logo (1)

Tips for Online Students , Tips for Students

Why Is Critical Thinking Important? A Survival Guide

Updated: December 7, 2023

Published: April 2, 2020

Why-Is-Critical-Thinking-Important-a-Survival-Guide

Why is critical thinking important? The decisions that you make affect your quality of life. And if you want to ensure that you live your best, most successful and happy life, you’re going to want to make conscious choices. That can be done with a simple thing known as critical thinking. Here’s how to improve your critical thinking skills and make decisions that you won’t regret.

What Is Critical Thinking?

You’ve surely heard of critical thinking, but you might not be entirely sure what it really means, and that’s because there are many definitions. For the most part, however, we think of critical thinking as the process of analyzing facts in order to form a judgment. Basically, it’s thinking about thinking.

How Has The Definition Evolved Over Time?

The first time critical thinking was documented is believed to be in the teachings of Socrates , recorded by Plato. But throughout history, the definition has changed.

Today it is best understood by philosophers and psychologists and it’s believed to be a highly complex concept. Some insightful modern-day critical thinking definitions include :

  • “Reasonable, reflective thinking that is focused on deciding what to believe or do.”
  • “Deciding what’s true and what you should do.”

The Importance Of Critical Thinking

Why is critical thinking important? Good question! Here are a few undeniable reasons why it’s crucial to have these skills.

1. Critical Thinking Is Universal

Critical thinking is a domain-general thinking skill. What does this mean? It means that no matter what path or profession you pursue, these skills will always be relevant and will always be beneficial to your success. They are not specific to any field.

2. Crucial For The Economy

Our future depends on technology, information, and innovation. Critical thinking is needed for our fast-growing economies, to solve problems as quickly and as effectively as possible.

3. Improves Language & Presentation Skills

In order to best express ourselves, we need to know how to think clearly and systematically — meaning practice critical thinking! Critical thinking also means knowing how to break down texts, and in turn, improve our ability to comprehend.

4. Promotes Creativity

By practicing critical thinking, we are allowing ourselves not only to solve problems but also to come up with new and creative ideas to do so. Critical thinking allows us to analyze these ideas and adjust them accordingly.

5. Important For Self-Reflection

Without critical thinking, how can we really live a meaningful life? We need this skill to self-reflect and justify our ways of life and opinions. Critical thinking provides us with the tools to evaluate ourselves in the way that we need to.

Woman deep into thought as she looks out the window, using her critical thinking skills to do some self-reflection.

6. The Basis Of Science & Democracy

In order to have a democracy and to prove scientific facts, we need critical thinking in the world. Theories must be backed up with knowledge. In order for a society to effectively function, its citizens need to establish opinions about what’s right and wrong (by using critical thinking!).

Benefits Of Critical Thinking

We know that critical thinking is good for society as a whole, but what are some benefits of critical thinking on an individual level? Why is critical thinking important for us?

1. Key For Career Success

Critical thinking is crucial for many career paths. Not just for scientists, but lawyers , doctors, reporters, engineers , accountants, and analysts (among many others) all have to use critical thinking in their positions. In fact, according to the World Economic Forum, critical thinking is one of the most desirable skills to have in the workforce, as it helps analyze information, think outside the box, solve problems with innovative solutions, and plan systematically.

2. Better Decision Making

There’s no doubt about it — critical thinkers make the best choices. Critical thinking helps us deal with everyday problems as they come our way, and very often this thought process is even done subconsciously. It helps us think independently and trust our gut feeling.

3. Can Make You Happier!

While this often goes unnoticed, being in touch with yourself and having a deep understanding of why you think the way you think can really make you happier. Critical thinking can help you better understand yourself, and in turn, help you avoid any kind of negative or limiting beliefs, and focus more on your strengths. Being able to share your thoughts can increase your quality of life.

4. Form Well-Informed Opinions

There is no shortage of information coming at us from all angles. And that’s exactly why we need to use our critical thinking skills and decide for ourselves what to believe. Critical thinking allows us to ensure that our opinions are based on the facts, and help us sort through all that extra noise.

5. Better Citizens

One of the most inspiring critical thinking quotes is by former US president Thomas Jefferson: “An educated citizenry is a vital requisite for our survival as a free people.” What Jefferson is stressing to us here is that critical thinkers make better citizens, as they are able to see the entire picture without getting sucked into biases and propaganda.

6. Improves Relationships

While you may be convinced that being a critical thinker is bound to cause you problems in relationships, this really couldn’t be less true! Being a critical thinker can allow you to better understand the perspective of others, and can help you become more open-minded towards different views.

7. Promotes Curiosity

Critical thinkers are constantly curious about all kinds of things in life, and tend to have a wide range of interests. Critical thinking means constantly asking questions and wanting to know more, about why, what, who, where, when, and everything else that can help them make sense of a situation or concept, never taking anything at face value.

8. Allows For Creativity

Critical thinkers are also highly creative thinkers, and see themselves as limitless when it comes to possibilities. They are constantly looking to take things further, which is crucial in the workforce.

9. Enhances Problem Solving Skills

Those with critical thinking skills tend to solve problems as part of their natural instinct. Critical thinkers are patient and committed to solving the problem, similar to Albert Einstein, one of the best critical thinking examples, who said “It’s not that I’m so smart; it’s just that I stay with problems longer.” Critical thinkers’ enhanced problem-solving skills makes them better at their jobs and better at solving the world’s biggest problems. Like Einstein, they have the potential to literally change the world.

10. An Activity For The Mind

Just like our muscles, in order for them to be strong, our mind also needs to be exercised and challenged. It’s safe to say that critical thinking is almost like an activity for the mind — and it needs to be practiced. Critical thinking encourages the development of many crucial skills such as logical thinking, decision making, and open-mindness.

11. Creates Independence

When we think critically, we think on our own as we trust ourselves more. Critical thinking is key to creating independence, and encouraging students to make their own decisions and form their own opinions.

12. Crucial Life Skill

Critical thinking is crucial not just for learning, but for life overall! Education isn’t just a way to prepare ourselves for life, but it’s pretty much life itself. Learning is a lifelong process that we go through each and every day.

How to Think Critically

Now that you know the benefits of thinking critically, how do you actually do it?

How To Improve Your Critical Thinking

  • Define Your Question: When it comes to critical thinking, it’s important to always keep your goal in mind. Know what you’re trying to achieve, and then figure out how to best get there.
  • Gather Reliable Information: Make sure that you’re using sources you can trust — biases aside. That’s how a real critical thinker operates!
  • Ask The Right Questions: We all know the importance of questions, but be sure that you’re asking the right questions that are going to get you to your answer.
  • Look Short & Long Term: When coming up with solutions, think about both the short- and long-term consequences. Both of them are significant in the equation.
  • Explore All Sides: There is never just one simple answer, and nothing is black or white. Explore all options and think outside of the box before you come to any conclusions.

How Is Critical Thinking Developed At School?

Critical thinking is developed in nearly everything we do. However, much of this important skill is encouraged to be practiced at school, and rightfully so! Critical thinking goes beyond just thinking clearly — it’s also about thinking for yourself.

When a teacher asks a question in class, students are given the chance to answer for themselves and think critically about what they learned and what they believe to be accurate. When students work in groups and are forced to engage in discussion, this is also a great chance to expand their thinking and use their critical thinking skills.

How Does Critical Thinking Apply To Your Career?

Once you’ve finished school and entered the workforce, your critical thinking journey only expands and grows from here!

Impress Your Employer

Employers value employees who are critical thinkers, ask questions, offer creative ideas, and are always ready to offer innovation against the competition. No matter what your position or role in a company may be, critical thinking will always give you the power to stand out and make a difference.

Careers That Require Critical Thinking

Some of many examples of careers that require critical thinking include:

  • Human resources specialist
  • Marketing associate
  • Business analyst

Truth be told however, it’s probably harder to come up with a professional field that doesn’t require any critical thinking!

Photo by  Oladimeji Ajegbile  from  Pexels

What is someone with critical thinking skills capable of doing.

Someone with critical thinking skills is able to think rationally and clearly about what they should or not believe. They are capable of engaging in their own thoughts, and doing some reflection in order to come to a well-informed conclusion.

A critical thinker understands the connections between ideas, and is able to construct arguments based on facts, as well as find mistakes in reasoning.

The Process Of Critical Thinking

The process of critical thinking is highly systematic.

What Are Your Goals?

Critical thinking starts by defining your goals, and knowing what you are ultimately trying to achieve.

Once you know what you are trying to conclude, you can foresee your solution to the problem and play it out in your head from all perspectives.

What Does The Future Of Critical Thinking Hold?

The future of critical thinking is the equivalent of the future of jobs. In 2020, critical thinking was ranked as the 2nd top skill (following complex problem solving) by the World Economic Forum .

We are dealing with constant unprecedented changes, and what success is today, might not be considered success tomorrow — making critical thinking a key skill for the future workforce.

Why Is Critical Thinking So Important?

Why is critical thinking important? Critical thinking is more than just important! It’s one of the most crucial cognitive skills one can develop.

By practicing well-thought-out thinking, both your thoughts and decisions can make a positive change in your life, on both a professional and personal level. You can hugely improve your life by working on your critical thinking skills as often as you can.

Related Articles

James Taylor

Exploring the Difference: Creative Thinking vs. Critical Thinking

Annie Walls

Annie Walls

Creative thinking and critical thinking are two distinct cognitive processes that play important roles in problem-solving and decision-making. While creative thinking involves generating innovative ideas and solutions, critical thinking involves analyzing and evaluating information to make reasoned judgments. Both types of thinking have their unique characteristics and benefits. In this article, we will explore the difference between creative thinking and critical thinking, and how they can be applied in various contexts.

Key Takeaways

  • Creative thinking involves generating new ideas and solutions.
  • Critical thinking involves analyzing and evaluating information to make reasoned judgments.
  • Creative thinkers are characterized by their curiosity, open-mindedness, and willingness to take risks.
  • Critical thinkers are characterized by their skepticism, logical reasoning, and attention to detail.
  • Creative thinking can lead to innovation and breakthroughs.

Understanding Creative Thinking

Defining creative thinking.

Creative thinking is the ability to think outside the box and generate innovative ideas. It involves breaking free from conventional ways of thinking and exploring new possibilities. Creativity is the key element in creative thinking , as it allows individuals to come up with unique and original solutions to problems.

Creative thinking is not limited to artistic endeavors; it can be applied to various aspects of life, including problem-solving, decision-making, and even everyday tasks. It requires an open mind, a willingness to take risks, and the ability to see things from different perspectives.

In order to foster creative thinking, it is important to create an environment that encourages experimentation and exploration. This can be done by providing opportunities for brainstorming, encouraging collaboration, and embracing failure as a learning opportunity.

Here are some techniques that can enhance creative thinking:

  • Mind mapping: A visual tool that helps organize thoughts and generate new ideas.
  • Divergent thinking: Generating multiple solutions to a problem.
  • Analogical thinking: Drawing connections between unrelated concepts.
Tip: Embrace curiosity and embrace the unknown. Be open to new experiences and ideas, and don't be afraid to take risks.

Characteristics of Creative Thinkers

Creative thinkers possess a unique set of characteristics that set them apart from others. They have the ability to think outside the box and come up with innovative solutions to problems. Imagination plays a crucial role in their thought process, allowing them to envision possibilities that others may not see. They are open-minded and willing to explore different perspectives, which helps them generate fresh ideas. Creative thinkers are also comfortable with ambiguity and uncertainty, as they understand that these conditions can lead to breakthroughs. They are not afraid to take risks and are willing to challenge the status quo.

Benefits of Creative Thinking

Creative thinking offers numerous benefits that can enhance various aspects of life. One of the key advantages of creative thinking is the ability to generate innovative ideas and solutions. Creativity allows individuals to think outside the box and come up with unique approaches to problems. This can lead to breakthroughs and advancements in various fields.

Another benefit of creative thinking is its impact on personal growth and self-expression. By engaging in creative activities, individuals can explore their inner thoughts and emotions, allowing for self-discovery and self-reflection. Creative pursuits such as painting, writing, or playing an instrument can serve as outlets for self-expression and can contribute to overall well-being.

In addition, creative thinking can foster collaboration and teamwork. When individuals approach problems with a creative mindset, they are more likely to seek input and ideas from others. This promotes a collaborative environment where diverse perspectives are valued and innovative solutions are developed.

Furthermore, creative thinking can enhance problem-solving skills. By thinking creatively, individuals are able to consider multiple perspectives and explore alternative solutions. This can lead to more effective problem-solving and decision-making processes.

Overall, creative thinking offers a range of benefits, from generating innovative ideas to fostering collaboration and enhancing problem-solving skills.

Techniques for Enhancing Creative Thinking

In order to enhance creative thinking, there are several techniques that can be employed:

  • Mind Mapping : This technique involves visually organizing ideas and concepts in a non-linear manner, allowing for connections and associations to be made.
  • Brainstorming : This popular technique involves generating a large number of ideas in a short amount of time, without judgment or evaluation.
  • Divergent Thinking : This approach encourages exploring multiple possibilities and perspectives, thinking outside the box, and avoiding conventional solutions.
Tip: When using these techniques, it is important to create a supportive and non-judgmental environment that encourages free thinking and idea generation.

By utilizing these techniques, individuals and teams can unlock their creative potential and generate innovative ideas to drive growth and success.

Exploring Critical Thinking

is critical thinking necessary for creativity

Defining Critical Thinking

Critical thinking is essentially a questioning, challenging approach to knowledge and perceived wisdom. It involves ideas and information from an objective perspective, analyzing and evaluating them to form well-reasoned judgments and decisions. It goes beyond accepting information at face value and encourages a deeper understanding of the subject matter. Critical thinkers are curious, open-minded, and willing to consider different perspectives. They are skilled at identifying biases and assumptions, and they strive to make logical and evidence-based conclusions.

Characteristics of Critical Thinkers

Critical thinkers possess several key characteristics that set them apart:

  • Analytical Skills : Critical thinkers are adept at analyzing information and breaking it down into its component parts. They can identify patterns, evaluate evidence, and draw logical conclusions.
  • Open-mindedness : Critical thinkers are willing to consider different perspectives and are open to changing their beliefs or opinions based on new evidence or information.
  • Skepticism : Critical thinkers approach information with a healthy dose of skepticism. They question assumptions, challenge authority, and seek evidence to support or refute claims.
Tip: Critical thinkers actively engage in critical reflection, constantly questioning their own thinking and seeking to improve their reasoning abilities.

Benefits of Critical Thinking

Critical thinking has numerous benefits that can positively impact various aspects of life. It enhances problem-solving skills, allowing individuals to analyze complex situations and make informed decisions. Analytical thinking is a key component of critical thinking, enabling individuals to break down problems into smaller parts and examine them from different perspectives. This approach helps in identifying potential biases and assumptions, leading to more objective and rational decision-making.

In addition, critical thinking promotes effective communication . By critically evaluating information and arguments, individuals can articulate their thoughts and ideas more clearly and persuasively. They can also identify logical fallacies and inconsistencies in others' arguments, enabling them to engage in meaningful and constructive discussions.

Furthermore, critical thinking fosters creativity and innovation . By questioning assumptions and challenging conventional wisdom, individuals can generate new ideas and approaches. Critical thinkers are more open to exploring alternative solutions and are willing to take risks in order to achieve better outcomes.

Developing Critical Thinking Skills

Developing critical thinking skills is essential for success in both personal and professional life. It involves the ability to analyze information objectively, evaluate arguments and evidence, and make informed decisions. Here are some strategies that can help enhance your critical thinking skills:

  • Ask Questions: One of the key aspects of critical thinking is asking thoughtful and probing questions. This helps you gain a deeper understanding of the subject matter and challenges assumptions.
  • Seek Different Perspectives: To develop critical thinking skills, it is important to consider multiple viewpoints and perspectives. This allows you to evaluate arguments from different angles and make well-rounded judgments.
  • Practice Problem-Solving: Critical thinking involves problem-solving skills. Engaging in activities that require you to analyze and solve problems can help sharpen your critical thinking abilities.
  • Reflect on Your Thinking: Take time to reflect on your own thinking process. Consider the biases, assumptions, and logical fallacies that may be influencing your thoughts and decisions.
  • Continuous Learning: Critical thinking is a skill that can be developed and improved over time. Engage in continuous learning, read diverse perspectives, and challenge your own beliefs and assumptions.

By incorporating these strategies into your daily life, you can enhance your critical thinking skills and become a more effective problem solver and decision-maker.

Comparing Creative and Critical Thinking

is critical thinking necessary for creativity

Different Approaches to Problem Solving

When it comes to problem solving, creative thinking and critical thinking take different approaches. Creative thinkers often rely on their imagination and intuition to generate unique and innovative solutions. They think outside the box and are not afraid to take risks. On the other hand, critical thinkers approach problem solving in a more analytical and logical manner. They carefully analyze the problem, gather information, and evaluate different options before making a decision.

Role of Imagination and Logic

The role of imagination and logic in creative and critical thinking is crucial. Imagination allows us to think outside the box, explore new possibilities, and come up with innovative ideas. It is the fuel that ignites creativity and helps us see beyond the obvious. On the other hand, logic provides the framework for organizing and analyzing information, making rational decisions, and solving problems systematically. It helps us evaluate the feasibility and effectiveness of our ideas.

When it comes to problem-solving, a balance between imagination and logic is essential. While imagination helps generate unique and unconventional solutions, logic ensures that these solutions are practical and viable. By combining the two, we can approach problems with a structured yet imaginative mindset, finding innovative solutions and making connections that others may overlook.

In summary, imagination and logic are two sides of the same coin when it comes to creative and critical thinking. They complement each other and work together to enhance our ability to think creatively and critically.

Balancing Intuition and Analysis

When it comes to problem-solving, finding the right balance between intuition and analysis is crucial. Intuition allows us to tap into our subconscious knowledge and make quick decisions based on gut feelings. On the other hand, analysis involves a systematic and logical approach to gather and evaluate information. Both intuition and analysis have their strengths and weaknesses, and leveraging both can lead to more effective problem-solving.

To strike a balance between intuition and analysis, consider the following:

  • Trust your instincts: Pay attention to your gut feelings and initial reactions, as they can provide valuable insights.
  • Gather and evaluate data: Take the time to gather relevant information and analyze it objectively.
  • Seek different perspectives: Engage with others who have different viewpoints to challenge your assumptions and broaden your thinking.
Tip: Remember that finding the right balance between intuition and analysis is a dynamic process. It requires practice and reflection to develop a nuanced approach to problem-solving.

Collaboration and Individuality in Thinking

Collaboration and individuality are two key aspects of thinking that play a crucial role in both creative and critical thinking. While collaboration allows for the exchange of ideas and perspectives, individuality brings unique insights and approaches to the table. Collaboration fosters a sense of teamwork and encourages diverse thinking, which can lead to innovative solutions. On the other hand, individuality allows individuals to think independently and bring their own creativity and expertise to the problem-solving process.

In order to effectively balance collaboration and individuality in thinking, it is important to create an environment that values both. This can be achieved by promoting open communication and active listening, where team members feel comfortable sharing their ideas and opinions. Additionally, providing opportunities for individual reflection and brainstorming can help stimulate creativity and encourage unique perspectives.

To further enhance collaboration and individuality in thinking, organizations can implement strategies such as group brainstorming sessions , where team members can collectively generate ideas and build upon each other's thoughts. This encourages collaboration while also allowing individuals to contribute their own unique insights. Another strategy is to assign individual tasks within a larger project, giving team members the opportunity to work independently and bring their own creative solutions to the table.

In summary, collaboration and individuality are both essential components of thinking that contribute to creative and critical thinking processes. By fostering a balance between collaboration and individuality, organizations can harness the power of teamwork and individual creativity to drive innovation and problem-solving.

In the article section of my website, I would like to discuss the topic of 'Comparing Creative and Critical Thinking'. Creative thinking and critical thinking are two essential cognitive skills that play a significant role in problem-solving, decision-making, and innovation. While creative thinking involves generating new ideas, thinking outside the box, and exploring different perspectives , critical thinking focuses on analyzing, evaluating, and questioning information to make informed judgments. Both types of thinking are crucial in today's fast-paced and complex world. By understanding the differences and similarities between creative and critical thinking, individuals can enhance their problem-solving abilities and foster a culture of innovation. If you want to learn more about the power of creative thinking and how it can transform your business, visit th website, Creativity Keynote Speaker James Taylor - Inspiring Creative Minds .

In conclusion, both creative thinking and critical thinking are essential skills that complement each other in problem-solving and decision-making. While creative thinking allows for innovative ideas and out-of-the-box solutions, critical thinking provides the necessary analysis and evaluation to ensure the feasibility and effectiveness of those ideas. Flexibility is a key aspect of creative thinking, enabling individuals to adapt and explore different perspectives, while accuracy is a fundamental element of critical thinking, ensuring logical reasoning and evidence-based conclusions. By harnessing the power of both creative and critical thinking, individuals can enhance their problem-solving abilities and make well-informed decisions in various aspects of life.

Frequently Asked Questions

What is the difference between creative thinking and critical thinking.

Creative thinking involves generating new ideas, possibilities, and solutions, while critical thinking involves analyzing, evaluating, and making reasoned judgments.

Can someone be both a creative thinker and a critical thinker?

Yes, individuals can possess both creative and critical thinking skills. They can use creative thinking to generate ideas and critical thinking to evaluate and refine those ideas.

Which is more important, creative thinking or critical thinking?

Both creative thinking and critical thinking are important and complement each other. Creative thinking generates new ideas, while critical thinking helps evaluate and implement those ideas effectively.

How can I enhance my creative thinking skills?

You can enhance your creative thinking skills by engaging in activities that stimulate your imagination, such as brainstorming, mind mapping, and exploring new perspectives.

What are some techniques for developing critical thinking skills?

Techniques for developing critical thinking skills include analyzing arguments, evaluating evidence, questioning assumptions, and considering different perspectives.

Is creative thinking limited to artistic pursuits?

No, creative thinking is not limited to artistic pursuits. It can be applied to various fields and industries, including problem-solving in science, business, technology, and more.

is critical thinking necessary for creativity

Popular Posts

Meilleur conférencier principal en teambuilding.

Les conférences virtuelles et les sommets peuvent être des moyens très efficaces pour inspirer, informer

Meilleur conférencier principal sur le bien-être

Les conférences sur le bien-être et la santé mentale sont essentielles pour promouvoir un environnement

Meilleur conférencier principal en communication

Les conférences virtuelles, les réunions et les sommets peuvent être un moyen très efficace d’inspirer,

Meilleur Conférencier en Stratégie

Les conférenciers en stratégie jouent un rôle crucial dans l’inspiration et la motivation des entreprises

Meilleur Conférencier Culturel

En tant que conférencier de keynote sur la culture, il est essentiel d’avoir un partenaire

Meilleur conférencier principal dans le domaine des soins de santé

Les conférenciers principaux en santé et bien-être jouent un rôle crucial dans l’industrie de la

James is a top motivational keynote speaker who is booked as a creativity and innovation keynote speaker, AI speaker , sustainability speaker and leadership speaker . Recent destinations include: Dubai , Abu Dhabi , Orlando , Las Vegas , keynote speaker London , Barcelona , Bangkok , Miami , Berlin , Riyadh , New York , Zurich , motivational speaker Paris , Singapore and San Francisco

Latest News

  • 415.800.3059
  • [email protected]
  • Media Interviews
  • Meeting Planners
  • Terms of Use
  • Privacy Policy
  • Cookie Policy

FIND ME ON SOCIAL

© 2024 James Taylor DBA P3 Music Ltd.

SEP home page

  • Table of Contents
  • Random Entry
  • Chronological
  • Editorial Information
  • About the SEP
  • Editorial Board
  • How to Cite the SEP
  • Special Characters
  • Advanced Tools
  • Support the SEP
  • PDFs for SEP Friends
  • Make a Donation
  • SEPIA for Libraries
  • Entry Contents

Bibliography

Academic tools.

  • Friends PDF Preview
  • Author and Citation Info
  • Back to Top

Critical Thinking

Critical thinking is a widely accepted educational goal. Its definition is contested, but the competing definitions can be understood as differing conceptions of the same basic concept: careful thinking directed to a goal. Conceptions differ with respect to the scope of such thinking, the type of goal, the criteria and norms for thinking carefully, and the thinking components on which they focus. Its adoption as an educational goal has been recommended on the basis of respect for students’ autonomy and preparing students for success in life and for democratic citizenship. “Critical thinkers” have the dispositions and abilities that lead them to think critically when appropriate. The abilities can be identified directly; the dispositions indirectly, by considering what factors contribute to or impede exercise of the abilities. Standardized tests have been developed to assess the degree to which a person possesses such dispositions and abilities. Educational intervention has been shown experimentally to improve them, particularly when it includes dialogue, anchored instruction, and mentoring. Controversies have arisen over the generalizability of critical thinking across domains, over alleged bias in critical thinking theories and instruction, and over the relationship of critical thinking to other types of thinking.

2.1 Dewey’s Three Main Examples

2.2 dewey’s other examples, 2.3 further examples, 2.4 non-examples, 3. the definition of critical thinking, 4. its value, 5. the process of thinking critically, 6. components of the process, 7. contributory dispositions and abilities, 8.1 initiating dispositions, 8.2 internal dispositions, 9. critical thinking abilities, 10. required knowledge, 11. educational methods, 12.1 the generalizability of critical thinking, 12.2 bias in critical thinking theory and pedagogy, 12.3 relationship of critical thinking to other types of thinking, other internet resources, related entries.

Use of the term ‘critical thinking’ to describe an educational goal goes back to the American philosopher John Dewey (1910), who more commonly called it ‘reflective thinking’. He defined it as

active, persistent and careful consideration of any belief or supposed form of knowledge in the light of the grounds that support it, and the further conclusions to which it tends. (Dewey 1910: 6; 1933: 9)

and identified a habit of such consideration with a scientific attitude of mind. His lengthy quotations of Francis Bacon, John Locke, and John Stuart Mill indicate that he was not the first person to propose development of a scientific attitude of mind as an educational goal.

In the 1930s, many of the schools that participated in the Eight-Year Study of the Progressive Education Association (Aikin 1942) adopted critical thinking as an educational goal, for whose achievement the study’s Evaluation Staff developed tests (Smith, Tyler, & Evaluation Staff 1942). Glaser (1941) showed experimentally that it was possible to improve the critical thinking of high school students. Bloom’s influential taxonomy of cognitive educational objectives (Bloom et al. 1956) incorporated critical thinking abilities. Ennis (1962) proposed 12 aspects of critical thinking as a basis for research on the teaching and evaluation of critical thinking ability.

Since 1980, an annual international conference in California on critical thinking and educational reform has attracted tens of thousands of educators from all levels of education and from many parts of the world. Also since 1980, the state university system in California has required all undergraduate students to take a critical thinking course. Since 1983, the Association for Informal Logic and Critical Thinking has sponsored sessions in conjunction with the divisional meetings of the American Philosophical Association (APA). In 1987, the APA’s Committee on Pre-College Philosophy commissioned a consensus statement on critical thinking for purposes of educational assessment and instruction (Facione 1990a). Researchers have developed standardized tests of critical thinking abilities and dispositions; for details, see the Supplement on Assessment . Educational jurisdictions around the world now include critical thinking in guidelines for curriculum and assessment.

For details on this history, see the Supplement on History .

2. Examples and Non-Examples

Before considering the definition of critical thinking, it will be helpful to have in mind some examples of critical thinking, as well as some examples of kinds of thinking that would apparently not count as critical thinking.

Dewey (1910: 68–71; 1933: 91–94) takes as paradigms of reflective thinking three class papers of students in which they describe their thinking. The examples range from the everyday to the scientific.

Transit : “The other day, when I was down town on 16th Street, a clock caught my eye. I saw that the hands pointed to 12:20. This suggested that I had an engagement at 124th Street, at one o’clock. I reasoned that as it had taken me an hour to come down on a surface car, I should probably be twenty minutes late if I returned the same way. I might save twenty minutes by a subway express. But was there a station near? If not, I might lose more than twenty minutes in looking for one. Then I thought of the elevated, and I saw there was such a line within two blocks. But where was the station? If it were several blocks above or below the street I was on, I should lose time instead of gaining it. My mind went back to the subway express as quicker than the elevated; furthermore, I remembered that it went nearer than the elevated to the part of 124th Street I wished to reach, so that time would be saved at the end of the journey. I concluded in favor of the subway, and reached my destination by one o’clock.” (Dewey 1910: 68–69; 1933: 91–92)

Ferryboat : “Projecting nearly horizontally from the upper deck of the ferryboat on which I daily cross the river is a long white pole, having a gilded ball at its tip. It suggested a flagpole when I first saw it; its color, shape, and gilded ball agreed with this idea, and these reasons seemed to justify me in this belief. But soon difficulties presented themselves. The pole was nearly horizontal, an unusual position for a flagpole; in the next place, there was no pulley, ring, or cord by which to attach a flag; finally, there were elsewhere on the boat two vertical staffs from which flags were occasionally flown. It seemed probable that the pole was not there for flag-flying.

“I then tried to imagine all possible purposes of the pole, and to consider for which of these it was best suited: (a) Possibly it was an ornament. But as all the ferryboats and even the tugboats carried poles, this hypothesis was rejected. (b) Possibly it was the terminal of a wireless telegraph. But the same considerations made this improbable. Besides, the more natural place for such a terminal would be the highest part of the boat, on top of the pilot house. (c) Its purpose might be to point out the direction in which the boat is moving.

“In support of this conclusion, I discovered that the pole was lower than the pilot house, so that the steersman could easily see it. Moreover, the tip was enough higher than the base, so that, from the pilot’s position, it must appear to project far out in front of the boat. Moreover, the pilot being near the front of the boat, he would need some such guide as to its direction. Tugboats would also need poles for such a purpose. This hypothesis was so much more probable than the others that I accepted it. I formed the conclusion that the pole was set up for the purpose of showing the pilot the direction in which the boat pointed, to enable him to steer correctly.” (Dewey 1910: 69–70; 1933: 92–93)

Bubbles : “In washing tumblers in hot soapsuds and placing them mouth downward on a plate, bubbles appeared on the outside of the mouth of the tumblers and then went inside. Why? The presence of bubbles suggests air, which I note must come from inside the tumbler. I see that the soapy water on the plate prevents escape of the air save as it may be caught in bubbles. But why should air leave the tumbler? There was no substance entering to force it out. It must have expanded. It expands by increase of heat, or by decrease of pressure, or both. Could the air have become heated after the tumbler was taken from the hot suds? Clearly not the air that was already entangled in the water. If heated air was the cause, cold air must have entered in transferring the tumblers from the suds to the plate. I test to see if this supposition is true by taking several more tumblers out. Some I shake so as to make sure of entrapping cold air in them. Some I take out holding mouth downward in order to prevent cold air from entering. Bubbles appear on the outside of every one of the former and on none of the latter. I must be right in my inference. Air from the outside must have been expanded by the heat of the tumbler, which explains the appearance of the bubbles on the outside. But why do they then go inside? Cold contracts. The tumbler cooled and also the air inside it. Tension was removed, and hence bubbles appeared inside. To be sure of this, I test by placing a cup of ice on the tumbler while the bubbles are still forming outside. They soon reverse” (Dewey 1910: 70–71; 1933: 93–94).

Dewey (1910, 1933) sprinkles his book with other examples of critical thinking. We will refer to the following.

Weather : A man on a walk notices that it has suddenly become cool, thinks that it is probably going to rain, looks up and sees a dark cloud obscuring the sun, and quickens his steps (1910: 6–10; 1933: 9–13).

Disorder : A man finds his rooms on his return to them in disorder with his belongings thrown about, thinks at first of burglary as an explanation, then thinks of mischievous children as being an alternative explanation, then looks to see whether valuables are missing, and discovers that they are (1910: 82–83; 1933: 166–168).

Typhoid : A physician diagnosing a patient whose conspicuous symptoms suggest typhoid avoids drawing a conclusion until more data are gathered by questioning the patient and by making tests (1910: 85–86; 1933: 170).

Blur : A moving blur catches our eye in the distance, we ask ourselves whether it is a cloud of whirling dust or a tree moving its branches or a man signaling to us, we think of other traits that should be found on each of those possibilities, and we look and see if those traits are found (1910: 102, 108; 1933: 121, 133).

Suction pump : In thinking about the suction pump, the scientist first notes that it will draw water only to a maximum height of 33 feet at sea level and to a lesser maximum height at higher elevations, selects for attention the differing atmospheric pressure at these elevations, sets up experiments in which the air is removed from a vessel containing water (when suction no longer works) and in which the weight of air at various levels is calculated, compares the results of reasoning about the height to which a given weight of air will allow a suction pump to raise water with the observed maximum height at different elevations, and finally assimilates the suction pump to such apparently different phenomena as the siphon and the rising of a balloon (1910: 150–153; 1933: 195–198).

Diamond : A passenger in a car driving in a diamond lane reserved for vehicles with at least one passenger notices that the diamond marks on the pavement are far apart in some places and close together in others. Why? The driver suggests that the reason may be that the diamond marks are not needed where there is a solid double line separating the diamond lane from the adjoining lane, but are needed when there is a dotted single line permitting crossing into the diamond lane. Further observation confirms that the diamonds are close together when a dotted line separates the diamond lane from its neighbour, but otherwise far apart.

Rash : A woman suddenly develops a very itchy red rash on her throat and upper chest. She recently noticed a mark on the back of her right hand, but was not sure whether the mark was a rash or a scrape. She lies down in bed and thinks about what might be causing the rash and what to do about it. About two weeks before, she began taking blood pressure medication that contained a sulfa drug, and the pharmacist had warned her, in view of a previous allergic reaction to a medication containing a sulfa drug, to be on the alert for an allergic reaction; however, she had been taking the medication for two weeks with no such effect. The day before, she began using a new cream on her neck and upper chest; against the new cream as the cause was mark on the back of her hand, which had not been exposed to the cream. She began taking probiotics about a month before. She also recently started new eye drops, but she supposed that manufacturers of eye drops would be careful not to include allergy-causing components in the medication. The rash might be a heat rash, since she recently was sweating profusely from her upper body. Since she is about to go away on a short vacation, where she would not have access to her usual physician, she decides to keep taking the probiotics and using the new eye drops but to discontinue the blood pressure medication and to switch back to the old cream for her neck and upper chest. She forms a plan to consult her regular physician on her return about the blood pressure medication.

Candidate : Although Dewey included no examples of thinking directed at appraising the arguments of others, such thinking has come to be considered a kind of critical thinking. We find an example of such thinking in the performance task on the Collegiate Learning Assessment (CLA+), which its sponsoring organization describes as

a performance-based assessment that provides a measure of an institution’s contribution to the development of critical-thinking and written communication skills of its students. (Council for Aid to Education 2017)

A sample task posted on its website requires the test-taker to write a report for public distribution evaluating a fictional candidate’s policy proposals and their supporting arguments, using supplied background documents, with a recommendation on whether to endorse the candidate.

