• TheFreeDictionary
  • Word / Article
  • Starts with
  • Free toolbar & extensions
  • Word of the Day
  • Free content

hy·poth·e·sis

Significance .

  • ad hoc hypothesis
  • alpha error
  • alternative hypothesis
  • APUD hypothesis
  • Avogadro law
  • Avogadro number
  • Avogadro, Amadeo
  • baby lung hypothesis
  • background level
  • Bayes theorem
  • Bayesian hypothesis
  • Beadle, George Wells
  • bread mould
  • chi squared test
  • cohesion-tension hypothesis
  • hypothalamic dysfunction
  • hypothalamic fever
  • hypothalamic infundibulum
  • hypothalamic nucleus
  • hypothalamic obesity
  • hypothalamic sulcus
  • hypothalamic-pituitary axis
  • hypothalamic-pituitary-adrenal axis
  • hypothalamocerebellar fibers
  • hypothalamo-hypophyseal portal system
  • hypothalamohypophysial
  • hypothalamospinal fibers
  • Hypothalamus
  • hypothenar eminence
  • hypothenar fascia
  • hypothenar hammer syndrome
  • hypothenar-hammer syndrome
  • hypothermal
  • hypothermia
  • hypothermia blanket
  • hypothermia therapy
  • hypothermia treatment
  • hypothermic anesthesia
  • hypothermic circulatory arrest
  • hypothesis test
  • hypothesis to test
  • hypothetic mean organism
  • hypothetic mean strain
  • hypothetical mean organism
  • hypothrombinemia
  • hypothromboplastinemia
  • hypothymism
  • hypothyroid
  • hypothyroid dwarf
  • hypothyroidism
  • hypothyroxinemia
  • hypotonia-cystinuria syndrome
  • hypotonic duodenography
  • hypotonic labor
  • hypotonic saline
  • hypotonic solution
  • hypotonic uterine dysfunction
  • hypotonicity
  • hypotony maculopathy
  • Hypothermia After Cardiac Arrest
  • Hypothermia After Cardiac Arrest Registry
  • Hypothermia, induced
  • hypothermic
  • Hypothermic machine perfusion
  • hypothermicly
  • Hypothèse Extraterrestre
  • Hypothesis Driven Lexical Adaptation
  • Hypothesis test
  • Hypothesis testing
  • hypothesis testing sampling
  • Hypothesis-Based Testing
  • Hypothesis-Oriented Algorithm for Clinicians
  • hypothesise
  • hypothesised
  • hypothesiser
  • hypothesisers
  • hypothesises
  • Facebook Share
  • More from M-W
  • To save this word, you'll need to log in. Log In

Definition of hypothesis

Did you know.

The Difference Between Hypothesis and Theory

A hypothesis is an assumption, an idea that is proposed for the sake of argument so that it can be tested to see if it might be true.

In the scientific method, the hypothesis is constructed before any applicable research has been done, apart from a basic background review. You ask a question, read up on what has been studied before, and then form a hypothesis.

A hypothesis is usually tentative; it's an assumption or suggestion made strictly for the objective of being tested.

A theory , in contrast, is a principle that has been formed as an attempt to explain things that have already been substantiated by data. It is used in the names of a number of principles accepted in the scientific community, such as the Big Bang Theory . Because of the rigors of experimentation and control, it is understood to be more likely to be true than a hypothesis is.

In non-scientific use, however, hypothesis and theory are often used interchangeably to mean simply an idea, speculation, or hunch, with theory being the more common choice.

Since this casual use does away with the distinctions upheld by the scientific community, hypothesis and theory are prone to being wrongly interpreted even when they are encountered in scientific contexts—or at least, contexts that allude to scientific study without making the critical distinction that scientists employ when weighing hypotheses and theories.

The most common occurrence is when theory is interpreted—and sometimes even gleefully seized upon—to mean something having less truth value than other scientific principles. (The word law applies to principles so firmly established that they are almost never questioned, such as the law of gravity.)

This mistake is one of projection: since we use theory in general to mean something lightly speculated, then it's implied that scientists must be talking about the same level of uncertainty when they use theory to refer to their well-tested and reasoned principles.

The distinction has come to the forefront particularly on occasions when the content of science curricula in schools has been challenged—notably, when a school board in Georgia put stickers on textbooks stating that evolution was "a theory, not a fact, regarding the origin of living things." As Kenneth R. Miller, a cell biologist at Brown University, has said , a theory "doesn’t mean a hunch or a guess. A theory is a system of explanations that ties together a whole bunch of facts. It not only explains those facts, but predicts what you ought to find from other observations and experiments.”

While theories are never completely infallible, they form the basis of scientific reasoning because, as Miller said "to the best of our ability, we’ve tested them, and they’ve held up."

  • proposition
  • supposition

hypothesis , theory , law mean a formula derived by inference from scientific data that explains a principle operating in nature.

hypothesis implies insufficient evidence to provide more than a tentative explanation.

theory implies a greater range of evidence and greater likelihood of truth.

law implies a statement of order and relation in nature that has been found to be invariable under the same conditions.

Examples of hypothesis in a Sentence

These examples are programmatically compiled from various online sources to illustrate current usage of the word 'hypothesis.' Any opinions expressed in the examples do not represent those of Merriam-Webster or its editors. Send us feedback about these examples.

Word History

Greek, from hypotithenai to put under, suppose, from hypo- + tithenai to put — more at do

1641, in the meaning defined at sense 1a

Phrases Containing hypothesis

  • counter - hypothesis
  • Whorfian hypothesis
  • planetesimal hypothesis
  • nebular hypothesis
  • null hypothesis

Articles Related to hypothesis

hypothesis

This is the Difference Between a...

This is the Difference Between a Hypothesis and a Theory

In scientific reasoning, they're two completely different things

Dictionary Entries Near hypothesis

hypothermia

hypothesize

Cite this Entry

“Hypothesis.” Merriam-Webster.com Dictionary , Merriam-Webster, https://www.merriam-webster.com/dictionary/hypothesis. Accessed 16 Apr. 2024.

Kids Definition

Kids definition of hypothesis, medical definition, medical definition of hypothesis, more from merriam-webster on hypothesis.

Nglish: Translation of hypothesis for Spanish Speakers

Britannica English: Translation of hypothesis for Arabic Speakers

Britannica.com: Encyclopedia article about hypothesis

Subscribe to America's largest dictionary and get thousands more definitions and advanced search—ad free!

Play Quordle: Guess all four words in a limited number of tries.  Each of your guesses must be a real 5-letter word.

Can you solve 4 words at once?

Word of the day, inalienable.

See Definitions and Examples »

Get Word of the Day daily email!

Popular in Grammar & Usage

Your vs. you're: how to use them correctly, every letter is silent, sometimes: a-z list of examples, more commonly mispronounced words, how to use em dashes (—), en dashes (–) , and hyphens (-), absent letters that are heard anyway, popular in wordplay, a great big list of bread words, the words of the week - apr. 12, 10 scrabble words without any vowels, 12 more bird names that sound like insults (and sometimes are), 9 superb owl words, games & quizzes.

Play Blossom: Solve today's spelling word game by finding as many words as you can using just 7 letters. Longer words score more points.

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base

Methodology

  • How to Write a Strong Hypothesis | Steps & Examples

How to Write a Strong Hypothesis | Steps & Examples

Published on May 6, 2022 by Shona McCombes . Revised on November 20, 2023.

A hypothesis is a statement that can be tested by scientific research. If you want to test a relationship between two or more variables, you need to write hypotheses before you start your experiment or data collection .

Example: Hypothesis

Daily apple consumption leads to fewer doctor’s visits.

Table of contents

What is a hypothesis, developing a hypothesis (with example), hypothesis examples, other interesting articles, frequently asked questions about writing hypotheses.

A hypothesis states your predictions about what your research will find. It is a tentative answer to your research question that has not yet been tested. For some research projects, you might have to write several hypotheses that address different aspects of your research question.

A hypothesis is not just a guess – it should be based on existing theories and knowledge. It also has to be testable, which means you can support or refute it through scientific research methods (such as experiments, observations and statistical analysis of data).

Variables in hypotheses

Hypotheses propose a relationship between two or more types of variables .

  • An independent variable is something the researcher changes or controls.
  • A dependent variable is something the researcher observes and measures.

If there are any control variables , extraneous variables , or confounding variables , be sure to jot those down as you go to minimize the chances that research bias  will affect your results.

In this example, the independent variable is exposure to the sun – the assumed cause . The dependent variable is the level of happiness – the assumed effect .

Receive feedback on language, structure, and formatting

Professional editors proofread and edit your paper by focusing on:

  • Academic style
  • Vague sentences
  • Style consistency

See an example

medical meaning for hypothesis

Step 1. Ask a question

Writing a hypothesis begins with a research question that you want to answer. The question should be focused, specific, and researchable within the constraints of your project.

Step 2. Do some preliminary research

Your initial answer to the question should be based on what is already known about the topic. Look for theories and previous studies to help you form educated assumptions about what your research will find.

At this stage, you might construct a conceptual framework to ensure that you’re embarking on a relevant topic . This can also help you identify which variables you will study and what you think the relationships are between them. Sometimes, you’ll have to operationalize more complex constructs.

Step 3. Formulate your hypothesis

Now you should have some idea of what you expect to find. Write your initial answer to the question in a clear, concise sentence.

