Home → Get Published → How to Publish a Research Paper: A Step-by-Step Guide

How to Publish a Research Paper: A Step-by-Step Guide

Picture of Jordan Kruszynski

Jordan Kruszynski

  • January 4, 2024

publish first research paper

You’re in academia.

You’re going steady.

Your research is going well and you begin to wonder: ‘ How exactly do I get a research paper published?’

If this is the question on your lips, then this step-by-step guide is the one for you. We’ll be walking you through the whole process of how to publish a research paper.

Publishing a research paper is a significant milestone for researchers and academics, as it allows you to share your findings, contribute to your field of study, and start to gain serious recognition within the wider academic community. So, want to know how to publish a research paper? By following our guide, you’ll get a firm grasp of the steps involved in this process, giving you the best chance of successfully navigating the publishing process and getting your work out there.

Understanding the Publishing Process

To begin, it’s crucial to understand that getting a research paper published is a multi-step process. From beginning to end, it could take as little as 2 months before you see your paper nestled in the pages of your chosen journal. On the other hand, it could take as long as a year .

Below, we set out the steps before going into more detail on each one. Getting a feel for these steps will help you to visualise what lies ahead, and prepare yourself for each of them in turn. It’s important to remember that you won’t actually have control over every step – in fact, some of them will be decided by people you’ll probably never meet. However, knowing which parts of the process are yours to decide will allow you to adjust your approach and attitude accordingly.

Each of the following stages will play a vital role in the eventual publication of your paper:

  • Preparing Your Research Paper
  • Finding the Right Journal
  • Crafting a Strong Manuscript
  • Navigating the Peer-Review Process
  • Submitting Your Paper
  • Dealing with Rejections and Revising Your Paper

Step 1: Preparing Your Research Paper

It all starts here. The quality and content of your research paper is of fundamental importance if you want to get it published. This step will be different for every researcher depending on the nature of your research, but if you haven’t yet settled on a topic, then consider the following advice:

  • Choose an interesting and relevant topic that aligns with current trends in your field. If your research touches on the passions and concerns of your academic peers or wider society, it may be more likely to capture attention and get published successfully.
  • Conduct a comprehensive literature review (link to lit. review article once it’s published) to identify the state of existing research and any knowledge gaps within it. Aiming to fill a clear gap in the knowledge of your field is a great way to increase the practicality of your research and improve its chances of getting published.
  • Structure your paper in a clear and organised manner, including all the necessary sections such as title, abstract, introduction (link to the ‘how to write a research paper intro’ article once it’s published) , methodology, results, discussion, and conclusion.
  • Adhere to the formatting guidelines provided by your target journal to ensure that your paper is accepted as viable for publishing. More on this in the next section…

Step 2: Finding the Right Journal

Understanding how to publish a research paper involves selecting the appropriate journal for your work. This step is critical for successful publication, and you should take several factors into account when deciding which journal to apply for:

  • Conduct thorough research to identify journals that specialise in your field of study and have published similar research. Naturally, if you submit a piece of research in molecular genetics to a journal that specialises in geology, you won’t be likely to get very far.
  • Consider factors such as the journal’s scope, impact factor, and target audience. Today there is a wide array of journals to choose from, including traditional and respected print journals, as well as numerous online, open-access endeavours. Some, like Nature , even straddle both worlds.
  • Review the submission guidelines provided by the journal and ensure your paper meets all the formatting requirements and word limits. This step is key. Nature, for example, offers a highly informative series of pages that tells you everything you need to know in order to satisfy their formatting guidelines (plus more on the whole submission process).
  • Note that these guidelines can differ dramatically from journal to journal, and details really do matter. You might submit an outstanding piece of research, but if it includes, for example, images in the wrong size or format, this could mean a lengthy delay to getting it published. If you get everything right first time, you’ll save yourself a lot of time and trouble, as well as strengthen your publishing chances in the first place.

Step 3: Crafting a Strong Manuscript

Crafting a strong manuscript is crucial to impress journal editors and reviewers. Look at your paper as a complete package, and ensure that all the sections tie together to deliver your findings with clarity and precision.

  • Begin by creating a clear and concise title that accurately reflects the content of your paper.
  • Compose an informative abstract that summarises the purpose, methodology, results, and significance of your study.
  • Craft an engaging introduction (link to the research paper introduction article) that draws your reader in.
  • Develop a well-structured methodology section, presenting your results effectively using tables and figures.
  • Write a compelling discussion and conclusion that emphasise the significance of your findings.

Step 4: Navigating the Peer-Review Process

Once you submit your research paper to a journal, it undergoes a rigorous peer-review process to ensure its quality and validity. In peer-review, experts in your field assess your research and provide feedback and suggestions for improvement, ultimately determining whether your paper is eligible for publishing or not. You are likely to encounter several models of peer-review, based on which party – author, reviewer, or both – remains anonymous throughout the process.

When your paper undergoes the peer-review process, be prepared for constructive criticism and address the comments you receive from your reviewer thoughtfully, providing clear and concise responses to their concerns or suggestions. These could make all the difference when it comes to making your next submission.

The peer-review process can seem like a closed book at times. Check out our discussion of the issue with philosopher and academic Amna Whiston in The Research Beat podcast!

Step 5: Submitting Your Paper

As we’ve already pointed out, one of the key elements in how to publish a research paper is ensuring that you meticulously follow the journal’s submission guidelines. Strive to comply with all formatting requirements, including citation styles, font, margins, and reference structure.

Before the final submission, thoroughly proofread your paper for errors, including grammar, spelling, and any inconsistencies in your data or analysis. At this stage, consider seeking feedback from colleagues or mentors to further improve the quality of your paper.

Step 6: Dealing with Rejections and Revising Your Paper

Rejection is a common part of the publishing process, but it shouldn’t discourage you. Analyse reviewer comments objectively and focus on the constructive feedback provided. Make necessary revisions and improvements to your paper to address the concerns raised by reviewers. If needed, consider submitting your paper to a different journal that is a better fit for your research.

For more tips on how to publish your paper out there, check out this thread by Dr. Asad Naveed ( @dr_asadnaveed ) – and if you need a refresher on the basics of how to publish under the Open Access model, watch this 5-minute video from Audemic Academy !

Final Thoughts

Successfully understanding how to publish a research paper requires dedication, attention to detail, and a systematic approach. By following the advice in our guide, you can increase your chances of navigating the publishing process effectively and achieving your goal of publication.

Remember, the journey may involve revisions, peer feedback, and potential rejections, but each step is an opportunity for growth and improvement. Stay persistent, maintain a positive mindset, and continue to refine your research paper until it reaches the standards of your target journal. Your contribution to your wider discipline through published research will not only advance your career, but also add to the growing body of collective knowledge in your field. Embrace the challenges and rewards that come with the publication process, and may your research paper make a significant impact in your area of study!

Looking for inspiration for your next big paper? Head to Audemic , where you can organise and listen to all the best and latest research in your field!

Keep striving, researchers! ✨

Table of Contents

Related articles.

publish first research paper

You’re in academia. You’re going steady. Your research is going well and you begin to wonder: ‘How exactly do I get a

publish first research paper

Behind the Scenes: What Does a Research Assistant Do?

Have you ever wondered what goes on behind the scenes in a research lab? Does it involve acting out the whims of

publish first research paper

How to Write a Research Paper Introduction: Hook, Line, and Sinker

Want to know how to write a research paper introduction that dazzles? Struggling to hook your reader in with your opening sentences?

Priceton-logo

Blog Podcast

Privacy policy Terms of service

Subscribe to our newsletter!

Discover more from Audemic: Access any academic research via audio

Subscribe now to keep reading and get access to the full archive.

Type your email…

Continue reading

Author Insights - What to expect when publishing your first research paper.

Advice and tips from influential researchers who have been in the exact same starting position as you..

Are you considering publishing your research? Do you want to understand what to expect and learn some tips and tricks? Do you know the benefits and opportunities publishing your paper will bring?

In this case study, we talk to some influential researchers and dig down into what to expect when publishing your first paper, including what publishing was like for them and what they did after publishing their first paper.

Beyond these interviews, we highlight the key tips for researchers new to publishing, and identify the best publishing support tools researchers should be aware of, such as writing your journal article , the submission check list and sites such as Editage .

Q&A with Dr Eden Morales-Narváez

publish first research paper

Q&A with Dr Eden Morales-Narváez

We chat with Dr Eden Morales Narvaez, winner of the  Emerging Leaders 2020 award in JPhys Photonics , who has published 20 papers, starting with his first paper on  Plasmonic colored nanopaper: a potential preventive healthcare tool against threats emerging from uncontrolled UV exposure  published in 2019. Eden is now an editorial board member for the  JPhys Photonics  journal .

What made you decide to publish your first research paper?

“A great mentor combined with surprising results led me to publish my first paper.

I joined Professor Arben Merkoçi’s team (Catalan Institute of Nanoscience and Nanotechnology) in early 2011. In those times, our research team was very motivated by graphene: the wonder material. So, I performed some experiments with graphene oxide and discovered that we were able to quench the photoluminescence of quantum dots with an almost 100% efficiency.

At the beginning, I did not feel convinced about this surprising results that I was getting (I believed that perhaps my results were wrong), but a chat with my mentor was really encouraging, and then my mind changed completely. I remember that he said: Yes, Eden, people in science get surprising results, people do that! So, my mentor vitalized my self-confidence, and this was simply the starting point of my first research paper and somehow my scientific journey. Nowadays, I still publish papers taking advantage of the wonder material and its photoluminescence quenching capabilities.”

What do you know now that you wish you knew when you were starting the process to publish your paper?

“I have to confess that at the beginning I was looking for a publication related to the biomedical field, because my thesis was expected to be focused in such a field. However, when I published my first paper in the materials field, I realized that early career researchers can modify the scope of their thesis to eventually unveil new steps and future opportunities in their career.

Besides, I am now aware that writing skills are your Swiss Army knife to succeed in the process to publish your paper. Editors and reviewers demand high quality papers, but they also enjoy manuscripts nicely and clearly written, the same as the readers. Professor Osvaldo Oliveira (University of São Paulo) says that writing skills are your best investment as a scientist and he also points out that a scientist with good writing skills is much better equipped than a scientist with other kinds of skills or resources. I could not agree more with Professor Oliveira.”

What did you enjoy/not-enjoy about publishing your research?

“I enjoyed sharing and discussing my published results in conferences and presentations. Seeing that my peers were reading and citing my research was also very satisfying. But no one enjoys rejection of their manuscripts, which is also part of the journey. Rejection is discouraging, but it is also an opportunity to change the scope of your research and/or improve the quality of your manuscript.”

How can IOP Publishing help early career researchers who are starting out in their publishing journey?

“Offer webinars on writing skills, promote all type of tools which are valuable in such a journey and explain their particularities and usefulness; for example, scientific search engines, journal suggesters/finders, plagiarism detectors, journal citation reports, research metrics, etc.”

Are there any tips, tools or websites that you would recommend?

  • Feel passionate about your field or research topic. Mix such a passion with patience and resilience, which are crucial abilities to be developed in a scientific career.
  • Seek a mentor whose results are inspirational and motivating for you. Mentors not only shape your current career but also the future of your career.
  • Invest in your writing skills (as highlighted by Professor Oliveira).
  • In order to publish innovative literature, you have to be aware of the state-of-the art in your field.
  • Read, read and read more, especially the journals you would like to publish in.
  • Be critical, spot agreements, gaps and controversies in your field.
  • One of your goals should be to write and publish a review article related to your thesis/research topic.
  • Avoid plagiarism, this type of misconduct can be easily spotted by peers using tools like ithenticate .
  • Promote your research on social media using messages easy to understand. Social media is a perfect way to reach society, decision-makers, colleagues and stakeholders. Follow and interact with inspirational colleagues on social media.
  • If you are not sure about the target journal of your manuscript, I recommend Master Journal List . This fantastic tool helps you to find suitable journals for your manuscript depending on the title and abstract.

What did you do after you published your paper? Did you promote it? How?

“The acceptance and publication of your first paper is a very special moment. Nausea, by Beck, was playing on my computer when I received the news of the acceptance of my first publication (I will never forget it). I happily jumped from my seat and celebrated the good news with my wife. In those times, I was not particularly active on social media but I immediately had the opportunity to share my results in NanoSpain 2012 (Santander), where I received valuable feedback on my research. It was really useful to plan new experiments and future work.”

How has publishing your paper influenced your career and networking?

“As I previously mentioned, I still publish papers taking advantage of the wonder material and its photoluminescence quenching capabilities. I am also the inventor of two related patents and several of my post-graduate students are developing their thesis taking advantage of the wonder material, even in translational settings. My networking opportunities were also enhanced; for instance, together with prestigious colleagues, I have organized some special issues dealing with 2D materials in reputable journals, I have several collaborations related to 2D materials and I have been invited by many editors to review countless manuscripts related to graphene derivatives. My first paper is also one of the most cited in my list of research papers. Definitely, that first publication represents a cornerstone in my career and networking opportunities.”

What would you say to an early career researcher who is asking the question “Should I consider publishing my research?”

“Absolutely! It will boost your career!”

Q&A with Professor Caterina Cocchi

publish first research paper

Q&A with Professor Caterina Cocchi

We talk to Professor Caterina Cocchi, who is heavily involved in Electronic Structure (EST) ’s Emerging Leaders issues ( 2020 and  2021 ) as well as the past events, and who has also joined EST as a guest editor.

“IOP Publishing and publishers in general could offer more resources to train young scientists to write papers and to act as peer reviewers. For some unknown reason, academic education does not typically include official seminars or training about scientific writing and publishing. Both activities are typically passed on from mentor to mentee, naturally generating big gaps among scientists, which may ultimately affect their career. The ability to write a clear and convincing scientific text is not only key for publishing good papers but also to win grants, positions and, ultimately, to be visible in the community.”

“When writing a paper, it is important to communicate a clear message and to give the manuscript a clear structure. Also, using only essential words is much more effective than diluting the content in endless prose. During the peer-review process, it is important to always consider the referees’ comments on a factual level. Never take them personally.

I follow a few blogs about scientific writing. I can definitely suggest the one by Anna Clemens . It is regularly updated and offers a broad spectrum of suggestions and hints about scientific writing and about the whole publication process.”

“I published my first paper in 2010 and back then social media was not very much used by the scientific community. To disseminate, I attended a number of conferences and workshops in which I presented the results of that paper.”

“Publishing is the essence of scientific work. Any piece of work that is not published or disseminated to the community simply does not exist. Hence, if you want to give visibility to your work, you have to publish it. Very often, I see in young scientists the fear of submitting something that is not perfect, and this is usually the cause of big delays in publications. My motto is “published is better than perfect” and I encourage my young co-workers to wrap up their work effectively and disseminate it in a timely manner. Should the results be disproved later, well, this is how science works, right?”

Author Insights Summary

We hope you enjoyed reading these inspiring interviews and have gathered some useful knowledge to help you with your publishing journey. Below are some of our key take-aways from both interviews useful for early career researchers publishing their first article.

Alongside this, we also have an extremely useful Publishing Support hub for both authors and reviewers which include free resources such as:

  • Article templates – both double and single anonymous templates. These may help to speed the publication of accepted articles.
  • Editage – Language and figure editing services. Helping you prepare your paper ready for submissions.
  • Track my article – a platform which helps you find out where in the journey your paper is at.
  • Paperpal Preflight – A free pre submission feedback service which checks for and highlights issues before you submit your paper.
  • IOP Academy resources and events – workshops, webinars and online training covering various aspects of publishing in journals.
  • Submission checklist – check you have covered everything before submitting your paper.

Key findings:

Promoting and networking is important:

  • Take part in discussions and presentations at conferences and workshops to present the results of your paper.
  • Use social media to get your messages across in an accessible way.

Rejection isn’t bad:

  • Rejection is part of the journey – it’s an opportunity to change the scope of your research as well, potentially unveiling new steps and future opportunities.
  • Always consider the referees’ comment on a factual level. Never take them personally.

Writing skills are key:

  • Writing skills are your “Swiss Army knife” to succeed in publishing your paper.
  • Make sure you have clear and well written manuscripts.
  • There are useful blogs and websites about scientific writing.

Keep on top of the research in your area:

  • Be aware of the state-of-the art in your field.
  • Read more, especially the journals you would like to publish in.

Pros of publishing

  • “Any piece of work that is not published or disseminated to the community simply does not exist.”
  • Having published work helps networking and other opportunities for your career.
  • “The ability to write a clear and convincing scientific text is not only key for publishing good papers but also to win grants, positions and, ultimately, to be visible in the community.”
  • PRO Courses Guides New Tech Help Pro Expert Videos About wikiHow Pro Upgrade Sign In
  • EDIT Edit this Article
  • EXPLORE Tech Help Pro About Us Random Article Quizzes Request a New Article Community Dashboard This Or That Game Popular Categories Arts and Entertainment Artwork Books Movies Computers and Electronics Computers Phone Skills Technology Hacks Health Men's Health Mental Health Women's Health Relationships Dating Love Relationship Issues Hobbies and Crafts Crafts Drawing Games Education & Communication Communication Skills Personal Development Studying Personal Care and Style Fashion Hair Care Personal Hygiene Youth Personal Care School Stuff Dating All Categories Arts and Entertainment Finance and Business Home and Garden Relationship Quizzes Cars & Other Vehicles Food and Entertaining Personal Care and Style Sports and Fitness Computers and Electronics Health Pets and Animals Travel Education & Communication Hobbies and Crafts Philosophy and Religion Work World Family Life Holidays and Traditions Relationships Youth
  • Browse Articles
  • Learn Something New
  • Quizzes Hot
  • This Or That Game
  • Train Your Brain
  • Explore More
  • Support wikiHow
  • About wikiHow
  • Log in / Sign up
  • Education and Communications
  • College University and Postgraduate
  • Academic Writing
  • Research Papers

How to Write and Publish Your Research in a Journal

Last Updated: February 26, 2024 Fact Checked

Choosing a Journal

Writing the research paper, editing & revising your paper, submitting your paper, navigating the peer review process, research paper help.

This article was co-authored by Matthew Snipp, PhD and by wikiHow staff writer, Cheyenne Main . C. Matthew Snipp is the Burnet C. and Mildred Finley Wohlford Professor of Humanities and Sciences in the Department of Sociology at Stanford University. He is also the Director for the Institute for Research in the Social Science’s Secure Data Center. He has been a Research Fellow at the U.S. Bureau of the Census and a Fellow at the Center for Advanced Study in the Behavioral Sciences. He has published 3 books and over 70 articles and book chapters on demography, economic development, poverty and unemployment. He is also currently serving on the National Institute of Child Health and Development’s Population Science Subcommittee. He holds a Ph.D. in Sociology from the University of Wisconsin—Madison. There are 13 references cited in this article, which can be found at the bottom of the page. This article has been fact-checked, ensuring the accuracy of any cited facts and confirming the authority of its sources. This article has been viewed 698,382 times.

Publishing a research paper in a peer-reviewed journal allows you to network with other scholars, get your name and work into circulation, and further refine your ideas and research. Before submitting your paper, make sure it reflects all the work you’ve done and have several people read over it and make comments. Keep reading to learn how you can choose a journal, prepare your work for publication, submit it, and revise it after you get a response back.

Things You Should Know

  • Create a list of journals you’d like to publish your work in and choose one that best aligns with your topic and your desired audience.
  • Prepare your manuscript using the journal’s requirements and ask at least 2 professors or supervisors to review your paper.
  • Write a cover letter that “sells” your manuscript, says how your research adds to your field and explains why you chose the specific journal you’re submitting to.

Step 1 Create a list of journals you’d like to publish your work in.

  • Ask your professors or supervisors for well-respected journals that they’ve had good experiences publishing with and that they read regularly.
  • Many journals also only accept specific formats, so by choosing a journal before you start, you can write your article to their specifications and increase your chances of being accepted.
  • If you’ve already written a paper you’d like to publish, consider whether your research directly relates to a hot topic or area of research in the journals you’re looking into.

Step 2 Look at each journal’s audience, exposure, policies, and procedures.

  • Review the journal’s peer review policies and submission process to see if you’re comfortable creating or adjusting your work according to their standards.
  • Open-access journals can increase your readership because anyone can access them.

Step 1 Craft an effective introduction with a thesis statement.

  • Scientific research papers: Instead of a “thesis,” you might write a “research objective” instead. This is where you state the purpose of your research.
  • “This paper explores how George Washington’s experiences as a young officer may have shaped his views during difficult circumstances as a commanding officer.”
  • “This paper contends that George Washington’s experiences as a young officer on the 1750s Pennsylvania frontier directly impacted his relationship with his Continental Army troops during the harsh winter at Valley Forge.”

Step 2 Write the literature review and the body of your paper.

  • Scientific research papers: Include a “materials and methods” section with the step-by-step process you followed and the materials you used. [5] X Research source
  • Read other research papers in your field to see how they’re written. Their format, writing style, subject matter, and vocabulary can help guide your own paper. [6] X Research source

Step 3 Write your conclusion that ties back to your thesis or research objective.

  • If you’re writing about George Washington’s experiences as a young officer, you might emphasize how this research changes our perspective of the first president of the U.S.
  • Link this section to your thesis or research objective.
  • If you’re writing a paper about ADHD, you might discuss other applications for your research.

Step 4 Write an abstract that describes what your paper is about.

  • Scientific research papers: You might include your research and/or analytical methods, your main findings or results, and the significance or implications of your research.
  • Try to get as many people as you can to read over your abstract and provide feedback before you submit your paper to a journal.

Step 1 Prepare your manuscript according to the journal’s requirements.

  • They might also provide templates to help you structure your manuscript according to their specific guidelines. [11] X Research source

Step 2 Ask 2 colleagues to review your paper and revise it with their notes.

  • Not all journal reviewers will be experts on your specific topic, so a non-expert “outsider’s perspective” can be valuable.

Step 1 Check your sources for plagiarism and identify 5 to 6 keywords.

  • If you have a paper on the purification of wastewater with fungi, you might use both the words “fungi” and “mushrooms.”
  • Use software like iThenticate, Turnitin, or PlagScan to check for similarities between the submitted article and published material available online. [15] X Research source

Step 2 Write a cover letter explaining why you chose their journal.

  • Header: Address the editor who will be reviewing your manuscript by their name, include the date of submission, and the journal you are submitting to.
  • First paragraph: Include the title of your manuscript, the type of paper it is (like review, research, or case study), and the research question you wanted to answer and why.
  • Second paragraph: Explain what was done in your research, your main findings, and why they are significant to your field.
  • Third paragraph: Explain why the journal’s readers would be interested in your work and why your results are important to your field.
  • Conclusion: State the author(s) and any journal requirements that your work complies with (like ethical standards”).
  • “We confirm that this manuscript has not been published elsewhere and is not under consideration by another journal.”
  • “All authors have approved the manuscript and agree with its submission to [insert the name of the target journal].”

Step 3 Submit your article according to the journal’s submission guidelines.

  • Submit your article to only one journal at a time.
  • When submitting online, use your university email account. This connects you with a scholarly institution, which can add credibility to your work.

Step 1 Try not to panic when you get the journal’s initial response.

  • Accept: Only minor adjustments are needed, based on the provided feedback by the reviewers. A first submission will rarely be accepted without any changes needed.
  • Revise and Resubmit: Changes are needed before publication can be considered, but the journal is still very interested in your work.
  • Reject and Resubmit: Extensive revisions are needed. Your work may not be acceptable for this journal, but they might also accept it if significant changes are made.
  • Reject: The paper isn’t and won’t be suitable for this publication, but that doesn’t mean it might not work for another journal.

