Syiar Digital NU

Yuk baca Qur’an surat:

LADUNI.ID - Layanan Dokumentasi Ulama dan Keislaman

  • Minggu, 28 April 2024 | 19 Shawwal 1445
  • Bisnis & Perdagangan
  • Jenazah & Makam
  • Qurban & Aqiqah
  • Nahdlatul Ulama
  • Perguruan Tinggi
  • Lokasi Ziarah

Banner Pilar laduni

  •  Video
  •  Audio
  •  Pesantren
  •  Ziarah
  •  Santri Unggul
  •  Profesional Shaleh
  •  Zakat
  •  Kitab & Buku
  •  Al Qur'an
  • Mengenal Complex Problem Solving, Kompetensi yang Paling Dibutuhkan di Era Disrupsi
  • 12.256 Views
  • Selasa, 7 Agustus 2018

Mengenal Complex Problem Solving, Kompetensi yang Paling Dibutuhkan di Era Disrupsi

World Economic Forum pada akhir 2015 memberikan gambaran 10 keterampilan yang paling dibutuhkan sesuai perkembangan teknologi dan disrupsi di banyak bidang hingga tahun 2020. Prediksi ini bersifat global termasuk berlaku juga untuk Indonesia.

Kompetensi pertama yang paling dibutuhkan adalah Complex Problem Solving dan menyusul 9 kompetensi lainnya, seperti dalam grafik. Laduni sudah mencoba menjelaskan beberapa penjelasan tentang Problem Solving yang memiliki keterhubungan dengan Complex Problem Solving.

Kali ini, Laduni menyampaikan rangkuman wawancara Prof. Don Sadana tentang kompetensi Complex Problem Solving dengan Rumah MSDM beberapa waktu lalu.

Complex Problem Solving sangat erat berhubungan dengan situasi permasalahan yang tidak terstruktur atau biasa disebut juga sebagai Messy Situation.

Complex Problem Solving (CPS) adalah paradigma baru dalam menyelesaikan masalah atau permasalahan. Dalam hal ini masalah dimaksudkan sebagai problem, sedangkan permasalahan adalah problematics . Masalah biasanya dapat didefinisikan dengan jelas dan terukur, sedangkan permasalahan bersifat susah didefinisikan dan diukur. Jadi, kadang kita sering kurang jelas, menentukan penyebutan istilah, apakah istilah ‘masalah’ ataukah ‘permasalahan’ terkait sesuatu hal yang sedang kita alami.

Masalah umumnya bersifat kuantitatif yang dapat diukur dan past oriented atau sudah terjadi, sehingga sering kali dengan bantuan statistik dapat diperoleh jawabannya. Namun demikian banyak pula masalah masa lalu yang bersifat kualitatif, sehingga solusi alternatifnya tidak cukup dijelaskan dengan statistik.

Sementara permasalahan biasanya sulit didefinisikan, namun terasakan. Misalnya: kemacetan adalah contoh sebuah permasalahan (problematics), sedangkan karyawan datang terlambat adalah masalah (problem).

Menurut World Economic Forum, Complex Problem Solving (CPS) adalah salah satu dari 10 skill atau kompetensi utama yang dibutuhkan seorang profesional.

complex problem solving adalah

Sebenarnya istilah Complex Problem Solving sudah ada sejak tahun 1978. Patton menekankan cara pemecahan masalah Complex Problem Solving sebagai “ a way of breaking down the complexity of the real world ” yang kurang lebih diterjemahkan bebas sebagai sebuah metode untuk memperjelas sesuatu hal yang sangat kompleks di kehidupan nyata.

Ini sejalan dengan pemikiran Tom Peter sebagai pelopor Mckinsey dalam In Search of Excellence (1982) dengan 7S-nya. Konsep Mckinsey 7S Framework dikelompokkan menjadi: 1. Soft elements. Soft Elements merupakan elemen yang lebih sulit dideskripsikan, less tangible (tidak terlihat), dan dipengaruhi budaya, yaitu element: Shared Values , Skills , Style , Staff .

2. Hard elements Hard Elements lebih mudah didefinisikan dan ditentukan, manajemen dapat langsung mempengaruhinya, yaitu: Strategy , Structure , Systems . Namun demikian, systems dalam 7S yang dikategorikan hard ini telah mengalami perluasan dan pendalaman terkait erat dengan metodologi Complex Problem Solving.

complex problem solving adalah

Systems sebagai kata asal dapat menjadi kata dasar systematic dan systemic . Kata dasar systematic terkait erat dengan system dalam hard element menurut McKinsey, sedangkan systemic oleh Peter Checkland (1982 & 2006) diberi pengertian sebagai segala sesuatu terkait dengan Human Activity Systems (HAS) atau diartikan bebas sebagai aktivitas manusia yang disengaja dan memiliki maksud tujuan. Tom Peters dan Peter Checkland dapat dijadikan acuan untuk memicu pengetahuan Complex Problem Solving.

Langkah-langkah Complex Problem Solving yang telah dimulai oleh Peter Checkland pada 1982 merupakan siklus yang memiliki tujuh tahapan yang dikelompokkan menjadi dua bagian: 1. Bagian Real World

2. Bagian Serba Sistem (systems thinking about real world)

complex problem solving adalah

Langkah 1 dan 2 diperoleh melalui dialog, indepth interview, dan FGD sehingga menghasilkan gambaran yang kaya terhadap suatu permasalahan (rich picture).

Saat ini kita perlu penyadaran tentang real world dengan pendekatan serba sistem (systems thinking), artinya kompleksitas saat ini tidak dimaknai sekedar seperti mesin jet yang canggih (complicated), namun complex (messy situation) dengan multi sistem seperti sistem tubuh manusia atau alam semesta. Dari sisi proses pembelajaran, dapat dilakukan beberapa tahap proses perubahan pada langkah 1 dan 2.

Analisis pembelajaran pertama terkait dengan world of view dari stakeholder menghasilkan gambaran kaya (rich picture=RP). Penyadaran ini merupakan tahap pencarian (finding out) yang menghasilkan akar permasalahan (root definition=RD).

Jika tidak disepakati akar permasalahannya, maka dilakukan proses ulang secara dinamis melalui komunikasi (in depth interview, focus group discussion, dll.) agar ditemukan bagian yang dianggap bermasalah dari proses participative tersebut.

Bila Rich Picture dan Root Definition sudah diketahui, sampailah kita kepada langkah terpenting yaitu model konseptual (conceptual model=CM). Model konseptual adalah alat utama untuk memulai tindakan konfirmasi model (debating ) serta perubahan yang diinginkan ( desirable changes ) dan dapat dilaksanakan ( culturally feasible changes). Di sini terjadi lagi pembelajaran, sehingga proses double loop learning ini disepakati melalui pembandingan conceptual model dengan Rich Picture.

Model Konseptual adalah keunikan metode Complex Problem Solving, karena harus ditindaklanjuti, bukan berhenti sebagai suatu model yang perlu dibuktikan atau diuji. Pengujian melalui debating.

Hasil dari debating adalah kesepakatan perubahan. Debating diharapkan menjadi suatu proses radikal dan mendalam sehingga membuat rencana perubahan yang nyata sebagai solusi permasalahan kompleks (CPS). Sampai di sini solusi alternative pemecahan masalah kompleks (CPS) dapat diakhiri dengan menuliskan rencana tindakan nyata. Langkah terakhir adalah mengambil keputusan dalam situasi kompleks (Complex Decision Making) oleh segenap stakeholder.

Penggunaan Complex Problem Solving di atas adalah dengan menggunakan pendekatan dengan metode Soft Systems Methodology, yaitu sebuah metode pemecahan masalah dengan pencarian solusi alternatif pada situasi kompleks yang cenderung tidak terstruktur atau terprediksi (messy).

Profesor Hardjosoekarto menyatakan, “Soft Systems Methodoloy adalah proses mencari tahu yang berorientasi aksi atas situasi problematis dari kehidupan nyata sehari-hari, para penggunanya melakukan pembelajaran yang dimulai dari menemu-kenali situasi sampai merumuskan dan atau mengambil tindakan guna memperbaiki situasi problematis tersebut.”

Praktik Soft Systems Methodology selain bisa dilakukan untuk level kelompok dan organisasi, juga bisa dilakukan pada level individu. Misalnya dalam konteks personal balanced scorecard. Untuk mendapatkan gambaran strength typology seseorang, kiranya tidak mungkin menggunakan sudut pandang tunggal. World of view segenap pihak terkait perlu diperhatikan dalam menemukan anchor sebagai kompetensi pribadi (SDM) yang dapat dikembangkan sebagai jangkar pengembangan karir seseorang.

Tentang Dr. Don Sadana:

  • Dr. Don Sadana memiliki latar belakang pendidikan Doctor in Business Administration dan Magister Sains Administration and Human Resources Development, University of Indonesia.
  • Aktif di IICD, KNKG, National Certified Lecturer, Asosiasi Dosen Indonesia.
  • Berpengalaman sebagai Trainer & Consultant for human capital development di Perbanas Institute, public training, and national bank (Mandiri, BCA, BTN, BJB, Bank Jatim, dll). Pernah menjadi juri untuk Indonesia Human Capital Award 2015-2017, Anugerah Perbankan Indonesia 2013-2017, Indonesia Multifinance Award 2014-2017, Indonesia Insurance Award 2014-2017 Anugerah Perusahaan Terbuka 2014 & 2017.
  • Menjadi dosen (S2/S1/D3) Univ. Pelita Harapan, Lembaga Administrasi Negara, Universitas Terbuka, Perbanas Institute, UPN Veteran, Stikom Interstudi, Aksek Tarakanita, Aksek Interstudi, dll.

Ingin tahu lebih lanjut seputar konten Laduni.ID yuk follow dan subscribe akun sosial media Laduni.ID di bawah ini.

Kunjungi Juga

  • Laporan Pengumpulan Donasi
  • Pasarkan Produk Anda dengan Membuka Toko di Marketplace Laduni.ID
  • Profil Pesantren Terlengkap
  • Cari Info Sekolah Islam?
  • Mau Berdonasi ke Lembaga Non Formal?
  • Siap Berangkat Ziarah? Simak Kumpulan Info Lokasi Ziarah ini
  • Mencari Profil Ulama Panutan Anda?
  • Kumpulan Tuntunan Ibadah Terlengkap
  • Simak Artikel Keagamaan dan Artikel Umum Lainnya
  • Ingin Mempelajari Nahdlatul Ulama? Silakan
  • Pahami Islam Nusantara
  • Kisah-kisah Hikmah Terbaik
  • Lebih Bersemangat dengan Membaca Artikel Motivasi
  • Simak Konsultasi Psikologi dan Keluarga
  • Simak Kabar Santri Goes to Papua
  • complex problem solving

Banner detail post 1: Setting Life Goals

Konten Terkait

  • Apa Sih Sebenarnya Problem Solving itu?
  • VUCA, Mau Ke Mana Kita?
  • Fakta Ini Buktikan NU Akan Jadi Solusi Bagi Persoalan Dunia
  • Toko Tanpa Kasir Pertama Hadir di Indonesia, Bagaimana Cara Belanjanya?
  • Benang Robot Temuan Ilmuwan MIT Bisa untuk Obati Stroke
  • Kripto dan "Dunia Baru" Peradaban Manusia
  • Era Disrupsi: Shifting, Bukan Daya Beli Turun
  • Menaker: Di Era Disrupsi Industri 4.0, Investasi di Indonesia Menguntungkan
  • Mementum HPN 2021, GP Ansor Cianjur Ajak Insan Pers Jernihkan Informasi

Silakan menyampaikan komentar, testimoni, pengalaman terhadap beliau.

Memuat Komentar ...

Pencarian artikel, tematik al qur'an, asbabul nuzul, asbabul wurud, hadis imam bukhari, hadis imam muslim, tuntunan ibadah aswaja.

Banner Detail Post 2

Artikel Lain

Pesantren al amin tasikmalaya, pesantren daarul amanah rajagaluh majalengka, biografi kh. m. sholeh abdul hamid.

Biografi Sahabat Abdullah bin Khuzafah As-Sahmi

Biografi Sahabat Abdullah bin Khuzafah As-Sahmi

Pesantren hidayatut thullab, petuk, kediri.

Biografi Sayyid Al Habib Abdullah Bilfaqih (Malang) bin Abdul Qadir bin Ahmad

Biografi Sayyid Al Habib Abdullah Bilfaqih (Malang) bin Abdul Qadir bin Ahmad

Pesantren miftahunnajah ponorogo, pesantren al-falah bandungan kab semarang, pesantren darussa’adah lampung tengah.

Biografi Sayyid Idrus bin Muhammad bin Syahabbudin Al Askor

Biografi Sayyid Idrus bin Muhammad bin Syahabbudin Al Askor

Menapak tilas dan ziarah spiritual di makam wali keramat solear, pondok pesantren al-huda kediri.

Blog MySkill

Si Paling Belajar

Problem Solving: Arti, Proses, Contoh, Manfaat, dan Tips Tingkatkannya

Problem Solving: Arti, Proses, Contoh, Manfaat, dan Tips Tingkatkannya

Apa itu skill problem solving.

Skill problem solving adalah kemampuan untuk mengidentifikasi, menganalisis, dan menyelesaikan masalah secara efektif dan efisien. Ini melibatkan proses pemecahan masalah yang sistematis dan kreatif untuk mencapai solusi yang memuaskan.

Metode Problem Solving

  • Identifikasi Masalah : Langkah pertama adalah mengidentifikasi masalah dengan jelas dan spesifik.
  • Analisis Masalah : Selanjutnya, analisislah masalah tersebut dengan mengidentifikasi penyebab, faktor-faktor terkait, dan dampaknya.
  • Pengembangan Solusi : Setelah masalah dipahami dengan baik, kembangkanlah berbagai solusi yang mungkin.
  • Evaluasi Solusi : Evaluasilah setiap solusi berdasarkan kriteria yang relevan, seperti keefektifan, kepraktisan, dan dampaknya.
  • Implementasi Solusi : Pilihlah solusi terbaik dan implementasikan dengan cermat.
  • Evaluasi Hasil : Setelah solusi diimplementasikan, evaluasilah hasilnya untuk memastikan bahwa masalah telah teratasi dengan baik.

Proses dan Contoh Problem Solving

Sebagai contoh, pertimbangkanlah situasi di mana sebuah perusahaan mengalami penurunan penjualan. Kita dapat menggunakan metode problem solving untuk mengatasi masalah ini dengan mengidentifikasi penyebab penurunan penjualan, mengembangkan strategi untuk meningkatkan penjualan, dan mengevaluasi hasil dari strategi tersebut.

Mengapa Skill Problem Solving Penting?

Skill problem solving sangat penting dalam berbagai aspek kehidupan, termasuk dalam karier dan kehidupan sehari-hari. Dengan memiliki kemampuan ini, kita dapat:

  • Meningkatkan Efisiensi : Dengan mampu menyelesaikan masalah dengan cepat dan efektif, kita dapat meningkatkan efisiensi dalam berbagai tugas.
  • Meningkatkan Kreativitas : Proses pemecahan masalah memerlukan kreativitas untuk menghasilkan solusi yang inovatif.
  • Meningkatkan Kepercayaan Diri : Dengan mampu menyelesaikan masalah, kita dapat meningkatkan rasa percaya diri dan kepuasan diri.
  • Meningkatkan Produktivitas : Dengan mengatasi masalah secara efektif, kita dapat meningkatkan produktivitas dalam pekerjaan dan kehidupan sehari-hari.

Tips Meningkatkan Skill Problem Solving

  • Selalu Jaga Pikiran Terbuka : Terima masukan dari orang lain dan pertimbangkan berbagai sudut pandang.
  • Gunakan Pendekatan Sistematis : Gunakan pendekatan yang sistematis dalam mengidentifikasi masalah dan mengembangkan solusi.
  • Jangan Takut untuk Mencoba Hal Baru : Jangan takut untuk mencoba pendekatan atau solusi yang belum pernah dicoba sebelumnya.
  • Pelajari dari Pengalaman : Pelajari dari pengalaman kita sendiri maupun orang lain dalam menyelesaikan masalah.
  • Latih Skill Kita : Latihlah kemampuan problem solving kita secara teratur dengan memecahkan masalah kecil sehari-hari.

Dengan meningkatkan skill problem solving, kita dapat menjadi lebih efektif dalam menyelesaikan masalah dan mencapai tujuan kita dengan lebih baik, baik dalam konteks profesional maupun pribadi.

Mari terus belajar dan kembangkan skill di https://myskill.id/

MySkill

Dibuat oleh tim MySkill, startup pengembangan skill dan karir terbesar di Indonesia. MySkill juga mendapatkan penghargaan dari LinkedIn sebagai Top Startup Indonesia pada 2022 dan 2023 . Beberapa sumber referensi tulisan di blog MySkill seperti: Kompas , IDN Times, Forbes , Indeed , Semrush , Hubspot , AIHR , Nielsen Norman Group , Xero , Atlassian , Canva , W3 , Grammarly dan sebagainya.

Tinggalkan Balasan Batalkan balasan

Anda harus masuk untuk berkomentar.

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Front Psychol

Complex Problem Solving: What It Is and What It Is Not

Dietrich dörner.

1 Department of Psychology, University of Bamberg, Bamberg, Germany

Joachim Funke

2 Department of Psychology, Heidelberg University, Heidelberg, Germany

Computer-simulated scenarios have been part of psychological research on problem solving for more than 40 years. The shift in emphasis from simple toy problems to complex, more real-life oriented problems has been accompanied by discussions about the best ways to assess the process of solving complex problems. Psychometric issues such as reliable assessments and addressing correlations with other instruments have been in the foreground of these discussions and have left the content validity of complex problem solving in the background. In this paper, we return the focus to content issues and address the important features that define complex problems.

Succeeding in the 21st century requires many competencies, including creativity, life-long learning, and collaboration skills (e.g., National Research Council, 2011 ; Griffin and Care, 2015 ), to name only a few. One competence that seems to be of central importance is the ability to solve complex problems ( Mainzer, 2009 ). Mainzer quotes the Nobel prize winner Simon (1957) who wrote as early as 1957:

The capacity of the human mind for formulating and solving complex problems is very small compared with the size of the problem whose solution is required for objectively rational behavior in the real world or even for a reasonable approximation to such objective rationality. (p. 198)

The shift from well-defined to ill-defined problems came about as a result of a disillusion with the “general problem solver” ( Newell et al., 1959 ): The general problem solver was a computer software intended to solve all kind of problems that can be expressed through well-formed formulas. However, it soon became clear that this procedure was in fact a “special problem solver” that could only solve well-defined problems in a closed space. But real-world problems feature open boundaries and have no well-determined solution. In fact, the world is full of wicked problems and clumsy solutions ( Verweij and Thompson, 2006 ). As a result, solving well-defined problems and solving ill-defined problems requires different cognitive processes ( Schraw et al., 1995 ; but see Funke, 2010 ).

Well-defined problems have a clear set of means for reaching a precisely described goal state. For example: in a match-stick arithmetic problem, a person receives a false arithmetic expression constructed out of matchsticks (e.g., IV = III + III). According to the instructions, moving one of the matchsticks will make the equations true. Here, both the problem (find the appropriate stick to move) and the goal state (true arithmetic expression; solution is: VI = III + III) are defined clearly.

Ill-defined problems have no clear problem definition, their goal state is not defined clearly, and the means of moving towards the (diffusely described) goal state are not clear. For example: The goal state for solving the political conflict in the near-east conflict between Israel and Palestine is not clearly defined (living in peaceful harmony with each other?) and even if the conflict parties would agree on a two-state solution, this goal again leaves many issues unresolved. This type of problem is called a “complex problem” and is of central importance to this paper. All psychological processes that occur within individual persons and deal with the handling of such ill-defined complex problems will be subsumed under the umbrella term “complex problem solving” (CPS).

Systematic research on CPS started in the 1970s with observations of the behavior of participants who were confronted with computer simulated microworlds. For example, in one of those microworlds participants assumed the role of executives who were tasked to manage a company over a certain period of time (see Brehmer and Dörner, 1993 , for a discussion of this methodology). Today, CPS is an established concept and has even influenced large-scale assessments such as PISA (“Programme for International Student Assessment”), organized by the Organization for Economic Cooperation and Development ( OECD, 2014 ). According to the World Economic Forum, CPS is one of the most important competencies required in the future ( World Economic Forum, 2015 ). Numerous articles on the subject have been published in recent years, documenting the increasing research activity relating to this field. In the following collection of papers we list only those published in 2010 and later: theoretical papers ( Blech and Funke, 2010 ; Funke, 2010 ; Knauff and Wolf, 2010 ; Leutner et al., 2012 ; Selten et al., 2012 ; Wüstenberg et al., 2012 ; Greiff et al., 2013b ; Fischer and Neubert, 2015 ; Schoppek and Fischer, 2015 ), papers about measurement issues ( Danner et al., 2011a ; Greiff et al., 2012 , 2015a ; Alison et al., 2013 ; Gobert et al., 2015 ; Greiff and Fischer, 2013 ; Herde et al., 2016 ; Stadler et al., 2016 ), papers about applications ( Fischer and Neubert, 2015 ; Ederer et al., 2016 ; Tremblay et al., 2017 ), papers about differential effects ( Barth and Funke, 2010 ; Danner et al., 2011b ; Beckmann and Goode, 2014 ; Greiff and Neubert, 2014 ; Scherer et al., 2015 ; Meißner et al., 2016 ; Wüstenberg et al., 2016 ), one paper about developmental effects ( Frischkorn et al., 2014 ), one paper with a neuroscience background ( Osman, 2012 ) 1 , papers about cultural differences ( Güss and Dörner, 2011 ; Sonnleitner et al., 2014 ; Güss et al., 2015 ), papers about validity issues ( Goode and Beckmann, 2010 ; Greiff et al., 2013c ; Schweizer et al., 2013 ; Mainert et al., 2015 ; Funke et al., 2017 ; Greiff et al., 2017 , 2015b ; Kretzschmar et al., 2016 ; Kretzschmar, 2017 ), review papers and meta-analyses ( Osman, 2010 ; Stadler et al., 2015 ), and finally books ( Qudrat-Ullah, 2015 ; Csapó and Funke, 2017b ) and book chapters ( Funke, 2012 ; Hotaling et al., 2015 ; Funke and Greiff, 2017 ; Greiff and Funke, 2017 ; Csapó and Funke, 2017a ; Fischer et al., 2017 ; Molnàr et al., 2017 ; Tobinski and Fritz, 2017 ; Viehrig et al., 2017 ). In addition, a new “Journal of Dynamic Decision Making” (JDDM) has been launched ( Fischer et al., 2015 , 2016 ) to give the field an open-access outlet for research and discussion.

