, nitrate, chromium, and trihalomethane are major carcinogens in water sources. Carcinogens may be introduced during chlorine treatment from water treatment. The effects of drinking water pollution on cancer are complex, including chlorinated by-products, heavy metals, radionuclides, herbicides and pesticides left in water, etc., Finally, water pollution is an important cause of children’s diseases. Contact with microbiologically infected water can cause diarrhoeal disease in children. Malnutrition and weakened immunity from diarrhoeal diseases can lead to other diseases.

This study systematically analyzed the impact of water pollution on human health and the heterogeneity of diseases from the perspective of different diseases, focusing on a detailed review of the relationship, mechanism and influencing factors of water pollution and diseases. From the point of view of limitations, this paper mainly focuses on the research of environmental science and environmental management, and the research on pathology is less involved. Based on this, future research can strengthen research at medical and pathological levels.

In response to the above research conclusions, countries, especially developing countries, need to adopt corresponding water management policies to reduce the harm caused by water pollution to human health. Firstly, there is a focus on water quality at the point of use, with interventions to improve water quality, including chlorination and safe storage ( Gundry et al., 2004 ), and provision of treated and clean water ( Khan et al., 2013 ). Secondly, in order to reduce the impact of water pollution on skin diseases, countries should conduct epidemiological studies on their own in order to formulate health-friendly bathing water quality standards suitable for their specific conditions ( Cheung et al., 1990 ). Thirdly, in order to reduce the cancer caused by water pollution, the whole-process supervision of water quality should be strengthened, that is, the purity of water sources, the scientific nature of water treatment and the effectiveness of drinking water monitoring. Fourthly, each society should prevent and control source pollution from production, consumption, and transportation ( Landrigan et al., 2018 ). Fifthly, health education is widely carried out. Introduce environmental education, educate residents on sanitary water through newspapers, magazines, television, Internet and other media, and enhance public health awareness. Train farmers to avoid overuse of agricultural chemicals that contaminate drinking water.

Author Contributions

Conceptualization, XX|; methodology, LL; data curation, HY; writing and editing, LL; project administration, XX|.

This article is a phased achievement of The National Social Science Fund of China: Research on the blocking mechanism of the critical poor households returning to poverty due to illness, No: 20BJY057.

Conflict of Interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s Note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Afroz, R., Rahman, A., and Rahman, A. (2017). Health Impact of River Water Pollution in Malaysia. Int. J. Adv. Appl. Sci. 4 (5), 78–85. doi:10.21833/ijaas.2017.05.014

CrossRef Full Text | Google Scholar

Ahmed, S., and Ismail, S. (2018). Water Pollution and its Sources, Effects and Management: a Case Study of Delhi. Int. J. Curr. Adv. Res. 7 (2), 10436–10442. doi:10.24327/ijcar.2018.10442.1768

Ansari, Z. Z., and Akhmatov, S. V. (2020). Impacts of Water Pollution on Human Health: A Case Study of Delhi .

Google Scholar

Arif, A., Malik, M. F., Liaqat, S., Aslam, A., Mumtaz, K., and Afzal, A. (2020). 3. Water Pollution and Industries. Pure Appl. Biol. (PAB) 9 (4), 2214–2224. doi:10.19045/bspab.2020.90237

Arnold, B. F., and Colford, J. M. (2007). Treating Water with Chlorine at Point-Of-Use to Improve Water Quality and Reduce Child Diarrhea in Developing Countries: a Systematic Review and Meta-Analysis. Am. J. Trop. Med. Hyg. 76 (2), 354–364. doi:10.4269/ajtmh.2007.76.354

PubMed Abstract | CrossRef Full Text | Google Scholar

Bartlett, S. (2003). Water, Sanitation and Urban Children: the Need to Go beyond “Improved” Provision. Environ. Urbanization 15 (2), 57–70. doi:10.1177/095624780301500220

Bessong, P. O., Odiyo, J. O., Musekene, J. N., and Tessema, A. (2009). Spatial Distribution of Diarrhoea and Microbial Quality of Domestic Water during an Outbreak of Diarrhoea in the Tshikuwi Community in Venda, South Africa. J. Health Popul. Nutr. 27 (5), 652–659. doi:10.3329/jhpn.v27i5.3642