Immediate acceptance of an idea that suggests itself as a solution to a problem (e.g., a possible explanation of an event or phenomenon, an action that seems likely to produce a desired result) is “uncritical thinking, the minimum of reflection” (Dewey 1910: 13). On-going suspension of judgment in the light of doubt about a possible solution is not critical thinking (Dewey 1910: 108). Critique driven by a dogmatically held political or religious ideology is not critical thinking; thus Paulo Freire (1968 [1970]) is using the term (e.g., at 1970: 71, 81, 100, 146) in a more politically freighted sense that includes not only reflection but also revolutionary action against oppression. Derivation of a conclusion from given data using an algorithm is not critical thinking.

What is critical thinking? There are many definitions. Ennis (2016) lists 14 philosophically oriented scholarly definitions and three dictionary definitions. Following Rawls (1971), who distinguished his conception of justice from a utilitarian conception but regarded them as rival conceptions of the same concept, Ennis maintains that the 17 definitions are different conceptions of the same concept. Rawls articulated the shared concept of justice as

a characteristic set of principles for assigning basic rights and duties and for determining… the proper distribution of the benefits and burdens of social cooperation. (Rawls 1971: 5)

Bailin et al. (1999b) claim that, if one considers what sorts of thinking an educator would take not to be critical thinking and what sorts to be critical thinking, one can conclude that educators typically understand critical thinking to have at least three features.

  • It is done for the purpose of making up one’s mind about what to believe or do.
  • The person engaging in the thinking is trying to fulfill standards of adequacy and accuracy appropriate to the thinking.
  • The thinking fulfills the relevant standards to some threshold level.

One could sum up the core concept that involves these three features by saying that critical thinking is careful goal-directed thinking. This core concept seems to apply to all the examples of critical thinking described in the previous section. As for the non-examples, their exclusion depends on construing careful thinking as excluding jumping immediately to conclusions, suspending judgment no matter how strong the evidence, reasoning from an unquestioned ideological or religious perspective, and routinely using an algorithm to answer a question.

If the core of critical thinking is careful goal-directed thinking, conceptions of it can vary according to its presumed scope, its presumed goal, one’s criteria and threshold for being careful, and the thinking component on which one focuses. As to its scope, some conceptions (e.g., Dewey 1910, 1933) restrict it to constructive thinking on the basis of one’s own observations and experiments, others (e.g., Ennis 1962; Fisher & Scriven 1997; Johnson 1992) to appraisal of the products of such thinking. Ennis (1991) and Bailin et al. (1999b) take it to cover both construction and appraisal. As to its goal, some conceptions restrict it to forming a judgment (Dewey 1910, 1933; Lipman 1987; Facione 1990a). Others allow for actions as well as beliefs as the end point of a process of critical thinking (Ennis 1991; Bailin et al. 1999b). As to the criteria and threshold for being careful, definitions vary in the term used to indicate that critical thinking satisfies certain norms: “intellectually disciplined” (Scriven & Paul 1987), “reasonable” (Ennis 1991), “skillful” (Lipman 1987), “skilled” (Fisher & Scriven 1997), “careful” (Bailin & Battersby 2009). Some definitions specify these norms, referring variously to “consideration of any belief or supposed form of knowledge in the light of the grounds that support it and the further conclusions to which it tends” (Dewey 1910, 1933); “the methods of logical inquiry and reasoning” (Glaser 1941); “conceptualizing, applying, analyzing, synthesizing, and/or evaluating information gathered from, or generated by, observation, experience, reflection, reasoning, or communication” (Scriven & Paul 1987); the requirement that “it is sensitive to context, relies on criteria, and is self-correcting” (Lipman 1987); “evidential, conceptual, methodological, criteriological, or contextual considerations” (Facione 1990a); and “plus-minus considerations of the product in terms of appropriate standards (or criteria)” (Johnson 1992). Stanovich and Stanovich (2010) propose to ground the concept of critical thinking in the concept of rationality, which they understand as combining epistemic rationality (fitting one’s beliefs to the world) and instrumental rationality (optimizing goal fulfillment); a critical thinker, in their view, is someone with “a propensity to override suboptimal responses from the autonomous mind” (2010: 227). These variant specifications of norms for critical thinking are not necessarily incompatible with one another, and in any case presuppose the core notion of thinking carefully. As to the thinking component singled out, some definitions focus on suspension of judgment during the thinking (Dewey 1910; McPeck 1981), others on inquiry while judgment is suspended (Bailin & Battersby 2009, 2021), others on the resulting judgment (Facione 1990a), and still others on responsiveness to reasons (Siegel 1988). Kuhn (2019) takes critical thinking to be more a dialogic practice of advancing and responding to arguments than an individual ability.

In educational contexts, a definition of critical thinking is a “programmatic definition” (Scheffler 1960: 19). It expresses a practical program for achieving an educational goal. For this purpose, a one-sentence formulaic definition is much less useful than articulation of a critical thinking process, with criteria and standards for the kinds of thinking that the process may involve. The real educational goal is recognition, adoption and implementation by students of those criteria and standards. That adoption and implementation in turn consists in acquiring the knowledge, abilities and dispositions of a critical thinker.

Conceptions of critical thinking generally do not include moral integrity as part of the concept. Dewey, for example, took critical thinking to be the ultimate intellectual goal of education, but distinguished it from the development of social cooperation among school children, which he took to be the central moral goal. Ennis (1996, 2011) added to his previous list of critical thinking dispositions a group of dispositions to care about the dignity and worth of every person, which he described as a “correlative” (1996) disposition without which critical thinking would be less valuable and perhaps harmful. An educational program that aimed at developing critical thinking but not the correlative disposition to care about the dignity and worth of every person, he asserted, “would be deficient and perhaps dangerous” (Ennis 1996: 172).

Dewey thought that education for reflective thinking would be of value to both the individual and society; recognition in educational practice of the kinship to the scientific attitude of children’s native curiosity, fertile imagination and love of experimental inquiry “would make for individual happiness and the reduction of social waste” (Dewey 1910: iii). Schools participating in the Eight-Year Study took development of the habit of reflective thinking and skill in solving problems as a means to leading young people to understand, appreciate and live the democratic way of life characteristic of the United States (Aikin 1942: 17–18, 81). Harvey Siegel (1988: 55–61) has offered four considerations in support of adopting critical thinking as an educational ideal. (1) Respect for persons requires that schools and teachers honour students’ demands for reasons and explanations, deal with students honestly, and recognize the need to confront students’ independent judgment; these requirements concern the manner in which teachers treat students. (2) Education has the task of preparing children to be successful adults, a task that requires development of their self-sufficiency. (3) Education should initiate children into the rational traditions in such fields as history, science and mathematics. (4) Education should prepare children to become democratic citizens, which requires reasoned procedures and critical talents and attitudes. To supplement these considerations, Siegel (1988: 62–90) responds to two objections: the ideology objection that adoption of any educational ideal requires a prior ideological commitment and the indoctrination objection that cultivation of critical thinking cannot escape being a form of indoctrination.

Despite the diversity of our 11 examples, one can recognize a common pattern. Dewey analyzed it as consisting of five phases:

  • suggestions , in which the mind leaps forward to a possible solution;
  • an intellectualization of the difficulty or perplexity into a problem to be solved, a question for which the answer must be sought;
  • the use of one suggestion after another as a leading idea, or hypothesis , to initiate and guide observation and other operations in collection of factual material;
  • the mental elaboration of the idea or supposition as an idea or supposition ( reasoning , in the sense on which reasoning is a part, not the whole, of inference); and
  • testing the hypothesis by overt or imaginative action. (Dewey 1933: 106–107; italics in original)

The process of reflective thinking consisting of these phases would be preceded by a perplexed, troubled or confused situation and followed by a cleared-up, unified, resolved situation (Dewey 1933: 106). The term ‘phases’ replaced the term ‘steps’ (Dewey 1910: 72), thus removing the earlier suggestion of an invariant sequence. Variants of the above analysis appeared in (Dewey 1916: 177) and (Dewey 1938: 101–119).

The variant formulations indicate the difficulty of giving a single logical analysis of such a varied process. The process of critical thinking may have a spiral pattern, with the problem being redefined in the light of obstacles to solving it as originally formulated. For example, the person in Transit might have concluded that getting to the appointment at the scheduled time was impossible and have reformulated the problem as that of rescheduling the appointment for a mutually convenient time. Further, defining a problem does not always follow after or lead immediately to an idea of a suggested solution. Nor should it do so, as Dewey himself recognized in describing the physician in Typhoid as avoiding any strong preference for this or that conclusion before getting further information (Dewey 1910: 85; 1933: 170). People with a hypothesis in mind, even one to which they have a very weak commitment, have a so-called “confirmation bias” (Nickerson 1998): they are likely to pay attention to evidence that confirms the hypothesis and to ignore evidence that counts against it or for some competing hypothesis. Detectives, intelligence agencies, and investigators of airplane accidents are well advised to gather relevant evidence systematically and to postpone even tentative adoption of an explanatory hypothesis until the collected evidence rules out with the appropriate degree of certainty all but one explanation. Dewey’s analysis of the critical thinking process can be faulted as well for requiring acceptance or rejection of a possible solution to a defined problem, with no allowance for deciding in the light of the available evidence to suspend judgment. Further, given the great variety of kinds of problems for which reflection is appropriate, there is likely to be variation in its component events. Perhaps the best way to conceptualize the critical thinking process is as a checklist whose component events can occur in a variety of orders, selectively, and more than once. These component events might include (1) noticing a difficulty, (2) defining the problem, (3) dividing the problem into manageable sub-problems, (4) formulating a variety of possible solutions to the problem or sub-problem, (5) determining what evidence is relevant to deciding among possible solutions to the problem or sub-problem, (6) devising a plan of systematic observation or experiment that will uncover the relevant evidence, (7) carrying out the plan of systematic observation or experimentation, (8) noting the results of the systematic observation or experiment, (9) gathering relevant testimony and information from others, (10) judging the credibility of testimony and information gathered from others, (11) drawing conclusions from gathered evidence and accepted testimony, and (12) accepting a solution that the evidence adequately supports (cf. Hitchcock 2017: 485).

Checklist conceptions of the process of critical thinking are open to the objection that they are too mechanical and procedural to fit the multi-dimensional and emotionally charged issues for which critical thinking is urgently needed (Paul 1984). For such issues, a more dialectical process is advocated, in which competing relevant world views are identified, their implications explored, and some sort of creative synthesis attempted.

If one considers the critical thinking process illustrated by the 11 examples, one can identify distinct kinds of mental acts and mental states that form part of it. To distinguish, label and briefly characterize these components is a useful preliminary to identifying abilities, skills, dispositions, attitudes, habits and the like that contribute causally to thinking critically. Identifying such abilities and habits is in turn a useful preliminary to setting educational goals. Setting the goals is in its turn a useful preliminary to designing strategies for helping learners to achieve the goals and to designing ways of measuring the extent to which learners have done so. Such measures provide both feedback to learners on their achievement and a basis for experimental research on the effectiveness of various strategies for educating people to think critically. Let us begin, then, by distinguishing the kinds of mental acts and mental events that can occur in a critical thinking process.

  • Observing : One notices something in one’s immediate environment (sudden cooling of temperature in Weather , bubbles forming outside a glass and then going inside in Bubbles , a moving blur in the distance in Blur , a rash in Rash ). Or one notes the results of an experiment or systematic observation (valuables missing in Disorder , no suction without air pressure in Suction pump )
  • Feeling : One feels puzzled or uncertain about something (how to get to an appointment on time in Transit , why the diamonds vary in spacing in Diamond ). One wants to resolve this perplexity. One feels satisfaction once one has worked out an answer (to take the subway express in Transit , diamonds closer when needed as a warning in Diamond ).
  • Wondering : One formulates a question to be addressed (why bubbles form outside a tumbler taken from hot water in Bubbles , how suction pumps work in Suction pump , what caused the rash in Rash ).
  • Imagining : One thinks of possible answers (bus or subway or elevated in Transit , flagpole or ornament or wireless communication aid or direction indicator in Ferryboat , allergic reaction or heat rash in Rash ).
  • Inferring : One works out what would be the case if a possible answer were assumed (valuables missing if there has been a burglary in Disorder , earlier start to the rash if it is an allergic reaction to a sulfa drug in Rash ). Or one draws a conclusion once sufficient relevant evidence is gathered (take the subway in Transit , burglary in Disorder , discontinue blood pressure medication and new cream in Rash ).
  • Knowledge : One uses stored knowledge of the subject-matter to generate possible answers or to infer what would be expected on the assumption of a particular answer (knowledge of a city’s public transit system in Transit , of the requirements for a flagpole in Ferryboat , of Boyle’s law in Bubbles , of allergic reactions in Rash ).
  • Experimenting : One designs and carries out an experiment or a systematic observation to find out whether the results deduced from a possible answer will occur (looking at the location of the flagpole in relation to the pilot’s position in Ferryboat , putting an ice cube on top of a tumbler taken from hot water in Bubbles , measuring the height to which a suction pump will draw water at different elevations in Suction pump , noticing the spacing of diamonds when movement to or from a diamond lane is allowed in Diamond ).
  • Consulting : One finds a source of information, gets the information from the source, and makes a judgment on whether to accept it. None of our 11 examples include searching for sources of information. In this respect they are unrepresentative, since most people nowadays have almost instant access to information relevant to answering any question, including many of those illustrated by the examples. However, Candidate includes the activities of extracting information from sources and evaluating its credibility.
  • Identifying and analyzing arguments : One notices an argument and works out its structure and content as a preliminary to evaluating its strength. This activity is central to Candidate . It is an important part of a critical thinking process in which one surveys arguments for various positions on an issue.
  • Judging : One makes a judgment on the basis of accumulated evidence and reasoning, such as the judgment in Ferryboat that the purpose of the pole is to provide direction to the pilot.
  • Deciding : One makes a decision on what to do or on what policy to adopt, as in the decision in Transit to take the subway.

By definition, a person who does something voluntarily is both willing and able to do that thing at that time. Both the willingness and the ability contribute causally to the person’s action, in the sense that the voluntary action would not occur if either (or both) of these were lacking. For example, suppose that one is standing with one’s arms at one’s sides and one voluntarily lifts one’s right arm to an extended horizontal position. One would not do so if one were unable to lift one’s arm, if for example one’s right side was paralyzed as the result of a stroke. Nor would one do so if one were unwilling to lift one’s arm, if for example one were participating in a street demonstration at which a white supremacist was urging the crowd to lift their right arm in a Nazi salute and one were unwilling to express support in this way for the racist Nazi ideology. The same analysis applies to a voluntary mental process of thinking critically. It requires both willingness and ability to think critically, including willingness and ability to perform each of the mental acts that compose the process and to coordinate those acts in a sequence that is directed at resolving the initiating perplexity.

Consider willingness first. We can identify causal contributors to willingness to think critically by considering factors that would cause a person who was able to think critically about an issue nevertheless not to do so (Hamby 2014). For each factor, the opposite condition thus contributes causally to willingness to think critically on a particular occasion. For example, people who habitually jump to conclusions without considering alternatives will not think critically about issues that arise, even if they have the required abilities. The contrary condition of willingness to suspend judgment is thus a causal contributor to thinking critically.

Now consider ability. In contrast to the ability to move one’s arm, which can be completely absent because a stroke has left the arm paralyzed, the ability to think critically is a developed ability, whose absence is not a complete absence of ability to think but absence of ability to think well. We can identify the ability to think well directly, in terms of the norms and standards for good thinking. In general, to be able do well the thinking activities that can be components of a critical thinking process, one needs to know the concepts and principles that characterize their good performance, to recognize in particular cases that the concepts and principles apply, and to apply them. The knowledge, recognition and application may be procedural rather than declarative. It may be domain-specific rather than widely applicable, and in either case may need subject-matter knowledge, sometimes of a deep kind.

Reflections of the sort illustrated by the previous two paragraphs have led scholars to identify the knowledge, abilities and dispositions of a “critical thinker”, i.e., someone who thinks critically whenever it is appropriate to do so. We turn now to these three types of causal contributors to thinking critically. We start with dispositions, since arguably these are the most powerful contributors to being a critical thinker, can be fostered at an early stage of a child’s development, and are susceptible to general improvement (Glaser 1941: 175)

8. Critical Thinking Dispositions

Educational researchers use the term ‘dispositions’ broadly for the habits of mind and attitudes that contribute causally to being a critical thinker. Some writers (e.g., Paul & Elder 2006; Hamby 2014; Bailin & Battersby 2016a) propose to use the term ‘virtues’ for this dimension of a critical thinker. The virtues in question, although they are virtues of character, concern the person’s ways of thinking rather than the person’s ways of behaving towards others. They are not moral virtues but intellectual virtues, of the sort articulated by Zagzebski (1996) and discussed by Turri, Alfano, and Greco (2017).

On a realistic conception, thinking dispositions or intellectual virtues are real properties of thinkers. They are general tendencies, propensities, or inclinations to think in particular ways in particular circumstances, and can be genuinely explanatory (Siegel 1999). Sceptics argue that there is no evidence for a specific mental basis for the habits of mind that contribute to thinking critically, and that it is pedagogically misleading to posit such a basis (Bailin et al. 1999a). Whatever their status, critical thinking dispositions need motivation for their initial formation in a child—motivation that may be external or internal. As children develop, the force of habit will gradually become important in sustaining the disposition (Nieto & Valenzuela 2012). Mere force of habit, however, is unlikely to sustain critical thinking dispositions. Critical thinkers must value and enjoy using their knowledge and abilities to think things through for themselves. They must be committed to, and lovers of, inquiry.

A person may have a critical thinking disposition with respect to only some kinds of issues. For example, one could be open-minded about scientific issues but not about religious issues. Similarly, one could be confident in one’s ability to reason about the theological implications of the existence of evil in the world but not in one’s ability to reason about the best design for a guided ballistic missile.

Facione (1990a: 25) divides “affective dispositions” of critical thinking into approaches to life and living in general and approaches to specific issues, questions or problems. Adapting this distinction, one can usefully divide critical thinking dispositions into initiating dispositions (those that contribute causally to starting to think critically about an issue) and internal dispositions (those that contribute causally to doing a good job of thinking critically once one has started). The two categories are not mutually exclusive. For example, open-mindedness, in the sense of willingness to consider alternative points of view to one’s own, is both an initiating and an internal disposition.

Using the strategy of considering factors that would block people with the ability to think critically from doing so, we can identify as initiating dispositions for thinking critically attentiveness, a habit of inquiry, self-confidence, courage, open-mindedness, willingness to suspend judgment, trust in reason, wanting evidence for one’s beliefs, and seeking the truth. We consider briefly what each of these dispositions amounts to, in each case citing sources that acknowledge them.

  • Attentiveness : One will not think critically if one fails to recognize an issue that needs to be thought through. For example, the pedestrian in Weather would not have looked up if he had not noticed that the air was suddenly cooler. To be a critical thinker, then, one needs to be habitually attentive to one’s surroundings, noticing not only what one senses but also sources of perplexity in messages received and in one’s own beliefs and attitudes (Facione 1990a: 25; Facione, Facione, & Giancarlo 2001).
  • Habit of inquiry : Inquiry is effortful, and one needs an internal push to engage in it. For example, the student in Bubbles could easily have stopped at idle wondering about the cause of the bubbles rather than reasoning to a hypothesis, then designing and executing an experiment to test it. Thus willingness to think critically needs mental energy and initiative. What can supply that energy? Love of inquiry, or perhaps just a habit of inquiry. Hamby (2015) has argued that willingness to inquire is the central critical thinking virtue, one that encompasses all the others. It is recognized as a critical thinking disposition by Dewey (1910: 29; 1933: 35), Glaser (1941: 5), Ennis (1987: 12; 1991: 8), Facione (1990a: 25), Bailin et al. (1999b: 294), Halpern (1998: 452), and Facione, Facione, & Giancarlo (2001).
  • Self-confidence : Lack of confidence in one’s abilities can block critical thinking. For example, if the woman in Rash lacked confidence in her ability to figure things out for herself, she might just have assumed that the rash on her chest was the allergic reaction to her medication against which the pharmacist had warned her. Thus willingness to think critically requires confidence in one’s ability to inquire (Facione 1990a: 25; Facione, Facione, & Giancarlo 2001).
  • Courage : Fear of thinking for oneself can stop one from doing it. Thus willingness to think critically requires intellectual courage (Paul & Elder 2006: 16).
  • Open-mindedness : A dogmatic attitude will impede thinking critically. For example, a person who adheres rigidly to a “pro-choice” position on the issue of the legal status of induced abortion is likely to be unwilling to consider seriously the issue of when in its development an unborn child acquires a moral right to life. Thus willingness to think critically requires open-mindedness, in the sense of a willingness to examine questions to which one already accepts an answer but which further evidence or reasoning might cause one to answer differently (Dewey 1933; Facione 1990a; Ennis 1991; Bailin et al. 1999b; Halpern 1998, Facione, Facione, & Giancarlo 2001). Paul (1981) emphasizes open-mindedness about alternative world-views, and recommends a dialectical approach to integrating such views as central to what he calls “strong sense” critical thinking. In three studies, Haran, Ritov, & Mellers (2013) found that actively open-minded thinking, including “the tendency to weigh new evidence against a favored belief, to spend sufficient time on a problem before giving up, and to consider carefully the opinions of others in forming one’s own”, led study participants to acquire information and thus to make accurate estimations.
  • Willingness to suspend judgment : Premature closure on an initial solution will block critical thinking. Thus willingness to think critically requires a willingness to suspend judgment while alternatives are explored (Facione 1990a; Ennis 1991; Halpern 1998).
  • Trust in reason : Since distrust in the processes of reasoned inquiry will dissuade one from engaging in it, trust in them is an initiating critical thinking disposition (Facione 1990a, 25; Bailin et al. 1999b: 294; Facione, Facione, & Giancarlo 2001; Paul & Elder 2006). In reaction to an allegedly exclusive emphasis on reason in critical thinking theory and pedagogy, Thayer-Bacon (2000) argues that intuition, imagination, and emotion have important roles to play in an adequate conception of critical thinking that she calls “constructive thinking”. From her point of view, critical thinking requires trust not only in reason but also in intuition, imagination, and emotion.
  • Seeking the truth : If one does not care about the truth but is content to stick with one’s initial bias on an issue, then one will not think critically about it. Seeking the truth is thus an initiating critical thinking disposition (Bailin et al. 1999b: 294; Facione, Facione, & Giancarlo 2001). A disposition to seek the truth is implicit in more specific critical thinking dispositions, such as trying to be well-informed, considering seriously points of view other than one’s own, looking for alternatives, suspending judgment when the evidence is insufficient, and adopting a position when the evidence supporting it is sufficient.

Some of the initiating dispositions, such as open-mindedness and willingness to suspend judgment, are also internal critical thinking dispositions, in the sense of mental habits or attitudes that contribute causally to doing a good job of critical thinking once one starts the process. But there are many other internal critical thinking dispositions. Some of them are parasitic on one’s conception of good thinking. For example, it is constitutive of good thinking about an issue to formulate the issue clearly and to maintain focus on it. For this purpose, one needs not only the corresponding ability but also the corresponding disposition. Ennis (1991: 8) describes it as the disposition “to determine and maintain focus on the conclusion or question”, Facione (1990a: 25) as “clarity in stating the question or concern”. Other internal dispositions are motivators to continue or adjust the critical thinking process, such as willingness to persist in a complex task and willingness to abandon nonproductive strategies in an attempt to self-correct (Halpern 1998: 452). For a list of identified internal critical thinking dispositions, see the Supplement on Internal Critical Thinking Dispositions .

Some theorists postulate skills, i.e., acquired abilities, as operative in critical thinking. It is not obvious, however, that a good mental act is the exercise of a generic acquired skill. Inferring an expected time of arrival, as in Transit , has some generic components but also uses non-generic subject-matter knowledge. Bailin et al. (1999a) argue against viewing critical thinking skills as generic and discrete, on the ground that skilled performance at a critical thinking task cannot be separated from knowledge of concepts and from domain-specific principles of good thinking. Talk of skills, they concede, is unproblematic if it means merely that a person with critical thinking skills is capable of intelligent performance.

Despite such scepticism, theorists of critical thinking have listed as general contributors to critical thinking what they variously call abilities (Glaser 1941; Ennis 1962, 1991), skills (Facione 1990a; Halpern 1998) or competencies (Fisher & Scriven 1997). Amalgamating these lists would produce a confusing and chaotic cornucopia of more than 50 possible educational objectives, with only partial overlap among them. It makes sense instead to try to understand the reasons for the multiplicity and diversity, and to make a selection according to one’s own reasons for singling out abilities to be developed in a critical thinking curriculum. Two reasons for diversity among lists of critical thinking abilities are the underlying conception of critical thinking and the envisaged educational level. Appraisal-only conceptions, for example, involve a different suite of abilities than constructive-only conceptions. Some lists, such as those in (Glaser 1941), are put forward as educational objectives for secondary school students, whereas others are proposed as objectives for college students (e.g., Facione 1990a).

The abilities described in the remaining paragraphs of this section emerge from reflection on the general abilities needed to do well the thinking activities identified in section 6 as components of the critical thinking process described in section 5 . The derivation of each collection of abilities is accompanied by citation of sources that list such abilities and of standardized tests that claim to test them.

Observational abilities : Careful and accurate observation sometimes requires specialist expertise and practice, as in the case of observing birds and observing accident scenes. However, there are general abilities of noticing what one’s senses are picking up from one’s environment and of being able to articulate clearly and accurately to oneself and others what one has observed. It helps in exercising them to be able to recognize and take into account factors that make one’s observation less trustworthy, such as prior framing of the situation, inadequate time, deficient senses, poor observation conditions, and the like. It helps as well to be skilled at taking steps to make one’s observation more trustworthy, such as moving closer to get a better look, measuring something three times and taking the average, and checking what one thinks one is observing with someone else who is in a good position to observe it. It also helps to be skilled at recognizing respects in which one’s report of one’s observation involves inference rather than direct observation, so that one can then consider whether the inference is justified. These abilities come into play as well when one thinks about whether and with what degree of confidence to accept an observation report, for example in the study of history or in a criminal investigation or in assessing news reports. Observational abilities show up in some lists of critical thinking abilities (Ennis 1962: 90; Facione 1990a: 16; Ennis 1991: 9). There are items testing a person’s ability to judge the credibility of observation reports in the Cornell Critical Thinking Tests, Levels X and Z (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005). Norris and King (1983, 1985, 1990a, 1990b) is a test of ability to appraise observation reports.

Emotional abilities : The emotions that drive a critical thinking process are perplexity or puzzlement, a wish to resolve it, and satisfaction at achieving the desired resolution. Children experience these emotions at an early age, without being trained to do so. Education that takes critical thinking as a goal needs only to channel these emotions and to make sure not to stifle them. Collaborative critical thinking benefits from ability to recognize one’s own and others’ emotional commitments and reactions.

Questioning abilities : A critical thinking process needs transformation of an inchoate sense of perplexity into a clear question. Formulating a question well requires not building in questionable assumptions, not prejudging the issue, and using language that in context is unambiguous and precise enough (Ennis 1962: 97; 1991: 9).

Imaginative abilities : Thinking directed at finding the correct causal explanation of a general phenomenon or particular event requires an ability to imagine possible explanations. Thinking about what policy or plan of action to adopt requires generation of options and consideration of possible consequences of each option. Domain knowledge is required for such creative activity, but a general ability to imagine alternatives is helpful and can be nurtured so as to become easier, quicker, more extensive, and deeper (Dewey 1910: 34–39; 1933: 40–47). Facione (1990a) and Halpern (1998) include the ability to imagine alternatives as a critical thinking ability.

Inferential abilities : The ability to draw conclusions from given information, and to recognize with what degree of certainty one’s own or others’ conclusions follow, is universally recognized as a general critical thinking ability. All 11 examples in section 2 of this article include inferences, some from hypotheses or options (as in Transit , Ferryboat and Disorder ), others from something observed (as in Weather and Rash ). None of these inferences is formally valid. Rather, they are licensed by general, sometimes qualified substantive rules of inference (Toulmin 1958) that rest on domain knowledge—that a bus trip takes about the same time in each direction, that the terminal of a wireless telegraph would be located on the highest possible place, that sudden cooling is often followed by rain, that an allergic reaction to a sulfa drug generally shows up soon after one starts taking it. It is a matter of controversy to what extent the specialized ability to deduce conclusions from premisses using formal rules of inference is needed for critical thinking. Dewey (1933) locates logical forms in setting out the products of reflection rather than in the process of reflection. Ennis (1981a), on the other hand, maintains that a liberally-educated person should have the following abilities: to translate natural-language statements into statements using the standard logical operators, to use appropriately the language of necessary and sufficient conditions, to deal with argument forms and arguments containing symbols, to determine whether in virtue of an argument’s form its conclusion follows necessarily from its premisses, to reason with logically complex propositions, and to apply the rules and procedures of deductive logic. Inferential abilities are recognized as critical thinking abilities by Glaser (1941: 6), Facione (1990a: 9), Ennis (1991: 9), Fisher & Scriven (1997: 99, 111), and Halpern (1998: 452). Items testing inferential abilities constitute two of the five subtests of the Watson Glaser Critical Thinking Appraisal (Watson & Glaser 1980a, 1980b, 1994), two of the four sections in the Cornell Critical Thinking Test Level X (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005), three of the seven sections in the Cornell Critical Thinking Test Level Z (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005), 11 of the 34 items on Forms A and B of the California Critical Thinking Skills Test (Facione 1990b, 1992), and a high but variable proportion of the 25 selected-response questions in the Collegiate Learning Assessment (Council for Aid to Education 2017).

Experimenting abilities : Knowing how to design and execute an experiment is important not just in scientific research but also in everyday life, as in Rash . Dewey devoted a whole chapter of his How We Think (1910: 145–156; 1933: 190–202) to the superiority of experimentation over observation in advancing knowledge. Experimenting abilities come into play at one remove in appraising reports of scientific studies. Skill in designing and executing experiments includes the acknowledged abilities to appraise evidence (Glaser 1941: 6), to carry out experiments and to apply appropriate statistical inference techniques (Facione 1990a: 9), to judge inductions to an explanatory hypothesis (Ennis 1991: 9), and to recognize the need for an adequately large sample size (Halpern 1998). The Cornell Critical Thinking Test Level Z (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005) includes four items (out of 52) on experimental design. The Collegiate Learning Assessment (Council for Aid to Education 2017) makes room for appraisal of study design in both its performance task and its selected-response questions.

Consulting abilities : Skill at consulting sources of information comes into play when one seeks information to help resolve a problem, as in Candidate . Ability to find and appraise information includes ability to gather and marshal pertinent information (Glaser 1941: 6), to judge whether a statement made by an alleged authority is acceptable (Ennis 1962: 84), to plan a search for desired information (Facione 1990a: 9), and to judge the credibility of a source (Ennis 1991: 9). Ability to judge the credibility of statements is tested by 24 items (out of 76) in the Cornell Critical Thinking Test Level X (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005) and by four items (out of 52) in the Cornell Critical Thinking Test Level Z (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005). The College Learning Assessment’s performance task requires evaluation of whether information in documents is credible or unreliable (Council for Aid to Education 2017).

Argument analysis abilities : The ability to identify and analyze arguments contributes to the process of surveying arguments on an issue in order to form one’s own reasoned judgment, as in Candidate . The ability to detect and analyze arguments is recognized as a critical thinking skill by Facione (1990a: 7–8), Ennis (1991: 9) and Halpern (1998). Five items (out of 34) on the California Critical Thinking Skills Test (Facione 1990b, 1992) test skill at argument analysis. The College Learning Assessment (Council for Aid to Education 2017) incorporates argument analysis in its selected-response tests of critical reading and evaluation and of critiquing an argument.

Judging skills and deciding skills : Skill at judging and deciding is skill at recognizing what judgment or decision the available evidence and argument supports, and with what degree of confidence. It is thus a component of the inferential skills already discussed.

Lists and tests of critical thinking abilities often include two more abilities: identifying assumptions and constructing and evaluating definitions.

In addition to dispositions and abilities, critical thinking needs knowledge: of critical thinking concepts, of critical thinking principles, and of the subject-matter of the thinking.

We can derive a short list of concepts whose understanding contributes to critical thinking from the critical thinking abilities described in the preceding section. Observational abilities require an understanding of the difference between observation and inference. Questioning abilities require an understanding of the concepts of ambiguity and vagueness. Inferential abilities require an understanding of the difference between conclusive and defeasible inference (traditionally, between deduction and induction), as well as of the difference between necessary and sufficient conditions. Experimenting abilities require an understanding of the concepts of hypothesis, null hypothesis, assumption and prediction, as well as of the concept of statistical significance and of its difference from importance. They also require an understanding of the difference between an experiment and an observational study, and in particular of the difference between a randomized controlled trial, a prospective correlational study and a retrospective (case-control) study. Argument analysis abilities require an understanding of the concepts of argument, premiss, assumption, conclusion and counter-consideration. Additional critical thinking concepts are proposed by Bailin et al. (1999b: 293), Fisher & Scriven (1997: 105–106), Black (2012), and Blair (2021).

According to Glaser (1941: 25), ability to think critically requires knowledge of the methods of logical inquiry and reasoning. If we review the list of abilities in the preceding section, however, we can see that some of them can be acquired and exercised merely through practice, possibly guided in an educational setting, followed by feedback. Searching intelligently for a causal explanation of some phenomenon or event requires that one consider a full range of possible causal contributors, but it seems more important that one implements this principle in one’s practice than that one is able to articulate it. What is important is “operational knowledge” of the standards and principles of good thinking (Bailin et al. 1999b: 291–293). But the development of such critical thinking abilities as designing an experiment or constructing an operational definition can benefit from learning their underlying theory. Further, explicit knowledge of quirks of human thinking seems useful as a cautionary guide. Human memory is not just fallible about details, as people learn from their own experiences of misremembering, but is so malleable that a detailed, clear and vivid recollection of an event can be a total fabrication (Loftus 2017). People seek or interpret evidence in ways that are partial to their existing beliefs and expectations, often unconscious of their “confirmation bias” (Nickerson 1998). Not only are people subject to this and other cognitive biases (Kahneman 2011), of which they are typically unaware, but it may be counter-productive for one to make oneself aware of them and try consciously to counteract them or to counteract social biases such as racial or sexual stereotypes (Kenyon & Beaulac 2014). It is helpful to be aware of these facts and of the superior effectiveness of blocking the operation of biases—for example, by making an immediate record of one’s observations, refraining from forming a preliminary explanatory hypothesis, blind refereeing, double-blind randomized trials, and blind grading of students’ work. It is also helpful to be aware of the prevalence of “noise” (unwanted unsystematic variability of judgments), of how to detect noise (through a noise audit), and of how to reduce noise: make accuracy the goal, think statistically, break a process of arriving at a judgment into independent tasks, resist premature intuitions, in a group get independent judgments first, favour comparative judgments and scales (Kahneman, Sibony, & Sunstein 2021). It is helpful as well to be aware of the concept of “bounded rationality” in decision-making and of the related distinction between “satisficing” and optimizing (Simon 1956; Gigerenzer 2001).