Step 2 Revise your paper based on the reviewers’ feedback.

  • Try organizing the reviewer comments by how easy it is to address them. That way, you can break your revisions down into more manageable parts.
  • If you disagree with a comment made by a reviewer, try to provide an evidence-based explanation when you resubmit your paper.

Step 3 Resubmit to the same journal or choose another from your list.

  • If you’re resubmitting your paper to the same journal, include a point-by-point response paper that talks about how you addressed all of the reviewers’ comments in your revision. [22] X Research source
  • If you’re not sure which journal to submit to next, you might be able to ask the journal editor which publications they recommend.

publish first research paper

Expert Q&A

You might also like.

Develop a Questionnaire for Research

  • If reviewers suspect that your submitted manuscript plagiarizes another work, they may refer to a Committee on Publication Ethics (COPE) flowchart to see how to move forward. [23] X Research source Thanks Helpful 0 Not Helpful 0

publish first research paper

  • ↑ https://www.wiley.com/en-us/network/publishing/research-publishing/choosing-a-journal/6-steps-to-choosing-the-right-journal-for-your-research-infographic
  • ↑ https://link.springer.com/article/10.1007/s13187-020-01751-z
  • ↑ https://libguides.unomaha.edu/c.php?g=100510&p=651627
  • ↑ http://www.canberra.edu.au/library/start-your-research/research_help/publishing-research
  • ↑ https://writingcenter.fas.harvard.edu/conclusions
  • ↑ https://writing.wisc.edu/handbook/assignments/writing-an-abstract-for-your-research-paper/
  • ↑ https://www.springer.com/gp/authors-editors/book-authors-editors/your-publication-journey/manuscript-preparation
  • ↑ https://apus.libanswers.com/writing/faq/2391
  • ↑ https://academicguides.waldenu.edu/library/keyword/search-strategy
  • ↑ https://ifis.libguides.com/journal-publishing-guide/submitting-your-paper
  • ↑ https://www.springer.com/kr/authors-editors/authorandreviewertutorials/submitting-to-a-journal-and-peer-review/cover-letters/10285574
  • ↑ http://www.apa.org/monitor/sep02/publish.aspx
  • ↑ Matthew Snipp, PhD. Research Fellow, U.S. Bureau of the Census. Expert Interview. 26 March 2020.

About This Article

Matthew Snipp, PhD

To publish a research paper, ask a colleague or professor to review your paper and give you feedback. Once you've revised your work, familiarize yourself with different academic journals so that you can choose the publication that best suits your paper. Make sure to look at the "Author's Guide" so you can format your paper according to the guidelines for that publication. Then, submit your paper and don't get discouraged if it is not accepted right away. You may need to revise your paper and try again. To learn about the different responses you might get from journals, see our reviewer's explanation below. Did this summary help you? Yes No

  • Send fan mail to authors

Reader Success Stories

RAMDEV GOHIL

RAMDEV GOHIL

Oct 16, 2017

Did this article help you?

David Okandeji

David Okandeji

Oct 23, 2019

Revati Joshi

Revati Joshi

Feb 13, 2017

Shahzad Khan

Shahzad Khan

Jul 1, 2017

Oma Wright

Apr 7, 2017

Am I a Narcissist or an Empath Quiz

Featured Articles

How to Celebrate Cinco de Mayo in a Respectful Way

Trending Articles

What Do I Want in a Weight Loss Program Quiz

Watch Articles

Make Sugar Cookies

  • Terms of Use
  • Privacy Policy
  • Do Not Sell or Share My Info
  • Not Selling Info

wikiHow Tech Help Pro:

Level up your tech skills and stay ahead of the curve

How to Write and Publish a Research Paper for a Peer-Reviewed Journal

  • Open access
  • Published: 30 April 2020
  • Volume 36 , pages 909–913, ( 2021 )

Cite this article

You have full access to this open access article

publish first research paper

  • Clara Busse   ORCID: orcid.org/0000-0002-0178-1000 1 &
  • Ella August   ORCID: orcid.org/0000-0001-5151-1036 1 , 2  

269k Accesses

15 Citations

720 Altmetric

Explore all metrics

Communicating research findings is an essential step in the research process. Often, peer-reviewed journals are the forum for such communication, yet many researchers are never taught how to write a publishable scientific paper. In this article, we explain the basic structure of a scientific paper and describe the information that should be included in each section. We also identify common pitfalls for each section and recommend strategies to avoid them. Further, we give advice about target journal selection and authorship. In the online resource 1 , we provide an example of a high-quality scientific paper, with annotations identifying the elements we describe in this article.

Similar content being viewed by others

publish first research paper

Literature reviews as independent studies: guidelines for academic practice

publish first research paper

How to design bibliometric research: an overview and a framework proposal

publish first research paper

Open peer review: promoting transparency in open science

Avoid common mistakes on your manuscript.

Introduction

Writing a scientific paper is an important component of the research process, yet researchers often receive little formal training in scientific writing. This is especially true in low-resource settings. In this article, we explain why choosing a target journal is important, give advice about authorship, provide a basic structure for writing each section of a scientific paper, and describe common pitfalls and recommendations for each section. In the online resource 1 , we also include an annotated journal article that identifies the key elements and writing approaches that we detail here. Before you begin your research, make sure you have ethical clearance from all relevant ethical review boards.

Select a Target Journal Early in the Writing Process

We recommend that you select a “target journal” early in the writing process; a “target journal” is the journal to which you plan to submit your paper. Each journal has a set of core readers and you should tailor your writing to this readership. For example, if you plan to submit a manuscript about vaping during pregnancy to a pregnancy-focused journal, you will need to explain what vaping is because readers of this journal may not have a background in this topic. However, if you were to submit that same article to a tobacco journal, you would not need to provide as much background information about vaping.

Information about a journal’s core readership can be found on its website, usually in a section called “About this journal” or something similar. For example, the Journal of Cancer Education presents such information on the “Aims and Scope” page of its website, which can be found here: https://www.springer.com/journal/13187/aims-and-scope .

Peer reviewer guidelines from your target journal are an additional resource that can help you tailor your writing to the journal and provide additional advice about crafting an effective article [ 1 ]. These are not always available, but it is worth a quick web search to find out.

Identify Author Roles Early in the Process

Early in the writing process, identify authors, determine the order of authors, and discuss the responsibilities of each author. Standard author responsibilities have been identified by The International Committee of Medical Journal Editors (ICMJE) [ 2 ]. To set clear expectations about each team member’s responsibilities and prevent errors in communication, we also suggest outlining more detailed roles, such as who will draft each section of the manuscript, write the abstract, submit the paper electronically, serve as corresponding author, and write the cover letter. It is best to formalize this agreement in writing after discussing it, circulating the document to the author team for approval. We suggest creating a title page on which all authors are listed in the agreed-upon order. It may be necessary to adjust authorship roles and order during the development of the paper. If a new author order is agreed upon, be sure to update the title page in the manuscript draft.

In the case where multiple papers will result from a single study, authors should discuss who will author each paper. Additionally, authors should agree on a deadline for each paper and the lead author should take responsibility for producing an initial draft by this deadline.

Structure of the Introduction Section

The introduction section should be approximately three to five paragraphs in length. Look at examples from your target journal to decide the appropriate length. This section should include the elements shown in Fig.  1 . Begin with a general context, narrowing to the specific focus of the paper. Include five main elements: why your research is important, what is already known about the topic, the “gap” or what is not yet known about the topic, why it is important to learn the new information that your research adds, and the specific research aim(s) that your paper addresses. Your research aim should address the gap you identified. Be sure to add enough background information to enable readers to understand your study. Table 1 provides common introduction section pitfalls and recommendations for addressing them.

figure 1

The main elements of the introduction section of an original research article. Often, the elements overlap

Methods Section

The purpose of the methods section is twofold: to explain how the study was done in enough detail to enable its replication and to provide enough contextual detail to enable readers to understand and interpret the results. In general, the essential elements of a methods section are the following: a description of the setting and participants, the study design and timing, the recruitment and sampling, the data collection process, the dataset, the dependent and independent variables, the covariates, the analytic approach for each research objective, and the ethical approval. The hallmark of an exemplary methods section is the justification of why each method was used. Table 2 provides common methods section pitfalls and recommendations for addressing them.

Results Section

The focus of the results section should be associations, or lack thereof, rather than statistical tests. Two considerations should guide your writing here. First, the results should present answers to each part of the research aim. Second, return to the methods section to ensure that the analysis and variables for each result have been explained.

Begin the results section by describing the number of participants in the final sample and details such as the number who were approached to participate, the proportion who were eligible and who enrolled, and the number of participants who dropped out. The next part of the results should describe the participant characteristics. After that, you may organize your results by the aim or by putting the most exciting results first. Do not forget to report your non-significant associations. These are still findings.

Tables and figures capture the reader’s attention and efficiently communicate your main findings [ 3 ]. Each table and figure should have a clear message and should complement, rather than repeat, the text. Tables and figures should communicate all salient details necessary for a reader to understand the findings without consulting the text. Include information on comparisons and tests, as well as information about the sample and timing of the study in the title, legend, or in a footnote. Note that figures are often more visually interesting than tables, so if it is feasible to make a figure, make a figure. To avoid confusing the reader, either avoid abbreviations in tables and figures, or define them in a footnote. Note that there should not be citations in the results section and you should not interpret results here. Table 3 provides common results section pitfalls and recommendations for addressing them.

Discussion Section

Opposite the introduction section, the discussion should take the form of a right-side-up triangle beginning with interpretation of your results and moving to general implications (Fig.  2 ). This section typically begins with a restatement of the main findings, which can usually be accomplished with a few carefully-crafted sentences.

figure 2

Major elements of the discussion section of an original research article. Often, the elements overlap

Next, interpret the meaning or explain the significance of your results, lifting the reader’s gaze from the study’s specific findings to more general applications. Then, compare these study findings with other research. Are these findings in agreement or disagreement with those from other studies? Does this study impart additional nuance to well-accepted theories? Situate your findings within the broader context of scientific literature, then explain the pathways or mechanisms that might give rise to, or explain, the results.

Journals vary in their approach to strengths and limitations sections: some are embedded paragraphs within the discussion section, while some mandate separate section headings. Keep in mind that every study has strengths and limitations. Candidly reporting yours helps readers to correctly interpret your research findings.

The next element of the discussion is a summary of the potential impacts and applications of the research. Should these results be used to optimally design an intervention? Does the work have implications for clinical protocols or public policy? These considerations will help the reader to further grasp the possible impacts of the presented work.

Finally, the discussion should conclude with specific suggestions for future work. Here, you have an opportunity to illuminate specific gaps in the literature that compel further study. Avoid the phrase “future research is necessary” because the recommendation is too general to be helpful to readers. Instead, provide substantive and specific recommendations for future studies. Table 4 provides common discussion section pitfalls and recommendations for addressing them.

Follow the Journal’s Author Guidelines

After you select a target journal, identify the journal’s author guidelines to guide the formatting of your manuscript and references. Author guidelines will often (but not always) include instructions for titles, cover letters, and other components of a manuscript submission. Read the guidelines carefully. If you do not follow the guidelines, your article will be sent back to you.

Finally, do not submit your paper to more than one journal at a time. Even if this is not explicitly stated in the author guidelines of your target journal, it is considered inappropriate and unprofessional.

Your title should invite readers to continue reading beyond the first page [ 4 , 5 ]. It should be informative and interesting. Consider describing the independent and dependent variables, the population and setting, the study design, the timing, and even the main result in your title. Because the focus of the paper can change as you write and revise, we recommend you wait until you have finished writing your paper before composing the title.

Be sure that the title is useful for potential readers searching for your topic. The keywords you select should complement those in your title to maximize the likelihood that a researcher will find your paper through a database search. Avoid using abbreviations in your title unless they are very well known, such as SNP, because it is more likely that someone will use a complete word rather than an abbreviation as a search term to help readers find your paper.

After you have written a complete draft, use the checklist (Fig. 3 ) below to guide your revisions and editing. Additional resources are available on writing the abstract and citing references [ 5 ]. When you feel that your work is ready, ask a trusted colleague or two to read the work and provide informal feedback. The box below provides a checklist that summarizes the key points offered in this article.

figure 3

Checklist for manuscript quality

Data Availability

Michalek AM (2014) Down the rabbit hole…advice to reviewers. J Cancer Educ 29:4–5

Article   Google Scholar  

International Committee of Medical Journal Editors. Defining the role of authors and contributors: who is an author? http://www.icmje.org/recommendations/browse/roles-and-responsibilities/defining-the-role-of-authosrs-and-contributors.html . Accessed 15 January, 2020

Vetto JT (2014) Short and sweet: a short course on concise medical writing. J Cancer Educ 29(1):194–195

Brett M, Kording K (2017) Ten simple rules for structuring papers. PLoS ComputBiol. https://doi.org/10.1371/journal.pcbi.1005619

Lang TA (2017) Writing a better research article. J Public Health Emerg. https://doi.org/10.21037/jphe.2017.11.06

Download references

Acknowledgments

Ella August is grateful to the Sustainable Sciences Institute for mentoring her in training researchers on writing and publishing their research.

Code Availability

Not applicable.

Author information

Authors and affiliations.

Department of Maternal and Child Health, University of North Carolina Gillings School of Global Public Health, 135 Dauer Dr, 27599, Chapel Hill, NC, USA

Clara Busse & Ella August

Department of Epidemiology, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI, 48109-2029, USA

Ella August

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Ella August .

Ethics declarations

Conflicts of interests.

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

(PDF 362 kb)

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ .

Reprints and permissions

About this article

Busse, C., August, E. How to Write and Publish a Research Paper for a Peer-Reviewed Journal. J Canc Educ 36 , 909–913 (2021). https://doi.org/10.1007/s13187-020-01751-z

Download citation

Published : 30 April 2020

Issue Date : October 2021

DOI : https://doi.org/10.1007/s13187-020-01751-z

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Manuscripts
  • Scientific writing
  • Find a journal
  • Publish with us
  • Track your research

When you choose to publish with PLOS, your research makes an impact. Make your work accessible to all, without restrictions, and accelerate scientific discovery with options like preprints and published peer review that make your work more Open.

  • PLOS Biology
  • PLOS Climate
  • PLOS Complex Systems
  • PLOS Computational Biology
  • PLOS Digital Health
  • PLOS Genetics
  • PLOS Global Public Health
  • PLOS Medicine
  • PLOS Mental Health
  • PLOS Neglected Tropical Diseases
  • PLOS Pathogens
  • PLOS Sustainability and Transformation
  • PLOS Collections

Understanding the Publishing Process

publish first research paper

What’s happening with my paper? The publication process explained

The path to publication can be unsettling when you’re unsure what’s happening with your paper. Learn about staple journal workflows to see the detailed steps required for ensuring a rigorous and ethical publication.

Your team has prepared the paper, written a cover letter and completed the submission form. From here, it can sometimes feel like a waiting game while the journal has your paper.  It can be unclear exactly who is currently handling your paper as most individuals are only involved in a few steps of the overall process. Journals are responsible for overseeing the peer review, publication and archival process: editors, reviewers, technical editors, production staff and other internal staff all have their roles in ensuring submissions meet rigorous scientific and ethical reporting standards. 

Read on for an inside look at how a conventional peer-reviewed journal helps authors transform their initial submission to a certified publication. 

Note that the description below is based on the process at PLOS journals. It is likely that at other journals, various roles (e.g. technical editor) may in fact also be played by the editor, and some journals may not have journal staff at all, with all roles played by volunteer academics. As such, please consider the processes and waypoints, rather than who performs them, as the key information.

publish first research paper

Internal Checks on New Submissions

Estimated time: 10 days.

When a journal first receives your submission, there are typically two separate checks to confirm that the paper is appropriate and ready for peer review:

  • Technical check.   Performed by a technical editor to ensure that the submission has been properly completed and is ready for further assessment. Blurry figures, missing ethical statements, and incomplete author affiliations are common issues that are addressed at this initial stage. Typically, there are three technical checks: upon initial submission, alongside the first decision letter, and upon acceptance. 
  • Editorial screening . Once a paper passes the first check, an editor with subject expertise assesses the paper and determines whether it is within the journal’s scope and if it could potentially meet the required publication criteria. While there may be requests for further information and minor edits from the author as needed, the paper will either be desk rejected by the editor or allowed to proceed to peer review. 

Both editors at this point will additionally make notes for items to be followed-up on at later stages. The publication process involves finding a careful balance for when each check occurs. Early checks need to be thorough so that editors with relevant expertise can focus on the scientific content and more advanced reporting standards, but no one wants to be asked to reformat references only to have their paper desk rejected a few days later. 

Peer Review icon

Peer Review

Estimated time: 1 month.

Depending on the journal’s editorial structure, the editor who performed the initial assessment may also oversee peer review or another editor with more specific expertise may be assigned.  Regardless of the journal’s specific process, the various roles and responsibilities during peer review include:  

When you have questions or are unsure who your manuscripts is currently with, reach out to the journal staff for help (eg. [email protected]). They will be your lifeline, connecting you to all the other contributors working to assess the manuscript. 

Whether an editor needs a reminder that all reviews are complete or a reviewer has asked for an extension, the journal acts as a central hub of communication for those involved with the publication process. As editors and reviewers are used to hearing from journal staff about their duties, any messages you send to the journal can be forwarded to them with proper context and instructions on how to proceed appropriately. Additionally, journal staff will be able to inform you of any delays, such as reviewer availability during summer and holiday periods. 

Revision icon

Revision Decision

Estimated time: 1 day.

Editors evaluate peer reviewer feedback and their own expert assessment of the manuscript to reach a decision. After your editor submits a decision on your manuscript, the journal may review it before formally processing the decision and sending it on to you. 

A technical editor may scan the manuscript and the review comments to ensure that journal standards have been followed. At this stage, the technical editor will also add requests to ensure the paper, if published, will adhere to journal requirements for data sharing, copyright, ethical reporting and the like. 

Performing the second technical check at this stage and adding the journal requirements to the decision letter ultimately saves time by allowing authors to resolve the journal’s queries while making revisions based on comments from the reviewers. 

Revised Submission Received

Revised Submission Received

Estimated time: 3 days.

Upon receiving your revised submission, a technical editor will assess the revisions to confirm that the requests from the journal have been properly addressed. Before the paper is returned to the editor for their consideration, the journal needs to be confident that the paper won’t have any issues related to the metadata and reporting standards that could prevent publication. The editor may contact you to resolve any serious issues, though minor items can wait until the paper is accepted.

Subsequent Peer Review

Subsequent Peer Review

Estimated time: 2 weeks, highly variable.

When your resubmitted paper has passed the required checks, it’ll be assigned back to the same editor who handled it during the first round of peer review. At this point, your paper has gone through two sets of journal checks and one round of peer review. If all has gone well so far, the paper should feel quite solid both in terms of scientific content and proper reporting standards. 

When the editor receives your revised paper, they are asked to check if all reviewer comments have been adequately addressed and if the paper now adheres to the journal’s publication criteria. Depending on the situation, some editors may feel confident making this decision based on their own expertise while others may re-invite the previous reviewers for their opinions. 

Individual responsibilities are the same as the initial round of peer review, but it is generally expected that later stages of peer review proceed quicker unless new concerns have been introduced as part of the revision. 

Preliminary Acceptance

Preliminary Acceptance

Estimated time: 1 week.

Your editor is satisfied with the scientific quality of your work and has chosen to accept it in principle. Before it can proceed to production and typesetting, the journal office will perform it’s third and final technical check, requesting any formatting changes or additional details that may be required. 

When fulfilling these final journal requests, double check the final files to confirm all information is correct. If you need to make changes beyond those specifically required in the decision letter, inform the journal and explain why you made the unrequested changes. Any change that could affect the scientific meaning of the work will need to be approved by the handling editor. While including your rationale for the changes will help avoid delays, if there are extensive changes made at this point the paper may need to go through another round of formal review.

Formal Acceptance and Publication

Formal Acceptance and Publication

Estimated time: 2 weeks.

After a technical editor has confirmed that all requests from the provisional acceptance letter have been addressed, you will receive your formal acceptance letter. This letter indicates that your paper is being passed from the Editorial department to the production department—that all information has been editorially approved. The scientific content has been approved through peer review, and the journal’s publication requirements have been met. 

Congratulations to you and your co-authors! Your article will be available as soon as the journal transforms the submission into a typeset, consistently structured scientific manuscript, ready to be read and cited by your peers.

The contents of the Peer Review Center are also available as a live, interactive training session, complete with slides, talking points, and activities. …

The contents of the Writing Center are also available as a live, interactive training session, complete with slides, talking points, and activities. …

There’s a lot to consider when deciding where to submit your work. Learn how to choose a journal that will help your study reach its audience, while reflecting your values as a researcher…

News alert: UC Berkeley has announced its next university librarian

Secondary menu

  • Log in to your Library account
  • Hours and Maps
  • Connect from Off Campus
  • UC Berkeley Home

Search form

How to publish a scientific paper: writing the paper.

  • Writing the paper
  • Submitting the manuscript
  • Editorial process
  • Maximizing impact

publish first research paper

Image (detail): Subhashish Panigrahi, Wikimedia Commons , CC-BY-SA 4.0

Writing a scientific paper

Before you begin.

  • Review the literature: Ensure that the research question has not been investigated before and that the experimental methods are appropriate. Librarians can help!
  • Research data management (UC Berkeley): Ensure that your data meet disciplinary guidelines, and that you will be able to comply with funder and journal policies for data deposit and sharing.

Quick writing guides

11 steps

  • 11 steps to structuring a science paper editors will take seriously (Borja 2014, updated 2021)
  • The Science of Science Writing (Gopen and Swan 1990)
  • Short Guide to Scientific Writing (Sawyer n.d.)
  • Ten simple principles for structuring papers (Mensh and Kording 2017)
  • Writing workshop program PLOS Neglected Tropical Diseases, 2015; includes general as well as journal-specific guidelines. General guidelines begin at slide 13.

Image (detail): istock/Thomas Shanahan ( Elsevier Connect )

In-depth writing guides and resources

nature masterclass

  • Nature Masterclass on Scientific Writing and Publishing Requires creating free Nature account, accessing from Berkeley IP address or using the Berkeley VPN with Library Access - Full Tunnel gateway, and enabling popups.
  • How to Write a Good Scientific Paper (Mack 2018)
  • Writing science: how to write papers that get cited and proposals that get funded (Schimel 2012)
  • Graduate Writing Center (UC Berkeley)

Image (detail): Nature Masterclasses

Reporting guidelines

FAIRsharing

  • Digital Curation Centre (DCC): https://www.dcc.ac.uk/guidance/standards/metadata
  • Enhancing the QUAlity and Transparency Of health Research (EQUATOR): https://www.equator-network.org/reporting-guidelines/ for human- and animal-subjects research
  • FAIRsharing: https://fairsharing.org/standards/

Writing tools

zotero

  • Manage your citations : Citation managers EndNote, Mendeley, RefWorks, and Zotero (UC Berkeley Library guide)

overleaf logo

  • Writing + Citing in the Sciences : LaTeX editor Overleaf and citation managers (UC Berkeley Library guide)

LaTeX Project

  • LaTeX in Engineering & Physical Sciences : The document formatting markup language LaTeX, which is especially useful for rendering mathematical and chemical symbols and equations (UC Berkeley Library guide)
  • Virtual Online Library Tutorials (VOLT): LaTeX : Self-paced exercises for learning LaTeX

For more help

Profile Photo

Writing tips & tools

Writing tips.

Avoid fragmentation (breaking a single study into multiple short papers) and redundant publication (submitting multiple papers that are very similar).