Boldo, E., MartÍN-Olmedo, P., Medina, S., Pirard, P., Mouly, D., and Beaudeau, P. (2006). Towards the Quantification of Health Impacts Caused by Drinking-Water Pollution in European Countries. Epidemiology 17 (6), S447. doi:10.1097/00001648-200611001-01198

Brown, J., and Clasen, T. (2012). High Adherence Is Necessary to Realize Health Gains from Water Quality Interventions. PLoS ONE 7 (5), e36735–9. doi:10.1371/journal.pone.0036735

Cantor, K. P., Hoover, R., Mason, T. J., and McCabe, L. J. (1978). Associations of Cancer Mortality with Halomethanes in Drinking Water. J. Natl. Cancer Inst. 61 (4), 979

PubMed Abstract | Google Scholar

Cantor, K. P. (1997). Drinking Water and Cancer. Cancer Causes Control CCC 8 (3), 292–308. doi:10.1023/a:1018444902486

Chen, B., Wang, M., Duan, M., Ma, X., Hong, J., Xie, F., et al. (2019). In Search of Key: Protecting Human Health and the Ecosystem from Water Pollution in China. J. Clean. Prod. 228, 101–111. doi:10.1016/j.jclepro.2019.04.228

Cheung, W. H. S., Chang, K. C. K., Hung, R. P. S., and Kleevens, J. W. L. (1990). Health Effects of Beach Water Pollution in Hong Kong. Epidemiol. Infect. 105 (1), 139–162. doi:10.1017/s0950268800047737

Cheung, W. H. S., Hung, R. P. S., Chang, K. C. K., and Kleevens, J. W. L. (1991). Epidemiological Study of Beach Water Pollution and Health-Related Bathing Water Standards in Hong Kong. Water Sci. Technol. 23 (1-3), 243–252. doi:10.2166/wst.1991.0422

Chowdhary, P., Bharagava, R. N., Mishra, S., and Khan, N. (2020). Role of Industries in Water Scarcity and its Adverse Effects on Environment and Human Health. Environ. Concerns Sustain. Dev. , 235–256. doi:10.1007/978-981-13-5889-0_12

Clasen, T. F., Alexander, K. T., Sinclair, D., Boisson, S., Peletz, R., Chang, H. H., et al. (2015). Interventions to Improve Water Quality for Preventing Diarrhoea. Cochrane Database Syst. Rev. 10, CD004794. doi:10.1002/14651858.CD004794.pub3

Clasen, T., Schmidt, W.-P., Rabie, T., Roberts, I., and Cairncross, S. (2007). Interventions to Improve Water Quality for Preventing Diarrhoea: Systematic Review and Meta-Analysis. Bmj 334 (7597), 782. doi:10.1136/bmj.39118.489931.be

Conroy, R. M., Elmore-Meegan, M., Joyce, T., McGuigan, K. G., and Barnes, J. (1996). Solar Disinfection of Drinking Water and Diarrhoea in Maasai Children: a Controlled Field Trial. Lancet 348 (9043), 1695–1697. doi:10.1016/s0140-6736(96)02309-4

Dasgupta, P. (2004). Valuing Health Damages from Water Pollution in Urban Delhi, India: a Health Production Function Approach. Envir. Dev. Econ. 9 (1), 83–106. doi:10.1017/s1355770x03001098

Dwivedi, S., Mishra, S., and Tripathi, R. D. (2018). Ganga Water Pollution: A Potential Health Threat to Inhabitants of Ganga Basin. Environ. Int. 117, 327–338. doi:10.1016/j.envint.2018.05.015

Ebenstein, A. (2012). The Consequences of Industrialization: Evidence from Water Pollution and Digestive Cancers in China. Rev. Econ. Statistics 94 (1), 186–201. doi:10.1162/rest_a_00150

El-Kowrany, S. I., El- Zamarany, E. A., El-Nouby, K. A., El-Mehy, D. A., Abo Ali, E. A., and Othman, A. A. (2016). Water Pollution in the Middle Nile Delta, Egypt: an Environmental Study. J. Adv. Res. 7 (5), 781–794. doi:10.1016/j.jare.2015.11.005

Enrique Biagini, R. (1975). Chronic Arsenic Water Pollution in the Republic of Argentina. Med. Cutan. Ibero Lat. Am. 3 (6), 423