Critical thinking about an issue requires substantive knowledge of the domain to which the issue belongs. Critical thinking abilities are not a magic elixir that can be applied to any issue whatever by somebody who has no knowledge of the facts relevant to exploring that issue. For example, the student in Bubbles needed to know that gases do not penetrate solid objects like a glass, that air expands when heated, that the volume of an enclosed gas varies directly with its temperature and inversely with its pressure, and that hot objects will spontaneously cool down to the ambient temperature of their surroundings unless kept hot by insulation or a source of heat. Critical thinkers thus need a rich fund of subject-matter knowledge relevant to the variety of situations they encounter. This fact is recognized in the inclusion among critical thinking dispositions of a concern to become and remain generally well informed.

Experimental educational interventions, with control groups, have shown that education can improve critical thinking skills and dispositions, as measured by standardized tests. For information about these tests, see the Supplement on Assessment .

What educational methods are most effective at developing the dispositions, abilities and knowledge of a critical thinker? In a comprehensive meta-analysis of experimental and quasi-experimental studies of strategies for teaching students to think critically, Abrami et al. (2015) found that dialogue, anchored instruction, and mentoring each increased the effectiveness of the educational intervention, and that they were most effective when combined. They also found that in these studies a combination of separate instruction in critical thinking with subject-matter instruction in which students are encouraged to think critically was more effective than either by itself. However, the difference was not statistically significant; that is, it might have arisen by chance.

Most of these studies lack the longitudinal follow-up required to determine whether the observed differential improvements in critical thinking abilities or dispositions continue over time, for example until high school or college graduation. For details on studies of methods of developing critical thinking skills and dispositions, see the Supplement on Educational Methods .

12. Controversies

Scholars have denied the generalizability of critical thinking abilities across subject domains, have alleged bias in critical thinking theory and pedagogy, and have investigated the relationship of critical thinking to other kinds of thinking.

McPeck (1981) attacked the thinking skills movement of the 1970s, including the critical thinking movement. He argued that there are no general thinking skills, since thinking is always thinking about some subject-matter. It is futile, he claimed, for schools and colleges to teach thinking as if it were a separate subject. Rather, teachers should lead their pupils to become autonomous thinkers by teaching school subjects in a way that brings out their cognitive structure and that encourages and rewards discussion and argument. As some of his critics (e.g., Paul 1985; Siegel 1985) pointed out, McPeck’s central argument needs elaboration, since it has obvious counter-examples in writing and speaking, for which (up to a certain level of complexity) there are teachable general abilities even though they are always about some subject-matter. To make his argument convincing, McPeck needs to explain how thinking differs from writing and speaking in a way that does not permit useful abstraction of its components from the subject-matters with which it deals. He has not done so. Nevertheless, his position that the dispositions and abilities of a critical thinker are best developed in the context of subject-matter instruction is shared by many theorists of critical thinking, including Dewey (1910, 1933), Glaser (1941), Passmore (1980), Weinstein (1990), Bailin et al. (1999b), and Willingham (2019).

McPeck’s challenge prompted reflection on the extent to which critical thinking is subject-specific. McPeck argued for a strong subject-specificity thesis, according to which it is a conceptual truth that all critical thinking abilities are specific to a subject. (He did not however extend his subject-specificity thesis to critical thinking dispositions. In particular, he took the disposition to suspend judgment in situations of cognitive dissonance to be a general disposition.) Conceptual subject-specificity is subject to obvious counter-examples, such as the general ability to recognize confusion of necessary and sufficient conditions. A more modest thesis, also endorsed by McPeck, is epistemological subject-specificity, according to which the norms of good thinking vary from one field to another. Epistemological subject-specificity clearly holds to a certain extent; for example, the principles in accordance with which one solves a differential equation are quite different from the principles in accordance with which one determines whether a painting is a genuine Picasso. But the thesis suffers, as Ennis (1989) points out, from vagueness of the concept of a field or subject and from the obvious existence of inter-field principles, however broadly the concept of a field is construed. For example, the principles of hypothetico-deductive reasoning hold for all the varied fields in which such reasoning occurs. A third kind of subject-specificity is empirical subject-specificity, according to which as a matter of empirically observable fact a person with the abilities and dispositions of a critical thinker in one area of investigation will not necessarily have them in another area of investigation.

The thesis of empirical subject-specificity raises the general problem of transfer. If critical thinking abilities and dispositions have to be developed independently in each school subject, how are they of any use in dealing with the problems of everyday life and the political and social issues of contemporary society, most of which do not fit into the framework of a traditional school subject? Proponents of empirical subject-specificity tend to argue that transfer is more likely to occur if there is critical thinking instruction in a variety of domains, with explicit attention to dispositions and abilities that cut across domains. But evidence for this claim is scanty. There is a need for well-designed empirical studies that investigate the conditions that make transfer more likely.

It is common ground in debates about the generality or subject-specificity of critical thinking dispositions and abilities that critical thinking about any topic requires background knowledge about the topic. For example, the most sophisticated understanding of the principles of hypothetico-deductive reasoning is of no help unless accompanied by some knowledge of what might be plausible explanations of some phenomenon under investigation.

Critics have objected to bias in the theory, pedagogy and practice of critical thinking. Commentators (e.g., Alston 1995; Ennis 1998) have noted that anyone who takes a position has a bias in the neutral sense of being inclined in one direction rather than others. The critics, however, are objecting to bias in the pejorative sense of an unjustified favoring of certain ways of knowing over others, frequently alleging that the unjustly favoured ways are those of a dominant sex or culture (Bailin 1995). These ways favour:

  • reinforcement of egocentric and sociocentric biases over dialectical engagement with opposing world-views (Paul 1981, 1984; Warren 1998)
  • distancing from the object of inquiry over closeness to it (Martin 1992; Thayer-Bacon 1992)
  • indifference to the situation of others over care for them (Martin 1992)
  • orientation to thought over orientation to action (Martin 1992)
  • being reasonable over caring to understand people’s ideas (Thayer-Bacon 1993)
  • being neutral and objective over being embodied and situated (Thayer-Bacon 1995a)
  • doubting over believing (Thayer-Bacon 1995b)
  • reason over emotion, imagination and intuition (Thayer-Bacon 2000)
  • solitary thinking over collaborative thinking (Thayer-Bacon 2000)
  • written and spoken assignments over other forms of expression (Alston 2001)
  • attention to written and spoken communications over attention to human problems (Alston 2001)
  • winning debates in the public sphere over making and understanding meaning (Alston 2001)

A common thread in this smorgasbord of accusations is dissatisfaction with focusing on the logical analysis and evaluation of reasoning and arguments. While these authors acknowledge that such analysis and evaluation is part of critical thinking and should be part of its conceptualization and pedagogy, they insist that it is only a part. Paul (1981), for example, bemoans the tendency of atomistic teaching of methods of analyzing and evaluating arguments to turn students into more able sophists, adept at finding fault with positions and arguments with which they disagree but even more entrenched in the egocentric and sociocentric biases with which they began. Martin (1992) and Thayer-Bacon (1992) cite with approval the self-reported intimacy with their subject-matter of leading researchers in biology and medicine, an intimacy that conflicts with the distancing allegedly recommended in standard conceptions and pedagogy of critical thinking. Thayer-Bacon (2000) contrasts the embodied and socially embedded learning of her elementary school students in a Montessori school, who used their imagination, intuition and emotions as well as their reason, with conceptions of critical thinking as

thinking that is used to critique arguments, offer justifications, and make judgments about what are the good reasons, or the right answers. (Thayer-Bacon 2000: 127–128)

Alston (2001) reports that her students in a women’s studies class were able to see the flaws in the Cinderella myth that pervades much romantic fiction but in their own romantic relationships still acted as if all failures were the woman’s fault and still accepted the notions of love at first sight and living happily ever after. Students, she writes, should

be able to connect their intellectual critique to a more affective, somatic, and ethical account of making risky choices that have sexist, racist, classist, familial, sexual, or other consequences for themselves and those both near and far… critical thinking that reads arguments, texts, or practices merely on the surface without connections to feeling/desiring/doing or action lacks an ethical depth that should infuse the difference between mere cognitive activity and something we want to call critical thinking. (Alston 2001: 34)

Some critics portray such biases as unfair to women. Thayer-Bacon (1992), for example, has charged modern critical thinking theory with being sexist, on the ground that it separates the self from the object and causes one to lose touch with one’s inner voice, and thus stigmatizes women, who (she asserts) link self to object and listen to their inner voice. Her charge does not imply that women as a group are on average less able than men to analyze and evaluate arguments. Facione (1990c) found no difference by sex in performance on his California Critical Thinking Skills Test. Kuhn (1991: 280–281) found no difference by sex in either the disposition or the competence to engage in argumentative thinking.

The critics propose a variety of remedies for the biases that they allege. In general, they do not propose to eliminate or downplay critical thinking as an educational goal. Rather, they propose to conceptualize critical thinking differently and to change its pedagogy accordingly. Their pedagogical proposals arise logically from their objections. They can be summarized as follows:

  • Focus on argument networks with dialectical exchanges reflecting contesting points of view rather than on atomic arguments, so as to develop “strong sense” critical thinking that transcends egocentric and sociocentric biases (Paul 1981, 1984).
  • Foster closeness to the subject-matter and feeling connected to others in order to inform a humane democracy (Martin 1992).
  • Develop “constructive thinking” as a social activity in a community of physically embodied and socially embedded inquirers with personal voices who value not only reason but also imagination, intuition and emotion (Thayer-Bacon 2000).
  • In developing critical thinking in school subjects, treat as important neither skills nor dispositions but opening worlds of meaning (Alston 2001).
  • Attend to the development of critical thinking dispositions as well as skills, and adopt the “critical pedagogy” practised and advocated by Freire (1968 [1970]) and hooks (1994) (Dalgleish, Girard, & Davies 2017).

A common thread in these proposals is treatment of critical thinking as a social, interactive, personally engaged activity like that of a quilting bee or a barn-raising (Thayer-Bacon 2000) rather than as an individual, solitary, distanced activity symbolized by Rodin’s The Thinker . One can get a vivid description of education with the former type of goal from the writings of bell hooks (1994, 2010). Critical thinking for her is open-minded dialectical exchange across opposing standpoints and from multiple perspectives, a conception similar to Paul’s “strong sense” critical thinking (Paul 1981). She abandons the structure of domination in the traditional classroom. In an introductory course on black women writers, for example, she assigns students to write an autobiographical paragraph about an early racial memory, then to read it aloud as the others listen, thus affirming the uniqueness and value of each voice and creating a communal awareness of the diversity of the group’s experiences (hooks 1994: 84). Her “engaged pedagogy” is thus similar to the “freedom under guidance” implemented in John Dewey’s Laboratory School of Chicago in the late 1890s and early 1900s. It incorporates the dialogue, anchored instruction, and mentoring that Abrami (2015) found to be most effective in improving critical thinking skills and dispositions.

What is the relationship of critical thinking to problem solving, decision-making, higher-order thinking, creative thinking, and other recognized types of thinking? One’s answer to this question obviously depends on how one defines the terms used in the question. If critical thinking is conceived broadly to cover any careful thinking about any topic for any purpose, then problem solving and decision making will be kinds of critical thinking, if they are done carefully. Historically, ‘critical thinking’ and ‘problem solving’ were two names for the same thing. If critical thinking is conceived more narrowly as consisting solely of appraisal of intellectual products, then it will be disjoint with problem solving and decision making, which are constructive.

Bloom’s taxonomy of educational objectives used the phrase “intellectual abilities and skills” for what had been labeled “critical thinking” by some, “reflective thinking” by Dewey and others, and “problem solving” by still others (Bloom et al. 1956: 38). Thus, the so-called “higher-order thinking skills” at the taxonomy’s top levels of analysis, synthesis and evaluation are just critical thinking skills, although they do not come with general criteria for their assessment (Ennis 1981b). The revised version of Bloom’s taxonomy (Anderson et al. 2001) likewise treats critical thinking as cutting across those types of cognitive process that involve more than remembering (Anderson et al. 2001: 269–270). For details, see the Supplement on History .

As to creative thinking, it overlaps with critical thinking (Bailin 1987, 1988). Thinking about the explanation of some phenomenon or event, as in Ferryboat , requires creative imagination in constructing plausible explanatory hypotheses. Likewise, thinking about a policy question, as in Candidate , requires creativity in coming up with options. Conversely, creativity in any field needs to be balanced by critical appraisal of the draft painting or novel or mathematical theory.

  • Abrami, Philip C., Robert M. Bernard, Eugene Borokhovski, David I. Waddington, C. Anne Wade, and Tonje Person, 2015, “Strategies for Teaching Students to Think Critically: A Meta-analysis”, Review of Educational Research , 85(2): 275–314. doi:10.3102/0034654314551063
  • Aikin, Wilford M., 1942, The Story of the Eight-year Study, with Conclusions and Recommendations , Volume I of Adventure in American Education , New York and London: Harper & Brothers. [ Aikin 1942 available online ]
  • Alston, Kal, 1995, “Begging the Question: Is Critical Thinking Biased?”, Educational Theory , 45(2): 225–233. doi:10.1111/j.1741-5446.1995.00225.x
  • –––, 2001, “Re/Thinking Critical Thinking: The Seductions of Everyday Life”, Studies in Philosophy and Education , 20(1): 27–40. doi:10.1023/A:1005247128053
  • American Educational Research Association, 2014, Standards for Educational and Psychological Testing / American Educational Research Association, American Psychological Association, National Council on Measurement in Education , Washington, DC: American Educational Research Association.
  • Anderson, Lorin W., David R. Krathwohl, Peter W. Airiasian, Kathleen A. Cruikshank, Richard E. Mayer, Paul R. Pintrich, James Raths, and Merlin C. Wittrock, 2001, A Taxonomy for Learning, Teaching and Assessing: A Revision of Bloom’s Taxonomy of Educational Objectives , New York: Longman, complete edition.
  • Bailin, Sharon, 1987, “Critical and Creative Thinking”, Informal Logic , 9(1): 23–30. [ Bailin 1987 available online ]
  • –––, 1988, Achieving Extraordinary Ends: An Essay on Creativity , Dordrecht: Kluwer. doi:10.1007/978-94-009-2780-3
  • –––, 1995, “Is Critical Thinking Biased? Clarifications and Implications”, Educational Theory , 45(2): 191–197. doi:10.1111/j.1741-5446.1995.00191.x
  • Bailin, Sharon and Mark Battersby, 2009, “Inquiry: A Dialectical Approach to Teaching Critical Thinking”, in Juho Ritola (ed.), Argument Cultures: Proceedings of OSSA 09 , CD-ROM (pp. 1–10), Windsor, ON: OSSA. [ Bailin & Battersby 2009 available online ]
  • –––, 2016a, “Fostering the Virtues of Inquiry”, Topoi , 35(2): 367–374. doi:10.1007/s11245-015-9307-6
  • –––, 2016b, Reason in the Balance: An Inquiry Approach to Critical Thinking , Indianapolis: Hackett, 2nd edition.
  • –––, 2021, “Inquiry: Teaching for Reasoned Judgment”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 31–46. doi: 10.1163/9789004444591_003
  • Bailin, Sharon, Roland Case, Jerrold R. Coombs, and Leroi B. Daniels, 1999a, “Common Misconceptions of Critical Thinking”, Journal of Curriculum Studies , 31(3): 269–283. doi:10.1080/002202799183124
  • –––, 1999b, “Conceptualizing Critical Thinking”, Journal of Curriculum Studies , 31(3): 285–302. doi:10.1080/002202799183133
  • Blair, J. Anthony, 2021, Studies in Critical Thinking , Windsor, ON: Windsor Studies in Argumentation, 2nd edition. [Available online at https://windsor.scholarsportal.info/omp/index.php/wsia/catalog/book/106]
  • Berman, Alan M., Seth J. Schwartz, William M. Kurtines, and Steven L. Berman, 2001, “The Process of Exploration in Identity Formation: The Role of Style and Competence”, Journal of Adolescence , 24(4): 513–528. doi:10.1006/jado.2001.0386
  • Black, Beth (ed.), 2012, An A to Z of Critical Thinking , London: Continuum International Publishing Group.
  • Bloom, Benjamin Samuel, Max D. Engelhart, Edward J. Furst, Walter H. Hill, and David R. Krathwohl, 1956, Taxonomy of Educational Objectives. Handbook I: Cognitive Domain , New York: David McKay.
  • Boardman, Frank, Nancy M. Cavender, and Howard Kahane, 2018, Logic and Contemporary Rhetoric: The Use of Reason in Everyday Life , Boston: Cengage, 13th edition.
  • Browne, M. Neil and Stuart M. Keeley, 2018, Asking the Right Questions: A Guide to Critical Thinking , Hoboken, NJ: Pearson, 12th edition.
  • Center for Assessment & Improvement of Learning, 2017, Critical Thinking Assessment Test , Cookeville, TN: Tennessee Technological University.
  • Cleghorn, Paul. 2021. “Critical Thinking in the Elementary School: Practical Guidance for Building a Culture of Thinking”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessmen t, Leiden: Brill, pp. 150–167. doi: 10.1163/9789004444591_010
  • Cohen, Jacob, 1988, Statistical Power Analysis for the Behavioral Sciences , Hillsdale, NJ: Lawrence Erlbaum Associates, 2nd edition.
  • College Board, 1983, Academic Preparation for College. What Students Need to Know and Be Able to Do , New York: College Entrance Examination Board, ERIC document ED232517.
  • Commission on the Relation of School and College of the Progressive Education Association, 1943, Thirty Schools Tell Their Story , Volume V of Adventure in American Education , New York and London: Harper & Brothers.
  • Council for Aid to Education, 2017, CLA+ Student Guide . Available at http://cae.org/images/uploads/pdf/CLA_Student_Guide_Institution.pdf ; last accessed 2022 07 16.
  • Dalgleish, Adam, Patrick Girard, and Maree Davies, 2017, “Critical Thinking, Bias and Feminist Philosophy: Building a Better Framework through Collaboration”, Informal Logic , 37(4): 351–369. [ Dalgleish et al. available online ]
  • Dewey, John, 1910, How We Think , Boston: D.C. Heath. [ Dewey 1910 available online ]
  • –––, 1916, Democracy and Education: An Introduction to the Philosophy of Education , New York: Macmillan.
  • –––, 1933, How We Think: A Restatement of the Relation of Reflective Thinking to the Educative Process , Lexington, MA: D.C. Heath.
  • –––, 1936, “The Theory of the Chicago Experiment”, Appendix II of Mayhew & Edwards 1936: 463–477.
  • –––, 1938, Logic: The Theory of Inquiry , New York: Henry Holt and Company.
  • Dominguez, Caroline (coord.), 2018a, A European Collection of the Critical Thinking Skills and Dispositions Needed in Different Professional Fields for the 21st Century , Vila Real, Portugal: UTAD. Available at http://bit.ly/CRITHINKEDUO1 ; last accessed 2022 07 16.
  • ––– (coord.), 2018b, A European Review on Critical Thinking Educational Practices in Higher Education Institutions , Vila Real: UTAD. Available at http://bit.ly/CRITHINKEDUO2 ; last accessed 2022 07 16.
  • ––– (coord.), 2018c, The CRITHINKEDU European Course on Critical Thinking Education for University Teachers: From Conception to Delivery , Vila Real: UTAD. Available at http:/bit.ly/CRITHINKEDU03; last accessed 2022 07 16.
  • Dominguez Caroline and Rita Payan-Carreira (eds.), 2019, Promoting Critical Thinking in European Higher Education Institutions: Towards an Educational Protocol , Vila Real: UTAD. Available at http:/bit.ly/CRITHINKEDU04; last accessed 2022 07 16.
  • Ennis, Robert H., 1958, “An Appraisal of the Watson-Glaser Critical Thinking Appraisal”, The Journal of Educational Research , 52(4): 155–158. doi:10.1080/00220671.1958.10882558
  • –––, 1962, “A Concept of Critical Thinking: A Proposed Basis for Research on the Teaching and Evaluation of Critical Thinking Ability”, Harvard Educational Review , 32(1): 81–111.
  • –––, 1981a, “A Conception of Deductive Logical Competence”, Teaching Philosophy , 4(3/4): 337–385. doi:10.5840/teachphil198143/429
  • –––, 1981b, “Eight Fallacies in Bloom’s Taxonomy”, in C. J. B. Macmillan (ed.), Philosophy of Education 1980: Proceedings of the Thirty-seventh Annual Meeting of the Philosophy of Education Society , Bloomington, IL: Philosophy of Education Society, pp. 269–273.
  • –––, 1984, “Problems in Testing Informal Logic, Critical Thinking, Reasoning Ability”, Informal Logic , 6(1): 3–9. [ Ennis 1984 available online ]
  • –––, 1987, “A Taxonomy of Critical Thinking Dispositions and Abilities”, in Joan Boykoff Baron and Robert J. Sternberg (eds.), Teaching Thinking Skills: Theory and Practice , New York: W. H. Freeman, pp. 9–26.
  • –––, 1989, “Critical Thinking and Subject Specificity: Clarification and Needed Research”, Educational Researcher , 18(3): 4–10. doi:10.3102/0013189X018003004
  • –––, 1991, “Critical Thinking: A Streamlined Conception”, Teaching Philosophy , 14(1): 5–24. doi:10.5840/teachphil19911412
  • –––, 1996, “Critical Thinking Dispositions: Their Nature and Assessability”, Informal Logic , 18(2–3): 165–182. [ Ennis 1996 available online ]
  • –––, 1998, “Is Critical Thinking Culturally Biased?”, Teaching Philosophy , 21(1): 15–33. doi:10.5840/teachphil19982113
  • –––, 2011, “Critical Thinking: Reflection and Perspective Part I”, Inquiry: Critical Thinking across the Disciplines , 26(1): 4–18. doi:10.5840/inquiryctnews20112613
  • –––, 2013, “Critical Thinking across the Curriculum: The Wisdom CTAC Program”, Inquiry: Critical Thinking across the Disciplines , 28(2): 25–45. doi:10.5840/inquiryct20132828
  • –––, 2016, “Definition: A Three-Dimensional Analysis with Bearing on Key Concepts”, in Patrick Bondy and Laura Benacquista (eds.), Argumentation, Objectivity, and Bias: Proceedings of the 11th International Conference of the Ontario Society for the Study of Argumentation (OSSA), 18–21 May 2016 , Windsor, ON: OSSA, pp. 1–19. Available at http://scholar.uwindsor.ca/ossaarchive/OSSA11/papersandcommentaries/105 ; last accessed 2022 07 16.
  • –––, 2018, “Critical Thinking Across the Curriculum: A Vision”, Topoi , 37(1): 165–184. doi:10.1007/s11245-016-9401-4
  • Ennis, Robert H., and Jason Millman, 1971, Manual for Cornell Critical Thinking Test, Level X, and Cornell Critical Thinking Test, Level Z , Urbana, IL: Critical Thinking Project, University of Illinois.
  • Ennis, Robert H., Jason Millman, and Thomas Norbert Tomko, 1985, Cornell Critical Thinking Tests Level X & Level Z: Manual , Pacific Grove, CA: Midwest Publication, 3rd edition.
  • –––, 2005, Cornell Critical Thinking Tests Level X & Level Z: Manual , Seaside, CA: Critical Thinking Company, 5th edition.
  • Ennis, Robert H. and Eric Weir, 1985, The Ennis-Weir Critical Thinking Essay Test: Test, Manual, Criteria, Scoring Sheet: An Instrument for Teaching and Testing , Pacific Grove, CA: Midwest Publications.
  • Facione, Peter A., 1990a, Critical Thinking: A Statement of Expert Consensus for Purposes of Educational Assessment and Instruction , Research Findings and Recommendations Prepared for the Committee on Pre-College Philosophy of the American Philosophical Association, ERIC Document ED315423.
  • –––, 1990b, California Critical Thinking Skills Test, CCTST – Form A , Millbrae, CA: The California Academic Press.
  • –––, 1990c, The California Critical Thinking Skills Test--College Level. Technical Report #3. Gender, Ethnicity, Major, CT Self-Esteem, and the CCTST , ERIC Document ED326584.
  • –––, 1992, California Critical Thinking Skills Test: CCTST – Form B, Millbrae, CA: The California Academic Press.
  • –––, 2000, “The Disposition Toward Critical Thinking: Its Character, Measurement, and Relationship to Critical Thinking Skill”, Informal Logic , 20(1): 61–84. [ Facione 2000 available online ]
  • Facione, Peter A. and Noreen C. Facione, 1992, CCTDI: A Disposition Inventory , Millbrae, CA: The California Academic Press.
  • Facione, Peter A., Noreen C. Facione, and Carol Ann F. Giancarlo, 2001, California Critical Thinking Disposition Inventory: CCTDI: Inventory Manual , Millbrae, CA: The California Academic Press.
  • Facione, Peter A., Carol A. Sánchez, and Noreen C. Facione, 1994, Are College Students Disposed to Think? , Millbrae, CA: The California Academic Press. ERIC Document ED368311.
  • Fisher, Alec, and Michael Scriven, 1997, Critical Thinking: Its Definition and Assessment , Norwich: Centre for Research in Critical Thinking, University of East Anglia.
  • Freire, Paulo, 1968 [1970], Pedagogia do Oprimido . Translated as Pedagogy of the Oppressed , Myra Bergman Ramos (trans.), New York: Continuum, 1970.
  • Gigerenzer, Gerd, 2001, “The Adaptive Toolbox”, in Gerd Gigerenzer and Reinhard Selten (eds.), Bounded Rationality: The Adaptive Toolbox , Cambridge, MA: MIT Press, pp. 37–50.
  • Glaser, Edward Maynard, 1941, An Experiment in the Development of Critical Thinking , New York: Bureau of Publications, Teachers College, Columbia University.
  • Groarke, Leo A. and Christopher W. Tindale, 2012, Good Reasoning Matters! A Constructive Approach to Critical Thinking , Don Mills, ON: Oxford University Press, 5th edition.
  • Halpern, Diane F., 1998, “Teaching Critical Thinking for Transfer Across Domains: Disposition, Skills, Structure Training, and Metacognitive Monitoring”, American Psychologist , 53(4): 449–455. doi:10.1037/0003-066X.53.4.449
  • –––, 2016, Manual: Halpern Critical Thinking Assessment , Mödling, Austria: Schuhfried. Available at https://pdfcoffee.com/hcta-test-manual-pdf-free.html; last accessed 2022 07 16.
  • Hamby, Benjamin, 2014, The Virtues of Critical Thinkers , Doctoral dissertation, Philosophy, McMaster University. [ Hamby 2014 available online ]
  • –––, 2015, “Willingness to Inquire: The Cardinal Critical Thinking Virtue”, in Martin Davies and Ronald Barnett (eds.), The Palgrave Handbook of Critical Thinking in Higher Education , New York: Palgrave Macmillan, pp. 77–87.
  • Haran, Uriel, Ilana Ritov, and Barbara A. Mellers, 2013, “The Role of Actively Open-minded Thinking in Information Acquisition, Accuracy, and Calibration”, Judgment and Decision Making , 8(3): 188–201.
  • Hatcher, Donald and Kevin Possin, 2021, “Commentary: Thinking Critically about Critical Thinking Assessment”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 298–322. doi: 10.1163/9789004444591_017
  • Haynes, Ada, Elizabeth Lisic, Kevin Harris, Katie Leming, Kyle Shanks, and Barry Stein, 2015, “Using the Critical Thinking Assessment Test (CAT) as a Model for Designing Within-Course Assessments: Changing How Faculty Assess Student Learning”, Inquiry: Critical Thinking Across the Disciplines , 30(3): 38–48. doi:10.5840/inquiryct201530316
  • Haynes, Ada and Barry Stein, 2021, “Observations from a Long-Term Effort to Assess and Improve Critical Thinking”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 231–254. doi: 10.1163/9789004444591_014
  • Hiner, Amanda L. 2021. “Equipping Students for Success in College and Beyond: Placing Critical Thinking Instruction at the Heart of a General Education Program”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 188–208. doi: 10.1163/9789004444591_012
  • Hitchcock, David, 2017, “Critical Thinking as an Educational Ideal”, in his On Reasoning and Argument: Essays in Informal Logic and on Critical Thinking , Dordrecht: Springer, pp. 477–497. doi:10.1007/978-3-319-53562-3_30
  • –––, 2021, “Seven Philosophical Implications of Critical Thinking: Themes, Variations, Implications”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 9–30. doi: 10.1163/9789004444591_002
  • hooks, bell, 1994, Teaching to Transgress: Education as the Practice of Freedom , New York and London: Routledge.
  • –––, 2010, Teaching Critical Thinking: Practical Wisdom , New York and London: Routledge.
  • Johnson, Ralph H., 1992, “The Problem of Defining Critical Thinking”, in Stephen P, Norris (ed.), The Generalizability of Critical Thinking , New York: Teachers College Press, pp. 38–53.
  • Kahane, Howard, 1971, Logic and Contemporary Rhetoric: The Use of Reason in Everyday Life , Belmont, CA: Wadsworth.
  • Kahneman, Daniel, 2011, Thinking, Fast and Slow , New York: Farrar, Straus and Giroux.
  • Kahneman, Daniel, Olivier Sibony, & Cass R. Sunstein, 2021, Noise: A Flaw in Human Judgment , New York: Little, Brown Spark.
  • Kenyon, Tim, and Guillaume Beaulac, 2014, “Critical Thinking Education and Debasing”, Informal Logic , 34(4): 341–363. [ Kenyon & Beaulac 2014 available online ]
  • Krathwohl, David R., Benjamin S. Bloom, and Bertram B. Masia, 1964, Taxonomy of Educational Objectives, Handbook II: Affective Domain , New York: David McKay.
  • Kuhn, Deanna, 1991, The Skills of Argument , New York: Cambridge University Press. doi:10.1017/CBO9780511571350
  • –––, 2019, “Critical Thinking as Discourse”, Human Development, 62 (3): 146–164. doi:10.1159/000500171
  • Lipman, Matthew, 1987, “Critical Thinking–What Can It Be?”, Analytic Teaching , 8(1): 5–12. [ Lipman 1987 available online ]
  • –––, 2003, Thinking in Education , Cambridge: Cambridge University Press, 2nd edition.
  • Loftus, Elizabeth F., 2017, “Eavesdropping on Memory”, Annual Review of Psychology , 68: 1–18. doi:10.1146/annurev-psych-010416-044138
  • Makaiau, Amber Strong, 2021, “The Good Thinker’s Tool Kit: How to Engage Critical Thinking and Reasoning in Secondary Education”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 168–187. doi: 10.1163/9789004444591_011
  • Martin, Jane Roland, 1992, “Critical Thinking for a Humane World”, in Stephen P. Norris (ed.), The Generalizability of Critical Thinking , New York: Teachers College Press, pp. 163–180.
  • Mayhew, Katherine Camp, and Anna Camp Edwards, 1936, The Dewey School: The Laboratory School of the University of Chicago, 1896–1903 , New York: Appleton-Century. [ Mayhew & Edwards 1936 available online ]
  • McPeck, John E., 1981, Critical Thinking and Education , New York: St. Martin’s Press.
  • Moore, Brooke Noel and Richard Parker, 2020, Critical Thinking , New York: McGraw-Hill, 13th edition.
  • Nickerson, Raymond S., 1998, “Confirmation Bias: A Ubiquitous Phenomenon in Many Guises”, Review of General Psychology , 2(2): 175–220. doi:10.1037/1089-2680.2.2.175
  • Nieto, Ana Maria, and Jorge Valenzuela, 2012, “A Study of the Internal Structure of Critical Thinking Dispositions”, Inquiry: Critical Thinking across the Disciplines , 27(1): 31–38. doi:10.5840/inquiryct20122713
  • Norris, Stephen P., 1985, “Controlling for Background Beliefs When Developing Multiple-choice Critical Thinking Tests”, Educational Measurement: Issues and Practice , 7(3): 5–11. doi:10.1111/j.1745-3992.1988.tb00437.x
  • Norris, Stephen P. and Robert H. Ennis, 1989, Evaluating Critical Thinking (The Practitioners’ Guide to Teaching Thinking Series), Pacific Grove, CA: Midwest Publications.
  • Norris, Stephen P. and Ruth Elizabeth King, 1983, Test on Appraising Observations , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland.
  • –––, 1984, The Design of a Critical Thinking Test on Appraising Observations , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland. ERIC Document ED260083.
  • –––, 1985, Test on Appraising Observations: Manual , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland.
  • –––, 1990a, Test on Appraising Observations , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland, 2nd edition.
  • –––, 1990b, Test on Appraising Observations: Manual , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland, 2nd edition.
  • OCR [Oxford, Cambridge and RSA Examinations], 2011, AS/A Level GCE: Critical Thinking – H052, H452 , Cambridge: OCR. Past papers available at https://pastpapers.co/ocr/?dir=A-Level/Critical-Thinking-H052-H452; last accessed 2022 07 16.
  • Ontario Ministry of Education, 2013, The Ontario Curriculum Grades 9 to 12: Social Sciences and Humanities . Available at http://www.edu.gov.on.ca/eng/curriculum/secondary/ssciences9to122013.pdf ; last accessed 2022 07 16.
  • Passmore, John Arthur, 1980, The Philosophy of Teaching , London: Duckworth.
  • Paul, Richard W., 1981, “Teaching Critical Thinking in the ‘Strong’ Sense: A Focus on Self-Deception, World Views, and a Dialectical Mode of Analysis”, Informal Logic , 4(2): 2–7. [ Paul 1981 available online ]
  • –––, 1984, “Critical Thinking: Fundamental to Education for a Free Society”, Educational Leadership , 42(1): 4–14.
  • –––, 1985, “McPeck’s Mistakes”, Informal Logic , 7(1): 35–43. [ Paul 1985 available online ]
  • Paul, Richard W. and Linda Elder, 2006, The Miniature Guide to Critical Thinking: Concepts and Tools , Dillon Beach, CA: Foundation for Critical Thinking, 4th edition.
  • Payette, Patricia, and Edna Ross, 2016, “Making a Campus-Wide Commitment to Critical Thinking: Insights and Promising Practices Utilizing the Paul-Elder Approach at the University of Louisville”, Inquiry: Critical Thinking Across the Disciplines , 31(1): 98–110. doi:10.5840/inquiryct20163118
  • Possin, Kevin, 2008, “A Field Guide to Critical-Thinking Assessment”, Teaching Philosophy , 31(3): 201–228. doi:10.5840/teachphil200831324
  • –––, 2013a, “Some Problems with the Halpern Critical Thinking Assessment (HCTA) Test”, Inquiry: Critical Thinking across the Disciplines , 28(3): 4–12. doi:10.5840/inquiryct201328313
  • –––, 2013b, “A Serious Flaw in the Collegiate Learning Assessment (CLA) Test”, Informal Logic , 33(3): 390–405. [ Possin 2013b available online ]
  • –––, 2013c, “A Fatal Flaw in the Collegiate Learning Assessment Test”, Assessment Update , 25 (1): 8–12.
  • –––, 2014, “Critique of the Watson-Glaser Critical Thinking Appraisal Test: The More You Know, the Lower Your Score”, Informal Logic , 34(4): 393–416. [ Possin 2014 available online ]
  • –––, 2020, “CAT Scan: A Critical Review of the Critical-Thinking Assessment Test”, Informal Logic , 40 (3): 489–508. [Available online at https://informallogic.ca/index.php/informal_logic/article/view/6243]
  • Rawls, John, 1971, A Theory of Justice , Cambridge, MA: Harvard University Press.
  • Rear, David, 2019, “One Size Fits All? The Limitations of Standardised Assessment in Critical Thinking”, Assessment & Evaluation in Higher Education , 44(5): 664–675. doi: 10.1080/02602938.2018.1526255
  • Rousseau, Jean-Jacques, 1762, Émile , Amsterdam: Jean Néaulme.
  • Scheffler, Israel, 1960, The Language of Education , Springfield, IL: Charles C. Thomas.
  • Scriven, Michael, and Richard W. Paul, 1987, Defining Critical Thinking , Draft statement written for the National Council for Excellence in Critical Thinking Instruction. Available at http://www.criticalthinking.org/pages/defining-critical-thinking/766 ; last accessed 2022 07 16.
  • Sheffield, Clarence Burton Jr., 2018, “Promoting Critical Thinking in Higher Education: My Experiences as the Inaugural Eugene H. Fram Chair in Applied Critical Thinking at Rochester Institute of Technology”, Topoi , 37(1): 155–163. doi:10.1007/s11245-016-9392-1
  • Siegel, Harvey, 1985, “McPeck, Informal Logic and the Nature of Critical Thinking”, in David Nyberg (ed.), Philosophy of Education 1985: Proceedings of the Forty-First Annual Meeting of the Philosophy of Education Society , Normal, IL: Philosophy of Education Society, pp. 61–72.
  • –––, 1988, Educating Reason: Rationality, Critical Thinking, and Education , New York: Routledge.
  • –––, 1999, “What (Good) Are Thinking Dispositions?”, Educational Theory , 49(2): 207–221. doi:10.1111/j.1741-5446.1999.00207.x
  • Simon, Herbert A., 1956, “Rational Choice and the Structure of the Environment”, Psychological Review , 63(2): 129–138. doi: 10.1037/h0042769
  • Simpson, Elizabeth, 1966–67, “The Classification of Educational Objectives: Psychomotor Domain”, Illinois Teacher of Home Economics , 10(4): 110–144, ERIC document ED0103613. [ Simpson 1966–67 available online ]
  • Skolverket, 2018, Curriculum for the Compulsory School, Preschool Class and School-age Educare , Stockholm: Skolverket, revised 2018. Available at https://www.skolverket.se/download/18.31c292d516e7445866a218f/1576654682907/pdf3984.pdf; last accessed 2022 07 15.
  • Smith, B. Othanel, 1953, “The Improvement of Critical Thinking”, Progressive Education , 30(5): 129–134.
  • Smith, Eugene Randolph, Ralph Winfred Tyler, and the Evaluation Staff, 1942, Appraising and Recording Student Progress , Volume III of Adventure in American Education , New York and London: Harper & Brothers.
  • Splitter, Laurance J., 1987, “Educational Reform through Philosophy for Children”, Thinking: The Journal of Philosophy for Children , 7(2): 32–39. doi:10.5840/thinking1987729
  • Stanovich Keith E., and Paula J. Stanovich, 2010, “A Framework for Critical Thinking, Rational Thinking, and Intelligence”, in David D. Preiss and Robert J. Sternberg (eds), Innovations in Educational Psychology: Perspectives on Learning, Teaching and Human Development , New York: Springer Publishing, pp 195–237.
  • Stanovich Keith E., Richard F. West, and Maggie E. Toplak, 2011, “Intelligence and Rationality”, in Robert J. Sternberg and Scott Barry Kaufman (eds.), Cambridge Handbook of Intelligence , Cambridge: Cambridge University Press, 3rd edition, pp. 784–826. doi:10.1017/CBO9780511977244.040
  • Tankersley, Karen, 2005, Literacy Strategies for Grades 4–12: Reinforcing the Threads of Reading , Alexandria, VA: Association for Supervision and Curriculum Development.
  • Thayer-Bacon, Barbara J., 1992, “Is Modern Critical Thinking Theory Sexist?”, Inquiry: Critical Thinking Across the Disciplines , 10(1): 3–7. doi:10.5840/inquiryctnews199210123
  • –––, 1993, “Caring and Its Relationship to Critical Thinking”, Educational Theory , 43(3): 323–340. doi:10.1111/j.1741-5446.1993.00323.x
  • –––, 1995a, “Constructive Thinking: Personal Voice”, Journal of Thought , 30(1): 55–70.
  • –––, 1995b, “Doubting and Believing: Both are Important for Critical Thinking”, Inquiry: Critical Thinking across the Disciplines , 15(2): 59–66. doi:10.5840/inquiryctnews199515226
  • –––, 2000, Transforming Critical Thinking: Thinking Constructively , New York: Teachers College Press.
  • Toulmin, Stephen Edelston, 1958, The Uses of Argument , Cambridge: Cambridge University Press.
  • Turri, John, Mark Alfano, and John Greco, 2017, “Virtue Epistemology”, in Edward N. Zalta (ed.), The Stanford Encyclopedia of Philosophy (Winter 2017 Edition). URL = < https://plato.stanford.edu/archives/win2017/entries/epistemology-virtue/ >
  • Vincent-Lancrin, Stéphan, Carlos González-Sancho, Mathias Bouckaert, Federico de Luca, Meritxell Fernández-Barrerra, Gwénaël Jacotin, Joaquin Urgel, and Quentin Vidal, 2019, Fostering Students’ Creativity and Critical Thinking: What It Means in School. Educational Research and Innovation , Paris: OECD Publishing.
  • Warren, Karen J. 1988. “Critical Thinking and Feminism”, Informal Logic , 10(1): 31–44. [ Warren 1988 available online ]
  • Watson, Goodwin, and Edward M. Glaser, 1980a, Watson-Glaser Critical Thinking Appraisal, Form A , San Antonio, TX: Psychological Corporation.
  • –––, 1980b, Watson-Glaser Critical Thinking Appraisal: Forms A and B; Manual , San Antonio, TX: Psychological Corporation,
  • –––, 1994, Watson-Glaser Critical Thinking Appraisal, Form B , San Antonio, TX: Psychological Corporation.
  • Weinstein, Mark, 1990, “Towards a Research Agenda for Informal Logic and Critical Thinking”, Informal Logic , 12(3): 121–143. [ Weinstein 1990 available online ]
  • –––, 2013, Logic, Truth and Inquiry , London: College Publications.
  • Willingham, Daniel T., 2019, “How to Teach Critical Thinking”, Education: Future Frontiers , 1: 1–17. [Available online at https://prod65.education.nsw.gov.au/content/dam/main-education/teaching-and-learning/education-for-a-changing-world/media/documents/How-to-teach-critical-thinking-Willingham.pdf.]
  • Zagzebski, Linda Trinkaus, 1996, Virtues of the Mind: An Inquiry into the Nature of Virtue and the Ethical Foundations of Knowledge , Cambridge: Cambridge University Press. doi:10.1017/CBO9781139174763
How to cite this entry . Preview the PDF version of this entry at the Friends of the SEP Society . Look up topics and thinkers related to this entry at the Internet Philosophy Ontology Project (InPhO). Enhanced bibliography for this entry at PhilPapers , with links to its database.
  • Association for Informal Logic and Critical Thinking (AILACT)
  • Critical Thinking Across the European Higher Education Curricula (CRITHINKEDU)
  • Critical Thinking Definition, Instruction, and Assessment: A Rigorous Approach
  • Critical Thinking Research (RAIL)
  • Foundation for Critical Thinking
  • Insight Assessment
  • Partnership for 21st Century Learning (P21)
  • The Critical Thinking Consortium
  • The Nature of Critical Thinking: An Outline of Critical Thinking Dispositions and Abilities , by Robert H. Ennis