This paper aims to clarify aspects of validity: what should be meant by the term CPS and what not? This clarification seems necessary because misunderstandings in recent publications provide – from our point of view – a potentially misleading picture of the construct. We start this article with a historical review before attempting to systematize different positions. We conclude with a working definition.

Historical Review

The concept behind CPS goes back to the German phrase “komplexes Problemlösen” (CPS; the term “komplexes Problemlösen” was used as a book title by Funke, 1986 ). The concept was introduced in Germany by Dörner and colleagues in the mid-1970s (see Dörner et al., 1975 ; Dörner, 1975 ) for the first time. The German phrase was later translated to CPS in the titles of two edited volumes by Sternberg and Frensch (1991) and Frensch and Funke (1995a) that collected papers from different research traditions. Even though it looks as though the term was coined in the 1970s, Edwards (1962) used the term “dynamic decision making” to describe decisions that come in a sequence. He compared static with dynamic decision making, writing:

  • simple  In dynamic situations, a new complication not found in the static situations arises. The environment in which the decision is set may be changing, either as a function of the sequence of decisions, or independently of them, or both. It is this possibility of an environment which changes while you collect information about it which makes the task of dynamic decision theory so difficult and so much fun. (p. 60)

The ability to solve complex problems is typically measured via dynamic systems that contain several interrelated variables that participants need to alter. Early work (see, e.g., Dörner, 1980 ) used a simulation scenario called “Lohhausen” that contained more than 2000 variables that represented the activities of a small town: Participants had to take over the role of a mayor for a simulated period of 10 years. The simulation condensed these ten years to ten hours in real time. Later, researchers used smaller dynamic systems as scenarios either based on linear equations (see, e.g., Funke, 1993 ) or on finite state automata (see, e.g., Buchner and Funke, 1993 ). In these contexts, CPS consisted of the identification and control of dynamic task environments that were previously unknown to the participants. Different task environments came along with different degrees of fidelity ( Gray, 2002 ).

According to Funke (2012) , the typical attributes of complex systems are (a) complexity of the problem situation which is usually represented by the sheer number of involved variables; (b) connectivity and mutual dependencies between involved variables; (c) dynamics of the situation, which reflects the role of time and developments within a system; (d) intransparency (in part or full) about the involved variables and their current values; and (e) polytely (greek term for “many goals”), representing goal conflicts on different levels of analysis. This mixture of features is similar to what is called VUCA (volatility, uncertainty, complexity, ambiguity) in modern approaches to management (e.g., Mack et al., 2016 ).

In his evaluation of the CPS movement, Sternberg (1995) compared (young) European approaches to CPS with (older) American research on expertise. His analysis of the differences between the European and American traditions shows advantages but also potential drawbacks for each side. He states (p. 301): “I believe that although there are problems with the European approach, it deals with some fundamental questions that American research scarcely addresses.” So, even though the echo of the European approach did not enjoy strong resonance in the US at that time, it was valued by scholars like Sternberg and others. Before attending to validity issues, we will first present a short review of different streams.

Different Approaches to CPS

In the short history of CPS research, different approaches can be identified ( Buchner, 1995 ; Fischer et al., 2017 ). To systematize, we differentiate between the following five lines of research:

  • simple (a) The search for individual differences comprises studies identifying interindividual differences that affect the ability to solve complex problems. This line of research is reflected, for example, in the early work by Dörner et al. (1983) and their “Lohhausen” study. Here, naïve student participants took over the role of the mayor of a small simulated town named Lohhausen for a simulation period of ten years. According to the results of the authors, it is not intelligence (as measured by conventional IQ tests) that predicts performance, but it is the ability to stay calm in the face of a challenging situation and the ability to switch easily between an analytic mode of processing and a more holistic one.
  • simple (b) The search for cognitive processes deals with the processes behind understanding complex dynamic systems. Representative of this line of research is, for example, Berry and Broadbent’s (1984) work on implicit and explicit learning processes when people interact with a dynamic system called “Sugar Production”. They found that those who perform best in controlling a dynamic system can do so implicitly, without explicit knowledge of details regarding the systems’ relations.
  • simple (c) The search for system factors seeks to identify the aspects of dynamic systems that determine the difficulty of complex problems and make some problems harder than others. Representative of this line of research is, for example, work by Funke (1985) , who systematically varied the number of causal effects within a dynamic system or the presence/absence of eigendynamics. He found, for example, that solution quality decreases as the number of systems relations increases.
  • simple (d) The psychometric approach develops measurement instruments that can be used as an alternative to classical IQ tests, as something that goes “beyond IQ”. The MicroDYN approach ( Wüstenberg et al., 2012 ) is representative for this line of research that presents an alternative to reasoning tests (like Raven matrices). These authors demonstrated that a small improvement in predicting school grade point average beyond reasoning is possible with MicroDYN tests.
  • simple (e) The experimental approach explores CPS under different experimental conditions. This approach uses CPS assessment instruments to test hypotheses derived from psychological theories and is sometimes used in research about cognitive processes (see above). Exemplary for this line of research is the work by Rohe et al. (2016) , who test the usefulness of “motto goals” in the context of complex problems compared to more traditional learning and performance goals. Motto goals differ from pure performance goals by activating positive affect and should lead to better goal attainment especially in complex situations (the mentioned study found no effect).

To be clear: these five approaches are not mutually exclusive and do overlap. But the differentiation helps to identify different research communities and different traditions. These communities had different opinions about scaling complexity.

The Race for Complexity: Use of More and More Complex Systems

In the early years of CPS research, microworlds started with systems containing about 20 variables (“Tailorshop”), soon reached 60 variables (“Moro”), and culminated in systems with about 2000 variables (“Lohhausen”). This race for complexity ended with the introduction of the concept of “minimal complex systems” (MCS; Greiff and Funke, 2009 ; Funke and Greiff, 2017 ), which ushered in a search for the lower bound of complexity instead of the higher bound, which could not be defined as easily. The idea behind this concept was that whereas the upper limits of complexity are unbound, the lower limits might be identifiable. Imagine starting with a simple system containing two variables with a simple linear connection between them; then, step by step, increase the number of variables and/or the type of connections. One soon reaches a point where the system can no longer be considered simple and has become a “complex system”. This point represents a minimal complex system. Despite some research having been conducted in this direction, the point of transition from simple to complex has not been identified clearly as of yet.

Some years later, the original “minimal complex systems” approach ( Greiff and Funke, 2009 ) shifted to the “multiple complex systems” approach ( Greiff et al., 2013a ). This shift is more than a slight change in wording: it is important because it taps into the issue of validity directly. Minimal complex systems have been introduced in the context of challenges from large-scale assessments like PISA 2012 that measure new aspects of problem solving, namely interactive problems besides static problem solving ( Greiff and Funke, 2017 ). PISA 2012 required test developers to remain within testing time constraints (given by the school class schedule). Also, test developers needed a large item pool for the construction of a broad class of problem solving items. It was clear from the beginning that MCS deal with simple dynamic situations that require controlled interaction: the exploration and control of simple ticket machines, simple mobile phones, or simple MP3 players (all of these example domains were developed within PISA 2012) – rather than really complex situations like managerial or political decision making.

As a consequence of this subtle but important shift in interpreting the letters MCS, the definition of CPS became a subject of debate recently ( Funke, 2014a ; Greiff and Martin, 2014 ; Funke et al., 2017 ). In the words of Funke (2014b , p. 495):

  • simple  It is funny that problems that nowadays come under the term ‘CPS’, are less complex (in terms of the previously described attributes of complex situations) than at the beginning of this new research tradition. The emphasis on psychometric qualities has led to a loss of variety. Systems thinking requires more than analyzing models with two or three linear equations – nonlinearity, cyclicity, rebound effects, etc. are inherent features of complex problems and should show up at least in some of the problems used for research and assessment purposes. Minimal complex systems run the danger of becoming minimal valid systems.

Searching for minimal complex systems is not the same as gaining insight into the way how humans deal with complexity and uncertainty. For psychometric purposes, it is appropriate to reduce complexity to a minimum; for understanding problem solving under conditions of overload, intransparency, and dynamics, it is necessary to realize those attributes with reasonable strength. This aspect is illustrated in the next section.

Importance of the Validity Issue

The most important reason for discussing the question of what complex problem solving is and what it is not stems from its phenomenology: if we lose sight of our phenomena, we are no longer doing good psychology. The relevant phenomena in the context of complex problems encompass many important aspects. In this section, we discuss four phenomena that are specific to complex problems. We consider these phenomena as critical for theory development and for the construction of assessment instruments (i.e., microworlds). These phenomena require theories for explaining them and they require assessment instruments eliciting them in a reliable way.

The first phenomenon is the emergency reaction of the intellectual system ( Dörner, 1980 ): When dealing with complex systems, actors tend to (a) reduce their intellectual level by decreasing self-reflections, by decreasing their intentions, by stereotyping, and by reducing their realization of intentions, (b) they show a tendency for fast action with increased readiness for risk, with increased violations of rules, and with increased tendency to escape the situation, and (c) they degenerate their hypotheses formation by construction of more global hypotheses and reduced tests of hypotheses, by increasing entrenchment, and by decontextualizing their goals. This phenomenon illustrates the strong connection between cognition, emotion, and motivation that has been emphasized by Dörner (see, e.g., Dörner and Güss, 2013 ) from the beginning of his research tradition; the emergency reaction reveals a shift in the mode of information processing under the pressure of complexity.

The second phenomenon comprises cross-cultural differences with respect to strategy use ( Strohschneider and Güss, 1999 ; Güss and Wiley, 2007 ; Güss et al., 2015 ). Results from complex task environments illustrate the strong influence of context and background knowledge to an extent that cannot be found for knowledge-poor problems. For example, in a comparison between Brazilian and German participants, it turned out that Brazilians accept the given problem descriptions and are more optimistic about the results of their efforts, whereas Germans tend to inquire more about the background of the problems and take a more active approach but are less optimistic (according to Strohschneider and Güss, 1998 , p. 695).

The third phenomenon relates to failures that occur during the planning and acting stages ( Jansson, 1994 ; Ramnarayan et al., 1997 ), illustrating that rational procedures seem to be unlikely to be used in complex situations. The potential for failures ( Dörner, 1996 ) rises with the complexity of the problem. Jansson (1994) presents seven major areas for failures with complex situations: acting directly on current feedback; insufficient systematization; insufficient control of hypotheses and strategies; lack of self-reflection; selective information gathering; selective decision making; and thematic vagabonding.

The fourth phenomenon describes (a lack of) training and transfer effects ( Kretzschmar and Süß, 2015 ), which again illustrates the context dependency of strategies and knowledge (i.e., there is no strategy that is so universal that it can be used in many different problem situations). In their own experiment, the authors could show training effects only for knowledge acquisition, not for knowledge application. Only with specific feedback, performance in complex environments can be increased ( Engelhart et al., 2017 ).

These four phenomena illustrate why the type of complexity (or degree of simplicity) used in research really matters. Furthermore, they demonstrate effects that are specific for complex problems, but not for toy problems. These phenomena direct the attention to the important question: does the stimulus material used (i.e., the computer-simulated microworld) tap and elicit the manifold of phenomena described above?

Dealing with partly unknown complex systems requires courage, wisdom, knowledge, grit, and creativity. In creativity research, “little c” and “BIG C” are used to differentiate between everyday creativity and eminent creativity ( Beghetto and Kaufman, 2007 ; Kaufman and Beghetto, 2009 ). Everyday creativity is important for solving everyday problems (e.g., finding a clever fix for a broken spoke on my bicycle), eminent creativity changes the world (e.g., inventing solar cells for energy production). Maybe problem solving research should use a similar differentiation between “little p” and “BIG P” to mark toy problems on the one side and big societal challenges on the other. The question then remains: what can we learn about BIG P by studying little p? What phenomena are present in both types, and what phenomena are unique to each of the two extremes?

Discussing research on CPS requires reflecting on the field’s research methods. Even if the experimental approach has been successful for testing hypotheses (for an overview of older work, see Funke, 1995 ), other methods might provide additional and novel insights. Complex phenomena require complex approaches to understand them. The complex nature of complex systems imposes limitations on psychological experiments: The more complex the environments, the more difficult is it to keep conditions under experimental control. And if experiments have to be run in labs one should bring enough complexity into the lab to establish the phenomena mentioned, at least in part.

There are interesting options to be explored (again): think-aloud protocols , which have been discredited for many years ( Nisbett and Wilson, 1977 ) and yet are a valuable source for theory testing ( Ericsson and Simon, 1983 ); introspection ( Jäkel and Schreiber, 2013 ), which seems to be banned from psychological methods but nevertheless offers insights into thought processes; the use of life-streaming ( Wendt, 2017 ), a medium in which streamers generate a video stream of think-aloud data in computer-gaming; political decision-making ( Dhami et al., 2015 ) that demonstrates error-proneness in groups; historical case studies ( Dörner and Güss, 2011 ) that give insights into the thinking styles of political leaders; the use of the critical incident technique ( Reuschenbach, 2008 ) to construct complex scenarios; and simulations with different degrees of fidelity ( Gray, 2002 ).

The methods tool box is full of instruments that have to be explored more carefully before any individual instrument receives a ban or research narrows its focus to only one paradigm for data collection. Brehmer and Dörner (1993) discussed the tensions between “research in the laboratory and research in the field”, optimistically concluding “that the new methodology of computer-simulated microworlds will provide us with the means to bridge the gap between the laboratory and the field” (p. 183). The idea behind this optimism was that computer-simulated scenarios would bring more complexity from the outside world into the controlled lab environment. But this is not true for all simulated scenarios. In his paper on simulated environments, Gray (2002) differentiated computer-simulated environments with respect to three dimensions: (1) tractability (“the more training subjects require before they can use a simulated task environment, the less tractable it is”, p. 211), correspondence (“High correspondence simulated task environments simulate many aspects of one task environment. Low correspondence simulated task environments simulate one aspect of many task environments”, p. 214), and engagement (“A simulated task environment is engaging to the degree to which it involves and occupies the participants; that is, the degree to which they agree to take it seriously”, p. 217). But the mere fact that a task is called a “computer-simulated task environment” does not mean anything specific in terms of these three dimensions. This is one of several reasons why we should differentiate between those studies that do not address the core features of CPS and those that do.

What is not CPS?

Even though a growing number of references claiming to deal with complex problems exist (e.g., Greiff and Wüstenberg, 2015 ; Greiff et al., 2016 ), it would be better to label the requirements within these tasks “dynamic problem solving,” as it has been done adequately in earlier work ( Greiff et al., 2012 ). The dynamics behind on-off-switches ( Thimbleby, 2007 ) are remarkable but not really complex. Small nonlinear systems that exhibit stunningly complex and unstable behavior do exist – but they are not used in psychometric assessments of so-called CPS. There are other small systems (like MicroDYN scenarios: Greiff and Wüstenberg, 2014 ) that exhibit simple forms of system behavior that are completely predictable and stable. This type of simple systems is used frequently. It is even offered commercially as a complex problem-solving test called COMPRO ( Greiff and Wüstenberg, 2015 ) for business applications. But a closer look reveals that the label is not used correctly; within COMPRO, the used linear equations are far from being complex and the system can be handled properly by using only one strategy (see for more details Funke et al., 2017 ).

Why do simple linear systems not fall within CPS? At the surface, nonlinear and linear systems might appear similar because both only include 3–5 variables. But the difference is in terms of systems behavior as well as strategies and learning. If the behavior is simple (as in linear systems where more input is related to more output and vice versa), the system can be easily understood (participants in the MicroDYN world have 3 minutes to explore a complex system). If the behavior is complex (as in systems that contain strange attractors or negative feedback loops), things become more complicated and much more observation is needed to identify the hidden structure of the unknown system ( Berry and Broadbent, 1984 ; Hundertmark et al., 2015 ).

Another issue is learning. If tasks can be solved using a single (and not so complicated) strategy, steep learning curves are to be expected. The shift from problem solving to learned routine behavior occurs rapidly, as was demonstrated by Luchins (1942) . In his water jar experiments, participants quickly acquired a specific strategy (a mental set) for solving certain measurement problems that they later continued applying to problems that would have allowed for easier approaches. In the case of complex systems, learning can occur only on very general, abstract levels because it is difficult for human observers to make specific predictions. Routines dealing with complex systems are quite different from routines relating to linear systems.

What should not be studied under the label of CPS are pure learning effects, multiple-cue probability learning, or tasks that can be solved using a single strategy. This last issue is a problem for MicroDYN tasks that rely strongly on the VOTAT strategy (“vary one thing at a time”; see Tschirgi, 1980 ). In real-life, it is hard to imagine a business manager trying to solve her or his problems by means of VOTAT.

What is CPS?

In the early days of CPS research, planet Earth’s dynamics and complexities gained attention through such books as “The limits to growth” ( Meadows et al., 1972 ) and “Beyond the limits” ( Meadows et al., 1992 ). In the current decade, for example, the World Economic Forum (2016) attempts to identify the complexities and risks of our modern world. In order to understand the meaning of complexity and uncertainty, taking a look at the worlds’ most pressing issues is helpful. Searching for strategies to cope with these problems is a difficult task: surely there is no place for the simple principle of “vary-one-thing-at-a-time” (VOTAT) when it comes to global problems. The VOTAT strategy is helpful in the context of simple problems ( Wüstenberg et al., 2014 ); therefore, whether or not VOTAT is helpful in a given problem situation helps us distinguish simple from complex problems.

Because there exist no clear-cut strategies for complex problems, typical failures occur when dealing with uncertainty ( Dörner, 1996 ; Güss et al., 2015 ). Ramnarayan et al. (1997) put together a list of generic errors (e.g., not developing adequate action plans; lack of background control; learning from experience blocked by stereotype knowledge; reactive instead of proactive action) that are typical of knowledge-rich complex systems but cannot be found in simple problems.

Complex problem solving is not a one-dimensional, low-level construct. On the contrary, CPS is a multi-dimensional bundle of competencies existing at a high level of abstraction, similar to intelligence (but going beyond IQ). As Funke et al. (2018) state: “Assessment of transversal (in educational contexts: cross-curricular) competencies cannot be done with one or two types of assessment. The plurality of skills and competencies requires a plurality of assessment instruments.”

There are at least three different aspects of complex systems that are part of our understanding of a complex system: (1) a complex system can be described at different levels of abstraction; (2) a complex system develops over time, has a history, a current state, and a (potentially unpredictable) future; (3) a complex system is knowledge-rich and activates a large semantic network, together with a broad list of potential strategies (domain-specific as well as domain-general).

Complex problem solving is not only a cognitive process but is also an emotional one ( Spering et al., 2005 ; Barth and Funke, 2010 ) and strongly dependent on motivation (low-stakes versus high-stakes testing; see Hermes and Stelling, 2016 ).

Furthermore, CPS is a dynamic process unfolding over time, with different phases and with more differentiation than simply knowledge acquisition and knowledge application. Ideally, the process should entail identifying problems (see Dillon, 1982 ; Lee and Cho, 2007 ), even if in experimental settings, problems are provided to participants a priori . The more complex and open a given situation, the more options can be generated (T. S. Schweizer et al., 2016 ). In closed problems, these processes do not occur in the same way.

In analogy to the difference between formative (process-oriented) and summative (result-oriented) assessment ( Wiliam and Black, 1996 ; Bennett, 2011 ), CPS should not be reduced to the mere outcome of a solution process. The process leading up to the solution, including detours and errors made along the way, might provide a more differentiated impression of a person’s problem-solving abilities and competencies than the final result of such a process. This is one of the reasons why CPS environments are not, in fact, complex intelligence tests: research on CPS is not only about the outcome of the decision process, but it is also about the problem-solving process itself.

Complex problem solving is part of our daily life: finding the right person to share one’s life with, choosing a career that not only makes money, but that also makes us happy. Of course, CPS is not restricted to personal problems – life on Earth gives us many hard nuts to crack: climate change, population growth, the threat of war, the use and distribution of natural resources. In sum, many societal challenges can be seen as complex problems. To reduce that complexity to a one-hour lab activity on a random Friday afternoon puts it out of context and does not address CPS issues.

Theories about CPS should specify which populations they apply to. Across populations, one thing to consider is prior knowledge. CPS research with experts (e.g., Dew et al., 2009 ) is quite different from problem solving research using tasks that intentionally do not require any specific prior knowledge (see, e.g., Beckmann and Goode, 2014 ).

More than 20 years ago, Frensch and Funke (1995b) defined CPS as follows:

  • simple  CPS occurs to overcome barriers between a given state and a desired goal state by means of behavioral and/or cognitive, multi-step activities. The given state, goal state, and barriers between given state and goal state are complex, change dynamically during problem solving, and are intransparent. The exact properties of the given state, goal state, and barriers are unknown to the solver at the outset. CPS implies the efficient interaction between a solver and the situational requirements of the task, and involves a solver’s cognitive, emotional, personal, and social abilities and knowledge. (p. 18)

The above definition is rather formal and does not account for content or relations between the simulation and the real world. In a sense, we need a new definition of CPS that addresses these issues. Based on our previous arguments, we propose the following working definition:

  • simple  Complex problem solving is a collection of self-regulated psychological processes and activities necessary in dynamic environments to achieve ill-defined goals that cannot be reached by routine actions. Creative combinations of knowledge and a broad set of strategies are needed. Solutions are often more bricolage than perfect or optimal. The problem-solving process combines cognitive, emotional, and motivational aspects, particularly in high-stakes situations. Complex problems usually involve knowledge-rich requirements and collaboration among different persons.