Esrey, S. A., Potash, J. B., Roberts, L., and Shiff, C. (1991). Effects of Improved Water Supply and Sanitation on Ascariasis, Diarrhoea, Dracunculiasis, Hookworm Infection, Schistosomiasis, and Trachoma. Bull. World Health Organ 69 (5), 609

Ferreccio, C., González, C., Milosavjlevic, V., Marshall, G., Sancha, A. M., and Smith, A. H. (2000). Lung Cancer and Arsenic Concentrations in Drinking Water in Chile. Epidemiology 11 (6), 673–679. doi:10.1097/00001648-200011000-00010

Fewtrell, L., and Colford, J. M. (2005). Water, Sanitation and Hygiene in Developing Countries: Interventions and Diarrhoea-A Review. Water Sci. Technol. A J. Int. Assoc. Water Pollut. Res. 52 (8), 133–142. doi:10.2166/wst.2005.0244

Fitzgerald, E. F., Schell, L. M., Marshall, E. G., Carpenter, D. O., Suk, W. A., and Zejda, J. E. (1998). Environmental Pollution and Child Health in Central and Eastern Europe. Environ. Health Perspect. 106 (6), 307–311. doi:10.1289/ehp.98106307

Fleisher, J. M., and Kay, D. (2006). Risk Perception Bias, Self-Reporting of Illness, and the Validity of Reported Results in an Epidemiologic Study of Recreational Water Associated Illnesses. Mar. Pollut. Bull. 52 (3), 264–268. doi:10.1016/j.marpolbul.2005.08.019

Fong, T.-T., and Lipp, E. K. (2005). Enteric Viruses of Humans and Animals in Aquatic Environments: Health Risks, Detection, and Potential Water Quality Assessment Tools. Microbiol. Mol. Biol. Rev. 69 (2), 357–371. doi:10.1128/mmbr.69.2.357-371.2005

Froom, P. (2009). Water Pollution and Cancer in Israeli Navy Divers. Int. J. Occup. Environ. Health 15 (3), 326–328. doi:10.1179/oeh.2009.15.3.326

Gundry, S., Wright, J., and Conroy, R. (2004). A Systematic Review of the Health Outcomes Related to Household Water Quality in Developing Countries. J. water health 2 (1), 1–13. doi:10.2166/wh.2004.0001

Halder, J., Islam, N., and Islam, N. (2015). Water Pollution and its Impact on the Human Health. Eh 2 (1), 36–46. doi:10.15764/eh.2015.01005

Hanif, M., Miah, R., Islam, M., and Marzia, S. (2020). Impact of Kapotaksha River Water Pollution on Human Health and Environment. Prog. Agric. 31 (1), 1–9. doi:10.3329/pa.v31i1.48300

Haseena, M., Malik, M. F., Javed, A., Arshad, S., Asif, N., Zulfiqar, S., et al. (2017). Water Pollution and Human Health. Environ. Risk Assess. Remediat. 1 (3), 20. doi:10.4066/2529-8046.100020

Henry, F. J., Huttly, S. R. A., Patwary, Y., and Aziz, K. M. A. (1990). Environmental Sanitation, Food and Water Contamination and Diarrhoea in Rural Bangladesh. Epidemiol. Infect. 104 (2), 253–259. doi:10.1017/s0950268800059422

Jalan, J., and Ravallion, M. (2003). Does Piped Water Reduce Diarrhea for Children in Rural India? J. Econ. 112 (1), 153–173. doi:10.1016/s0304-4076(02)00158-6

Jensen, P. K., Jayasinghe, G., Hoek, W., Cairncross, S., and Dalsgaard, A. (2004). Is There an Association between Bacteriological Drinking Water Quality and Childhood Diarrhoea in Developing Countries? Trop. Med. Int. Health 9 (11), 1210–1215. doi:10.1111/j.1365-3156.2004.01329.x

Jorgenson, A. K. (2009). Foreign Direct Investment and the Environment, the Mitigating Influence of Institutional and Civil Society Factors, and Relationships between Industrial Pollution and Human Health. Organ. Environ. 22 (2), 135–157. doi:10.1177/1086026609338163

Kaur, G., Kumar, R., Mittal, S., Sahoo, P. K., and Vaid, U. (2021). Ground/drinking Water Contaminants and Cancer Incidence: A Case Study of Rural Areas of South West Punjab, India. Hum. Ecol. Risk Assess. Int. J. 27 (1), 205–226. doi:10.1080/10807039.2019.1705145