When writing a scientific paper, think about the structure familiar to you from reading scientific papers. A common structure for scientific research articles is termed IMRAD: Introduction, Methods, Results, And Discussion. A fuller outline is provided below:

  • Title: most important element; include standard, searchable terms (keywords) to call attention to your work. Articles with short titles describing the results are cited more often (Paiva et al. 2012); cited 200 times (Google Scholar)  
  •  What is the problem domain (system under investigation)?
  •  What is the specific research question ? 
  •  What were the methods and results ? 
  •  What are the conclusions ?
  • Introduction: describes the general problem domain (system under investigation) and then focuses on the specific research question addressed and/or the hypothesis tested by this paper.  
  • Methods and materials: provides enough detail to enable experiment to be reproduced by another researcher in your field. Standard experimental methods can be indicated by a reference to a published protocol. Some journals have adopted STAR Methods (Structured, Transparent, Accessible Reporting), which includes a Key Resources Table listing all reagents, antibodies, cell lines, software, or other resources required for the experiment. Use of identifiers such as Research Resource Identifiers (RRIDs) is strongly encouraged. Protocols can be shared publicly or privately on protocols.io . If they are original they can be published in a protocol journal such as bio-protocol , STAR protocols , or JoVE .  
  • Figures: clear and compelling; each figure should tell a single story: Data Visualization Guide (UC Berkeley Library)  
  • Discussion: explains meaning and significance of results (how do they advance the field?) and how they relate to the research question; describes limitations and further work suggested by study.  
  • Data availability statement: Some publishers require a statement describing how the data can be accessed and reused, or the data protection concerns (such as privacy or commercial sensitivity) that prevent sharing.  
  • Acknowledgements: Unless there are separate sections for this information, name funding sources , declare any potential competing interests , and thank contributors who are not co-authors. For human- and animal-subject research, an ethics statement may be required identifying the review committee that approved the study and the relevant guidelines and regulations that governed the research.  
  • References : A list of sources cited in your paper. Citations (both in-text and in the reference list) must be accurate and formatted in the journal's required style. Use a citation manager .  
  • Supplementary information : supporting technical information (figures, protocols, methods, tables, additional data) too long or detailed to fit into the body of the paper.

General tips:

  • first focus on the results (including figures and tables ), discussion and methods (communicating the experimental outcomes, significance and procedures)
  • then work on the introduction , abstract and title (increasingly concise summaries of the work).
  • Use simple, concrete, active language ("We determined..." not "It was determined that...")
  • Start paragraphs with a topic sentence
  • Consider your audience: narrowly specialized or interdisciplinary ?
  • Be as clear and concise as possible
  • Next: Submitting the manuscript >>
  • Last Updated: Jan 30, 2024 2:39 PM
  • URL: https://guides.lib.berkeley.edu/publish

You are using an outdated browser . Please upgrade your browser today !

How to Write and Publish a Research Paper in 7 Steps

What comes next after you're done with your research? Publishing the results in a journal of course! We tell you how to present your work in the best way possible.

This post is part of a series, which serves to provide hands-on information and resources for authors and editors.

Things have gotten busy in scholarly publishing: These days, a new article gets published in the 50,000 most important peer-reviewed journals every few seconds, while each one takes on average 40 minutes to read. Hundreds of thousands of papers reach the desks of editors and reviewers worldwide each year and 50% of all submissions end up rejected at some stage.

In a nutshell: there is a lot of competition, and the people who decide upon the fate of your manuscript are short on time and overworked. But there are ways to make their lives a little easier and improve your own chances of getting your work published!

Well, it may seem obvious, but before submitting an academic paper, always make sure that it is an excellent reflection of the research you have done and that you present it in the most professional way possible. Incomplete or poorly presented manuscripts can create a great deal of frustration and annoyance for editors who probably won’t even bother wasting the time of the reviewers!

This post will discuss 7 steps to the successful publication of your research paper:

  • Check whether your research is publication-ready
  • Choose an article type
  • Choose a journal
  • Construct your paper
  • Decide the order of authors
  • Check and double-check
  • Submit your paper

1. Check Whether Your Research Is Publication-Ready

Should you publish your research at all?

If your work holds academic value – of course – a well-written scholarly article could open doors to your research community. However, if you are not yet sure, whether your research is ready for publication, here are some key questions to ask yourself depending on your field of expertise:

  • Have you done or found something new and interesting? Something unique?
  • Is the work directly related to a current hot topic?
  • Have you checked the latest results or research in the field?
  • Have you provided solutions to any difficult problems?
  • Have the findings been verified?
  • Have the appropriate controls been performed if required?
  • Are your findings comprehensive?

If the answers to all relevant questions are “yes”, you need to prepare a good, strong manuscript. Remember, a research paper is only useful if it is clearly understood, reproducible and if it is read and used .

2. Choose An Article Type

The first step is to determine which type of paper is most appropriate for your work and what you want to achieve. The following list contains the most important, usually peer-reviewed article types in the natural sciences:

Full original research papers disseminate completed research findings. On average this type of paper is 8-10 pages long, contains five figures, and 25-30 references. Full original research papers are an important part of the process when developing your career.

Review papers present a critical synthesis of a specific research topic. These papers are usually much longer than original papers and will contain numerous references. More often than not, they will be commissioned by journal editors. Reviews present an excellent way to solidify your research career.

Letters, Rapid or Short Communications are often published for the quick and early communication of significant and original advances. They are much shorter than full articles and usually limited in length by the journal. Journals specifically dedicated to short communications or letters are also published in some fields. In these the authors can present short preliminary findings before developing a full-length paper.

3. Choose a Journal

Are you looking for the right place to publish your paper? Find out here whether a De Gruyter journal might be the right fit.

Submit to journals that you already read, that you have a good feel for. If you do so, you will have a better appreciation of both its culture and the requirements of the editors and reviewers.

Other factors to consider are:

  • The specific subject area
  • The aims and scope of the journal
  • The type of manuscript you have written
  • The significance of your work
  • The reputation of the journal
  • The reputation of the editors within the community
  • The editorial/review and production speeds of the journal
  • The community served by the journal
  • The coverage and distribution
  • The accessibility ( open access vs. closed access)

4. Construct Your Paper

Each element of a paper has its purpose, so you should make these sections easy to index and search.

Don’t forget that requirements can differ highly per publication, so always make sure to apply a journal’s specific instructions – or guide – for authors to your manuscript, even to the first draft (text layout, paper citation, nomenclature, figures and table, etc.) It will save you time, and the editor’s.

Also, even in these days of Internet-based publishing, space is still at a premium, so be as concise as possible. As a good journalist would say: “Never use three words when one will do!”

Let’s look at the typical structure of a full research paper, but bear in mind certain subject disciplines may have their own specific requirements so check the instructions for authors on the journal’s home page.

4.1 The Title

It’s important to use the title to tell the reader what your paper is all about! You want to attract their attention, a bit like a newspaper headline does. Be specific and to the point. Keep it informative and concise, and avoid jargon and abbreviations (unless they are universally recognized like DNA, for example).

4.2 The Abstract

This could be termed as the “advertisement” for your article. Make it interesting and easily understood without the reader having to read the whole article. Be accurate and specific, and keep it as brief and concise as possible. Some journals (particularly in the medical fields) will ask you to structure the abstract in distinct, labeled sections, which makes it even more accessible.

A clear abstract will influence whether or not your work is considered and whether an editor should invest more time on it or send it for review.

4.3 Keywords

Keywords are used by abstracting and indexing services, such as PubMed and Web of Science. They are the labels of your manuscript, which make it “searchable” online by other researchers.

Include words or phrases (usually 4-8) that are closely related to your topic but not “too niche” for anyone to find them. Make sure to only use established abbreviations. Think about what scientific terms and its variations your potential readers are likely to use and search for. You can also do a test run of your selected keywords in one of the common academic search engines. Do similar articles to your own appear? Yes? Then that’s a good sign.

4.4 Introduction

This first part of the main text should introduce the problem, as well as any existing solutions you are aware of and the main limitations. Also, state what you hope to achieve with your research.

Do not confuse the introduction with the results, discussion or conclusion.

4.5 Methods

Every research article should include a detailed Methods section (also referred to as “Materials and Methods”) to provide the reader with enough information to be able to judge whether the study is valid and reproducible.

Include detailed information so that a knowledgeable reader can reproduce the experiment. However, use references and supplementary materials to indicate previously published procedures.

4.6 Results

In this section, you will present the essential or primary results of your study. To display them in a comprehensible way, you should use subheadings as well as illustrations such as figures, graphs, tables and photos, as appropriate.

4.7 Discussion

Here you should tell your readers what the results mean .

Do state how the results relate to the study’s aims and hypotheses and how the findings relate to those of other studies. Explain all possible interpretations of your findings and the study’s limitations.

Do not make “grand statements” that are not supported by the data. Also, do not introduce any new results or terms. Moreover, do not ignore work that conflicts or disagrees with your findings. Instead …

Be brave! Address conflicting study results and convince the reader you are the one who is correct.

4.8 Conclusion

Your conclusion isn’t just a summary of what you’ve already written. It should take your paper one step further and answer any unresolved questions.

Sum up what you have shown in your study and indicate possible applications and extensions. The main question your conclusion should answer is: What do my results mean for the research field and my community?

4.9 Acknowledgments and Ethical Statements

It is extremely important to acknowledge anyone who has helped you with your paper, including researchers who supplied materials or reagents (e.g. vectors or antibodies); and anyone who helped with the writing or English, or offered critical comments about the content.

Learn more about academic integrity in our blog post “Scholarly Publication Ethics: 4 Common Mistakes You Want To Avoid” .

Remember to state why people have been acknowledged and ask their permission . Ensure that you acknowledge sources of funding, including any grant or reference numbers.

Furthermore, if you have worked with animals or humans, you need to include information about the ethical approval of your study and, if applicable, whether informed consent was given. Also, state whether you have any competing interests regarding the study (e.g. because of financial or personal relationships.)

4.10 References

The end is in sight, but don’t relax just yet!

De facto, there are often more mistakes in the references than in any other part of the manuscript. It is also one of the most annoying and time-consuming problems for editors.

Remember to cite the main scientific publications on which your work is based. But do not inflate the manuscript with too many references. Avoid excessive – and especially unnecessary – self-citations. Also, avoid excessive citations of publications from the same institute or region.

5. Decide the Order of Authors

In the sciences, the most common way to order the names of the authors is by relative contribution.

Generally, the first author conducts and/or supervises the data analysis and the proper presentation and interpretation of the results. They put the paper together and usually submit the paper to the journal.

Co-authors make intellectual contributions to the data analysis and contribute to data interpretation. They review each paper draft. All of them must be able to present the paper and its results, as well as to defend the implications and discuss study limitations.

Do not leave out authors who should be included or add “gift authors”, i.e. authors who did not contribute significantly.

6. Check and Double-Check

As a final step before submission, ask colleagues to read your work and be constructively critical .

Make sure that the paper is appropriate for the journal – take a last look at their aims and scope. Check if all of the requirements in the instructions for authors are met.

Ensure that the cited literature is balanced. Are the aims, purpose and significance of the results clear?

Conduct a final check for language, either by a native English speaker or an editing service.

7. Submit Your Paper

When you and your co-authors have double-, triple-, quadruple-checked the manuscript: submit it via e-mail or online submission system. Along with your manuscript, submit a cover letter, which highlights the reasons why your paper would appeal to the journal and which ensures that you have received approval of all authors for submission.

It is up to the editors and the peer-reviewers now to provide you with their (ideally constructive and helpful) comments and feedback. Time to take a breather!

If the paper gets rejected, do not despair – it happens to literally everybody. If the journal suggests major or minor revisions, take the chance to provide a thorough response and make improvements as you see fit. If the paper gets accepted, congrats!

It’s now time to get writing and share your hard work – good luck!

If you are interested, check out this related blog post

publish first research paper

[Title Image by Nick Morrison via Unsplash]

David Sleeman

David Sleeman worked as Senior Journals Manager in the field of Physical Sciences at De Gruyter.

You might also be interested in

Academia & Publishing

The Impact of Transformative Agreements on Scholarly Publishing

Our website is currently unavailable: cyberattacks on cultural heritage institutions, wie steht es um das wissenschaftliche erbe der ddr eine podiumsdiskussion, visit our shop.

De Gruyter publishes over 1,300 new book titles each year and more than 750 journals in the humanities, social sciences, medicine, mathematics, engineering, computer sciences, natural sciences, and law.

Pin It on Pinterest

U.S. flag

An official website of the United States government

The .gov means it's official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you're on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings
  • Browse Titles

NCBI Bookshelf. A service of the National Library of Medicine, National Institutes of Health.

StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan-.

Cover of StatPearls

StatPearls [Internet].

How to write and publish a scientific manuscript.

Martin R. Huecker ; Jacob Shreffler .

Affiliations

Last Update: October 31, 2022 .

  • Definition/Introduction

A clinician should continuously strive to increase knowledge by reviewing and critiquing papers, thoughtfully considering how to integrate new data into practice. This is the essence of evidence-based medicine (EBM). [1]  When new clinical queries arise, one should seek answers in the published literature. The ability to read a scientific or medical manuscript remains vitally important throughout the career of a clinician.

When gaps exist in the literature, clinicians should consider conducting their own research into these questions. Though typically performed by academic doctors or physician-scientists, medical research is open to all clinicians in both informal and formal methods. Anyone who treats patients can collect data on outcomes to assess the quality of care delivered (quality improvement is research). [2]  Though beyond the scope of this chapter, instruction for clinicians on how to conduct research and contribute to medical science is provided by many resources. [3] [4] [5]

Additionally, a clinician who integrates a new practice can study effects on patient outcomes, retro- or prospectively. Continuous practice improvement need not be shared with the larger population of treating providers, but dissemination to the entire scientific community allows widespread adoption, criticism, or further testing for replication of findings.

  • Issues of Concern

Clinicians who seek to conduct retrospective chart reviews, prospective studies, or even randomized, controlled clinical trials should access the many resources to ensure quality methodology. [5] Once you have followed the appropriate steps to conduct a study (Table 1), you should complete the process by writing a manuscript to describe your findings and share it with other clinicians and researchers. Other resources detail the steps in undertaking writing a review article, but this StatPearls chapter will focus on Writing a Scientific Manuscript for original research. See also the StatPearls chapter for the different types of research manuscripts. [6]

  • Clinical Significance

Steps to Conducting Research

  • Develop a research question
  • Perform a literature search
  • Identify a gap in the literature
  • Design a study protocol (including personnel)
  • Submit to an institutional review board for approval
  • Collect, responsibly store, and then analyze data
  • Write a manuscript to interpret and describe your research.

After conducting a quality investigation or a study, one should put together an abstract and manuscript to share results. Researchers can write an abstract in a short amount of time, though the abstract will evolve as the full manuscript moves to completion. Many published and presented abstracts do not reach full manuscript publication. [7] [8]  Although journals and conferences do often publish abstracts, studies with important results should be published in full manuscript form to ensure dissemination and allow attempts at replication. [9]

IRB protocols, study design, and data collection and aggregation require a team effort. Those involved in the research should discuss who will contribute to the full manuscript (i.e., qualify as an author) and thus the planned order of authorship to reduce complications at the time of manuscript submission. The author, who devotes the most effort to the paper, is typically the first and corresponding author. In contrast, the last author is often the most senior member of the team, often the principal investigator of the study. All individuals listed as authors should contribute to the manuscript and overall project in some fashion. [10]

The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) checklist is perhaps the most valuable tool in the process of preparing your manuscript for submission [11] . 

Original research manuscripts have the following sections (in chronologic order): [11]

Title and Abstract

Introduction (Background and Objectives)

Methods (Design, Setting, Participants, Variables, Statistics)

Results (Participants, Descriptives, Outcomes, Subgroups)

Tables and Figures     

Discussion (Key findings, Limitations, Interpretations)

Conflict of Interest (COI), Author affiliations, Acknowledgments, Funding

Individuals involved in the IRB submission (prior to data collection) can write the introduction and methods of the manuscript before and during the process of data collection and analysis. This head start on writing makes the full manuscript composition task less formidable. The content of the introduction and methods should be well known to the study group prior to data collection and analysis. The introduction should be organized into a “problem/gap/hook” order: what problem does this study address, the precise gap in the literature, and the objectives of this study (in addressing the gap). [12]  The methods should provide enough detail such that readers who would like to replicate the study could do so.

Once data is collected and analyzed, authors can write an abstract to organize major themes of the research, understanding that the abstract will undergo edits once the manuscript is complete. Similarly, the title can change with revisions, as authors determine the most salient trends in the data. Most readers will only read the title +/- abstract. Thus these are the most important sections of the paper. The title should be concise and should directly describe the results of the trial– this correlates with more citations. The abstract must convey the crucial findings of the paper, ideally divided into sections for easier reading (unless the desired journal does not allow this). [13]

With the larger picture in mind, authors should create tables and figures that visually convey the themes of the data analysis. Working with statisticians or data experts, authors should devote a great deal of time to this component of the manuscript. Some general concepts: [14]

  • Only include tables/figures that you believe are necessary.
  • Make sure tables/figures are of high quality, simple, clear, with concise captions.
  • Do not repeat language in results that appear in tables/figures, i.e., the tables/figures should stand alone.
  • Consider how the figure will look in grayscale (in case the journal if not in color)

As with the abstract and title, the tables and figures will likely undergo further edits prior to the completion of the manuscript. The abstract and tables/figures should intuitively evolve together to convey the ‘story’ of the research project.

At this point, refer back to the introduction and methods composed during data collection. Make revisions as necessary to reflect the overall narrative of the project. Ensure you have adhered to the originally determined objectives or hypotheses. 

Next, focus on the results and discussion. The results should contain only objective data with no interpretation of significance. Describe salient results than do not already receive explanations within the figures and tables. The discussion section begins with a lead paragraph highlighting the most important findings from the study. Then the discussion interprets the current results in light of prior published literature. Ensure citation of keystone papers on this topic, including new papers that have been published since embarking on the current project. Frame your results, describing how this study adds to the literature. The discussion section usually includes study limitations. Attempt to anticipate criticisms of the methodology, the results, the organization of the manuscript itself, and the (ability to draw) conclusions. A stronger limitations section preempts journal reviewer feedback, potentially simplifying the revision/resubmission process.

The conclusion section should be concise, conveying the main take-home points from your study. You can make recommendations for current clinical practice and for future research endeavors. Finally, consider using citation management software such as Endnote or Mendeley. Though initially cumbersome, these software platforms drastically improve revision efforts and allow for easy reference reformatting.  All authors should review the manuscript multiple times, potentially sharing with other uninvolved colleagues for objective feedback. Consider who should receive acknowledgment for supporting the project and prepare to disclose conflicts of interest and funding.

Although authors should have an initial idea of which journal to submit to, once the manuscript is near completion, this decision will be more straightforward. Journal rankings are beyond the scope of this StatPearls chapter. Still, generally, one should devise a list of the journals within a specialty in order of highest to lowest impact factor (some sites categorize into tiers). High-quality prospective research and clinical trials have a higher likelihood of acceptance into the more prestigious journals within a specialty or to the high-quality general science or medicine journals. Although many journals have an option for open access publication, and numerous legitimate, open access journals now exist, beware of ‘predatory journals’ that charge a fee to publish and may not be indexed in Pubmed or other databases. [12]

Journals have diverse guidelines for formatting and submission, and the manuscript submission process can be tedious. Prior to submission, review Bordage’s paper on reasons for manuscript rejection. [15]  Most journals require a title page and cover letter, the latter of which represents an opportunity to lobby for your paper’s importance. When (not if) you experience manuscript rejections, take reviewer comments and recommendations seriously. Use this valuable feedback for resubmission to the original journal (when invited) or for subsequent submission to other journals. When submitting a requested revision, compose a point by point response to the reviewers and attach a new manuscript with tracked changes. Attempt to resubmit manuscripts as promptly as possible, keeping your work in the hands of journals (allowing you to work on other research). [14]

  • Nursing, Allied Health, and Interprofessional Team Interventions

The above logistic steps will differ for review articles, case reports, editorials, and other types of submissions. [16]  However, the organization, precise methods, and adherence to journal guidelines remain important. See work by Provenzale on principles to increase the likelihood of acceptance for original and revised manuscripts. After submission, revision, resubmission, and proofing, you may experience the fulfillment of an official publication. Academics should promote their scientific work, enhancing the dissemination of research to the wider scientific community. [17] [18] [17] [19]

  • Review Questions
  • Access free multiple choice questions on this topic.
  • Comment on this article.

Disclosure: Martin Huecker declares no relevant financial relationships with ineligible companies.

Disclosure: Jacob Shreffler declares no relevant financial relationships with ineligible companies.

This book is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ), which permits others to distribute the work, provided that the article is not altered or used commercially. You are not required to obtain permission to distribute this article, provided that you credit the author and journal.

  • Cite this Page Huecker MR, Shreffler J. How To Write And Publish A Scientific Manuscript. [Updated 2022 Oct 31]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan-.

In this Page

Bulk download.

  • Bulk download StatPearls data from FTP

Related information

  • PMC PubMed Central citations
  • PubMed Links to PubMed

Similar articles in PubMed

  • Rules to be adopted for publishing a scientific paper. [Ann Ital Chir. 2016] Rules to be adopted for publishing a scientific paper. Picardi N. Ann Ital Chir. 2016; 87:1-3.
  • Original research in pathology: judgment, or evidence-based medicine? [Lab Invest. 2007] Original research in pathology: judgment, or evidence-based medicine? Crawford JM. Lab Invest. 2007 Feb; 87(2):104-14.
  • [Personal suggestions to write and publish SCI cited papers]. [Shanghai Kou Qiang Yi Xue. 2006] [Personal suggestions to write and publish SCI cited papers]. Jian XC. Shanghai Kou Qiang Yi Xue. 2006 Apr; 15(2):221-3.
  • Review Evidence-based toxicology: a comprehensive framework for causation. [Hum Exp Toxicol. 2005] Review Evidence-based toxicology: a comprehensive framework for causation. Guzelian PS, Victoroff MS, Halmes NC, James RC, Guzelian CP. Hum Exp Toxicol. 2005 Apr; 24(4):161-201.
  • Review Evidence-based medicine in treatment and rehabilitation of spinal cord injured. [Spinal Cord. 2005] Review Evidence-based medicine in treatment and rehabilitation of spinal cord injured. Biering-Sørensen F. Spinal Cord. 2005 Oct; 43(10):587-92.

Recent Activity

  • How To Write And Publish A Scientific Manuscript - StatPearls How To Write And Publish A Scientific Manuscript - StatPearls

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

Connect with NLM

National Library of Medicine 8600 Rockville Pike Bethesda, MD 20894

Web Policies FOIA HHS Vulnerability Disclosure

Help Accessibility Careers

statistics

How to Write and Publish a Research Paper for a Peer-Reviewed Journal

Affiliations.

  • 1 Department of Maternal and Child Health, University of North Carolina Gillings School of Global Public Health, 135 Dauer Dr, 27599, Chapel Hill, NC, USA.
  • 2 Department of Maternal and Child Health, University of North Carolina Gillings School of Global Public Health, 135 Dauer Dr, 27599, Chapel Hill, NC, USA. [email protected].
  • 3 Department of Epidemiology, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI, 48109-2029, USA. [email protected].
  • PMID: 32356250
  • PMCID: PMC8520870
  • DOI: 10.1007/s13187-020-01751-z

Communicating research findings is an essential step in the research process. Often, peer-reviewed journals are the forum for such communication, yet many researchers are never taught how to write a publishable scientific paper. In this article, we explain the basic structure of a scientific paper and describe the information that should be included in each section. We also identify common pitfalls for each section and recommend strategies to avoid them. Further, we give advice about target journal selection and authorship. In the online resource 1, we provide an example of a high-quality scientific paper, with annotations identifying the elements we describe in this article.