abilities | bias, implicit | children, philosophy for | civic education | decision-making capacity | Dewey, John | dispositions | education, philosophy of | epistemology: virtue | logic: informal

Copyright © 2022 by David Hitchcock < hitchckd @ mcmaster . ca >

  • Accessibility

Support SEP

Mirror sites.

View this site from another server:

  • Info about mirror sites

The Stanford Encyclopedia of Philosophy is copyright © 2024 by The Metaphysics Research Lab , Department of Philosophy, Stanford University

Library of Congress Catalog Data: ISSN 1095-5054

Publications

On-demand strategy, speaking & workshops, latest articles, write for us, library/publications.

  • Competency-Based Education
  • Early Learning
  • Equity & Access
  • Personalized Learning
  • Place-Based Education
  • Post-Secondary
  • Project-Based Learning
  • SEL & Mindset
  • STEM & Maker
  • The Future of Tech and Work

is critical thinking necessary for creativity

Nell Rosenberg on Access and Teleservices Programs

Julian guerrero on pathways and programs for indigenous youth, cynthia leck and juetzinia kazmer-murillo on igniting agency in early learners, timothy jones and mason pashia on what education can learn from poetry, recent releases.

Unfulfilled Promise: The Forty-Year Shift from Print to Digital and Why It Failed to Transform Learning

The Portrait Model: Building Coherence in School and System Redesign

Green Pathways: New Jobs Mean New Skills and New Pathways

Support & Guidance For All New Pathways Journeys

Unbundled: Designing Personalized Pathways for Every Learner

Credentialed Learning for All

AI in Education

For more, see Library |  Publications |  Books |  Toolkits

Microschools

New learning models, tools, and strategies have made it easier to open small, nimble schooling models.

Green Schools

The climate crisis is the most complex challenge mankind has ever faced . We’re covering what edleaders and educators can do about it. 

Difference Making

Focusing on how making a difference has emerged as one of the most powerful learning experiences.

New Pathways

This campaign will serve as a road map to the new architecture for American schools. Pathways to citizenship, employment, economic mobility, and a purpose-driven life.

Web3 has the potential to rebuild the internet towards more equitable access and ownership of information, meaning dramatic improvements for learners.

Schools Worth Visiting

We share stories that highlight best practices, lessons learned and next-gen teaching practice.

View more series…

About Getting Smart

Getting smart collective, impact update, at the intersection of creativity and critical thinking.

is critical thinking necessary for creativity

Creativity and critical thinking sit atop most lists of skills crucial for success in the 21st century. They represent two of the “Four Cs” in   P21 ’s learning framework (the other two being communication and collaboration), and they rank second and third on the World Economic Forum ’s top ten list of skills workers will need most in the year 2020 (complex problem solving ranks first).

The various lists of 21st-century skills grant creativity and critical thinking such prominence in part because they are human abilities robots and AI are unlikely to usurp anytime soon. The picture of the near future that emerges from these compilations of skills is one in which people must compete against their own inventions by exploiting the most human of their human qualities: empathy, a willingness to work together, adaptability, innovation. As the 21st century unfolds, creativity and critical thinking appear as uniquely human attributes essential for staving off our own obsolescence.

Like many things human, however, creativity and critical thinking are not easily or consistently defined. The William and Flora Hewlett Foundation’s list of “ Deeper Learning Competencies ,” for example, identifies creativity not as its own competency but as a tool for thinking critically. Bloom’s Taxonomy  treats the two as separate educational goals, ranking creativity above critical thinking in the progression of intellectual abilities. Efforts to pin down these skills are so quickly muddled, one is tempted to fall back on the old Justice Stewart remark regarding obscenity: “I know it when I see it.” Unfortunately, that yardstick isn’t much help to teachers or students.

Definitions of creativity tend toward the broad and vague. One of the leading researchers in the area, Robert Sternberg, characterizes creativity  as “a decision to buy low and sell high in the world of ideas.” While this is itself a creative approach to the problem of defining creativity, it is not a solution easily translated into a rubric.

Definitions of critical thinking don’t fare much better. According to one group of researchers , “Critical thinking is the intellectually disciplined process of actively and skillfully conceptualizing, applying, analyzing, synthesizing and/or evaluating information gathered from, or generated by, observation, experience, reflection, reasoning or communication, as a guide to belief and action.” Again, a curiously self-demonstrating definition, but not one ready-made for the classroom.

Generally speaking, creativity is associated with generating ideas, while critical thinking is associated with judging them. In practice, however, the two are not so easy to separate. As parents and teachers know well, creativity without critical judgment tends toward the fanciful, the impractical, the ridiculous. “Creative thinking” becomes a nice way of saying that someone’s ideas have run amok.

At the same time, critical thinking gets short shrift when reduced to making a judgment, since, at its best, critical thinking is also a way of making a contribution. It is fundamentally creative in the sense that its aim is to produce something new: an insight, an argument, a new synthesis of ideas or information, a new level of understanding.

Our grasp of creativity and critical thinking is improved when we see them in symbiotic relationship with one another. Creativity  benefits from our recognizing the role of critical thinking in ensuring the value of novel ideas. In turn, critical thinking  comes into clearer focus when we recognize it as a creative act that enriches understanding by giving rise to something that wasn’t there before.

What does this symbiotic relationship look like in the classroom? Here are a few educational contexts in which creativity is disciplined by critical thinking and critical thinking is expanded through recognition of its creative function:

  • Writing.  Creative writing only works when the writer’s critical judgment is brought to bear on the product of their imagination. However richly imagined, a story’s success depends on the skill with which its author corrals and controls their ideas, crafting them into something coherent and cohesive. Storycraft is accomplished by writers who discipline their own creative work by thinking critically about it.Successful academic writing — argumentative, expository — requires not just critical analysis but also creative invention. Academic writers enter into conversation with their readers, their instructors, fellow students, other writers and scholars, anyone affected by or invested in their topic. As in any conversation, a successful participant doesn’t simply repeat back what others have already said, but builds upon it, asking critical questions, fine-tuning points, proposing solutions — in short, creating and contributing something original that extends and enriches the conversation.
  • History.  History classes lend themselves readily to creative exercises like imagining the experiences of people in the past, or envisioning what the present might look like if this or that historical event had played out differently. These exercises succeed only when imagination is disciplined by critical thinking; conjectures must be plausible, connections must be logical, and the use of evidence must be reasonable.At the same time, critical analysis of historical problems often employs invention and is (or should be) rewarded for its creativity. For example, a student analyzing the US mission to the moon in terms of the theme of the frontier in American mythology is engaged in an intellectual activity that is at least as creative as it is evaluative.
  • Math.  Creative projects can generate engagement and enthusiasm in students, prompting them to learn things they might otherwise resist. In this example , a middle school math class learned about circuitry on their way to creating a keyboard made of bananas. Projects like this one demonstrate that creativity and critical thinking are reciprocal. A banana keyboard is unquestionably creative, but of little utility except insofar as it teaches something valuable about electronics. Yet, that lesson was made possible only by virtue of the creative impulse the project inspired in students.

The skills today’s students will need for success are, at a most basic level, the skills that humans have always relied on for success — the very things that make us human, including our creativity and our capacity for thinking critically. The fact that our defining qualities so often defy definition, that our distinctive traits are so frustratingly indistinct, is just another gloriously untidy part of us that robots will never understand.

For more, see:

  • How Dialogue Teaches Critical Thinking and Empathy
  • Creating Change-Agents: The Intersection of Critical Thinking and Student Agency
  • Philadelphia is Reimagining Arts & Creativity Education Programming

Stay in-the-know with all things EdTech and innovations in learning by signing up to receive the weekly Smart Update .

is critical thinking necessary for creativity

William Bryant

  • @BetterRhetor

Discover the latest in learning innovations

Sign up for our weekly newsletter.

Related Reading

Anti-Racist Schools

How We Move Forward: Practicing Three Inclusive, Anti-Racist Mindsets for Reopening Schools

big ideas

What I Learned From the Stanford Certificate in Innovation & Entrepreneurship

is critical thinking necessary for creativity

Eduprotocols: Facilitating Student Collaboration, Creativity and Ownership

reopening school

Preparing to Reopen: Six Principles That Put Equity at the Core

Leave a comment.

Your email address will not be published. All fields are required.

Nominate a School, Program or Community

Stay on the cutting edge of learning innovation.

Subscribe to our weekly Smart Update!

Smart Update

What is pbe (spanish), designing microschools download, download quick start guide to implementing place-based education, download quick start guide to place-based professional learning, download what is place-based education and why does it matter, download 20 invention opportunities in learning & development.

ORIGINAL RESEARCH article

Fostering creativity and critical thinking in college: a cross-cultural investigation.

Ji Hoon Park&#x;

  • 1 Department of Psychology, Pace University, New York, NY, United States
  • 2 Developmental and Educational Research Center for Children's Creativity, Faculty of Education, Beijing Normal University, Beijing, China

Enhancing creativity and critical thinking have garnered the attention of educators and researchers for decades. They have been highlighted as essential skills for the 21st century. A total of 103 United States students (53 female, 24 male, two non-binary, and 24 non-reporting) and 166 Chinese students (128 female, 30 male, one non-binary, and seven non-reporting) completed an online survey. The survey includes the STEAM-related creative problem solving, Sternberg scientific reasoning tasks, psychological critical thinking (PCT) exam, California critical thinking (CCT) skills test, and college experience survey, as well as a demographic questionnaire. A confirmatory factor analysis (CFA) yields a two-factor model for all creativity and critical thinking measurements. Yet, the two latent factors are strongly associated with each other ( r =0.84). Moreover, Chinese students outperform American students in measures of critical thinking, whereas Americans outperform Chinese students in measures of creativity. Lastly, the results also demonstrate that having some college research experience (such as taking research method courses) could positively influence both United States and Chinese students’ creativity and critical thinking skills. Implications are discussed.

Introduction

Creativity and critical thinking have been recognized as essential skills in the 21st century ( National Education Association, 2012 ). Many researchers and educators have focused on these two skills, including acquisition, enhancement, and performance. In addition, numerous studies have been devoted to understanding the conceptual complexities involved in creativity and critical thinking. Although similar to each other, creativity and critical thinking are distinctive by definition, each with a different emphasis.

The concept of creativity has evolved over the years. It was almost exclusively conceptualized as divergent thinking when Guilford (1956 , 1986) proposed divergent thinking as a part of intelligence. Earlier measures of creativity took the approach of divergent thinking, measuring creative potential ( Wallach and Kogan, 1965 ; Torrance, 1966 , 1988 ; Runco and Albert, 1986 ; Kim, 2005 ). In 1990s, many creativity scholars challenged the validity of tests of divergent thinking, and suggested that divergent thinking only captures the trivial sense of creativity, and proposed to use the product-oriented method to measure creativity ( Csikszentmihalyi, 1988 ; Amabile, 1996 ; Sternberg and Lubart, 1999 ). A system model of creativity, which recognizes the important roles individual, field, and domain have played, was used as a framework to conceptualize creativity. A widely accepted definition for creativity is a person’s ability to generate an idea or product that is deemed as both novel and appropriate by experts in a field of human activities ( Scott and Bruce, 1994 ; Amabile, 1996 ; Csikszentmihalyi, 1999 ; Sternberg and Lubart, 1999 ; Hunter et al., 2007 ). Corazza and Lubart (2021) recently proposed a dynamic definition of creativity, in which creativity is defined as a context-embedded phenomenon that is tightly related to the cultural and social environment. Based on this new definition, measures of creativity should be context-specific and culturally relevant, especially when it is examined cross-culturally.

Similarly, the conceptualization of critical thinking has also evolved over the years. Earlier definitions emphasized the broad multidimensional aspects of critical thinking, including at least three aspects: attitude, knowledge, and skills ( Glaser, 1941 ). The definition has been evolved to include specific components for each aspect ( Watson and Glaser, 1980 ). For example, critical thinking is recognized as the ability to use cognitive skills or strategies to increase the probability of a desirable outcome ( Halpern, 1999 ). More specifically, cognitive skills such as evaluation, problem-solving, reflective thinking, logical reasoning, and probability thinking are recognized as parts of critical thinking skills in research and assessments ( Ennis, 1987 , Scriven and Paul, 1987 , Halpern, 1999 ). Moving into the 21st century, metacognition and self-regulatory skills have also become essential components for critical thinking in addition to the cognitive skills recognized by earlier scholars ( Korn, 2014 , Paul and Elder, 2019 ).

Similar to the concept of creativity, critical thinking is also viewed as multidimensional and domain specific ( Bensley and Murtagh, 2012 ). For example, critical thinking in psychology, also referred to as psychological critical thinking (PCT), is defined as one’s ability to evaluate claims in a way that explicitly incorporates basic principles of psychological science ( Lawson, 1999 ). As one of the important hub sciences, psychology is often regarded as a foundational course for scientific training in American higher education ( Boyack et al., 2005 ). In psychological discourse, critical thinking is often defined in tandem with scientific thinking, which places significance on hypothesis-testing and problem-solving in order to reduce bias and erroneous beliefs ( Halpern, 1984 ; American Psychological Association, 2016 ; Lamont, 2020 ; Sternberg and Halpern, 2020 ). Based on this definition, measures of critical thinking should assess cognitive skills (i.e., evaluation, logical reasoning) and ability to utilize scientific methods for problem-solving.

In addition to the evolution of the definitions of critical thinking and creativity, research into these two concepts has led to the development of various measurements. For both concepts, there have been numerous measurements that have been studied, utilized, and improved.

The complexities associated with creativity (i.e., context-relevant and domain-specificity) pose a major issue for its measurement. Many different types of creativity measures have been developed in the past. Measures using a divergent thinking approach, such as the Torrance Tests of Creative Thinking ( Torrance, 1974 ) and Alternate Uses Test ( Guilford et al., 1960 ), a product-oriented approach, a third person nomination approach, as well as a self-report approach measuring personality ( Gough, 1979 ), creative behavior ( Hocevar and Michael, 1979 ; Rodriguez-Boerwinkle et al., 2021 ), and creative achievement ( Carson et al., 2005 ; Diedrich et al., 2018 ).

Both the divergent thinking and the product-oriented approaches have been widely used in the creativity literature to objectively measure creativity. The tasks of both approaches are generally heuristic, meaning that no correct answer is expected and the process does not need to be rational. When scoring divergent thinking, the number of responses (i.e., fluency) and the rareness of the response (i.e., originality) were used to represent creativity. When scoring products using the product-orientated approach, a group of experts provides their subjective ratings on various dimensions such as originality, appropriateness, and aesthetically appealing to these products using their subjective criteria. When there is a consensus among the experts, average ratings of these expert scores are used to represent the creativity of the products. This approach is also named as Consensual Assessment Technique (CAT; Amabile, 1982 , 1996 ). Some scholars viewed the CAT approach as focusing on the convergent aspect of creativity ( Lubart et al., 2013 ). Recognizing the importance of divergent and convergent thinking in conceptualizing creativity, Lubart et al. (2013) have suggested including divergent thinking and product-oriented approach (i.e., CAT) to objective measures of creativity ( Barbot et al., 2011 ).

Similar to measures of creativity, measurements of critical thinking are also multilevel and multi-approach. In an article reviewing the construction of critical thinking in psychological studies, Lamont (2020) argues that critical thinking became a scientific object when psychologists attempted to measure it. Different from measures of creativity, where the tasks are heuristic in nature, measures of critical thinking require participants to engage in logical thinking. Therefore, the nature of critical thinking tasks is more algorithmic.

The interest in the study of critical thinking is evident in the increased efforts in the past decades to measure such a complex, multidimensional skill. Watson-Glaser Tests for Critical Thinking ( Watson and Glaser, 1938 ) is widely recognized as the first official measure of critical thinking. Since then, numerous measurements of critical thinking have been developed to evaluate both overall and domain-specific critical thinking, such as the PCT Exam ( Lawson, 1999 ; See Mueller et al., 2020 for list of assessments). A few of the most commonly used contemporary measures of critical thinking include the Watson-Glaser Test for Critical Thinking Appraisals ( Watson and Glaser, 1980 ), Cornell Critical Thinking Test ( Ennis et al., 1985 ), and California Critical Thinking (CCT) Skills Test ( Facione and Facione, 1994 ). As the best established and widely used standardized critical thinking measures, these tests have been validated in various studies and have been used as a criterion for meta-analyses ( Niu et al., 2013 ; Ross et al., 2013 ).

There have also been concerns regarding the usage of these standardized measures of critical thinking on its own due to its emphasis on measuring general cognitive abilities of participants, while negating the domain-specific aspect of critical thinking ( Lamont, 2020 ). The issues associated with standardized measures are not unique to standardized critical thinking measures, as same types of criticisms have been raised for standardized college admissions measures such as the Graduate Record Exam (GRE). To develop an assessment that encompasses a broader range of student abilities that is more aligned to scientific disciplines, Sternberg and Sternberg (2017) developed a scientific inquiry and reasoning measure. This measure is aimed to assess participants’ ability to utilize scientific methods and to think scientifically in order to investigate a topic or solve a problem ( Sternberg and Sternberg, 2017 ). The strength of this measure is that it assesses students’ abilities (i.e., ability to think critically) that are domain-specific and relevant to the sciences. Considering the multidimensional aspect of critical thinking, a combination of a standardized critical thinking measure, an assessment measuring cognitive abilities involved in critical thinking; and a measure that assesses domain-specific critical thinking, would provide a comprehensive evaluation of critical thinking.

The Relationship Between Creativity and Critical Thinking

Most of the studies thus far referenced have investigated creativity and critical thinking separately; however, the discussion on the relationship between creativity and critical thinking spans decades of research ( Barron and Harrington, 1981 ; Glassner and Schwartz, 2007 ; Wechsler et al., 2018 ; Akpur, 2020 ). Some earlier studies on the relationship between divergent thinking and critical thinking have observed a moderate correlation ( r =0.23, p <0.05) between the two ( Gibson et al., 1968 ). Using measures of creative personality, Gadzella and Penland (1995) also found a moderate correlation ( r =0.36, p <0.05) between creative personality and critical thinking.

Recent studies have further supported the positive correlation between critical thinking and creativity. For example, using the creative thinking disposition scale to measure creativity, Akpur (2020) found a moderate correlation between the two among college students ( r =0.27, p <0.05). Similarly, using the critical thinking disposition scale to measure critical thinking and scientific creativity scale and creative self-efficacy scale to measure creativity, Qiang et al. (2020) studied the relationship between critical thinking and creativity to a large sample of high school students ( n =1,153). They found that the relationship between the two varied depending on the type of measurement of creativity. More specifically, the correlation between critical thinking disposition and creative self-efficacy was r =0.045 ( p <0.001), whereas the correlation between critical thinking disposition and scientific creativity was r =0.15 ( p <0.01).

Recognizing the moderate relationship between the two, researchers have also aimed to study the independence of creativity and critical thinking. Some studies have found evidence that these constructs are relatively autonomous. The results of Wechsler et al. (2018) study, which aimed to investigate whether creativity and critical thinking are independent or complementary processes, found a relative autonomy of creativity and critical thinking and found that the variables were only moderately correlated. The researchers in this study suggest that a model that differentiated the two latent variables associated with creativity and critical thinking dimensions was the most appropriate method of analysis ( Wechsler et al., 2018 ). Evidence to suggest that creativity and critical thinking are fairly independent processes was also found in study of Ling and Loh (2020) . The results of their research, which examined the relationship of creativity and critical thinking to pattern recognition, revealed that creativity is a weak predictor of pattern recognition. In contrast, critical thinking is a good predictor ( Ling and Loh, 2020 ).

It is worth noting that a possible explanation for the inconsistencies in these studies’ results is the variance in the definition and the measures used to evaluate creativity and critical thinking. Based on the current literature on the relationship between creativity and critical thinking, we believe that more investigation was needed to further clarify the relationship between creativity and critical thinking which became a catalyst for the current study.

Cross-Cultural Differences in Creativity and Critical Thinking Performance

Results from various cross-cultural studies suggest that there are differences in creativity and critical thinking skills among cultures. A common belief is that individuals from Western cultures are believed to be more critical and creative compared to non-Westerners, whereas individuals from non-Western cultures are believed to be better at critical thinking related tasks compared to Westerners ( Ng, 2001 ; Wong and Niu, 2013 ; Lee et al., 2015 ). For example, Wong and Niu (2013) found a persistent cultural stereotype regarding creativity and critical thinking skills that exist cross-culturally. In their study, both Chinese and Americans believed that Chinese perform better in deductive reasoning (a skill comparable to critical thinking) and that Americans perform better on creativity. This stereotype belief was found to be incredibly persistent as participants did not change their opinions even when presented with data that contradicted their beliefs.

Interestingly, research does suggest that such a stereotype might be based on scientific evidence ( Niu et al., 2007 ; Wong and Niu, 2013 ). In the same study, it was revealed that Chinese did in fact perform better than Americans in deductive reasoning, and Americans performed better in creativity tests ( Wong and Niu, 2013 ). Similarly, Lee et al. (2015) found that compared to American students, Korean students believed that they are more prone to use receptive learning abilities (remembering and reproducing what is taught) instead of critical and creative learning abilities.

Cultural Influence on Critical Thinking

Other studies investigating the cultural influence on critical thinking have had more nuanced findings. Manalo et al. (2013) study of university students from New Zealand and Japan found that culture-related factors (self-construal, regulatory mode, and self-efficacy) do influence students’ critical thinking use. Still, the differences in those factors do not necessarily equate to differences in critical thinking. Their results found that students from Western and Asian cultural environments did not have significant differences in their reported use of critical thinking. The researchers in this study suggest that perhaps the skills and values nurtured in the educational environment have a more significant influence on students’ use of critical thinking ( Manalo et al., 2013 ).

Another study found that New Zealand European students performed better on objective measures of critical thinking than Chinese students. Still, such differences could be explained by the student’s English proficiency and not dialectical thinking style. It was also revealed in this study that Chinese students tended to rely more on dialectical thinking to solve critical thinking problems compared to the New Zealand European students ( Lun et al., 2010 ). Other research on the cultural differences in thinking styles revealed that Westerners are more likely to use formal logical rules in reasoning. In contrast, Asians are more likely to use intuitive experience-based sense when solving critical thinking problems ( Nisbett et al., 2001 ).

These studies suggest that culture can be used as a broad taxonomy to explain differences in critical thinking use. Still, one must consider the educational environment and thinking styles when studying the nature of the observed discrepancies. For instance, cultural differences in thinking style, in particular, might explain why Westerners perform better on some critical thinking measures, whereas Easterners perform better on others.

Cultural Influence on Creative Performance

Historically, creativity studies have suggested that individuals from non-Western cultures are not as creative as Westerners ( Torrance, 1974 ; Jellen and Urban, 1989 ; Niu and Sternberg, 2001 ; Tang et al., 2015 ). For example, in one study, Americans generated more aesthetically pleasing artworks (as judged by both American and Chinese judges) than Chinese ( Niu and Sternberg, 2001 ). However, recent creativity research has suggested that cross-cultural differences are primarily attributable to the definition of creativity rather than the level of creativity between cultures. As aforementioned, creativity is defined as an idea or product that is both novel and appropriate. Many cross-cultural studies have found that Westerners have a preference and perform better in the novelty aspect, and Easterners have a preference and perform better in the appropriateness aspect. In cross-cultural studies, Rockstuhl and Ng (2008) found that Israelis tend to generate more original ideas than their Singaporean counterparts. In contrast, Singaporeans tend to produce more appropriate ideas. Bechtoldt et al. (2012) found in their study that Koreans generated more useful ideas, whereas Dutch students developed more original ideas. Liou and Lan (2018) found Taiwanese tend to create and select more useful ideas, whereas Americans tend to generate and choose more novel ideas. The differences in creativity preference and performance found in these studies suggest that cultural influence is a prominent factor in creativity.

In summary, cross-cultural studies have supported the notion that culture influences both creativity and critical thinking. This cultural influence seems relatively unambiguous in creativity as it has been found in multiple studies that cultural background can explain differences in performance and preference to the dual features of creativity. Critical thinking has also been influenced by culture, albeit in an opaquer nature in comparison to creativity. Critical thinking is ubiquitous in all cultures, but the conception of critical thinking and the methods used to think critically (i.e., thinking styles) are influenced by cultural factors.

Influence of College Experience on Creativity and Critical Thinking

Given its significance as a core academic ability, the hypothesis of many colleges and universities emphasize that students will gain critical thinking skills as the result of their education. Fortunately, studies have shown that these efforts have had some promising outcomes. Around 92% of students in multi-institution research reported gains in critical thinking. Only 8.9% of students believed that their critical thinking had not changed or had grown weaker ( Tsui, 1998 ). A more recent meta-analysis by Huber and Kuncel (2016) found that students make substantial gains in critical thinking during college. In addition, the efforts to enhance necessary thinking skills have led to the development of various skill-specific courses. Mill et al. (1994) found that among three groups of undergraduate students, a group that received tutorial sessions and took research methodology and statistics performed significantly better on scientific reasoning and critical thinking abilities tests than control groups. Penningroth et al. (2007) found that students who took a class in which they were required to engage in active learning and critical evaluation of claims by applying scientific concepts, had greater improvement in psychological critical thinking than students in the comparison groups. There have also been studies in which students’ scientific inquiry and critical thinking skills have improved by taking a course designed with specific science thinking and reasoning modules ( Stevens and Witkow, 2014 ; Stevens et al., 2016 ).

Using a Survey of Undergraduate Research Experience (SURE), Lopatto (2004 , 2008) found that research experience can help students gain various learning skills such as ability to integrate theory and practice, ability to analyze data, skill in the interpretation of results, and understanding how scientists work on problem. All of these learning skills correspond to at least one of the dimensions mentioned earlier in the definition of critical thinking (i.e., evaluation, analytical thinking, and problem solving through). Thus, results of SURE provide evidence that critical thinking can be enhanced through research experience ( Lopatto, 2004 , 2008 ).