4. Refine your hypothesis

You need to make sure your hypothesis is specific and testable. There are various ways of phrasing a hypothesis, but all the terms you use should have clear definitions, and the hypothesis should contain:

  • The relevant variables
  • The specific group being studied
  • The predicted outcome of the experiment or analysis

5. Phrase your hypothesis in three ways

To identify the variables, you can write a simple prediction in  if…then form. The first part of the sentence states the independent variable and the second part states the dependent variable.

In academic research, hypotheses are more commonly phrased in terms of correlations or effects, where you directly state the predicted relationship between variables.

If you are comparing two groups, the hypothesis can state what difference you expect to find between them.

6. Write a null hypothesis

If your research involves statistical hypothesis testing , you will also have to write a null hypothesis . The null hypothesis is the default position that there is no association between the variables. The null hypothesis is written as H 0 , while the alternative hypothesis is H 1 or H a .

  • H 0 : The number of lectures attended by first-year students has no effect on their final exam scores.
  • H 1 : The number of lectures attended by first-year students has a positive effect on their final exam scores.

If you want to know more about the research process , methodology , research bias , or statistics , make sure to check out some of our other articles with explanations and examples.

  • Sampling methods
  • Simple random sampling
  • Stratified sampling
  • Cluster sampling
  • Likert scales
  • Reproducibility

 Statistics

  • Null hypothesis
  • Statistical power
  • Probability distribution
  • Effect size
  • Poisson distribution

Research bias

  • Optimism bias
  • Cognitive bias
  • Implicit bias
  • Hawthorne effect
  • Anchoring bias
  • Explicit bias

A hypothesis is not just a guess — it should be based on existing theories and knowledge. It also has to be testable, which means you can support or refute it through scientific research methods (such as experiments, observations and statistical analysis of data).

Null and alternative hypotheses are used in statistical hypothesis testing . The null hypothesis of a test always predicts no effect or no relationship between variables, while the alternative hypothesis states your research prediction of an effect or relationship.

Hypothesis testing is a formal procedure for investigating our ideas about the world using statistics. It is used by scientists to test specific predictions, called hypotheses , by calculating how likely it is that a pattern or relationship between variables could have arisen by chance.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

McCombes, S. (2023, November 20). How to Write a Strong Hypothesis | Steps & Examples. Scribbr. Retrieved April 16, 2024, from https://www.scribbr.com/methodology/hypothesis/

Is this article helpful?

Shona McCombes

Shona McCombes

Other students also liked, construct validity | definition, types, & examples, what is a conceptual framework | tips & examples, operationalization | a guide with examples, pros & cons, what is your plagiarism score.

  • Bipolar Disorder
  • Therapy Center
  • When To See a Therapist
  • Types of Therapy
  • Best Online Therapy
  • Best Couples Therapy
  • Best Family Therapy
  • Managing Stress
  • Sleep and Dreaming
  • Understanding Emotions
  • Self-Improvement
  • Healthy Relationships
  • Student Resources
  • Personality Types
  • Guided Meditations
  • Verywell Mind Insights
  • 2023 Verywell Mind 25
  • Mental Health in the Classroom
  • Editorial Process
  • Meet Our Review Board
  • Crisis Support

How to Write a Great Hypothesis

Hypothesis Format, Examples, and Tips

Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

medical meaning for hypothesis

Amy Morin, LCSW, is a psychotherapist and international bestselling author. Her books, including "13 Things Mentally Strong People Don't Do," have been translated into more than 40 languages. Her TEDx talk,  "The Secret of Becoming Mentally Strong," is one of the most viewed talks of all time.

medical meaning for hypothesis

Verywell / Alex Dos Diaz

  • The Scientific Method

Hypothesis Format

Falsifiability of a hypothesis, operational definitions, types of hypotheses, hypotheses examples.

  • Collecting Data

Frequently Asked Questions

A hypothesis is a tentative statement about the relationship between two or more  variables. It is a specific, testable prediction about what you expect to happen in a study.

One hypothesis example would be a study designed to look at the relationship between sleep deprivation and test performance might have a hypothesis that states: "This study is designed to assess the hypothesis that sleep-deprived people will perform worse on a test than individuals who are not sleep-deprived."

This article explores how a hypothesis is used in psychology research, how to write a good hypothesis, and the different types of hypotheses you might use.

The Hypothesis in the Scientific Method

In the scientific method , whether it involves research in psychology, biology, or some other area, a hypothesis represents what the researchers think will happen in an experiment. The scientific method involves the following steps:

  • Forming a question
  • Performing background research
  • Creating a hypothesis
  • Designing an experiment
  • Collecting data
  • Analyzing the results
  • Drawing conclusions
  • Communicating the results

The hypothesis is a prediction, but it involves more than a guess. Most of the time, the hypothesis begins with a question which is then explored through background research. It is only at this point that researchers begin to develop a testable hypothesis. Unless you are creating an exploratory study, your hypothesis should always explain what you  expect  to happen.

In a study exploring the effects of a particular drug, the hypothesis might be that researchers expect the drug to have some type of effect on the symptoms of a specific illness. In psychology, the hypothesis might focus on how a certain aspect of the environment might influence a particular behavior.

Remember, a hypothesis does not have to be correct. While the hypothesis predicts what the researchers expect to see, the goal of the research is to determine whether this guess is right or wrong. When conducting an experiment, researchers might explore a number of factors to determine which ones might contribute to the ultimate outcome.

In many cases, researchers may find that the results of an experiment  do not  support the original hypothesis. When writing up these results, the researchers might suggest other options that should be explored in future studies.

In many cases, researchers might draw a hypothesis from a specific theory or build on previous research. For example, prior research has shown that stress can impact the immune system. So a researcher might hypothesize: "People with high-stress levels will be more likely to contract a common cold after being exposed to the virus than people who have low-stress levels."

In other instances, researchers might look at commonly held beliefs or folk wisdom. "Birds of a feather flock together" is one example of folk wisdom that a psychologist might try to investigate. The researcher might pose a specific hypothesis that "People tend to select romantic partners who are similar to them in interests and educational level."

Elements of a Good Hypothesis

So how do you write a good hypothesis? When trying to come up with a hypothesis for your research or experiments, ask yourself the following questions:

  • Is your hypothesis based on your research on a topic?
  • Can your hypothesis be tested?
  • Does your hypothesis include independent and dependent variables?

Before you come up with a specific hypothesis, spend some time doing background research. Once you have completed a literature review, start thinking about potential questions you still have. Pay attention to the discussion section in the  journal articles you read . Many authors will suggest questions that still need to be explored.

To form a hypothesis, you should take these steps:

  • Collect as many observations about a topic or problem as you can.
  • Evaluate these observations and look for possible causes of the problem.
  • Create a list of possible explanations that you might want to explore.
  • After you have developed some possible hypotheses, think of ways that you could confirm or disprove each hypothesis through experimentation. This is known as falsifiability.

In the scientific method ,  falsifiability is an important part of any valid hypothesis.   In order to test a claim scientifically, it must be possible that the claim could be proven false.

Students sometimes confuse the idea of falsifiability with the idea that it means that something is false, which is not the case. What falsifiability means is that  if  something was false, then it is possible to demonstrate that it is false.

One of the hallmarks of pseudoscience is that it makes claims that cannot be refuted or proven false.

A variable is a factor or element that can be changed and manipulated in ways that are observable and measurable. However, the researcher must also define how the variable will be manipulated and measured in the study.

For example, a researcher might operationally define the variable " test anxiety " as the results of a self-report measure of anxiety experienced during an exam. A "study habits" variable might be defined by the amount of studying that actually occurs as measured by time.

These precise descriptions are important because many things can be measured in a number of different ways. One of the basic principles of any type of scientific research is that the results must be replicable.   By clearly detailing the specifics of how the variables were measured and manipulated, other researchers can better understand the results and repeat the study if needed.

Some variables are more difficult than others to define. How would you operationally define a variable such as aggression ? For obvious ethical reasons, researchers cannot create a situation in which a person behaves aggressively toward others.

In order to measure this variable, the researcher must devise a measurement that assesses aggressive behavior without harming other people. In this situation, the researcher might utilize a simulated task to measure aggressiveness.

Hypothesis Checklist

  • Does your hypothesis focus on something that you can actually test?
  • Does your hypothesis include both an independent and dependent variable?
  • Can you manipulate the variables?
  • Can your hypothesis be tested without violating ethical standards?

The hypothesis you use will depend on what you are investigating and hoping to find. Some of the main types of hypotheses that you might use include:

  • Simple hypothesis : This type of hypothesis suggests that there is a relationship between one independent variable and one dependent variable.
  • Complex hypothesis : This type of hypothesis suggests a relationship between three or more variables, such as two independent variables and a dependent variable.
  • Null hypothesis : This hypothesis suggests no relationship exists between two or more variables.
  • Alternative hypothesis : This hypothesis states the opposite of the null hypothesis.
  • Statistical hypothesis : This hypothesis uses statistical analysis to evaluate a representative sample of the population and then generalizes the findings to the larger group.
  • Logical hypothesis : This hypothesis assumes a relationship between variables without collecting data or evidence.

A hypothesis often follows a basic format of "If {this happens} then {this will happen}." One way to structure your hypothesis is to describe what will happen to the  dependent variable  if you change the  independent variable .

The basic format might be: "If {these changes are made to a certain independent variable}, then we will observe {a change in a specific dependent variable}."