The main differences to the older definition lie in the emphasis on (a) the self-regulation of processes, (b) creativity (as opposed to routine behavior), (c) the bricolage type of solution, and (d) the role of high-stakes challenges. Our new definition incorporates some aspects that have been discussed in this review but were not reflected in the 1995 definition, which focused on attributes of complex problems like dynamics or intransparency.

This leads us to the final reflection about the role of CPS for dealing with uncertainty and complexity in real life. We will distinguish thinking from reasoning and introduce the sense of possibility as an important aspect of validity.

CPS as Combining Reasoning and Thinking in an Uncertain Reality

Leading up to the Battle of Borodino in Leo Tolstoy’s novel “War and Peace”, Prince Andrei Bolkonsky explains the concept of war to his friend Pierre. Pierre expects war to resemble a game of chess: You position the troops and attempt to defeat your opponent by moving them in different directions.

“Far from it!”, Andrei responds. “In chess, you know the knight and his moves, you know the pawn and his combat strength. While in war, a battalion is sometimes stronger than a division and sometimes weaker than a company; it all depends on circumstances that can never be known. In war, you do not know the position of your enemy; some things you might be able to observe, some things you have to divine (but that depends on your ability to do so!) and many things cannot even be guessed at. In chess, you can see all of your opponent’s possible moves. In war, that is impossible. If you decide to attack, you cannot know whether the necessary conditions are met for you to succeed. Many a time, you cannot even know whether your troops will follow your orders…”

In essence, war is characterized by a high degree of uncertainty. A good commander (or politician) can add to that what he or she sees, tentatively fill in the blanks – and not just by means of logical deduction but also by intelligently bridging missing links. A bad commander extrapolates from what he sees and thus arrives at improper conclusions.

Many languages differentiate between two modes of mentalizing; for instance, the English language distinguishes between ‘thinking’ and ‘reasoning’. Reasoning denotes acute and exact mentalizing involving logical deductions. Such deductions are usually based on evidence and counterevidence. Thinking, however, is what is required to write novels. It is the construction of an initially unknown reality. But it is not a pipe dream, an unfounded process of fabrication. Rather, thinking asks us to imagine reality (“Wirklichkeitsfantasie”). In other words, a novelist has to possess a “sense of possibility” (“Möglichkeitssinn”, Robert Musil; in German, sense of possibility is often used synonymously with imagination even though imagination is not the same as sense of possibility, for imagination also encapsulates the impossible). This sense of possibility entails knowing the whole (or several wholes) or being able to construe an unknown whole that could accommodate a known part. The whole has to align with sociological and geographical givens, with the mentality of certain peoples or groups, and with the laws of physics and chemistry. Otherwise, the entire venture is ill-founded. A sense of possibility does not aim for the moon but imagines something that might be possible but has not been considered possible or even potentially possible so far.

Thinking is a means to eliminate uncertainty. This process requires both of the modes of thinking we have discussed thus far. Economic, political, or ecological decisions require us to first consider the situation at hand. Though certain situational aspects can be known, but many cannot. In fact, von Clausewitz (1832) posits that only about 25% of the necessary information is available when a military decision needs to be made. Even then, there is no way to guarantee that whatever information is available is also correct: Even if a piece of information was completely accurate yesterday, it might no longer apply today.

Once our sense of possibility has helped grasping a situation, problem solvers need to call on their reasoning skills. Not every situation requires the same action, and we may want to act this way or another to reach this or that goal. This appears logical, but it is a logic based on constantly shifting grounds: We cannot know whether necessary conditions are met, sometimes the assumptions we have made later turn out to be incorrect, and sometimes we have to revise our assumptions or make completely new ones. It is necessary to constantly switch between our sense of possibility and our sense of reality, that is, to switch between thinking and reasoning. It is an arduous process, and some people handle it well, while others do not.

If we are to believe Tuchman’s (1984) book, “The March of Folly”, most politicians and commanders are fools. According to Tuchman, not much has changed in the 3300 years that have elapsed since the misguided Trojans decided to welcome the left-behind wooden horse into their city that would end up dismantling Troy’s defensive walls. The Trojans, too, had been warned, but decided not to heed the warning. Although Laocoön had revealed the horse’s true nature to them by attacking it with a spear, making the weapons inside the horse ring, the Trojans refused to see the forest for the trees. They did not want to listen, they wanted the war to be over, and this desire ended up shaping their perception.

The objective of psychology is to predict and explain human actions and behavior as accurately as possible. However, thinking cannot be investigated by limiting its study to neatly confined fractions of reality such as the realms of propositional logic, chess, Go tasks, the Tower of Hanoi, and so forth. Within these systems, there is little need for a sense of possibility. But a sense of possibility – the ability to divine and construe an unknown reality – is at least as important as logical reasoning skills. Not researching the sense of possibility limits the validity of psychological research. All economic and political decision making draws upon this sense of possibility. By not exploring it, psychological research dedicated to the study of thinking cannot further the understanding of politicians’ competence and the reasons that underlie political mistakes. Christopher Clark identifies European diplomats’, politicians’, and commanders’ inability to form an accurate representation of reality as a reason for the outbreak of World War I. According to Clark’s (2012) book, “The Sleepwalkers”, the politicians of the time lived in their own make-believe world, wrongfully assuming that it was the same world everyone else inhabited. If CPS research wants to make significant contributions to the world, it has to acknowledge complexity and uncertainty as important aspects of it.

For more than 40 years, CPS has been a new subject of psychological research. During this time period, the initial emphasis on analyzing how humans deal with complex, dynamic, and uncertain situations has been lost. What is subsumed under the heading of CPS in modern research has lost the original complexities of real-life problems. From our point of view, the challenges of the 21st century require a return to the origins of this research tradition. We would encourage researchers in the field of problem solving to come back to the original ideas. There is enough complexity and uncertainty in the world to be studied. Improving our understanding of how humans deal with these global and pressing problems would be a worthwhile enterprise.

Author Contributions

JF drafted a first version of the manuscript, DD added further text and commented on the draft. JF finalized the manuscript.

Authors Note

After more than 40 years of controversial discussions between both authors, this is the first joint paper. We are happy to have done this now! We have found common ground!

Conflict of Interest Statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Acknowledgments

The authors thank the Deutsche Forschungsgemeinschaft (DFG) for the continuous support of their research over many years. Thanks to Daniel Holt for his comments on validity issues, thanks to Julia Nolte who helped us by translating German text excerpts into readable English and helped us, together with Keri Hartman, to improve our style and grammar – thanks for that! We also thank the two reviewers for their helpful critical comments on earlier versions of this manuscript. Finally, we acknowledge financial support by Deutsche Forschungsgemeinschaft and Ruprecht-Karls-Universität Heidelberg within their funding programme Open Access Publishing .

1 The fMRI-paper from Anderson (2012) uses the term “complex problem solving” for tasks that do not fall in our understanding of CPS and is therefore excluded from this list.