In comparison to critical thinking, only a few studies have examined the interaction between creativity and college experience. Previous research on STEM provides some evidence to suggest that STEM education can promote the learner’s creativity ( Land, 2013 , Guo and Woulfin, 2016 , Kuo et al., 2018 ). Notably, study of Kuo et al. (2018) suggest that project-based learning in STEM has the merits of improving one’s creativity. They found that the STEM Interdisciplinary Project-Based Learning (IPBL) course is a practical approach to improve college student’s creativity ( Kuo et al., 2018 ). College research experience in particular, has been reported as important or very important by faculty and students for learning how to approach problems creatively ( Zydney et al., 2002 ).

Although specific college courses aimed to enhance creativity have been scarce, some training programs have been developed specifically to improve creativity. Scott et al. (2004) conducted a quantitative review of various creativity training and found that divergent thinking, creative problem solving, and creativity performance can be enhanced through skill-specific training programs. Embodied creativity training programs, consisting of creativity fitness exercises and intensive workshops, have also been effective in enhancing participants’ creative production and improving their creative self-efficacy ( Byrge and Tang, 2015 ).

Both critical thinking and creativity were also found to be important in students’ learning. Using a longitudinal design for one semester to 52 graduate students in biology, Siburian et al. (2019) studied how critical thinking and creative thinking contribute to improving cognitive learning skills. They found that both critical and creative thinking significantly contributes to enhancing cognitive learning skills ( R 2 =0.728). They each contribute separately to the development of cognitive learning skills ( b was 0.123 between critical thinking and cognitive learning and 0.765 between creative thinking and cognitive learning). The results from research on creativity and critical thinking indicate that training and experiences of students in college can enhance both of these skills.

Current Study

Previous literature on creativity and critical thinking suggests that there is a positive correlation between these two skills. Moreover, cultural background influences creativity and critical thinking conception and performance. However, our literature review suggests that there are only a few studies that have investigated creativity and critical thinking simultaneously to examine whether cultural background is a significant influence in performance. In addition, most of the past research on creativity and critical thinking have relied on dispositions or self-reports to measure the two skills and the investigation on the actual performance have been scarce. Lastly, past studies suggest that the acquisition and enhancement of these skills are influenced by various factors. Notably, college experience and skill-specific training have been found to improve both creativity and critical thinking. However, it is not yet clear how college experience aids in fostering creativity and critical thinking and which elements of college education are beneficial for enhancing these two skills. The cultural influence on creativity and critical thinking performance also needs further investigation.

The current study aimed to answer two questions related to this line of thought. How does culture influence creativity and critical thinking performance? How does college experience affect creativity and critical thinking? Based on past findings, we developed three hypotheses. First, we hypothesized that there is a positive association between critical thinking and creativity. Second, we suggest that college students from different countries have different levels of creativity and critical thinking. More specifically, we predicted that United States students would perform better than Chinese students on both creativity and critical thinking. Last, we hypothesized that having college research experience (through courses or research labs) will enhance creativity and critical thinking.

Materials and Methods

Participants.

The study was examined by the Internal Review Board by the host university in the United States and obtained an agreement from a partner university in China to meet the ethical standard of both countries.

Participants include 103 university students from the United States and 166 university students from Mainland China. Among all participants, 181 were female (67.3%), 54 were male (20.1%), non-binary or gender fluid ( n =3, 1.1%), and some did not report their gender ( n =31, 11.5%). The majority of participants majored in social sciences ( n =197, 73.2%). Other disciplines include business and management ( n =38, 14.1%), engineering and IT ( n =20, 7.4%), and sciences ( n =14, 5.2%). A Chi-square analysis was performed to see if the background in major was different between the American and Chinese samples. The results showed that the two samples are comparable in college majors, X 2 (3, 265) =5.50, p =0.138.

The American participants were recruited through campus recruitment flyers and a commercial website called Prolific (online survey distribution website). Ethnicities of the American participants were White ( n =44, 42.7%), Asian ( n =13, 12.6%), Black or African American ( n =11, 10.7%), Hispanic or Latinos ( n =5, 4.9%), and some did not report their ethnicity ( n =30, 29.1%). The Chinese participants were recruited through online recruitment flyers. All Chinese students were of Han ethnicity.

After reviewing and signing an online consent form, both samples completed a Qualtrics survey containing creativity and critical thinking measures.

Measurements

Steam related creative problem solving.

This is a self-designed measurement, examining participant’s divergent and convergent creative thinking in solving STEAM-related real-life problems. It includes three vignettes, each depicting an issue that needs to be resolved. Participants were given a choice to pick two vignettes to which they would like to provide possible solutions for. Participants were asked to provide their answers in two parts. In the first part, participants were asked to provide as many solutions as they can think of for the problem depicted (divergent). In the second part, participants were asked to choose one of the solutions they gave in the first part that they believe is the most creative and elaborate on how they would carry out the solution (convergent).

The responses for the first part of the problem (i.e., divergent) were scored based on fluency (number of solutions given). Each participant received a score on fluency by averaging the number of solutions given across three tasks. In order to score the originality of the second part of the solution (i.e., convergent), we invited four graduate students who studied creativity for at least 1year as expert judges to independently rate the originality of all solutions. The Cronbach’s Alpha of the expert ratings was acceptable for all three vignette solutions (0.809, 0.906, and 0.703). We then averaged the originality scores provided by the four experts to represent the originality of each solution. We then averaged the top three solutions as rated by the experts to represent the student’s performance on originality. In the end, each student received two scores on this task: fluency and originality.

Psychological Critical Thinking Exam

We adopted an updated PCT Exam developed by Lawson et al. (2015) , which made improvements to the original measure ( Lawson, 1999 ). We used PCT to measure the participants’ domain-specific critical thinking: critical thinking involved in the sciences. The initial assessment aimed to examine the critical thinking of psychology majors; however, the updated measure was developed so that it can be used to examine students’ critical thinking in a variety of majors. The split-half reliability of the revised measurement was 0.88, and test-retest reliability was 0.90 ( Lawson et al., 2015 ). Participants were asked to identify issues with a problematic claim made in two short vignettes. For example, one of the questions states:

Over the past few years, Jody has had several dreams that apparently predicted actual events. For example, in one dream, she saw a car accident and later that week she saw a van run into the side of a pickup truck. In another dream, she saw dark black clouds and lightning and 2days later a loud thunderstorm hit her neighborhood. She believes these events are evidence that she has a psychic ability to predict the future through her dreams. Could the event have occurred by chance? State whether or not there is a problem with the person’s conclusions and explain the problem (if there is one).

Responses were scored based on the rubric provided in the original measurement ( Lawson et al., 2015 ). If no problem was identified the participants would receive zero points. If a problem was recognized but misidentified, the participants would receive one point. If the main problem was identified and other less relevant problems were identified, the participants received two points. If participants identified only the main problem, they received three points. Following the rubric, four graduate students independently rated the students’ critical thinking task. The Cronbach’s Alpha of the expert ratings was acceptable for both vignettes (0.773 and 0.712). The average of the four scores given by the experts was used as the final score for the participants.

California Critical Thinking Skills Test

This objective measure of critical thinking was developed by Facione and Facione (1994) . We used CCT to measure a few of the multidimensions of critical thinking such as evaluation, logical reasoning, and probability thinking. Five sample items provided from Insight Assessment were used instead of the standard 40-min long CCT. Participants were presented with everyday scenarios with 4–6 answer choices. Participants were asked to make an accurate and complete interpretation of the question in order to correctly answer the question by choosing the right answer choice (each correct answer was worth one point). This test is commonly used to measure critical thinking, and previous research has reported its reliability as r =0.86 ( Hariri and Bagherinejad, 2012 ).

Sternberg Scientific Inquiry and Reasoning

This measure was developed by Sternberg and Sternberg (2017) as an assessment of scientific reasoning. We used this assessment as a domain-specific assessment to measure participants’ scientific creativity (generating testable hypotheses) and scientific critical thinking involved in generating experiments. For this two-part measure, participants were asked to read two short vignettes. For one of the vignettes, participants were asked to generate as many hypotheses as possible to explain the events described in the vignette. For the other, create an experiment to test the hypothesis mentioned in the vignette.

After carefully reviewing the measurement, we notice that the nature of the tasks in the first part of this measure (hypothesis generation) relied on heuristics, requiring participants to engage in divergent thinking. The number of valid hypotheses provided (i.e., fluency) was used to represent the performance of this task. We, therefore, deem that this part measures creativity. In contrast, the second part of the measure, experiment generation, asked participants to use valid scientific methods to design an experiment following the procedure of critical thinking such as evaluation, problem-solving, and task evaluation. Its scoring also followed algorithms so that a correct answer could be achieved. For the above reasons, we believe hypotheses generation is a measurement of creativity and experiment generation is a measurement for critical thinking.

Based on the recommended scoring manual, one graduate student calculated the fluency score from the hypothesis generation measurement. Four experts read through all students’ responses to the experiment generation. They discussed a rubric on how to score these responses, using a four-point scale, with a “0” representing no response or wrong response, a “1” representing partially correct, a “2” representing correct response. An additional point (the three points) was added if the participant provided multiple design methods. Based on the above rubric, the four experts independently scored this part of the questionnaire. The Cronbach’s Alpha of the four expert ratings was 0.792. The average score of the four judges was used to represent their critical thinking scores on this task.

College Experience Survey

Participants were asked about their past research experience, either specifically in psychology or in general academia. Participants were asked to choose between three choices: no research experience, intermediate research experience (i.e., research work for class, research work for lab), and advanced research experience (i.e., professional research experience, published works).

Demographic and Background Questionnaire

Series of standard demographic questions were asked, including participants’ age, gender, and ethnicity.

We performed a Pearson correlation to examine the relationship between creativity and critical thinking (the two-c), which include performances on three measures on creativity ( creativity originality , creativity fluency , and hypothesis generation ) and three measures on critical thinking ( experiment generation , CCT , and PCT ).

Most of the dependent variables had a significantly positive correlation. The only insignificant correlation was found between Sternberg hypothesis generation and CCT, r (247) =0.024, p =0.708 (see Table 1 ).

www.frontiersin.org

Table 1 . Correlation coefficients for study variables.

Confirmatory factor analysis (CFA) was conducted by applying SEM through AMOS 21 software program and the maximum likelihood method. One-factor and two-factor models have been analyzed, respectively (see Figure 1 ).

www.frontiersin.org

Figure 1 . The comparison of the two confirmatory factor analysis (CFA) models: one-factor vs. two-factor.

As it is demonstrated in Table 2 , the value ranges of the most addressed fit indices used in the analysis of SEM are presented. Comparing two models, χ 2 /df of the two-factor model is in a good fit, while the index of the one-factor model is in acceptable fit. The comparison of the two models suggest that the two-factor model is a better model than the one-factor model.

www.frontiersin.org

Table 2 . Recommended values for evaluation and the obtained values.

Cross-Cultural Differences in Critical Thinking and Creativity

We conducted a 2 (Country: the United States vs. China)×2 (Two-C: Creativity and Critical Thinking) ANOVA to investigate the cultural differences in critical thinking and creativity. We averaged scores of three critical thinking measurement ( experiment generation , PCT , and CCT ) to represent critical thinking and averaged three creativity scores ( creativity originality , creativity fluency , and hypothesis generation ).

This analysis revealed a significant main effect for the type of thinking (i.e., creative vs. critical thinking), F (1,247) =464.77, p <0.01, η p 2 =0.653. Moreover, there was a significant interaction between country (i.e., the United States vs. China) and type of thinking, F (1,247) =62.00, p <0.01, η p 2 =0.201. More specifically, Chinese students ( M =1.32, SD =0.59) outperformed American students ( M =1.02, SD =0.44) on critical thinking. In contrast, American students ( M =2.59, SD =1.07) outperformed Chinese students ( M =2.05, SD =0.83) on creativity.

Influence of Research Experience on Critical Thinking and Creativity

The last hypothesis states that having college research experience (through courses or research lab) would enhance students’ creativity and critical thinking from both countries. We performed a 2 (Two-C: Creativity and Critical Thinking)×2 (Country: the United States vs. China)×3 (Research Experience: Advanced vs. Some vs. No) ANOVA to test this hypothesis. This analysis revealed a significant main effect for research experience, F (2,239) =4.05, p =0.019, η p 2 =0.033. Moreover, there was a significant interaction between country (i.e., the United States vs. China) and research experience, F (2,239) =5.77, p =0.004, η p 2 =0.046. In addition, there was a three-way interaction among country, two-C, and research experience. More specifically, with an increase of research experience for American students, both critical thinking and creativity improved. In contrast, for Chinese students, the impact of research experience was not significant for creativity. However, some research experience positively impacted Chinese students’ critical thinking (see Figure 2 ).

www.frontiersin.org

Figure 2 . Estimated marginal means of Two-C for the United States and Chinese samples.

The current study aimed to investigate the relationship between creativity and critical thinking, how culture influences creativity and critical thinking, and how college research experience affects creativity and critical thinking. Our results supported the first hypothesis regarding the positive correlation among all of the dependent variables. The mean correlation between the measures of creativity and critical thinking was 0.230. This result was in line with the findings from previous research ( Gibson et al., 1968 ; Gadzella and Penland, 1995 ; Siburian et al., 2019 ; Akpur, 2020 ; Qiang et al., 2020 ). Moreover, our confirmatory factor analysis yielded similar results as analysis of Wechsler et al. (2018) and Akpur (2020) and provides more evidence of the relative independence between creativity and critical thinking. We found that at the latent variable level, the two skills are highly correlated to each other ( r =0.84). In addition, we found that although the one-factor model was an acceptable fit, a two-factor model was a better fit for analysis. This result suggests that despite the correlation between creativity and critical thinking, the two skills should be studied as separate factors for an appropriate and comprehensive analysis.

The results of this study partially confirmed our second hypothesis and replicated the findings from past studies ( Niu et al., 2007 ; Lun et al., 2010 ; Wong and Niu, 2013 ; Tang et al., 2015 ). As predicted, there was a significant main effect for culture in students’ performance for all six measures in the two-C analysis model. United States students performed better than Chinese students in all three creativity measures, and Chinese students performed better than United States students in all critical thinking measures. Given the diversity in the type of measures used in this study, the results suggest that United States and Chinese students’ performance aligns with the stereotype belief found in study of Wong and Niu (2013) . The findings from the current study suggest that the stereotype belief observed in both United States and Chinese students (United States students generally perform better on creativity tasks, while Chinese students perform typically better on critical thinking tasks) is not entirely unfounded. Furthermore, the clear discrepancy in performance between United States and Chinese students provides more evidence to suggest that creativity and critical thinking are relatively autonomous skills. Although, a high correlation between these two skills was found in our study, the fact that students from two different cultures have two different development trajectories in critical thinking and creativity suggests that these two skills are relatively autonomous.

Lastly, the results also confirmed our third hypothesis, that is, college research experience did have a positive influence on students’ creativity and critical thinking. Compared to students with no research experience, students with some research experience performed significantly better in all measures of creativity and critical thinking. This finding is consistent with the previous literature ( Mill et al., 1994 ; Penningroth et al., 2007 ; Stevens and Witkow, 2014 ; Stevens et al., 2016 ; Kuo et al., 2018 ). The result of our study suggests that college research experience is significant to enhance both creativity and critical thinking. As research experience becomes a more essential component of college education, our results suggest that it not only can add credential for applying to graduate school or help students learn skills specific to research, but also help students enhance both creativity and critical thinking. Furthermore, it is worth noting that this nature held true for both Chinese and American students. To our knowledge, this is a first investigation examining the role of research experience in both creativity and critical thinking cross-culturally.

In addition to the report of our findings, we would like to address some limitations of our study. First, we would like to note that this is a correlational and cross-sectional study. A positive correlation between research experience and the two dependent variables does not necessarily mean causation. Our results indeed indicate a positive correlation between research experience and the two-C variables; however, we are not sure of the nature of this relationship. It is plausible that students with higher creativity and critical thinking skills are more engaged in research as much as it is to argue in favor of a reversed directional relationship. Second, we would like to note the sample bias in our study. Majority of our participants were female, majoring in the social sciences and a relatively high number of participants chose not to report their gender. Third, we would like to note that our study did not measure all creativity and critical thinking dimensions, we discussed in the introduction. Instead, we focused on a few key dimensions of creativity and critical thinking. Our primary focus was on divergent thinking, convergent thinking, and scientific creativity as well as few key dimensions of critical thinking (evaluation, logical reasoning, and probability thinking), scientific critical thinking involved in problem solving and hypothesis testing. Moreover, our results do not show what specific components of research training are beneficial for the enhancement of creativity and critical thinking.

For future research, a longitudinal design involving a field experiment will help investigate how different research training components affect the development of creativity and critical thinking. In addition, a cross-cultural study can further examine how and why the students from different cultures differ from each other in the development of these two potentials. As such, it might shed some light on the role of culture in creativity and critical thinking.

Conclusion and Implication

The result of our study provides few insights to the study of creativity and critical thinking. First, creativity and critical thinking are a different construct yet highly correlated. Second, whereas Americans perform better on creativity measures, Chinese perform better on critical thinking measures. Third, for both American and Chinese students, college research experience is a significant influence on the enhancement of creativity and critical thinking. As research experience becomes more and more essential to college education, its role can not only add professional and postgraduate credentials, but also help students enhance both creativity and critical thinking.

Based on our results, we recommend that research training be prioritized in higher education. Moreover, each culture has strengths to develop one skill over the other, hence, each culture could invest more in developing skills that were found to be weaker in our study. Eastern cultures can encourage more creativity and Western cultures can encourage more critical thinking.

To conclude, we would like to highlight that, although recognized globally as essential skills, methods to foster creativity and critical thinking skills and understanding creativity and critical thinking as a construct requires further research. Interestingly, our study found that experience of research itself can help enhance creativity and critical thinking. Our study also aimed to expand the knowledge of creativity and critical thinking literature through an investigation of the relationship of the two variables and how cultural background influences the performance of these two skills. We hope that our findings can provide insights for researchers and educators to find constructive methods to foster students’ essential 21st century skills, creativity and critical thinking, to ultimately enhance their global competence and life success.

Data Availability Statement

The original contributions presented in the study are included in the article/supplementary material, further inquiries can be directed to the corresponding author.

Ethics Statement

The studies involving human participants were reviewed and approved by Institutional Review Board at Pace University. The participants provided their informed consent online prior to participating in the study.

Author Contributions

All authors listed have made a substantial, direct, and intellectual contribution to the work, and approved it for publication.

Conflict of Interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s Note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

This work was supported by the International Joint Research Project of Faculty of Education, Beijing Normal University (ICER201904), and a scholarly research funding by Pace University.

Akpur, U. (2020). Critical, reflective, creative thinking and their reflections on academic achievement. Think. Skills Creat. 37:100683. doi: 10.1016/j.tsc.2020.100683

CrossRef Full Text | Google Scholar

Amabile, T. M. (1982). Social psychology of creativity: a consensual assessment technique. J. Pers. Soc. Psychol. 43, 997–1013. doi: 10.1037/0022-3514.43.5.997

Amabile, T. M. (1996). Creativity in Context: Update to “The Social Psychology of Creativity. ” Boulder, CO: Westview Press.

Google Scholar

American Psychological Association (2016). Guidelines for the undergraduate psychology major: version 2.0. Am. Psychol. 71, 102–111. doi: 10.1037/a0037562

PubMed Abstract | CrossRef Full Text | Google Scholar

Barbot, B., Besançon, M., and Lubart, T. (2011). Assessing creativity in the classroom. Open Educ. J. 4, 58–66. doi: 10.2174/1874920801104010058

Barron, F., and Harrington, D. M. (1981). Creativity, intelligence, and personality. Annu. Rev. Psychol. 32, 439–476. doi: 10.1146/annurev.ps.32.020181.002255

Bechtoldt, M., Choi, H., and Nijstad, A. B. (2012). Individuals in mind, mates by heart: individualistic self-construal and collective value orientation as predictors of group creativity. J. Exp. Soc. Psychol. 48, 838–844. doi: 10.1016/j.jesp.2012.02.014

Bensley, D. A., and Murtagh, M. P. (2012). Guidelines for a scientific approach to critical thinking assessment. Teach. Psychol. 39, 5–16. doi: 10.1177/0098628311430642

Boyack, K. W., Klavans, R., and Börner, K. (2005). Mapping the backbone of science. Scientometrics 64, 351–374. doi: 10.1007/s11192-005-0255-6

Byrge, C., and Tang, C. (2015). Embodied creativity training: effects on creative self-efficacy and creative production. Think. Skills Creat. 16, 51–61. doi: 10.1016/j.tsc.2015.01.002

Carson, S. H., Peterson, J. B., and Higgins, D. M. (2005). Reliability, validity, and factor structure of the creative achievement questionnaire. Creat. Res. J. 17, 37–50. doi: 10.1207/s15326934crj1701_4

Corazza, G. E., and Lubart, T. (2021). Intelligence and creativity: mapping constructs on the space-time continuum. J. Intell. 9:1. doi: 10.3390/jintelligence9010001

Csikszentmihalyi, M. (1988). “Society, culture, and person: A systems view of creativity” in The Nature of Creativity: Contemporary Psychological Perspectives. ed. Sternberg, R. J. (New York: Cambridge University Press), 325–339.

Csikszentmihalyi, M. (1999). “Implications of a systems perspective for the study of creativity” in Handbook of Creativity. ed. Sternberg, R. J. (New York, NY: Cambridge University Press), 313–335.

Diedrich, J., Jauk, E., Silvia, P. J., Gredlein, J. M., Neubauer, A. C., and Benedek, M. (2018). Assessment of real-life creativity: the inventory of creative activities and achievements (ICAA). Psychol. Aesthet. Creat. Arts 12, 304–316. doi: 10.1037/aca0000137

Ennis, R. H. (1987). “A taxonomy of critical thinking dispositions and abilities” in Teaching Thinking Skills: Theory and Practice. eds. Baron, J. B., and Sternberg, R. J. (New York, NY: W H Freeman/Times Books/Henry Holt & Co.), 9–26.

Ennis, R. H., Millman, J., and Tomko, T. N. (1985). Cornell Critical Thinking Test Level x and Level z Manual. 3rd Edn . Pacific Grove, CA: Midwest Publications.

Facione, P. A., and Facione, N. (1994). The California Critical Thinking Skills Test: Test Manual. Millbrae, CA: California Academic Press.

Gadzella, B. M., and Penland, E. (1995). Is creativity related to scores on critical thinking? Psychol. Rep. 77, 817–818. doi: 10.2466/pr0.1995.77.3.817

Gibson, J. W., Kibler, R. J., and Barker, L. L. (1968). Some relationships between selected creativity and critical thinking measures. Psychol. Rep. 23, 707–714. doi: 10.2466/pr0.1968.23.3.707

Glaser, E. M. (1941). An Experiment in the Development of Critical Thinking. New York, NY: Teachers College, Columbia University.

Glassner, A., and Schwartz, B. (2007). What stands and develops between creative and critical thinking? Argumentation? Think. Skills Creat. 2, 10–18. doi: 10.1016/j.tsc.2006.10.001

Gough, H. G. (1979). A creative personality scale for the adjective check list. J. Pers. Soc. Psychol. 37, 1398–1405. doi: 10.1037/0022-3514.37.8.1398

Guilford, J. P. (1956). The structure of intellect. Psychol. Bull. 53, 267–293. doi: 10.1037/h0040755

Guilford, J. P. (1986). Creative Talents: Their Nature, Uses and Development. Buffalo, NY: Bearly Ltd.

Guilford, J. P., Christensen, P. R., Merrifield, P. R., and Wilson, R. C. (1960). Alternate Uses Manual. Menlo Park, CA: Mind Garden, Inc.

Guo, J., and Woulfin, S. (2016). Twenty-first century creativity: an investigation of how the partnership for 21st century instructional framework reflects the principles of creativity. Roeper Rev. 38, 153–161. doi: 10.1080/02783193.2016.1183741

Halpern, D. F. (1984). Thought and Knowledge: An Introduction to Critical Thinking. Hillsdale, NJ: Erlbaum.

Halpern, D. F. (1999). Teaching for critical thinking: helping college students develop the skills and dispositions of a critical thinker. New Dir. Teach. Learn. 1999, 69–74. doi: 10.1002/tl.8005

Hariri, N., and Bagherinejad, Z. (2012). Evaluation of critical thinking skills in students of health faculty, Mazandaran university of medical sciences. J. Mazand. Univ. Med. Sci. 21, 166–173.

Hocevar, D., and Michael, W. B. (1979). The effects of scoring formulas on the discriminant validity of tests of divergent thinking. Educ. Psychol. Meas. 39, 917–921. doi: 10.1177/001316447903900427

Huber, C. R., and Kuncel, N. R. (2016). Does college teach critical thinking? A meta-analysis. Rev. Educ. Res. 86, 431–468. doi: 10.3102/0034654315605917

Hunter, S. T., Bedell, K. E., and Mumford, M. D. (2007). Climate for creativity: a quantitative review. Creat. Res. J. 19, 69–90. doi: 10.1080/10400410709336883

Jellen, H. U., and Urban, K. (1989). Assessing creative potential worldwide: the first cross-cultural application of the test for creative thinking–drawing production (TCT–DP). Gifted Educ. 6, 78–86. doi: 10.1177/026142948900600204

Kim, K. H. (2005). Can only intelligent people be creative? A meta-analysis. J. Sec. Gifted Educ. 16, 57–66. doi: 10.4219/jsge-2005-473

Korn, M. (2014). Bosses Seek ‘Critical Thinking,’ but What Is That? Wall Street Journal. Available at: https://online.wsj.com/articles/bosses-seek-critical-thinking-but-what-is-that-1413923730 (Accessed October 18, 2021).

Kuo, H.-C., Tseng, Y.-C., and Yang, Y.-T. C. (2018). Promoting college student's learning motivation and creativity through a STEM interdisciplinary PBL human-computer interaction system design and development course. Think. Skills Creat. 31, 1–10. doi: 10.1016/j.tsc.2018.09.001

Lamont, P. (2020). The construction of "critical thinking": between how we think and what we believe. Hist. Psychol. 23, 232–251. doi: 10.1037/hop0000145

Land, M. H. (2013). Full STEAM ahead: the benefits of integrating the arts into STEM. Compl. Adapt. Syst. 20, 547–552. doi: 10.1016/j.procs.2013.09.317

Lawson, T. J. (1999). Assessing psychological critical thinking as a learning outcome for psychology majors. Teach. Psychol. 26, 207–209. doi: 10.1207/S15328023TOP260311

Lawson, T. J., Jordan-Fleming, M. K., and Bodle, J. H. (2015). Measuring psychological critical thinking. Teach. Psychol. 42, 248–253. doi: 10.1177/0098628315587624

Lee, H.-J., Lee, J., Makara, K. A., Fishman, B. J., and Hong, Y. I. (2015). Does higher education foster critical and creative learners? An exploration of two universities in South Korea and the USA. High. Educ. Res. Dev. 34, 131–146. doi: 10.1080/07294360.2014.892477

Ling, M. K. D., and Loh, S. C. (2020). Relationship of creativity and critical thinking to pattern recognition among Singapore private school students. J. Educ. Res. 113, 59–76. doi: 10.1080/00220671.2020.1716203

Liou, S., and Lan, X. (2018). Situational salience of norms moderates cultural differences in the originality and usefulness of creative ideas generated or selected by teams. J. Cross-Cult. Psychol. 49, 290–302. doi: 10.1177/0022022116640897

Lopatto, D. (2004). Survey of undergraduate research experiences (SURE): first findings. Cell Biol. Educ. 3, 270–277. doi: 10.1187/cbe.04-07-0045

Lopatto, D. (2008). “Exploring the benefits of undergraduate research experiences: The SURE survey” in Creating Effective Undergraduate Research Programs in Science eds. R. Taraban and R. L. Blanton (New York: Teachers College Press), 112–132.

Lubart, T., Zenasni, F., and Barbot, B. (2013). Creative potential and its measurement. Int. J. Talent Dev. Creat. 1, 41–50.

Lun, V. M.-C., Fischer, R., and Ward, C. (2010). Exploring cultural differences in critical thinking: is it about my thinking style or the language I speak? Learn. Individ. Differ. 20, 604–616. doi: 10.1016/j.lindif.2010.07.001

Manalo, E., Kusumi, T., Koyasu, M., Michita, Y., and Tanaka, Y. (2013). To what extent do culture-related factors influence university students' critical thinking use? Think. Skills Creat. 10, 121–132. doi: 10.1016/j.tsc.2013.08.003

Mill, D., Gray, T., and Mandel, D. R. (1994). Influence of research methods and statistics courses on everyday reasoning, critical abilities, and belief in unsubstantiated phenomena. Can. J. Behav. Sci. 26, 246–258. doi: 10.1037/0008-400X.26.2.246

Mueller, J. F., Taylor, H. K., Brakke, K., Drysdale, M., Kelly, K., Levine, G. M., et al. (2020). Assessment of scientific inquiry and critical thinking: measuring APA goal 2 student learning outcomes. Teach. Psychol. 47, 274–284. doi: 10.1177/0098628320945114

National Education Association (2012). Preparing 21st Century Students for a Global Society: An educator's Guide to the "Four Cs". Alexandria, VA: National Education Association.

Ng, A.K. (2001). Why Asians Are less Creative than Westerners. Singapore: Prentice Hall.

Nisbett, R. E., Peng, K., Choi, I., and Norenzayan, A. (2001). Culture and systems of thought: holistic versus analytic cognition. Psychol. Rev. 108, 291–310. doi: 10.1037/0033-295X.108.2.291

Niu, L., Behar-Horenstein, L. S., and Garvan, C. W. (2013). Do instructional interventions influence college students' critical thinking skills? A meta-analysis. Educ. Res. Rev. 9, 114–128. doi: 10.1016/j.edurev.2012.12.002

Niu, W., and Sternberg, R. J. (2001). Cultural influences on artistic creativity and its evaluation. Int. J. Psychol. 36, 225–241. doi: 10.1080/00207590143000036

Niu, W., Zhang, J. X., and Yang, Y. (2007). Deductive reasoning and creativity: a cross-cultural study. Psychol. Rep. 100, 509–519. doi: 10.2466/pr0.100.2.509-519

Paul, R., and Elder, L. (2019). The Miniature Guide to Critical Thinking Concepts and Tools. 8th Edn . Lanham, MD: Foundation for Critical Thinking.

Penningroth, S. L., Despain, L. H., and Gray, M. J. (2007). A course designed to improve psychological critical thinking. Teach. Psychol. 34, 153–157. doi: 10.1080/00986280701498509

Qiang, R., Han, Q., Guo, Y., Bai, J., and Karwowski, M. (2020). Critical thinking disposition and scientific creativity: the mediating role of creative self-efficacy. J. Creat. Behav. 54, 90–99. doi: 10.1002/jocb.347

Rockstuhl, T., and Ng, K.-Y. (2008). The effects of cultural intelligence on interpersonal trust in multicultural teams. In Handbook of Cultural Intelligence: Theory, Measurement, and Applications. (eds.) Ang, S., and Dyne, L.Van. Armonk, NY: M.E. Sharpe. 206–220.

Rodriguez-Boerwinkle, R., Silvia, P., Kaufman, J. C., Reiter-Palmon, R., and Puryear, J. S. (2021). Taking inventory of the creative behavior inventory: an item response theory analysis of the CBI. [Preprint]. doi: 10.31234/osf.io/b7cfd

Ross, D., Loeffler, K., Schipper, S., Vandermeer, B., and Allan, G. M. (2013). Do scores on three commonly used measures of critical thinking correlate with academic success of health professions trainees? A systematic review and meta-analysis. Acad. Med. 88, 724–734. doi: 10.1097/ACM.0b013e31828b0823

Runco, M. A., and Albert, R. S. (1986). The threshold theory regarding creativity and intelligence: an empirical test with gifted and nongifted children. Creat. Child Adult Q. 11, 212–218.

Schermelleh-Engel, K., Moosbrugger, H., and Müller, H. (2003). Evaluating the fit of structural equation models: Tests of significance and descriptive goodness-of-fit measures. Methods of Psychological Research 8, 23–74.

Scott, S. G., and Bruce, R. A. (1994). Determinants of innovative behavior: a path model of individual innovation in the workplace. Acad. Manag. J. 37, 580–607.

Scott, G., Leritz, L. E., and Mumford, M. D. (2004). The effectiveness of creativity training: a quantitative review. Creat. Res. J. 16, 361–388. doi: 10.1080/10400410409534549

Scriven, M., and Paul, R. (1987). Defining Critical Thinking. In 8th Annual International Conference on Critical Thinking and Education Reform ; August 2–5, 1987.

Siburian, J., Corebima, A. D., Ibrohim,, and Saptasari, M. (2019). The correlation between critical and creative thinking skills on cognitive learning results. Eurasian J. Educ. Res. 19, 99–114. doi: 10.14689/EJER.2019.81.6

Sternberg, R. J., and Halpern, D. F. (eds.) (2020). Critical Thinking in Psychology. 2nd Edn . Cambridge: Cambridge University Press.

Sternberg, R. J., and Lubart, T. I. (1999). “The concept of creativity: prospects and paradigms” in Handbook of Creativity. ed. Sternberg, R. J. (New York, NY: Cambridge University Press), 3–15.

Sternberg, R. J., and Sternberg, K. (2017). Measuring scientific reasoning for graduate admissions in psychology and related disciplines. J. Intell. 5, 29. doi: 10.3390/jintelligence5030029

Stevens, C., and Witkow, M. R. (2014). Training scientific thinking skills: evidence from an MCAT 2015 aligned classroom module. Teach. Psychol. 41, 115–121. doi: 10.1177/0098628314530341

Stevens, C., Witkow, M. R., and Smelt, B. (2016). Strengthening scientific reasoning skills in introductory psychology: evidence from community college and liberal arts classrooms. Scholarsh. Teach. Learn. Psychol. 2, 245–260. doi: 10.1037/stl0000070

Tang, M., Werner, C., Cao, G., Tumasjan, A., Shen, J., Shi, J., et al. (2015). Creative expression and its evaluation on work-related verbal tasks: a comparison of Chinese and German samples. J. Creat. Behav. 52, 91–103. doi: 10.1002/jocb.134

Torrance, E. P. (1966). The Torrance Tests of Creative Thinking-Norms-Technical Manual Research Edition-Verbal Tests, Forms A and B Figural Tests, Forms A and B. Princeton, NJ: Personnel Press.

Torrance, E. P. (1974). Torrance Tests of Creativity Thinking: Norms–Technical Manual. Lexington, MA: Ginn.

Torrance, E. P. (1988). “The nature of creativity as manifest in its testing” in The Nature of Creativity. ed. Sternberg, R. J. (New York: Cambridge University Press), 43–73.