Kazi, T. G., Arain, M. B., Baig, J. A., Jamali, M. K., Afridi, H. I., Jalbani, N., et al. (2009). The Correlation of Arsenic Levels in Drinking Water with the Biological Samples of Skin Disorders. Sci. Total Environ. 407 (3), 1019–1026. doi:10.1016/j.scitotenv.2008.10.013

Khan, S., Shahnaz, M., Jehan, N., Rehman, S., Shah, M. T., and Din, I. (2013). Drinking Water Quality and Human Health Risk in Charsadda District, Pakistan. J. Clean. Prod. 60, 93–101. doi:10.1016/j.jclepro.2012.02.016

Kochhar, N., Gill, G. S., Tuli, N., Dadwal, V., and Balaram, V. (2007). Chemical Quality of Ground Water in Relation to Incidence of Cancer in Parts of SW Punjab, India. Asian J. Water, Environ. Pollut. 4 (2), 107 doi:10.1086/114154

Kumar, S., Meena, H. M., and Verma, K. (2017). Water Pollution in India: its Impact on the Human Health: Causes and Remedies. Int. J. Appl. Environ. Sci. 12 (2), 275

Lai, W. (2017). Pesticide Use and Health Outcomes: Evidence from Agricultural Water Pollution in China. J. Environ. Econ. Manag. 86, 93–120. doi:10.1016/j.jeem.2017.05.006

Landrigan, P. J., Fuller, R., Fisher, S., Suk, W. A., Sly, P., Chiles, T. C., et al. (2018). Pollution and Children's Health. Sci. Total Environ. 650 (Pt 2), 2389–2394. doi:10.1016/j.scitotenv.2018.09.375

Lin, H.-J., Sung, T.-I., Chen, C.-Y., and Guo, H.-R. (2013). Arsenic Levels in Drinking Water and Mortality of Liver Cancer in Taiwan. J. Hazard. Mater. 262, 1132–1138. doi:10.1016/j.jhazmat.2012.12.049

Lu, Y., Song, S., Wang, R., Liu, Z., Meng, J., Sweetman, A. J., et al. (2015). Impacts of Soil and Water Pollution on Food Safety and Health Risks in China. Environ. Int. 77, 5–15. doi:10.1016/j.envint.2014.12.010

Marino, D. D. (2007). Water and Food Safety in the Developing World: Global Implications for Health and Nutrition of Infants and Young Children. J. Am. Dietetic Assoc. 107 (11), 1930–1934. doi:10.1016/j.jada.2007.08.013

Marmot, M., Atinmo, T., Byers, T., Chen, J., and Zeisel, S. H. (2007). Food, Nutrition, Physical Activity, and the Prevention of Cancer: a Global Perspective. Nutr. Bull.

Marr, A., and Dasgupta, N. (2009). Industrial Water Pollution in Dhaka, Bangladesh: Strategies and Incentives for Pollution Control in Small and Medium Enterprises. Int. J. Interdiscip. Soc. Sci. Annu. Rev. 3 (11), 97–108. doi:10.18848/1833-1882/cgp/v03i11/52752

Morris, R. D. (1995). Drinking Water and Cancer. Environ. Health Perspect. 103, 225. doi:10.2307/3432315

Moss, B. (2008). Water Pollution by Agriculture. Phil. Trans. R. Soc. B 363 (1491), 659–666. doi:10.1098/rstb.2007.2176

Page, T., Harris, R. H., and Epstein, S. S. (1976). Drinking Water and Cancer Mortality in Louisiana. Science 193 (4247), 55–57. doi:10.1126/science.935854

Pandey, S. (2006). Water Pollution and Health. Kathmandu Univ. Med. J. (KUMJ) 4 (1), 128. doi:10.1016/j.crvi.2013.04.013

Parris, K. (2011). Impact of Agriculture on Water Pollution in OECD Countries: Recent Trends and Future Prospects. Int. J. Water Resour. Dev. 27 (1), 33–52. doi:10.1080/07900627.2010.531898

Payment, P., Siemiatycki, J., Richardson, L., Renaud, G., Franco, E., and Prevost, M. (1997). A Prospective Epidemiological Study of Gastrointestinal Health Effects Due to the Consumption of Drinking Water. Int. J. Environ. Health Res. 7 (1), 5–31. doi:10.1080/09603129773977