Keywords: Manuscripts; Publishing; Scientific writing.

© 2020. The Author(s).

  • Communication
  • Publishing*

BlueRoseOne.com

  • How to Publish a Research Paper: A Complete Guide
  • Self Publishing Guide

How to Publish a Research Paper: A Complete Guide

Read:  Learn How to Write & Craft a Compelling Villain for Your Story.
  • Step 1: Identifying the Right Journal
  • Step 2: Preparing Step 3: Your Manuscript

Step 3: Conducting a Thorough Review

Step 4: Writing a Compelling Cover Letter

Step 5: Navigating the Peer Review Process

Step 6: Handling Rejections

Step 7: Preparing for Publication

Step 8: Promoting Your Published Paper

Step 1: Identifying the Right Journal 

The first step in publishing a research paper is crucial, as it sets the foundation for the entire publication process. Identifying the right journal involves carefully selecting a publication platform that aligns with your research topic, audience, and academic goals. Here are the key considerations to keep in mind during this step:

  • Scope and Focus : Assess the scope and focus of your research to find journals that publish articles in your field of study. Look for journals that have previously published papers related to your topic or research area.
  • Readership and Impact Factor : Consider the target audience of the journal and its readership. Higher-impact factor journals typically attract a broader readership and can enhance the visibility and credibility of your research.
  • Publication Frequency : Investigate the publication frequency of the journal. Some journals publish issues monthly, quarterly, or annually. Choose a journal that aligns with your timeline for publication.
  • Indexing and Reputation : Check if the journal is indexed in reputable databases, such as Scopus or PubMed. Indexed journals are more likely to be recognized and accessed by researchers worldwide.
  • Journal Guidelines : Familiarise yourself with the journal’s submission guidelines, available on their website. Pay attention to manuscript length limits, reference styles, and formatting requirements.
  • Open Access Options : Consider whether the journal offers open access publishing. Open-access journals allow unrestricted access to your paper, potentially increasing its visibility and impact.
  • Ethical Considerations : Ensure the journal follows ethical publication practises and abides by industry standards. Verify if the journal is a member of reputable publishing organisations, such as COPE (the Committee on Publication Ethics).
  • Publication Fees : Check if the journal charges any publication fees or article processing charges (APCs). These fees can vary significantly among journals and may influence your decision.
  • Target Audience : Consider the journal’s target audience and the level of technical detail appropriate for that audience. Some journals cater to a more specialised readership, while others aim for a broader appeal.
  • Journal Reputation : Research the reputation of the journal within your academic community. Seek advice from colleagues or mentors who have published in similar journals.

By carefully considering these factors, you can make an informed decision on the most suitable journal for your research paper. Selecting the right journal increases your chances of acceptance and ensures that your work reaches the intended audience, contributing to the advancement of knowledge in your field.

Step 2: Preparing Your Manuscript

After identifying the appropriate journal, the next step is to prepare your manuscript for submission. This stage involves meticulous attention to detail and adherence to the journal’s specific author guidelines. Here’s a comprehensive guide to preparing your manuscript:

  • Read Author Guidelines : Carefully read and understand the journal’s author guidelines, which are available on the journal’s website. The guidelines provide instructions on manuscript preparation, the submission process, and formatting requirements.
  • Manuscript Structure : Follow the standard structure for a research paper, including the abstract, introduction, methodology, results, discussion, and conclusion sections. Ensure that each section is clear and well-organised.
  • Title and Abstract : Craft a concise and informative title that reflects the main focus of your research. The abstract should provide a summary of your study’s objectives, methods, results, and conclusions.
  • Introduction : The introduction should introduce the research problem, provide context, and state the research objectives or questions. Engage readers by highlighting the significance of your research.
  • Methodology : Describe the research design, data collection methods, and data analysis techniques used in your study. Provide sufficient detail to enable other researchers to replicate your study.
  • Results : Present your findings in a clear and logical manner. Use tables, graphs, and figures to enhance the presentation of data. Avoid interpreting the results in this section.
  • Discussion : Analyse and interpret your results in the discussion section. Relate your findings to the research objectives and previously published literature. Discuss the implications of your results and any limitations of your study.
  • Conclusion : In the conclusion, summarise the key findings of your research and restate their significance. Avoid introducing new information in this section.
  • Citations and References : Cite all sources accurately and consistently throughout the manuscript. Follow the journal’s preferred citation style, such as APA, MLA, or Chicago.
  • Proofreading and Editing : Thoroughly proofread your manuscript to correct any grammatical errors, typos, or inconsistencies. Edit for clarity, conciseness, and logical flow.
  • Figures and Tables : Ensure that all figures and tables are clear, properly labelled, and cited in the main text. Follow the journal’s guidelines for the formatting of figures and tables.
  • Ethical Considerations : Include any necessary statements regarding ethical approval, conflicts of interest, or data availability, as required by the journal.

By meticulously preparing your manuscript and adhering to the journal’s guidelines, you increase the likelihood of a successful submission. A well-structured and polished manuscript enhances the readability and impact of your research, ultimately increasing your chances of acceptance for publication.

You may also like: How to Make Book Design More Appealing to the Reader

The process of conducting a thorough review of your research paper is a critical step in the publication journey. This step ensures that your work is polished, accurate, and ready for submission to a journal. A well-reviewed paper increases the chances of acceptance and demonstrates your commitment to producing high-quality research. Here are the key aspects to consider during the review process:

  • Grammatical Errors and Typos : Start by carefully proofreading your paper for any grammatical errors, typos, or spelling mistakes. Even minor errors can undermine the credibility of your research and distract readers from your main points. Use grammar-checking tools, but also read your paper line by line to catch any issues that zated tools might miss.
  • Consistency and Clarity : Ensure that your writing is consistent throughout the paper. Check that you have used the same terminology, abbreviations, and formatting consistently. Additionally, pay attention to sentence structure and coherence, making sure that each paragraph flows logically into the next.
  • Accuracy of Data, Graphs, and Tables : Review all the data presented in your research, including figures, graphs, and tables. Verify that the data is accurate, correctly labelled, and represented in a clear and understandable manner. Any errors in data representation can lead to misinterpretations and undermine the reliability of your findings.
  • Citation and Referencing : Verify that all the sources you have cited are accurate and properly formatted according to the citation style required by the target journal. Missing or incorrect citations can lead to accusations of plagiarism and harm the integrity of your work.
  • Addressing Feedback : If you have received feedback from colleagues, mentors, or peer reviewers during the pre-submission process, carefully consider their suggestions and address any concerns raised. Engaging with feedback shows your willingness to improve and strengthen your paper.
  • Objective Evaluation : Try to read your paper with a critical eye, as if you were a reviewer assessing its merits. Identify any weaknesses or areas that could be improved, both in terms of content and presentation. Be open to rewriting or restructuring sections that could benefit from further clarity or depth.
  • Seek Feedback : To ensure the highest quality, seek feedback from colleagues or mentors who are knowledgeable in your research field. They can provide valuable insights and offer suggestions for improvement. Peer review can identify blind spots and help you refine your arguments.
  • Formatting and Guidelines : Review the journal’s specific formatting and submission guidelines. Adhering to these requirements demonstrates your attention to detail and increases the likelihood of acceptance.

In conclusion, conducting a thorough review of your research paper is an essential step before submission. It involves checking for grammatical errors, ensuring clarity and consistency, verifying data accuracy, addressing feedback, and seeking external input. A well-reviewed paper enhances its chances of publication and contributes to the overall credibility of your research.

The cover letter is your opportunity to make a strong first impression on the journal’s editor and to persuade them that your research paper is a valuable contribution to their publication. It serves as a bridge between your work and the editor, highlighting the significance and originality of your study and explaining why it is a good fit for the journal. Here are the key elements to include in a compelling cover letter:

  • Introduction : Start the letter with a professional and cordial greeting, addressing the editor by their name if possible. Introduce yourself and provide your affiliation, including your academic title and institution. Mention the title of your research paper and its co-authors, if any.
  • Brief Summary of Research : Provide a concise and compelling summary of your research. Clearly state the research question or problem you addressed, the methodology you employed, and your main findings. Emphasise the significance of your research and its potential impact on the field.
  • Highlight Originality : Explain what sets your study apart from existing research in the field. Highlight the original contributions your paper makes, whether it’s a novel approach, new insights, or addressing a gap in the literature. Demonstrating the novelty of your work will capture the editor’s attention.
  • Fit with the Journal : Explain why your research is a good fit for the target journal. Refer to recent articles published in the journal that are related to your topic and discuss how your research complements or extends those works. Aligning your paper with the journal’s scope and objectives enhances your chances of acceptance.
  • Addressing Specific Points : If the journal’s author guidelines include specific requirements, address them in your cover letter. This shows that you have read and followed their guidelines carefully. For example, if the journal requires you to highlight the practical implications of your research, briefly mention these in your letter.
  • Previous Engagement : If you have presented your research at a conference, workshop, or seminar, or if it has been previously reviewed (e.g., as a preprint), mention it in the cover letter. This indicates that your work has already undergone some scrutiny and may strengthen its appeal to the journal.
  • Declaration of Originality : State that the paper is original, has not been published elsewhere, and is not under simultaneous consideration by any other publication. This declaration reassures the editor that your work meets the journal’s submission policies.
  • Contact Information : Provide your contact details, including email and phone number, and express your willingness to address any queries or provide additional information if needed.
  • Expression of Gratitude : Thank the editor for their time and consideration in reviewing your submission.

In conclusion, a well-crafted cover letter complements your research paper and convinces the journal’s editor of the significance and originality of your work. It should provide a succinct overview of your research, highlight its relevance to the journal’s scope, and address any specific points raised in the author guidelines. A compelling cover letter increases the likelihood of your paper being seriously considered for publication.

You may also like: International Publishing: Expanding Your Reach Beyond Borders

The peer review process is a crucial step in scholarly publishing, designed to ensure the quality, accuracy, and validity of research papers before they are accepted for publication. After you submit your manuscript to a journal, it is sent to peer reviewers who are experts in your field. These reviewers carefully assess your work, providing feedback and recommendations to the editor. Navigating the peer review process requires patience, open-mindedness, and a willingness to engage constructively with reviewers. Here’s a detailed explanation of this step:

  • Submission and Assignment : Once you submit your paper, the journal’s editorial team performs an initial screening to check if it aligns with the journal’s scope and guidelines. If it does, the editor assigns peer reviewers who have expertise in the subject matter of your research.
  • Reviewing Process : The peer reviewers evaluate your paper’s methodology, data analysis, conclusions, and overall contribution to the field. They may assess the clarity of your writing, the strength of your arguments, and the relevance of your findings. Reviewers also look for potential flaws or limitations in your study.
  • Reviewer Feedback : After the reviewers have thoroughly examined your paper, they provide feedback to the editor. The feedback usually falls into three categories: acceptance, revision, or rejection. In the case of a revision, reviewers may specify the changes they believe are necessary for the paper to meet the journal’s standards.
  • Editor’s Decision : Based on the reviewers’ feedback, the editor makes a decision about your paper. The decision could be acceptance, conditional acceptance pending minor revisions, major revisions, or rejection. Even if your paper is rejected, remember that the peer review process provides valuable feedback that can help improve your research.
  • Responding to Reviewer Comments : If your paper requires revisions, carefully read the reviewer comments and suggestions. Address each comment in a respectful and diligent manner, providing clear responses and incorporating the necessary changes into your manuscript.
  • Revised Manuscript Submission : Submit the revised version of your paper along with a detailed response to the reviewers’ comments. Explain the changes you made and how you addressed their concerns. This demonstrates your commitment to enhancing the quality of your research.
  • Reiteration of the Review Process : Depending on the revisions, the editor may send your paper back to the same reviewers or to new reviewers for a second round of evaluation. This process continues until the paper is either accepted for publication or deemed unsuitable for the journal.
  • Acceptance and Publication : If your paper successfully navigates the peer review process and meets the journal’s standards, it will be accepted for publication. Congratulations on reaching this milestone!

In conclusion, the peer review process is an essential part of academic publishing. It involves expert evaluation of your research by peers in the field, who provide valuable feedback to improve the quality and rigour of your paper. Embrace the feedback with an open mind, respond diligently to reviewer comments, and be patient during the review process. Navigating peer review is a collaborative effort to ensure that only high-quality and significant research contributes to the scholarly community.

Receiving a rejection of your research paper can be disheartening, but it is a common and normal part of the publication process. It’s important to remember that rejection does not necessarily reflect the quality of your work; many groundbreaking studies have faced rejection before finding the right publication platform. Handling rejections requires resilience, a growth mindset, and the willingness to learn from the feedback. Here’s a comprehensive explanation of this step:

  • Understanding the Decision : When you receive a rejection, take the time to carefully read the editor’s decision letter and the feedback provided by the peer reviewers. Understand the reasons for the rejection and the specific concerns raised about your paper.
  • Embrace Constructive Feedback : Peer reviewer comments can provide valuable insights into the strengths and weaknesses of your research. Embrace the feedback constructively, recognising that it presents an opportunity to improve your work.
  • Assessing Revisions : If the decision letter includes suggestions for revisions, carefully consider whether you agree with them. Evaluate if implementing these revisions aligns with your research goals and the core message of your paper.
  • Revising the Manuscript : If you decide to make revisions based on the feedback, thoroughly address the reviewer’s comments and consider making any necessary improvements to your research. Pay close attention to the areas identified by the reviewers as needing improvement.
  • Resubmission or Alternative Journals : After revising your manuscript, you have the option to either resubmit it to the same journal (if allowed) or consider submitting it to a different journal. If you choose the latter, ensure that the new journal aligns with your research topic and scope.
  • Tailoring the Submission : When submitting to a different journal, tailor your manuscript and cover letter to fit the specific requirements and preferences of that journal. Highlight the relevance of your research to the journal’s readership and address any unique guidelines they have.
  • Don’t Lose Hope : Rejections are a natural part of the publication process, and many researchers face them at some point in their careers. It is essential not to lose hope and to remain persistent in pursuing publication opportunities.
  • Learn and Improve : Use the feedback from the rejection as a learning experience. Identify areas for improvement in your research, writing, and presentation. This will help you grow as a researcher and improve your chances of acceptance in the future.
  • Seek Support and Guidance : If you are struggling to navigate the publication process or interpret reviewer comments, seek support from colleagues, mentors, or academic advisors. Their insights can provide valuable guidance and encouragement.

In conclusion, handling rejections is a normal part of the publication journey. Approach rejection with a growth mindset, embracing the feedback provided by reviewers as an opportunity to improve your research. Revise your manuscript diligently, and consider submitting it to other journals that align with your research. Remember that persistence, learning from feedback, and seeking support are key to achieving success in the scholarly publishing process.

Unlocking Success: How to Sell Books Online Effectively

After successfully navigating the peer review process and receiving acceptance for your research paper, you are one step closer to seeing your work published in a reputable journal. However, before your paper can be published, you need to prepare it for production according to the journal’s specific requirements. This step is essential to ensuring that your paper meets the journal’s formatting and style guidelines and is ready for dissemination to the academic community. Here’s a comprehensive explanation of this step:

  • Reviewing the Acceptance Letter : Start by carefully reviewing the acceptance letter from the journal’s editor. This letter will outline any final comments or suggestions from the reviewers that need to be addressed before publication.
  • Addressing Reviewer Comments : If there are any outstanding revisions or clarifications requested by the reviewers, address them promptly and thoroughly. Reviewer feedback plays a crucial role in enhancing the quality and clarity of your paper, so it’s essential to give each comment due attention.
  • Adhering to Journal Guidelines : Familiarise yourself with the journal’s production requirements and guidelines for formatting, referencing, and figure preparation. Ensure that your paper adheres to these guidelines to avoid delays in the publication process.
  • Finalising the Manuscript : Once all revisions have been made and the paper aligns with the journal’s requirements, finalise your manuscript. Carefully proofread the entire paper to catch any remaining grammatical errors or typos.
  • Handling Permissions and Copyright : If your paper includes copyrighted material (e.g., figures, tables, or excerpts from other publications), obtain permission from the original copyright holders to reproduce that content in your paper. This is crucial to avoid potential copyright infringement issues.
  • Completing Authorship and Affiliation Details : Verify that all authors’ names, affiliations, and contact information are accurate and consistent. Ensure that the corresponding author is clearly identified for communication with the journal during the publication process.
  • Submitting the Final Manuscript : Follow the journal’s instructions to submit the final version of your manuscript along with any required supplementary materials. This may include high-resolution figures, data sets, or additional supporting information.
  • Waiting for Publication : After submitting the final version, the journal’s production team will work on typesetting, formatting, and preparing your paper for publication. This process may take some time, depending on the journal’s workflow and schedule.
  • Proofing and Corrections : Once the typeset proof is ready, carefully review it for any formatting errors or typographical mistakes. Respond to the journal promptly with any necessary corrections or clarifications.
  • Copyright Transfer : If required by the journal, complete the copyright transfer agreement, granting the publisher the right to publish and distribute your work.
  • Publication Date and DOI : Your paper will be assigned a publication date and a Digital Object Identifier (DOI), a unique alphanumeric string that provides a permanent link to your paper, making it easily accessible and citable.

In conclusion, preparing your research paper for publication involves carefully addressing reviewer comments, adhering to journal guidelines, handling permissions and copyright issues, and submitting the final version for production. Thoroughly reviewing and finalising your paper will ensure its readiness for dissemination to the academic community.

Congratulations on successfully publishing your research paper! Now, it’s time to promote your work to reach a broader audience and increase its visibility within the academic and research communities. Effective promotion can lead to more citations, recognition, and potential collaborations. Here’s a comprehensive explanation of this step:

  • Share on Social Media : Utilise social media platforms to announce the publication of your paper. Share the title, abstract, and a link to the paper on your professional profiles, such as  LinkedIn ,  Twitter , or  ResearchGate . Engage with your followers to generate interest and discussion.
  • Collaborate with Colleagues : Collaborate with your co-authors and colleagues to promote the paper collectively. Encourage them to share the publication on their social media and academic networks. A collaborative effort can increase the paper’s visibility and reach.
  • Academic Networks and Research Platforms : Upload your paper to academic networks and research platforms like Academia.edu, Mendeley, or Google Scholar. This allows other researchers to discover and cite your work more easily.
  • Email and Newsletters : Inform your professional contacts and research network about the publication through email announcements or newsletters. Consider writing a brief summary of your paper’s key findings and significance to entice readers to access the full paper.
  • Research Blog or Website : If you have a personal research blog or website, create a dedicated post announcing the publication. Provide a summary of your research and its implications in a reader-friendly format.
  • Engage with the Academic Community : Participate in academic conferences, workshops, and seminars to present your research. Networking with other researchers and sharing your findings in person can create buzz around your paper.
  • Press Releases : If your research has practical implications or societal relevance, consider working with your institution’s press office to issue a press release about your paper. This can attract media attention and increase public awareness.
  • Academic and Research Forums : Engage in online academic and research forums to discuss your findings and share insights. Be active in relevant discussions to establish yourself as an expert in your field.
  • Researcher Profiles : Keep your researcher profiles, such as those on Google Scholar, ORCID, and Scopus, updated with your latest publications. This ensures that your paper is indexed and visible to other researchers searching for related work.
  • Altmetrics : Monitor the altmetrics of your paper to track its online attention, including mentions, downloads, and social media shares. Altmetrics provide additional metrics beyond traditional citations, giving you insights into your paper’s broader impact.
  • Engage with Feedback : Respond to comments and questions from readers who engage with your paper. Engaging in scholarly discussions can further promote your work and demonstrate your expertise in the field.

In conclusion, promoting your published paper is an essential step to increasing its visibility, impact, and potential for further collaboration. Utilise social media, academic networks, collaborations with colleagues, and engagement with the academic community to create interest in your work. Effective promotion can lead to more citations and recognition, enhancing the overall impact of your research.

Read: Here’s a list of 10 best short story books to read in 2023 that you can’t miss.

Publishing a research paper is a rewarding experience that requires dedication, perseverance, and attention to detail. By following this essential guide, you can navigate the publication process successfully and contribute valuable knowledge to your field of study.

Remember, each publication is a stepping stone in your academic journey, and even rejections provide opportunities for growth. Embrace the process, continue refining your research, and celebrate your contributions to advancing scientific knowledge. Good luck on your journey to academic success!

  • About The Author
  • Latest Posts

' src=

Manan Sahni

List of 10 Book Binding methods that you must know

You May Also Like

10 Best thriller books to read in 2024

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

  • Privacy Policy

Research Method

Home » Research Paper – Structure, Examples and Writing Guide

Research Paper – Structure, Examples and Writing Guide

Table of Contents

Research Paper

Research Paper

Definition:

Research Paper is a written document that presents the author’s original research, analysis, and interpretation of a specific topic or issue.

It is typically based on Empirical Evidence, and may involve qualitative or quantitative research methods, or a combination of both. The purpose of a research paper is to contribute new knowledge or insights to a particular field of study, and to demonstrate the author’s understanding of the existing literature and theories related to the topic.

Structure of Research Paper

The structure of a research paper typically follows a standard format, consisting of several sections that convey specific information about the research study. The following is a detailed explanation of the structure of a research paper:

The title page contains the title of the paper, the name(s) of the author(s), and the affiliation(s) of the author(s). It also includes the date of submission and possibly, the name of the journal or conference where the paper is to be published.

The abstract is a brief summary of the research paper, typically ranging from 100 to 250 words. It should include the research question, the methods used, the key findings, and the implications of the results. The abstract should be written in a concise and clear manner to allow readers to quickly grasp the essence of the research.

Introduction

The introduction section of a research paper provides background information about the research problem, the research question, and the research objectives. It also outlines the significance of the research, the research gap that it aims to fill, and the approach taken to address the research question. Finally, the introduction section ends with a clear statement of the research hypothesis or research question.

Literature Review

The literature review section of a research paper provides an overview of the existing literature on the topic of study. It includes a critical analysis and synthesis of the literature, highlighting the key concepts, themes, and debates. The literature review should also demonstrate the research gap and how the current study seeks to address it.

The methods section of a research paper describes the research design, the sample selection, the data collection and analysis procedures, and the statistical methods used to analyze the data. This section should provide sufficient detail for other researchers to replicate the study.

The results section presents the findings of the research, using tables, graphs, and figures to illustrate the data. The findings should be presented in a clear and concise manner, with reference to the research question and hypothesis.

The discussion section of a research paper interprets the findings and discusses their implications for the research question, the literature review, and the field of study. It should also address the limitations of the study and suggest future research directions.

The conclusion section summarizes the main findings of the study, restates the research question and hypothesis, and provides a final reflection on the significance of the research.

The references section provides a list of all the sources cited in the paper, following a specific citation style such as APA, MLA or Chicago.