  • Alison L., van den Heuvel C., Waring S., Power N., Long A., O’Hara T., et al. (2013). Immersive simulated learning environments for researching critical incidents: a knowledge synthesis of the literature and experiences of studying high-risk strategic decision making. J. Cogn. Eng. Deci. Mak. 7 255–272. 10.1177/1555343412468113 [ CrossRef ] [ Google Scholar ]
  • Anderson J. R. (2012). Tracking problem solving by multivariate pattern analysis and hidden markov model algorithms. Neuropsychologia 50 487–498. 10.1016/j.neuropsychologia.2011.07.025 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Barth C. M., Funke J. (2010). Negative affective environments improve complex solving performance. Cogn. Emot. 24 1259–1268. 10.1080/02699930903223766 [ CrossRef ] [ Google Scholar ]
  • Beckmann J. F., Goode N. (2014). The benefit of being naïve and knowing it: the unfavourable impact of perceived context familiarity on learning in complex problem solving tasks. Instruct. Sci. 42 271–290. 10.1007/s11251-013-9280-7 [ CrossRef ] [ Google Scholar ]
  • Beghetto R. A., Kaufman J. C. (2007). Toward a broader conception of creativity: a case for “mini-c” creativity. Psychol. Aesthetics Creat. Arts 1 73–79. 10.1037/1931-3896.1.2.73 [ CrossRef ] [ Google Scholar ]
  • Bennett R. E. (2011). Formative assessment: a critical review. Assess. Educ. Princ. Policy Pract. 18 5–25. 10.1080/0969594X.2010.513678 [ CrossRef ] [ Google Scholar ]
  • Berry D. C., Broadbent D. E. (1984). On the relationship between task performance and associated verbalizable knowledge. Q. J. Exp. Psychol. 36 209–231. 10.1080/14640748408402156 [ CrossRef ] [ Google Scholar ]
  • Blech C., Funke J. (2010). You cannot have your cake and eat it, too: how induced goal conflicts affect complex problem solving. Open Psychol. J. 3 42–53. 10.2174/1874350101003010042 [ CrossRef ] [ Google Scholar ]
  • Brehmer B., Dörner D. (1993). Experiments with computer-simulated microworlds: escaping both the narrow straits of the laboratory and the deep blue sea of the field study. Comput. Hum. Behav. 9 171–184. 10.1016/0747-5632(93)90005-D [ CrossRef ] [ Google Scholar ]
  • Buchner A. (1995). “Basic topics and approaches to the study of complex problem solving,” in Complex Problem Solving: The European Perspective , eds Frensch P. A., Funke J. (Hillsdale, NJ: Erlbaum; ), 27–63. [ Google Scholar ]
  • Buchner A., Funke J. (1993). Finite state automata: dynamic task environments in problem solving research. Q. J. Exp. Psychol. 46A , 83–118. 10.1080/14640749308401068 [ CrossRef ] [ Google Scholar ]
  • Clark C. (2012). The Sleepwalkers: How Europe Went to War in 1914 . London: Allen Lane. [ Google Scholar ]
  • Csapó B., Funke J. (2017a). “The development and assessment of problem solving in 21st-century schools,” in The Nature of Problem Solving: Using Research to Inspire 21st Century Learning , eds Csapó B., Funke J. (Paris: OECD Publishing; ), 19–31. [ Google Scholar ]
  • Csapó B., Funke J. (eds) (2017b). The Nature of Problem Solving. Using Research to Inspire 21st Century Learning. Paris: OECD Publishing. [ Google Scholar ]
  • Danner D., Hagemann D., Holt D. V., Hager M., Schankin A., Wüstenberg S., et al. (2011a). Measuring performance in dynamic decision making. Reliability and validity of the Tailorshop simulation. J. Ind. Differ. 32 225–233. 10.1027/1614-0001/a000055 [ CrossRef ] [ Google Scholar ]
  • Danner D., Hagemann D., Schankin A., Hager M., Funke J. (2011b). Beyond IQ: a latent state-trait analysis of general intelligence, dynamic decision making, and implicit learning. Intelligence 39 323–334. 10.1016/j.intell.2011.06.004 [ CrossRef ] [ Google Scholar ]
  • Dew N., Read S., Sarasvathy S. D., Wiltbank R. (2009). Effectual versus predictive logics in entrepreneurial decision-making: differences between experts and novices. J. Bus. Ventur. 24 287–309. 10.1016/j.jbusvent.2008.02.002 [ CrossRef ] [ Google Scholar ]
  • Dhami M. K., Mandel D. R., Mellers B. A., Tetlock P. E. (2015). Improving intelligence analysis with decision science. Perspect. Psychol. Sci. 10 753–757. 10.1177/1745691615598511 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Dillon J. T. (1982). Problem finding and solving. J. Creat. Behav. 16 97–111. 10.1002/j.2162-6057.1982.tb00326.x [ CrossRef ] [ Google Scholar ]
  • Dörner D. (1975). Wie Menschen eine Welt verbessern wollten [How people wanted to improve a world]. Bild Der Wissenschaft 12 48–53. [ Google Scholar ]
  • Dörner D. (1980). On the difficulties people have in dealing with complexity. Simulat. Gam. 11 87–106. 10.1177/104687818001100108 [ CrossRef ] [ Google Scholar ]
  • Dörner D. (1996). The Logic of Failure: Recognizing and Avoiding Error in Complex Situations. New York, NY: Basic Books. [ Google Scholar ]
  • Dörner D., Drewes U., Reither F. (1975). “Über das Problemlösen in sehr komplexen Realitätsbereichen,” in Bericht über den 29. Kongreß der DGfPs in Salzburg 1974 Band 1 , ed. Tack W. H. (Göttingen: Hogrefe; ), 339–340. [ Google Scholar ]
  • Dörner D., Güss C. D. (2011). A psychological analysis of Adolf Hitler’s decision making as commander in chief: summa confidentia et nimius metus. Rev. Gen. Psychol. 15 37–49. 10.1037/a0022375 [ CrossRef ] [ Google Scholar ]
  • Dörner D., Güss C. D. (2013). PSI: a computational architecture of cognition, motivation, and emotion. Rev. Gen. Psychol. 17 297–317. 10.1037/a0032947 [ CrossRef ] [ Google Scholar ]
  • Dörner D., Kreuzig H. W., Reither F., Stäudel T. (1983). Lohhausen. Vom Umgang mit Unbestimmtheit und Komplexität. Bern: Huber. [ Google Scholar ]
  • Ederer P., Patt A., Greiff S. (2016). Complex problem-solving skills and innovativeness – evidence from occupational testing and regional data. Eur. J. Educ. 51 244–256. 10.1111/ejed.12176 [ CrossRef ] [ Google Scholar ]
  • Edwards W. (1962). Dynamic decision theory and probabiIistic information processing. Hum. Factors 4 59–73. 10.1177/001872086200400201 [ CrossRef ] [ Google Scholar ]
  • Engelhart M., Funke J., Sager S. (2017). A web-based feedback study on optimization-based training and analysis of human decision making. J. Dynamic Dec. Mak. 3 1–23. [ Google Scholar ]
  • Ericsson K. A., Simon H. A. (1983). Protocol Analysis: Verbal Reports As Data. Cambridge, MA: Bradford. [ Google Scholar ]
  • Fischer A., Greiff S., Funke J. (2017). “The history of complex problem solving,” in The Nature of Problem Solving: Using Research to Inspire 21st Century Learning , eds Csapó B., Funke J. (Paris: OECD Publishing; ), 107–121. [ Google Scholar ]
  • Fischer A., Holt D. V., Funke J. (2015). Promoting the growing field of dynamic decision making. J. Dynamic Decis. Mak. 1 1–3. 10.11588/jddm.2015.1.23807 [ CrossRef ] [ Google Scholar ]
  • Fischer A., Holt D. V., Funke J. (2016). The first year of the “journal of dynamic decision making.” J. Dynamic Decis. Mak. 2 1–2. 10.11588/jddm.2016.1.28995 [ CrossRef ] [ Google Scholar ]
  • Fischer A., Neubert J. C. (2015). The multiple faces of complex problems: a model of problem solving competency and its implications for training and assessment. J. Dynamic Decis. Mak. 1 1–14. 10.11588/jddm.2015.1.23945 [ CrossRef ] [ Google Scholar ]
  • Frensch P. A., Funke J. (eds) (1995a). Complex Problem Solving: The European Perspective. Hillsdale, NJ: Erlbaum. [ Google Scholar ]
  • Frensch P. A., Funke J. (1995b). “Definitions, traditions, and a general framework for understanding complex problem solving,” in Complex Problem Solving: The European Perspective , eds Frensch P. A., Funke J. (Hillsdale, NJ: Lawrence Erlbaum; ), 3–25. [ Google Scholar ]
  • Frischkorn G. T., Greiff S., Wüstenberg S. (2014). The development of complex problem solving in adolescence: a latent growth curve analysis. J. Educ. Psychol. 106 1004–1020. 10.1037/a0037114 [ CrossRef ] [ Google Scholar ]
  • Funke J. (1985). Steuerung dynamischer Systeme durch Aufbau und Anwendung subjektiver Kausalmodelle. Z. Psychol. 193 435–457. [ Google Scholar ]
  • Funke J. (1986). Komplexes Problemlösen - Bestandsaufnahme und Perspektiven [Complex Problem Solving: Survey and Perspectives]. Heidelberg: Springer. [ Google Scholar ]
  • Funke J. (1993). “Microworlds based on linear equation systems: a new approach to complex problem solving and experimental results,” in The Cognitive Psychology of Knowledge , eds Strube G., Wender K.-F. (Amsterdam: Elsevier Science Publishers; ), 313–330. [ Google Scholar ]
  • Funke J. (1995). “Experimental research on complex problem solving,” in Complex Problem Solving: The European Perspective , eds Frensch P. A., Funke J. (Hillsdale, NJ: Erlbaum; ), 243–268. [ Google Scholar ]
  • Funke J. (2010). Complex problem solving: a case for complex cognition? Cogn. Process. 11 133–142. 10.1007/s10339-009-0345-0 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Funke J. (2012). “Complex problem solving,” in Encyclopedia of the Sciences of Learning Vol. 38 ed. Seel N. M. (Heidelberg: Springer; ), 682–685. [ Google Scholar ]
  • Funke J. (2014a). Analysis of minimal complex systems and complex problem solving require different forms of causal cognition. Front. Psychol. 5 : 739 10.3389/fpsyg.2014.00739 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Funke J. (2014b). “Problem solving: what are the important questions?,” in Proceedings of the 36th Annual Conference of the Cognitive Science Society , eds Bello P., Guarini M., McShane M., Scassellati B. (Austin, TX: Cognitive Science Society; ), 493–498. [ Google Scholar ]
  • Funke J., Fischer A., Holt D. V. (2017). When less is less: solving multiple simple problems is not complex problem solving—A comment on Greiff et al. (2015). J. Intell. 5 : 5 10.3390/jintelligence5010005 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Funke J., Fischer A., Holt D. V. (2018). “Competencies for complexity: problem solving in the 21st century,” in Assessment and Teaching of 21st Century Skills , eds Care E., Griffin P., Wilson M. (Dordrecht: Springer; ), 3. [ Google Scholar ]
  • Funke J., Greiff S. (2017). “Dynamic problem solving: multiple-item testing based on minimally complex systems,” in Competence Assessment in Education. Research, Models and Instruments , eds Leutner D., Fleischer J., Grünkorn J., Klieme E. (Heidelberg: Springer; ), 427–443. [ Google Scholar ]
  • Gobert J. D., Kim Y. J., Pedro M. A. S., Kennedy M., Betts C. G. (2015). Using educational data mining to assess students’ skills at designing and conducting experiments within a complex systems microworld. Think. Skills Creat. 18 81–90. 10.1016/j.tsc.2015.04.008 [ CrossRef ] [ Google Scholar ]
  • Goode N., Beckmann J. F. (2010). You need to know: there is a causal relationship between structural knowledge and control performance in complex problem solving tasks. Intelligence 38 345–352. 10.1016/j.intell.2010.01.001 [ CrossRef ] [ Google Scholar ]
  • Gray W. D. (2002). Simulated task environments: the role of high-fidelity simulations, scaled worlds, synthetic environments, and laboratory tasks in basic and applied cognitive research. Cogn. Sci. Q. 2 205–227. [ Google Scholar ]
  • Greiff S., Fischer A. (2013). Measuring complex problem solving: an educational application of psychological theories. J. Educ. Res. 5 38–58. [ Google Scholar ]
  • Greiff S., Fischer A., Stadler M., Wüstenberg S. (2015a). Assessing complex problem-solving skills with multiple complex systems. Think. Reason. 21 356–382. 10.1080/13546783.2014.989263 [ CrossRef ] [ Google Scholar ]
  • Greiff S., Stadler M., Sonnleitner P., Wolff C., Martin R. (2015b). Sometimes less is more: comparing the validity of complex problem solving measures. Intelligence 50 100–113. 10.1016/j.intell.2015.02.007 [ CrossRef ] [ Google Scholar ]
  • Greiff S., Fischer A., Wüstenberg S., Sonnleitner P., Brunner M., Martin R. (2013a). A multitrait–multimethod study of assessment instruments for complex problem solving. Intelligence 41 579–596. 10.1016/j.intell.2013.07.012 [ CrossRef ] [ Google Scholar ]
  • Greiff S., Holt D. V., Funke J. (2013b). Perspectives on problem solving in educational assessment: analytical, interactive, and collaborative problem solving. J. Problem Solv. 5 71–91. 10.7771/1932-6246.1153 [ CrossRef ] [ Google Scholar ]
  • Greiff S., Wüstenberg S., Molnár G., Fischer A., Funke J., Csapó B. (2013c). Complex problem solving in educational contexts—something beyond g: concept, assessment, measurement invariance, and construct validity. J. Educ. Psychol. 105 364–379. 10.1037/a0031856 [ CrossRef ] [ Google Scholar ]
  • Greiff S., Funke J. (2009). “Measuring complex problem solving: the MicroDYN approach,” in The Transition to Computer-Based Assessment. New Approaches to Skills Assessment and Implications for Large-Scale Testing , eds Scheuermann F., Björnsson J. (Luxembourg: Office for Official Publications of the European Communities; ), 157–163. [ Google Scholar ]
  • Greiff S., Funke J. (2017). “Interactive problem solving: exploring the potential of minimal complex systems,” in The Nature of Problem Solving: Using Research to Inspire 21st Century Learning , eds Csapó B., Funke J. (Paris: OECD Publishing; ), 93–105. [ Google Scholar ]
  • Greiff S., Martin R. (2014). What you see is what you (don’t) get: a comment on Funke’s (2014) opinion paper. Front. Psychol. 5 : 1120 10.3389/fpsyg.2014.01120 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Greiff S., Neubert J. C. (2014). On the relation of complex problem solving, personality, fluid intelligence, and academic achievement. Learn. Ind. Diff. 36 37–48. 10.1016/j.lindif.2014.08.003 [ CrossRef ] [ Google Scholar ]
  • Greiff S., Niepel C., Scherer R., Martin R. (2016). Understanding students’ performance in a computer-based assessment of complex problem solving: an analysis of behavioral data from computer-generated log files. Comput. Hum. Behav. 61 36–46. 10.1016/j.chb.2016.02.095 [ CrossRef ] [ Google Scholar ]
  • Greiff S., Stadler M., Sonnleitner P., Wolff C., Martin R. (2017). Sometimes more is too much: a rejoinder to the commentaries on Greif et al. (2015). J. Intell. 5 : 6 10.3390/jintelligence5010006 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Greiff S., Wüstenberg S. (2014). Assessment with microworlds using MicroDYN: measurement invariance and latent mean comparisons. Eur. J. Psychol. Assess. 1 1–11. 10.1027/1015-5759/a000194 [ CrossRef ] [ Google Scholar ]
  • Greiff S., Wüstenberg S. (2015). Komplexer Problemlösetest COMPRO [Complex Problem-Solving Test COMPRO]. Mödling: Schuhfried. [ Google Scholar ]
  • Greiff S., Wüstenberg S., Funke J. (2012). Dynamic problem solving: a new assessment perspective. Appl. Psychol. Measure. 36 189–213. 10.1177/0146621612439620 [ CrossRef ] [ Google Scholar ]
  • Griffin P., Care E. (2015). “The ATC21S method,” in Assessment and Taching of 21st Century Skills , eds Griffin P., Care E. (Dordrecht, NL: Springer; ), 3–33. [ Google Scholar ]
  • Güss C. D., Dörner D. (2011). Cultural differences in dynamic decision-making strategies in a non-linear, time-delayed task. Cogn. Syst. Res. 12 365–376. 10.1016/j.cogsys.2010.12.003 [ CrossRef ] [ Google Scholar ]
  • Güss C. D., Tuason M. T., Orduña L. V. (2015). Strategies, tactics, and errors in dynamic decision making in an Asian sample. J. Dynamic Deci. Mak. 1 1–14. 10.11588/jddm.2015.1.13131 [ CrossRef ] [ Google Scholar ]
  • Güss C. D., Wiley B. (2007). Metacognition of problem-solving strategies in Brazil, India, and the United States. J. Cogn. Cult. 7 1–25. 10.1163/156853707X171793 [ CrossRef ] [ Google Scholar ]
  • Herde C. N., Wüstenberg S., Greiff S. (2016). Assessment of complex problem solving: what we know and what we don’t know. Appl. Meas. Educ. 29 265–277. 10.1080/08957347.2016.1209208 [ CrossRef ] [ Google Scholar ]
  • Hermes M., Stelling D. (2016). Context matters, but how much? Latent state – trait analysis of cognitive ability assessments. Int. J. Sel. Assess. 24 285–295. 10.1111/ijsa.12147 [ CrossRef ] [ Google Scholar ]
  • Hotaling J. M., Fakhari P., Busemeyer J. R. (2015). “Dynamic decision making,” in International Encyclopedia of the Social & Behavioral Sciences , 2nd Edn, eds Smelser N. J., Batles P. B. (New York, NY: Elsevier; ), 709–714. [ Google Scholar ]
  • Hundertmark J., Holt D. V., Fischer A., Said N., Fischer H. (2015). System structure and cognitive ability as predictors of performance in dynamic system control tasks. J. Dynamic Deci. Mak. 1 1–10. 10.11588/jddm.2015.1.26416 [ CrossRef ] [ Google Scholar ]
  • Jäkel F., Schreiber C. (2013). Introspection in problem solving. J. Problem Solv. 6 20–33. 10.7771/1932-6246.1131 [ CrossRef ] [ Google Scholar ]
  • Jansson A. (1994). Pathologies in dynamic decision making: consequences or precursors of failure? Sprache Kogn. 13 160–173. [ Google Scholar ]
  • Kaufman J. C., Beghetto R. A. (2009). Beyond big and little: the four c model of creativity. Rev. Gen. Psychol. 13 1–12. 10.1037/a0013688 [ CrossRef ] [ Google Scholar ]
  • Knauff M., Wolf A. G. (2010). Complex cognition: the science of human reasoning, problem-solving, and decision-making. Cogn. Process. 11 99–102. 10.1007/s10339-010-0362-z [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Kretzschmar A. (2017). Sometimes less is not enough: a commentary on Greiff et al. (2015). J. Intell. 5 : 4 10.3390/jintelligence5010004 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Kretzschmar A., Neubert J. C., Wüstenberg S., Greiff S. (2016). Construct validity of complex problem solving: a comprehensive view on different facets of intelligence and school grades. Intelligence 54 55–69. 10.1016/j.intell.2015.11.004 [ CrossRef ] [ Google Scholar ]
  • Kretzschmar A., Süß H.-M. (2015). A study on the training of complex problem solving competence. J. Dynamic Deci. Mak. 1 1–14. 10.11588/jddm.2015.1.15455 [ CrossRef ] [ Google Scholar ]
  • Lee H., Cho Y. (2007). Factors affecting problem finding depending on degree of structure of problem situation. J. Educ. Res. 101 113–123. 10.3200/JOER.101.2.113-125 [ CrossRef ] [ Google Scholar ]
  • Leutner D., Fleischer J., Wirth J., Greiff S., Funke J. (2012). Analytische und dynamische Problemlösekompetenz im Lichte internationaler Schulleistungsvergleichsstudien: Untersuchungen zur Dimensionalität. Psychol. Rundschau 63 34–42. 10.1026/0033-3042/a000108 [ CrossRef ] [ Google Scholar ]
  • Luchins A. S. (1942). Mechanization in problem solving: the effect of einstellung. Psychol. Monogr. 54 1–95. 10.1037/h0093502 [ CrossRef ] [ Google Scholar ]
  • Mack O., Khare A., Krämer A., Burgartz T. (eds) (2016). Managing in a VUCA world. Heidelberg: Springer. [ Google Scholar ]
  • Mainert J., Kretzschmar A., Neubert J. C., Greiff S. (2015). Linking complex problem solving and general mental ability to career advancement: does a transversal skill reveal incremental predictive validity? Int. J. Lifelong Educ. 34 393–411. 10.1080/02601370.2015.1060024 [ CrossRef ] [ Google Scholar ]
  • Mainzer K. (2009). Challenges of complexity in the 21st century. An interdisciplinary introduction. Eur. Rev. 17 219–236. 10.1017/S1062798709000714 [ CrossRef ] [ Google Scholar ]
  • Meadows D. H., Meadows D. L., Randers J. (1992). Beyond the Limits. Vermont, VA: Chelsea Green Publishing. [ Google Scholar ]
  • Meadows D. H., Meadows D. L., Randers J., Behrens W. W. (1972). The Limits to Growth. New York, NY: Universe Books. [ Google Scholar ]
  • Meißner A., Greiff S., Frischkorn G. T., Steinmayr R. (2016). Predicting complex problem solving and school grades with working memory and ability self-concept. Learn. Ind. Differ. 49 323–331. 10.1016/j.lindif.2016.04.006 [ CrossRef ] [ Google Scholar ]
  • Molnàr G., Greiff S., Wüstenberg S., Fischer A. (2017). “Empirical study of computer-based assessment of domain-general complex problem-solving skills,” in The Nature of Problem Solving: Using research to Inspire 21st Century Learning , eds Csapó B., Funke J. (Paris: OECD Publishing; ), 125–141. [ Google Scholar ]
  • National Research Council (2011). Assessing 21st Century Skills: Summary of a Workshop. Washington, DC: The National Academies Press. [ PubMed ] [ Google Scholar ]
  • Newell A., Shaw J. C., Simon H. A. (1959). A general problem-solving program for a computer. Comput. Automat. 8 10–16. [ Google Scholar ]
  • Nisbett R. E., Wilson T. D. (1977). Telling more than we can know: verbal reports on mental processes. Psychol. Rev. 84 231–259. 10.1037/0033-295X.84.3.231 [ CrossRef ] [ Google Scholar ]
  • OECD (2014). “PISA 2012 results,” in Creative Problem Solving: Students’ Skills in Tackling Real-Life problems , Vol. 5 (Paris: OECD Publishing; ). [ Google Scholar ]
  • Osman M. (2010). Controlling uncertainty: a review of human behavior in complex dynamic environments. Psychol. Bull. 136 65–86. 10.1037/a0017815 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Osman M. (2012). The role of reward in dynamic decision making. Front. Neurosci. 6 : 35 10.3389/fnins.2012.00035 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Qudrat-Ullah H. (2015). Better Decision Making in Complex, Dynamic Tasks. Training with Human-Facilitated Interactive Learning Environments. Heidelberg: Springer. [ Google Scholar ]
  • Ramnarayan S., Strohschneider S., Schaub H. (1997). Trappings of expertise and the pursuit of failure. Simulat. Gam. 28 28–43. 10.1177/1046878197281004 [ CrossRef ] [ Google Scholar ]
  • Reuschenbach B. (2008). Planen und Problemlösen im Komplexen Handlungsfeld Pflege. Berlin: Logos. [ Google Scholar ]
  • Rohe M., Funke J., Storch M., Weber J. (2016). Can motto goals outperform learning and performance goals? Influence of goal setting on performance, intrinsic motivation, processing style, and affect in a complex problem solving task. J. Dynamic Deci. Mak. 2 1–15. 10.11588/jddm.2016.1.28510 [ CrossRef ] [ Google Scholar ]
  • Scherer R., Greiff S., Hautamäki J. (2015). Exploring the relation between time on task and ability in complex problem solving. Intelligence 48 37–50. 10.1016/j.intell.2014.10.003 [ CrossRef ] [ Google Scholar ]
  • Schoppek W., Fischer A. (2015). Complex problem solving – single ability or complex phenomenon? Front. Psychol. 6 : 1669 10.3389/fpsyg.2015.01669 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Schraw G., Dunkle M., Bendixen L. D. (1995). Cognitive processes in well-defined and ill-defined problem solving. Appl. Cogn. Psychol. 9 523–538. 10.1002/acp.2350090605 [ CrossRef ] [ Google Scholar ]
  • Schweizer F., Wüstenberg S., Greiff S. (2013). Validity of the MicroDYN approach: complex problem solving predicts school grades beyond working memory capacity. Learn. Ind. Differ. 24 42–52. 10.1016/j.lindif.2012.12.011 [ CrossRef ] [ Google Scholar ]
  • Schweizer T. S., Schmalenberger K. M., Eisenlohr-Moul T. A., Mojzisch A., Kaiser S., Funke J. (2016). Cognitive and affective aspects of creative option generation in everyday life situations. Front. Psychol. 7 : 1132 10.3389/fpsyg.2016.01132 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Selten R., Pittnauer S., Hohnisch M. (2012). Dealing with dynamic decision problems when knowledge of the environment is limited: an approach based on goal systems. J. Behav. Deci. Mak. 25 443–457. 10.1002/bdm.738 [ CrossRef ] [ Google Scholar ]
  • Simon H. A. (1957). Administrative Behavior: A Study of Decision-Making Processes in Administrative Organizations , 2nd Edn New York, NY: Macmillan. [ Google Scholar ]
  • Sonnleitner P., Brunner M., Keller U., Martin R. (2014). Differential relations between facets of complex problem solving and students’ immigration background. J. Educ. Psychol. 106 681–695. 10.1037/a0035506 [ CrossRef ] [ Google Scholar ]
  • Spering M., Wagener D., Funke J. (2005). The role of emotions in complex problem solving. Cogn. Emot. 19 1252–1261. 10.1080/02699930500304886 [ CrossRef ] [ Google Scholar ]
  • Stadler M., Becker N., Gödker M., Leutner D., Greiff S. (2015). Complex problem solving and intelligence: a meta-analysis. Intelligence 53 92–101. 10.1016/j.intell.2015.09.005 [ CrossRef ] [ Google Scholar ]
  • Stadler M., Niepel C., Greiff S. (2016). Easily too difficult: estimating item difficulty in computer simulated microworlds. Comput. Hum. Behav. 65 100–106. 10.1016/j.chb.2016.08.025 [ CrossRef ] [ Google Scholar ]
  • Sternberg R. J. (1995). “Expertise in complex problem solving: a comparison of alternative conceptions,” in Complex Problem Solving: The European Perspective , eds Frensch P. A., Funke J. (Hillsdale, NJ: Erlbaum; ), 295–321. [ Google Scholar ]
  • Sternberg R. J., Frensch P. A. (1991). Complex Problem Solving: Principles and Mechanisms. (eds) Sternberg R. J., Frensch P. A. Hillsdale, NJ: Erlbaum. [ Google Scholar ]
  • Strohschneider S., Güss C. D. (1998). Planning and problem solving: differences between brazilian and german students. J. Cross-Cult. Psychol. 29 695–716. 10.1177/0022022198296002 [ CrossRef ] [ Google Scholar ]
  • Strohschneider S., Güss C. D. (1999). The fate of the Moros: a cross-cultural exploration of strategies in complex and dynamic decision making. Int. J. Psychol. 34 235–252. 10.1080/002075999399873 [ CrossRef ] [ Google Scholar ]
  • Thimbleby H. (2007). Press On. Principles of Interaction. Cambridge, MA: MIT Press. [ Google Scholar ]
  • Tobinski D. A., Fritz A. (2017). “EcoSphere: a new paradigm for problem solving in complex systems,” in The Nature of Problem Solving: Using Research to Inspire 21st Century Learning , eds Csapó B., Funke J. (Paris: OECD Publishing; ), 211–222. [ Google Scholar ]
  • Tremblay S., Gagnon J.-F., Lafond D., Hodgetts H. M., Doiron M., Jeuniaux P. P. J. M. H. (2017). A cognitive prosthesis for complex decision-making. Appl. Ergon. 58 349–360. 10.1016/j.apergo.2016.07.009 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Tschirgi J. E. (1980). Sensible reasoning: a hypothesis about hypotheses. Child Dev. 51 1–10. 10.2307/1129583 [ CrossRef ] [ Google Scholar ]
  • Tuchman B. W. (1984). The March of Folly. From Troy to Vietnam. New York, NY: Ballantine Books. [ Google Scholar ]
  • Verweij M., Thompson M. (eds) (2006). Clumsy Solutions for A Complex World. Governance, Politics and Plural Perceptions. New York, NY: Palgrave Macmillan; 10.1057/9780230624887 [ CrossRef ] [ Google Scholar ]
  • Viehrig K., Siegmund A., Funke J., Wüstenberg S., Greiff S. (2017). “The heidelberg inventory of geographic system competency model,” in Competence Assessment in Education. Research, Models and Instruments , eds Leutner D., Fleischer J., Grünkorn J., Klieme E. (Heidelberg: Springer; ), 31–53. [ Google Scholar ]
  • von Clausewitz C. (1832). Vom Kriege [On war]. Berlin: Dämmler. [ Google Scholar ]
  • Wendt A. N. (2017). The empirical potential of live streaming beyond cognitive psychology. J. Dynamic Deci. Mak. 3 1–9. 10.11588/jddm.2017.1.33724 [ CrossRef ] [ Google Scholar ]
  • Wiliam D., Black P. (1996). Meanings and consequences: a basis for distinguishing formative and summative functions of assessment? Br. Educ. Res. J. 22 537–548. 10.1080/0141192960220502 [ CrossRef ] [ Google Scholar ]
  • World Economic Forum (2015). New Vsion for Education Unlocking the Potential of Technology. Geneva: World Economic Forum. [ Google Scholar ]
  • World Economic Forum (2016). Global Risks 2016: Insight Report , 11th Edn Geneva: World Economic Forum. [ Google Scholar ]
  • Wüstenberg S., Greiff S., Funke J. (2012). Complex problem solving — more than reasoning? Intelligence 40 1–14. 10.1016/j.intell.2011.11.003 [ CrossRef ] [ Google Scholar ]
  • Wüstenberg S., Greiff S., Vainikainen M.-P., Murphy K. (2016). Individual differences in students’ complex problem solving skills: how they evolve and what they imply. J. Educ. Psychol. 108 1028–1044. 10.1037/edu0000101 [ CrossRef ] [ Google Scholar ]
  • Wüstenberg S., Stadler M., Hautamäki J., Greiff S. (2014). The role of strategy knowledge for the application of strategies in complex problem solving tasks. Technol. Knowl. Learn. 19 127–146. 10.1007/s10758-014-9222-8 [ CrossRef ] [ Google Scholar ]

Complex Problem Solving

  • Reference work entry
  • Cite this reference work entry

complex problem solving adalah

  • Joachim Funke 2  

1268 Accesses

51 Citations

3 Altmetric

Dealing with uncertainty ; Dynamic decision making ; Problem solving in dynamic microworlds

Complex problem solving takes place for reducing the barrier between a given start state and an intended goal state with the help of cognitive activities and behavior. Start state, intended goal state, and barriers prove complexity, change dynamically over time, and can be partially intransparent. In contrast to solving simple problems, with complex problems at the beginning of a problem solution the exact features of the start state, of the intended goal state, and of the barriers are unknown. Complex problem solving expects the efficient interaction between the problem-solving person and situational conditions that depend on the task. It demands the use of cognitive, emotional, and social resources as well as knowledge (see Frensch and Funke 1995 ).

Theoretical Background

Since 1975 there has been started a new movement in the psychology of thinking that is engaged in complex...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
  • Available as EPUB and PDF
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Brehmer, B., & Dörner, D. (1993). Experiments with computer-simulated microworlds: Escaping both the narrow straits of the laboratory and the deep blue sea of the field study. Computers in Human Behavior, 9 , 171–184.

Google Scholar  

Dörner, D. (1997). The logic of failure. Recognizing and avoiding error in complex situations . New York: Basic Books.

Frensch, P. A., & Funke, J. (Eds.). (1995). Complex problem solving: The European perspective . Hillsdale: Lawrence Erlbaum Associates.

Funke, J. (2003). Problemlösendes Denken . Stuttgart: Kohlhammer.

Osman, M. (2010). Controlling uncertainty: A review of human behavior in complex dynamic environments. Psychological Bulletin, 136 , 65–86.

Wenke, D., Frensch, P. A., & Funke, J. (2005). Complex problem solving and intelligence: Empirical relation and causal direction. In R. J. Sternberg & J. E. Pretz (Eds.), Cognition and intelligence: Identifying the mechanisms of the mind (pp. 160–187). New York: Cambridge University Press.

Download references

Author information

Authors and affiliations.

Department of Psychology, Heidelberg University, Hauptstr. 47-51, Heidelberg, 69117, Germany

Dr. Joachim Funke

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Joachim Funke .

Editor information

Editors and affiliations.

Faculty of Economics and Behavioral Sciences, Department of Education, University of Freiburg, 79085, Freiburg, Germany

Norbert M. Seel

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this entry

Cite this entry.

Funke, J. (2012). Complex Problem Solving. In: Seel, N.M. (eds) Encyclopedia of the Sciences of Learning. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-1428-6_685

Download citation

DOI : https://doi.org/10.1007/978-1-4419-1428-6_685

Publisher Name : Springer, Boston, MA

Print ISBN : 978-1-4419-1427-9

Online ISBN : 978-1-4419-1428-6

eBook Packages : Humanities, Social Sciences and Law

Share this entry

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research

Academia.edu no longer supports Internet Explorer.

To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to  upgrade your browser .

Enter the email address you signed up with and we'll email you a reset link.

  • We're Hiring!
  • Help Center

paper cover thumbnail

Complex Problem Solving

Profile image of Muhammad Imron Najiulloh

Program Studi Manajemen Sumber Daya Manusia, Politeknik Ketenagakerjaan

Complex Problem Solving (CPS) adalah paradigma baru dalam menyelesaikan masalah atau permasalahan. Dalam hal ini masalah dimaksudkan sebagai problem, sedangkan permasalahan adalah problematics.

Related Papers

Budi Irawan

complex problem solving adalah

sindy indrayanti

Irman Firmansyah

Ignatia Yohana Rembet

zelaz zaliez

Defining Strategy to encounter great countries. some are translated from "Hedging Strategies" by David Willis

selva ganapathy ramdass Nohryamall

Indah Rachmawati

ai herawati

Ade Heryana

Permasalahan kompleksitas pada sistem (manusia/hewan atau benda mati lainnya) umumnya terdiri dari lima tingkatan yaitu simple, complicated, complex, chaos, disorder. Pada sistem yang mengalami masalah kompleks, sebisa mungkin sistem akan menyesuaikan diri dengan lingkungan supaya tidak mengalami chaos. Agar sistem dapat berjalan dengan optimal, sistem akan menyederhanakan masalah kompleks tersebut menjadi sederhana. Fenomena masalah kompleks pada sistem dipelajari dengan sebuah konsep/teori yang disebut teori kompleksitas (complexity theory). Teori ini berkembang dari pemecahan masalah pada ilmu-ilmu alam dan hingga kini banyak digunakan pada ilmu-ilmu sosial. Kompleksitas pada sistem kesehatan dipelajari dengan analisis situasi menggunakan pendekatan ilmu kompleksitas.

RELATED PAPERS

Phillip Adamo

Theoretical and Mathematical Physics

Igor Korepanov

Physical Review B

Giorgia Fugallo

Archives of Gerontology and Geriatrics

LUCA CORRADI

Isiaka Alimi

Materials Letters

Scott Chambers

Noel Perera

Chinwe Anunobi

Marcello Coutinho

stephane greff

Islam and Civilisational Renewal

Sabbir Hossain

Criminal behaviour and mental health : CBMH

Luc Van Gaal

Kemeja Batik by Rumah Jahit Azka

Contextus (FEAAC/UFC)

Goldschmidt2021 abstracts

Anélia Petit

REVISTA HURBINEK

aislan maciera

Procedia - Social and Behavioral Sciences

Huseyin Uzunboylu

Jurnal Patriot

Ayu putri Sari

Abubakar Abdullahi

arXiv (Cornell University)

Katerina Chrysafi

EDISON FIDEL IZA CHICAIZA

BMC Public Health

Daniel Datiko

Sherryl Leone

Cedinfor Forestal

约克大学毕业证York成绩单留信网认证【87527357微/Q】 办理加拿大学历证书York大学文凭毕业证书原件,YU文凭留学归国人员证明York University

RELATED TOPICS

  •   We're Hiring!
  •   Help Center
  • Find new research papers in:
  • Health Sciences
  • Earth Sciences
  • Cognitive Science
  • Mathematics
  • Computer Science
  • Academia ©2024

How to master the seven-step problem-solving process

In this episode of the McKinsey Podcast , Simon London speaks with Charles Conn, CEO of venture-capital firm Oxford Sciences Innovation, and McKinsey senior partner Hugo Sarrazin about the complexities of different problem-solving strategies.