Rabbani, M., Chowdhury, M., and Khan, N. A. (2010). Impacts of Industrial Pollution on Human Health: Empirical Evidences from an Industrial Hotspot (Kaliakoir) in Bangladesh. Asian J. Water, Environ. Pollut. 7 (1), 27

Rajal, V. B., Cruz, C., and Last, J. A. (2010). Water Quality Issues and Infant Diarrhoea in a South American Province. Glob. Public Health 5 (4), 348–363. doi:10.1080/17441690802447267

Rampen, F. H. J., Nelemans, P. J., and Verbeek, A. L. (1992). Is Water Pollution a Cause of Cutaneous Melanoma? Epidemiology 3, 263–265. doi:10.1097/00001648-199205000-00013

Royal Commission for Environmental Pollution 1979 Seventh Report. Agriculture and Pollution . London, UK: H.M.S.O .

Rusiñol, M., Fernandez-Cassi, X., Timoneda, N., Carratalà, A., and Abril, J. F. (2015). Evidence of Viral Dissemination and Seasonality in a Mediterranean River Catchment: Implications for Water Pollution Management. J. Environ. Manag. 159, 58–67. doi:10.1016/j.jenvman.2015.05.019

Schullehner, J., Hansen, B., Thygesen, M., Pedersen, C. B., and Sigsgaard, T. (2018). Nitrate in Drinking Water and Colorectal Cancer Risk: A Nationwide Population-Based Cohort Study. Int. J. Cancer 143 (1), 73–79. doi:10.1002/ijc.31306

Schwarzenbach, R. P., Egli, T., Hofstetter, T. B., Von Gunten, U., and Wehrli, B. (2010). Global Water Pollution and Human Health. Annu. Rev. Environ. Resour. 35, 109–136. doi:10.1146/annurev-environ-100809-125342

Sliman, N. A. (1978). Outbreak of Guillain-Barre Syndrome Associated with Water Pollution. Bmj 1 (6115), 751–752. doi:10.1136/bmj.1.6115.751

Smith, A. H., Hopenhayn-Rich, C., Bates, M. N., Goeden, H. M., Hertz-Picciotto, I., Duggan, H. M., et al. (1992). Cancer Risks from Arsenic in Drinking Water. Environ. Health Perspect. 97, 259–267. doi:10.1289/ehp.9297259

Stephens, J. K. (2002). Deterioration of Stored Domestic Water Quality and Diarrhoea in Zenu . University of Ghana .

Stevenson, A. H. (1953). Studies of Bathing Water Quality and Health. Am. J. Public Health Nations Health 43 (5 Pt 1), 529–538. doi:10.2105/ajph.43.5_pt_1.529

Team, S. H. (2004). Water, Sanitation and Hygiene Links to Health: Facts and Figures . World Health Organization .

Tondel, M., Rahman, M., Magnuson, A., Chowdhury, I. A., Faruquee, M. H., and Ahmad, S. A. (1999). The Relationship of Arsenic Levels in Drinking Water and the Prevalence Rate of Skin Lesions in Bangladesh. Environ. health Perspect. 107 (9), 727–729. doi:10.1289/ehp.99107727

Tseng, C.-H., Lei, C., and Chen, Y.-C. (2018). Evaluating the Health Costs of Oral Hexavalent Chromium Exposure from Water Pollution: A Case Study in Taiwan. J. Clean. Prod. 172, 819–826. doi:10.1016/j.jclepro.2017.10.177

Ustaoğlu, F., Tepe, Y., Taş, B., and Pag, N. (2020). Assessment of Stream Quality and Health Risk in a Subtropical Turkey River System: A Combined Approach Using Statistical Analysis and Water Quality Index. Ecol. Indic. , 113. doi:10.1016/j.ecolind.2019.105815

Vartiainen, T., Pukkala, E., Rienoja, T., Strandman, T., and Kaksonen, K. (1993). Population Exposure to Tri- and Tetrachloroethene and Cancer Risk: Two Cases of Drinking Water Pollution. Chemosphere 27 (7), 1171–1181. doi:10.1016/0045-6535(93)90165-2

Victora, C. G., Smith, P. G., Vaughan, J. P., Nobre, L. C., Lombard, C., Teixeira, A. M. B., et al. (1988). Water Supply, Sanitation and Housing in Relation to the Risk of Infant Mortality from Diarrhoea. Int. J. Epidemiol. 17 (3), 651–654. doi:10.1093/ije/17.3.651