How to Write Research Paper

You can write Research Paper by the following guide:

  • Choose a Topic: The first step is to select a topic that interests you and is relevant to your field of study. Brainstorm ideas and narrow down to a research question that is specific and researchable.
  • Conduct a Literature Review: The literature review helps you identify the gap in the existing research and provides a basis for your research question. It also helps you to develop a theoretical framework and research hypothesis.
  • Develop a Thesis Statement : The thesis statement is the main argument of your research paper. It should be clear, concise and specific to your research question.
  • Plan your Research: Develop a research plan that outlines the methods, data sources, and data analysis procedures. This will help you to collect and analyze data effectively.
  • Collect and Analyze Data: Collect data using various methods such as surveys, interviews, observations, or experiments. Analyze data using statistical tools or other qualitative methods.
  • Organize your Paper : Organize your paper into sections such as Introduction, Literature Review, Methods, Results, Discussion, and Conclusion. Ensure that each section is coherent and follows a logical flow.
  • Write your Paper : Start by writing the introduction, followed by the literature review, methods, results, discussion, and conclusion. Ensure that your writing is clear, concise, and follows the required formatting and citation styles.
  • Edit and Proofread your Paper: Review your paper for grammar and spelling errors, and ensure that it is well-structured and easy to read. Ask someone else to review your paper to get feedback and suggestions for improvement.
  • Cite your Sources: Ensure that you properly cite all sources used in your research paper. This is essential for giving credit to the original authors and avoiding plagiarism.

Research Paper Example

Note : The below example research paper is for illustrative purposes only and is not an actual research paper. Actual research papers may have different structures, contents, and formats depending on the field of study, research question, data collection and analysis methods, and other factors. Students should always consult with their professors or supervisors for specific guidelines and expectations for their research papers.

Research Paper Example sample for Students:

Title: The Impact of Social Media on Mental Health among Young Adults

Abstract: This study aims to investigate the impact of social media use on the mental health of young adults. A literature review was conducted to examine the existing research on the topic. A survey was then administered to 200 university students to collect data on their social media use, mental health status, and perceived impact of social media on their mental health. The results showed that social media use is positively associated with depression, anxiety, and stress. The study also found that social comparison, cyberbullying, and FOMO (Fear of Missing Out) are significant predictors of mental health problems among young adults.

Introduction: Social media has become an integral part of modern life, particularly among young adults. While social media has many benefits, including increased communication and social connectivity, it has also been associated with negative outcomes, such as addiction, cyberbullying, and mental health problems. This study aims to investigate the impact of social media use on the mental health of young adults.

Literature Review: The literature review highlights the existing research on the impact of social media use on mental health. The review shows that social media use is associated with depression, anxiety, stress, and other mental health problems. The review also identifies the factors that contribute to the negative impact of social media, including social comparison, cyberbullying, and FOMO.

Methods : A survey was administered to 200 university students to collect data on their social media use, mental health status, and perceived impact of social media on their mental health. The survey included questions on social media use, mental health status (measured using the DASS-21), and perceived impact of social media on their mental health. Data were analyzed using descriptive statistics and regression analysis.

Results : The results showed that social media use is positively associated with depression, anxiety, and stress. The study also found that social comparison, cyberbullying, and FOMO are significant predictors of mental health problems among young adults.

Discussion : The study’s findings suggest that social media use has a negative impact on the mental health of young adults. The study highlights the need for interventions that address the factors contributing to the negative impact of social media, such as social comparison, cyberbullying, and FOMO.

Conclusion : In conclusion, social media use has a significant impact on the mental health of young adults. The study’s findings underscore the need for interventions that promote healthy social media use and address the negative outcomes associated with social media use. Future research can explore the effectiveness of interventions aimed at reducing the negative impact of social media on mental health. Additionally, longitudinal studies can investigate the long-term effects of social media use on mental health.

Limitations : The study has some limitations, including the use of self-report measures and a cross-sectional design. The use of self-report measures may result in biased responses, and a cross-sectional design limits the ability to establish causality.

Implications: The study’s findings have implications for mental health professionals, educators, and policymakers. Mental health professionals can use the findings to develop interventions that address the negative impact of social media use on mental health. Educators can incorporate social media literacy into their curriculum to promote healthy social media use among young adults. Policymakers can use the findings to develop policies that protect young adults from the negative outcomes associated with social media use.

References :

  • Twenge, J. M., & Campbell, W. K. (2019). Associations between screen time and lower psychological well-being among children and adolescents: Evidence from a population-based study. Preventive medicine reports, 15, 100918.
  • Primack, B. A., Shensa, A., Escobar-Viera, C. G., Barrett, E. L., Sidani, J. E., Colditz, J. B., … & James, A. E. (2017). Use of multiple social media platforms and symptoms of depression and anxiety: A nationally-representative study among US young adults. Computers in Human Behavior, 69, 1-9.
  • Van der Meer, T. G., & Verhoeven, J. W. (2017). Social media and its impact on academic performance of students. Journal of Information Technology Education: Research, 16, 383-398.

Appendix : The survey used in this study is provided below.

Social Media and Mental Health Survey

  • How often do you use social media per day?
  • Less than 30 minutes
  • 30 minutes to 1 hour
  • 1 to 2 hours
  • 2 to 4 hours
  • More than 4 hours
  • Which social media platforms do you use?
  • Others (Please specify)
  • How often do you experience the following on social media?
  • Social comparison (comparing yourself to others)
  • Cyberbullying
  • Fear of Missing Out (FOMO)
  • Have you ever experienced any of the following mental health problems in the past month?
  • Do you think social media use has a positive or negative impact on your mental health?
  • Very positive
  • Somewhat positive
  • Somewhat negative
  • Very negative
  • In your opinion, which factors contribute to the negative impact of social media on mental health?
  • Social comparison
  • In your opinion, what interventions could be effective in reducing the negative impact of social media on mental health?
  • Education on healthy social media use
  • Counseling for mental health problems caused by social media
  • Social media detox programs
  • Regulation of social media use

Thank you for your participation!

Applications of Research Paper

Research papers have several applications in various fields, including:

  • Advancing knowledge: Research papers contribute to the advancement of knowledge by generating new insights, theories, and findings that can inform future research and practice. They help to answer important questions, clarify existing knowledge, and identify areas that require further investigation.
  • Informing policy: Research papers can inform policy decisions by providing evidence-based recommendations for policymakers. They can help to identify gaps in current policies, evaluate the effectiveness of interventions, and inform the development of new policies and regulations.
  • Improving practice: Research papers can improve practice by providing evidence-based guidance for professionals in various fields, including medicine, education, business, and psychology. They can inform the development of best practices, guidelines, and standards of care that can improve outcomes for individuals and organizations.
  • Educating students : Research papers are often used as teaching tools in universities and colleges to educate students about research methods, data analysis, and academic writing. They help students to develop critical thinking skills, research skills, and communication skills that are essential for success in many careers.
  • Fostering collaboration: Research papers can foster collaboration among researchers, practitioners, and policymakers by providing a platform for sharing knowledge and ideas. They can facilitate interdisciplinary collaborations and partnerships that can lead to innovative solutions to complex problems.

When to Write Research Paper

Research papers are typically written when a person has completed a research project or when they have conducted a study and have obtained data or findings that they want to share with the academic or professional community. Research papers are usually written in academic settings, such as universities, but they can also be written in professional settings, such as research organizations, government agencies, or private companies.

Here are some common situations where a person might need to write a research paper:

  • For academic purposes: Students in universities and colleges are often required to write research papers as part of their coursework, particularly in the social sciences, natural sciences, and humanities. Writing research papers helps students to develop research skills, critical thinking skills, and academic writing skills.
  • For publication: Researchers often write research papers to publish their findings in academic journals or to present their work at academic conferences. Publishing research papers is an important way to disseminate research findings to the academic community and to establish oneself as an expert in a particular field.
  • To inform policy or practice : Researchers may write research papers to inform policy decisions or to improve practice in various fields. Research findings can be used to inform the development of policies, guidelines, and best practices that can improve outcomes for individuals and organizations.
  • To share new insights or ideas: Researchers may write research papers to share new insights or ideas with the academic or professional community. They may present new theories, propose new research methods, or challenge existing paradigms in their field.

Purpose of Research Paper

The purpose of a research paper is to present the results of a study or investigation in a clear, concise, and structured manner. Research papers are written to communicate new knowledge, ideas, or findings to a specific audience, such as researchers, scholars, practitioners, or policymakers. The primary purposes of a research paper are:

  • To contribute to the body of knowledge : Research papers aim to add new knowledge or insights to a particular field or discipline. They do this by reporting the results of empirical studies, reviewing and synthesizing existing literature, proposing new theories, or providing new perspectives on a topic.
  • To inform or persuade: Research papers are written to inform or persuade the reader about a particular issue, topic, or phenomenon. They present evidence and arguments to support their claims and seek to persuade the reader of the validity of their findings or recommendations.
  • To advance the field: Research papers seek to advance the field or discipline by identifying gaps in knowledge, proposing new research questions or approaches, or challenging existing assumptions or paradigms. They aim to contribute to ongoing debates and discussions within a field and to stimulate further research and inquiry.
  • To demonstrate research skills: Research papers demonstrate the author’s research skills, including their ability to design and conduct a study, collect and analyze data, and interpret and communicate findings. They also demonstrate the author’s ability to critically evaluate existing literature, synthesize information from multiple sources, and write in a clear and structured manner.

Characteristics of Research Paper

Research papers have several characteristics that distinguish them from other forms of academic or professional writing. Here are some common characteristics of research papers:

  • Evidence-based: Research papers are based on empirical evidence, which is collected through rigorous research methods such as experiments, surveys, observations, or interviews. They rely on objective data and facts to support their claims and conclusions.
  • Structured and organized: Research papers have a clear and logical structure, with sections such as introduction, literature review, methods, results, discussion, and conclusion. They are organized in a way that helps the reader to follow the argument and understand the findings.
  • Formal and objective: Research papers are written in a formal and objective tone, with an emphasis on clarity, precision, and accuracy. They avoid subjective language or personal opinions and instead rely on objective data and analysis to support their arguments.
  • Citations and references: Research papers include citations and references to acknowledge the sources of information and ideas used in the paper. They use a specific citation style, such as APA, MLA, or Chicago, to ensure consistency and accuracy.
  • Peer-reviewed: Research papers are often peer-reviewed, which means they are evaluated by other experts in the field before they are published. Peer-review ensures that the research is of high quality, meets ethical standards, and contributes to the advancement of knowledge in the field.
  • Objective and unbiased: Research papers strive to be objective and unbiased in their presentation of the findings. They avoid personal biases or preconceptions and instead rely on the data and analysis to draw conclusions.

Advantages of Research Paper

Research papers have many advantages, both for the individual researcher and for the broader academic and professional community. Here are some advantages of research papers:

  • Contribution to knowledge: Research papers contribute to the body of knowledge in a particular field or discipline. They add new information, insights, and perspectives to existing literature and help advance the understanding of a particular phenomenon or issue.
  • Opportunity for intellectual growth: Research papers provide an opportunity for intellectual growth for the researcher. They require critical thinking, problem-solving, and creativity, which can help develop the researcher’s skills and knowledge.
  • Career advancement: Research papers can help advance the researcher’s career by demonstrating their expertise and contributions to the field. They can also lead to new research opportunities, collaborations, and funding.
  • Academic recognition: Research papers can lead to academic recognition in the form of awards, grants, or invitations to speak at conferences or events. They can also contribute to the researcher’s reputation and standing in the field.
  • Impact on policy and practice: Research papers can have a significant impact on policy and practice. They can inform policy decisions, guide practice, and lead to changes in laws, regulations, or procedures.
  • Advancement of society: Research papers can contribute to the advancement of society by addressing important issues, identifying solutions to problems, and promoting social justice and equality.

Limitations of Research Paper

Research papers also have some limitations that should be considered when interpreting their findings or implications. Here are some common limitations of research papers:

  • Limited generalizability: Research findings may not be generalizable to other populations, settings, or contexts. Studies often use specific samples or conditions that may not reflect the broader population or real-world situations.
  • Potential for bias : Research papers may be biased due to factors such as sample selection, measurement errors, or researcher biases. It is important to evaluate the quality of the research design and methods used to ensure that the findings are valid and reliable.
  • Ethical concerns: Research papers may raise ethical concerns, such as the use of vulnerable populations or invasive procedures. Researchers must adhere to ethical guidelines and obtain informed consent from participants to ensure that the research is conducted in a responsible and respectful manner.
  • Limitations of methodology: Research papers may be limited by the methodology used to collect and analyze data. For example, certain research methods may not capture the complexity or nuance of a particular phenomenon, or may not be appropriate for certain research questions.
  • Publication bias: Research papers may be subject to publication bias, where positive or significant findings are more likely to be published than negative or non-significant findings. This can skew the overall findings of a particular area of research.
  • Time and resource constraints: Research papers may be limited by time and resource constraints, which can affect the quality and scope of the research. Researchers may not have access to certain data or resources, or may be unable to conduct long-term studies due to practical limitations.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Research Paper Citation

How to Cite Research Paper – All Formats and...

Data collection

Data Collection – Methods Types and Examples

Delimitations

Delimitations in Research – Types, Examples and...

Research Paper Formats

Research Paper Format – Types, Examples and...

Research Process

Research Process – Steps, Examples and Tips

Research Design

Research Design – Types, Methods and Examples

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals
  • My Account Login
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • Open access
  • Published: 17 April 2024

The economic commitment of climate change

  • Maximilian Kotz   ORCID: orcid.org/0000-0003-2564-5043 1 , 2 ,
  • Anders Levermann   ORCID: orcid.org/0000-0003-4432-4704 1 , 2 &
  • Leonie Wenz   ORCID: orcid.org/0000-0002-8500-1568 1 , 3  

Nature volume  628 ,  pages 551–557 ( 2024 ) Cite this article

89k Accesses

3471 Altmetric

Metrics details

  • Environmental economics
  • Environmental health
  • Interdisciplinary studies
  • Projection and prediction

Global projections of macroeconomic climate-change damages typically consider impacts from average annual and national temperatures over long time horizons 1 , 2 , 3 , 4 , 5 , 6 . Here we use recent empirical findings from more than 1,600 regions worldwide over the past 40 years to project sub-national damages from temperature and precipitation, including daily variability and extremes 7 , 8 . Using an empirical approach that provides a robust lower bound on the persistence of impacts on economic growth, we find that the world economy is committed to an income reduction of 19% within the next 26 years independent of future emission choices (relative to a baseline without climate impacts, likely range of 11–29% accounting for physical climate and empirical uncertainty). These damages already outweigh the mitigation costs required to limit global warming to 2 °C by sixfold over this near-term time frame and thereafter diverge strongly dependent on emission choices. Committed damages arise predominantly through changes in average temperature, but accounting for further climatic components raises estimates by approximately 50% and leads to stronger regional heterogeneity. Committed losses are projected for all regions except those at very high latitudes, at which reductions in temperature variability bring benefits. The largest losses are committed at lower latitudes in regions with lower cumulative historical emissions and lower present-day income.

Similar content being viewed by others

publish first research paper

Climate damage projections beyond annual temperature

publish first research paper

Investment incentive reduced by climate damages can be restored by optimal policy

publish first research paper

Climate economics support for the UN climate targets

Projections of the macroeconomic damage caused by future climate change are crucial to informing public and policy debates about adaptation, mitigation and climate justice. On the one hand, adaptation against climate impacts must be justified and planned on the basis of an understanding of their future magnitude and spatial distribution 9 . This is also of importance in the context of climate justice 10 , as well as to key societal actors, including governments, central banks and private businesses, which increasingly require the inclusion of climate risks in their macroeconomic forecasts to aid adaptive decision-making 11 , 12 . On the other hand, climate mitigation policy such as the Paris Climate Agreement is often evaluated by balancing the costs of its implementation against the benefits of avoiding projected physical damages. This evaluation occurs both formally through cost–benefit analyses 1 , 4 , 5 , 6 , as well as informally through public perception of mitigation and damage costs 13 .

Projections of future damages meet challenges when informing these debates, in particular the human biases relating to uncertainty and remoteness that are raised by long-term perspectives 14 . Here we aim to overcome such challenges by assessing the extent of economic damages from climate change to which the world is already committed by historical emissions and socio-economic inertia (the range of future emission scenarios that are considered socio-economically plausible 15 ). Such a focus on the near term limits the large uncertainties about diverging future emission trajectories, the resulting long-term climate response and the validity of applying historically observed climate–economic relations over long timescales during which socio-technical conditions may change considerably. As such, this focus aims to simplify the communication and maximize the credibility of projected economic damages from future climate change.

In projecting the future economic damages from climate change, we make use of recent advances in climate econometrics that provide evidence for impacts on sub-national economic growth from numerous components of the distribution of daily temperature and precipitation 3 , 7 , 8 . Using fixed-effects panel regression models to control for potential confounders, these studies exploit within-region variation in local temperature and precipitation in a panel of more than 1,600 regions worldwide, comprising climate and income data over the past 40 years, to identify the plausibly causal effects of changes in several climate variables on economic productivity 16 , 17 . Specifically, macroeconomic impacts have been identified from changing daily temperature variability, total annual precipitation, the annual number of wet days and extreme daily rainfall that occur in addition to those already identified from changing average temperature 2 , 3 , 18 . Moreover, regional heterogeneity in these effects based on the prevailing local climatic conditions has been found using interactions terms. The selection of these climate variables follows micro-level evidence for mechanisms related to the impacts of average temperatures on labour and agricultural productivity 2 , of temperature variability on agricultural productivity and health 7 , as well as of precipitation on agricultural productivity, labour outcomes and flood damages 8 (see Extended Data Table 1 for an overview, including more detailed references). References  7 , 8 contain a more detailed motivation for the use of these particular climate variables and provide extensive empirical tests about the robustness and nature of their effects on economic output, which are summarized in Methods . By accounting for these extra climatic variables at the sub-national level, we aim for a more comprehensive description of climate impacts with greater detail across both time and space.

Constraining the persistence of impacts

A key determinant and source of discrepancy in estimates of the magnitude of future climate damages is the extent to which the impact of a climate variable on economic growth rates persists. The two extreme cases in which these impacts persist indefinitely or only instantaneously are commonly referred to as growth or level effects 19 , 20 (see Methods section ‘Empirical model specification: fixed-effects distributed lag models’ for mathematical definitions). Recent work shows that future damages from climate change depend strongly on whether growth or level effects are assumed 20 . Following refs.  2 , 18 , we provide constraints on this persistence by using distributed lag models to test the significance of delayed effects separately for each climate variable. Notably, and in contrast to refs.  2 , 18 , we use climate variables in their first-differenced form following ref.  3 , implying a dependence of the growth rate on a change in climate variables. This choice means that a baseline specification without any lags constitutes a model prior of purely level effects, in which a permanent change in the climate has only an instantaneous effect on the growth rate 3 , 19 , 21 . By including lags, one can then test whether any effects may persist further. This is in contrast to the specification used by refs.  2 , 18 , in which climate variables are used without taking the first difference, implying a dependence of the growth rate on the level of climate variables. In this alternative case, the baseline specification without any lags constitutes a model prior of pure growth effects, in which a change in climate has an infinitely persistent effect on the growth rate. Consequently, including further lags in this alternative case tests whether the initial growth impact is recovered 18 , 19 , 21 . Both of these specifications suffer from the limiting possibility that, if too few lags are included, one might falsely accept the model prior. The limitations of including a very large number of lags, including loss of data and increasing statistical uncertainty with an increasing number of parameters, mean that such a possibility is likely. By choosing a specification in which the model prior is one of level effects, our approach is therefore conservative by design, avoiding assumptions of infinite persistence of climate impacts on growth and instead providing a lower bound on this persistence based on what is observable empirically (see Methods section ‘Empirical model specification: fixed-effects distributed lag models’ for further exposition of this framework). The conservative nature of such a choice is probably the reason that ref.  19 finds much greater consistency between the impacts projected by models that use the first difference of climate variables, as opposed to their levels.

We begin our empirical analysis of the persistence of climate impacts on growth using ten lags of the first-differenced climate variables in fixed-effects distributed lag models. We detect substantial effects on economic growth at time lags of up to approximately 8–10 years for the temperature terms and up to approximately 4 years for the precipitation terms (Extended Data Fig. 1 and Extended Data Table 2 ). Furthermore, evaluation by means of information criteria indicates that the inclusion of all five climate variables and the use of these numbers of lags provide a preferable trade-off between best-fitting the data and including further terms that could cause overfitting, in comparison with model specifications excluding climate variables or including more or fewer lags (Extended Data Fig. 3 , Supplementary Methods Section  1 and Supplementary Table 1 ). We therefore remove statistically insignificant terms at later lags (Supplementary Figs. 1 – 3 and Supplementary Tables 2 – 4 ). Further tests using Monte Carlo simulations demonstrate that the empirical models are robust to autocorrelation in the lagged climate variables (Supplementary Methods Section  2 and Supplementary Figs. 4 and 5 ), that information criteria provide an effective indicator for lag selection (Supplementary Methods Section  2 and Supplementary Fig. 6 ), that the results are robust to concerns of imperfect multicollinearity between climate variables and that including several climate variables is actually necessary to isolate their separate effects (Supplementary Methods Section  3 and Supplementary Fig. 7 ). We provide a further robustness check using a restricted distributed lag model to limit oscillations in the lagged parameter estimates that may result from autocorrelation, finding that it provides similar estimates of cumulative marginal effects to the unrestricted model (Supplementary Methods Section 4 and Supplementary Figs. 8 and 9 ). Finally, to explicitly account for any outstanding uncertainty arising from the precise choice of the number of lags, we include empirical models with marginally different numbers of lags in the error-sampling procedure of our projection of future damages. On the basis of the lag-selection procedure (the significance of lagged terms in Extended Data Fig. 1 and Extended Data Table 2 , as well as information criteria in Extended Data Fig. 3 ), we sample from models with eight to ten lags for temperature and four for precipitation (models shown in Supplementary Figs. 1 – 3 and Supplementary Tables 2 – 4 ). In summary, this empirical approach to constrain the persistence of climate impacts on economic growth rates is conservative by design in avoiding assumptions of infinite persistence, but nevertheless provides a lower bound on the extent of impact persistence that is robust to the numerous tests outlined above.

Committed damages until mid-century

We combine these empirical economic response functions (Supplementary Figs. 1 – 3 and Supplementary Tables 2 – 4 ) with an ensemble of 21 climate models (see Supplementary Table 5 ) from the Coupled Model Intercomparison Project Phase 6 (CMIP-6) 22 to project the macroeconomic damages from these components of physical climate change (see Methods for further details). Bias-adjusted climate models that provide a highly accurate reproduction of observed climatological patterns with limited uncertainty (Supplementary Table 6 ) are used to avoid introducing biases in the projections. Following a well-developed literature 2 , 3 , 19 , these projections do not aim to provide a prediction of future economic growth. Instead, they are a projection of the exogenous impact of future climate conditions on the economy relative to the baselines specified by socio-economic projections, based on the plausibly causal relationships inferred by the empirical models and assuming ceteris paribus. Other exogenous factors relevant for the prediction of economic output are purposefully assumed constant.