A few examples of simple hypotheses:

  • "Students who eat breakfast will perform better on a math exam than students who do not eat breakfast."
  • Complex hypothesis: "Students who experience test anxiety before an English exam will get lower scores than students who do not experience test anxiety."​
  • "Motorists who talk on the phone while driving will be more likely to make errors on a driving course than those who do not talk on the phone."

Examples of a complex hypothesis include:

  • "People with high-sugar diets and sedentary activity levels are more likely to develop depression."
  • "Younger people who are regularly exposed to green, outdoor areas have better subjective well-being than older adults who have limited exposure to green spaces."

Examples of a null hypothesis include:

  • "Children who receive a new reading intervention will have scores different than students who do not receive the intervention."
  • "There will be no difference in scores on a memory recall task between children and adults."

Examples of an alternative hypothesis:

  • "Children who receive a new reading intervention will perform better than students who did not receive the intervention."
  • "Adults will perform better on a memory task than children." 

Collecting Data on Your Hypothesis

Once a researcher has formed a testable hypothesis, the next step is to select a research design and start collecting data. The research method depends largely on exactly what they are studying. There are two basic types of research methods: descriptive research and experimental research.

Descriptive Research Methods

Descriptive research such as  case studies ,  naturalistic observations , and surveys are often used when it would be impossible or difficult to  conduct an experiment . These methods are best used to describe different aspects of a behavior or psychological phenomenon.

Once a researcher has collected data using descriptive methods, a correlational study can then be used to look at how the variables are related. This type of research method might be used to investigate a hypothesis that is difficult to test experimentally.

Experimental Research Methods

Experimental methods  are used to demonstrate causal relationships between variables. In an experiment, the researcher systematically manipulates a variable of interest (known as the independent variable) and measures the effect on another variable (known as the dependent variable).

Unlike correlational studies, which can only be used to determine if there is a relationship between two variables, experimental methods can be used to determine the actual nature of the relationship—whether changes in one variable actually  cause  another to change.

A Word From Verywell

The hypothesis is a critical part of any scientific exploration. It represents what researchers expect to find in a study or experiment. In situations where the hypothesis is unsupported by the research, the research still has value. Such research helps us better understand how different aspects of the natural world relate to one another. It also helps us develop new hypotheses that can then be tested in the future.

Some examples of how to write a hypothesis include:

  • "Staying up late will lead to worse test performance the next day."
  • "People who consume one apple each day will visit the doctor fewer times each year."
  • "Breaking study sessions up into three 20-minute sessions will lead to better test results than a single 60-minute study session."

The four parts of a hypothesis are:

  • The research question
  • The independent variable (IV)
  • The dependent variable (DV)
  • The proposed relationship between the IV and DV

Castillo M. The scientific method: a need for something better? . AJNR Am J Neuroradiol. 2013;34(9):1669-71. doi:10.3174/ajnr.A3401

Nevid J. Psychology: Concepts and Applications. Wadworth, 2013.

By Kendra Cherry, MSEd Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

What Is a Hypothesis? (Science)

If...,Then...

Angela Lumsden/Getty Images

  • Scientific Method
  • Chemical Laws
  • Periodic Table
  • Projects & Experiments
  • Biochemistry
  • Physical Chemistry
  • Medical Chemistry
  • Chemistry In Everyday Life
  • Famous Chemists
  • Activities for Kids
  • Abbreviations & Acronyms
  • Weather & Climate
  • Ph.D., Biomedical Sciences, University of Tennessee at Knoxville
  • B.A., Physics and Mathematics, Hastings College

A hypothesis (plural hypotheses) is a proposed explanation for an observation. The definition depends on the subject.

In science, a hypothesis is part of the scientific method. It is a prediction or explanation that is tested by an experiment. Observations and experiments may disprove a scientific hypothesis, but can never entirely prove one.

In the study of logic, a hypothesis is an if-then proposition, typically written in the form, "If X , then Y ."

In common usage, a hypothesis is simply a proposed explanation or prediction, which may or may not be tested.

Writing a Hypothesis

Most scientific hypotheses are proposed in the if-then format because it's easy to design an experiment to see whether or not a cause and effect relationship exists between the independent variable and the dependent variable . The hypothesis is written as a prediction of the outcome of the experiment.

  • Null Hypothesis and Alternative Hypothesis

Statistically, it's easier to show there is no relationship between two variables than to support their connection. So, scientists often propose the null hypothesis . The null hypothesis assumes changing the independent variable will have no effect on the dependent variable.

In contrast, the alternative hypothesis suggests changing the independent variable will have an effect on the dependent variable. Designing an experiment to test this hypothesis can be trickier because there are many ways to state an alternative hypothesis.

For example, consider a possible relationship between getting a good night's sleep and getting good grades. The null hypothesis might be stated: "The number of hours of sleep students get is unrelated to their grades" or "There is no correlation between hours of sleep and grades."

An experiment to test this hypothesis might involve collecting data, recording average hours of sleep for each student and grades. If a student who gets eight hours of sleep generally does better than students who get four hours of sleep or 10 hours of sleep, the hypothesis might be rejected.

But the alternative hypothesis is harder to propose and test. The most general statement would be: "The amount of sleep students get affects their grades." The hypothesis might also be stated as "If you get more sleep, your grades will improve" or "Students who get nine hours of sleep have better grades than those who get more or less sleep."

In an experiment, you can collect the same data, but the statistical analysis is less likely to give you a high confidence limit.

Usually, a scientist starts out with the null hypothesis. From there, it may be possible to propose and test an alternative hypothesis, to narrow down the relationship between the variables.

Example of a Hypothesis

Examples of a hypothesis include:

  • If you drop a rock and a feather, (then) they will fall at the same rate.
  • Plants need sunlight in order to live. (if sunlight, then life)
  • Eating sugar gives you energy. (if sugar, then energy)
  • White, Jay D.  Research in Public Administration . Conn., 1998.
  • Schick, Theodore, and Lewis Vaughn.  How to Think about Weird Things: Critical Thinking for a New Age . McGraw-Hill Higher Education, 2002.
  • Null Hypothesis Definition and Examples
  • Definition of a Hypothesis
  • What Are the Elements of a Good Hypothesis?
  • Six Steps of the Scientific Method
  • What Are Examples of a Hypothesis?
  • Understanding Simple vs Controlled Experiments
  • Scientific Method Flow Chart
  • Scientific Method Vocabulary Terms
  • What Is a Testable Hypothesis?
  • Null Hypothesis Examples
  • What 'Fail to Reject' Means in a Hypothesis Test
  • How To Design a Science Fair Experiment
  • What Is an Experiment? Definition and Design
  • Hypothesis Test for the Difference of Two Population Proportions
  • How to Conduct a Hypothesis Test

Confirmation of Hypotheses in Clinical Medical Science

  • First Online: 09 May 2020

Cite this chapter

Book cover

  • John Alexander Pinkston 7  

Part of the book series: Synthese Library ((SYLI,volume 426))

164 Accesses

In this chapter I discuss the ways in which information is gathered and used to confirm typical hypotheses encountered in clinical medical science. I discuss three kinds of hypotheses, namely, therapeutic , etiologic , and diagnostic . Therapeutic hypotheses are those concerned with treatments or other interventions, and etiologic hypotheses are those concerned with disease causation. Diagnostic hypotheses are those considered by clinicians when making a diagnosis . Examples from the medical scientific literature are extensively used. Included are an example of a randomized clinical trial and an N of 1 study for therapeutic hypotheses, and cohort, case – control, and cross – sectional studies are used for etiologic hypotheses. Approaches to the confirmation of diagnostic hypotheses are illustrated using actual published cases with discussions of the various strategies that are employed. Some possible pitfalls that may occur in the confirmation process are briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
  • Available as EPUB and PDF
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
  • Durable hardcover edition

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

The stratification referred to is a common method for attempting to control bias such as confounding. For example, by choosing controls with the same age structure (strata) as cases, any influence due to age imbalance would be minimized or eliminated.

For example, a person who had smoked 20 cigarettes daily for 10 years was classed as having smoked 10 cigarettes daily for 20 years.

Both equations contain a random error term that has been omitted.

For example, laboratory tests may be in error, or signs or symptoms may be evolving or misinterpreted.

A “pathognomonic” finding is one that can occur only with a single condition.

Additional references include Gill et al. ( 2005 ), Willis et al. ( 2013 ) , and Jain ( 2017 ).

Anderson, Kristin E., Thomas M. Mack, and Debra T. Silverman. 2006. Cancer of the pancreas. In Cancer epidemiology and prevention , ed. David Schottenfeld and Joseph F. Fraumeni Jr., 3rd ed., 721–762. Oxford: Oxford University Press.

Google Scholar  

Berghmans, Ron, and Harry C. Schouten. 2011. Sir Karl Popper, swans, and the general practitioner. British Medical Journal 343: d5469.

Casey, Jonathan D., Daniel H. Solomon, Thomas A. Gaziano, Amy Leigh Miller, and Joseph Loscalzo. 2013. A patient with migrating polyarthralgias. New England Journal of Medicine 369: 75–80.

Checkoway, Harvey, Neil E. Pearce, and Douglas J. Crawford-Brown. 1989. Research methods in occupational epidemiology . Oxford: Oxford University Press.

Clavel, Françoise, Ellen Benhamou, Ariane Auquier, Michèle Tarayre, and Robert Flamant. 1989. Coffee, alcohol, smoking and cancer of the pancreas: A case-control study. International Journal of Cancer 43: 17–21.

Cox, D.R. 1972. Regression models and life-tables. Journal of the Royal Statistical Society, Series B 34: 187–220.