Vladeva, S., Gatseva, P., and Gopina, G. (2000). Comparative Analysis of Results from Studies of Goitre in Children from Bulgarian Villages with Nitrate Pollution of Drinking Water in 1995 and 1998. Cent. Eur. J. Public Health 8 (3), 179

Waddington, H., Snilstveit, B., White, H., and Fewtrell, L. (2009). Water, Sanitation and Hygiene Interventions to Combat Childhood Diarrhoea in Developing Countries . New Delhi India Global Development Network International Initiative for Impact Evaluation Aug .

Witkowski, K. M., and Johnson, N. E. (1992). Organic-solvent Water Pollution and Low Birth Weight in Michigan. Soc. Biol. 39 (1-2), 45–54. doi:10.1080/19485565.1992.9988803

Wu, C., Maurer, C., Wang, Y., Xue, S., and Davis, D. L. (1999). Water Pollution and Human Health in China. Environ. Health Perspect. 107 (4), 251–256. doi:10.1289/ehp.99107251

Wu, H., Gai, Z., Guo, Y., Li, Y., Hao, Y., and Lu, Z. N. (2020). Does Environmental Pollution Inhibit Urbanization in China? A New Perspective through Residents' Medical and Health Costs. Environ. Res. 182 (Mar.), 109128–109128.9. doi:10.1016/j.envres.2020.109128

Xiao, J., Wang, L., Deng, L., and Jin, Z. (2019). Characteristics, Sources, Water Quality and Health Risk Assessment of Trace Elements in River Water and Well Water in the Chinese Loess Plateau. Sci. Total Environ. 650 (Pt 2), 2004–2012. doi:10.1016/j.scitotenv.2018.09.322

Xu, C., Xing, D., Wang, J., and Xiao, G. (2019). The Lag Effect of Water Pollution on the Mortality Rate for Esophageal Cancer in a Rapidly Industrialized Region in China. Environ. Sci. Pollut. Res. 26 (32), 32852–32858. doi:10.1007/s11356-019-06408-z

Xu, X., Wang, Q., and Li, C. (2022b). The Impact of Dependency Burden on Urban Household Health Expenditure and its Regional Heterogeneity in China: Based on Quantile Regression Method. Front. Public Health 10, 876088. doi:10.3389/fpubh.2022.876088

Xu, X., Yang, H., and Li, C. (2022a). Theoretical Model and Actual Characteristics of Air Pollution Affecting Health Cost: A Review. Ijerph 19, 3532. doi:10.3390/ijerph19063532

Yassin, M. M., Amr, S. S. A., and Al-Najar, H. M. (2006). Assessment of Microbiological Water Quality and its Relation to Human Health in Gaza Governorate, Gaza Strip. Public Health 120 (12), 1177. doi:10.1016/j.puhe.2006.07.026

Yau, V., Wade, T. J., de Wilde, C. K., and Colford, J. M. (2009). Skin-related Symptoms Following Exposure to Recreational Water: a Systematic Review and Meta-Analysis. Water Expo. Health 1 (2), 79–103. doi:10.1007/s12403-009-0012-9

Zaveri, E. D., Russ, J. D., Desbureaux, S. G., Damania, R., Rodella, A. S., and Ribeiro Paiva De Souza, G. (20203). The Nitrogen Legacy: The Long-Term Effects of Water Pollution on Human Capital . World Bank Policy Research Working Paper .

Zhang, X.-L., Bing, Z., Xing, Z., Chen, Z.-F., Zhang, J.-Z., Liang, S.-Y., et al. (2003). Research and Control of Well Water Pollution in High Esophageal Cancer Areas. Wjg 9 (6), 1187–1190. doi:10.3748/wjg.v9.i6.1187

Zhitkovich, A. (2011). Chromium in Drinking Water: Sources, Metabolism, and Cancer Risks. Chem. Res. Toxicol. 24 (10), 1617–1629. doi:10.1021/tx200251t

Keywords: water pollution, human health, disease heterogeneity, water intervention, health cost

Citation: Lin L, Yang H and Xu X (2022) Effects of Water Pollution on Human Health and Disease Heterogeneity: A Review. Front. Environ. Sci. 10:880246. doi: 10.3389/fenvs.2022.880246

Received: 21 February 2022; Accepted: 09 June 2022; Published: 30 June 2022.