Podcast transcript

Simon London: Hello, and welcome to this episode of the McKinsey Podcast , with me, Simon London. What’s the number-one skill you need to succeed professionally? Salesmanship, perhaps? Or a facility with statistics? Or maybe the ability to communicate crisply and clearly? Many would argue that at the very top of the list comes problem solving: that is, the ability to think through and come up with an optimal course of action to address any complex challenge—in business, in public policy, or indeed in life.

Looked at this way, it’s no surprise that McKinsey takes problem solving very seriously, testing for it during the recruiting process and then honing it, in McKinsey consultants, through immersion in a structured seven-step method. To discuss the art of problem solving, I sat down in California with McKinsey senior partner Hugo Sarrazin and also with Charles Conn. Charles is a former McKinsey partner, entrepreneur, executive, and coauthor of the book Bulletproof Problem Solving: The One Skill That Changes Everything [John Wiley & Sons, 2018].

Charles and Hugo, welcome to the podcast. Thank you for being here.

Hugo Sarrazin: Our pleasure.

Charles Conn: It’s terrific to be here.

Simon London: Problem solving is a really interesting piece of terminology. It could mean so many different things. I have a son who’s a teenage climber. They talk about solving problems. Climbing is problem solving. Charles, when you talk about problem solving, what are you talking about?

Charles Conn: For me, problem solving is the answer to the question “What should I do?” It’s interesting when there’s uncertainty and complexity, and when it’s meaningful because there are consequences. Your son’s climbing is a perfect example. There are consequences, and it’s complicated, and there’s uncertainty—can he make that grab? I think we can apply that same frame almost at any level. You can think about questions like “What town would I like to live in?” or “Should I put solar panels on my roof?”

You might think that’s a funny thing to apply problem solving to, but in my mind it’s not fundamentally different from business problem solving, which answers the question “What should my strategy be?” Or problem solving at the policy level: “How do we combat climate change?” “Should I support the local school bond?” I think these are all part and parcel of the same type of question, “What should I do?”

I’m a big fan of structured problem solving. By following steps, we can more clearly understand what problem it is we’re solving, what are the components of the problem that we’re solving, which components are the most important ones for us to pay attention to, which analytic techniques we should apply to those, and how we can synthesize what we’ve learned back into a compelling story. That’s all it is, at its heart.

I think sometimes when people think about seven steps, they assume that there’s a rigidity to this. That’s not it at all. It’s actually to give you the scope for creativity, which often doesn’t exist when your problem solving is muddled.

Simon London: You were just talking about the seven-step process. That’s what’s written down in the book, but it’s a very McKinsey process as well. Without getting too deep into the weeds, let’s go through the steps, one by one. You were just talking about problem definition as being a particularly important thing to get right first. That’s the first step. Hugo, tell us about that.

Hugo Sarrazin: It is surprising how often people jump past this step and make a bunch of assumptions. The most powerful thing is to step back and ask the basic questions—“What are we trying to solve? What are the constraints that exist? What are the dependencies?” Let’s make those explicit and really push the thinking and defining. At McKinsey, we spend an enormous amount of time in writing that little statement, and the statement, if you’re a logic purist, is great. You debate. “Is it an ‘or’? Is it an ‘and’? What’s the action verb?” Because all these specific words help you get to the heart of what matters.

Want to subscribe to The McKinsey Podcast ?

Simon London: So this is a concise problem statement.

Hugo Sarrazin: Yeah. It’s not like “Can we grow in Japan?” That’s interesting, but it is “What, specifically, are we trying to uncover in the growth of a product in Japan? Or a segment in Japan? Or a channel in Japan?” When you spend an enormous amount of time, in the first meeting of the different stakeholders, debating this and having different people put forward what they think the problem definition is, you realize that people have completely different views of why they’re here. That, to me, is the most important step.

Charles Conn: I would agree with that. For me, the problem context is critical. When we understand “What are the forces acting upon your decision maker? How quickly is the answer needed? With what precision is the answer needed? Are there areas that are off limits or areas where we would particularly like to find our solution? Is the decision maker open to exploring other areas?” then you not only become more efficient, and move toward what we call the critical path in problem solving, but you also make it so much more likely that you’re not going to waste your time or your decision maker’s time.

How often do especially bright young people run off with half of the idea about what the problem is and start collecting data and start building models—only to discover that they’ve really gone off half-cocked.

Hugo Sarrazin: Yeah.

Charles Conn: And in the wrong direction.

Simon London: OK. So step one—and there is a real art and a structure to it—is define the problem. Step two, Charles?

Charles Conn: My favorite step is step two, which is to use logic trees to disaggregate the problem. Every problem we’re solving has some complexity and some uncertainty in it. The only way that we can really get our team working on the problem is to take the problem apart into logical pieces.

What we find, of course, is that the way to disaggregate the problem often gives you an insight into the answer to the problem quite quickly. I love to do two or three different cuts at it, each one giving a bit of a different insight into what might be going wrong. By doing sensible disaggregations, using logic trees, we can figure out which parts of the problem we should be looking at, and we can assign those different parts to team members.

Simon London: What’s a good example of a logic tree on a sort of ratable problem?

Charles Conn: Maybe the easiest one is the classic profit tree. Almost in every business that I would take a look at, I would start with a profit or return-on-assets tree. In its simplest form, you have the components of revenue, which are price and quantity, and the components of cost, which are cost and quantity. Each of those can be broken out. Cost can be broken into variable cost and fixed cost. The components of price can be broken into what your pricing scheme is. That simple tree often provides insight into what’s going on in a business or what the difference is between that business and the competitors.

If we add the leg, which is “What’s the asset base or investment element?”—so profit divided by assets—then we can ask the question “Is the business using its investments sensibly?” whether that’s in stores or in manufacturing or in transportation assets. I hope we can see just how simple this is, even though we’re describing it in words.

When I went to work with Gordon Moore at the Moore Foundation, the problem that he asked us to look at was “How can we save Pacific salmon?” Now, that sounds like an impossible question, but it was amenable to precisely the same type of disaggregation and allowed us to organize what became a 15-year effort to improve the likelihood of good outcomes for Pacific salmon.

Simon London: Now, is there a danger that your logic tree can be impossibly large? This, I think, brings us onto the third step in the process, which is that you have to prioritize.

Charles Conn: Absolutely. The third step, which we also emphasize, along with good problem definition, is rigorous prioritization—we ask the questions “How important is this lever or this branch of the tree in the overall outcome that we seek to achieve? How much can I move that lever?” Obviously, we try and focus our efforts on ones that have a big impact on the problem and the ones that we have the ability to change. With salmon, ocean conditions turned out to be a big lever, but not one that we could adjust. We focused our attention on fish habitats and fish-harvesting practices, which were big levers that we could affect.

People spend a lot of time arguing about branches that are either not important or that none of us can change. We see it in the public square. When we deal with questions at the policy level—“Should you support the death penalty?” “How do we affect climate change?” “How can we uncover the causes and address homelessness?”—it’s even more important that we’re focusing on levers that are big and movable.

Would you like to learn more about our Strategy & Corporate Finance Practice ?

Simon London: Let’s move swiftly on to step four. You’ve defined your problem, you disaggregate it, you prioritize where you want to analyze—what you want to really look at hard. Then you got to the work plan. Now, what does that mean in practice?

Hugo Sarrazin: Depending on what you’ve prioritized, there are many things you could do. It could be breaking the work among the team members so that people have a clear piece of the work to do. It could be defining the specific analyses that need to get done and executed, and being clear on time lines. There’s always a level-one answer, there’s a level-two answer, there’s a level-three answer. Without being too flippant, I can solve any problem during a good dinner with wine. It won’t have a whole lot of backing.

Simon London: Not going to have a lot of depth to it.

Hugo Sarrazin: No, but it may be useful as a starting point. If the stakes are not that high, that could be OK. If it’s really high stakes, you may need level three and have the whole model validated in three different ways. You need to find a work plan that reflects the level of precision, the time frame you have, and the stakeholders you need to bring along in the exercise.

Charles Conn: I love the way you’ve described that, because, again, some people think of problem solving as a linear thing, but of course what’s critical is that it’s iterative. As you say, you can solve the problem in one day or even one hour.

Charles Conn: We encourage our teams everywhere to do that. We call it the one-day answer or the one-hour answer. In work planning, we’re always iterating. Every time you see a 50-page work plan that stretches out to three months, you know it’s wrong. It will be outmoded very quickly by that learning process that you described. Iterative problem solving is a critical part of this. Sometimes, people think work planning sounds dull, but it isn’t. It’s how we know what’s expected of us and when we need to deliver it and how we’re progressing toward the answer. It’s also the place where we can deal with biases. Bias is a feature of every human decision-making process. If we design our team interactions intelligently, we can avoid the worst sort of biases.

Simon London: Here we’re talking about cognitive biases primarily, right? It’s not that I’m biased against you because of your accent or something. These are the cognitive biases that behavioral sciences have shown we all carry around, things like anchoring, overoptimism—these kinds of things.

Both: Yeah.

Charles Conn: Availability bias is the one that I’m always alert to. You think you’ve seen the problem before, and therefore what’s available is your previous conception of it—and we have to be most careful about that. In any human setting, we also have to be careful about biases that are based on hierarchies, sometimes called sunflower bias. I’m sure, Hugo, with your teams, you make sure that the youngest team members speak first. Not the oldest team members, because it’s easy for people to look at who’s senior and alter their own creative approaches.

Hugo Sarrazin: It’s helpful, at that moment—if someone is asserting a point of view—to ask the question “This was true in what context?” You’re trying to apply something that worked in one context to a different one. That can be deadly if the context has changed, and that’s why organizations struggle to change. You promote all these people because they did something that worked well in the past, and then there’s a disruption in the industry, and they keep doing what got them promoted even though the context has changed.

Simon London: Right. Right.

Hugo Sarrazin: So it’s the same thing in problem solving.

Charles Conn: And it’s why diversity in our teams is so important. It’s one of the best things about the world that we’re in now. We’re likely to have people from different socioeconomic, ethnic, and national backgrounds, each of whom sees problems from a slightly different perspective. It is therefore much more likely that the team will uncover a truly creative and clever approach to problem solving.

Simon London: Let’s move on to step five. You’ve done your work plan. Now you’ve actually got to do the analysis. The thing that strikes me here is that the range of tools that we have at our disposal now, of course, is just huge, particularly with advances in computation, advanced analytics. There’s so many things that you can apply here. Just talk about the analysis stage. How do you pick the right tools?

Charles Conn: For me, the most important thing is that we start with simple heuristics and explanatory statistics before we go off and use the big-gun tools. We need to understand the shape and scope of our problem before we start applying these massive and complex analytical approaches.

Simon London: Would you agree with that?

Hugo Sarrazin: I agree. I think there are so many wonderful heuristics. You need to start there before you go deep into the modeling exercise. There’s an interesting dynamic that’s happening, though. In some cases, for some types of problems, it is even better to set yourself up to maximize your learning. Your problem-solving methodology is test and learn, test and learn, test and learn, and iterate. That is a heuristic in itself, the A/B testing that is used in many parts of the world. So that’s a problem-solving methodology. It’s nothing different. It just uses technology and feedback loops in a fast way. The other one is exploratory data analysis. When you’re dealing with a large-scale problem, and there’s so much data, I can get to the heuristics that Charles was talking about through very clever visualization of data.

You test with your data. You need to set up an environment to do so, but don’t get caught up in neural-network modeling immediately. You’re testing, you’re checking—“Is the data right? Is it sound? Does it make sense?”—before you launch too far.

Simon London: You do hear these ideas—that if you have a big enough data set and enough algorithms, they’re going to find things that you just wouldn’t have spotted, find solutions that maybe you wouldn’t have thought of. Does machine learning sort of revolutionize the problem-solving process? Or are these actually just other tools in the toolbox for structured problem solving?

Charles Conn: It can be revolutionary. There are some areas in which the pattern recognition of large data sets and good algorithms can help us see things that we otherwise couldn’t see. But I do think it’s terribly important we don’t think that this particular technique is a substitute for superb problem solving, starting with good problem definition. Many people use machine learning without understanding algorithms that themselves can have biases built into them. Just as 20 years ago, when we were doing statistical analysis, we knew that we needed good model definition, we still need a good understanding of our algorithms and really good problem definition before we launch off into big data sets and unknown algorithms.

Simon London: Step six. You’ve done your analysis.

Charles Conn: I take six and seven together, and this is the place where young problem solvers often make a mistake. They’ve got their analysis, and they assume that’s the answer, and of course it isn’t the answer. The ability to synthesize the pieces that came out of the analysis and begin to weave those into a story that helps people answer the question “What should I do?” This is back to where we started. If we can’t synthesize, and we can’t tell a story, then our decision maker can’t find the answer to “What should I do?”

Simon London: But, again, these final steps are about motivating people to action, right?

Charles Conn: Yeah.

Simon London: I am slightly torn about the nomenclature of problem solving because it’s on paper, right? Until you motivate people to action, you actually haven’t solved anything.

Charles Conn: I love this question because I think decision-making theory, without a bias to action, is a waste of time. Everything in how I approach this is to help people take action that makes the world better.

Simon London: Hence, these are absolutely critical steps. If you don’t do this well, you’ve just got a bunch of analysis.

Charles Conn: We end up in exactly the same place where we started, which is people speaking across each other, past each other in the public square, rather than actually working together, shoulder to shoulder, to crack these important problems.

Simon London: In the real world, we have a lot of uncertainty—arguably, increasing uncertainty. How do good problem solvers deal with that?

Hugo Sarrazin: At every step of the process. In the problem definition, when you’re defining the context, you need to understand those sources of uncertainty and whether they’re important or not important. It becomes important in the definition of the tree.

You need to think carefully about the branches of the tree that are more certain and less certain as you define them. They don’t have equal weight just because they’ve got equal space on the page. Then, when you’re prioritizing, your prioritization approach may put more emphasis on things that have low probability but huge impact—or, vice versa, may put a lot of priority on things that are very likely and, hopefully, have a reasonable impact. You can introduce that along the way. When you come back to the synthesis, you just need to be nuanced about what you’re understanding, the likelihood.

Often, people lack humility in the way they make their recommendations: “This is the answer.” They’re very precise, and I think we would all be well-served to say, “This is a likely answer under the following sets of conditions” and then make the level of uncertainty clearer, if that is appropriate. It doesn’t mean you’re always in the gray zone; it doesn’t mean you don’t have a point of view. It just means that you can be explicit about the certainty of your answer when you make that recommendation.

Simon London: So it sounds like there is an underlying principle: “Acknowledge and embrace the uncertainty. Don’t pretend that it isn’t there. Be very clear about what the uncertainties are up front, and then build that into every step of the process.”

Hugo Sarrazin: Every step of the process.

Simon London: Yeah. We have just walked through a particular structured methodology for problem solving. But, of course, this is not the only structured methodology for problem solving. One that is also very well-known is design thinking, which comes at things very differently. So, Hugo, I know you have worked with a lot of designers. Just give us a very quick summary. Design thinking—what is it, and how does it relate?

Hugo Sarrazin: It starts with an incredible amount of empathy for the user and uses that to define the problem. It does pause and go out in the wild and spend an enormous amount of time seeing how people interact with objects, seeing the experience they’re getting, seeing the pain points or joy—and uses that to infer and define the problem.

Simon London: Problem definition, but out in the world.

Hugo Sarrazin: With an enormous amount of empathy. There’s a huge emphasis on empathy. Traditional, more classic problem solving is you define the problem based on an understanding of the situation. This one almost presupposes that we don’t know the problem until we go see it. The second thing is you need to come up with multiple scenarios or answers or ideas or concepts, and there’s a lot of divergent thinking initially. That’s slightly different, versus the prioritization, but not for long. Eventually, you need to kind of say, “OK, I’m going to converge again.” Then you go and you bring things back to the customer and get feedback and iterate. Then you rinse and repeat, rinse and repeat. There’s a lot of tactile building, along the way, of prototypes and things like that. It’s very iterative.

Simon London: So, Charles, are these complements or are these alternatives?

Charles Conn: I think they’re entirely complementary, and I think Hugo’s description is perfect. When we do problem definition well in classic problem solving, we are demonstrating the kind of empathy, at the very beginning of our problem, that design thinking asks us to approach. When we ideate—and that’s very similar to the disaggregation, prioritization, and work-planning steps—we do precisely the same thing, and often we use contrasting teams, so that we do have divergent thinking. The best teams allow divergent thinking to bump them off whatever their initial biases in problem solving are. For me, design thinking gives us a constant reminder of creativity, empathy, and the tactile nature of problem solving, but it’s absolutely complementary, not alternative.

Simon London: I think, in a world of cross-functional teams, an interesting question is do people with design-thinking backgrounds really work well together with classical problem solvers? How do you make that chemistry happen?

Hugo Sarrazin: Yeah, it is not easy when people have spent an enormous amount of time seeped in design thinking or user-centric design, whichever word you want to use. If the person who’s applying classic problem-solving methodology is very rigid and mechanical in the way they’re doing it, there could be an enormous amount of tension. If there’s not clarity in the role and not clarity in the process, I think having the two together can be, sometimes, problematic.

The second thing that happens often is that the artifacts the two methodologies try to gravitate toward can be different. Classic problem solving often gravitates toward a model; design thinking migrates toward a prototype. Rather than writing a big deck with all my supporting evidence, they’ll bring an example, a thing, and that feels different. Then you spend your time differently to achieve those two end products, so that’s another source of friction.

Now, I still think it can be an incredibly powerful thing to have the two—if there are the right people with the right mind-set, if there is a team that is explicit about the roles, if we’re clear about the kind of outcomes we are attempting to bring forward. There’s an enormous amount of collaborativeness and respect.

Simon London: But they have to respect each other’s methodology and be prepared to flex, maybe, a little bit, in how this process is going to work.

Hugo Sarrazin: Absolutely.

Simon London: The other area where, it strikes me, there could be a little bit of a different sort of friction is this whole concept of the day-one answer, which is what we were just talking about in classical problem solving. Now, you know that this is probably not going to be your final answer, but that’s how you begin to structure the problem. Whereas I would imagine your design thinkers—no, they’re going off to do their ethnographic research and get out into the field, potentially for a long time, before they come back with at least an initial hypothesis.

Want better strategies? Become a bulletproof problem solver

Want better strategies? Become a bulletproof problem solver

Hugo Sarrazin: That is a great callout, and that’s another difference. Designers typically will like to soak into the situation and avoid converging too quickly. There’s optionality and exploring different options. There’s a strong belief that keeps the solution space wide enough that you can come up with more radical ideas. If there’s a large design team or many designers on the team, and you come on Friday and say, “What’s our week-one answer?” they’re going to struggle. They’re not going to be comfortable, naturally, to give that answer. It doesn’t mean they don’t have an answer; it’s just not where they are in their thinking process.

Simon London: I think we are, sadly, out of time for today. But Charles and Hugo, thank you so much.

Charles Conn: It was a pleasure to be here, Simon.

Hugo Sarrazin: It was a pleasure. Thank you.

Simon London: And thanks, as always, to you, our listeners, for tuning into this episode of the McKinsey Podcast . If you want to learn more about problem solving, you can find the book, Bulletproof Problem Solving: The One Skill That Changes Everything , online or order it through your local bookstore. To learn more about McKinsey, you can of course find us at McKinsey.com.

Charles Conn is CEO of Oxford Sciences Innovation and an alumnus of McKinsey’s Sydney office. Hugo Sarrazin is a senior partner in the Silicon Valley office, where Simon London, a member of McKinsey Publishing, is also based.

Explore a career with us

Related articles.

Want better strategies? Become a bulletproof problem solver

Strategy to beat the odds

firo13_frth

Five routes to more innovative problem solving

serupa.id

seni belajar untuk hidup

Problem Solving (Pemecahan Masalah) : Pengertian, Indikator, Faktor, dsb

complex problem solving adalah

Salah satu keterampilan yang digaungkan untuk menghadapi era pendidikan abad 21 adalah problem solving atau pemecahan masalah. Pemecahan masalah merupakan salah satu skill set penting untuk menghadapi tuntutan hidup di zaman yang serba cepat ini. Mengapa? Karena kecepatan dan ketelitian merupakan hal yang amat berbenturan, dan ketika kita ingin mewujudkannya, maka akan timbul banyak permasalahan, yakni kesenjangan antara harapan dan kenyataan. Dengan demikian keterampilan problem solving amatlah dibutuhkan di masa ini.

Namun demikian tidak usah menyalahkan kebutuhan abad 21, revolusi industri 4.0, atau pengaruh globalisasi juga pada dasarnya setiap orang akan menghadapi masalah. Kita semua akan selalu menemui masalah dalam kehidupan sehari-hari dan akan selalu berusaha untuk memecahkannya. Tentunya tingkat kesulitannya amatlah beragam, mulai dari yang sudah memiliki langkah untuk menyelesaikannya, hingga masalah baru yang lebih sulit untuk dipecahkan.

Oleh karena itu problem solving serta kemampuan memecahkan masalah merupakan konsep dan keterampilan penting yang harus dipahami dan dikuasai. Berikut adalah berbagai uraian mengenai problem solving atau pemecahan masalah mulai dari pengertian, indikator, hingga faktor-faktor yang memengaruhinya.