A Monte Carlo procedure that samples from climate model projections, empirical models with different numbers of lags and model parameter estimates (obtained by 1,000 block-bootstrap resamples of each of the regressions in Supplementary Figs. 1 – 3 and Supplementary Tables 2 – 4 ) is used to estimate the combined uncertainty from these sources. Given these uncertainty distributions, we find that projected global damages are statistically indistinguishable across the two most extreme emission scenarios until 2049 (at the 5% significance level; Fig. 1 ). As such, the climate damages occurring before this time constitute those to which the world is already committed owing to the combination of past emissions and the range of future emission scenarios that are considered socio-economically plausible 15 . These committed damages comprise a permanent income reduction of 19% on average globally (population-weighted average) in comparison with a baseline without climate-change impacts (with a likely range of 11–29%, following the likelihood classification adopted by the Intergovernmental Panel on Climate Change (IPCC); see caption of Fig. 1 ). Even though levels of income per capita generally still increase relative to those of today, this constitutes a permanent income reduction for most regions, including North America and Europe (each with median income reductions of approximately 11%) and with South Asia and Africa being the most strongly affected (each with median income reductions of approximately 22%; Fig. 1 ). Under a middle-of-the road scenario of future income development (SSP2, in which SSP stands for Shared Socio-economic Pathway), this corresponds to global annual damages in 2049 of 38 trillion in 2005 international dollars (likely range of 19–59 trillion 2005 international dollars). Compared with empirical specifications that assume pure growth or pure level effects, our preferred specification that provides a robust lower bound on the extent of climate impact persistence produces damages between these two extreme assumptions (Extended Data Fig. 3 ).

figure 1

Estimates of the projected reduction in income per capita from changes in all climate variables based on empirical models of climate impacts on economic output with a robust lower bound on their persistence (Extended Data Fig. 1 ) under a low-emission scenario compatible with the 2 °C warming target and a high-emission scenario (SSP2-RCP2.6 and SSP5-RCP8.5, respectively) are shown in purple and orange, respectively. Shading represents the 34% and 10% confidence intervals reflecting the likely and very likely ranges, respectively (following the likelihood classification adopted by the IPCC), having estimated uncertainty from a Monte Carlo procedure, which samples the uncertainty from the choice of physical climate models, empirical models with different numbers of lags and bootstrapped estimates of the regression parameters shown in Supplementary Figs. 1 – 3 . Vertical dashed lines show the time at which the climate damages of the two emission scenarios diverge at the 5% and 1% significance levels based on the distribution of differences between emission scenarios arising from the uncertainty sampling discussed above. Note that uncertainty in the difference of the two scenarios is smaller than the combined uncertainty of the two respective scenarios because samples of the uncertainty (climate model and empirical model choice, as well as model parameter bootstrap) are consistent across the two emission scenarios, hence the divergence of damages occurs while the uncertainty bounds of the two separate damage scenarios still overlap. Estimates of global mitigation costs from the three IAMs that provide results for the SSP2 baseline and SSP2-RCP2.6 scenario are shown in light green in the top panel, with the median of these estimates shown in bold.

Damages already outweigh mitigation costs

We compare the damages to which the world is committed over the next 25 years to estimates of the mitigation costs required to achieve the Paris Climate Agreement. Taking estimates of mitigation costs from the three integrated assessment models (IAMs) in the IPCC AR6 database 23 that provide results under comparable scenarios (SSP2 baseline and SSP2-RCP2.6, in which RCP stands for Representative Concentration Pathway), we find that the median committed climate damages are larger than the median mitigation costs in 2050 (six trillion in 2005 international dollars) by a factor of approximately six (note that estimates of mitigation costs are only provided every 10 years by the IAMs and so a comparison in 2049 is not possible). This comparison simply aims to compare the magnitude of future damages against mitigation costs, rather than to conduct a formal cost–benefit analysis of transitioning from one emission path to another. Formal cost–benefit analyses typically find that the net benefits of mitigation only emerge after 2050 (ref.  5 ), which may lead some to conclude that physical damages from climate change are simply not large enough to outweigh mitigation costs until the second half of the century. Our simple comparison of their magnitudes makes clear that damages are actually already considerably larger than mitigation costs and the delayed emergence of net mitigation benefits results primarily from the fact that damages across different emission paths are indistinguishable until mid-century (Fig. 1 ).

Although these near-term damages constitute those to which the world is already committed, we note that damage estimates diverge strongly across emission scenarios after 2049, conveying the clear benefits of mitigation from a purely economic point of view that have been emphasized in previous studies 4 , 24 . As well as the uncertainties assessed in Fig. 1 , these conclusions are robust to structural choices, such as the timescale with which changes in the moderating variables of the empirical models are estimated (Supplementary Figs. 10 and 11 ), as well as the order in which one accounts for the intertemporal and international components of currency comparison (Supplementary Fig. 12 ; see Methods for further details).

Damages from variability and extremes

Committed damages primarily arise through changes in average temperature (Fig. 2 ). This reflects the fact that projected changes in average temperature are larger than those in other climate variables when expressed as a function of their historical interannual variability (Extended Data Fig. 4 ). Because the historical variability is that on which the empirical models are estimated, larger projected changes in comparison with this variability probably lead to larger future impacts in a purely statistical sense. From a mechanistic perspective, one may plausibly interpret this result as implying that future changes in average temperature are the most unprecedented from the perspective of the historical fluctuations to which the economy is accustomed and therefore will cause the most damage. This insight may prove useful in terms of guiding adaptation measures to the sources of greatest damage.

figure 2

Estimates of the median projected reduction in sub-national income per capita across emission scenarios (SSP2-RCP2.6 and SSP2-RCP8.5) as well as climate model, empirical model and model parameter uncertainty in the year in which climate damages diverge at the 5% level (2049, as identified in Fig. 1 ). a , Impacts arising from all climate variables. b – f , Impacts arising separately from changes in annual mean temperature ( b ), daily temperature variability ( c ), total annual precipitation ( d ), the annual number of wet days (>1 mm) ( e ) and extreme daily rainfall ( f ) (see Methods for further definitions). Data on national administrative boundaries are obtained from the GADM database version 3.6 and are freely available for academic use ( https://gadm.org/ ).

Nevertheless, future damages based on empirical models that consider changes in annual average temperature only and exclude the other climate variables constitute income reductions of only 13% in 2049 (Extended Data Fig. 5a , likely range 5–21%). This suggests that accounting for the other components of the distribution of temperature and precipitation raises net damages by nearly 50%. This increase arises through the further damages that these climatic components cause, but also because their inclusion reveals a stronger negative economic response to average temperatures (Extended Data Fig. 5b ). The latter finding is consistent with our Monte Carlo simulations, which suggest that the magnitude of the effect of average temperature on economic growth is underestimated unless accounting for the impacts of other correlated climate variables (Supplementary Fig. 7 ).

In terms of the relative contributions of the different climatic components to overall damages, we find that accounting for daily temperature variability causes the largest increase in overall damages relative to empirical frameworks that only consider changes in annual average temperature (4.9 percentage points, likely range 2.4–8.7 percentage points, equivalent to approximately 10 trillion international dollars). Accounting for precipitation causes smaller increases in overall damages, which are—nevertheless—equivalent to approximately 1.2 trillion international dollars: 0.01 percentage points (−0.37–0.33 percentage points), 0.34 percentage points (0.07–0.90 percentage points) and 0.36 percentage points (0.13–0.65 percentage points) from total annual precipitation, the number of wet days and extreme daily precipitation, respectively. Moreover, climate models seem to underestimate future changes in temperature variability 25 and extreme precipitation 26 , 27 in response to anthropogenic forcing as compared with that observed historically, suggesting that the true impacts from these variables may be larger.

The distribution of committed damages

The spatial distribution of committed damages (Fig. 2a ) reflects a complex interplay between the patterns of future change in several climatic components and those of historical economic vulnerability to changes in those variables. Damages resulting from increasing annual mean temperature (Fig. 2b ) are negative almost everywhere globally, and larger at lower latitudes in regions in which temperatures are already higher and economic vulnerability to temperature increases is greatest (see the response heterogeneity to mean temperature embodied in Extended Data Fig. 1a ). This occurs despite the amplified warming projected at higher latitudes 28 , suggesting that regional heterogeneity in economic vulnerability to temperature changes outweighs heterogeneity in the magnitude of future warming (Supplementary Fig. 13a ). Economic damages owing to daily temperature variability (Fig. 2c ) exhibit a strong latitudinal polarisation, primarily reflecting the physical response of daily variability to greenhouse forcing in which increases in variability across lower latitudes (and Europe) contrast decreases at high latitudes 25 (Supplementary Fig. 13b ). These two temperature terms are the dominant determinants of the pattern of overall damages (Fig. 2a ), which exhibits a strong polarity with damages across most of the globe except at the highest northern latitudes. Future changes in total annual precipitation mainly bring economic benefits except in regions of drying, such as the Mediterranean and central South America (Fig. 2d and Supplementary Fig. 13c ), but these benefits are opposed by changes in the number of wet days, which produce damages with a similar pattern of opposite sign (Fig. 2e and Supplementary Fig. 13d ). By contrast, changes in extreme daily rainfall produce damages in all regions, reflecting the intensification of daily rainfall extremes over global land areas 29 , 30 (Fig. 2f and Supplementary Fig. 13e ).

The spatial distribution of committed damages implies considerable injustice along two dimensions: culpability for the historical emissions that have caused climate change and pre-existing levels of socio-economic welfare. Spearman’s rank correlations indicate that committed damages are significantly larger in countries with smaller historical cumulative emissions, as well as in regions with lower current income per capita (Fig. 3 ). This implies that those countries that will suffer the most from the damages already committed are those that are least responsible for climate change and which also have the least resources to adapt to it.

figure 3

Estimates of the median projected change in national income per capita across emission scenarios (RCP2.6 and RCP8.5) as well as climate model, empirical model and model parameter uncertainty in the year in which climate damages diverge at the 5% level (2049, as identified in Fig. 1 ) are plotted against cumulative national emissions per capita in 2020 (from the Global Carbon Project) and coloured by national income per capita in 2020 (from the World Bank) in a and vice versa in b . In each panel, the size of each scatter point is weighted by the national population in 2020 (from the World Bank). Inset numbers indicate the Spearman’s rank correlation ρ and P -values for a hypothesis test whose null hypothesis is of no correlation, as well as the Spearman’s rank correlation weighted by national population.

To further quantify this heterogeneity, we assess the difference in committed damages between the upper and lower quartiles of regions when ranked by present income levels and historical cumulative emissions (using a population weighting to both define the quartiles and estimate the group averages). On average, the quartile of countries with lower income are committed to an income loss that is 8.9 percentage points (or 61%) greater than the upper quartile (Extended Data Fig. 6 ), with a likely range of 3.8–14.7 percentage points across the uncertainty sampling of our damage projections (following the likelihood classification adopted by the IPCC). Similarly, the quartile of countries with lower historical cumulative emissions are committed to an income loss that is 6.9 percentage points (or 40%) greater than the upper quartile, with a likely range of 0.27–12 percentage points. These patterns reemphasize the prevalence of injustice in climate impacts 31 , 32 , 33 in the context of the damages to which the world is already committed by historical emissions and socio-economic inertia.

Contextualizing the magnitude of damages

The magnitude of projected economic damages exceeds previous literature estimates 2 , 3 , arising from several developments made on previous approaches. Our estimates are larger than those of ref.  2 (see first row of Extended Data Table 3 ), primarily because of the facts that sub-national estimates typically show a steeper temperature response (see also refs.  3 , 34 ) and that accounting for other climatic components raises damage estimates (Extended Data Fig. 5 ). However, we note that our empirical approach using first-differenced climate variables is conservative compared with that of ref.  2 in regard to the persistence of climate impacts on growth (see introduction and Methods section ‘Empirical model specification: fixed-effects distributed lag models’), an important determinant of the magnitude of long-term damages 19 , 21 . Using a similar empirical specification to ref.  2 , which assumes infinite persistence while maintaining the rest of our approach (sub-national data and further climate variables), produces considerably larger damages (purple curve of Extended Data Fig. 3 ). Compared with studies that do take the first difference of climate variables 3 , 35 , our estimates are also larger (see second and third rows of Extended Data Table 3 ). The inclusion of further climate variables (Extended Data Fig. 5 ) and a sufficient number of lags to more adequately capture the extent of impact persistence (Extended Data Figs. 1 and 2 ) are the main sources of this difference, as is the use of specifications that capture nonlinearities in the temperature response when compared with ref.  35 . In summary, our estimates develop on previous studies by incorporating the latest data and empirical insights 7 , 8 , as well as in providing a robust empirical lower bound on the persistence of impacts on economic growth, which constitutes a middle ground between the extremes of the growth-versus-levels debate 19 , 21 (Extended Data Fig. 3 ).

Compared with the fraction of variance explained by the empirical models historically (<5%), the projection of reductions in income of 19% may seem large. This arises owing to the fact that projected changes in climatic conditions are much larger than those that were experienced historically, particularly for changes in average temperature (Extended Data Fig. 4 ). As such, any assessment of future climate-change impacts necessarily requires an extrapolation outside the range of the historical data on which the empirical impact models were evaluated. Nevertheless, these models constitute the most state-of-the-art methods for inference of plausibly causal climate impacts based on observed data. Moreover, we take explicit steps to limit out-of-sample extrapolation by capping the moderating variables of the interaction terms at the 95th percentile of the historical distribution (see Methods ). This avoids extrapolating the marginal effects outside what was observed historically. Given the nonlinear response of economic output to annual mean temperature (Extended Data Fig. 1 and Extended Data Table 2 ), this is a conservative choice that limits the magnitude of damages that we project. Furthermore, back-of-the-envelope calculations indicate that the projected damages are consistent with the magnitude and patterns of historical economic development (see Supplementary Discussion Section  5 ).

Missing impacts and spatial spillovers

Despite assessing several climatic components from which economic impacts have recently been identified 3 , 7 , 8 , this assessment of aggregate climate damages should not be considered comprehensive. Important channels such as impacts from heatwaves 31 , sea-level rise 36 , tropical cyclones 37 and tipping points 38 , 39 , as well as non-market damages such as those to ecosystems 40 and human health 41 , are not considered in these estimates. Sea-level rise is unlikely to be feasibly incorporated into empirical assessments such as this because historical sea-level variability is mostly small. Non-market damages are inherently intractable within our estimates of impacts on aggregate monetary output and estimates of these impacts could arguably be considered as extra to those identified here. Recent empirical work suggests that accounting for these channels would probably raise estimates of these committed damages, with larger damages continuing to arise in the global south 31 , 36 , 37 , 38 , 39 , 40 , 41 , 42 .

Moreover, our main empirical analysis does not explicitly evaluate the potential for impacts in local regions to produce effects that ‘spill over’ into other regions. Such effects may further mitigate or amplify the impacts we estimate, for example, if companies relocate production from one affected region to another or if impacts propagate along supply chains. The current literature indicates that trade plays a substantial role in propagating spillover effects 43 , 44 , making their assessment at the sub-national level challenging without available data on sub-national trade dependencies. Studies accounting for only spatially adjacent neighbours indicate that negative impacts in one region induce further negative impacts in neighbouring regions 45 , 46 , 47 , 48 , suggesting that our projected damages are probably conservative by excluding these effects. In Supplementary Fig. 14 , we assess spillovers from neighbouring regions using a spatial-lag model. For simplicity, this analysis excludes temporal lags, focusing only on contemporaneous effects. The results show that accounting for spatial spillovers can amplify the overall magnitude, and also the heterogeneity, of impacts. Consistent with previous literature, this indicates that the overall magnitude (Fig. 1 ) and heterogeneity (Fig. 3 ) of damages that we project in our main specification may be conservative without explicitly accounting for spillovers. We note that further analysis that addresses both spatially and trade-connected spillovers, while also accounting for delayed impacts using temporal lags, would be necessary to adequately address this question fully. These approaches offer fruitful avenues for further research but are beyond the scope of this manuscript, which primarily aims to explore the impacts of different climate conditions and their persistence.

Policy implications

We find that the economic damages resulting from climate change until 2049 are those to which the world economy is already committed and that these greatly outweigh the costs required to mitigate emissions in line with the 2 °C target of the Paris Climate Agreement (Fig. 1 ). This assessment is complementary to formal analyses of the net costs and benefits associated with moving from one emission path to another, which typically find that net benefits of mitigation only emerge in the second half of the century 5 . Our simple comparison of the magnitude of damages and mitigation costs makes clear that this is primarily because damages are indistinguishable across emissions scenarios—that is, committed—until mid-century (Fig. 1 ) and that they are actually already much larger than mitigation costs. For simplicity, and owing to the availability of data, we compare damages to mitigation costs at the global level. Regional estimates of mitigation costs may shed further light on the national incentives for mitigation to which our results already hint, of relevance for international climate policy. Although these damages are committed from a mitigation perspective, adaptation may provide an opportunity to reduce them. Moreover, the strong divergence of damages after mid-century reemphasizes the clear benefits of mitigation from a purely economic perspective, as highlighted in previous studies 1 , 4 , 6 , 24 .

Historical climate data

Historical daily 2-m temperature and precipitation totals (in mm) are obtained for the period 1979–2019 from the W5E5 database. The W5E5 dataset comes from ERA-5, a state-of-the-art reanalysis of historical observations, but has been bias-adjusted by applying version 2.0 of the WATCH Forcing Data to ERA-5 reanalysis data and precipitation data from version 2.3 of the Global Precipitation Climatology Project to better reflect ground-based measurements 49 , 50 , 51 . We obtain these data on a 0.5° × 0.5° grid from the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) database. Notably, these historical data have been used to bias-adjust future climate projections from CMIP-6 (see the following section), ensuring consistency between the distribution of historical daily weather on which our empirical models were estimated and the climate projections used to estimate future damages. These data are publicly available from the ISIMIP database. See refs.  7 , 8 for robustness tests of the empirical models to the choice of climate data reanalysis products.

Future climate data

Daily 2-m temperature and precipitation totals (in mm) are taken from 21 climate models participating in CMIP-6 under a high (RCP8.5) and a low (RCP2.6) greenhouse gas emission scenario from 2015 to 2100. The data have been bias-adjusted and statistically downscaled to a common half-degree grid to reflect the historical distribution of daily temperature and precipitation of the W5E5 dataset using the trend-preserving method developed by the ISIMIP 50 , 52 . As such, the climate model data reproduce observed climatological patterns exceptionally well (Supplementary Table 5 ). Gridded data are publicly available from the ISIMIP database.

Historical economic data

Historical economic data come from the DOSE database of sub-national economic output 53 . We use a recent revision to the DOSE dataset that provides data across 83 countries, 1,660 sub-national regions with varying temporal coverage from 1960 to 2019. Sub-national units constitute the first administrative division below national, for example, states for the USA and provinces for China. Data come from measures of gross regional product per capita (GRPpc) or income per capita in local currencies, reflecting the values reported in national statistical agencies, yearbooks and, in some cases, academic literature. We follow previous literature 3 , 7 , 8 , 54 and assess real sub-national output per capita by first converting values from local currencies to US dollars to account for diverging national inflationary tendencies and then account for US inflation using a US deflator. Alternatively, one might first account for national inflation and then convert between currencies. Supplementary Fig. 12 demonstrates that our conclusions are consistent when accounting for price changes in the reversed order, although the magnitude of estimated damages varies. See the documentation of the DOSE dataset for further discussion of these choices. Conversions between currencies are conducted using exchange rates from the FRED database of the Federal Reserve Bank of St. Louis 55 and the national deflators from the World Bank 56 .

Future socio-economic data

Baseline gridded gross domestic product (GDP) and population data for the period 2015–2100 are taken from the middle-of-the-road scenario SSP2 (ref.  15 ). Population data have been downscaled to a half-degree grid by the ISIMIP following the methodologies of refs.  57 , 58 , which we then aggregate to the sub-national level of our economic data using the spatial aggregation procedure described below. Because current methodologies for downscaling the GDP of the SSPs use downscaled population to do so, per-capita estimates of GDP with a realistic distribution at the sub-national level are not readily available for the SSPs. We therefore use national-level GDP per capita (GDPpc) projections for all sub-national regions of a given country, assuming homogeneity within countries in terms of baseline GDPpc. Here we use projections that have been updated to account for the impact of the COVID-19 pandemic on the trajectory of future income, while remaining consistent with the long-term development of the SSPs 59 . The choice of baseline SSP alters the magnitude of projected climate damages in monetary terms, but when assessed in terms of percentage change from the baseline, the choice of socio-economic scenario is inconsequential. Gridded SSP population data and national-level GDPpc data are publicly available from the ISIMIP database. Sub-national estimates as used in this study are available in the code and data replication files.

Climate variables

Following recent literature 3 , 7 , 8 , we calculate an array of climate variables for which substantial impacts on macroeconomic output have been identified empirically, supported by further evidence at the micro level for plausible underlying mechanisms. See refs.  7 , 8 for an extensive motivation for the use of these particular climate variables and for detailed empirical tests on the nature and robustness of their effects on economic output. To summarize, these studies have found evidence for independent impacts on economic growth rates from annual average temperature, daily temperature variability, total annual precipitation, the annual number of wet days and extreme daily rainfall. Assessments of daily temperature variability were motivated by evidence of impacts on agricultural output and human health, as well as macroeconomic literature on the impacts of volatility on growth when manifest in different dimensions, such as government spending, exchange rates and even output itself 7 . Assessments of precipitation impacts were motivated by evidence of impacts on agricultural productivity, metropolitan labour outcomes and conflict, as well as damages caused by flash flooding 8 . See Extended Data Table 1 for detailed references to empirical studies of these physical mechanisms. Marked impacts of daily temperature variability, total annual precipitation, the number of wet days and extreme daily rainfall on macroeconomic output were identified robustly across different climate datasets, spatial aggregation schemes, specifications of regional time trends and error-clustering approaches. They were also found to be robust to the consideration of temperature extremes 7 , 8 . Furthermore, these climate variables were identified as having independent effects on economic output 7 , 8 , which we further explain here using Monte Carlo simulations to demonstrate the robustness of the results to concerns of imperfect multicollinearity between climate variables (Supplementary Methods Section  2 ), as well as by using information criteria (Supplementary Table 1 ) to demonstrate that including several lagged climate variables provides a preferable trade-off between optimally describing the data and limiting the possibility of overfitting.

We calculate these variables from the distribution of daily, d , temperature, T x , d , and precipitation, P x , d , at the grid-cell, x , level for both the historical and future climate data. As well as annual mean temperature, \({\bar{T}}_{x,y}\) , and annual total precipitation, P x , y , we calculate annual, y , measures of daily temperature variability, \({\widetilde{T}}_{x,y}\) :

the number of wet days, Pwd x , y :

and extreme daily rainfall:

in which T x , d , m , y is the grid-cell-specific daily temperature in month m and year y , \({\bar{T}}_{x,m,{y}}\) is the year and grid-cell-specific monthly, m , mean temperature, D m and D y the number of days in a given month m or year y , respectively, H the Heaviside step function, 1 mm the threshold used to define wet days and P 99.9 x is the 99.9th percentile of historical (1979–2019) daily precipitation at the grid-cell level. Units of the climate measures are degrees Celsius for annual mean temperature and daily temperature variability, millimetres for total annual precipitation and extreme daily precipitation, and simply the number of days for the annual number of wet days.

We also calculated weighted standard deviations of monthly rainfall totals as also used in ref.  8 but do not include them in our projections as we find that, when accounting for delayed effects, their effect becomes statistically indistinct and is better captured by changes in total annual rainfall.

Spatial aggregation

We aggregate grid-cell-level historical and future climate measures, as well as grid-cell-level future GDPpc and population, to the level of the first administrative unit below national level of the GADM database, using an area-weighting algorithm that estimates the portion of each grid cell falling within an administrative boundary. We use this as our baseline specification following previous findings that the effect of area or population weighting at the sub-national level is negligible 7 , 8 .

Empirical model specification: fixed-effects distributed lag models

Following a wide range of climate econometric literature 16 , 60 , we use panel regression models with a selection of fixed effects and time trends to isolate plausibly exogenous variation with which to maximize confidence in a causal interpretation of the effects of climate on economic growth rates. The use of region fixed effects, μ r , accounts for unobserved time-invariant differences between regions, such as prevailing climatic norms and growth rates owing to historical and geopolitical factors. The use of yearly fixed effects, η y , accounts for regionally invariant annual shocks to the global climate or economy such as the El Niño–Southern Oscillation or global recessions. In our baseline specification, we also include region-specific linear time trends, k r y , to exclude the possibility of spurious correlations resulting from common slow-moving trends in climate and growth.