Dajani, Adnan S., Elia Ayoub, Fredrick Z. Bierman, Alan L. Bisno, Floyd W. Denny, David T. Durak, Patricia Ferrieri, et al. 1993. Guidelines for the diagnosis of rheumatic fever: Jones criteria, updated 1992. Circulation 87: 302–307.

Daling, Janet R., and Karen J. Sherman. 1996. Cancers of the vulva and vagina. In Cancer epidemiology and prevention , ed. David Schottenfeld and Joseph F. Fraumeni Jr., 2nd ed., 1117–1129. Oxford: Oxford University Press.

Doll, Richard, and A. Bradford Hill. 1950. Smoking and carcinoma of the lung. Preliminary report. British Medical Journal 221: 739–748.

Doll, Richard, Richard Peto, Jillian Boreham, and Isabelle Sutherland. 2004. Mortality in relation to smoking: 50 years’ observations on male British doctors. British Medical Journal 328: 1519–1528.

Eddy, David M., and Charles H. Clanton. 1982. The art of diagnosis. Solving the clinicopathological exercise. New England Journal of Medicine 306: 1263–1268.

Elstein, Arthur S., and Alan Schwarz. 2002. Clinical problem solving and diagnostic decision making: Selective review of the cognitive literature. British Medical Journal 324: 729–732.

Gill, Christopher J., Lora Sabin, and Christopher H. Schmid. 2005. Why clinicians are natural bayesians. British Medical Journal 330: 1080–1083.

Greenhalgh, Trisha. 2010. How to read a paper: The basics of evidence-based medicine . 4th ed. Chichester: Wiley.

Gutensohn, Nancy, Frederick P. Li, Ralph E. Johnson, and Philip Cole. 1975. Hodgkin’s disease, tonsillectomy, and family size. New England Journal of Medicine 292: 22–25.

Guyatt, Gordon, Sackett David, D. Wayne Taylor, John Chong, Robin Roberts, and Stewart Pugsley. 1986. Determining optimal therapy – Randomized trials in individual patients. New England Journal of Medicine 314: 889–892.

Harvey, A. McGehee. 1994. Foreword. In Differential diagnosis , ed. Jeremiah A. Barondess, Charles C.J. Carpenter, and A. McGehee Harvey. Philadelphia: Lea and Febiger.

Herbst, Arthur L., Howard Ulfelder, and David Poskanzer. 1971. Adenocarcinoma of the vagina. Association of maternal stilbestrol therapy with tumor appearance in young women. New England Journal of Medicine 284: 878–881.

Hoen, Bruno, Isabelle Béguinot, Christian Rabaud, Roland Jaussaud, Christine Selton-Suty, Thierry May, and Philippe Canton. 1996. The Duke criteria for diagnosing infective endocarditis are specific: Analysis of 100 patients with acute fever or fever of unknown origin. Clinical Infectious Diseases 23: 298–302.

Hosmer, David W., and Stanley Lemeshow. 1989. Applied logistic regression . New York: Wiley.

International Agency for Research on Cancer. 2004. Tobacco smoke and involuntary smoking , IARC monographs on the evaluation of carcinogenic risks to humans. Vol. 83. Lyon: IARC.

Jain, Bimal. 2017. The scientific nature of diagnosis. Diagnosis 4: 17–19.

Jones, T. Duckett. 1944. The diagnosis of rheumatic fever. Journal of the American Medical Association 126: 481–484.

Kaplan, E.L., and Paul Meier. 1958. Nonparametric estimation from incomplete observations. Journal of the American Statistical Association 53: 457–481.

Kassirer, Jerome P., John B. Wong, and Richard I. Kopelman. 2010. Learning clinical reasoning . 2nd ed. Baltimore: Lippincott Williams and Wilkins.

Kelsey, Jennifer L., W. Douglas Thompson, and Alfred S. Evans. 1986. Methods in observational epidemiology. Volume 10 of monographs in epidemiology and biostatistics , General ed. Abraham M. Lilienfeld. Oxford: Oxford University Press.

Li, Jennifer S., Daniel J. Sexton, Nathan Mick, Richard Nettles, Vance G. Fowler Jr., Thomas Ryan, Thomas Bashore, and G. Ralph Corey. 2000. Proposed modifications to the Duke criteria for the diagnosis of infective endocarditis. Clinical Infectious Diseases 30: 633–638.

MacMahon, Brian, Stella Yen, Dimitrios Trichopoulos, Kenneth Warren, and George Nardi. 1981. Coffee and cancer of the pancreas. New England Journal of Medicine 304: 630–633.

Mantel, Nathan, and William Haenszel. 1959. Statistical aspects of the analysis of data from retrospective studies of disease. Journal of the National Cancer Institute 22: 719–748.

Mayo, Deborah G. 1996. Error and the growth of experimental knowledge . Chicago: University of Chicago Press.

Miettinen, Olli S. 2001a. The modern scientific physician: 2. Medical science versus scientific medicine. Canadian Medical Association Journal 165: 591–592.

———. 2001b. The modern scientific physician: 3. Scientific diagnosis. Canadian Medical Association Journal 165: 781–782.

Morris, J.N., J.A. Heady, P.A.B. Raffle, C.G. Roberts, and J.W. Parks. 1953. Coronary heart-disease and physical activity of work. Lancet 2: 1053–1057.

Mueller, Nancy E. 1996. Hodgkin’s disease. In Cancer epidemiology and prevention , ed. David Schottenfeld and Joseph F. Fraumeni Jr., 2nd ed., 893–919. Oxford: Oxford University Press.

Mueller, Nancy, G. Marie Swanson, Chung-cheng Hsieh, and Philip Cole. 1987. Tonsillectomy and Hodgkin’s disease: Results from companion population-based studies. Journal of the National Cancer Institute 78: 1–5.

Rothman, Kenneth J., Sander Greenland, and Timothy L. Lash. 2008. Case-control studies. In Modern epidemiology , ed. Kenneth J. Rothman, Sander Greenland, and Timothy L. Lash, 3rd ed., 111–127. Philadelphia: Lippincott Williams and Wilkins.

Slone, Dennis, Samuel Shapiro, Lynn Rosenberg, David W. Kaufman, Stuart C. Hartz, Allen C. Rossi, Paul D. Stolley, and Olli S. Miettinen. 1978. Relation of cigarette smoking to myocardial infarction in young women. New England Journal of Medicine 298: 1273–1276.

Sox, Harold C., Marshall A. Blott, Michael C. Higgins, and Keith I. Martin. 2007. Medical decision making . Philadelphia: American College of Physicians.

Straus, Sharon E., Glasziou Paul, W. Scott Richardson, and R. Brian Haynes. 2011. Evidence-based medicine. How to practice and teach it . 4th ed. Edinburgh: Churchill Livingstone.

Thomas, Patrick R.M., and Anne S. Lindblad. 1988. Adjuvant postoperative radiotherapy and chemotherapy in rectal carcinoma: A review of the gastrointestinal tumor study group experience. Radiotherapy and Oncology 13: 245–252.

Ueshima, Hirotsugu, Takashi Shimamoto, Minoru Iida, Masamitsu Konishi, Masato Tanigaki, Mitsunori Doi, Katsuhiko Tsujioka, et al. 1984. Alcohol intake and hypertension among urban and rural Japanese populations. Journal of Chronic Diseases 37: 585–592.

Willis, Brian H., Helen Beebee, and Daniel S. Lasserson. 2013. Philosophy of science and the diagnostic process. Family Practice 30: 501–505.

Wynder, Ernest L., and Evarts A. Graham. 1950. Tobacco smoking as a possible etiologic factor in bronchiogenic carcinoma. Journal of the American Medical Association 143: 329–336.

Download references

Author information

Authors and affiliations.

Birmingham Radiological Group, Birmingham, AL, USA

John Alexander Pinkston

You can also search for this author in PubMed   Google Scholar

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Pinkston, J.A. (2020). Confirmation of Hypotheses in Clinical Medical Science. In: Evidence and Hypothesis in Clinical Medical Science. Synthese Library, vol 426. Springer, Cham. https://doi.org/10.1007/978-3-030-44270-5_4

Download citation

DOI : https://doi.org/10.1007/978-3-030-44270-5_4

Published : 09 May 2020

Publisher Name : Springer, Cham

Print ISBN : 978-3-030-44269-9

Online ISBN : 978-3-030-44270-5

eBook Packages : Religion and Philosophy Philosophy and Religion (R0)

Share this chapter

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research
  • Privacy Policy

Buy Me a Coffee

Research Method

Home » What is a Hypothesis – Types, Examples and Writing Guide

What is a Hypothesis – Types, Examples and Writing Guide

Table of Contents

What is a Hypothesis

Definition:

Hypothesis is an educated guess or proposed explanation for a phenomenon, based on some initial observations or data. It is a tentative statement that can be tested and potentially proven or disproven through further investigation and experimentation.

Hypothesis is often used in scientific research to guide the design of experiments and the collection and analysis of data. It is an essential element of the scientific method, as it allows researchers to make predictions about the outcome of their experiments and to test those predictions to determine their accuracy.

Types of Hypothesis

Types of Hypothesis are as follows:

Research Hypothesis

A research hypothesis is a statement that predicts a relationship between variables. It is usually formulated as a specific statement that can be tested through research, and it is often used in scientific research to guide the design of experiments.