Reviewed by:

Copyright © 2022 Lin, Yang and Xu. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

*Correspondence: Xiaocang Xu, [email protected]

This article is part of the Research Topic

Bioaerosol Emission Characteristics and the Epidemiological, Occupational, and Public Health Risk Assessment of Waste and Wastewater Management

  • Study Guides
  • Homework Questions

Case Study 3 Water Pollution

IMAGES

  1. Water Pollution Case Studies

    short case study on water pollution

  2. 💣 Short paragraph on water pollution. Paragraph on Water Pollution

    short case study on water pollution

  3. (PDF) Analysis of Water Pollution Using Different Physicochemical

    short case study on water pollution

  4. Essay On Water Pollution

    short case study on water pollution

  5. Prevention and Control of Water Pollution Based on Ecosystem Management

    short case study on water pollution

  6. Write a short essay on Water Pollution

    short case study on water pollution

VIDEO

  1. Class 3 English Unit 7 Lesson 1 Water pollution

  2. short paragraph on water pollution 🚰💧#essay

  3. IB Geography: Transboundary pollution affecting a large area + CASE STUDY

  4. Turning wastewater into drinking water #shorts

  5. Taking a Second Look

  6. One Man's Quest to Save India's Most Polluted River

COMMENTS

  1. PDF Cases in Water Conservation

    Summary of Conservation Case Studies. water rates, a public education program, a high-efficiency plumbing program, landscaping programs, and large-use programs. drawdown so that the level of water demand should stay constant until 2005. Peak demand is down 14% from 1990.

  2. A Current Review of Water Pollutants in American Continent: Trends and

    Based on this, there is a need to establish scientific studies in a human population and evaluate the impact of water pollution on its health. Some studies have been performed (see Table 3) to correlate the exposure of contaminants in people's life and if possible, establish the impact that water sources and body contamination have.

  3. Effects of Water Pollution: Causes, Consequences, & Solutions on

    A: Water pollution can have severe consequences for human health. Consuming contaminated water can lead to waterborne diseases such as cholera, dysentery, and hepatitis. Long-term exposure to polluted water can also result in various health problems, including cancer, developmental disorders, and reproductive issues.

  4. 5 Case Studies

    Three laws of ground water vulnerability. Six case studies of vulnerability assessment. Guidance for selecting vulnerability assessments and using the results. Reviews of the strengths and limitations of assessment methods. Information on available data bases, primarily at the federal level.

  5. Water pollution: An introduction to causes, effects, solutions

    Water pollution: an introduction. by Chris Woodford . Last updated: October 1, 2023. Over two thirds of Earth's surface is covered by water; less than a third is taken up by land. As Earth's population continues to grow, people are putting ever-increasing pressure on the planet's water resources. In a sense, our oceans, rivers, and other inland ...

  6. Global river water quality under climate change and ...

    There is a general deterioration of river water quality under droughts and heatwaves (68% of compiled case studies), rainstorms and floods (51%) and under long-term climate change (56%), but in ...

  7. The widespread and unjust drinking water and clean water ...

    Using these two measures of poor water quality, we find 2.44% of community water systems, a total of 1165, were Safe Drinking Water Act Serious Violators and 3.37% of Clean Water Act permittees in ...

  8. Water Pollution: "Dal Lake a Case Study"

    Abstract. Dal lake is one of the famous freshwater lakes of Jammu & Kashmir and is rightly called as "Liquid jewel "in the heart of capital city Srinagar. Over the years the lake is under serious anthropogenic activities which has resulted in pollution of the lake threatening its health and ecology. Despite many consultancies were engaged ...

  9. Water pollution facts and information

    Pollution can enter water directly, through both legal and illegal discharges from factories, for example, or imperfect water treatment plants. Spills and leaks from oil pipelines or hydraulic ...

  10. Water pollution 'timebomb' threatens global health

    Credit: John Wessels/AFP via Getty. Up to 5.5 billion people worldwide could be exposed to polluted water by 2100, a modelling study has found. Researchers mapped surface water quality under three ...

  11. PDF Case Studies of Groundwater Pollution in Southeast Vietnam

    This paper presents the results of studies of groundwater pollution in these two locations and proposes essential mitigation measures. 2. Case study: Groundwater pollution in Tay Ninh Province. Tay Ninh is a province in southeast Vietnam with an area of about 4,000 square kilometers that includes eight districts and one town.