Tsui, L. (1998). Fostering Critical Thinking in College Students: A Mixed-Methods Study of Influences Inside and Outside of the Classroom (Doctoral dissertation). Available from ProQuest Dissertations and Theses database. (UMI No. 9917229)

Wallach, M. A., and Kogan, N. (1965). Modes of Thinking in Young Children: A Study of the Creativity-Intelligence Distinction. New York: Holt, Rinehart & Winston.

Watson, G. B., and Glaser, E. M. (1938). The Watson-Glaser Tests of Critical Thinking. New York, NY: Institute for Propaganda Analysis.

Watson, G. B., and Glaser, E. M. (1980). WGCTA Watson-Glaser Critical Thinking Appraisal Manual: Forms A and B. San Antonio: The Psychological Corporation.

Wechsler, S. M., Saiz, C., Rivas, S. F., Vendramini, C. M. M., Almeida, L. S., Mundim, M. C., et al. (2018). Creative and critical thinking: independent or overlapping components? Think. Skills Creat. 27, 114–122. doi: 10.1016/j.tsc.2017.12.003

Wong, R., and Niu, W. (2013). Cultural difference in stereotype perceptions and performances in nonverbal deductive reasoning and creativity. J. Creat. Behav. 47, 41–59. doi: 10.1002/jocb.22

Zydney, A. L., Bennett, J. S., Shahid, A., and Bauer, K. W. (2002). Faculty perspectives regarding the undergraduate research experience in science and engineering. J. Eng. Educ. 91, 291–297. doi: 10.1002/j.2168-9830.2002.tb00706.x

Keywords: creativity, critical thinking, cross-cultural differences, college, research experience

Citation: Park JH, Niu W, Cheng L and Allen H (2021) Fostering Creativity and Critical Thinking in College: A Cross-Cultural Investigation. Front. Psychol . 12:760351. doi: 10.3389/fpsyg.2021.760351

Received: 18 August 2021; Accepted: 11 October 2021; Published: 11 November 2021.

Reviewed by:

Copyright © 2021 Park, Niu, Cheng and Allen. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY) . The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

*Correspondence: Li Cheng, [email protected]

† These authors have contributed equally to this work and share first authorship

Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Logo for Milne Publishing

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

Part Two: You are the President and CEO of You

Thinking Critically and Creatively

Dr. andrew robert baker.

Critical and creative thinking skills are perhaps the most fundamental skills involved in making judgments and solving problems. They are some of the most important skills I have ever developed. I use them everyday and continue to work to improve them both.

The ability to think critically about a matter—to analyze a question, situation, or problem down to its most basic parts—is what helps us evaluate the accuracy and truthfulness of statements, claims, and information we read and hear. It is the sharp knife that, when honed, separates fact from fiction, honesty from lies, and the accurate from the misleading. We all use this skill to one degree or another almost every day. For example, we use critical thinking every day as we consider the latest consumer products and why one particular product is the best among its peers. Is it a quality product because a celebrity endorses it? Because a lot of other people may have used it? Because it is made by one company versus another? Or perhaps because it is made in one country or another? These are questions representative of critical thinking.

The academic setting demands more of us in terms of critical thinking than everyday life. It demands that we evaluate information and analyze a myriad of issues. It is the environment where our critical thinking skills can be the difference between success and failure. In this environment we must consider information in an analytical, critical manner. We must ask questions—What is the source of this information? Is this source an expert one and what makes it so? Are there multiple perspectives to consider on an issue? Do multiple sources agree or disagree on an issue? Does quality research substantiate information or opinion? Do I have any personal biases that may affect my consideration of this information? It is only through purposeful, frequent, intentional questioning such as this that we can sharpen our critical thinking skills and improve as students, learners, and researchers. Developing my critical thinking skills over a twenty year period as a student in higher education enabled me to complete a quantitative dissertation, including analyzing research and completing statistical analysis, and earning my Ph.D. in 2014.

While critical thinking analyzes information and roots out the true nature and facets of problems, it is creative thinking that drives progress forward when it comes to solving these problems. Exceptional creative thinkers are people that invent new solutions to existing problems that do not rely on past or current solutions. They are the ones who invent solution C when everyone else is still arguing between A and B. Creative thinking skills involve using strategies to clear the mind so that our thoughts and ideas can transcend the current limitations of a problem and allow us to see beyond barriers that prevent new solutions from being found.

Brainstorming is the simplest example of intentional creative thinking that most people have tried at least once. With the quick generation of many ideas at once we can block-out our brain’s natural tendency to limit our solution-generating abilities so we can access and combine many possible solutions/thoughts and invent new ones. It is sort of like sprinting through a race’s finish line only to find there is new track on the other side and we can keep going, if we choose. As with critical thinking, higher education both demands creative thinking from us and is the perfect place to practice and develop the skill. Everything from word problems in a math class, to opinion or persuasive speeches and papers, call upon our creative thinking skills to generate new solutions and perspectives in response to our professor’s demands. Creative thinking skills ask questions such as—What if? Why not? What else is out there? Can I combine perspectives/solutions? What is something no one else has brought-up? What is being forgotten/ignored? What about ______? It is the opening of doors and options that follows problem-identification.

Consider an assignment that required you to compare two different authors on the topic of education and select and defend one as better. Now add to this scenario that your professor clearly prefers one author over the other. While critical thinking can get you as far as identifying the similarities and differences between these authors and evaluating their merits, it is creative thinking that you must use if you wish to challenge your professor’s opinion and invent new perspectives on the authors that have not previously been considered.

So, what can we do to develop our critical and creative thinking skills? Although many students may dislike it, group work is an excellent way to develop our thinking skills. Many times I have heard from students their disdain for working in groups based on scheduling, varied levels of commitment to the group or project, and personality conflicts too, of course. True—it’s not always easy, but that is why it is so effective. When we work collaboratively on a project or problem we bring many brains to bear on a subject. These different brains will naturally develop varied ways of solving or explaining problems and examining information. To the observant individual we see that this places us in a constant state of back and forth critical/creative thinking modes.

For example, in group work we are simultaneously analyzing information and generating solutions on our own, while challenging other’s analyses/ideas and responding to challenges to our own analyses/ideas. This is part of why students tend to avoid group work—it challenges us as thinkers and forces us to analyze others while defending ourselves, which is not something we are used to or comfortable with as most of our educational experiences involve solo work. Your professors know this—that’s why we assign it—to help you grow as students, learners, and thinkers!

Foundations of Academic Success: Words of Wisdom Copyright © 2015 by Thomas Priester is licensed under a Creative Commons Attribution 4.0 International License , except where otherwise noted.

Smart Courses

Currently Empty: $ 0.00

Continue shopping

  • Development

Enhancing Creativity and Critical Thinking Skills: A Comprehensive Guide

Introduction.

In today’s rapidly evolving world, creativity and critical thinking have become invaluable skills for navigating the complexities of life. Whether you’re a student, professional, or simply someone seeking personal growth, developing these skills can greatly enhance your problem-solving abilities, decision-making processes, and overall mental agility. In this comprehensive guide, we will explore various strategies and techniques to foster creativity and critical thinking, empowering you to approach challenges with a fresh perspective and uncover innovative solutions.

Table of Contents

Understanding Creativity and Critical Thinking

Creativity refers to the ability to generate original ideas, approaches, and solutions. It involves thinking beyond conventional boundaries, connecting seemingly unrelated concepts, and exploring new perspectives. On the other hand, critical thinking is the process of analyzing and evaluating information, arguments, and situations in a logical and systematic manner. It involves questioning assumptions, considering multiple viewpoints, and making informed judgments based on evidence and reasoning.

The Importance of Creativity and Critical Thinking

Creativity and critical thinking are vital skills that have a profound impact on various aspects of our lives. In academic settings, they promote deeper understanding, encourage independent thinking, and foster innovative problem-solving abilities. In professional environments, they enable individuals to adapt to changing circumstances, identify opportunities, and make sound decisions. Moreover, in everyday life, these skills empower us to navigate complex challenges, effectively communicate our ideas, and lead fulfilling lives.

Strategies for Enhancing Creativity and Critical Thinking

Embracing curiosity and open-mindedness.

Curiosity is the driving force behind creativity and critical thinking. Cultivating a sense of wonder and actively seeking knowledge about diverse subjects expands our mental horizons and stimulates new ideas. By maintaining an open mind, we become receptive to different perspectives and are more likely to challenge assumptions, explore alternatives, and arrive at novel solutions.

Engaging in Diverse Perspectives

Exposing ourselves to a range of viewpoints and experiences broadens our understanding and nurtures creativity and critical thinking. Actively seeking out diverse sources of information, engaging in discussions with people from different backgrounds, and embracing multicultural experiences can significantly enhance our ability to think critically and generate innovative ideas.

Practicing Reflective Thinking

Reflective thinking involves examining our thoughts, actions, and experiences with a critical lens. By intentionally reflecting on our successes, failures, and the lessons learned, we gain valuable insights that shape our future endeavors. Journaling, meditation, and engaging in meaningful conversations with mentors or peers are effective ways to cultivate reflective thinking.

Encouraging Brainstorming and Idea Generation

Brainstorming is a powerful technique for stimulating creativity and critical thinking. By creating a supportive environment that encourages free-flowing idea generation, we can unlock our imaginative potential. This process involves suspending judgment, allowing for unconventional ideas, and building upon the contributions of others. Collaboration and team-based brainstorming sessions can yield remarkable results by harnessing collective intelligence.

Seeking Feedback and Constructive Criticism

Seeking feedback from trusted sources can provide valuable insights and help refine our creative and critical thinking skills. Constructive criticism enables us to identify blind spots, overcome biases, and enhance the quality of our ideas and arguments. By actively seeking diverse feedback, we open ourselves to continuous improvement and personal growth.

Applying Creativity and Critical Thinking in Different Domains

Education and learning.

Creativity and critical thinking are essential for effective learning. Students who actively engage in these skills are better equipped to analyze information, develop logical arguments, and apply knowledge in real-world scenarios. Educators can facilitate creativity and critical thinking by designing interactive lessons, encouraging active participation, and providing opportunities for independent exploration.

Problem Solving in the Workplace

In today’s competitive job market, creativity and critical thinking are highly sought-after skills. Employers value individuals who can approach problems from different angles, propose innovative solutions, and adapt to rapidly changing circumstances. By leveraging creativity and critical thinking, employees can navigate complex challenges, improve efficiency, and contribute to the overall growth of their organizations.

Everyday Life Challenges

Creativity and critical thinking extend beyond academic and professional contexts. They empower us to approach everyday life challenges with resilience and resourcefulness. Whether it’s finding alternative routes during a traffic jam, coming up with unique gift ideas, or making informed decisions about personal finances, these skills enhance our ability to navigate various situations and seize opportunities.

Overcoming Barriers to Creativity and Critical Thinking

Fear of failure.

Fear of failure often hinders creative and critical thinking processes. To overcome this barrier, it’s important to reframe failure as a valuable learning experience. Embracing a growth mindset allows us to view setbacks as opportunities for growth and improvement. By acknowledging that failures are stepping stones to success, we become more open to taking risks and exploring new ideas.

Narrow-Mindedness and Biases

Narrow-mindedness and biases limit our ability to think critically and inhibit creativity. Recognizing our own biases and actively seeking diverse perspectives can help overcome this barrier. Engaging in empathy-building exercises, exploring opposing viewpoints, and fostering inclusive environments enable us to challenge our assumptions and broaden our perspectives.

Lack of Exposure to Diverse Ideas

Exposure to diverse ideas is crucial for stimulating creativity and critical thinking. Actively seeking out new experiences, exploring different cultures, and engaging with a variety of disciplines can break the monotony and expand our knowledge base. By embracing diversity in all its forms, we foster a rich environment for creative and critical exploration.

External Pressures and Time Constraints

External pressures and time constraints can stifle creativity and critical thinking. Prioritizing self-care, setting aside dedicated time for reflection, and establishing a supportive network can alleviate these challenges. Creating a conducive environment that allows for uninterrupted focus and creative expression is essential for nurturing these skills.

Cultivating a Creative and Critical Mindset

Embracing a growth mindset.

A growth mindset is the belief that intelligence and abilities can be developed through dedication and hard work. By adopting a growth mindset, we embrace challenges, persist in the face of obstacles, and see failures as opportunities for growth. This mindset fosters a sense of curiosity, resilience, and a willingness to experiment, ultimately enhancing creativity and critical thinking.

Developing a Habit of Continuous Learning

Continuous learning is the cornerstone of creativity and critical thinking. Cultivating a habit of seeking knowledge, exploring new fields, and staying updated with emerging trends nurtures our intellectual curiosity and broadens our perspectives. Embracing lifelong learning not only enhances our skills but also keeps us adaptable and open to new ideas and possibilities.

Engaging in Creative and Intellectual Pursuits

Engaging in creative and intellectual pursuits is an excellent way to exercise and enhance our creativity and critical thinking skills. Activities such as writing, painting, playing musical instruments, solving puzzles, or participating in debates and discussions provide avenues for self-expression, problem-solving, and exploring new ideas. By actively engaging in these pursuits, we unlock our creative potential and sharpen our critical thinking abilities.

Tools and Resources for Enhancing Creativity and Critical Thinking

Online courses and workshops.

Online platforms offer a wealth of courses and workshops designed to enhance creativity and critical thinking. Websites like Coursera, Udemy, and FutureLearn provide a wide range of options, from introductory courses to advanced programs. These resources offer structured learning experiences and opportunities to engage with instructors and fellow learners, facilitating the development of these skills.

Books and Reading Materials

Books and reading materials are invaluable sources for enhancing creativity and critical thinking. Authors such as Sir Ken Robinson, Daniel Kahneman, and Steven Johnson provide insights into the creative process, cognitive biases, and innovative thinking. Reading works from different genres, including fiction and non-fiction, exposes us to diverse perspectives and nurtures our intellectual curiosity.

Collaborative Platforms and Idea-sharing Communities

Collaborative platforms and idea-sharing communities foster a supportive environment for creativity and critical thinking. Platforms like GitHub, Stack Overflow, and TED Talks enable individuals to connect with like-minded individuals, share ideas, and collaborate on projects. Engaging with these communities not only provides exposure to diverse perspectives but also allows for valuable feedback and collaborative problem-solving.

Enhancing creativity and critical thinking is a continuous journey that opens doors to innovation, personal growth, and a deeper understanding of the world around us. By embracing curiosity, seeking diverse perspectives, practicing reflective thinking, and engaging in creative pursuits, we can cultivate these skills and apply them in various domains of our lives. Overcoming barriers, adopting a growth mindset, and utilizing available tools and resources further strengthen our creative and critical thinking abilities. Let us embark on this empowering journey of self-discovery, armed with the power of creativity and critical thinking.

Read More: For further insights into creativity and critical thinking, consider exploring the following resources:

  • The Harvard Business Review provides a wealth of articles and research papers on critical thinking, its applications, and its impact on decision-making processes.
  • TED Talks features engaging talks by experts from various fields, sharing their insights and experiences related to critical thinking and its significance in today’s world.

Q: How can creativity and critical thinking benefit me in my professional life? A: Creativity and critical thinking are highly valued in the professional sphere. They enable individuals to adapt to changing circumstances, identify innovative solutions, and make informed decisions. These skills can contribute to professional growth, open up new opportunities, and enhance problem-solving abilities.

Q: Can creativity and critical thinking be developed, or are they innate abilities? A: While some individuals may have a natural inclination towards creativity and critical thinking, these skills can be developed and nurtured through practice, exposure to diverse perspectives, and continuous learning. Adopting a growth mindset and actively engaging in activities that stimulate these skills can significantly enhance them over time.

Q: How can I overcome the fear of failure and embrace creative thinking? A: Overcoming the fear of failure requires a shift in mindset. Viewing failures as learning opportunities and reframing them as stepping stones to success can help mitigate the fear. Embracing a growth mindset and surrounding yourself with a supportive environment that encourages experimentation and risk-taking can also foster creative thinking.

Top Courses

EMDR therapy training

EMDR therapy training

SmartCourses

Product Management Training Course

Six Sigma Course Online

Six Sigma Course Online

Agile & Scrum Course Online

Agile & Scrum Course Online

Supply Chain Management Course

Supply Chain Management Course

Finance Management Course in Hospitality

Finance Management Course in Hospitality

is critical thinking necessary for creativity

Creating Smart Future For Next Generation. We’re simplifying the process to find and select the industry’s top 1% Courses.

  • All Courses
  • Digital Skill
  • Digital Marketing
  • IT and Software
  • Personal Development
  • Help Center
  • Privacy Policy

© SmartCourses – All Right Reserved.

  • Term Conditions
  • Returns Policy

Insert/edit link

Enter the destination URL

Or link to existing content

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base
  • Working with sources
  • What Is Critical Thinking? | Definition & Examples

What Is Critical Thinking? | Definition & Examples

Published on May 30, 2022 by Eoghan Ryan . Revised on May 31, 2023.

Critical thinking is the ability to effectively analyze information and form a judgment .

To think critically, you must be aware of your own biases and assumptions when encountering information, and apply consistent standards when evaluating sources .

Critical thinking skills help you to:

  • Identify credible sources
  • Evaluate and respond to arguments
  • Assess alternative viewpoints
  • Test hypotheses against relevant criteria

Table of contents

Why is critical thinking important, critical thinking examples, how to think critically, other interesting articles, frequently asked questions about critical thinking.

Critical thinking is important for making judgments about sources of information and forming your own arguments. It emphasizes a rational, objective, and self-aware approach that can help you to identify credible sources and strengthen your conclusions.

Critical thinking is important in all disciplines and throughout all stages of the research process . The types of evidence used in the sciences and in the humanities may differ, but critical thinking skills are relevant to both.

In academic writing , critical thinking can help you to determine whether a source:

  • Is free from research bias
  • Provides evidence to support its research findings
  • Considers alternative viewpoints

Outside of academia, critical thinking goes hand in hand with information literacy to help you form opinions rationally and engage independently and critically with popular media.

Scribbr Citation Checker New

The AI-powered Citation Checker helps you avoid common mistakes such as:

  • Missing commas and periods
  • Incorrect usage of “et al.”
  • Ampersands (&) in narrative citations
  • Missing reference entries

is critical thinking necessary for creativity

Critical thinking can help you to identify reliable sources of information that you can cite in your research paper . It can also guide your own research methods and inform your own arguments.

Outside of academia, critical thinking can help you to be aware of both your own and others’ biases and assumptions.

Academic examples

However, when you compare the findings of the study with other current research, you determine that the results seem improbable. You analyze the paper again, consulting the sources it cites.

You notice that the research was funded by the pharmaceutical company that created the treatment. Because of this, you view its results skeptically and determine that more independent research is necessary to confirm or refute them. Example: Poor critical thinking in an academic context You’re researching a paper on the impact wireless technology has had on developing countries that previously did not have large-scale communications infrastructure. You read an article that seems to confirm your hypothesis: the impact is mainly positive. Rather than evaluating the research methodology, you accept the findings uncritically.

Nonacademic examples

However, you decide to compare this review article with consumer reviews on a different site. You find that these reviews are not as positive. Some customers have had problems installing the alarm, and some have noted that it activates for no apparent reason.

You revisit the original review article. You notice that the words “sponsored content” appear in small print under the article title. Based on this, you conclude that the review is advertising and is therefore not an unbiased source. Example: Poor critical thinking in a nonacademic context You support a candidate in an upcoming election. You visit an online news site affiliated with their political party and read an article that criticizes their opponent. The article claims that the opponent is inexperienced in politics. You accept this without evidence, because it fits your preconceptions about the opponent.

There is no single way to think critically. How you engage with information will depend on the type of source you’re using and the information you need.

However, you can engage with sources in a systematic and critical way by asking certain questions when you encounter information. Like the CRAAP test , these questions focus on the currency , relevance , authority , accuracy , and purpose of a source of information.

When encountering information, ask:

  • Who is the author? Are they an expert in their field?
  • What do they say? Is their argument clear? Can you summarize it?
  • When did they say this? Is the source current?
  • Where is the information published? Is it an academic article? Is it peer-reviewed ?
  • Why did the author publish it? What is their motivation?
  • How do they make their argument? Is it backed up by evidence? Does it rely on opinion, speculation, or appeals to emotion ? Do they address alternative arguments?

Critical thinking also involves being aware of your own biases, not only those of others. When you make an argument or draw your own conclusions, you can ask similar questions about your own writing:

  • Am I only considering evidence that supports my preconceptions?
  • Is my argument expressed clearly and backed up with credible sources?
  • Would I be convinced by this argument coming from someone else?

If you want to know more about ChatGPT, AI tools , citation , and plagiarism , make sure to check out some of our other articles with explanations and examples.

  • ChatGPT vs human editor
  • ChatGPT citations
  • Is ChatGPT trustworthy?
  • Using ChatGPT for your studies
  • What is ChatGPT?
  • Chicago style
  • Paraphrasing

 Plagiarism

  • Types of plagiarism
  • Self-plagiarism
  • Avoiding plagiarism
  • Academic integrity
  • Consequences of plagiarism
  • Common knowledge

The only proofreading tool specialized in correcting academic writing - try for free!

The academic proofreading tool has been trained on 1000s of academic texts and by native English editors. Making it the most accurate and reliable proofreading tool for students.

is critical thinking necessary for creativity

Try for free

Critical thinking refers to the ability to evaluate information and to be aware of biases or assumptions, including your own.

Like information literacy , it involves evaluating arguments, identifying and solving problems in an objective and systematic way, and clearly communicating your ideas.

Critical thinking skills include the ability to:

You can assess information and arguments critically by asking certain questions about the source. You can use the CRAAP test , focusing on the currency , relevance , authority , accuracy , and purpose of a source of information.

Ask questions such as:

  • Who is the author? Are they an expert?
  • How do they make their argument? Is it backed up by evidence?

A credible source should pass the CRAAP test  and follow these guidelines:

  • The information should be up to date and current.
  • The author and publication should be a trusted authority on the subject you are researching.
  • The sources the author cited should be easy to find, clear, and unbiased.
  • For a web source, the URL and layout should signify that it is trustworthy.

Information literacy refers to a broad range of skills, including the ability to find, evaluate, and use sources of information effectively.

Being information literate means that you:

  • Know how to find credible sources
  • Use relevant sources to inform your research
  • Understand what constitutes plagiarism
  • Know how to cite your sources correctly

Confirmation bias is the tendency to search, interpret, and recall information in a way that aligns with our pre-existing values, opinions, or beliefs. It refers to the ability to recollect information best when it amplifies what we already believe. Relatedly, we tend to forget information that contradicts our opinions.

Although selective recall is a component of confirmation bias, it should not be confused with recall bias.

On the other hand, recall bias refers to the differences in the ability between study participants to recall past events when self-reporting is used. This difference in accuracy or completeness of recollection is not related to beliefs or opinions. Rather, recall bias relates to other factors, such as the length of the recall period, age, and the characteristics of the disease under investigation.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

Ryan, E. (2023, May 31). What Is Critical Thinking? | Definition & Examples. Scribbr. Retrieved April 15, 2024, from https://www.scribbr.com/working-with-sources/critical-thinking/

Is this article helpful?

Eoghan Ryan

Eoghan Ryan

Other students also liked, student guide: information literacy | meaning & examples, what are credible sources & how to spot them | examples, applying the craap test & evaluating sources, unlimited academic ai-proofreading.

✔ Document error-free in 5minutes ✔ Unlimited document corrections ✔ Specialized in correcting academic texts

Anthony D. Fredericks Ed.D.

Why Curiosity Is Necessary for Creativity

Be more curious, and your creative spirit will prosper..

Posted February 11, 2022 | Reviewed by Davia Sills

  • Curiosity is a clear foundation fror a more creative life.
  • Curiosity is propelled by the desire and freedom to ask questions.
  • Creativity is enhanced when we seek answers to divergent and self-initiated questions.

Curiosity is ingrained in our DNA . We are fascinated by the future; we are transfixed with the unknowns that surround us; we are amazed at all that we have to explore. The mysteries of the world have always been an impetus for us to peek and poke and prod for answers—learning something about our surroundings as well as about ourselves. Nowhere is this truer than when we watch the youngest among us—our children.

Children are known for sticking their fingers in places where young fingers should never be. They are famous for putting all manner of objects and substances in their mouths… everything from plastic blocks and the pet dog’s ears to any object in the room not nailed down or sufficiently weighted.

In adults, curiosity guides us toward a lifetime occupation, it drives us to search out potential mates, it stimulates us to travel to new destinations, and it holds our hand as we move into old age and the unknowns of the future. By and large, we are relentless question-askers. We want to know more than we know; we want to expand our horizons, try out the new and undiscovered, and pursue experiences that deepen our comprehension (and appreciation) of the world we live in.

But curiosity is much more than a simple search for answers. It is also the generation of possibilities. When we look at the world from multiple perspectives, we give ourselves permission to examine a wider range of resolutions and remedies. We open up our minds to explore the unexamined and unknown. Curiosity becomes a propellant for new opportunities and new options. Ian Leslie explains it this way: “…curiosity is essential to an exploring mind; it opens our eyes to the new and undiscovered, encouraging us to seek out new experiences and meet new people.”

It was Albert Einstein who famously said, “I have no special talents. I am only passionately curious.” He also went on to say, “The important thing is not to stop questioning. Curiosity has its own reason for existing.” For Einstein, curiosity was the engine that drove his creativity .

Curiosity is the catalyst for questioning, and questioning is what propels us to seek out the unfamiliar and the unknown. Curiosity is the fuel necessary for creativity to prosper and succeed. For, without questions, knowledge becomes stagnant and immovable. It does not move forward, nor does it have sufficient power to poke and peek and prod what may lie just below the surface or just slightly out of reach.

Source: Ron Lach/Pexels

Strategies to enhance curiosity

Try these suggestions to promote creativity.

1. What if...?

For much of our lives, we are predisposed to look for a single solution to a single problem. We have been “brainwashed” to think that for every problem, there is one, and only one, way to solve that problem. Unfortunately, that’s not the case. When we consider that there might be a multitude of potential responses to any problem, we allow ourselves to break out of the “one-problem, one-answer” syndrome and begin to look for a host of potential solutions (and a host of potential ideas).

The strategy known as “What if...?” is a most powerful idea generator. Simply place the two words “What if” in front of questions you might normally pose when confronting a problem or challenge. “What-iffing” stimulates the brain to think in very divergent ways. It also moves you away from a tendency to look for single right answers.

Try some of the following “What if” questions. How many possible responses can you come up with for each one? Don’t think about the quality of your responses (that will severely limit your creativity); just think about the quantity of responses you could generate for each selected query:

  • What if cats would come when you called them?
  • What if you were required to choose your life expectancy when you reached age 21?
  • What if a small red circle appeared in the middle of everyone’s forehead whenever they told a lie?
  • What if every college student could be guaranteed a job immediately upon graduation?
  • What if a car could be invented that would be immune to any type of accident?
  • What if you had a watch that could predict what you would do over the next 24 hours?
  • What if you could wash your clothes while still wearing them?

Asking “What if” questions propels us in new directions (cognitively speaking). From a mental standpoint, they help us move “outside the box” into dimensions typically not within our normal field of vision.

2. No wrong questions.

In a Zoom meeting, conference call, monthly department meeting, or any other kind of group discussion, try to avoid asking the following questions: “What is the answer?” or “What is the solution?” By asking those questions, you are severely limiting a multiplicity of responses simply because the group is now focused on finding the answer or the solution… rather than generating a vast array of potential answers or solutions. More appropriate questions might include: “What are some possibilities here?”; “How many different ways can we look at this?”; and “What are some of the impediments we have to overcome?”

In short, ask questions for which there may be a wide variety of responses, rather than questions which limit the number or type of responses. Anecdotal evidence demonstrates that we tend to think based on the types of questions we are asked. If we are only asked questions for which there is the expectation of a single answer, that’s all we’ll get. On the other hand, if we pose questions that might generate a multiplicity of responses, then the collective creativity of the group is enhanced considerably.

Leslie, Ian. Curious: The desire to know and why your future depends on it. (New York: Basic Books, 2014).

Fredericks, Anthony D. From Fizzle to Sizzle: The hidden forces crushing your creativity and how you can overcome them. (Indianapolis, IN: Blue River Press, 2022).

Anthony D. Fredericks Ed.D.

Anthony D. Fredericks, Ed.D. , is Professor Emeritus of Education at York College of Pennsylvania. His latest book is In Search of the Old Ones: An Odyssey Among Ancient Trees (Smithsonian Books, 2023).

  • Find a Therapist
  • Find a Treatment Center
  • Find a Psychiatrist
  • Find a Support Group
  • Find Teletherapy
  • United States
  • Brooklyn, NY
  • Chicago, IL
  • Houston, TX
  • Los Angeles, CA
  • New York, NY
  • Portland, OR
  • San Diego, CA
  • San Francisco, CA
  • Seattle, WA
  • Washington, DC
  • Asperger's
  • Bipolar Disorder
  • Chronic Pain
  • Eating Disorders
  • Passive Aggression
  • Personality
  • Goal Setting
  • Positive Psychology
  • Stopping Smoking
  • Low Sexual Desire
  • Relationships
  • Child Development
  • Therapy Center NEW
  • Diagnosis Dictionary
  • Types of Therapy

March 2024 magazine cover

Understanding what emotional intelligence looks like and the steps needed to improve it could light a path to a more emotionally adept world.

  • Coronavirus Disease 2019
  • Affective Forecasting
  • Neuroscience
  • Book a Speaker

right-icon

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Vivamus convallis sem tellus, vitae egestas felis vestibule ut.

Error message details.

Reuse Permissions

Request permission to republish or redistribute SHRM content and materials.

Critical Thinking Will Be Necessary When Using AI

Justin Reinert Talent24

Artificial intelligence is gaining widespread adoption in the workplace, and critical thinking skills will be key to successfully using the technology to improve work and limit negative consequences.

AI is a powerful tool, but the results need to be questioned and verified by humans in your organization, said Justin Reinert, SHRM-SCP, a corporate trainer and principal of Performance Accelerated Learning, speaking April 15 at the SHRM Talent Conference & Expo 2024 (Talent 2024).  

“AI offers an opportunity and an imperative for enhanced critical thinking skills in the workplace as responsibilities for some will change from producers to verifiers,” he said.

Critical thinking is the practice of analysis to understand a problem or topic thoroughly. Critical thinking typically includes steps such as collecting information and data, asking thoughtful questions, and analyzing possible solutions.

This important skill is even more necessary in the age of AI, because the technology is still prone to negative outcomes, such as the potential for making up or “hallucinating” information, generating biased results and demonstrating gaps in reasoning.

Some recent noteworthy misses include:

  • Attorneys who used generative AI (GenAI) to write motions and briefs that contained made-up case citations .
  • The AI-powered chatbot created by the New York City government to help small-business owners providing inaccurate information .

“The use of AI in the workplace is fast growing and quickly evolving—an individual’s ability to discern fact from AI hallucination is increasingly challenging,” Reinert said. “Without deep critical thinking skills, we face a danger where falsehoods are being incorporated into our workplaces and consumer interactions. The educators in the corporate world will have the responsibility to develop this in your people.”

He added that there are two paths forward: a path of automation and a path of new capabilities for humans.

“Typically, as technology advances, we use technology to automate processes, make things faster and more efficient,” he said. “But as we appropriate AI into our work, there is another path to be mindful of. Identify the things that are uniquely human, and make sure you develop those skills in people, and then automate what can be automated. Ensure that humans stay front of mind.”

Of course, to effectively use, train and improve AI, those involved must have strong critical thinking skills themselves.

5 Critical Thinking Skills and How to Develop Them

Reinert listed the following critical thinking skills and what employers can do to help build these capabilities in their workforce:

1. Observation , or the ability to notice and predict opportunities, problems, and solutions. Organizations can practice scenario and risk planning, engaging teams with various possibilities, mindfulness training to improve concentration and focus, and competitive intelligence exercises.  

2. Analysis , or the gathering, understanding, and interpreting of data and other information. This can be practiced through data analysis training, data interpretation workshops and data reviews.

3. Inference , or drawing conclusions based on relevant data, information, and personal knowledge and experience. This skill can be developed through case study analyses related to specific work functions, critical reading and discussion assignments, and mind mapping exercises to identify connections in disparate information.

4. Communication , or the sharing and receiving of information with others verbally, nonverbally, and in writing. Organizations can practice this skill with role-playing scenarios, through public speaking opportunities, and by holding feedback sessions and peer reviews.

5. Problem-solving , or choosing and executing a solution after identifying and analyzing a problem. Problem-solving can be developed through root cause analysis drills to find the underlying causes of a problem; working through a decision-making matrix to evaluate potential solutions based on feasibility, impact and cost; and via simulation exercises that mimic real-world challenges.

Related Content

is critical thinking necessary for creativity

Rising Demand for Workforce AI Skills Leads to Calls for Upskilling

As artificial intelligence technology continues to develop, the demand for workers with the ability to work alongside and manage AI systems will increase. This means that workers who are not able to adapt and learn these new skills will be left behind in the job market.

A vast majority of U.S. professionals  think students should be prepared to use AI upon entering the workforce.

Employers Want New Grads with AI Experience, Knowledge

A vast majority of U.S. professionals say students entering the workforce should have experience using AI and be prepared to use it in the workplace, and they expect higher education to play a critical role in that preparation.

Advertisement

is critical thinking necessary for creativity

Artificial Intelligence in the Workplace

​An organization run by AI is not a futuristic concept. Such technology is already a part of many workplaces and will continue to shape the labor market and HR. Here's how employers and employees can successfully manage generative AI and other AI-powered systems.

HR Daily Newsletter

New, trends and analysis, as well as breaking news alerts, to help HR professionals do their jobs better each business day.

Success title

Success caption

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Front Psychol

Fostering Creativity and Critical Thinking in College: A Cross-Cultural Investigation

Ji hoon park.

1 Department of Psychology, Pace University, New York, NY, United States

2 Developmental and Educational Research Center for Children's Creativity, Faculty of Education, Beijing Normal University, Beijing, China

Heavon Allen

Associated data.

The original contributions presented in the study are included in the article/supplementary material, further inquiries can be directed to the corresponding author.

Enhancing creativity and critical thinking have garnered the attention of educators and researchers for decades. They have been highlighted as essential skills for the 21st century. A total of 103 United States students (53 female, 24 male, two non-binary, and 24 non-reporting) and 166 Chinese students (128 female, 30 male, one non-binary, and seven non-reporting) completed an online survey. The survey includes the STEAM-related creative problem solving, Sternberg scientific reasoning tasks, psychological critical thinking (PCT) exam, California critical thinking (CCT) skills test, and college experience survey, as well as a demographic questionnaire. A confirmatory factor analysis (CFA) yields a two-factor model for all creativity and critical thinking measurements. Yet, the two latent factors are strongly associated with each other ( r =0.84). Moreover, Chinese students outperform American students in measures of critical thinking, whereas Americans outperform Chinese students in measures of creativity. Lastly, the results also demonstrate that having some college research experience (such as taking research method courses) could positively influence both United States and Chinese students’ creativity and critical thinking skills. Implications are discussed.