Null Hypothesis

The null hypothesis is a statement that assumes there is no significant difference or relationship between variables. It is often used as a starting point for testing the research hypothesis, and if the results of the study reject the null hypothesis, it suggests that there is a significant difference or relationship between variables.

Alternative Hypothesis

An alternative hypothesis is a statement that assumes there is a significant difference or relationship between variables. It is often used as an alternative to the null hypothesis and is tested against the null hypothesis to determine which statement is more accurate.

Directional Hypothesis

A directional hypothesis is a statement that predicts the direction of the relationship between variables. For example, a researcher might predict that increasing the amount of exercise will result in a decrease in body weight.

Non-directional Hypothesis

A non-directional hypothesis is a statement that predicts the relationship between variables but does not specify the direction. For example, a researcher might predict that there is a relationship between the amount of exercise and body weight, but they do not specify whether increasing or decreasing exercise will affect body weight.

Statistical Hypothesis

A statistical hypothesis is a statement that assumes a particular statistical model or distribution for the data. It is often used in statistical analysis to test the significance of a particular result.

Composite Hypothesis

A composite hypothesis is a statement that assumes more than one condition or outcome. It can be divided into several sub-hypotheses, each of which represents a different possible outcome.

Empirical Hypothesis

An empirical hypothesis is a statement that is based on observed phenomena or data. It is often used in scientific research to develop theories or models that explain the observed phenomena.

Simple Hypothesis

A simple hypothesis is a statement that assumes only one outcome or condition. It is often used in scientific research to test a single variable or factor.

Complex Hypothesis

A complex hypothesis is a statement that assumes multiple outcomes or conditions. It is often used in scientific research to test the effects of multiple variables or factors on a particular outcome.

Applications of Hypothesis

Hypotheses are used in various fields to guide research and make predictions about the outcomes of experiments or observations. Here are some examples of how hypotheses are applied in different fields:

  • Science : In scientific research, hypotheses are used to test the validity of theories and models that explain natural phenomena. For example, a hypothesis might be formulated to test the effects of a particular variable on a natural system, such as the effects of climate change on an ecosystem.
  • Medicine : In medical research, hypotheses are used to test the effectiveness of treatments and therapies for specific conditions. For example, a hypothesis might be formulated to test the effects of a new drug on a particular disease.
  • Psychology : In psychology, hypotheses are used to test theories and models of human behavior and cognition. For example, a hypothesis might be formulated to test the effects of a particular stimulus on the brain or behavior.
  • Sociology : In sociology, hypotheses are used to test theories and models of social phenomena, such as the effects of social structures or institutions on human behavior. For example, a hypothesis might be formulated to test the effects of income inequality on crime rates.
  • Business : In business research, hypotheses are used to test the validity of theories and models that explain business phenomena, such as consumer behavior or market trends. For example, a hypothesis might be formulated to test the effects of a new marketing campaign on consumer buying behavior.
  • Engineering : In engineering, hypotheses are used to test the effectiveness of new technologies or designs. For example, a hypothesis might be formulated to test the efficiency of a new solar panel design.

How to write a Hypothesis

Here are the steps to follow when writing a hypothesis:

Identify the Research Question

The first step is to identify the research question that you want to answer through your study. This question should be clear, specific, and focused. It should be something that can be investigated empirically and that has some relevance or significance in the field.

Conduct a Literature Review

Before writing your hypothesis, it’s essential to conduct a thorough literature review to understand what is already known about the topic. This will help you to identify the research gap and formulate a hypothesis that builds on existing knowledge.

Determine the Variables

The next step is to identify the variables involved in the research question. A variable is any characteristic or factor that can vary or change. There are two types of variables: independent and dependent. The independent variable is the one that is manipulated or changed by the researcher, while the dependent variable is the one that is measured or observed as a result of the independent variable.

Formulate the Hypothesis

Based on the research question and the variables involved, you can now formulate your hypothesis. A hypothesis should be a clear and concise statement that predicts the relationship between the variables. It should be testable through empirical research and based on existing theory or evidence.

Write the Null Hypothesis

The null hypothesis is the opposite of the alternative hypothesis, which is the hypothesis that you are testing. The null hypothesis states that there is no significant difference or relationship between the variables. It is important to write the null hypothesis because it allows you to compare your results with what would be expected by chance.

Refine the Hypothesis

After formulating the hypothesis, it’s important to refine it and make it more precise. This may involve clarifying the variables, specifying the direction of the relationship, or making the hypothesis more testable.

Examples of Hypothesis

Here are a few examples of hypotheses in different fields:

  • Psychology : “Increased exposure to violent video games leads to increased aggressive behavior in adolescents.”
  • Biology : “Higher levels of carbon dioxide in the atmosphere will lead to increased plant growth.”
  • Sociology : “Individuals who grow up in households with higher socioeconomic status will have higher levels of education and income as adults.”
  • Education : “Implementing a new teaching method will result in higher student achievement scores.”
  • Marketing : “Customers who receive a personalized email will be more likely to make a purchase than those who receive a generic email.”
  • Physics : “An increase in temperature will cause an increase in the volume of a gas, assuming all other variables remain constant.”
  • Medicine : “Consuming a diet high in saturated fats will increase the risk of developing heart disease.”

Purpose of Hypothesis

The purpose of a hypothesis is to provide a testable explanation for an observed phenomenon or a prediction of a future outcome based on existing knowledge or theories. A hypothesis is an essential part of the scientific method and helps to guide the research process by providing a clear focus for investigation. It enables scientists to design experiments or studies to gather evidence and data that can support or refute the proposed explanation or prediction.

The formulation of a hypothesis is based on existing knowledge, observations, and theories, and it should be specific, testable, and falsifiable. A specific hypothesis helps to define the research question, which is important in the research process as it guides the selection of an appropriate research design and methodology. Testability of the hypothesis means that it can be proven or disproven through empirical data collection and analysis. Falsifiability means that the hypothesis should be formulated in such a way that it can be proven wrong if it is incorrect.

In addition to guiding the research process, the testing of hypotheses can lead to new discoveries and advancements in scientific knowledge. When a hypothesis is supported by the data, it can be used to develop new theories or models to explain the observed phenomenon. When a hypothesis is not supported by the data, it can help to refine existing theories or prompt the development of new hypotheses to explain the phenomenon.

When to use Hypothesis

Here are some common situations in which hypotheses are used:

  • In scientific research , hypotheses are used to guide the design of experiments and to help researchers make predictions about the outcomes of those experiments.
  • In social science research , hypotheses are used to test theories about human behavior, social relationships, and other phenomena.
  • I n business , hypotheses can be used to guide decisions about marketing, product development, and other areas. For example, a hypothesis might be that a new product will sell well in a particular market, and this hypothesis can be tested through market research.

Characteristics of Hypothesis

Here are some common characteristics of a hypothesis:

  • Testable : A hypothesis must be able to be tested through observation or experimentation. This means that it must be possible to collect data that will either support or refute the hypothesis.
  • Falsifiable : A hypothesis must be able to be proven false if it is not supported by the data. If a hypothesis cannot be falsified, then it is not a scientific hypothesis.
  • Clear and concise : A hypothesis should be stated in a clear and concise manner so that it can be easily understood and tested.
  • Based on existing knowledge : A hypothesis should be based on existing knowledge and research in the field. It should not be based on personal beliefs or opinions.
  • Specific : A hypothesis should be specific in terms of the variables being tested and the predicted outcome. This will help to ensure that the research is focused and well-designed.
  • Tentative: A hypothesis is a tentative statement or assumption that requires further testing and evidence to be confirmed or refuted. It is not a final conclusion or assertion.
  • Relevant : A hypothesis should be relevant to the research question or problem being studied. It should address a gap in knowledge or provide a new perspective on the issue.

Advantages of Hypothesis

Hypotheses have several advantages in scientific research and experimentation:

  • Guides research: A hypothesis provides a clear and specific direction for research. It helps to focus the research question, select appropriate methods and variables, and interpret the results.
  • Predictive powe r: A hypothesis makes predictions about the outcome of research, which can be tested through experimentation. This allows researchers to evaluate the validity of the hypothesis and make new discoveries.
  • Facilitates communication: A hypothesis provides a common language and framework for scientists to communicate with one another about their research. This helps to facilitate the exchange of ideas and promotes collaboration.
  • Efficient use of resources: A hypothesis helps researchers to use their time, resources, and funding efficiently by directing them towards specific research questions and methods that are most likely to yield results.
  • Provides a basis for further research: A hypothesis that is supported by data provides a basis for further research and exploration. It can lead to new hypotheses, theories, and discoveries.
  • Increases objectivity: A hypothesis can help to increase objectivity in research by providing a clear and specific framework for testing and interpreting results. This can reduce bias and increase the reliability of research findings.

Limitations of Hypothesis

Some Limitations of the Hypothesis are as follows:

  • Limited to observable phenomena: Hypotheses are limited to observable phenomena and cannot account for unobservable or intangible factors. This means that some research questions may not be amenable to hypothesis testing.
  • May be inaccurate or incomplete: Hypotheses are based on existing knowledge and research, which may be incomplete or inaccurate. This can lead to flawed hypotheses and erroneous conclusions.
  • May be biased: Hypotheses may be biased by the researcher’s own beliefs, values, or assumptions. This can lead to selective interpretation of data and a lack of objectivity in research.
  • Cannot prove causation: A hypothesis can only show a correlation between variables, but it cannot prove causation. This requires further experimentation and analysis.
  • Limited to specific contexts: Hypotheses are limited to specific contexts and may not be generalizable to other situations or populations. This means that results may not be applicable in other contexts or may require further testing.
  • May be affected by chance : Hypotheses may be affected by chance or random variation, which can obscure or distort the true relationship between variables.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Data collection

Data Collection – Methods Types and Examples

Delimitations

Delimitations in Research – Types, Examples and...