  12. The Deepwater Horizon Oil Spill: A Case Study

    A novel horror birthed at the intersection of environment and society. The Deepwater Horizon oil spill was a catastrophe of unparalleled proportions. As "the largest spill of oil in the history of marine drilling operations," the consequences of incident reverbrated through the civilized world (U.S. Government, 2022).

  13. Ganga Pollution Case: A Case Study

    The water in the upper stream is used in the agriculture process by the respective states. So, if the water is released on a regular basis it will also help to improve the quality of the water and reduce the pollution level in the water. Conclusion. Ganga is considered a pious river in the religious scriptures.

  14. Case Studies

    Our cutting-edge research builds a body of science with direct, actionable results. View the case studies below to learn more. Subscriber ... Food Waste Co-Digestion at Oneida County Water Pollution Control Plant (NY): Business Case Analysis Snapshot. Case Study. 07/14/2021 ... Distributed Water Case Studies. Case Study. 09/16/2020. 09/16/2020 ...

  15. Story of the Ganga River: Its Pollution and Rejuvenation

    Chaturvedi, A.K. (2019). River Water Pollution—A New Threat to India: A Case Study of River Ganga. Google Scholar Chaudhary, M. and Walker, T.R. (2019). River Ganga pollution: Causes and failed management plans (correspondence on Dwivedi et al., 2018. Ganga water pollution: A potential health threat to inhabitants of Ganga basin.

  16. Water Pollution Definition

    Nonpoint source pollution is the leading cause of water pollution in U.S. waters, but it's ... it caused 1.8 million deaths in 2015, according to a study published in The Lancet. Contaminated ...

  17. (PDF) Water Pollution: Sources and Its Impact on Human ...

    Water pollution, according to (Olaniran et al., 1995), is. defined as the presence of excessive concentr ations of a danger (pollutants) in water to. the point where it is no longer appropriate ...

  18. Water pollution

    Water pollutants come from either point sources or dispersed sources. A point source is a pipe or channel, such as those used for discharge from an industrial facility or a city sewerage system.A dispersed (or nonpoint) source is a very broad unconfined area from which a variety of pollutants enter the water body, such as the runoff from an agricultural area.

  19. Frontiers

    Different from the existing literature review, this paper mainly studies the impact of water pollution on human health according to the heterogeneity of diseases. We focuses on diarrhea, skin diseases, cancer, child health, etc., and sorts out the main effects of water pollution on human health ( Table 1 ). TABLE 1.

  20. Human Health Risks due to Exposure to Water Pollution: A Review

    Water resources are crucial in developing any area as they serve as a major source of potable, agricultural, and industrial water. Water contamination, caused by natural and anthropogenic activities, poses a significant threat to public health globally. This review synthesizes data from various studies published in national and international journals, as well as reports from governmental and ...

  21. PDF River Water Pollution:A Case Study on Tunga River At Shimoga-Karnataka

    A. Study Area. Shimoga is town, situated between the North and South branches of river Tunga. It is located on the Bangalore - Honnavar highway.Though it is a town of medium population, the temples and historically significant monuments of this town attracts a large number of tourist people resulting in a very high floating population.

  22. Water Pollution and its Sources, Effects & Management: A Case Study of

    Water pollution is a national and global issue. Humans and all living species in the world are facing worst results of polluted water. ... Shahid Ahmed and Saba Ismail (2018) 'Water Pollution and its Sources, Effects & Management: A Case Study of Delhi', International Journal of Current Advanced Research, 07(2), pp. 10436-10442, Available at ...

  23. Short Paper Predicting Pollution Level Using Random Forest: A Case

    water pollution foremost affects its chemical quality and then systematically deteriorates the community disrupting the food web, river pollution has various dimensions that must the ability (Chawla, 2015). Prediction of water quality is a way to study the future status of water quality by using some prior knowledge and data.

  24. Case Study 3 Water Pollution (docx)

    Economics of the Environment: Assignment 3 - A Policy Analysis for Water Pollution 1 Part A As a newly hired consultant for a local river restoration organization, you have been asked to compare a traditional command and control policy to a market, incentive based approach. The goal is to efficiently reduce emissions into the river from three local point-source polluters.