Pengertian Problem Solving

Menurut Uno (2014, hlm. 134) problem solving adalah kemampuan untuk menggunakan proses berpikir dalam memecahkan masalah dengan mengumpulkan fakta, menganalisis informasi, penyusunan alternatif solusi, serta memilih solusi masalah yang lebih efektif. Artinya problem solving merupakan pencarian solusi melalui proses berpikir yang sistematis.

Sementara itu menurut Lucenario dkk (dalam Khoiriyah & Husana, 2018, hlm. 151) problem solving adalah aktivitas yang membutuhkan seseorang antuk memilih jalan keluar yang dapat dilakukan berdasarkan kemampuan yang dimilikinya yang berarti melakukan pergerakan antara keadaan sekarang dengan kondisi yang diharapkan. Hal ini berkaitan dengan definisi masalah yang berarti kenyataan yang tidak sesuai dengan kenyataan, dan problem solving berusaha untuk memperbaiki kenyataan tersebut menjadi sesuai dengan harapan.

Selanjutnya, menurut Solso (dalam Mawaddah, 2015) pemecahan masalah adalah suatu pemikiran yang terarah secara langsung untuk menentukan solusi atau jalan keluar untuk suatu masalah yang spesifik. Tentunya solusi spesifik berarti solusi yang sesuai dengan masalah yang terjadi. Selain itu, Gagne dalam (Made, 2016, hlm. 52) mengemukakan bahwa problem solving dapat dipandang sebagai suatu proses untuk menemukan kombinasi dari sejumlah aturan yang dapat diterapkan dalam upaya mengatasi situasi yang baru. Kombinasi dari sejumlah aturan dapat dipahami sebagai algoritma atau langkah-langkah yang dapat menyelesaikan suatu permasalahan.

Berdasarkan pendapat-pendapat ahli di atas dapat disimpulkan bahwa problem solving adalah aktivitas proses berpikir untuk mencari solusi berupa suatu prosedur atau langkah yang spesifik dalam menyelesaikan suatu permasalahan secara sistematis berdasarkan kemampuan yang dimilikinya.

Jenis Masalah

Terdapat beberapa jenis masalah, yaitu:

  • Masalah yang prosedur pemecahannya sudah ada dan telah diketahui siswa;
  • Masalah yang prosedur pemecahannya belum diketahui oleh siswa;
  • Masalah yang sama sekali belum diketahui prosedur pemecahannya dan atau belum diketahui data yang diperlukan untuk mencari solusinya.

Tentunya dalam pendidikan abad 21, kemampuan pemecahan masalah yang diharapkan dapat dikuasai adalah penyelesaian masalah terhadap masalah yang belum diketahui prosedur pemecahannya dan atau belum diketahui data yang diperlukan untuk mencari solusinya.

Indikator Problem Solving

Bagaimana caranya kita mengetahui bahwa seseorang atau dalam bidang pendidikan spesifiknya peserta didik telah mampu menggunakan kemampuan problem solvingnya? Terdapat indikator yang dapat mencirikan bahwa seseorang tengah mempraktikan kemampuan pemecahan masalah. Menurut Johnson & Johnson (Tawil & Liliasari, 2013, hlm. 93) indikator-indikator penyelesaian masalah adalah sebagai berikut.

  • “Mampu mendefinisikan masalah, yaitu merumuskan masalah dari peristiwa tertentu yang mengandung isu konflik, sehingga peserta didik mengerti masalah apa yang akan dikaji. Dalam hal ini, peserta didik harus mampu mendefinisikan beberapa masalah mengenai isu-isu hangat yang terjadi di lingkungannya;
  • “Mampu mendiagnosis masalah, yaitu menentukan sebab-sebab terjadinya masalah, serta menganalisis berbagai faktor, baik faktor yang bisa menghambat maupun faktor yang dapat mendukung dalam penyelesaian masalah”. Jika hal yang pertama dilakukan adalah mengindentifikasi masalah, maka selanjutnya peserta didik harus dapat menyelidiki ataupun menemukan sebab atau alasan terjadi suatu permasalahan tersebut sehingga bisa mencari solusi;
  • “Mampu merumuskan alternatif strategi, yaitu menguji setiap tindakan yang telah dirumuskan melalui diskusi kelas”. Mengatasi suatu permasalahan tentunya bisa melakukan berbagai hal sesuai tingkat permasalahan yang ada. Strategi yang dilakukan pun bisa berbedabeda sehingga perlu adanya alternatif strategi yang lain jika salah satu strategi tidak dapat berhasil mengatasi suatu permasalahan tersebut;
  • “Mampu menentukan dan menerapkan strategi pilihan, yaitu pengambilan keputusan tentang strategi mana yang dapat dilakukan”. Pengambilan keputusan sangat diperlukan dalam memecahkan suatu masalah karena menentukan strategi yang paling baik dari beberapa alternatif strategi yang ada;
  • “Mampu melakukan evaluasi, baik evaluasi proses maupun evaluasi hasil”. Evaluasi dilakukan agar dapat memperbaiki hal-hal yang salah dari kegiatan proses maupun hasil yang dilakukan ketika memecahkan suatu masalah. Sehingga akan menjadi cerminan untuk selanjutnya agar melakukan strategi yang lebih baik lagi.

Tabel Indikator Problem Solving

Jika disusun dalam tabel indikator seperti layaknya indikator-indikator lainnya dalam bidang pendidikan, maka indikator penyelesaian masalah dapat dijabarkan sebagai berikut.

Sumber: Tawil & Liliasari, (2013, hlm. 93)

Faktor-Faktor yang Mempengaruhi Kemampuan Problem Solving

Menurut Kartika,(2017, hlm. 327) faktor-faktor yang mempengaruhi kemampuan pemecahan masalah adalah sebagai berikut.

  • Pengalaman Pengalaman terhadap tugas-tugas menyelesaikan soal wacana atau soal aplikasi. Pengalaman awal seperti ketakutan terhadap biolohi dapat menghambat kemampuan siswa dalam memecahkan masalah.
  • Motivasi Dorongan yang kuat dari dalam diri seperti menumbuhkan keyakinan bahwa dirinya bisa, maupun dorongan dari luar diri (eksternal) seperti diberikan soal-soal yang menarik, menantang dapat mempengaruhi hasil pemecahan masalah.
  • Kemampuan memahami masalah Kemampuan siswa terhadap konsep-konsep soal, tugas, atau permasalahan nyata yang berbeda-beda tingkatnya dapat memicu perbedaan kemampuan siswa dalam memecahkan masalah.
  • Keterampilan Keterampilan adalah kemampuan untuk menggunakan akal, pikiran, ide dan kreativitas dalam mengerjakan, mengubah ataupun membuat sesuatu menjadi lebih bermakna sehingga menghasilkan sebuah nilai dari hasil pekerjaan tersebut. keterampilan tersebut pada dasarnya akan lebih baik bila terus diasah dan dilatih untuk menaikkan kemampuan sehingga akan menjadi ahli atau menguasai dari salah satu bidang keterampilan yang ada.
  • Kemandirian Kemandirian adalah kemampuan seseorang untuk melakukan suatu hal apapun sendiri, tidak bergantung pada orang lain. Sikap mandiri dapat membuat seseorang mampu menghadapi masalah yang ada. Sebaliknya, seseorang yang tidak memiliki sikap mandiri, dia tidak mampu menghadapi jika ada masalah.
  • Kepercayaan diri Kepercayaan diri akan memperkuat motivasi mencapai keberhasilan, karena semakin tinggi kepercayaan terhadap kemampuan diri sendiri, semakin kuat pula semangat untuk menyelesaikan pekerjaannya.

Langkah-langkah Problem Solving

Langkah-langkah yang dapat dilakukan dalam melakukan penyelesaian masalah adalah sebagai berikut.

  • Memahami Masalah Langkah ini sangat menekankan kesuksesan memperoleh solusi masalah. Langkah ini melibatkan pendalaman situasi masalah, melakukan pemilahan fakta – fakta menentukan hubungan di antara fakta-fakta dan membuat formulasi pertanyaan masalah. Setiap masalah yang ditulis, bahkan yang paling mudah sekalipun harus dibaca berulang kali dan informasi yang terdapat dalam masalah dipelajari dengan seksama. Biasanya siswa harus menyatakan kembali masalah dalam bahasanya sendiri.
  • Membuat Rencana Pemecahan Masalahi Langkah ini perlu dilakukan dengan percaya diri ketika masalah sudah dapat dipahami. Rencana solusi dibangun dengan mempertimbangkan struktur masalah dan pertanyaan yang harus dijawab. Jika masalah tersebut adalah masalah rutin dengan tugas menulis kalimat matematika terbuka, maka perlu dilakukan penerjemah masalah menjadi bahasa matematika. Jika masalah yang dihadapi adalah masalah nonrutin, maka suatu rencana perlu dibuat, bahkan kadang strategi baru perlu digambarkan.
  • Melaksanakan Rencana Pemecahan Masalahi Untuk mencari solusi yang tepat, rencana yang sudah dibuat dalam langkah harus dilaksanakan dengan hati-hati. Untuk melalui, estimasi solusi yang dibuat sangat perlu. Diagram, tabel, atau urutan dibangun secara seksama sehingga si pemecah masalah tidak akan bingung. Tabel digunakan jika perlu. Jika solusi memerlukan komputasi, kebanyakan individu akan menggunakan kalkulator untuk menghitung daripada menghitung dengan kertas dan pensil dan mengurangi kekhawatiran yang sering terjadi dalam pemecahan masalah. Jika muncul ketidakkonsistenan ketika melaksanakan rencana, proses harus ditelaah ulang untuk mencari sumber kesulitan masalah.
  • Melihat (mengecek) Kembali Selama langkah ini berlangsung, solusi masalah harus dipertimbangkan. Perhitungan harus dicek kembali. Melakukan pengecekan dapat melibatkan pemecahan yang menentukan akurasi dari komputasi dengan menghitung ulang. Jika membuat estimasi, maka bandingkan dengan solusi. Solusi harus tetap cocok terhadap akar masalah meskipun kelihatan tidak beralasan. Bagian penting dari langkah ini adalah ekstensi. Ini melibatkan pencarian alternatif pemecahan masalah.
  • Handayani, Kartika. (2017). Analisis faktor-faktor yang mempengaruhi kemampuan pemecahan masalah soal cerita matematika. SEMNASTIKA 2017, 06 May 2017, Medan.
  • Khoiriyah, A. J., & Husamah, H. (2018). Problem-based learning: creative thinking skills, problem-solving skills, and learning outcome of seventh grade students. Jurnal Pendidikan Biologi Indonesia, 4(2), 151–160. https://doi.org/10.22219/jpbi.v4i2.5804
  • Made, W. (2016). Strategi Pembelajaran Inovatif Kontemporer. PT Bumi Aksara.
  • Mawaddah, Siti. (2015). Kemampuan pemecahan masalah matematika siswa pada pembelajaran matematika dengan menggunakan pembelajaran genaratif (generative learning ) di smp. Jurnal Pendidikan Matematika, 3 (2)
  • Tawil, M. & Liliasari. (2013). Berpikir Kompleks. Makassar: Badan Penerbit Universitas Makassar.
  • Uno, Hamzah. 2014. Model pembelajaran menciptakan proses belajar mengajar yang kreatif dan efektif. cetakan ke-10. Jakarta: Bumi Aksara.

Artikel Terkait

Tinggalkan komentar, batalkan balasan.

Alamat email Anda tidak akan dipublikasikan. Ruas yang wajib ditandai *

Simpan nama, email, dan situs web saya pada peramban ini untuk komentar saya berikutnya.

Beritahu saya akan tindak lanjut komentar melalui surel.

Beritahu saya akan tulisan baru melalui surel.

Notes on personal journey in learning and teaching about my passionate subjects

Prinsip Dasar Memecahkan Masalah

  • Business Development
  • Problem Solving and Decision Making

Prinsip Dasar Memecahkan Masalah (Problem Solving)

  • Posted by by Arry Rahmawan
  • September 13, 2020

Pada kesempatan kali ini izinkan saya untuk menulis tentang prinsip dasar memecahkan masalah atau problem solving . Ketika artikel ini saya tulis, media-media informasi sedang ramai membahas isu diberlakukannya kembali PSBB di Jakarta karena kembali meningkatnya kasus COVID-19. Di satu sisi ada banyak pihak yang mendukung, namun tidak sedikit juga pihak yang menolaknya. Pihak yang mendukung mengatakan PSBB total akan sangat bermanfaat untuk menurunkan kasus COVID-19, di sisi lain pihak yang menolak mengatakan bahwa PSBB total di Jakarta akan mematikan roda perekonomian dan membuat Indonesia semakin terjerumus ke jurang resesi. Semenjak diumumkan kasus perdana sejak Bulan Maret, total pertumbuhan kasus aktif COVID-19 tidak juga kunjung turun – bahkan naik.

Kasus di atas adalah sebuah kasus riil dari perlunya seseorang memiliki kemampuan  complex problem solving,  atau pemecahan masalah yang kompleks di tingkat negara atau kebijakan. Conn dan McLean (2018) mengungkapkan bahwa  complex problem solving, critical thinking,  dan  creativity  adalah 3 keterampilan terpenting untuk dikuasai di tahun 2020 dan sampai beberapa dekade setelahnya. Saat saya mengajar mata kuliah pengantar kewirausahaan teknologi di Departemen Teknik Industri UI , saya selalu menekankan 3 hal ini kepada mahasiswa, dan mereka banyak saya berikan latihan agar terasah dalam memecahkan masalah, berpikir kritis, dan juga menjadi mahasiswa solutif.

Mengenal Apa Itu Masalah

Lalu, apa itu   problem solving?  Pertama mari kita pahami dulu apa itu masalah.

Apakah Anda tahu, apa yang dimaksud dengan masalah?

Saya yakin selama ini Anda memiliki banyak masalah dalam hidup (begitu juga saya). Tentu kita ingin semua masalah yang ada di hidup kita bisa diselesaikan dengan cepat. Namun, bagaimana kita bisa menyelesaikan masalah, jika kita tidak tahu apa itu masalah (ga bingung kan, hehe)?

Collins Dictionary, mengartikan masalah adalah kondisi yang tidak sesuai dengan yang diharapkan, menyebabkan kesulitan dalam menjalani hidup. Berdasarkan definisi ini, kita tahu bahwa masalah itu adalah adanya  gap  antara “Realita” dan hal “Ideal” yang ingin kita capai.

Sebagai mahasiswa, Anda pasti pernah mengalami ada mata kuliah atau mata pelajaran yang Anda susah sekali mengikutinya. Dosen sudah memberikan batas bawah kelas yaitu Anda harus dapat 60 di ujian. Tapi setelah ikut nilai Anda 40, sehingga Anda tidak lulus. Ada ‘jarak’ antara realita (Anda dapat 40) dan nilai ideal untuk Anda lulus (minimal 60), yang kalau jarak ini tidak dipecahkan Anda tidak lulus dan harus mengulang lagi mata kuliah tersebut di tahun berikutnya.

Upaya Anda untuk menaikkan nilai Anda dari 40 menjadi lebih dari 60 (let’s say, 80) adalah bentuk sederhana dari problem solving.

Mengenal prinsip dasar memecahkan masalah ( problem solving )

Lalu, apa saja prinsip – prinsip yang perlu Anda ketahui dalam memecahkan masalah? Watanabe (2009) dalam bukunya 101 Problem Solving, memetakan ada 4 langkah dasar yang merupakan prinsip problem solving. 4 langkah dasar tersebut dijelaskan di gambar berikut ini,

Prinsip Dasar Memecahkan Masalah

Saya menggunakan model yang diajukan Watanabe (2009) karena simpel dan juga konsisten dengan beragam literatur lain tentang pemecahan masalah. Intinya, ada 4 hal yang wajib kita lakukan jika kita ingin memecahkan masalah:

1. Memahami situasi atau mendefinisikan masalah dengan baik (understand the situation )

Banyak orang yang tidak bisa memecahkan masalah karena tidak bisa mendefinisikan masalah yang dihadapi dengan baik. Misalnya, “Saya tidak bisa mendapatkan nilai 80 di kelas karena saya tidak punya teman diskusi selama PSBB.”

Mengapa definisi masalah tersebut kurang bagus? Ya, karena definisi masalah tersebut sudah mengandung solusi. Jika masalahnya seperti itu, maka kita tinggal langsung saja cari teman diskusi. Nah, tapi apakah dengan punya teman diskusi nilai kita langsung naik jadi 80? Belum tentu.

Lalu, bagaimana mendefinisikan masalah dengan lebih baik?

Contohnya seperti ini, “Saat ini saya mendapat nilai 40 di mata kuliah X dan saya menargetkan untuk mendapatkan nilai 80 di ujian berikutnya. Hal ini harus saya capai, karena jika di bawah 60 saya harus mengulang kelas lagi yang akan menghabiskan uang sebesar Rpxxxxx dan waktu sebanyak xxxxx jam yang saya miliki.”

Dengan menggunakan definisi masalah tersebut, Anda pun jadi sadar bagaimana kondisi Anda saat ini, apa yang ingin Anda raih, dan apa dampak yang muncul jika Anda tidak meraihnya. Sampai sini paham? Jika kurang paham bisa bertanya di kotak komentar :).

Satu contoh lagi: “Saat ini saya punya hutang satu juta ke X, dan harus mengembalikannya di tanggal 25 September 2020. Jika tidak mengembalikannya, saya akan ditagih dan kepercayaan orang kepada saya menjadi hilang.”

Nah, jika masih belum paham boleh ditanyakan di kotak komentar.

2.  Mengidentifikasi akar penyebabnya (identify the root cause of the problem )

Setelah mendefinisikan masalah, baru kita mencari apa akar penyebab dari masalah kita. Teknik paling mudah adalah dengan menggunakan teknik “5 Why”. Teknik ini adalah dengan bertanya kepada diri kita terkait dengan mengapa kita bisa mendapat nilai jelek, misalnya.

Why 1: Mengapa saya mendapat nilai 40 di ujian matematika? Karena saya banyak salah di konsep geometri

Why 2: Kenapa banyak salah konsep di geometri? Karena saya tidak mempelajarinya dengan sungguh – sungguh

Why 3: Kenapa saya tidak belajar geometri sungguh – sungguh? Karena saya tidak menyukai bagian tersebut

Why 4: Kenapa saya tidak suka? Karena saya tidak tahu apa hubungan geometri dengan cita – cita saya

Why 5: Kenapa saya tidak tahu hubungan geometri dengan cita – cita saya? Karena saya tidak mencari tahu informasi terkait hal itu

Ternyata di sini ‘akar’ masalahnya bukan semata – mata kita tidak suka dengan bagian geometri, tetapi juga kita tidak termotivasi untuk mempelajarinya karena tidak tahu apa manfaatnya. Dengan teknik 5 why ini, kita jadi tahu apa akar masalahnya dan bisa merumuskan alternatif solusi dengan baik.

3.  Memilih dan membuat action plan  (Development of an effective action plan)

Jika sudah dari fase 2, maka fase berikutnya adalah berpikir kreatif dan kritis terhadap alternatif solusi yang mungkin dilakukan. Sebagai contoh:

  • Mencari tahu apa manfaat ilmu geometri dalam kehidupan sehari – hari (Googling)
  • Menonton film atau movie terkait dengan pentingnya ilmu geometri
  • Belajar geometri dengan bantuan video dari internet
  • Mengajarkan geometri ke orang lain secara online

Silakan tuliskan alternatif solusi sebanyak – banyaknya dalam fase ini. Kemudian pilih mana yang sekiranya paling efektif untuk menyelesaikan masalah tersebut dengan penggunaan sumber daya yang paling sedikit (hemat waktu dan biaya yang dikeluarkan).

4. Eksekusi solusi secara total, perbaiki jika tidak efektif (Execute and modify, until it is solved)

Jika sudah yakin dengan suatu solusi, maka tahap berikutnya adalah eksekusi secara total. Namun perlu diingat bahwa solusi yang kita terapkan perlu dimonitor dan dievaluasi, apakah sudah efektif? Jika belum, maka kita cari alternatif solusi lain yang lebih efektif dan efisien (hal ini dinamakan iterasi).

Bagaimana jika strateginya sudah efektif dan kita dapat nilai sesuai dengan apa yang ditargetkan? Maka kita tingkatkan target yang lebih tinggi, misal mencapai nilai 100. Hal ini dinamakan dengan  improvement,  dan akan terus seperti itu secara kontinu.

Nah, sampai sini Anda sudah belajar tentang prinsip – prinsip dalam pemecahan masalah, dan juga beberapa tekniknya. Sekarang kita akan membahas apakah prinsip ini bisa dipakai oleh pengambil kebijakan di tengah pandemi COVID-19?

Problem-Solving dan COVID-19

Ilmu problem solving sebenarnya sangat simpel. Kenapa pemerintah atau instansi terkait tidak bisa efektif menyelesaikan masalah COVID-19? Apa mereka tidak menggunakan prinsip ini?

Saya yakin banyak pakar yang menjadi tim ahli di pemerintah dan mereka jauh lebih tahu daripada saya terkait bagaimana penanganan COVID-19 ini.

Satu hal yang perlu dipahami masyarakat adalah, problem solving untuk tatanan negara itu memiliki tingkat kerumitan yang sangat tinggi. Tingkat kerumitannya ada di sifat masalahnya itu sendiri yaitu  multiple problems, actors, interests, uncertainties. 

Multiple problems , di mana masalahnya ada banyak dan multi dimensi. COVID-19 tidak hanya tentang kesehatan, tapi juga ekonomi, sosial, transportasi, dan lain sebagainya. Multiple actors , yaitu masalahnya dimiliki oleh pihak yang beragam, mulai dari presiden, menteri, pemprov, tenaga kesehatan, dan lainnya. Multiple interests , yaitu masalahnya aktor tersebut memiliki kepentingan yang berbeda-beda. Ada yang interestnya menyelamatkan rakyat, dengan mengurangi mortality rate, ada yang interestnya mendapatkan keuntungan, dsb Multiple uncertainties ,  yaitu ketidakpastian yang menghadang di masa depan macam – macam, mulai dari kemunculan virus baru, perilaku masyarakat yang tiba – tiba susah diatur, di luar kapasitas dari pemerintah sebagai pengambil kebijakan. Multiple rationalities ,  yaitu setiap aktor yang terlibat memiliki rasionalitas yang berbeda dalam memandang masalah. Ada yang dia berbasis pada data karena suka membaca, ada yang berbasis pada bisikan karena dia minta tolong dibacakan staf ahli, dan ada yang berbasis intuisi karena dia sudah merasa berpengalaman menangani hal – hal tersebut di masa lalu.