Research Process

Research Process – Steps, Examples and Tips

Research Design

Research Design – Types, Methods and Examples

Institutional Review Board (IRB)

Institutional Review Board – Application Sample...

Evaluating Research

Evaluating Research – Process, Examples and...

  • Dictionaries home
  • American English
  • Collocations
  • German-English
  • Grammar home
  • Practical English Usage
  • Learn & Practise Grammar (Beta)
  • Word Lists home
  • My Word Lists
  • Recent additions
  • Resources home
  • Text Checker

Definition of hypothesis noun from the Oxford Advanced Learner's Dictionary

  • to formulate/confirm a hypothesis
  • a hypothesis about the function of dreams
  • There is little evidence to support these hypotheses.
  • formulate/​advance a theory/​hypothesis
  • build/​construct/​create/​develop a simple/​theoretical/​mathematical model
  • develop/​establish/​provide/​use a theoretical/​conceptual framework
  • advance/​argue/​develop the thesis that…
  • explore an idea/​a concept/​a hypothesis
  • make a prediction/​an inference
  • base a prediction/​your calculations on something
  • investigate/​evaluate/​accept/​challenge/​reject a theory/​hypothesis/​model
  • design an experiment/​a questionnaire/​a study/​a test
  • do research/​an experiment/​an analysis
  • make observations/​measurements/​calculations
  • carry out/​conduct/​perform an experiment/​a test/​a longitudinal study/​observations/​clinical trials
  • run an experiment/​a simulation/​clinical trials
  • repeat an experiment/​a test/​an analysis
  • replicate a study/​the results/​the findings
  • observe/​study/​examine/​investigate/​assess a pattern/​a process/​a behaviour
  • fund/​support the research/​project/​study
  • seek/​provide/​get/​secure funding for research
  • collect/​gather/​extract data/​information
  • yield data/​evidence/​similar findings/​the same results
  • analyse/​examine the data/​soil samples/​a specimen
  • consider/​compare/​interpret the results/​findings
  • fit the data/​model
  • confirm/​support/​verify a prediction/​a hypothesis/​the results/​the findings
  • prove a conjecture/​hypothesis/​theorem
  • draw/​make/​reach the same conclusions
  • read/​review the records/​literature
  • describe/​report an experiment/​a study
  • present/​publish/​summarize the results/​findings
  • present/​publish/​read/​review/​cite a paper in a scientific journal
  • Her hypothesis concerns the role of electromagnetic radiation.
  • Her study is based on the hypothesis that language simplification is possible.
  • It is possible to make a hypothesis on the basis of this graph.
  • None of the hypotheses can be rejected at this stage.
  • Scientists have proposed a bold hypothesis.
  • She used this data to test her hypothesis
  • The hypothesis predicts that children will perform better on task A than on task B.
  • The results confirmed his hypothesis on the use of modal verbs.
  • These observations appear to support our working hypothesis.
  • a speculative hypothesis concerning the nature of matter
  • an interesting hypothesis about the development of language
  • Advances in genetics seem to confirm these hypotheses.
  • His hypothesis about what dreams mean provoked a lot of debate.
  • Research supports the hypothesis that language skills are centred in the left side of the brain.
  • The survey will be used to test the hypothesis that people who work outside the home are fitter and happier.
  • This economic model is really a working hypothesis.
  • speculative
  • concern something
  • be based on something
  • predict something
  • on a/​the hypothesis
  • hypothesis about
  • hypothesis concerning

Take your English to the next level

The Oxford Learner’s Thesaurus explains the difference between groups of similar words. Try it for free as part of the Oxford Advanced Learner’s Dictionary app

medical meaning for hypothesis

  • Cambridge Dictionary +Plus

Meaning of hypothesis in English

Your browser doesn't support HTML5 audio

  • abstraction
  • afterthought
  • anthropocentrism
  • anti-Darwinian
  • exceptionalism
  • foundation stone
  • great minds think alike idiom
  • non-dogmatic
  • non-empirical
  • non-material
  • non-practical
  • social Darwinism
  • supersensible
  • the domino theory

hypothesis | American Dictionary

Hypothesis | business english, examples of hypothesis, translations of hypothesis.

Get a quick, free translation!

{{randomImageQuizHook.quizId}}

Word of the Day

balancing act

a difficult situation in which someone has to try to give equal amounts of importance, time, attention, etc. to two or more different things at the same time

Alike and analogous (Talking about similarities, Part 1)

Alike and analogous (Talking about similarities, Part 1)

medical meaning for hypothesis

Learn more with +Plus

  • Recent and Recommended {{#preferredDictionaries}} {{name}} {{/preferredDictionaries}}
  • Definitions Clear explanations of natural written and spoken English English Learner’s Dictionary Essential British English Essential American English
  • Grammar and thesaurus Usage explanations of natural written and spoken English Grammar Thesaurus
  • Pronunciation British and American pronunciations with audio English Pronunciation
  • English–Chinese (Simplified) Chinese (Simplified)–English
  • English–Chinese (Traditional) Chinese (Traditional)–English
  • English–Dutch Dutch–English
  • English–French French–English
  • English–German German–English
  • English–Indonesian Indonesian–English
  • English–Italian Italian–English
  • English–Japanese Japanese–English
  • English–Norwegian Norwegian–English
  • English–Polish Polish–English
  • English–Portuguese Portuguese–English
  • English–Spanish Spanish–English
  • English–Swedish Swedish–English
  • Dictionary +Plus Word Lists
  • English    Noun
  • American    Noun
  • Business    Noun
  • Translations
  • All translations

Add hypothesis to one of your lists below, or create a new one.

{{message}}

Something went wrong.

There was a problem sending your report.

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • v.23(7); 2013 Jul

Hypothesis-generating research and predictive medicine

Leslie g. biesecker.

National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA

Genomics has profoundly changed biology by scaling data acquisition, which has provided researchers with the opportunity to interrogate biology in novel and creative ways. No longer constrained by low-throughput assays, researchers have developed hypothesis-generating approaches to understand the molecular basis of nature—both normal and pathological. The paradigm of hypothesis-generating research does not replace or undermine hypothesis-testing modes of research; instead, it complements them and has facilitated discoveries that may not have been possible with hypothesis-testing research. The hypothesis-generating mode of research has been primarily practiced in basic science but has recently been extended to clinical-translational work as well. Just as in basic science, this approach to research can facilitate insights into human health and disease mechanisms and provide the crucially needed data set of the full spectrum of genotype–phenotype correlations. Finally, the paradigm of hypothesis-generating research is conceptually similar to the underpinning of predictive genomic medicine, which has the potential to shift medicine from a primarily population- or cohort-based activity to one that instead uses individual susceptibility, prognostic, and pharmacogenetic profiles to maximize the efficacy and minimize the iatrogenic effects of medical interventions.

The goal of this article is to describe how recent technological changes provide opportunities to undertake novel approaches to biomedical research and to practice genomic preventive medicine. Massively parallel sequencing is the primary technology that will be addressed here ( Mardis 2008 ), but the principles apply to many other technologies, such as proteomics, metabolomics, transcriptomics, etc. Readers of this journal are well aware of the precipitous fall of sequencing costs over the last several decades. The consequence of this fall is that we are no longer in a scientific and medical world where the throughput (and the costs) of testing is the key limiting factor around which these enterprises are organized. Once one is released from this limiting factor, one may ask whether these enterprises should be reorganized. Here I outline the principles of how these enterprises are organized, show how high-throughput biology can allow alternative organizations of these enterprises to be considered, and show how biology and medicine are in many ways similar. The discussion includes three categories of enterprises: basic research, clinical research, and medical practice.

The basic science hypothesis-testing paradigm

The classical paradigm for basic biological research has been to develop a specific hypothesis that can be tested by the application of a prospectively defined experiment (see Box 1 ). I suggest that one of the major (although not the only) factors that led to the development of this paradigm is that experimental design was limited by the throughput of available assays. This low throughput mandated that the scientific question had to be focused narrowly to make the question tractable. However, the paradigm can be questioned if the scientist has the ability to assay every potential attribute of a given type (e.g., all genes). If the hypothesis is only needed to select the assay, one does not need a hypothesis to apply a technology that assays all attributes. In the case of sequencing, the radical increase in throughput can release scientists from the constraint of the specific hypothesis because it has allowed them to interrogate essentially all genotypes in a genome in a single assay. This capability facilitates fundamental biological discoveries that were impossible or impractical with a hypothesis-testing mode of scientific inquiry. Examples of this approach are well demonstrated by several discoveries that followed the sequencing of a number of genomes. An example was the discovery that the human gene count was just over 20,000 ( International Human Genome Sequencing Consortium 2004 ), much lower than prior estimates. This result, although it was much debated and anticipated, was not a hypothesis that drove the human genome project, but nonetheless was surprising and led to insights into the nuances of gene regulation and transcriptional isoforms to explain the complexity of the human organism. The availability of whole genome sequence data from multiple species facilitated analyses of conservation. While it was expected that protein-coding regions, and to a lesser extent promoters and 5′- and 3′-untranslated regions of genes, would exhibit recognizable sequence conservation, it was unexpected that an even larger fraction of the genomes outside of genes are highly conserved ( Mouse Genome Sequencing Consortium 2002 ). This surprising and unanticipated discovery has spawned a novel field of scientific inquiry to determine the functional roles of these elements, which are undoubtedly important in physiology and pathophysiology. These discoveries demonstrate the power of hypothesis-generating basic research to illuminate important biological principles.