Introduction

Creativity and critical thinking have been recognized as essential skills in the 21st century ( National Education Association, 2012 ). Many researchers and educators have focused on these two skills, including acquisition, enhancement, and performance. In addition, numerous studies have been devoted to understanding the conceptual complexities involved in creativity and critical thinking. Although similar to each other, creativity and critical thinking are distinctive by definition, each with a different emphasis.

The concept of creativity has evolved over the years. It was almost exclusively conceptualized as divergent thinking when Guilford (1956 , 1986) proposed divergent thinking as a part of intelligence. Earlier measures of creativity took the approach of divergent thinking, measuring creative potential ( Wallach and Kogan, 1965 ; Torrance, 1966 , 1988 ; Runco and Albert, 1986 ; Kim, 2005 ). In 1990s, many creativity scholars challenged the validity of tests of divergent thinking, and suggested that divergent thinking only captures the trivial sense of creativity, and proposed to use the product-oriented method to measure creativity ( Csikszentmihalyi, 1988 ; Amabile, 1996 ; Sternberg and Lubart, 1999 ). A system model of creativity, which recognizes the important roles individual, field, and domain have played, was used as a framework to conceptualize creativity. A widely accepted definition for creativity is a person’s ability to generate an idea or product that is deemed as both novel and appropriate by experts in a field of human activities ( Scott and Bruce, 1994 ; Amabile, 1996 ; Csikszentmihalyi, 1999 ; Sternberg and Lubart, 1999 ; Hunter et al., 2007 ). Corazza and Lubart (2021) recently proposed a dynamic definition of creativity, in which creativity is defined as a context-embedded phenomenon that is tightly related to the cultural and social environment. Based on this new definition, measures of creativity should be context-specific and culturally relevant, especially when it is examined cross-culturally.

Similarly, the conceptualization of critical thinking has also evolved over the years. Earlier definitions emphasized the broad multidimensional aspects of critical thinking, including at least three aspects: attitude, knowledge, and skills ( Glaser, 1941 ). The definition has been evolved to include specific components for each aspect ( Watson and Glaser, 1980 ). For example, critical thinking is recognized as the ability to use cognitive skills or strategies to increase the probability of a desirable outcome ( Halpern, 1999 ). More specifically, cognitive skills such as evaluation, problem-solving, reflective thinking, logical reasoning, and probability thinking are recognized as parts of critical thinking skills in research and assessments ( Ennis, 1987 , Scriven and Paul, 1987 , Halpern, 1999 ). Moving into the 21st century, metacognition and self-regulatory skills have also become essential components for critical thinking in addition to the cognitive skills recognized by earlier scholars ( Korn, 2014 , Paul and Elder, 2019 ).

Similar to the concept of creativity, critical thinking is also viewed as multidimensional and domain specific ( Bensley and Murtagh, 2012 ). For example, critical thinking in psychology, also referred to as psychological critical thinking (PCT), is defined as one’s ability to evaluate claims in a way that explicitly incorporates basic principles of psychological science ( Lawson, 1999 ). As one of the important hub sciences, psychology is often regarded as a foundational course for scientific training in American higher education ( Boyack et al., 2005 ). In psychological discourse, critical thinking is often defined in tandem with scientific thinking, which places significance on hypothesis-testing and problem-solving in order to reduce bias and erroneous beliefs ( Halpern, 1984 ; American Psychological Association, 2016 ; Lamont, 2020 ; Sternberg and Halpern, 2020 ). Based on this definition, measures of critical thinking should assess cognitive skills (i.e., evaluation, logical reasoning) and ability to utilize scientific methods for problem-solving.

In addition to the evolution of the definitions of critical thinking and creativity, research into these two concepts has led to the development of various measurements. For both concepts, there have been numerous measurements that have been studied, utilized, and improved.

The complexities associated with creativity (i.e., context-relevant and domain-specificity) pose a major issue for its measurement. Many different types of creativity measures have been developed in the past. Measures using a divergent thinking approach, such as the Torrance Tests of Creative Thinking ( Torrance, 1974 ) and Alternate Uses Test ( Guilford et al., 1960 ), a product-oriented approach, a third person nomination approach, as well as a self-report approach measuring personality ( Gough, 1979 ), creative behavior ( Hocevar and Michael, 1979 ; Rodriguez-Boerwinkle et al., 2021 ), and creative achievement ( Carson et al., 2005 ; Diedrich et al., 2018 ).

Both the divergent thinking and the product-oriented approaches have been widely used in the creativity literature to objectively measure creativity. The tasks of both approaches are generally heuristic, meaning that no correct answer is expected and the process does not need to be rational. When scoring divergent thinking, the number of responses (i.e., fluency) and the rareness of the response (i.e., originality) were used to represent creativity. When scoring products using the product-orientated approach, a group of experts provides their subjective ratings on various dimensions such as originality, appropriateness, and aesthetically appealing to these products using their subjective criteria. When there is a consensus among the experts, average ratings of these expert scores are used to represent the creativity of the products. This approach is also named as Consensual Assessment Technique (CAT; Amabile, 1982 , 1996 ). Some scholars viewed the CAT approach as focusing on the convergent aspect of creativity ( Lubart et al., 2013 ). Recognizing the importance of divergent and convergent thinking in conceptualizing creativity, Lubart et al. (2013) have suggested including divergent thinking and product-oriented approach (i.e., CAT) to objective measures of creativity ( Barbot et al., 2011 ).

Similar to measures of creativity, measurements of critical thinking are also multilevel and multi-approach. In an article reviewing the construction of critical thinking in psychological studies, Lamont (2020) argues that critical thinking became a scientific object when psychologists attempted to measure it. Different from measures of creativity, where the tasks are heuristic in nature, measures of critical thinking require participants to engage in logical thinking. Therefore, the nature of critical thinking tasks is more algorithmic.

The interest in the study of critical thinking is evident in the increased efforts in the past decades to measure such a complex, multidimensional skill. Watson-Glaser Tests for Critical Thinking ( Watson and Glaser, 1938 ) is widely recognized as the first official measure of critical thinking. Since then, numerous measurements of critical thinking have been developed to evaluate both overall and domain-specific critical thinking, such as the PCT Exam ( Lawson, 1999 ; See Mueller et al., 2020 for list of assessments). A few of the most commonly used contemporary measures of critical thinking include the Watson-Glaser Test for Critical Thinking Appraisals ( Watson and Glaser, 1980 ), Cornell Critical Thinking Test ( Ennis et al., 1985 ), and California Critical Thinking (CCT) Skills Test ( Facione and Facione, 1994 ). As the best established and widely used standardized critical thinking measures, these tests have been validated in various studies and have been used as a criterion for meta-analyses ( Niu et al., 2013 ; Ross et al., 2013 ).

There have also been concerns regarding the usage of these standardized measures of critical thinking on its own due to its emphasis on measuring general cognitive abilities of participants, while negating the domain-specific aspect of critical thinking ( Lamont, 2020 ). The issues associated with standardized measures are not unique to standardized critical thinking measures, as same types of criticisms have been raised for standardized college admissions measures such as the Graduate Record Exam (GRE). To develop an assessment that encompasses a broader range of student abilities that is more aligned to scientific disciplines, Sternberg and Sternberg (2017) developed a scientific inquiry and reasoning measure. This measure is aimed to assess participants’ ability to utilize scientific methods and to think scientifically in order to investigate a topic or solve a problem ( Sternberg and Sternberg, 2017 ). The strength of this measure is that it assesses students’ abilities (i.e., ability to think critically) that are domain-specific and relevant to the sciences. Considering the multidimensional aspect of critical thinking, a combination of a standardized critical thinking measure, an assessment measuring cognitive abilities involved in critical thinking; and a measure that assesses domain-specific critical thinking, would provide a comprehensive evaluation of critical thinking.

The Relationship Between Creativity and Critical Thinking

Most of the studies thus far referenced have investigated creativity and critical thinking separately; however, the discussion on the relationship between creativity and critical thinking spans decades of research ( Barron and Harrington, 1981 ; Glassner and Schwartz, 2007 ; Wechsler et al., 2018 ; Akpur, 2020 ). Some earlier studies on the relationship between divergent thinking and critical thinking have observed a moderate correlation ( r =0.23, p <0.05) between the two ( Gibson et al., 1968 ). Using measures of creative personality, Gadzella and Penland (1995) also found a moderate correlation ( r =0.36, p <0.05) between creative personality and critical thinking.

Recent studies have further supported the positive correlation between critical thinking and creativity. For example, using the creative thinking disposition scale to measure creativity, Akpur (2020) found a moderate correlation between the two among college students ( r =0.27, p <0.05). Similarly, using the critical thinking disposition scale to measure critical thinking and scientific creativity scale and creative self-efficacy scale to measure creativity, Qiang et al. (2020) studied the relationship between critical thinking and creativity to a large sample of high school students ( n =1,153). They found that the relationship between the two varied depending on the type of measurement of creativity. More specifically, the correlation between critical thinking disposition and creative self-efficacy was r =0.045 ( p <0.001), whereas the correlation between critical thinking disposition and scientific creativity was r =0.15 ( p <0.01).

Recognizing the moderate relationship between the two, researchers have also aimed to study the independence of creativity and critical thinking. Some studies have found evidence that these constructs are relatively autonomous. The results of Wechsler et al. (2018) study, which aimed to investigate whether creativity and critical thinking are independent or complementary processes, found a relative autonomy of creativity and critical thinking and found that the variables were only moderately correlated. The researchers in this study suggest that a model that differentiated the two latent variables associated with creativity and critical thinking dimensions was the most appropriate method of analysis ( Wechsler et al., 2018 ). Evidence to suggest that creativity and critical thinking are fairly independent processes was also found in study of Ling and Loh (2020) . The results of their research, which examined the relationship of creativity and critical thinking to pattern recognition, revealed that creativity is a weak predictor of pattern recognition. In contrast, critical thinking is a good predictor ( Ling and Loh, 2020 ).

It is worth noting that a possible explanation for the inconsistencies in these studies’ results is the variance in the definition and the measures used to evaluate creativity and critical thinking. Based on the current literature on the relationship between creativity and critical thinking, we believe that more investigation was needed to further clarify the relationship between creativity and critical thinking which became a catalyst for the current study.

Cross-Cultural Differences in Creativity and Critical Thinking Performance

Results from various cross-cultural studies suggest that there are differences in creativity and critical thinking skills among cultures. A common belief is that individuals from Western cultures are believed to be more critical and creative compared to non-Westerners, whereas individuals from non-Western cultures are believed to be better at critical thinking related tasks compared to Westerners ( Ng, 2001 ; Wong and Niu, 2013 ; Lee et al., 2015 ). For example, Wong and Niu (2013) found a persistent cultural stereotype regarding creativity and critical thinking skills that exist cross-culturally. In their study, both Chinese and Americans believed that Chinese perform better in deductive reasoning (a skill comparable to critical thinking) and that Americans perform better on creativity. This stereotype belief was found to be incredibly persistent as participants did not change their opinions even when presented with data that contradicted their beliefs.

Interestingly, research does suggest that such a stereotype might be based on scientific evidence ( Niu et al., 2007 ; Wong and Niu, 2013 ). In the same study, it was revealed that Chinese did in fact perform better than Americans in deductive reasoning, and Americans performed better in creativity tests ( Wong and Niu, 2013 ). Similarly, Lee et al. (2015) found that compared to American students, Korean students believed that they are more prone to use receptive learning abilities (remembering and reproducing what is taught) instead of critical and creative learning abilities.

Cultural Influence on Critical Thinking

Other studies investigating the cultural influence on critical thinking have had more nuanced findings. Manalo et al. (2013) study of university students from New Zealand and Japan found that culture-related factors (self-construal, regulatory mode, and self-efficacy) do influence students’ critical thinking use. Still, the differences in those factors do not necessarily equate to differences in critical thinking. Their results found that students from Western and Asian cultural environments did not have significant differences in their reported use of critical thinking. The researchers in this study suggest that perhaps the skills and values nurtured in the educational environment have a more significant influence on students’ use of critical thinking ( Manalo et al., 2013 ).

Another study found that New Zealand European students performed better on objective measures of critical thinking than Chinese students. Still, such differences could be explained by the student’s English proficiency and not dialectical thinking style. It was also revealed in this study that Chinese students tended to rely more on dialectical thinking to solve critical thinking problems compared to the New Zealand European students ( Lun et al., 2010 ). Other research on the cultural differences in thinking styles revealed that Westerners are more likely to use formal logical rules in reasoning. In contrast, Asians are more likely to use intuitive experience-based sense when solving critical thinking problems ( Nisbett et al., 2001 ).

These studies suggest that culture can be used as a broad taxonomy to explain differences in critical thinking use. Still, one must consider the educational environment and thinking styles when studying the nature of the observed discrepancies. For instance, cultural differences in thinking style, in particular, might explain why Westerners perform better on some critical thinking measures, whereas Easterners perform better on others.

Cultural Influence on Creative Performance

Historically, creativity studies have suggested that individuals from non-Western cultures are not as creative as Westerners ( Torrance, 1974 ; Jellen and Urban, 1989 ; Niu and Sternberg, 2001 ; Tang et al., 2015 ). For example, in one study, Americans generated more aesthetically pleasing artworks (as judged by both American and Chinese judges) than Chinese ( Niu and Sternberg, 2001 ). However, recent creativity research has suggested that cross-cultural differences are primarily attributable to the definition of creativity rather than the level of creativity between cultures. As aforementioned, creativity is defined as an idea or product that is both novel and appropriate. Many cross-cultural studies have found that Westerners have a preference and perform better in the novelty aspect, and Easterners have a preference and perform better in the appropriateness aspect. In cross-cultural studies, Rockstuhl and Ng (2008) found that Israelis tend to generate more original ideas than their Singaporean counterparts. In contrast, Singaporeans tend to produce more appropriate ideas. Bechtoldt et al. (2012) found in their study that Koreans generated more useful ideas, whereas Dutch students developed more original ideas. Liou and Lan (2018) found Taiwanese tend to create and select more useful ideas, whereas Americans tend to generate and choose more novel ideas. The differences in creativity preference and performance found in these studies suggest that cultural influence is a prominent factor in creativity.

In summary, cross-cultural studies have supported the notion that culture influences both creativity and critical thinking. This cultural influence seems relatively unambiguous in creativity as it has been found in multiple studies that cultural background can explain differences in performance and preference to the dual features of creativity. Critical thinking has also been influenced by culture, albeit in an opaquer nature in comparison to creativity. Critical thinking is ubiquitous in all cultures, but the conception of critical thinking and the methods used to think critically (i.e., thinking styles) are influenced by cultural factors.

Influence of College Experience on Creativity and Critical Thinking

Given its significance as a core academic ability, the hypothesis of many colleges and universities emphasize that students will gain critical thinking skills as the result of their education. Fortunately, studies have shown that these efforts have had some promising outcomes. Around 92% of students in multi-institution research reported gains in critical thinking. Only 8.9% of students believed that their critical thinking had not changed or had grown weaker ( Tsui, 1998 ). A more recent meta-analysis by Huber and Kuncel (2016) found that students make substantial gains in critical thinking during college. In addition, the efforts to enhance necessary thinking skills have led to the development of various skill-specific courses. Mill et al. (1994) found that among three groups of undergraduate students, a group that received tutorial sessions and took research methodology and statistics performed significantly better on scientific reasoning and critical thinking abilities tests than control groups. Penningroth et al. (2007) found that students who took a class in which they were required to engage in active learning and critical evaluation of claims by applying scientific concepts, had greater improvement in psychological critical thinking than students in the comparison groups. There have also been studies in which students’ scientific inquiry and critical thinking skills have improved by taking a course designed with specific science thinking and reasoning modules ( Stevens and Witkow, 2014 ; Stevens et al., 2016 ).

Using a Survey of Undergraduate Research Experience (SURE), Lopatto (2004 , 2008) found that research experience can help students gain various learning skills such as ability to integrate theory and practice, ability to analyze data, skill in the interpretation of results, and understanding how scientists work on problem. All of these learning skills correspond to at least one of the dimensions mentioned earlier in the definition of critical thinking (i.e., evaluation, analytical thinking, and problem solving through). Thus, results of SURE provide evidence that critical thinking can be enhanced through research experience ( Lopatto, 2004 , 2008 ).

In comparison to critical thinking, only a few studies have examined the interaction between creativity and college experience. Previous research on STEM provides some evidence to suggest that STEM education can promote the learner’s creativity ( Land, 2013 , Guo and Woulfin, 2016 , Kuo et al., 2018 ). Notably, study of Kuo et al. (2018) suggest that project-based learning in STEM has the merits of improving one’s creativity. They found that the STEM Interdisciplinary Project-Based Learning (IPBL) course is a practical approach to improve college student’s creativity ( Kuo et al., 2018 ). College research experience in particular, has been reported as important or very important by faculty and students for learning how to approach problems creatively ( Zydney et al., 2002 ).

Although specific college courses aimed to enhance creativity have been scarce, some training programs have been developed specifically to improve creativity. Scott et al. (2004) conducted a quantitative review of various creativity training and found that divergent thinking, creative problem solving, and creativity performance can be enhanced through skill-specific training programs. Embodied creativity training programs, consisting of creativity fitness exercises and intensive workshops, have also been effective in enhancing participants’ creative production and improving their creative self-efficacy ( Byrge and Tang, 2015 ).

Both critical thinking and creativity were also found to be important in students’ learning. Using a longitudinal design for one semester to 52 graduate students in biology, Siburian et al. (2019) studied how critical thinking and creative thinking contribute to improving cognitive learning skills. They found that both critical and creative thinking significantly contributes to enhancing cognitive learning skills ( R 2 =0.728). They each contribute separately to the development of cognitive learning skills ( b was 0.123 between critical thinking and cognitive learning and 0.765 between creative thinking and cognitive learning). The results from research on creativity and critical thinking indicate that training and experiences of students in college can enhance both of these skills.

Current Study

Previous literature on creativity and critical thinking suggests that there is a positive correlation between these two skills. Moreover, cultural background influences creativity and critical thinking conception and performance. However, our literature review suggests that there are only a few studies that have investigated creativity and critical thinking simultaneously to examine whether cultural background is a significant influence in performance. In addition, most of the past research on creativity and critical thinking have relied on dispositions or self-reports to measure the two skills and the investigation on the actual performance have been scarce. Lastly, past studies suggest that the acquisition and enhancement of these skills are influenced by various factors. Notably, college experience and skill-specific training have been found to improve both creativity and critical thinking. However, it is not yet clear how college experience aids in fostering creativity and critical thinking and which elements of college education are beneficial for enhancing these two skills. The cultural influence on creativity and critical thinking performance also needs further investigation.

The current study aimed to answer two questions related to this line of thought. How does culture influence creativity and critical thinking performance? How does college experience affect creativity and critical thinking? Based on past findings, we developed three hypotheses. First, we hypothesized that there is a positive association between critical thinking and creativity. Second, we suggest that college students from different countries have different levels of creativity and critical thinking. More specifically, we predicted that United States students would perform better than Chinese students on both creativity and critical thinking. Last, we hypothesized that having college research experience (through courses or research labs) will enhance creativity and critical thinking.

Materials and Methods

Participants.

The study was examined by the Internal Review Board by the host university in the United States and obtained an agreement from a partner university in China to meet the ethical standard of both countries.

Participants include 103 university students from the United States and 166 university students from Mainland China. Among all participants, 181 were female (67.3%), 54 were male (20.1%), non-binary or gender fluid ( n =3, 1.1%), and some did not report their gender ( n =31, 11.5%). The majority of participants majored in social sciences ( n =197, 73.2%). Other disciplines include business and management ( n =38, 14.1%), engineering and IT ( n =20, 7.4%), and sciences ( n =14, 5.2%). A Chi-square analysis was performed to see if the background in major was different between the American and Chinese samples. The results showed that the two samples are comparable in college majors, X 2 (3, 265) =5.50, p =0.138.

The American participants were recruited through campus recruitment flyers and a commercial website called Prolific (online survey distribution website). Ethnicities of the American participants were White ( n =44, 42.7%), Asian ( n =13, 12.6%), Black or African American ( n =11, 10.7%), Hispanic or Latinos ( n =5, 4.9%), and some did not report their ethnicity ( n =30, 29.1%). The Chinese participants were recruited through online recruitment flyers. All Chinese students were of Han ethnicity.

After reviewing and signing an online consent form, both samples completed a Qualtrics survey containing creativity and critical thinking measures.

Measurements

Steam related creative problem solving.

This is a self-designed measurement, examining participant’s divergent and convergent creative thinking in solving STEAM-related real-life problems. It includes three vignettes, each depicting an issue that needs to be resolved. Participants were given a choice to pick two vignettes to which they would like to provide possible solutions for. Participants were asked to provide their answers in two parts. In the first part, participants were asked to provide as many solutions as they can think of for the problem depicted (divergent). In the second part, participants were asked to choose one of the solutions they gave in the first part that they believe is the most creative and elaborate on how they would carry out the solution (convergent).

The responses for the first part of the problem (i.e., divergent) were scored based on fluency (number of solutions given). Each participant received a score on fluency by averaging the number of solutions given across three tasks. In order to score the originality of the second part of the solution (i.e., convergent), we invited four graduate students who studied creativity for at least 1year as expert judges to independently rate the originality of all solutions. The Cronbach’s Alpha of the expert ratings was acceptable for all three vignette solutions (0.809, 0.906, and 0.703). We then averaged the originality scores provided by the four experts to represent the originality of each solution. We then averaged the top three solutions as rated by the experts to represent the student’s performance on originality. In the end, each student received two scores on this task: fluency and originality.

Psychological Critical Thinking Exam

We adopted an updated PCT Exam developed by Lawson et al. (2015) , which made improvements to the original measure ( Lawson, 1999 ). We used PCT to measure the participants’ domain-specific critical thinking: critical thinking involved in the sciences. The initial assessment aimed to examine the critical thinking of psychology majors; however, the updated measure was developed so that it can be used to examine students’ critical thinking in a variety of majors. The split-half reliability of the revised measurement was 0.88, and test-retest reliability was 0.90 ( Lawson et al., 2015 ). Participants were asked to identify issues with a problematic claim made in two short vignettes. For example, one of the questions states:

Over the past few years, Jody has had several dreams that apparently predicted actual events. For example, in one dream, she saw a car accident and later that week she saw a van run into the side of a pickup truck. In another dream, she saw dark black clouds and lightning and 2days later a loud thunderstorm hit her neighborhood. She believes these events are evidence that she has a psychic ability to predict the future through her dreams. Could the event have occurred by chance? State whether or not there is a problem with the person’s conclusions and explain the problem (if there is one).

Responses were scored based on the rubric provided in the original measurement ( Lawson et al., 2015 ). If no problem was identified the participants would receive zero points. If a problem was recognized but misidentified, the participants would receive one point. If the main problem was identified and other less relevant problems were identified, the participants received two points. If participants identified only the main problem, they received three points. Following the rubric, four graduate students independently rated the students’ critical thinking task. The Cronbach’s Alpha of the expert ratings was acceptable for both vignettes (0.773 and 0.712). The average of the four scores given by the experts was used as the final score for the participants.

California Critical Thinking Skills Test

This objective measure of critical thinking was developed by Facione and Facione (1994) . We used CCT to measure a few of the multidimensions of critical thinking such as evaluation, logical reasoning, and probability thinking. Five sample items provided from Insight Assessment were used instead of the standard 40-min long CCT. Participants were presented with everyday scenarios with 4–6 answer choices. Participants were asked to make an accurate and complete interpretation of the question in order to correctly answer the question by choosing the right answer choice (each correct answer was worth one point). This test is commonly used to measure critical thinking, and previous research has reported its reliability as r =0.86 ( Hariri and Bagherinejad, 2012 ).

Sternberg Scientific Inquiry and Reasoning

This measure was developed by Sternberg and Sternberg (2017) as an assessment of scientific reasoning. We used this assessment as a domain-specific assessment to measure participants’ scientific creativity (generating testable hypotheses) and scientific critical thinking involved in generating experiments. For this two-part measure, participants were asked to read two short vignettes. For one of the vignettes, participants were asked to generate as many hypotheses as possible to explain the events described in the vignette. For the other, create an experiment to test the hypothesis mentioned in the vignette.

After carefully reviewing the measurement, we notice that the nature of the tasks in the first part of this measure (hypothesis generation) relied on heuristics, requiring participants to engage in divergent thinking. The number of valid hypotheses provided (i.e., fluency) was used to represent the performance of this task. We, therefore, deem that this part measures creativity. In contrast, the second part of the measure, experiment generation, asked participants to use valid scientific methods to design an experiment following the procedure of critical thinking such as evaluation, problem-solving, and task evaluation. Its scoring also followed algorithms so that a correct answer could be achieved. For the above reasons, we believe hypotheses generation is a measurement of creativity and experiment generation is a measurement for critical thinking.

Based on the recommended scoring manual, one graduate student calculated the fluency score from the hypothesis generation measurement. Four experts read through all students’ responses to the experiment generation. They discussed a rubric on how to score these responses, using a four-point scale, with a “0” representing no response or wrong response, a “1” representing partially correct, a “2” representing correct response. An additional point (the three points) was added if the participant provided multiple design methods. Based on the above rubric, the four experts independently scored this part of the questionnaire. The Cronbach’s Alpha of the four expert ratings was 0.792. The average score of the four judges was used to represent their critical thinking scores on this task.

College Experience Survey

Participants were asked about their past research experience, either specifically in psychology or in general academia. Participants were asked to choose between three choices: no research experience, intermediate research experience (i.e., research work for class, research work for lab), and advanced research experience (i.e., professional research experience, published works).

Demographic and Background Questionnaire

Series of standard demographic questions were asked, including participants’ age, gender, and ethnicity.

We performed a Pearson correlation to examine the relationship between creativity and critical thinking (the two-c), which include performances on three measures on creativity ( creativity originality , creativity fluency , and hypothesis generation ) and three measures on critical thinking ( experiment generation , CCT , and PCT ).

Most of the dependent variables had a significantly positive correlation. The only insignificant correlation was found between Sternberg hypothesis generation and CCT, r (247) =0.024, p =0.708 (see Table 1 ).

Correlation coefficients for study variables.

Confirmatory factor analysis (CFA) was conducted by applying SEM through AMOS 21 software program and the maximum likelihood method. One-factor and two-factor models have been analyzed, respectively (see Figure 1 ).

An external file that holds a picture, illustration, etc.
Object name is fpsyg-12-760351-g001.jpg

The comparison of the two confirmatory factor analysis (CFA) models: one-factor vs. two-factor.

As it is demonstrated in Table 2 , the value ranges of the most addressed fit indices used in the analysis of SEM are presented. Comparing two models, χ 2 /df of the two-factor model is in a good fit, while the index of the one-factor model is in acceptable fit. The comparison of the two models suggest that the two-factor model is a better model than the one-factor model.

Recommended values for evaluation and the obtained values.

RMSEA,root mean square error of approximation; NFI, normed fit index; CFI, comparative fit index; GFI, goodness-of-fit index; and AGFI, adjusted goodness-of-fit-index ( Schermelleh-Engel et al., 2003 ).

Cross-Cultural Differences in Critical Thinking and Creativity

We conducted a 2 (Country: the United States vs. China)×2 (Two-C: Creativity and Critical Thinking) ANOVA to investigate the cultural differences in critical thinking and creativity. We averaged scores of three critical thinking measurement ( experiment generation , PCT , and CCT ) to represent critical thinking and averaged three creativity scores ( creativity originality , creativity fluency , and hypothesis generation ).

This analysis revealed a significant main effect for the type of thinking (i.e., creative vs. critical thinking), F (1,247) =464.77, p <0.01, η p 2 =0.653. Moreover, there was a significant interaction between country (i.e., the United States vs. China) and type of thinking, F (1,247) =62.00, p <0.01, η p 2 =0.201. More specifically, Chinese students ( M =1.32, SD =0.59) outperformed American students ( M =1.02, SD =0.44) on critical thinking. In contrast, American students ( M =2.59, SD =1.07) outperformed Chinese students ( M =2.05, SD =0.83) on creativity.

Influence of Research Experience on Critical Thinking and Creativity

The last hypothesis states that having college research experience (through courses or research lab) would enhance students’ creativity and critical thinking from both countries. We performed a 2 (Two-C: Creativity and Critical Thinking)×2 (Country: the United States vs. China)×3 (Research Experience: Advanced vs. Some vs. No) ANOVA to test this hypothesis. This analysis revealed a significant main effect for research experience, F (2,239) =4.05, p =0.019, η p 2 =0.033. Moreover, there was a significant interaction between country (i.e., the United States vs. China) and research experience, F (2,239) =5.77, p =0.004, η p 2 =0.046. In addition, there was a three-way interaction among country, two-C, and research experience. More specifically, with an increase of research experience for American students, both critical thinking and creativity improved. In contrast, for Chinese students, the impact of research experience was not significant for creativity. However, some research experience positively impacted Chinese students’ critical thinking (see Figure 2 ).

An external file that holds a picture, illustration, etc.
Object name is fpsyg-12-760351-g002.jpg

Estimated marginal means of Two-C for the United States and Chinese samples.

The current study aimed to investigate the relationship between creativity and critical thinking, how culture influences creativity and critical thinking, and how college research experience affects creativity and critical thinking. Our results supported the first hypothesis regarding the positive correlation among all of the dependent variables. The mean correlation between the measures of creativity and critical thinking was 0.230. This result was in line with the findings from previous research ( Gibson et al., 1968 ; Gadzella and Penland, 1995 ; Siburian et al., 2019 ; Akpur, 2020 ; Qiang et al., 2020 ). Moreover, our confirmatory factor analysis yielded similar results as analysis of Wechsler et al. (2018) and Akpur (2020) and provides more evidence of the relative independence between creativity and critical thinking. We found that at the latent variable level, the two skills are highly correlated to each other ( r =0.84). In addition, we found that although the one-factor model was an acceptable fit, a two-factor model was a better fit for analysis. This result suggests that despite the correlation between creativity and critical thinking, the two skills should be studied as separate factors for an appropriate and comprehensive analysis.

The results of this study partially confirmed our second hypothesis and replicated the findings from past studies ( Niu et al., 2007 ; Lun et al., 2010 ; Wong and Niu, 2013 ; Tang et al., 2015 ). As predicted, there was a significant main effect for culture in students’ performance for all six measures in the two-C analysis model. United States students performed better than Chinese students in all three creativity measures, and Chinese students performed better than United States students in all critical thinking measures. Given the diversity in the type of measures used in this study, the results suggest that United States and Chinese students’ performance aligns with the stereotype belief found in study of Wong and Niu (2013) . The findings from the current study suggest that the stereotype belief observed in both United States and Chinese students (United States students generally perform better on creativity tasks, while Chinese students perform typically better on critical thinking tasks) is not entirely unfounded. Furthermore, the clear discrepancy in performance between United States and Chinese students provides more evidence to suggest that creativity and critical thinking are relatively autonomous skills. Although, a high correlation between these two skills was found in our study, the fact that students from two different cultures have two different development trajectories in critical thinking and creativity suggests that these two skills are relatively autonomous.

Lastly, the results also confirmed our third hypothesis, that is, college research experience did have a positive influence on students’ creativity and critical thinking. Compared to students with no research experience, students with some research experience performed significantly better in all measures of creativity and critical thinking. This finding is consistent with the previous literature ( Mill et al., 1994 ; Penningroth et al., 2007 ; Stevens and Witkow, 2014 ; Stevens et al., 2016 ; Kuo et al., 2018 ). The result of our study suggests that college research experience is significant to enhance both creativity and critical thinking. As research experience becomes a more essential component of college education, our results suggest that it not only can add credential for applying to graduate school or help students learn skills specific to research, but also help students enhance both creativity and critical thinking. Furthermore, it is worth noting that this nature held true for both Chinese and American students. To our knowledge, this is a first investigation examining the role of research experience in both creativity and critical thinking cross-culturally.

In addition to the report of our findings, we would like to address some limitations of our study. First, we would like to note that this is a correlational and cross-sectional study. A positive correlation between research experience and the two dependent variables does not necessarily mean causation. Our results indeed indicate a positive correlation between research experience and the two-C variables; however, we are not sure of the nature of this relationship. It is plausible that students with higher creativity and critical thinking skills are more engaged in research as much as it is to argue in favor of a reversed directional relationship. Second, we would like to note the sample bias in our study. Majority of our participants were female, majoring in the social sciences and a relatively high number of participants chose not to report their gender. Third, we would like to note that our study did not measure all creativity and critical thinking dimensions, we discussed in the introduction. Instead, we focused on a few key dimensions of creativity and critical thinking. Our primary focus was on divergent thinking, convergent thinking, and scientific creativity as well as few key dimensions of critical thinking (evaluation, logical reasoning, and probability thinking), scientific critical thinking involved in problem solving and hypothesis testing. Moreover, our results do not show what specific components of research training are beneficial for the enhancement of creativity and critical thinking.

For future research, a longitudinal design involving a field experiment will help investigate how different research training components affect the development of creativity and critical thinking. In addition, a cross-cultural study can further examine how and why the students from different cultures differ from each other in the development of these two potentials. As such, it might shed some light on the role of culture in creativity and critical thinking.

Conclusion and Implication

The result of our study provides few insights to the study of creativity and critical thinking. First, creativity and critical thinking are a different construct yet highly correlated. Second, whereas Americans perform better on creativity measures, Chinese perform better on critical thinking measures. Third, for both American and Chinese students, college research experience is a significant influence on the enhancement of creativity and critical thinking. As research experience becomes more and more essential to college education, its role can not only add professional and postgraduate credentials, but also help students enhance both creativity and critical thinking.

Based on our results, we recommend that research training be prioritized in higher education. Moreover, each culture has strengths to develop one skill over the other, hence, each culture could invest more in developing skills that were found to be weaker in our study. Eastern cultures can encourage more creativity and Western cultures can encourage more critical thinking.

To conclude, we would like to highlight that, although recognized globally as essential skills, methods to foster creativity and critical thinking skills and understanding creativity and critical thinking as a construct requires further research. Interestingly, our study found that experience of research itself can help enhance creativity and critical thinking. Our study also aimed to expand the knowledge of creativity and critical thinking literature through an investigation of the relationship of the two variables and how cultural background influences the performance of these two skills. We hope that our findings can provide insights for researchers and educators to find constructive methods to foster students’ essential 21st century skills, creativity and critical thinking, to ultimately enhance their global competence and life success.