Kelima faktor itu masing – masing saling terkoneksi satu sama lain, menyebabkan masalah megakompleks yang sedang dihadapi oleh Indonesia saat ini. Jujur kadang saya seringkali gemas dengan netizen sok tahu yang menggampangkan cara pengambilan keputusan di tingkat wilayah atau nasional yang mega kompleks ini, padahal cara pengambilan kebijakan di negara tidak sesederhana menyelesaikan masalah Anda mau masuk kampus mana dan memilih jurusan apa untuk melanjutkan studi.

Namun, berkaca dari prinsip problem solving yang saya jelaskan tadi, saya jadi kepikiran satu hal. Apakah carut marutnya penanganan COVID-19 di Indonesia karena kita tidak memiliki atau tidak tahu apa masalah yang kita hadapi sebagai suatu bangsa? Apakah belum ada definisi masalah yang jelas (fase 1) yang bisa disepakati oleh satu bangsa untuk kita perjuangkan bersama menyelesaikan masalah tersebut?

Apakah kita bisa memiliki satu atau  single problem statement,  yang mana itu menjadi masalah yang kita harus selesaikan bersama sebagai satu bangsa? Jadi apapun peran kita di negara saat ini, single problem statement  tersebut mewakili semua kepentingan kita, sehingga kita berfokus saja untuk menyelesaikan masalah itu agar Indonesia bisa menyelesaikan penanganan COVID-19 dengan lebih baik.

Jika belum ada dan tidak mencoba ditemukan, maka Indonesia dalam kondisi saat ini belum melewati fase 1 dari tahap penyelesaian masalah dan buat saya itu mengerikan.

Jika ada yang bisa merumuskannya, saya yakin Anda akan sangat berjasa kepada negara karena besar kemungkinan Anda dapat mempersatukan bangsa.

Semoga artikel ini bisa sedikit membuka jalan agar kita bisa menjadi seorang pengambil keputusan yang lebih bijaksana.

Salam, Arry Rahmawan

' src=

Arry Rahmawan

Arry Rahmawan adalah seorang pembelajar yang memiliki ketertarikan dalam mempelajari ilmu tentang produktivitas hidup, entrepreneurship, dan pengembangan bisnis. Sejak tahun 2012, Arry rutin menulis dan membuat konten terkait tiga topik tersebut di blog ini. Arry menamatkan pendidikan S1 dan S2 nya di Departemen Teknik Industri, Universitas Indonesia dan menjadi dosen tetap non-PNS di Departemen yang sama sejak tahun 2016. Untuk meningkatkan kapasitas keilmuannya, Arry banyak mengambil sertifikasi, workshop, course, dan mentorship dari berbagai institusi kelas dunia. Selain aktif mengajar di UI dan beberapa kampus di Indonesia, Arry juga berpengalaman menjadi konsultan, trainer, dan coach independen untuk ketiga topik yang diminatinya tersebut. Klien yang sudah ditanganinya sangat beragam, mulai dari instansi pemerintahan, kementerian, BUMN, korporasi/swasta, lembaga pendidikan, serta lembaga non-profit. Saat ini Arry berdomisili di Belanda dalam rangka tugas belajar di Delft University of Technology, Faculty of Technology, Policy, and Management. Untuk menghubunginya, silakan kontak melalui direct message LinkedIn atau Instagram

Post navigation

Mengenal value proposition canvas untuk entrepreneur pemula, seminar sekolah kepemimpinan universitas pembangunan nasional (upn) veteran jakarta bersama arry rahmawan, leave a reply cancel reply.

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

3 Langkah Melatih Berpikir Inovatif

  • October 19, 2012
  • 2 minute read

04 Mar 2022

Apa itu problem solving manfaat dan penerapannya.

Artikel - FAS,

Artikel - FET,

Artikel - FOB,

Artikel - FOE,

 alt=

Masalah dapat didefinisikan sebagai situasi atau tantangan yang memerlukan tindakan atau pemecahan untuk mencapai tujuan yang diinginkan. Dalam hal ini, masalah dapat didefinisikan sebagai proses kognitif yang melibatkan identifikasi, pemahaman, dan penyelesaian suatu masalah.

Proses penyelesaian masalah dimulai dengan pengenalan masalah, kemudian analisis masalah untuk mengetahui penyebabnya dan solusi yang mungkin. Setelah itu, langkah-langkah konkret diambil untuk menerapkan solusi tersebut, dan hasilnya dievaluasi untuk memastikan bahwa masalah telah diselesaikan secara efektif.

Dalam penyelesaian masalah, berbagai keterampilan dapat diperlukan, termasuk kreativitas, pemikiran kritis, pengambilan keputusan, dan kemampuan untuk membangun dan menguji solusi. Ini adalah proses penting dalam kehidupan sehari-hari, baik dalam konteks profesional maupun pribadi. Kemampuan untuk mengatasi masalah dengan efektif dapat membantu seseorang mengatasi masalah, mencapai tujuan, dan membuat keputusan yang lebih baik.

Bagaimana Proses Problem Solving Terjadi?

Untuk mengatasi masalah atau situasi tantangan, seringkali seseorang menggunakan proses penyelesaian masalah. Pada tahap pertama, masalah diidentifikasi. Ini berarti masalah dikenali dengan jelas. Setelah itu, analisis masalah dilakukan untuk memahami sumber masalah, serta akibatnya. 

Pada tahap ketiga, ide kreatif digunakan untuk menghasilkan berbagai alternatif solusi. Setelah itu, evaluasi solusi dilakukan untuk menentukan solusi terbaik berdasarkan hasilnya. Tahap berikutnya adalah menerapkan solusi melalui rencana tindakan yang jelas, dan terakhir, evaluasi hasilnya. 

Proses penyelesaian masalah membantu orang mengatasi masalah dengan cara yang terorganisir dan efektif, menghasilkan solusi yang lebih baik, dan membuat keputusan yang lebih baik.

Manfaat Problem Solving

Manfaat Problem Solving

Delapan berikut adalah manfaat utama dari memiliki kemampuan menyelesaikan masalah yang perlu kamu tau:

1. Peningkatan Kemampuan Pemecahan Masalah  

Manfaat utama problem solving adalah kemampuan untuk mengatasi masalah dengan lebih efektif. Seseorang yang telah memiliki kemampuan pemecahan masalah akan dapat menghadapi tantangan dengan lebih percaya diri, mencari solusi yang lebih baik, dan mengurangi tingkat stres yang dihadapi ketika menghadapi masalah.

2. Meningkatkan Kemampuan Pengambilan Keputusan

Proses analisis dan evaluasi yang dikenal sebagai penyelesaian masalah membantu orang membuat keputusan yang lebih baik dalam kehidupan pribadi dan profesional, seperti memilih karir, investasi, atau keputusan-keputusan penting lain dalam hidup.

3. Meningkatkan Kreativitas 

Saat menghadapi masalah, seseorang seringkali harus berpikir kreatif untuk menemukan cara baru untuk menyelesaikannya. Hal ini dapat membantu meningkatkan kemampuan kreatif dan inovasi.

4. Meningkatkan Komunikasi 

Untuk meningkatkan kemampuan komunikasi interpersonal, penyelesaian masalah sering melibatkan kerja tim, di mana orang harus berkomunikasi dan bekerja sama dengan orang lain.

5. Meningkatkan Produktivitas

Dengan memecahkan masalah secara efektif, individu dan kelompok dapat meningkatkan produktivitas dan efisiensi, yang berkontribusi pada pencapaian tujuan dan hasil yang diinginkan.

6. Meningkatkan Kepercayaan Diri 

Mengatasi masalah dengan sukses dapat meningkatkan kepercayaan diri seseorang. Ini karena mereka sadar bahwa mereka memiliki kemampuan untuk menghadapi tantangan.

7. Pengembangan Karier

Dalam konteks karir, kemampuan pemecahan masalah sangat dihargai. Orang yang memiliki kemampuan pemecahan masalah yang baik memiliki kemungkinan lebih besar untuk mencapai kesuksesan di tempat kerja.

8. Meningkatkan Kualitas Hidup 

Kemampuan menyelesaikan masalah dapat meningkatkan kualitas hidup seseorang. Ini karena kemampuan pemecahan masalah memungkinkan orang untuk mengatasi masalah yang mungkin menghalangi mereka dari mencapai tujuan dan kebahagiaan pribadi mereka.

Oleh karena itu, mempelajari kemampuan menyelesaikan masalah adalah langkah yang bagus untuk membangun diri sendiri dan meningkatkan kualitas hidup secara keseluruhan.

Penerapan Problem Solving di Kehidupan

Dalam kehidupan sehari-hari, memecahkan masalah berarti mengatasi berbagai situasi dan masalah. Pertama-tama, penting untuk mengidentifikasi masalah dengan jelas. Ini berarti merumuskan masalah dengan tepat, menemukan sumbernya, dan memahami bagaimana masalah tersebut akan mempengaruhi kehidupan kita. Misalnya, beban kerja yang berlebihan adalah masalah jika seseorang mengalami stres karena terlalu banyak tugas yang harus mereka selesaikan.

Analisis dilakukan setelah masalah ditemukan. Ini mencakup mengumpulkan informasi, memikirkan solusi yang mungkin, dan memahami akibat dari setiap solusi. Orang mungkin perlu mempertimbangkan contoh di atas atau meminta bantuan rekan kerja.

Selanjutnya, langkah ketiga adalah membuat dan menerapkan solusi. Ini mencakup membuat rencana tindakan yang jelas, mengambil tindakan konkrit untuk mengatasi masalah, dan dengan konsisten mengikuti rencana tersebut. Mengatur prioritas tugas, menggunakan alat manajemen waktu, atau berbicara dengan atasan tentang cara memberikan tugas yang lebih seimbang adalah beberapa solusi untuk beban kerja yang berlebihan.

Terakhir, refleksi dan evaluasi adalah langkah penting dalam menyelesaikan masalah. Setelah penerapan solusi, sangat penting untuk menilai apakah masalah telah diselesaikan dengan baik dan apakah solusi itu efektif. Jika hasil yang diinginkan belum dicapai, orang harus siap untuk merevisi rencana dan mencari solusi yang lebih baik atau perbaikan.

Problem solving membantu orang mengatasi masalah dengan lebih baik, mengurangi stres, meningkatkan kualitas hidup, dan membuat keputusan yang lebih baik. Ini juga membantu mereka tumbuh dalam keterampilan penting yang mereka miliki secara pribadi dan profesional. Problem solving dapat menjadi alat yang kuat untuk menghadapi masalah dalam kehidupan sehari-hari jika dilakukan dengan cara yang sistematis dan berpikir kritis.

Sampoerna University

Sampoerna University adalah sebuah universitas terakreditasi penuh di Indonesia yang menawarkan pilihan terbaik bagi mereka yang mencari pendidikan internasional unggul. Kami adalah universitas swasta, non-denominasi, nirlaba yang berlisensi dan terakreditasi oleh Kementerian Pendidikan, Kebudayaan, Riset, dan Teknologi Republik Indonesia. 

Sampoerna University menawarkan berbagai program sarjana dan magister di bidang-bidang seperti bisnis , teknologi informasi , kreativitas dan desain , serta studi kelas dunia. Universitas ini menempatkan fokus pada pendekatan pembelajaran yang inovatif dan berorientasi pada industri, dengan tujuan untuk mempersiapkan mahasiswa berhasil dalam karir mereka.

Kami berkomitmen untuk menyediakan lingkungan pembelajaran yang inklusif dan mendukung bagi mahasiswa, dengan dukungan fasilitas modern dan fakultas yang berkualitas. Kami juga memberikan beasiswa dan program bantuan keuangan untuk mendukung aksesibilitas pendidikan bagi mahasiswa berprestasi.

Dalam beberapa tahun sejak didirikan, Sampoerna University telah menjadi pilihan pendidikan tinggi yang menarik bagi calon mahasiswa di Indonesia. Dengan pendekatan pembelajaran yang inovatif, koneksi industri yang kuat, dan fokus pada pengembangan karir, kami memiliki tujuan untuk menghasilkan lulusan yang siap menghadapi tantangan dunia kerja.

Segera daftar untuk ikut proses penerimaan mahasiswa baru tahun ajaran 2023-2024 disini . Admission Team kami akan segera menghubungi untuk memberi informasi lebih detail.

Jadwalkan dengan kami kapanpun kamu ingin visit tour kampus on-site atau virtual!

Recent Post

Featured Image

Mengenal Jurusan Teknik Industri & Prospek Kerjanya

Featured Image

Mengenal Jurusan Teknik Sistem Informasi & Prospek Kerjanya di Era Digital

Featured Image

Mengenal Jurusan Desain Komunikasi Visual (DKV) & Prospek Kerjanya

Share This Article

Recent More

Mengenal Metode Waterfall, Pengertian dan Tahapan

Apr, 05 2024

Mengenal Jurusan Teknik Industri & Prospek Kerjanya - Teknik Industri merupakan jurusan multidisiplin yang...

Mengenal Jurusan Teknik Sistem Informasi & Prospek Kerjanya di Era Digital - Sampoerna University

Jurusan Teknik Sistem Informasi - Salah satu jurusan yang memiliki peran yang makin penting...

Mengenal Jurusan Desain Komunikasi Visual (DKV) & Prospek Kerjanya - Sampoerna University

Jurusan Desain Komunikasi Visual (DKV) - Bagi kamu yang memiliki jiwa seni dan senang...

  • DailySocial TV
  • Selasa Startup
  • Privacy & Policy
  • Term of Services

Logo Biznet

Copyright©2020. PT Digital Startup Nusantara

Artificial Intelligence

Funding News

Founders Tips

New Economy

Tips & Trick

ENTERTAINMENT

  • Terms of Services
  • Tjufoo <> Sinbad
  • Starventure
  • XL Axiata <> Smartfren
  • E-BOOK 1 MILIAR PERTAMA
  • Mandiri Capital
  • FINTECH LENDING REPORT

Problem Solving: Pengertian, Proses, dan Metodenya

Problem solving adalah proses penyelesaian suatu masalah.

Tiffany Revita - 24 February 2023

Copy link Link copied!

Problem solving merupakan salah satu skill penting yang diperlukan dalam dunia kerja. Pasalnya, problem solving berkaitan erat dengan kemampuan seseorang untuk memecahkan masalah dan menemukan solusi terbaik sebagai bentuk penyelesaiannya.

Namun, problem solving tidak hanya berguna untuk diterapkan dalam hal pekerjaan saja, tetapi juga dapat digunakan untuk memecahkan suatu masalah dalam kehidupan sehari-hari. Lantas, bagaimana prosesnya dan seperti apa metode yang digunakannya?

Simak penjelasan selengkapnya dalam artikel ini!

Apa Itu Problem Solving ?

Pada dasarnya, problem solving adalah sebuah cara untuk menemukan solusi dari sebuah masalah. Menurut Oemar Hamalik, problem solving merupakan suatu proses mental dan intelektual dalam menemukan masalah.

Kemampuan ini berkaitan dengan berbagai hal, seperti kemampuan mendengar, menganalisa, meneliti, kreativitas, komunikasi, kerja tim, hingga pengambilan keputusan. Tujuannya, agar sebuah masalah dapat dipecahkan secara efektif berdasarkan data serta informasi yang akurat.

Proses Problem Solving

Dalam prosesnya, ada empat tahapan dasar problem solving , yakni:

1. Mengidentifikasi Masalah

Langkah pertama dalam proses problem solving adalah mendefinisikan sebuah masalah berdasarkan gejala yang ada. Pasalnya, sebuah masalah biasanya dipengaruhi oleh berbagai faktor.

Faktor-faktor tersebut harus diuraikan terlebih dahulu dengan cara identifikasi agar penyelesainnya dapat dilakukan dengan baik.

2. Menemukan Solusi Terbaik

Problem solving bertujuan untuk menemukan solusi terbaik atas sebuah masalah. Untuk mendapatkan hal tersebut, diperlukan pemahaman yang mendalam mengenai masalah tersebut agar dapat terselesaikan secara efektif.

3. Melakukan Evaluasi

Evaluasi merupakan tahap paling akhir dalam proses problem solving . Dalam tahap ini, solusi yang sudah diputuskan sebelumnya dapat diterapkan. Namun, hal tersebut tidak hanya sampai di situ saja, karena solusi tersebut juga harus ditindaklanjuti agar dapat menyelesaikan masalah secara menyeluruh.

Metode Problem Solving

1. brainstorming.

Brainstorming merupakan metode problem solving yang paling banyak digunakan oleh orang-orang. Pasalnya, metode ini efektif untuk digunakan sebagai pemecahan masalah melalui solusi kreatif.

Prosesnya adalah setiap orang harus menyampaikan ide-ide maupun pendapat yang kemudian dapat diolah menjadi satu solusi utama.

2. 6 Thinking Hats

Dalam metode ini, setiap orang akan mencoba memberikan penyelesaian terhadap suatu masalah dari beragam perspektif. Caranya adalah dengan mengelompokkan ide-ide yang ada ke dalam daftar pro-cons. Dengan begitu, kamu bisa melihat ide mana yang memiliki kelebihan yang paling banyak.

3. The 5 Whys

Metode ini dilakukan dengan cara meng-highlight masalah yang ingin dipecahkan. Kemudian, cari tahu jawaban mengenai “mengapa” masalah tersebut bisa terjadi sebanyak lima kali hingga kamu mendapatkan jawaban yang objektif tentang pertanyaanmu.

4. Lightning Decision Jam

Metode ini memungkinkanmu untuk menulis berbagai hal, mulai dari tantangan, kekhawatiran, hingga kesalahan dalam sebuah catatan kecil. Dengan hal tersebut, kamu bisa memilih masalah mana yang ingin diselesaikan terlebih dahulu dengan melihatnya dari sudut pandang baru. Dengan begitu, penyelesaian masalah dapat dilakukan secara tertatur.

5. Failure Mode and Effect Analysis

Terakhir, metode ini digunakan untuk menganalisis setiap elemen dari strategi bisnis serta kemungkinan-kemungkinan buruk yang akan terjadi. Dengan begitu, kamu bisa menemukan solusi dari masalahmu serta langkah preventif untuk mencegahnya secara lebih mudah.

Nah, itulah penjelasan mengenai problem solving . Dari penjelasan di atas, dapat diketahui bahwa problem solving merupakan kemampuan pemecahan masalah yang dilakukan dengan proses yang cukup panjang.

Tags: Problem Solving proses problem solving metode problem solving

RECOMMENDED COVERAGE

Cara dan Contoh Memperkenalkan diri saat Interview Kerja

Assessment: Pengertian, Jenis, Fungsi, Format, dan Manfaatnya dalam Era Modern

Cara Membuat Mind Map yang Efektif dan Mudah

Sign up for our newsletter

Review Order

Payment Details

Subscribe Monthly

Total Payment

By clicking the payment method button, you are read and agree to the terms and conditions of Dailysocial.id

 alt=

Check the box to Create your Account

Login to your account

Forgot Password?

To reset your password, please input email of your DailySocial.id account.

Reset Password

Reset link sent!

Thanks! You’ve been emailed a password reset link.

Create your account

Create Account

Check your email to verify!

If you didn’t receive an email in your inbox, check your spam folder.

We've emailed you a temporary password.

Stay connected with us and get full features in our platform. Community and Information can be fully open.

No, thank you.

Bagaimana meningkatkan kemampuan untuk menyelesaikan masalah kompleks ?

pemecahan masalah yang kompleks

Complex Problem Solving adalah kemampuan seseorang untuk mengidentifikasi masalah yang kompleks, serta mengerti dan mereview informasi yang berkaitan, agar dapat menciptakan solusi untuk masalah tersebut. Kemampuan ini sangat esensial di lingkup kerja.

Lalu, bagimana caranya seseorang dapat meningkatkan kemampuan mereka untuk hal ini ?

Kemampuan menyelesaikan masalah dapat ditingkatkan dengan berbagai cara, antara lain:

Mengidentifikasi Masalah Awal mula dari kemampuan seseorang untuk dapat menyelesaikan masalah adalah dengan mengidentifikasi asal-usul masalah tersebut, mencoba untuk menelaah dan kemudian merencanakan langkah-langkah yang tepat agar kita dapat menyelesaikan masalah tersebut. Dalam beberapa situasi, banyak mahasiswa merasa terbebani dengan masalah di depan mereka dan hanya melihat sebuah rintangan. Tetapi, pemecah masalah yang ulung akan mencoba untuk melihat sebuah masalah dari akarnya, yang dapat dipelajari dan kemudian dari situ kita dapat bertindak.

Albert Einstein pernah berkata bahwa perumusan dari sebuah masalah lebih krusial dari solusinya.

Menentukan Elemen Utama Masalah Langkah selanjutnya adalah kemampuan untuk mencacah masalah menjadi masalah yang lebih kecil dan lebih kecil lagi, dengan menentukan element utama sebuah masalah. Hal ini dapat mempermudah kerja kita, ketika dihadapi sebuah masalah yang ibaratnya gunung kita akan berfokus dengan bukit-bukit kecilnya terlebih dahulu. Ketika dihadapi dengan masalah yang lebih kecil kita dapat menentukan langkah-langkah kita untuk menyelesaikan masalah dengan benar sehingga kita bisa menciptakan solusi yang tepat.