The persistence of climate impacts on economic growth rates is a key determinant of the long-term magnitude of damages. Methods for inferring the extent of persistence in impacts on growth rates have typically used lagged climate variables to evaluate the presence of delayed effects or catch-up dynamics 2 , 18 . For example, consider starting from a model in which a climate condition, C r , y , (for example, annual mean temperature) affects the growth rate, Δlgrp r , y (the first difference of the logarithm of gross regional product) of region r in year y :

which we refer to as a ‘pure growth effects’ model in the main text. Typically, further lags are included,

and the cumulative effect of all lagged terms is evaluated to assess the extent to which climate impacts on growth rates persist. Following ref.  18 , in the case that,

the implication is that impacts on the growth rate persist up to NL years after the initial shock (possibly to a weaker or a stronger extent), whereas if

then the initial impact on the growth rate is recovered after NL years and the effect is only one on the level of output. However, we note that such approaches are limited by the fact that, when including an insufficient number of lags to detect a recovery of the growth rates, one may find equation ( 6 ) to be satisfied and incorrectly assume that a change in climatic conditions affects the growth rate indefinitely. In practice, given a limited record of historical data, including too few lags to confidently conclude in an infinitely persistent impact on the growth rate is likely, particularly over the long timescales over which future climate damages are often projected 2 , 24 . To avoid this issue, we instead begin our analysis with a model for which the level of output, lgrp r , y , depends on the level of a climate variable, C r , y :

Given the non-stationarity of the level of output, we follow the literature 19 and estimate such an equation in first-differenced form as,

which we refer to as a model of ‘pure level effects’ in the main text. This model constitutes a baseline specification in which a permanent change in the climate variable produces an instantaneous impact on the growth rate and a permanent effect only on the level of output. By including lagged variables in this specification,

we are able to test whether the impacts on the growth rate persist any further than instantaneously by evaluating whether α L  > 0 are statistically significantly different from zero. Even though this framework is also limited by the possibility of including too few lags, the choice of a baseline model specification in which impacts on the growth rate do not persist means that, in the case of including too few lags, the framework reverts to the baseline specification of level effects. As such, this framework is conservative with respect to the persistence of impacts and the magnitude of future damages. It naturally avoids assumptions of infinite persistence and we are able to interpret any persistence that we identify with equation ( 9 ) as a lower bound on the extent of climate impact persistence on growth rates. See the main text for further discussion of this specification choice, in particular about its conservative nature compared with previous literature estimates, such as refs.  2 , 18 .

We allow the response to climatic changes to vary across regions, using interactions of the climate variables with historical average (1979–2019) climatic conditions reflecting heterogenous effects identified in previous work 7 , 8 . Following this previous work, the moderating variables of these interaction terms constitute the historical average of either the variable itself or of the seasonal temperature difference, \({\hat{T}}_{r}\) , or annual mean temperature, \({\bar{T}}_{r}\) , in the case of daily temperature variability 7 and extreme daily rainfall, respectively 8 .

The resulting regression equation with N and M lagged variables, respectively, reads:

in which Δlgrp r , y is the annual, regional GRPpc growth rate, measured as the first difference of the logarithm of real GRPpc, following previous work 2 , 3 , 7 , 8 , 18 , 19 . Fixed-effects regressions were run using the fixest package in R (ref.  61 ).

Estimates of the coefficients of interest α i , L are shown in Extended Data Fig. 1 for N  =  M  = 10 lags and for our preferred choice of the number of lags in Supplementary Figs. 1 – 3 . In Extended Data Fig. 1 , errors are shown clustered at the regional level, but for the construction of damage projections, we block-bootstrap the regressions by region 1,000 times to provide a range of parameter estimates with which to sample the projection uncertainty (following refs.  2 , 31 ).

Spatial-lag model

In Supplementary Fig. 14 , we present the results from a spatial-lag model that explores the potential for climate impacts to ‘spill over’ into spatially neighbouring regions. We measure the distance between centroids of each pair of sub-national regions and construct spatial lags that take the average of the first-differenced climate variables and their interaction terms over neighbouring regions that are at distances of 0–500, 500–1,000, 1,000–1,500 and 1,500–2000 km (spatial lags, ‘SL’, 1 to 4). For simplicity, we then assess a spatial-lag model without temporal lags to assess spatial spillovers of contemporaneous climate impacts. This model takes the form:

in which SL indicates the spatial lag of each climate variable and interaction term. In Supplementary Fig. 14 , we plot the cumulative marginal effect of each climate variable at different baseline climate conditions by summing the coefficients for each climate variable and interaction term, for example, for average temperature impacts as:

These cumulative marginal effects can be regarded as the overall spatially dependent impact to an individual region given a one-unit shock to a climate variable in that region and all neighbouring regions at a given value of the moderating variable of the interaction term.

Constructing projections of economic damage from future climate change

We construct projections of future climate damages by applying the coefficients estimated in equation ( 10 ) and shown in Supplementary Tables 2 – 4 (when including only lags with statistically significant effects in specifications that limit overfitting; see Supplementary Methods Section  1 ) to projections of future climate change from the CMIP-6 models. Year-on-year changes in each primary climate variable of interest are calculated to reflect the year-to-year variations used in the empirical models. 30-year moving averages of the moderating variables of the interaction terms are calculated to reflect the long-term average of climatic conditions that were used for the moderating variables in the empirical models. By using moving averages in the projections, we account for the changing vulnerability to climate shocks based on the evolving long-term conditions (Supplementary Figs. 10 and 11 show that the results are robust to the precise choice of the window of this moving average). Although these climate variables are not differenced, the fact that the bias-adjusted climate models reproduce observed climatological patterns across regions for these moderating variables very accurately (Supplementary Table 6 ) with limited spread across models (<3%) precludes the possibility that any considerable bias or uncertainty is introduced by this methodological choice. However, we impose caps on these moderating variables at the 95th percentile at which they were observed in the historical data to prevent extrapolation of the marginal effects outside the range in which the regressions were estimated. This is a conservative choice that limits the magnitude of our damage projections.

Time series of primary climate variables and moderating climate variables are then combined with estimates of the empirical model parameters to evaluate the regression coefficients in equation ( 10 ), producing a time series of annual GRPpc growth-rate reductions for a given emission scenario, climate model and set of empirical model parameters. The resulting time series of growth-rate impacts reflects those occurring owing to future climate change. By contrast, a future scenario with no climate change would be one in which climate variables do not change (other than with random year-to-year fluctuations) and hence the time-averaged evaluation of equation ( 10 ) would be zero. Our approach therefore implicitly compares the future climate-change scenario to this no-climate-change baseline scenario.

The time series of growth-rate impacts owing to future climate change in region r and year y , δ r , y , are then added to the future baseline growth rates, π r , y (in log-diff form), obtained from the SSP2 scenario to yield trajectories of damaged GRPpc growth rates, ρ r , y . These trajectories are aggregated over time to estimate the future trajectory of GRPpc with future climate impacts:

in which GRPpc r , y =2020 is the initial log level of GRPpc. We begin damage estimates in 2020 to reflect the damages occurring since the end of the period for which we estimate the empirical models (1979–2019) and to match the timing of mitigation-cost estimates from most IAMs (see below).

For each emission scenario, this procedure is repeated 1,000 times while randomly sampling from the selection of climate models, the selection of empirical models with different numbers of lags (shown in Supplementary Figs. 1 – 3 and Supplementary Tables 2 – 4 ) and bootstrapped estimates of the regression parameters. The result is an ensemble of future GRPpc trajectories that reflect uncertainty from both physical climate change and the structural and sampling uncertainty of the empirical models.

Estimates of mitigation costs

We obtain IPCC estimates of the aggregate costs of emission mitigation from the AR6 Scenario Explorer and Database hosted by IIASA 23 . Specifically, we search the AR6 Scenarios Database World v1.1 for IAMs that provided estimates of global GDP and population under both a SSP2 baseline and a SSP2-RCP2.6 scenario to maintain consistency with the socio-economic and emission scenarios of the climate damage projections. We find five IAMs that provide data for these scenarios, namely, MESSAGE-GLOBIOM 1.0, REMIND-MAgPIE 1.5, AIM/GCE 2.0, GCAM 4.2 and WITCH-GLOBIOM 3.1. Of these five IAMs, we use the results only from the first three that passed the IPCC vetting procedure for reproducing historical emission and climate trajectories. We then estimate global mitigation costs as the percentage difference in global per capita GDP between the SSP2 baseline and the SSP2-RCP2.6 emission scenario. In the case of one of these IAMs, estimates of mitigation costs begin in 2020, whereas in the case of two others, mitigation costs begin in 2010. The mitigation cost estimates before 2020 in these two IAMs are mostly negligible, and our choice to begin comparison with damage estimates in 2020 is conservative with respect to the relative weight of climate damages compared with mitigation costs for these two IAMs.

Data availability

Data on economic production and ERA-5 climate data are publicly available at https://doi.org/10.5281/zenodo.4681306 (ref. 62 ) and https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5 , respectively. Data on mitigation costs are publicly available at https://data.ene.iiasa.ac.at/ar6/#/downloads . Processed climate and economic data, as well as all other necessary data for reproduction of the results, are available at the public repository https://doi.org/10.5281/zenodo.10562951  (ref. 63 ).

Code availability

All code necessary for reproduction of the results is available at the public repository https://doi.org/10.5281/zenodo.10562951  (ref. 63 ).

Glanemann, N., Willner, S. N. & Levermann, A. Paris Climate Agreement passes the cost-benefit test. Nat. Commun. 11 , 110 (2020).

Article   ADS   CAS   PubMed   PubMed Central   Google Scholar  

Burke, M., Hsiang, S. M. & Miguel, E. Global non-linear effect of temperature on economic production. Nature 527 , 235–239 (2015).

Article   ADS   CAS   PubMed   Google Scholar  

Kalkuhl, M. & Wenz, L. The impact of climate conditions on economic production. Evidence from a global panel of regions. J. Environ. Econ. Manag. 103 , 102360 (2020).

Article   Google Scholar  

Moore, F. C. & Diaz, D. B. Temperature impacts on economic growth warrant stringent mitigation policy. Nat. Clim. Change 5 , 127–131 (2015).

Article   ADS   Google Scholar  

Drouet, L., Bosetti, V. & Tavoni, M. Net economic benefits of well-below 2°C scenarios and associated uncertainties. Oxf. Open Clim. Change 2 , kgac003 (2022).

Ueckerdt, F. et al. The economically optimal warming limit of the planet. Earth Syst. Dyn. 10 , 741–763 (2019).

Kotz, M., Wenz, L., Stechemesser, A., Kalkuhl, M. & Levermann, A. Day-to-day temperature variability reduces economic growth. Nat. Clim. Change 11 , 319–325 (2021).

Kotz, M., Levermann, A. & Wenz, L. The effect of rainfall changes on economic production. Nature 601 , 223–227 (2022).

Kousky, C. Informing climate adaptation: a review of the economic costs of natural disasters. Energy Econ. 46 , 576–592 (2014).

Harlan, S. L. et al. in Climate Change and Society: Sociological Perspectives (eds Dunlap, R. E. & Brulle, R. J.) 127–163 (Oxford Univ. Press, 2015).

Bolton, P. et al. The Green Swan (BIS Books, 2020).

Alogoskoufis, S. et al. ECB Economy-wide Climate Stress Test: Methodology and Results European Central Bank, 2021).

Weber, E. U. What shapes perceptions of climate change? Wiley Interdiscip. Rev. Clim. Change 1 , 332–342 (2010).

Markowitz, E. M. & Shariff, A. F. Climate change and moral judgement. Nat. Clim. Change 2 , 243–247 (2012).

Riahi, K. et al. The shared socioeconomic pathways and their energy, land use, and greenhouse gas emissions implications: an overview. Glob. Environ. Change 42 , 153–168 (2017).

Auffhammer, M., Hsiang, S. M., Schlenker, W. & Sobel, A. Using weather data and climate model output in economic analyses of climate change. Rev. Environ. Econ. Policy 7 , 181–198 (2013).

Kolstad, C. D. & Moore, F. C. Estimating the economic impacts of climate change using weather observations. Rev. Environ. Econ. Policy 14 , 1–24 (2020).

Dell, M., Jones, B. F. & Olken, B. A. Temperature shocks and economic growth: evidence from the last half century. Am. Econ. J. Macroecon. 4 , 66–95 (2012).

Newell, R. G., Prest, B. C. & Sexton, S. E. The GDP-temperature relationship: implications for climate change damages. J. Environ. Econ. Manag. 108 , 102445 (2021).

Kikstra, J. S. et al. The social cost of carbon dioxide under climate-economy feedbacks and temperature variability. Environ. Res. Lett. 16 , 094037 (2021).

Article   ADS   CAS   Google Scholar  

Bastien-Olvera, B. & Moore, F. Persistent effect of temperature on GDP identified from lower frequency temperature variability. Environ. Res. Lett. 17 , 084038 (2022).

Eyring, V. et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9 , 1937–1958 (2016).

Byers, E. et al. AR6 scenarios database. Zenodo https://zenodo.org/records/7197970 (2022).

Burke, M., Davis, W. M. & Diffenbaugh, N. S. Large potential reduction in economic damages under UN mitigation targets. Nature 557 , 549–553 (2018).

Kotz, M., Wenz, L. & Levermann, A. Footprint of greenhouse forcing in daily temperature variability. Proc. Natl Acad. Sci. 118 , e2103294118 (2021).

Article   CAS   PubMed   PubMed Central   Google Scholar  

Myhre, G. et al. Frequency of extreme precipitation increases extensively with event rareness under global warming. Sci. Rep. 9 , 16063 (2019).

Min, S.-K., Zhang, X., Zwiers, F. W. & Hegerl, G. C. Human contribution to more-intense precipitation extremes. Nature 470 , 378–381 (2011).

England, M. R., Eisenman, I., Lutsko, N. J. & Wagner, T. J. The recent emergence of Arctic Amplification. Geophys. Res. Lett. 48 , e2021GL094086 (2021).

Fischer, E. M. & Knutti, R. Anthropogenic contribution to global occurrence of heavy-precipitation and high-temperature extremes. Nat. Clim. Change 5 , 560–564 (2015).

Pfahl, S., O’Gorman, P. A. & Fischer, E. M. Understanding the regional pattern of projected future changes in extreme precipitation. Nat. Clim. Change 7 , 423–427 (2017).

Callahan, C. W. & Mankin, J. S. Globally unequal effect of extreme heat on economic growth. Sci. Adv. 8 , eadd3726 (2022).

Diffenbaugh, N. S. & Burke, M. Global warming has increased global economic inequality. Proc. Natl Acad. Sci. 116 , 9808–9813 (2019).

Callahan, C. W. & Mankin, J. S. National attribution of historical climate damages. Clim. Change 172 , 40 (2022).

Burke, M. & Tanutama, V. Climatic constraints on aggregate economic output. National Bureau of Economic Research, Working Paper 25779. https://doi.org/10.3386/w25779 (2019).

Kahn, M. E. et al. Long-term macroeconomic effects of climate change: a cross-country analysis. Energy Econ. 104 , 105624 (2021).

Desmet, K. et al. Evaluating the economic cost of coastal flooding. National Bureau of Economic Research, Working Paper 24918. https://doi.org/10.3386/w24918 (2018).

Hsiang, S. M. & Jina, A. S. The causal effect of environmental catastrophe on long-run economic growth: evidence from 6,700 cyclones. National Bureau of Economic Research, Working Paper 20352. https://doi.org/10.3386/w2035 (2014).

Ritchie, P. D. et al. Shifts in national land use and food production in Great Britain after a climate tipping point. Nat. Food 1 , 76–83 (2020).

Dietz, S., Rising, J., Stoerk, T. & Wagner, G. Economic impacts of tipping points in the climate system. Proc. Natl Acad. Sci. 118 , e2103081118 (2021).

Bastien-Olvera, B. A. & Moore, F. C. Use and non-use value of nature and the social cost of carbon. Nat. Sustain. 4 , 101–108 (2021).

Carleton, T. et al. Valuing the global mortality consequences of climate change accounting for adaptation costs and benefits. Q. J. Econ. 137 , 2037–2105 (2022).

Bastien-Olvera, B. A. et al. Unequal climate impacts on global values of natural capital. Nature 625 , 722–727 (2024).

Malik, A. et al. Impacts of climate change and extreme weather on food supply chains cascade across sectors and regions in Australia. Nat. Food 3 , 631–643 (2022).

Article   ADS   PubMed   Google Scholar  

Kuhla, K., Willner, S. N., Otto, C., Geiger, T. & Levermann, A. Ripple resonance amplifies economic welfare loss from weather extremes. Environ. Res. Lett. 16 , 114010 (2021).

Schleypen, J. R., Mistry, M. N., Saeed, F. & Dasgupta, S. Sharing the burden: quantifying climate change spillovers in the European Union under the Paris Agreement. Spat. Econ. Anal. 17 , 67–82 (2022).

Dasgupta, S., Bosello, F., De Cian, E. & Mistry, M. Global temperature effects on economic activity and equity: a spatial analysis. European Institute on Economics and the Environment, Working Paper 22-1 (2022).

Neal, T. The importance of external weather effects in projecting the macroeconomic impacts of climate change. UNSW Economics Working Paper 2023-09 (2023).

Deryugina, T. & Hsiang, S. M. Does the environment still matter? Daily temperature and income in the United States. National Bureau of Economic Research, Working Paper 20750. https://doi.org/10.3386/w20750 (2014).

Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146 , 1999–2049 (2020).

Cucchi, M. et al. WFDE5: bias-adjusted ERA5 reanalysis data for impact studies. Earth Syst. Sci. Data 12 , 2097–2120 (2020).

Adler, R. et al. The New Version 2.3 of the Global Precipitation Climatology Project (GPCP) Monthly Analysis Product 1072–1084 (University of Maryland, 2016).

Lange, S. Trend-preserving bias adjustment and statistical downscaling with ISIMIP3BASD (v1.0). Geosci. Model Dev. 12 , 3055–3070 (2019).

Wenz, L., Carr, R. D., Kögel, N., Kotz, M. & Kalkuhl, M. DOSE – global data set of reported sub-national economic output. Sci. Data 10 , 425 (2023).

Article   PubMed   PubMed Central   Google Scholar  

Gennaioli, N., La Porta, R., Lopez De Silanes, F. & Shleifer, A. Growth in regions. J. Econ. Growth 19 , 259–309 (2014).

Board of Governors of the Federal Reserve System (US). U.S. dollars to euro spot exchange rate. https://fred.stlouisfed.org/series/AEXUSEU (2022).

World Bank. GDP deflator. https://data.worldbank.org/indicator/NY.GDP.DEFL.ZS (2022).

Jones, B. & O’Neill, B. C. Spatially explicit global population scenarios consistent with the Shared Socioeconomic Pathways. Environ. Res. Lett. 11 , 084003 (2016).

Murakami, D. & Yamagata, Y. Estimation of gridded population and GDP scenarios with spatially explicit statistical downscaling. Sustainability 11 , 2106 (2019).

Koch, J. & Leimbach, M. Update of SSP GDP projections: capturing recent changes in national accounting, PPP conversion and Covid 19 impacts. Ecol. Econ. 206 (2023).

Carleton, T. A. & Hsiang, S. M. Social and economic impacts of climate. Science 353 , aad9837 (2016).

Article   PubMed   Google Scholar  

Bergé, L. Efficient estimation of maximum likelihood models with multiple fixed-effects: the R package FENmlm. DEM Discussion Paper Series 18-13 (2018).

Kalkuhl, M., Kotz, M. & Wenz, L. DOSE - The MCC-PIK Database Of Subnational Economic output. Zenodo https://zenodo.org/doi/10.5281/zenodo.4681305 (2021).

Kotz, M., Wenz, L. & Levermann, A. Data and code for “The economic commitment of climate change”. Zenodo https://zenodo.org/doi/10.5281/zenodo.10562951 (2024).

Dasgupta, S. et al. Effects of climate change on combined labour productivity and supply: an empirical, multi-model study. Lancet Planet. Health 5 , e455–e465 (2021).

Lobell, D. B. et al. The critical role of extreme heat for maize production in the United States. Nat. Clim. Change 3 , 497–501 (2013).

Zhao, C. et al. Temperature increase reduces global yields of major crops in four independent estimates. Proc. Natl Acad. Sci. 114 , 9326–9331 (2017).

Wheeler, T. R., Craufurd, P. Q., Ellis, R. H., Porter, J. R. & Prasad, P. V. Temperature variability and the yield of annual crops. Agric. Ecosyst. Environ. 82 , 159–167 (2000).

Rowhani, P., Lobell, D. B., Linderman, M. & Ramankutty, N. Climate variability and crop production in Tanzania. Agric. For. Meteorol. 151 , 449–460 (2011).

Ceglar, A., Toreti, A., Lecerf, R., Van der Velde, M. & Dentener, F. Impact of meteorological drivers on regional inter-annual crop yield variability in France. Agric. For. Meteorol. 216 , 58–67 (2016).

Shi, L., Kloog, I., Zanobetti, A., Liu, P. & Schwartz, J. D. Impacts of temperature and its variability on mortality in New England. Nat. Clim. Change 5 , 988–991 (2015).

Xue, T., Zhu, T., Zheng, Y. & Zhang, Q. Declines in mental health associated with air pollution and temperature variability in China. Nat. Commun. 10 , 2165 (2019).

Article   ADS   PubMed   PubMed Central   Google Scholar  

Liang, X.-Z. et al. Determining climate effects on US total agricultural productivity. Proc. Natl Acad. Sci. 114 , E2285–E2292 (2017).

Desbureaux, S. & Rodella, A.-S. Drought in the city: the economic impact of water scarcity in Latin American metropolitan areas. World Dev. 114 , 13–27 (2019).

Damania, R. The economics of water scarcity and variability. Oxf. Rev. Econ. Policy 36 , 24–44 (2020).

Davenport, F. V., Burke, M. & Diffenbaugh, N. S. Contribution of historical precipitation change to US flood damages. Proc. Natl Acad. Sci. 118 , e2017524118 (2021).

Dave, R., Subramanian, S. S. & Bhatia, U. Extreme precipitation induced concurrent events trigger prolonged disruptions in regional road networks. Environ. Res. Lett. 16 , 104050 (2021).

Download references

Acknowledgements

We gratefully acknowledge financing from the Volkswagen Foundation and the Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH on behalf of the Government of the Federal Republic of Germany and Federal Ministry for Economic Cooperation and Development (BMZ).

Open access funding provided by Potsdam-Institut für Klimafolgenforschung (PIK) e.V.

Author information

Authors and affiliations.

Research Domain IV, Research Domain IV, Potsdam Institute for Climate Impact Research, Potsdam, Germany

Maximilian Kotz, Anders Levermann & Leonie Wenz

Institute of Physics, Potsdam University, Potsdam, Germany

Maximilian Kotz & Anders Levermann

Mercator Research Institute on Global Commons and Climate Change, Berlin, Germany

Leonie Wenz

You can also search for this author in PubMed   Google Scholar

Contributions

All authors contributed to the design of the analysis. M.K. conducted the analysis and produced the figures. All authors contributed to the interpretation and presentation of the results. M.K. and L.W. wrote the manuscript.

Corresponding author

Correspondence to Leonie Wenz .

Ethics declarations

Competing interests.

The authors declare no competing interests.

Peer review

Peer review information.