Data Availability Statement

Ethics statement.

The studies involving human participants were reviewed and approved by Institutional Review Board at Pace University. The participants provided their informed consent online prior to participating in the study.

Author Contributions

All authors listed have made a substantial, direct, and intellectual contribution to the work, and approved it for publication., conflict of interest.

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s Note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

This work was supported by the International Joint Research Project of Faculty of Education, Beijing Normal University (ICER201904), and a scholarly research funding by Pace University.

  • Akpur U. (2020). Critical, reflective, creative thinking and their reflections on academic achievement . Think. Skills Creat. 37 :100683. doi: 10.1016/j.tsc.2020.100683 [ CrossRef ] [ Google Scholar ]
  • Amabile T. M. (1982). Social psychology of creativity: a consensual assessment technique . J. Pers. Soc. Psychol. 43 , 997–1013. doi: 10.1037/0022-3514.43.5.997 [ CrossRef ] [ Google Scholar ]
  • Amabile T. M. (1996). Creativity in Context: Update to “The Social Psychology of Creativity. ” Boulder, CO: Westview Press. [ Google Scholar ]
  • American Psychological Association (2016). Guidelines for the undergraduate psychology major: version 2.0 . Am. Psychol. 71 , 102–111. doi: 10.1037/a0037562, PMID: [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Barbot B., Besançon M., Lubart T. (2011). Assessing creativity in the classroom . Open Educ. J. 4 , 58–66. doi: 10.2174/1874920801104010058 [ CrossRef ] [ Google Scholar ]
  • Barron F., Harrington D. M. (1981). Creativity, intelligence, and personality . Annu. Rev. Psychol. 32 , 439–476. doi: 10.1146/annurev.ps.32.020181.002255 [ CrossRef ] [ Google Scholar ]
  • Bechtoldt M., Choi H., Nijstad A. B. (2012). Individuals in mind, mates by heart: individualistic self-construal and collective value orientation as predictors of group creativity . J. Exp. Soc. Psychol. 48 , 838–844. doi: 10.1016/j.jesp.2012.02.014 [ CrossRef ] [ Google Scholar ]
  • Bensley D. A., Murtagh M. P. (2012). Guidelines for a scientific approach to critical thinking assessment . Teach. Psychol. 39 , 5–16. doi: 10.1177/0098628311430642 [ CrossRef ] [ Google Scholar ]
  • Boyack K. W., Klavans R., Börner K. (2005). Mapping the backbone of science . Scientometrics 64 , 351–374. doi: 10.1007/s11192-005-0255-6 [ CrossRef ] [ Google Scholar ]
  • Byrge C., Tang C. (2015). Embodied creativity training: effects on creative self-efficacy and creative production . Think. Skills Creat. 16 , 51–61. doi: 10.1016/j.tsc.2015.01.002 [ CrossRef ] [ Google Scholar ]
  • Carson S. H., Peterson J. B., Higgins D. M. (2005). Reliability, validity, and factor structure of the creative achievement questionnaire . Creat. Res. J. 17 , 37–50. doi: 10.1207/s15326934crj1701_4 [ CrossRef ] [ Google Scholar ]
  • Corazza G. E., Lubart T. (2021). Intelligence and creativity: mapping constructs on the space-time continuum . J. Intell. 9 :1. doi: 10.3390/jintelligence9010001, PMID: [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Csikszentmihalyi M. (1988). “ Society, culture, and person: A systems view of creativity ” in The Nature of Creativity: Contemporary Psychological Perspectives. ed. Sternberg R. J. (New York: Cambridge University Press; ), 325–339. [ Google Scholar ]
  • Csikszentmihalyi M. (1999). “ Implications of a systems perspective for the study of creativity ” in Handbook of Creativity. ed. Sternberg R. J. (New York, NY: Cambridge University Press; ), 313–335. [ Google Scholar ]
  • Diedrich J., Jauk E., Silvia P. J., Gredlein J. M., Neubauer A. C., Benedek M. (2018). Assessment of real-life creativity: the inventory of creative activities and achievements (ICAA) . Psychol. Aesthet. Creat. Arts 12 , 304–316. doi: 10.1037/aca0000137 [ CrossRef ] [ Google Scholar ]
  • Ennis R. H. (1987). “ A taxonomy of critical thinking dispositions and abilities ” in Teaching Thinking Skills: Theory and Practice. eds. Baron J. B., Sternberg R. J. (New York, NY: W H Freeman/Times Books/Henry Holt & Co.), 9–26. [ Google Scholar ]
  • Ennis R. H., Millman J., Tomko T. N. (1985). Cornell Critical Thinking Test Level x and Level z Manual. 3rd Edn . Pacific Grove, CA: Midwest Publications. [ Google Scholar ]
  • Facione P. A., Facione N. (1994). The California Critical Thinking Skills Test: Test Manual. Millbrae, CA: California Academic Press. [ Google Scholar ]
  • Gadzella B. M., Penland E. (1995). Is creativity related to scores on critical thinking? Psychol. Rep. 77 , 817–818. doi: 10.2466/pr0.1995.77.3.817 [ CrossRef ] [ Google Scholar ]
  • Gibson J. W., Kibler R. J., Barker L. L. (1968). Some relationships between selected creativity and critical thinking measures . Psychol. Rep. 23 , 707–714. doi: 10.2466/pr0.1968.23.3.707, PMID: [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Glaser E. M. (1941). An Experiment in the Development of Critical Thinking. New York, NY: Teachers College, Columbia University. [ Google Scholar ]
  • Glassner A., Schwartz B. (2007). What stands and develops between creative and critical thinking? Argumentation? Think. Skills Creat. 2 , 10–18. doi: 10.1016/j.tsc.2006.10.001 [ CrossRef ] [ Google Scholar ]
  • Gough H. G. (1979). A creative personality scale for the adjective check list . J. Pers. Soc. Psychol. 37 , 1398–1405. doi: 10.1037/0022-3514.37.8.1398 [ CrossRef ] [ Google Scholar ]
  • Guilford J. P. (1956). The structure of intellect . Psychol. Bull. 53 , 267–293. doi: 10.1037/h0040755, PMID: [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Guilford J. P. (1986). Creative Talents: Their Nature, Uses and Development. Buffalo, NY: Bearly Ltd. [ Google Scholar ]
  • Guilford J. P., Christensen P. R., Merrifield P. R., Wilson R. C. (1960). Alternate Uses Manual. Menlo Park, CA: Mind Garden, Inc. [ Google Scholar ]
  • Guo J., Woulfin S. (2016). Twenty-first century creativity: an investigation of how the partnership for 21st century instructional framework reflects the principles of creativity . Roeper Rev. 38 , 153–161. doi: 10.1080/02783193.2016.1183741 [ CrossRef ] [ Google Scholar ]
  • Halpern D. F. (1984). Thought and Knowledge: An Introduction to Critical Thinking. Hillsdale, NJ: Erlbaum. [ Google Scholar ]
  • Halpern D. F. (1999). Teaching for critical thinking: helping college students develop the skills and dispositions of a critical thinker . New Dir. Teach. Learn. 1999 , 69–74. doi: 10.1002/tl.8005 [ CrossRef ] [ Google Scholar ]
  • Hariri N., Bagherinejad Z. (2012). Evaluation of critical thinking skills in students of health faculty, Mazandaran university of medical sciences . J. Mazand. Univ. Med. Sci. 21 , 166–173. [ Google Scholar ]
  • Hocevar D., Michael W. B. (1979). The effects of scoring formulas on the discriminant validity of tests of divergent thinking . Educ. Psychol. Meas. 39 , 917–921. doi: 10.1177/001316447903900427 [ CrossRef ] [ Google Scholar ]
  • Huber C. R., Kuncel N. R. (2016). Does college teach critical thinking? A meta-analysis . Rev. Educ. Res. 86 , 431–468. doi: 10.3102/0034654315605917 [ CrossRef ] [ Google Scholar ]
  • Hunter S. T., Bedell K. E., Mumford M. D. (2007). Climate for creativity: a quantitative review . Creat. Res. J. 19 , 69–90. doi: 10.1080/10400410709336883 [ CrossRef ] [ Google Scholar ]
  • Jellen H. U., Urban K. (1989). Assessing creative potential worldwide: the first cross-cultural application of the test for creative thinking–drawing production (TCT–DP) . Gifted Educ. 6 , 78–86. doi: 10.1177/026142948900600204 [ CrossRef ] [ Google Scholar ]
  • Kim K. H. (2005). Can only intelligent people be creative? A meta-analysis . J. Sec. Gifted Educ. 16 , 57–66. doi: 10.4219/jsge-2005-473 [ CrossRef ] [ Google Scholar ]
  • Korn M. (2014). Bosses Seek ‘Critical Thinking,’ but What Is That? Wall Street Journal. Available at: https://online.wsj.com/articles/bosses-seek-critical-thinking-but-what-is-that-1413923730 (Accessed October 18, 2021).
  • Kuo H.-C., Tseng Y.-C., Yang Y.-T. C. (2018). Promoting college student's learning motivation and creativity through a STEM interdisciplinary PBL human-computer interaction system design and development course . Think. Skills Creat. 31 , 1–10. doi: 10.1016/j.tsc.2018.09.001 [ CrossRef ] [ Google Scholar ]
  • Lamont P. (2020). The construction of "critical thinking": between how we think and what we believe . Hist. Psychol. 23 , 232–251. doi: 10.1037/hop0000145, PMID: [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Land M. H. (2013). Full STEAM ahead: the benefits of integrating the arts into STEM . Compl. Adapt. Syst. 20 , 547–552. doi: 10.1016/j.procs.2013.09.317 [ CrossRef ] [ Google Scholar ]
  • Lawson T. J. (1999). Assessing psychological critical thinking as a learning outcome for psychology majors . Teach. Psychol. 26 , 207–209. doi: 10.1207/S15328023TOP260311 [ CrossRef ] [ Google Scholar ]
  • Lawson T. J., Jordan-Fleming M. K., Bodle J. H. (2015). Measuring psychological critical thinking . Teach. Psychol. 42 , 248–253. doi: 10.1177/0098628315587624 [ CrossRef ] [ Google Scholar ]
  • Lee H.-J., Lee J., Makara K. A., Fishman B. J., Hong Y. I. (2015). Does higher education foster critical and creative learners? An exploration of two universities in South Korea and the USA . High. Educ. Res. Dev. 34 , 131–146. doi: 10.1080/07294360.2014.892477 [ CrossRef ] [ Google Scholar ]
  • Ling M. K. D., Loh S. C. (2020). Relationship of creativity and critical thinking to pattern recognition among Singapore private school students . J. Educ. Res. 113 , 59–76. doi: 10.1080/00220671.2020.1716203 [ CrossRef ] [ Google Scholar ]
  • Liou S., Lan X. (2018). Situational salience of norms moderates cultural differences in the originality and usefulness of creative ideas generated or selected by teams . J. Cross-Cult. Psychol. 49 , 290–302. doi: 10.1177/0022022116640897 [ CrossRef ] [ Google Scholar ]
  • Lopatto D. (2004). Survey of undergraduate research experiences (SURE): first findings . Cell Biol. Educ. 3 , 270–277. doi: 10.1187/cbe.04-07-0045, PMID: [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Lopatto D. (2008). “ Exploring the benefits of undergraduate research experiences: The SURE survey ” in Creating Effective Undergraduate Research Programs in Science eds. R. Taraban and R. L. Blanton (New York: Teachers College Press; ), 112–132. [ Google Scholar ]
  • Lubart T., Zenasni F., Barbot B. (2013). Creative potential and its measurement . Int. J. Talent Dev. Creat. 1 , 41–50. [ Google Scholar ]
  • Lun V. M.-C., Fischer R., Ward C. (2010). Exploring cultural differences in critical thinking: is it about my thinking style or the language I speak? Learn. Individ. Differ. 20 , 604–616. doi: 10.1016/j.lindif.2010.07.001 [ CrossRef ] [ Google Scholar ]
  • Manalo E., Kusumi T., Koyasu M., Michita Y., Tanaka Y. (2013). To what extent do culture-related factors influence university students' critical thinking use? Think. Skills Creat. 10 , 121–132. doi: 10.1016/j.tsc.2013.08.003 [ CrossRef ] [ Google Scholar ]
  • Mill D., Gray T., Mandel D. R. (1994). Influence of research methods and statistics courses on everyday reasoning, critical abilities, and belief in unsubstantiated phenomena . Can. J. Behav. Sci. 26 , 246–258. doi: 10.1037/0008-400X.26.2.246 [ CrossRef ] [ Google Scholar ]
  • Mueller J. F., Taylor H. K., Brakke K., Drysdale M., Kelly K., Levine G. M., et al.. (2020). Assessment of scientific inquiry and critical thinking: measuring APA goal 2 student learning outcomes . Teach. Psychol. 47 , 274–284. doi: 10.1177/0098628320945114 [ CrossRef ] [ Google Scholar ]
  • National Education Association (2012). Preparing 21st Century Students for a Global Society: An educator's Guide to the "Four Cs". Alexandria, VA: National Education Association. [ Google Scholar ]
  • Ng A.K. (2001). Why Asians Are less Creative than Westerners. Singapore: Prentice Hall. [ Google Scholar ]
  • Nisbett R. E., Peng K., Choi I., Norenzayan A. (2001). Culture and systems of thought: holistic versus analytic cognition . Psychol. Rev. 108 , 291–310. doi: 10.1037/0033-295X.108.2.291, PMID: [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Niu L., Behar-Horenstein L. S., Garvan C. W. (2013). Do instructional interventions influence college students' critical thinking skills? A meta-analysis . Educ. Res. Rev. 9 , 114–128. doi: 10.1016/j.edurev.2012.12.002 [ CrossRef ] [ Google Scholar ]
  • Niu W., Sternberg R. J. (2001). Cultural influences on artistic creativity and its evaluation . Int. J. Psychol. 36 , 225–241. doi: 10.1080/00207590143000036 [ CrossRef ] [ Google Scholar ]
  • Niu W., Zhang J. X., Yang Y. (2007). Deductive reasoning and creativity: a cross-cultural study . Psychol. Rep. 100 , 509–519. doi: 10.2466/pr0.100.2.509-519, PMID: [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Paul R., Elder L. (2019). The Miniature Guide to Critical Thinking Concepts and Tools. 8th Edn . Lanham, MD: Foundation for Critical Thinking. [ Google Scholar ]
  • Penningroth S. L., Despain L. H., Gray M. J. (2007). A course designed to improve psychological critical thinking . Teach. Psychol. 34 , 153–157. doi: 10.1080/00986280701498509 [ CrossRef ] [ Google Scholar ]
  • Qiang R., Han Q., Guo Y., Bai J., Karwowski M. (2020). Critical thinking disposition and scientific creativity: the mediating role of creative self-efficacy . J. Creat. Behav. 54 , 90–99. doi: 10.1002/jocb.347 [ CrossRef ] [ Google Scholar ]
  • Rockstuhl T., Ng K.-Y. (2008). The effects of cultural intelligence on interpersonal trust in multicultural teams . In Handbook of Cultural Intelligence: Theory, Measurement, and Applications. (eds.) Ang S., Dyne L.. Armonk, NY: M.E. Sharpe. 206–220. [ Google Scholar ]
  • Rodriguez-Boerwinkle R., Silvia P., Kaufman J. C., Reiter-Palmon R., Puryear J. S. (2021). Taking inventory of the creative behavior inventory: an item response theory analysis of the CBI. [Preprint]. doi: 10.31234/osf.io/b7cfd [ CrossRef ]
  • Ross D., Loeffler K., Schipper S., Vandermeer B., Allan G. M. (2013). Do scores on three commonly used measures of critical thinking correlate with academic success of health professions trainees? A systematic review and meta-analysis . Acad. Med. 88 , 724–734. doi: 10.1097/ACM.0b013e31828b0823, PMID: [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Runco M. A., Albert R. S. (1986). The threshold theory regarding creativity and intelligence: an empirical test with gifted and nongifted children . Creat. Child Adult Q. 11 , 212–218. [ Google Scholar ]
  • Schermelleh-Engel K., Moosbrugger H., Müller H. (2003). Evaluating the fit of structural equation models: Tests of significance and descriptive goodness-of-fit measures . Methods of Psychological Research 8 , 23–74. [ Google Scholar ]
  • Scott S. G., Bruce R. A. (1994). Determinants of innovative behavior: a path model of individual innovation in the workplace . Acad. Manag. J. 37 , 580–607. [ Google Scholar ]
  • Scott G., Leritz L. E., Mumford M. D. (2004). The effectiveness of creativity training: a quantitative review . Creat. Res. J. 16 , 361–388. doi: 10.1080/10400410409534549 [ CrossRef ] [ Google Scholar ]
  • Scriven M., Paul R. (1987). Defining Critical Thinking. In 8th Annual International Conference on Critical Thinking and Education Reform ; August 2–5, 1987.
  • Siburian J., Corebima A. D., Ibrohim, Saptasari M. (2019). The correlation between critical and creative thinking skills on cognitive learning results . Eurasian J. Educ. Res. 19 , 99–114. doi: 10.14689/EJER.2019.81.6 [ CrossRef ] [ Google Scholar ]
  • Sternberg R. J., Halpern D. F. (eds.) (2020). Critical Thinking in Psychology. 2nd Edn . Cambridge: Cambridge University Press. [ Google Scholar ]
  • Sternberg R. J., Lubart T. I. (1999). “ The concept of creativity: prospects and paradigms ” in Handbook of Creativity. ed. Sternberg R. J. (New York, NY: Cambridge University Press; ), 3–15. [ Google Scholar ]
  • Sternberg R. J., Sternberg K. (2017). Measuring scientific reasoning for graduate admissions in psychology and related disciplines . J. Intell. 5 , 29. doi: 10.3390/jintelligence5030029, PMID: [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Stevens C., Witkow M. R. (2014). Training scientific thinking skills: evidence from an MCAT 2015 aligned classroom module . Teach. Psychol. 41 , 115–121. doi: 10.1177/0098628314530341 [ CrossRef ] [ Google Scholar ]
  • Stevens C., Witkow M. R., Smelt B. (2016). Strengthening scientific reasoning skills in introductory psychology: evidence from community college and liberal arts classrooms . Scholarsh. Teach. Learn. Psychol. 2 , 245–260. doi: 10.1037/stl0000070 [ CrossRef ] [ Google Scholar ]
  • Tang M., Werner C., Cao G., Tumasjan A., Shen J., Shi J., et al.. (2015). Creative expression and its evaluation on work-related verbal tasks: a comparison of Chinese and German samples . J. Creat. Behav. 52 , 91–103. doi: 10.1002/jocb.134 [ CrossRef ] [ Google Scholar ]
  • Torrance E. P. (1966). The Torrance Tests of Creative Thinking-Norms-Technical Manual Research Edition-Verbal Tests, Forms A and B Figural Tests, Forms A and B. Princeton, NJ: Personnel Press. [ Google Scholar ]
  • Torrance E. P. (1974). Torrance Tests of Creativity Thinking: Norms–Technical Manual. Lexington, MA: Ginn. [ Google Scholar ]
  • Torrance E. P. (1988). “ The nature of creativity as manifest in its testing ” in The Nature of Creativity. ed. Sternberg R. J. (New York: Cambridge University Press; ), 43–73. [ Google Scholar ]
  • Tsui L. (1998). Fostering Critical Thinking in College Students: A Mixed-Methods Study of Influences Inside and Outside of the Classroom (Doctoral dissertation). Available from ProQuest Dissertations and Theses database. (UMI No. 9917229)
  • Wallach M. A., Kogan N. (1965). Modes of Thinking in Young Children: A Study of the Creativity-Intelligence Distinction. New York: Holt, Rinehart & Winston. [ Google Scholar ]
  • Watson G. B., Glaser E. M. (1938). The Watson-Glaser Tests of Critical Thinking. New York, NY: Institute for Propaganda Analysis. [ Google Scholar ]
  • Watson G. B., Glaser E. M. (1980). WGCTA Watson-Glaser Critical Thinking Appraisal Manual: Forms A and B. San Antonio: The Psychological Corporation. [ Google Scholar ]
  • Wechsler S. M., Saiz C., Rivas S. F., Vendramini C. M. M., Almeida L. S., Mundim M. C., et al.. (2018). Creative and critical thinking: independent or overlapping components? Think. Skills Creat. 27 , 114–122. doi: 10.1016/j.tsc.2017.12.003 [ CrossRef ] [ Google Scholar ]
  • Wong R., Niu W. (2013). Cultural difference in stereotype perceptions and performances in nonverbal deductive reasoning and creativity . J. Creat. Behav. 47 , 41–59. doi: 10.1002/jocb.22 [ CrossRef ] [ Google Scholar ]
  • Zydney A. L., Bennett J. S., Shahid A., Bauer K. W. (2002). Faculty perspectives regarding the undergraduate research experience in science and engineering . J. Eng. Educ. 91 , 291–297. doi: 10.1002/j.2168-9830.2002.tb00706.x [ CrossRef ] [ Google Scholar ]

Opinion: Mistakes and misconduct in science are not synonymous; there are remedies for both

  • Show more sharing options
  • Copy Link URL Copied!

Brenner is a physician-scientist and president and chief executive officer of Sanford Burnham Prebys and lives in La Jolla.

From climate change to vaccines, science seems under attack everywhere on every topic, though often for reasons having little to do with actual research and evidence.

Science should always be questioned. That’s part of the process. But when people fundamentally and without consideration do not trust scientists, when they believe there are ulterior motives, we’re in trouble.

Feeding those suspicions are regular headlines reporting scientific fraud and misconduct. For as long as there has been science, there have been such cases, and we rightfully wring our hands when they come to light. But is this a time of crisis in science ethics? The answer, like science itself, is more complicated than blaring headlines.

In 2005, The New York Times described scientific fraud a “global trend.” A review of biomedical and life science research articles published between 1973 and 2012 noted more than 2,000 papers had been retracted, but less than one-quarter for technical errors. The majority were primarily pulled for fraud or suspected fraud, duplicate publication, or plagiarism.

Scientific journals, universities and research institutions have long struggled to effectively combat fraud, with mixed results. Many of the revelations leading to retractions of published work are the result of independent sleuths or enterprises. PubPeer is a website self-described as an “online journal club” where mostly anonymous investigators cull published data for scientific errors or dubious conclusions, from too-small sample sizes and bias to doctored or misleading images.

Sometimes the detected offense is fraud, which should be dealt with accordingly. At other times, researchers are taken to task for unintentional errors or findings that were, when published, the best thinking.

Should scientists be responsible for all research they’ve conducted or published under their name? It sounds reasonable, but it’s counterproductive. I have published or authored more than 300 scientific papers, articles, reviews and chapters in books. Do I “own” those findings forever? Am I obliged to correct and update them whenever possible?

Doing so might mean spending more time looking backward than forward. That’s not how science works. Like all researchers, my work is open to review, replication, correction and advancement (or dismissal) by others. New discoveries and technologies routinely upend older assumptions. That’s progress.

We should always be willing to correct mistakes in publications whenever they are detected, even if the papers and articles are many years old, and no longer represent current thinking.

To expect an older published manuscript to hold up to a state-of-the-art analysis sets an unfair standard. Researchers today have tools, technologies and knowledge that didn’t exist even a few years ago. Independent investigators need to exercise wisdom and context when considering the circumstances of older work — and still vigilantly maintain scientific integrity.

What are non-scientists supposed to make of these controversies and contretemps? It’s easy to simply ignore or dismiss them — and their relevance and benefits to society. Public trust in scientists and the belief that science has a positive effect on society has steadily declined in recent years, exacerbated by the politicized pandemic.

But that reflects a lack of critical thinking, which is, well, critical to our social well-being. More than ever, Americans need to be able to identify fact from fiction, to choose experts wisely and to draw valid conclusions from the same data, even when they do not conform to pre-existing biases.

Science isn’t about beliefs, intuition or gut feelings. It’s about empirical, verifiable facts. Sometimes those facts will later be proved incorrect with new data. That’s when minds must change along with the science.

Researchers make mistakes. Some even commit fraud. There are remedies which should be broadly and dispassionately pursued — and improved.

Research institutions can do better in monitoring and correcting science. We should provide our scientists with the analytical resources needed to interrogate their manuscripts prior to submission to a peer-reviewed journal, such as online databases of citations, text mining and artificial intelligence-driven technologies.

We should take all credible accusations of scientific error seriously and be willing to conduct independent investigations in response to concerns expressed by the scientific community.

It is a rare and hard-earned privilege to conduct research and we must hold ourselves to the highest standards. If non-scientists believe we are doing so, they can believe again in science.

Get Weekend Opinion on Sundays and Reader Opinion on Mondays

Editorials, commentary and more delivered Sunday morning, and Reader Reaction on Mondays.

You may occasionally receive promotional content from the San Diego Union-Tribune.

is critical thinking necessary for creativity

More from this Author

Community voices project

Opinion: Rare diseases affect 30 million Americans. These are the challenges to find their cure.

Feb. 7, 2024

Opinion: Matthew Perry was open about addiction. Like him, we can’t stop trying to overcome it.

Nov. 28, 2023

More in this section

Pride flag in Hillcrest

Opinion: We need everyone to support the LGBTQ+ community, now more than ever. Here’s why.

Everyone can contribute some of their time, talent, or treasures toward building a more inclusive community.

April 10, 2024

San Diego, CA - March 07: On Thursday, March 7, 2024, in San Diego, the morning continued with scattered showers, with enough sunshine between showers for a pair of stand-up paddlers to enjoy the late morning along the Esplanade Canal near Liberty Station in Point Loma. (Nelvin C. Cepeda / The San Diego Union-Tribune)

Opinion: Writing San Diego’s sunshine and noir, City Works Press celebrates 20 years

What makes us stand out from other publishers is that San Diego City Works Press is an entirely nonprofit collective.

Opinion: We gathered to confront an uncomfortable truth. But there is resolve in San Diego in the face of terrorism.

For 47 minutes, we watched in horror as unedited footage depicted the massacre carried out by Hamas

April 2, 2024

Opinion: Homelessness can easily lead to substance abuse. But there is one way to stop the cycle.

Continued trauma, marginalization and survival spirals into a terrible cycle that degrades mental health

Opinion: This Easter Sunday I’ll be seeking something different

It was during a Catholic service that I attended last year when I gained great clarity about one purpose for the Holy Spirit

March 29, 2024

A member of WILDCOAST's partner, United Women of El Dátil, holds a mangrove seedling in a mangrove forest in Laguna San Ignacio, Baja California Sur, Mexico.

Opinion: Blue carbon ecosystems have the power to protect fragile coastlines, but time is running out

Nature based solutions to climate change are the most cost effective ways to protect local neighborhoods, businesses and flood-vulnerable infrastructure from floodwaters associated with rising sea levels

March 21, 2024

IMAGES

  1. why is Importance of Critical Thinking Skills in Education

    is critical thinking necessary for creativity

  2. Critical Thinking Definition, Skills, and Examples

    is critical thinking necessary for creativity

  3. How to promote Critical Thinking Skills

    is critical thinking necessary for creativity

  4. 6 Main Types of Critical Thinking Skills (With Examples)

    is critical thinking necessary for creativity

  5. Steps to Critical Thinking

    is critical thinking necessary for creativity

  6. What Is Critical Thinking And Creative Problem Solving

    is critical thinking necessary for creativity

VIDEO

  1. Unlocking Digital Genius

  2. Creativity Needs Critical Thinking #facilitation #facilitation #creativity #criticalthinking

  3. Вебінар “How creativity and critical thinking can upgrade writing assignments?”

  4. Unlocking Creativity: Why Less Restrictions Mean More Innovations #creativity #innovation #art

  5. Episode 71: Critical Thinking Skills

  6. 2020

COMMENTS

  1. What Are Critical Thinking Skills and Why Are They Important?

    According to the University of the People in California, having critical thinking skills is important because they are [ 1 ]: Universal. Crucial for the economy. Essential for improving language and presentation skills. Very helpful in promoting creativity. Important for self-reflection.

  2. The Importance Of Critical Thinking, and how to improve it

    4. Promotes Creativity. By practicing critical thinking, we are allowing ourselves not only to solve problems but also to come up with new and creative ideas to do so. Critical thinking allows us to analyze these ideas and adjust them accordingly. 5. Important For Self-Reflection. Without critical thinking, how can we really live a meaningful life?

  3. Exploring the Difference: Creative Thinking vs. Critical Thinking

    Creative thinking and critical thinking are two distinct cognitive processes that play important roles in problem-solving and decision-making. While creative thinking involves generating innovative ideas and solutions, critical thinking involves analyzing and evaluating information to make reasoned judgments.

  4. An Introduction to Critical Thinking and Creativity

    A valuable guide on creativity and critical thinking to improve reasoning and decision-making skills Critical thinking skills are essential in virtually any field of study or practice where individuals need to communicate ideas, make decisions, and analyze and solve problems. An Introduction to Critical Thinking and Creativity: Think More, Think Better outlines the necessary tools for readers ...

  5. Strange Bedfellows: Creativity & Critical Thinking

    However, it is possible for creative thought to be complementary to critical thinking, considering the amount of creativity involved in the synthesis of information necessary to infer a conclusion ...

  6. AN INTRODUCTION TO CRITICAL THINKING AND CREATIVITY

    • Unlike most textbooks, I discuss both critical and creative thinking because they are equally important for problem solving and they are not indepen-dent of each other. We need creativity in critical thinking to come up with arguments, counterexamples, and alternative explanations. And creativity needs critical thinking in evaluating and ...

  7. Critical Thinking

    It is an important part of a critical thinking process in which one surveys arguments for various positions on an issue. ... Meritxell Fernández-Barrerra, Gwénaël Jacotin, Joaquin Urgel, and Quentin Vidal, 2019, Fostering Students' Creativity and Critical Thinking: What It Means in School. Educational Research and Innovation, Paris: ...

  8. At The Intersection of Creativity and Critical Thinking

    Creativity and critical thinking sit atop most lists of skills crucial for success in the 21st century. They represent two of the "Four Cs" in P21's learning framework (the other two being communication and collaboration), and they rank second and third on the World Economic Forum's top ten list of skills workers will need most in the year 2020 (complex problem solving ranks first).

  9. Frontiers

    The result of our study provides few insights to the study of creativity and critical thinking. First, creativity and critical thinking are a different construct yet highly correlated. Second, whereas Americans perform better on creativity measures, Chinese perform better on critical thinking measures.

  10. Creativity and Critical Thinking

    Creativity is a process that demands critical analysis and evaluation and shares with critical thinking the need for (to revisit Guilford) fluency, flexibility and originality of thought, the ability and dispositions to reinterpretation and challenge old ideas and to move forward in the face of ambiguity.

  11. Creativity

    Creativity. Creativity encompasses the ability to discover new and original ideas, connections, and solutions to problems. It's a part of our drive as humans—fostering resilience, sparking joy ...

  12. 6 Benefits of Critical Thinking and Why They Matter

    Critical thinking capacity does all that and more. 4. It's a multi-faceted practice. Critical thinking is known for encompassing a wide array of disciplines, and cultivating a broad range of cognitive talents. One could indeed say that it's a cross-curricular activity for the mind, and the mind must be exercised just like a muscle to stay ...

  13. Thinking Critically and Creatively

    Critical and creative thinking skills are perhaps the most fundamental skills involved in making judgments and solving problems. They are some of the most important skills I have ever developed. I use them everyday and continue to work to improve them both. The ability to think critically about a matter—to analyze a question, situation, or ...

  14. Enhancing Creativity and Critical Thinking Skills: A Comprehensive Guide

    A: Creativity and critical thinking are highly valued in the professional sphere. They enable individuals to adapt to changing circumstances, identify innovative solutions, and make informed decisions. These skills can contribute to professional growth, open up new opportunities, and enhance problem-solving abilities.

  15. Fostering Students' Creativity and Critical Thinking

    Creativity and critical thinking are key skills for complex, globalised and increasingly digitalised economies and societies. While teachers and education policy makers consider creativity and critical thinking as important learning goals, it is still unclear to many what it means to develop these skills in a school setting.

  16. a guide to creative and critical thinking

    The open step goes on to outline some of the critical thinking processes that tie into the definitions we've seen. These critical thinking skills include: Analysing and weighing up arguments. Evaluating evidence that has been presented. Distinguishing between fact and opinion.

  17. Creativity and Critical Thinking Contribute to Scholarly ...

    Critical thinking can be viewed as a process that allows the individual to identify gaps and recognize what is missing or wrong with ideas, solutions, or conclusions. Creative thinking, on the other hand, tends to be productive. New ideas are brought into existence. They are original precisely because they are new.

  18. The science behind creativity

    One frequently suggested feature is authenticity. "Creativity involves an honest expression," he said. Meanwhile, scientists are also struggling with the best way to measure the concept. As a marker of creativity, researchers often measure divergent thinking—the ability to generate a lot of possible solutions to a problem or question.

  19. Revisiting creativity and critical thinking through content analysis

    A review of correlation reported for creativity and critical thinking measures suggests that there is a moderate relationship between the two constructs. Based on results of 17 studies reporting correlation, it was found that the average correlation between creativity and critical thinking is r = 0.245.

  20. STEM, Creativity and Critical Thinking: How Do Teachers Address

    As detailed in many chapters in this volume (see, for example, Kelly & Ellerton, Chap. 2), creativity and critical thinking are seen as important competencies within the suite of twenty-first Century learning skills (OECD, 2005; p. 21), as are collaboration and communication.Creativity and critical thinking have become terms that are often linked together in educational contexts, even though ...

  21. What Is Critical Thinking?

    Critical thinking is the ability to effectively analyze information and form a judgment. To think critically, you must be aware of your own biases and assumptions when encountering information, and apply consistent standards when evaluating sources. Critical thinking skills help you to: Identify credible sources. Evaluate and respond to arguments.

  22. Why Curiosity Is Necessary for Creativity

    Curiosity is the catalyst for questioning, and questioning is what propels us to seek out the unfamiliar and the unknown. Curiosity is the fuel necessary for creativity to prosper and succeed. For ...

  23. Critical Thinking Will Be Necessary When Using AI

    Critical thinking typically includes steps such as collecting information and data, asking thoughtful questions, and analyzing possible solutions. This important skill is even more necessary in ...

  24. Fostering Creativity and Critical Thinking in College: A Cross-Cultural

    Enhancing creativity and critical thinking have garnered the attention of educators and researchers for decades. They have been highlighted as essential skills for the 21st century. ... In addition, the efforts to enhance necessary thinking skills have led to the development of various skill-specific courses. Mill et al. (1994) ...

  25. Mistakes and misconduct in science are not synonymous; there are

    Skepticism is important to science, but critical thinking even more so. Many Americans don't believe in science. Scientists need to change minds.