Basic science hypothesis-testing and hypothesis-generating paradigms

An external file that holds a picture, illustration, etc.
Object name is 1051tbl1.jpg

Clinical and translational research

The approach to clinical research grew out of the basic science paradigm as described above. The first few steps of selecting a scientific problem and developing a hypothesis are similar, with the additional step ( Box 2 ) of rigorously defining a phenotype and then carefully selecting research participants with and without that trait. As in the basic science paradigm, the hypothesis is tested by the application of a specific assay to the cases and controls. Again, this paradigm has been incredibly fruitful and should not be abandoned, but the hypothesis-generating approach can be used here as well. In this approach, a cohort of participants is consented, basic information is gathered on their health, and then a high-throughput assay, such as genome or exome sequencing, is applied to all of the participants. Again, because the assay tests all such attributes, the research design does not necessitate a priori selections of phenotypes and genes to be interrogated. Then, the researcher can examine the sequence data set for patterns and perturbations, form hypotheses about how such perturbations might affect the phenotype of the participants, and test that hypothesis with a clinical research evaluation. This approach has been used with data from genome-wide copy number assessments (array CGH and SNP arrays), but sequencing takes it to a higher level of interrogation and provides innumerable variants with which to work.

Clinical research paradigms

An external file that holds a picture, illustration, etc.
Object name is 1051tbl2.jpg

An example of this type of sequence-based hypothesis-generating clinical research started with a collaborative project in which we showed that mutations in the gene ACSF3 caused the biochemical phenotype of combined malonic and methylmalonic acidemia ( Sloan et al. 2011 ). At that time, the disorder was believed to be a classic pediatric, autosomal-recessive severe metabolic disorder with decompensation and sometimes death. We then queried the ClinSeq cohort ( Biesecker et al. 2009 ) to assess the carrier frequency, to estimate the population frequency of this rare disorder. Because ClinSeq is a cohort of adults with a range of atherosclerosis severity, we reasoned that this would serve as a control population for an unbiased estimate of ACSF3 heterozygote mutant alleles. Surprisingly, we identified a ClinSeq participant who was homozygous for one of the mutations identified in the children with the typical phenotype. Indeed, one potential interpretation of the data would be that the variant is, in fact, benign and was erroneously concluded to be pathogenic, based on finding it in a child with the typical phenotype. It has been shown that this error is common, with up to 20% of variants listed in databases as pathogenic actually being benign ( Bell et al. 2011 ). Further clinical research on this participant led to the surprising result that she had severely abnormal blood and urine levels of malonic and methylmalonic acid ( Sloan et al. 2011 ). This novel approach to translational research was a powerful confirmation that the mutation was indeed pathogenic, but there was another, even more important conclusion. We had conceptualized the disease completely incorrectly. Instead of being only a severe, pediatric metabolic disorder, it was instead a disorder with a wide phenotypic spectrum in which one component of the disease is a metabolic perturbation and another component is a susceptibility to severe decompensation and strokes. This research indeed raises many questions about the natural history of the disorder, whether the pediatric decompensation phenotype is attributable to modifiers, what the appropriate management of such an adult would be, etc.

Irrespective of these limitations, the understanding of the disease has markedly advanced, and the key to understanding the broader spectrum of this disease was the hypothesis-generating approach enabled by the massively parallel sequence data and the ability to phenotype patients iteratively from ClinSeq. The iterative phenotyping was essential because we could not have anticipated when the patients were originally ascertained that we would need to assay malonic and methylmalonic acid. Nor did we recognize prospectively that we should be evaluating apparently healthy patients in their seventh decade for this phenotype. Indeed, it is impossible to evaluate patients for all potential phenotypes prospectively, and it is essential to minimize ascertainment bias for patient recruitment in order to allow the discovery of the full spectrum of phenotypes associated with genomic variations. This latter issue has become a critical challenge for implementing predictive medicine, as described below.

Predictive genomic medicine in practice

The principles of scientific inquiry are parallel to the processes of clinical diagnosis ( Box 3 ). In the classic, hypothesis-testing paradigm, clinicians gather background information including chief complaint, 2 medical and family history, and physical examination, and use these data to formulate the differential diagnosis, which is a set of potential medical diagnoses that could explain the patient's signs and symptoms. Then, the clinician selects, among the myriad of tests (imaging, biochemical, genetic, physiologic, etc.), a few tests, the results of which should distinguish among (or possibly exclude entirely) the disorders on the differential diagnosis. Like the scientist, the physician must act as a test selector, because each of the tests is low throughput, time consuming, and expensive.

Clinical practice paradigms—hypothesis testing and hypothesis generating

An external file that holds a picture, illustration, etc.
Object name is 1051tbl3.jpg

As in the basic and translational research discussion above, the question could be raised as to whether the differential diagnostic paradigm is necessary for genetic disorders. Indeed, the availability of clinical genome and exome sequencing heralds an era when the test could be ordered relatively early in the diagnostic process, with the clinician serving in a more interpretative role, rather than as a test selector ( Hennekam and Biesecker 2012 ). This approach has already been adopted for copy number variation, because whole genome array CGH- or SNP-based approaches have mostly displaced more specific single-gene or single-locus assays and standard chromosome analyses ( Miller et al. 2010 ). But the paradigm can be taken beyond hypothesis-generating clinical diagnosis into predictive medicine. One can now begin to envision how whole genome approaches could be used to assess risks prospectively for susceptibility to late-onset disorders or occult or subclinical disorders. The heritable cancer susceptibility syndromes are a good example of this. The current clinical approach is to order a specific gene test if a patient presents with a personal history of an atypical or early-onset form of a specific cancer syndrome, or has a compelling family history of the disease. As in the prior examples, this is because individual cancer gene testing is expensive and low throughput. One can ask the question whether this is the ideal approach or if we could be screening for these disorders from genome or exome data. Again, we applied sequencing analysis for these genes to the ClinSeq cohort because they were not ascertained for that phenotype. In a published study of 572 exomes ( Johnston et al. 2012 ), updated here to include 850 exomes, we have identified 10 patients with seven distinct cancer susceptibility syndrome mutations. These were mostly familial breast and ovarian cancer ( BRCA1 and BRCA2 ), with one patient each with paraganglioma and pheochromocytoma ( SDHC ) and one with Lynch syndrome ( MSH6 ). What is remarkable about these diagnoses is that only about half of them had a convincing personal or family history of the disease, and thus most would have not been offered testing using the current, hypothesis-testing clinical paradigm. These data suggest that screening for these disorders using genome or exome sequencing could markedly improve our ability to identify such families before they develop or die from these diseases—the ideal of predictive genomic medicine.

Despite these optimistic scenarios and examples, it remains true that our ability to perform true predictive medicine is limited. These limitations include technical factors such as incomplete sequence coverage, imperfect sequence quality, inadequate knowledge regarding the penetrance and expressivity of most variants, uncertain medical approaches and utility of pursuing variants from genomic sequencing, and the poor preparation of most clinicians for addressing genomic concerns in the clinic ( Biesecker 2013 ). Recognizing all of these limitations, it is clear that we are not prepared to launch broad-scale implementation of predictive genomic medicine, nor should all research be structured using the hypothesis-generating approach.

Hypothesis-testing approaches to science and medicine have served us well and should continue. However, the advent of massively parallel sequencing and other high-throughput technologies provides opportunities to undertake hypothesis-generating approaches to science and medicine, which in turn provide unprecedented opportunities for discovery in the research realm. This can allow the discovery of results that were not anticipated or intended by the research design, yet provide critical insights into biology and pathophysiology. Similarly, hypothesis-generating clinical research has the potential to provide these same insights and, in addition, has the potential to provide us with data that will illuminate the full spectrum of genotype–phenotype correlations, eliminating the biases that have limited this understanding in the past. Finally, applying these principles to clinical medicine can provide new pathways to diagnosis and provide the theoretical basis for predictive medicine that can detect disease susceptibility and allow health to be maintained, instead of solely focusing on the treatment of evident disease.

Article is online at http://www.genome.org/cgi/doi/10.1101/gr.157826.113 .

2 The chief complaint is a brief description of the problem that led the patient to the clinician, such as “I have a cough and fever.”