Nature thanks Xin-Zhong Liang, Chad Thackeray and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended data fig. 1 constraining the persistence of historical climate impacts on economic growth rates..

The results of a panel-based fixed-effects distributed lag model for the effects of annual mean temperature ( a ), daily temperature variability ( b ), total annual precipitation ( c ), the number of wet days ( d ) and extreme daily precipitation ( e ) on sub-national economic growth rates. Point estimates show the effects of a 1 °C or one standard deviation increase (for temperature and precipitation variables, respectively) at the lower quartile, median and upper quartile of the relevant moderating variable (green, orange and purple, respectively) at different lagged periods after the initial shock (note that these are not cumulative effects). Climate variables are used in their first-differenced form (see main text for discussion) and the moderating climate variables are the annual mean temperature, seasonal temperature difference, total annual precipitation, number of wet days and annual mean temperature, respectively, in panels a – e (see Methods for further discussion). Error bars show the 95% confidence intervals having clustered standard errors by region. The within-region R 2 , Bayesian and Akaike information criteria for the model are shown at the top of the figure. This figure shows results with ten lags for each variable to demonstrate the observed levels of persistence, but our preferred specifications remove later lags based on the statistical significance of terms shown above and the information criteria shown in Extended Data Fig. 2 . The resulting models without later lags are shown in Supplementary Figs. 1 – 3 .

Extended Data Fig. 2 Incremental lag-selection procedure using information criteria and within-region R 2 .

Starting from a panel-based fixed-effects distributed lag model estimating the effects of climate on economic growth using the real historical data (as in equation ( 4 )) with ten lags for all climate variables (as shown in Extended Data Fig. 1 ), lags are incrementally removed for one climate variable at a time. The resulting Bayesian and Akaike information criteria are shown in a – e and f – j , respectively, and the within-region R 2 and number of observations in k – o and p – t , respectively. Different rows show the results when removing lags from different climate variables, ordered from top to bottom as annual mean temperature, daily temperature variability, total annual precipitation, the number of wet days and extreme annual precipitation. Information criteria show minima at approximately four lags for precipitation variables and ten to eight for temperature variables, indicating that including these numbers of lags does not lead to overfitting. See Supplementary Table 1 for an assessment using information criteria to determine whether including further climate variables causes overfitting.

Extended Data Fig. 3 Damages in our preferred specification that provides a robust lower bound on the persistence of climate impacts on economic growth versus damages in specifications of pure growth or pure level effects.

Estimates of future damages as shown in Fig. 1 but under the emission scenario RCP8.5 for three separate empirical specifications: in orange our preferred specification, which provides an empirical lower bound on the persistence of climate impacts on economic growth rates while avoiding assumptions of infinite persistence (see main text for further discussion); in purple a specification of ‘pure growth effects’ in which the first difference of climate variables is not taken and no lagged climate variables are included (the baseline specification of ref.  2 ); and in pink a specification of ‘pure level effects’ in which the first difference of climate variables is taken but no lagged terms are included.

Extended Data Fig. 4 Climate changes in different variables as a function of historical interannual variability.

Changes in each climate variable of interest from 1979–2019 to 2035–2065 under the high-emission scenario SSP5-RCP8.5, expressed as a percentage of the historical variability of each measure. Historical variability is estimated as the standard deviation of each detrended climate variable over the period 1979–2019 during which the empirical models were identified (detrending is appropriate because of the inclusion of region-specific linear time trends in the empirical models). See Supplementary Fig. 13 for changes expressed in standard units. Data on national administrative boundaries are obtained from the GADM database version 3.6 and are freely available for academic use ( https://gadm.org/ ).

Extended Data Fig. 5 Contribution of different climate variables to overall committed damages.

a , Climate damages in 2049 when using empirical models that account for all climate variables, changes in annual mean temperature only or changes in both annual mean temperature and one other climate variable (daily temperature variability, total annual precipitation, the number of wet days and extreme daily precipitation, respectively). b , The cumulative marginal effects of an increase in annual mean temperature of 1 °C, at different baseline temperatures, estimated from empirical models including all climate variables or annual mean temperature only. Estimates and uncertainty bars represent the median and 95% confidence intervals obtained from 1,000 block-bootstrap resamples from each of three different empirical models using eight, nine or ten lags of temperature terms.

Extended Data Fig. 6 The difference in committed damages between the upper and lower quartiles of countries when ranked by GDP and cumulative historical emissions.

Quartiles are defined using a population weighting, as are the average committed damages across each quartile group. The violin plots indicate the distribution of differences between quartiles across the two extreme emission scenarios (RCP2.6 and RCP8.5) and the uncertainty sampling procedure outlined in Methods , which accounts for uncertainty arising from the choice of lags in the empirical models, uncertainty in the empirical model parameter estimates, as well as the climate model projections. Bars indicate the median, as well as the 10th and 90th percentiles and upper and lower sixths of the distribution reflecting the very likely and likely ranges following the likelihood classification adopted by the IPCC.

Supplementary information

Supplementary information, peer review file, rights and permissions.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ .

Reprints and permissions

About this article

Cite this article.

Kotz, M., Levermann, A. & Wenz, L. The economic commitment of climate change. Nature 628 , 551–557 (2024). https://doi.org/10.1038/s41586-024-07219-0

Download citation

Received : 25 January 2023

Accepted : 21 February 2024

Published : 17 April 2024

Issue Date : 18 April 2024

DOI : https://doi.org/10.1038/s41586-024-07219-0

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

By submitting a comment you agree to abide by our Terms and Community Guidelines . If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

publish first research paper

What's carbon pricing? Lamentillo’s research published in LSE's prestigious paper explains

Amid repeated calls for action to address climate change, a research paper of former Department of Information and Communications Technology (DICT) undersecretary Anna Mae Yu Lamentillo on carbon pricing has landed in the prestigious London School of Economics (LSE) International Development Review.

But what exactly is carbon pricing?

According to the United Nations Framework Convention on Climate Change (UNFCCC),  carbon pricing is a form of curbing greenhouse gas emissions (GHG) by placing a fee on emitting and/or offering an incentive for emitting less. 

It works by capturing the external costs of emitting carbon—the public pays, such as loss of property due to rising sea levels, the damage to crops caused by changing rainfall patterns, or the health care costs associated with heat waves and droughts.

Simply put, the World Bank stated that carbon pricing shifts the burden for the damage from GHG emissions back to those who are responsible for it and who can avoid it. 

And in her research paper titled "A Price Tag on Pollution: The Case on Carbon Pricing," Lamentillo shed light on the imperative role of carbon pricing in combating climate change and facilitating a sustainable future. 

The paper details various carbon pricing mechanisms, including emissions trading systems (ETS) and carbon taxes, and their successful implementation in regions like the European Union and countries like South Korea and Singapore. 

It also explores the International Monetary Fund's proposal for an International Carbon Price Floor (ICPF), aimed at harmonizing carbon pricing globally and mitigating competitive disadvantages among nations.

Lamentillo's findings indicate that carbon pricing not only serves as an effective tool for reducing emissions but also generates significant revenues that can be reinvested in climate adaptation and mitigation efforts. 

The research provides a call to action for policymakers worldwide to adopt and enhance carbon pricing strategies to meet their Nationally Determined Contributions (NDCs) under the Paris Agreement. 

Timely Lamentillo’s paper was published in the wake of the United Nations Climate Change Conference (COP 28) in Dubai, UAE, where the "UAE Consensus" was adopted and signaled the start of the end for the fossil fuel era.

The research provides a call to action for policymakers worldwide to adopt and enhance carbon pricing strategies to meet their Nationally Determined Contributions (NDCs) under the Paris Agreement

Why is it important?

The LSE International Development Review is an academic journal based at the London School of Economics and Political Science, dedicated to publishing cutting-edge research that contributes to understanding and solving global development challenges.

Lamentillo’s study that was published in it underscored the urgent need for global actions as she emphasized that without the implementation of carbon pricing, the goal to limit global warming to 1.5 degrees Celsius above pre-industrial levels remains a distant dream. 

Drawing on the latest IPCC (Intergovernmental Panel on Climate Change) reports and comprehensive data analyses, Lamentillo argued that the current trajectory could lead to a 3.2 degrees Celsius increase by 2100, with catastrophic implications for biodiversity, food security, and human livelihood. 

The research stresses that carbon pricing, by making polluters pay for the greenhouse gases they emit, can significantly deter fossil fuel use and accelerate the transition to clean energy. 

Her landmark study is also considered as a valuable contribution to the ongoing discourse on climate policy and a testament to the LSE International Development Review's commitment to fostering insightful research that addresses the most pressing global challenges. 

NASA selects Rocket Lab for back-to-back climate change research launches

First launch scheduled to lift-off later in May on an Electron rocket.

a mission badge showing the white silhouette of an arctic fox against a dark blue background. a white silhouette of a rocket lifts off in the background

One of NASA's latest climate change missions will soon head to space on Rocket Lab's Electron rocket.

Rocket Lab shared this week that planning continues for two back-to-back launches taking that will send NASA's PREFIRE (Polar Radiant Energy in the Far-InfraRed Experiment) mission to space from the company's Launch Complex 1 in Māhia, New Zealan. Aboard each rocket will be a cubesat that will circle the globe at an altitude between 292 and 403 miles (470 and 650 kilometers) in near-polar orbits.

The first launch is scheduled no earlier than May 22 and after the successful deployment of "Ready, Aim, PREFIRE," the second, deemed "PREFIRE and ICE", will follow within three weeks. These two launches will be Rocket Lab's sixth and seventh of the year and the 48th and 49th Electron launches to date. 

Related: NASA's twin spacecraft will go to the ends of the Earth to combat climate change

"It's these types of missions where Electron really thrives as the leading launch provider for dedicated small satellite missions," Peter Beck, Rocket Lab CEO and founder, said in a statement . "We have an excellent track record of delivering NASA's payloads to exactly where they need to go and when they need to, and we're looking forward to adding to that tally further with these next back-to-back launches."

The 10-month PREFIRE mission will focus on climate change by taking measurements that can only be obtained from space, measuring the amount of heat Earth loses from its polar regions. Once in near-polar, or asynchronous orbit, each of the PREFIRE satellites will gather information from their onboard sensors, which are far more sensitive than previous spacecraft, enabling scientists to learn more about polar heat emissions in the far infrared. 

an illustration of two small T-shaped satellites in orbit above Earth. the Arctic can be seen below

According to a statement from NASA's Jet Propulsion Lab, the Arctic has warmed more than 2.5 times faster than the rest of the planet with roughly 60% of the energy that's released into space not measured efficiently. 

Get the Space.com Newsletter

Breaking space news, the latest updates on rocket launches, skywatching events and more!

The PREFIRE mission will help add the remaining puzzle pieces to the Arctic heating mystery so scientists can pinpoint which specific regions of the polar environment could be the culprit for the heat loss. The data will also contribute to improving climate models and forecast changes that result from global warming.

—  US Space Force picks Rocket Lab for 2025 Victus Haze space domain awareness mission

 — Rocket Lab launches new NASA solar sail tech to orbit (video, photos)

— Rocket Lab gearing up to refly Electron booster for 1st time

"Helping climate scientists better understand climate change means they need precisely located measurements of Earth's polar heat loss, which NASA's PREFIRE mission is setting out to achieve, and helping the PREFIRE mission achieve its science objectives means its satellites need precise and accurate deployments to their locations in space," Beck added in Rocket Lab's statement. 

This is not the first time Rocket Lab has used Electron for NASA science and technology missions; it also was part of the CAPSTONE mission to the moon in June 2022, the TROPICS mission in May 2023, the NASA Starling mission in July 2023, and NASA's upcoming ACS3 rideshare mission . 

Join our Space Forums to keep talking space on the latest missions, night sky and more! And if you have a news tip, correction or comment, let us know at: [email protected].

Meredith Garofalo

Meredith is a regional Murrow award-winning Certified Broadcast Meteorologist and science/space correspondent. She most recently was a Freelance Meteorologist for NY 1 in New York City & the 19 First Alert Weather Team in Cleveland. A self-described "Rocket Girl," Meredith's personal and professional work has drawn recognition over the last decade, including the inaugural Valparaiso University Alumni Association First Decade Achievement Award, two special reports in News 12's Climate Special "Saving Our Shores" that won a Regional Edward R. Murrow Award, multiple Fair Media Council Folio & Press Club of Long Island awards for meteorology & reporting, and a Long Island Business News & NYC TV Week "40 Under 40" Award.

Yellowstone Lake's weird resistance to climate change could be about to crack

Beavers are helping fight climate change, satellite data shows

Happy National Space Day 2024! Here's how 8 lucky kids can win a trip to Florida's Space Coast

Most Popular

  • 2 Solar eclipse 2024: Live updates
  • 3 Boeing drone dressed as 'Star Wars' X-wing lands at Smithsonian Air and Space Museum
  • 4 Boeing's Starliner is ready to fly astronauts after years of delay. Here's what took so long.
  • 5 Curious asteroid Selam, spotted by NASA's Lucy spacecraft, is a cosmic toddler

publish first research paper

publish first research paper

Journal of Materials Chemistry C

Research method and mechanism analysis of a novel high-performance quaternary zn–sr–co–sb varistor ceramic.

ORCID logo

* Corresponding authors

a School of Environmental and Materials Engineering, Yantai University, 30 Qingquan Road, Yantai, China

b The State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Science, Shanghai, China

In this paper, a novel high-performance bismuth-free ZnO varistor ceramic was developed involving only three doping elements: Sr, Co and Sb. To specifically study the role of each element in improving electrical properties, a stepwise research method was used for this novel ceramic employing the binary system of Zn–Sr, ternary system of Zn–Sr–Co and quaternary system of Zn–Sr–Co–Sb. Consequently, a possible mechanism corresponding to each doping element is proposed in this work. Moreover, excellent comprehensive properties consisting of a high nonlinear coefficient α of 74.30, ultra-low leakage current I L of 0.29 μA cm −2 and low breakdown voltage gradient E 1mA of 361.02 V mm −1 are exhibited in the quaternary Zn–Sr–Co–Sb varistor ceramic, which are superior to most advanced ZnO varistors with fewer dopants. This novel quaternary ZnO varistor ceramic without expensive, volatile, deliquescent and toxic dopants exhibits sustainability, environmental friendliness, low cost and high volume development, providing a new perspective for the design of novel high-performance bismuth-free ZnO varistor ceramics.

Graphical abstract: Research method and mechanism analysis of a novel high-performance quaternary Zn–Sr–Co–Sb varistor ceramic

Article information

Download citation, permissions.

publish first research paper

K. Wang, Z. Xu, R. Chu and G. Li, J. Mater. Chem. C , 2024, Advance Article , DOI: 10.1039/D4TC00876F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page .

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page .

Read more about how to correctly acknowledge RSC content .

Social activity

Search articles by author.

This article has not yet been cited.

Advertisements

IMAGES

  1. How to publish your first Research Paper? Detailed Step by Step Procedure

    publish first research paper

  2. How to publish your first research paper? Step-by-Step Start to End Instructions

    publish first research paper

  3. How to easily publish a research paper in journals 2023

    publish first research paper

  4. How to Write and Publish a Research Paper.pdf

    publish first research paper

  5. 5 Tips for how to publish a research paper

    publish first research paper

  6. How to publish your first research paper

    publish first research paper

VIDEO

  1. How to publish a research paper

  2. How I wrote my FIRST Research Paper!!!

  3. Scientific Publishing: Where and How to Publish

  4. Workshop topic "How to publish your research paper in top tier journal"

  5. How to Write your First Research Paper

  6. Online Workshop on Research Paper Writing & Publishing Day 1

COMMENTS

  1. Publish with Elsevier: Step by step

    4. Track your paper. 5. Share and promote. 1. Find a journal. Find out the journals that could be best suited for publishing your research. For a comprehensive list of Elsevier journals check our Journal Catalog. You can also match your manuscript using the JournalFinder tool, then learn more about each journal.

  2. How to Publish a Research Paper

    To Publish a Research Paper follow the guide below: Conduct original research: Conduct thorough research on a specific topic or problem. Collect data, analyze it, and draw conclusions based on your findings. Write the paper: Write a detailed paper describing your research.

  3. How to get an article published for the first time

    Our podcast, Getting published for the first time, hears from researchers and editors explaining their tips for getting an article published. Here, we summarize their advice and gather useful resources to help you navigate publishing your first article. Read the Getting published for the first time podcast transcript.

  4. How to Publish a Research Paper: A Step-by-Step Guide

    Step 2: Finding the Right Journal. Understanding how to publish a research paper involves selecting the appropriate journal for your work. This step is critical for successful publication, and you should take several factors into account when deciding which journal to apply for: Conduct thorough research to identify journals that specialise in ...

  5. Author Insights

    What made you decide to publish your first research paper? "A great mentor combined with surprising results led me to publish my first paper. I joined Professor Arben Merkoçi's team (Catalan Institute of Nanoscience and Nanotechnology) in early 2011. In those times, our research team was very motivated by graphene: the wonder material.

  6. How to Publish a Research Paper: Your Step-by-Step Guide

    3. Submit your article according to the journal's submission guidelines. Go to the "author's guide" (or similar) on the journal's website to review its submission requirements. Once you are satisfied that your paper meets all of the guidelines, submit the paper through the appropriate channels.

  7. How to publish your research

    The first step in publishing a research paper should always be selecting the journal you want to publish in. Choosing your target journal before you start writing means you can tailor your work to build on research that's already been published in that journal. This can help editors to see how a paper adds to the 'conversation' in their ...

  8. How to Write and Publish a Research Paper for a Peer ...

    Communicating research findings is an essential step in the research process. Often, peer-reviewed journals are the forum for such communication, yet many researchers are never taught how to write a publishable scientific paper. In this article, we explain the basic structure of a scientific paper and describe the information that should be included in each section. We also identify common ...

  9. Understanding the Publishing Process

    The publication process explained. The path to publication can be unsettling when you're unsure what's happening with your paper. Learn about staple journal workflows to see the detailed steps required for ensuring a rigorous and ethical publication. Your team has prepared the paper, written a cover letter and completed the submission form.

  10. How to write a first-class paper

    In each paragraph, the first sentence defines the context, the body contains the new idea and the final sentence offers a conclusion. For the whole paper, the introduction sets the context, the ...

  11. How to Write and Publish a Research Paper for a Peer-Reviewed Journal

    The introduction section should be approximately three to five paragraphs in length. Look at examples from your target journal to decide the appropriate length. This section should include the elements shown in Fig. 1. Begin with a general context, narrowing to the specific focus of the paper.

  12. How to publish a scientific paper: Writing the paper

    Writing tips. Avoid fragmentation (breaking a single study into multiple short papers) and redundant publication (submitting multiple papers that are very similar). When writing a scientific paper, think about the structure familiar to you from reading scientific papers. A common structure for scientific research articles is termed IMRAD ...

  13. How to Write and Publish a Research Paper in 7 Steps

    This post will discuss 7 steps to the successful publication of your research paper: Check whether your research is publication-ready. Choose an article type. Choose a journal. Construct your paper. Decide the order of authors. Check and double-check. Submit your paper. 1.

  14. How to Write Your First Research Paper

    One of the stumbling blocks is the beginning of the process and creating the first draft. This paper presents guidelines on how to initiate the writing process and draft each section of a research manuscript. The paper discusses seven rules that allow the writer to prepare a well-structured and comprehensive manuscript for a publication submission.

  15. How To Write And Publish A Scientific Manuscript

    A clinician should continuously strive to increase knowledge by reviewing and critiquing papers, thoughtfully considering how to integrate new data into practice. This is the essence of evidence-based medicine (EBM).[1] When new clinical queries arise, one should seek answers in the published literature. The ability to read a scientific or medical manuscript remains vitally important ...

  16. PDF How to write your first Research Paper and get it published!

    Aims / Purpose. The purpose of this how to guide is to provide first time authors with advice on writing a paper for publication in the IJDT. The guide will also be helpful to those writing a thesis, research paper or even someone who is used to writing publications. It is important to remember that when writing an article for publication it is ...

  17. How to Write and Publish a Research Paper for a Peer-Reviewed ...

    Abstract. Communicating research findings is an essential step in the research process. Often, peer-reviewed journals are the forum for such communication, yet many researchers are never taught how to write a publishable scientific paper. In this article, we explain the basic structure of a scientific paper and describe the information that ...

  18. How to Write a Research Paper

    Understand the assignment. Choose a research paper topic. Conduct preliminary research. Develop a thesis statement. Create a research paper outline. Write a first draft of the research paper. Write the introduction. Write a compelling body of text. Write the conclusion.

  19. How to Publish Your First Research Paper: A Guide

    Getting a research paper published can be a long and frustrating process. It can get even more frustrating if you are doing it for the first time. You might struggle to find the right journal and…

  20. How to Publish a Research Paper: A Complete Guide

    Here's a list of steps to keep in mind before publishing a research paper : Step 1: Identifying the Right Journal. Step 2: Preparing Step 3: Your Manuscript. Step 3: Conducting a Thorough Review. Step 4: Writing a Compelling Cover Letter. Step 5: Navigating the Peer Review Process. Step 6: Handling Rejections.

  21. Research Paper

    Definition: Research Paper is a written document that presents the author's original research, analysis, and interpretation of a specific topic or issue. It is typically based on Empirical Evidence, and may involve qualitative or quantitative research methods, or a combination of both. The purpose of a research paper is to contribute new ...

  22. How reliable is this research? Tool flags papers discussed on PubPeer

    The plan is to use these lists to improve the tool so that it can also automatically flag any cited papers that are published in such journals. ... More than 10,000 research papers were retracted ...

  23. The positive impact of conservation action

    We conducted a rapid evidence assessment (see Methods) and meta-analysis of studies published in English that present a counterfactual-based analysis of the impact of conservation actions over time . Our literature search yielded 1445 studies (published papers) spanning spatial scales from local to continental and more than a century (1890 to ...

  24. Global trends and scenarios for terrestrial biodiversity and ...

    During the past century, humans have caused biodiversity loss at rates that are 30 to 120 times higher than the mean extinction rates in the Cenozoic fossil record ().Although multiple proximate causes drive this loss, ultimately, a growing human population and economy have demanded increasing land and natural resources, causing habitat conversion and loss ().

  25. The economic commitment of climate change

    Analysis of projected sub-national damages from temperature and precipitation show an income reduction of 19% of the world economy within the next 26 years independent of future emission choices.

  26. What's carbon pricing? Lamentillo's research published in LSE's

    Amid repeated calls for action to address climate change, a research paper of former Department of Information and Communications Technology (DICT) undersecretary Anna Mae Yu Lamentillo on carbon pricing has landed in the prestigious London School of Economics International Development Review. ... Lamentillo's paper was published in the wake ...

  27. NASA selects Rocket Lab for back-to-back climate change research

    This is not the first time Rocket Lab has used Electron for NASA science and technology missions; it also was part of the CAPSTONE mission to the moon in June 2022, the TROPICS mission in May 2023 ...

  28. How to Publish Your First Research Paper: A Guide

    Make sure your paper is written as per the conventions of academic writing. Emphasize the importance of your work at the beginning of the paper. This is very important if you are publishing a research paper for the first time. Consider adding your supervisor as the co-author of the paper. Since your supervisor will have an established ...

  29. Research method and mechanism analysis of a novel high ...

    In this paper, a novel high-performance bismuth-free ZnO varistor ceramic was developed involving only three doping elements: Sr, Co and Sb. To specifically study the role of each element in improving electrical properties, a stepwise research method was used for this novel ceramic employing the binary system of Zn-Sr, ternary system of Zn-Sr-Co and quaternary system of Zn-Sr-Co-Sb.