  • Bell CJ, Dinwiddie DL, Miller NA, Hateley SL, Ganusova EE, Mudge J, Langley RJ, Zhang L, Lee CC, Schilkey FD, et al. 2011. Carrier testing for severe childhood recessive diseases by next-generation sequencing . Sci Transl Med 3 : 65ra64 [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Biesecker LG 2013. Incidental findings are critical for genomics . Am J Hum Genet 92 : 648–651 [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Biesecker LG, Mullikin JC, Facio FM, Turner C, Cherukuri PF, Blakesley RW, Bouffard GG, Chines PS, Cruz P, Hansen NF, et al. 2009. The ClinSeq Project: Piloting large-scale genome sequencing for research in genomic medicine . Genome Res 19 : 1665–1674 [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Hennekam RC, Biesecker LG 2012. Next-generation sequencing demands next-generation phenotyping . Hum Mutat 33 : 884–886 [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • International Human Genome Sequencing Consortium 2004. Finishing the euchromatic sequence of the human genome . Nature 431 : 931–945 [ PubMed ] [ Google Scholar ]
  • Johnston JJ, Rubinstein WS, Facio FM, Ng D, Singh LN, Teer JK, Mullikin JC, Biesecker LG 2012. Secondary variants in individuals undergoing exome sequencing: Screening of 572 individuals identifies high-penetrance mutations in cancer-susceptibility genes . Am J Hum Genet 91 : 97–108 [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Mardis ER 2008. The impact of next-generation sequencing technology on genetics . Trends Genet 24 : 133–141 [ PubMed ] [ Google Scholar ]
  • Miller DT, Adam MP, Aradhya S, Biesecker LG, Brothman AR, Carter NP, Church DM, Crolla JA, Eichler EE, Epstein CJ, et al. 2010. Consensus statement: Chromosomal microarray is a first-tier clinical diagnostic test for individuals with developmental disabilities or congenital anomalies . Am J Hum Genet 86 : 749–764 [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Mouse Genome Sequencing Consortium. 2002. Initial sequencing and comparative analysis of the mouse genome . Nature 420 : 520–562 [ PubMed ] [ Google Scholar ]
  • Sloan JL, Johnston JJ, Manoli I, Chandler RJ, Krause C, Carrillo-Carrasco N, Chandrasekaran SD, Sysol JR, O'Brien K, Hauser NS, et al. 2011. Exome sequencing identifies ACSF3 as a cause of combined malonic and methylmalonic aciduria . Nat Genet 43 : 883–886 [ PMC free article ] [ PubMed ] [ Google Scholar ]

IMAGES

  1. hypothesis meaning medical

    medical meaning for hypothesis

  2. What is Hypothesis? Functions- Characteristics-types-Criteria

    medical meaning for hypothesis

  3. 🏷️ Formulation of hypothesis in research. How to Write a Strong

    medical meaning for hypothesis

  4. SOLUTION: How to write research hypothesis

    medical meaning for hypothesis

  5. What is a Hypothesis

    medical meaning for hypothesis

  6. Research Hypothesis: Definition, Types, Examples and Quick Tips

    medical meaning for hypothesis

VIDEO

  1. Lecture 10: Hypothesis Testing

  2. How To Formulate The Hypothesis/What is Hypothesis?

  3. Intro to hypothesis, Types functions

  4. Testing a Hypothesis About The mean

  5. What Is A Hypothesis?

  6. Hypothesis Formulation

COMMENTS

  1. Hypothesis

    hypothesis. (hī-pŏth′ĭ-sĭs) n. pl. hypothe·ses (-sēz′) 1. A tentative explanation for an observation, phenomenon, or scientific problem that can be tested by further investigation. 2. Something taken to be true for the purpose of argument or investigation; an assumption. 3. The antecedent of a conditional statement.

  2. Hypothesis Testing, P Values, Confidence Intervals, and Significance

    Medical providers often rely on evidence-based medicine to guide decision-making in practice. Often a research hypothesis is tested with results provided, typically with p values, confidence intervals, or both. Additionally, statistical or research significance is estimated or determined by the investigators. Unfortunately, healthcare providers may have different comfort levels in interpreting ...

  3. Hypothesis Definition & Meaning

    hypothesis: [noun] an assumption or concession made for the sake of argument. an interpretation of a practical situation or condition taken as the ground for action.

  4. Probability, clinical decision making and hypothesis testing

    The present paper attempts to put the P value in proper perspective by explaining different types of probabilities, their role in clinical decision making, medical research and hypothesis testing. Keywords: Hypothesis testing, P value, Probability. The clinician who wishes to remain abreast with the results of medical research needs to develop ...

  5. Scientific Hypotheses: Writing, Promoting, and Predicting Implications

    A snapshot analysis of citation activity of hypothesis articles may reveal interest of the global scientific community towards their implications across various disciplines and countries. As a prime example, Strachan's hygiene hypothesis, published in 1989,10 is still attracting numerous citations on Scopus, the largest bibliographic database ...

  6. Medical hypotheses: A clinician's guide to publication

    A medical hypothesis article has two main aims: to serve as a forum for theoretical work in medicine; and to facilitate the publication of potentially radical ideas. Medical hypotheses are particularly important in a field such as integrative medicine. ... A hypothesis is, by definition, unproven, and for every new hypothesis that proves to be ...

  7. Hypothesis Testing

    Hypothesis testing is the process used to evaluate the strength of evidence from the sample and provides a framework for making determinations related to the population, ie, it provides a method for understanding how reliably one can extrapolate observed findings in a sample under study to the larger population from which the sample was drawn ...

  8. How to Write a Strong Hypothesis

    5. Phrase your hypothesis in three ways. To identify the variables, you can write a simple prediction in if…then form. The first part of the sentence states the independent variable and the second part states the dependent variable. If a first-year student starts attending more lectures, then their exam scores will improve.

  9. The Logic of Medical Diagnosis: Generating and Selecting Hypotheses

    Clinical diagnostic medicine is an experimental science based on observation, hypothesis making, and testing. It is an use dynamic process that involves observation and summary, diagnostic conjectures, testing, review, observation and summary, new or revised conjectures, i.e. it is an iterative process. It can then be said that diagnostic hypotheses are also 'observation-laden'. My aim is ...

  10. How to Write a Great Hypothesis

    What is a hypothesis and how can you write a great one for your research? A hypothesis is a tentative statement about the relationship between two or more variables that can be tested empirically. Find out how to formulate a clear, specific, and testable hypothesis with examples and tips from Verywell Mind, a trusted source of psychology and mental health information.

  11. Medical Hypotheses

    Medical Hypotheses is a forum for ideas in medicine and related biomedical sciences. It will publish interesting and important theoretical papers that foster the diversity and debate upon which the scientific process thrives. The Aims and Scope of Medical Hypotheses are no different now from what was proposed by the founder of the journal, the ...

  12. What Is a Hypothesis? The Scientific Method

    A hypothesis (plural hypotheses) is a proposed explanation for an observation. The definition depends on the subject. In science, a hypothesis is part of the scientific method. It is a prediction or explanation that is tested by an experiment. Observations and experiments may disprove a scientific hypothesis, but can never entirely prove one.

  13. Formulating Hypotheses for Different Study Designs

    Formulating Hypotheses for Different Study Designs. Generating a testable working hypothesis is the first step towards conducting original research. Such research may prove or disprove the proposed hypothesis. Case reports, case series, online surveys and other observational studies, clinical trials, and narrative reviews help to generate ...

  14. Medical Hypotheses

    Medical Hypotheses is a not-conventionally-peer-reviewed medical journal published by Elsevier.It was originally intended as a forum for unconventional ideas without the traditional filter of scientific peer review, "as long as (the ideas) are coherent and clearly expressed" in order to "foster the diversity and debate upon which the scientific process thrives."

  15. Confirmation of Hypotheses in Clinical Medical Science

    Diagnosis in clinical medical science has been said to mean "the identification of a disease by the investigation of its various manifestations" (Harvey 1994, v.). The term differential diagnosis refers to evaluating more than one diagnostic hypothesis that may be entertained in the process of making a diagnosis .

  16. Guide for authors

    Medical Hypotheses is not, however, a journal for publishing workaday reviews of the literature, nor is it a journal for primary data (except when preliminary data is used to lend support to the main hypothesis presented). Many of the articles submitted do not clearly identify the hypothesis and simply read like reviews.

  17. What is a Hypothesis

    Definition: Hypothesis is an educated guess or proposed explanation for a phenomenon, based on some initial observations or data. It is a tentative statement that can be tested and potentially proven or disproven through further investigation and experimentation. Hypothesis is often used in scientific research to guide the design of experiments ...

  18. hypothesis noun

    1 [countable] an idea or explanation of something that is based on a few known facts but that has not yet been proved to be true or correct synonym theory to formulate/confirm a hypothesis a hypothesis about the function of dreams There is little evidence to support these hypotheses. Topic Collocations Scientific Research theory. formulate/advance a theory/hypothesis

  19. Hypothesis tests

    A hypothesis test is a procedure used in statistics to assess whether a particular viewpoint is likely to be true. They follow a strict protocol, and they generate a 'p-value', on the basis of which a decision is made about the truth of the hypothesis under investigation.All of the routine statistical 'tests' used in research—t-tests, χ 2 tests, Mann-Whitney tests, etc.—are all ...

  20. hypothesis noun

    The hypothesis predicts that children will perform better on task A than on task B. The results confirmed his hypothesis on the use of modal verbs. These observations appear to support our working hypothesis. a speculative hypothesis concerning the nature of matter; an interesting hypothesis about the development of language

  21. HYPOTHESIS

    HYPOTHESIS definition: 1. an idea or explanation for something that is based on known facts but has not yet been proved…. Learn more.

  22. Hypothesis-generating research and predictive medicine

    In the classic, hypothesis-testing paradigm, clinicians gather background information including chief complaint, 2 medical and family history, and physical examination, and use these data to formulate the differential diagnosis, which is a set of potential medical diagnoses that could explain the patient's signs and symptoms. Then, the ...

  23. Medical Hypotheses

    2010 — Volumes 74-75. 2009 — Volumes 72-73. 2008 — Volumes 70-71. 2007 — Volumes 68-69. 2006 — Volumes 66-67. 2005 — Volumes 64-65. Page 1 of 3. Read the latest articles of Medical Hypotheses at ScienceDirect.com, Elsevier's leading platform of peer-reviewed scholarly literature.