Melihat Kemungkinan Solusi Menemukan solusi yang mungkin adalah langkah yang sangat rumit dalam proses pemecahan masalah, seperti pada permukaan, sepertinya sebagian besar pekerjaan sudah selesai dan tujuan akhirnya sudah dekat. Pada kenyataannya, siswa tidak boleh hanya mencari cara sederhana untuk mengatasi unsur-unsur masalah. Mereka harus menemukan cara yang paling efektif dan mengubahnya menjadi sebuah kesempatan untuk membuat sebuah kisah sukses yang kuat

Bertindak menyelesaikan masalah Mengembangkan rencana pelaksanaan langkah-demi-langkah dan bertindak secara efektif dan tegas adalah sentuhan terakhir dalam proses pemecahan masalah. Ini juga merupakan keterampilan penting karena tidak masalah seberapa efektif siswa mengidentifikasi masalah, menentukan elemennya dan memeriksa kemungkinan solusi; semuanya masih bermuara pada kemampuan untuk melakukan langkah konkret untuk melaksanakan rencana aksi. Dalam formula pemecahan masalah ini siswa juga harus menguasai keterampilan seperti memantau dan mengevaluasi keseluruhan proses pelaksanaan tindakan dan - jika itu adalah usaha kelompok - pelajari bagaimana mendelegasikan bagian-bagian tertentu dari pekerjaan satu sama lain atau kepada pemangku kepentingan eksternal.

Mencari pelajaran untuk dipelajari Pada saat masalah dipecahkan, saya menyarankan agar siswa duduk bersama semua pohon pemecahan masalah dan rencana tindakan mereka, baik sendiri atau bersama-sama jika itu adalah proyek kelompok. Inilah saatnya untuk melihat ke belakang dan melihat apakah ada kebutuhan untuk menyetel pekerjaan yang telah selesai. Yang sangat berharga adalah meluangkan waktu untuk mengevaluasi keseluruhan proses dan merumuskan pelajaran yang akan dipelajari sehingga proyek pemecahan masalah berikutnya akan lebih efektif dan menghasilkan solusi yang lebih

Selain dengan melakukan hal-hal yang berkaitan dengan penyelesaian masalah itu sendiri, kita bisa melakukan hal lain yang memepengaruhi kemampuan kita untuk menyelesaikan masalah. Antara lain adalah mendapat tidur yang cukup, melakukan kegiatan yang bersifat jasmani, bermain game puzzle atau yang berbasis logika, menggunakan mind-mapping untuk membantu memberi gambaran atas masalah, dan banyak hal lainnya. Hal-hal yang baru saja disebutkan mempengaruhi sisi psikologi dari seseorang, sehingga bisa memberi mereka jalan pikiran yang lebih terbuka dan kritis, sehingga mempermudah dalam penyelesaian masalah. Pikiran yang sehat dapat membantu kita.

Setiap hari kita dihadapkan dengan masalah yang harus dipecahkan. Masalah muncul dari berbagai hal. Mulai dari masalah yang kecil, masalah sehari-hari, bahkan masalah yang kompleks. Kemampuan untuk menyelesaikan masalah sangat diperlukan. Pemikiran analitis dan keterampilan memecahkan masalah adalah bagian dari kemampuan menyelesaikan masalah. Semakin banyak kita menyelesaikan masalah, semakin baik pula keterampilan kita dalam menyelesaikan masalah.

Dimanapun anda berada, keterampilan memecahankan masalah akan berguna untuk kehidupan sehari-hari. Anda akan dinilai berdasarkan kemampuan anda dalam memecahkan masalah. Pemecahan masalah sangat penting karena kita hidup di dunia yang penuh akan pilihan dan kita harus melakukan keputusan untuk dibuat. Lalu apa yang bisa kita lakukan untuk meningkatkan kemampuan memecahkan masalah?

Pemecahan masalah melibatkan metode dan keterampilan untuk menemukan solusi terbaik untuk menyelesaikan masalah. Kebanyakan orang berpikir bahwa anda harus sangat cerdas untuk menjadi pemecah masalah yang baik, tapi itu tidak benar. Anda tidak harus super pintar untuk menjadi pemecah masalah yang baik, anda hanya perlu banyak berlatih. Bila anda memahami berbagai langkah untuk memecahkan masalah, anda akan dapat menemukan solusi hebat.

1. Memahami Persoalan Tentukan masalah dan definisikan secara jelas. Jika anda tidak memahami persoalan dengan benar, bisa jadi solusi anda akan tidak efektif atau gagal sama sekali. Cobalah merumuskan pertanyaan. Dengan berulang kali mengajukan pertanyaan “mengapa” pada sebuah masalah, anda dapat menggali akar penyebab masalah dan memahami persoalan. Begitulah cara untuk bisa menemukan solusi terbaik dalam mengatasi masalah.

2. Tentukan tujuan dan kumpulkan informasi Seiring dengan menentukan masalah dan tujuan, anda harus mengumpulkan sebanyak mungkin fakta tentang masalah ini agar bisa mendapatkan gambaran yang jelas. Kumpulkan data, tanyakan kepada orang atau ahli yang terkait, carilah sumber daya secara online, cetak, atau di tempat lain. Begitu Anda memiliki data, aturlah. Cobalah untuk melakukan ini dengan cara memutar, mengkondensasi, atau meringkasnya. Mungkin Anda bahkan bisa memetakannya dalam grafik. Anda mungkin tidak perlu repot dengan langkah ini untuk masalah sederhana, tapi ini penting untuk sifat yang lebih kompleks.

3. Menganalisis informasi Selanjutnya adalah menganalisis informasi dari data yang telah dikumpulkan. Dari situ anda akan mencari hubungan dengan harapan bisa lebih memahami keseluruhan situasi. Mulailah dengan data mentah. Terkadang, informasi perlu dipecah menjadi bagian yang lebih kecil agar lebih mudah diatur. Alat seperti bagan, grafik, atau model sebab-akibat akan membantu untuk melakukan hal ini.

4. Sederhanakan dan Menyusun Rencana Buat daftar solusi yang memungkinan. Cobalah semua kemungkinan bahkan walaupun terdengar konyol pada awalnya. Penting bagi kita untuk tetap berpikir terbuka dan meningkatkan pemikiran kreatif yang dapat memicu solusi potensial. Gunakan beberapa strategi untuk membantu anda menghasilkan solusi, pecahkan masalah menjadi bagian – bagian kecil, gunakan analogi dan cobalah untuk menemukan kemiripan dengan masalah yang sebelumnya pernah dipecahkan. Jika anda menemukan kesamaan dengan situasi yang telah anda hadapi sebelumnya, anda mungkin bisa menyesuaikan beberapa solusi untuk digunakan sekarang.

5. Menerapkan dan Mengevaluasi Rencana Pilih dan evaluasi solusi. Anda juga harus menganalisis semua solusi untuk melihat konsekuensinya. Pilih solusi yang paling sesuai dengan kebutuhan anda. Setelah Anda memilih solusi terbaik, terapkan solusi, setelah anda menerapkan solusi, anda harus memantau dan meninjau hasilnya. Tanyakan pada diri anda apakah solusinya bekerja. Evaluasi dan sesuaikan solusi yang pas dengan kebutuhan.

Banyak orang percaya bahwa kamu harus pintar sekali untuk menjadi seorang pemecah masalah yang baik, tetapi itu salah. Ketika kamu mengerti tahap – tahap untuk memecahkan masalah, kamu dapat dengan mudah muncul dengan solusi yang hebat. Berikut cara untuk meningkatkan kemampuan memecahkan masalah.

1. Fokus kepada solusi, bukan masalahnya Ahli saraf sudah membuktikan bahwa otak kita tidak dapat mencari solusi jika kita fokus kepada masalah. Ini terjadi karena ketika kita fokus kepada masalah, kita memberi ‘makan’ otak energi negatif yang mengaktifkan emosi negatif di otak. Alih – alih memikirkan masalah, lebih baik yang kita lakukan adalah tenang. Tenang membantu kita untuk mengetahui masalahnya dan kemudian cari solusinya.

2. Biasakan gunakan 5 WHY Dengan mengulang – ulang menanyakan pertanyaan mengapa di dalam masalah, kita dapat menggali menuju akar dari permasalahan, dan itulah bagaimana kita dapat mencari solusi terbaik. Contoh:

Mengapa saya tidak bisa bangun pagi? Karena saya kurang tidur.

Mengapa saya kurang tidur? Karena saya begadang.

Mengapa saya begadang? Karena saya mengerjakan tugas sampai larut malam.

Mengapa saya mengerjakan tugas sampai larut malam? Karena saya menunda mengerjakan tugas

Mengapa saya menunda mengerjakan tugas? Karena saya terlalu banyak bermain game

Dari contoh diatas, kita dapat mengetahui akar permasalahannya yaitu terlalu banyak main game, sehingga untuk kedepannya kita harus bisa lebih mengatur waktu.

3. Menyerdehanakan segala sesuatu Sebagai manusia, tentu kita pernah membuat segala sesuatu menjadi rumit dan tentu saja itu akan sangat merepotkan. Mulai sekarang, cobalah untuk menyederhanakan masalah kita dengan cara mencari simpulan dari permasalahan itu. Mulailah dari awal, cobalah mencari solusi yang mudah. Dan mungkin hasilnya akan mengejutkan bagi kita.

4. Buatlah list solusi sebanyak mungkin Cobalah untuk membuat ‘Solusi Yang Mungkin Berhasil’ walaupun jika ada solusi yang terdengar aneh atau konyol. Penting sekali bagi kita untuk open mind untuk meningkatkan kreativitas. Apapun yang kita lakukan, jangan menertawakan diri sendiri karena menemukan ‘solusi bodoh’ karena sering kali gagasan gila itu bisa menjadi solusi yang lebih baik lagi.

5. Berpikir dari sisi lain Ada kalanya nanti kita herus berhadapan dengan jalan buntu, yang perlu kita lakukan adalah merubah arah berpikir kita dengan berpikir dari sisi lain. Cobalah untuk mencari jalan lain dan melihat masalah dari sisi lain. Kita bisa mencoba dengan membalik objektif sekitar kita dan melihat solusi baru. Mungkin jika ini terasa sangat bodoh, pemikiran yang baru dan unik biasanya merangsang solusi baru.

6. Gunakan kata – kata yang membuat kemungkinan Gunakan pemikiran anda dengan ungkapan – ungkapan seperti ‘bagaimana jika …’ dan ‘bayangkan jika …’ Istilah – istilah ini membuat otak kita berpikir lebih kreatif dan membuat kita memikirkan sebuah solusi. Hindari bahasa yang membuat kita berpikir negatif seperti ‘Saya tidak berpikir …’ atau ‘Ini tidak benar tapi …’.

Cobalah mulai sekarang untuk tidak melihat masalah sebagai sesuatu yang mengerikan. Semua masalah berkata kepada kita bahwa ada sesuatu yang tidak berjalan dengan lancar dan yang kamu harus lakukan adalah mencari jalan baru. Jadi coba dan dekati masalah tanpa ada pertimbangan. Berlatihlah fokus dalam mendefinisikan masalah, tetap tenang dan jangan membuat masalah semakin rumit.

Sumber : 6 Ways to Enhance Your Problem Solving Skills Effectively - Lifehack

Uptown Serviced Office

  • Plaza Mutiara
  • Private Office
  • Capsule Office
  • Dedicated Desk
  • Co-Working Space
  • Virtual Office
  • Event Space
  • Meeting Room

BOOK A TOUR

id

10 Future Skills Yang Harus Dimiliki Generasi Milenial Indonesia

complex problem solving adalah

Perkembangan teknologi dan pandemi yang menghantam bumi di tahun 2020 tidak hanya memunculkan tantangan baru namun juga banyak peluang baru yang bisa diolah. Dalam hal ini, seharusnya para milenial sebagai generasi penerus bangsa harus mampu melihat peluang dan menjalankannya agar kehidupan mereka menjadi lebih baik. Adapun untuk bisa menunjang tantangan tersebut, The World Economic Forum belum lama ini mengeluarkan sebuah laporan mengenai kebutuhan skill manusia di tahun 2021. Berdasarkan laporan tersebut, kita dapat mengetahui skill apa aja sih yang paling dibutuhkan di tahun 2021. Mau tau apa aja? Berikut ini adalah 10 future skills yang harus dimiliki generasi milenial Indonesia agar mampu melewati revolusi industry 4.0. Yuk simak liputan selengkapnya dibawah ini.

10 Future skills yang harus dimiliki generasi milenial Indonesia

1. complex problem solving.

Complex Problem Solving adalah keterampilan paling penting pertama yang harus dimiliki oleh generasi milenial di tahun 2021. Menurut laporan World Economic Forum (WEF), 36% dari semua pekerjaan di seluruh industri akan membutuhkan kemampuan ini sebagai keterampilan utamanya. Complex Problem Solving adalah keterampilan pemecahan masalah yang kompleks atau sebuah kemampuan yang dikembangkan untuk memecahkan masalah baru, masalah yang tidak terdefinisikan dengan jelas, di dunia kerja.

2. Critical Thinking

Future skills kedua yang diperlukan adalah Critical Thinking yaitu kemampuan untuk berpikir jernih dan mendalam tentang suatu masalah dan membuat penilaian logis. Ini adalah semacam pemikiran di mana kamu sendiri menganalisis dan memeriksa dan menghasilkan kesimpulan yang efektif.

complex problem solving adalah

3. Creativity

Teknologi dan mesin memang bisa membantu menyelesaikan pekerjaan lebih cepat, tapi mereka tidak bisa memberikan sentuhan kreativitas di dalamnya. Oleh karena itu, perusahaan akan lebih memilih untuk mempekerjakan karyawan yang mempunyai sisi kreatif dan inovatif. Mereka ingin karyawan yang mampu menerapkan ide-ide baru dan berpikir out of the box. Jadi, di tahun 2021 ini, kamu harus bisa mengasah kekreatifitasanmu dengan berlatih untuk melihat sesuatu dari sudut pandang yang baru.

Baca juga: Masih #Dirumahaja? Yuk Belajar 10 Skill Yang Diperlukan di Dunia Digital

4. People Management

People Management adalah salah satu skill penting yang harus dipelajari para milenial untuk mencapai keberhasilan di tahun 2021. Hal ini karena setiap pemimpin membutuhkan tim untuk mencapai tujuannya. Keberhasilan tim bisa dicapai jika pemimpin memiliki keterampilan dalam manajemen. Terlepas dari profesi dan pekerjaanmu, kamu akan selalu memerlukan keterampilan ini karena hal-hal besar tidak dapat dilakukan sendiri. Kamu perlu mengelola seluruh tim mu dan menjaga kekompakkan dalam tim.

complex problem solving adalah

5. Coordinating with Others

Selanjutnya, skill yang dibutuhkan di era mendatang adalah kemampuan berkoordinasi dengan orang lain. Kelihatannya memang sederhana namun ternyata skill ini tidak kalah penting loh. Hal ini dikarenakan pada akhirnya manusia pada akhirnya akan selalu membutuhkan orang lain. Kita tidak bisa menyelesaikan segala sesuatunya sendiri. Jadi, kamu perlu meningkatkan kemampuan berkoordinasi dengan orang lain. Skill ini sendiri meliputi kemampuan untuk menyesuaikan diri dengan orang lain serta kepekaan terhadap kebutuhan orang lain.

6. Emotional Intelligence

Emotional Intelligence mengacu pada kemampuan untuk mengendalikan dan mengelola emosi sendiri dan kemampuan untuk mengendalikan emosi orang lain juga. Menguasai keterampilan ini sangatlah penting untuk karakter pribadi dan profesional kamu. Sebelum mengendalikan emosi orang lain, kamu harus terlebih dahulu mengendalikan emosimu. Hanya dengan begitu kamu dapat memengaruhi orang lain dan melakukan pekerjaan bersama.

complex problem solving adalah

7. Judgement and Decision Making

Skill yang satu ini tidak hanya penting di lingkungan pekerjaan, tetapi juga di kehidupan pribadi. Menilai dan membuat keputusan adalah hal yang tidak mudah. Karena selain dituntut untuk mengambil keputusan yang menguntungkan, kita juga harus bisa mengambil keputusan yang tepat. Untuk menguasai skill ini, kita membutuhkan semua keterampilan lain seperti berpikir kritis, kesabaran, kekuatan pengamatan yang baik dan yang paling penting, keberanian untuk mengambil resiko.

Baca juga: 10 Cara Meningkatkan Skill Customer Service Usaha Kamu

8. Service Orientation

Orientasi pada layanan diartikan sebagai secara aktif mencari cara untuk membantu orang lain. Berapa banyak kamu membantu timmu, rekan kerjamu, atasanmu, dan orang-orang di seluruh industri? Seberapa baik kamu dapat membantu orang-orang di tim mu menentukan pula kualitas kepemimpinanmu. Jika kamu tidak menguasai keterampilan ini, lambat laun kamu akan kehilangan kepercayaan dan loyalitas bawahanmu. Seorang pemimpin sejati adalah orang yang membantu timnya tumbuh tanpa meninggalkan siapa pun.

complex problem solving adalah

9. Negotiation

Mencapai kesepakatan yang diinginkan tanpa argumen atau perselisihan secara fisik maupun mental adalah kunci dari keterampilan negosiasi. Kebanyakan orang sering gagal membuat kesepakatan yang mereka inginkan karena mereka kurang dalam keterampilan negosiasi. Buat kamu yang ingin meningkatkan skill ini bisa melatihnya melalui pengalaman, meeting, dan percakapan dengan orang-orang yang berada di atas level posisimu.

10. Cognitive Flexibility

Fleksibilitas kognitif adalah skill yang melibatkan banyak hal, yakni kreativitas, penalaran logis, dan sensitivitas terhadap masalah. Menguasai skill ini berarti, kamu mampu menyesuaikan gaya komunikasimu berdasarkan lawan bicara. Seperti kita tahu tiap dividu memiliki pemikiran, ide, tindakan, pendapat, dan emosi yang berbeda. Dengan demikian, setiap orang tidak dapat diperlakukan dan ditangani dengan cara yang sama. Berdasarkan hal tersebut, perekrut tidak ingin pekerja yang berbicara hal yang sama ke semua orang. Mereka mencari orang yang bisa berpikir secara kritis mengenai siapa yang mereka ajak bicara, dengarkan, dan menyesuaikan komunikasimu terhadap orang tersebut.

complex problem solving adalah

Related Posts

complex problem solving adalah

As a Newbie, I am permanently exploring online for articles that can aid me. Thank you

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

Captcha loading... In order to pass the CAPTCHA please enable JavaScript.

Post comment

complex problem solving adalah

Menghadapi revolusi industri 4.0 di era digital harus memiliki keahlian yang dibutuhkan agar dapat sukses menghadapi dinamika yang terus berubah. Keahlian tersebut menjadi pengukur kita dalam  bersaing di era digital yang semakin berkembang. Tentu saja masalah yang akan muncul memiliki tingkat kerumitan yang tinggi. Kita dihadapkan dengan berbagai masalah dan dituntut untuk dapat memecahkan masalah dengan segera.

Problem solving ability adalah kemampuan untuk mengidentifikasi masalah dan kendala, dan memberikan beberapa solusi alternative sehingga didapat  keputusan terbaik, sehingga pilihan yang tersedia sebagai pemecah masalah (solusi) yang berdampak positif dalam penyelesaian tugas atau pekerjaan.

Baca juga : Manfaat Pelatihan Problem Solving Decision Making

Setiap bisnis atau life activity sukses salah satunya adalah memiliki kemampuan dalam memecahkan masalah (problem solving). Sudah jelas jika kita sebagai seorang pegawai atau entrepreneur yang berani menghadapi masalah dan mampu memecahkannya menjadi asset berharga bagi organisasi atau kelangsungan bisnis kita. Bahkan, menurut World Economic Forum pemecahan masalah (problem solving) yang kompleks adalah salah satu dari 10 keterampilan kunci yang dibutuhkan untuk pekerjaan di masa depan. Lalu tipe problem solver seperti apakah anda?

Baca juga : Definisi & Contoh: Bagaimana Mengembangkan Problem Solving Skills

Jika penyelesaian masalah bukan salah satu keahlian terbaik Anda, tentu saja Anda dapat mempelajari kemampuan dalam memecahkan masalah, dalam artikel kali ini ada beberapa tipe pemecah masalah (problem solver) yang akan membantu Anda untuk mengetahui tipe seperti apa Anda dalam memecahkan masalah, serta menemukan kekurangan dan kekuatan dalam menghadapi masalah. Simak empat tipe problem solver yang dapat menggambarkan diri Anda:

  • Inspirer Inspirer atau si pemberi inspirasi memelihara hubungan dengan orang lain dan memiliki kemampuan menularkan rasa percaya diri. Kapanpun mereka menghadapi masalah, orang-orang berkumpul disekitarnya dan mengandalkannya, bahkan menawarkan bantuan. Mereka memiliki akses mudah kepada informasi yang dibutuhkan untuk memecahkan permasalahan.
  • Reflector Reflector atau si pemikir tidak pernah terburu-buru mengambil keputusan. Mereka biasa mengambil waktu untuk berpikir, mencerna segala hal pelan-pelan, mengambil langkah mundur dari situasi tersebut untuk mendapat perspektif baru, lalu bertindak. Setelah mereka mendapat semua informasi yang mereka butuhkan, mereka mengolahnya selama beberapa waktu sebelum mengambil langkah perbaikan.
  • Innovator Inovator atau si ahli inovasi memiliki kemampuan unik memunculkan solusi kreatif untuk setiap tantangan dan masalah yang mereka hadapi. Solusinya bisa jadi baru, atau bisa juga merupakan gabungan antara dua solusi yang telah dikenal menjadi sesuatu yang baru dan inovatif.
  • Influencer Influencer atau si pembawa pengaruh sangat ahli membuat orang di sekelilingnya mendukung segala sesuatu yang sedang ia kerjakan. Mereka cakap dalam menemukan solusi untuk “masalah bersama” yang melibatkan perubahan. Mereka jago mendapatkan “buy in” dari orang lain.

Kemampuan memecahkan masalah atau problem solving skill sangat penting dan sangat dicari di dunia bisnis. Mereka yang menguasai skill tersebut akan membuat kemajuan lebih cepat dibandingkan rekan-rekan sejawatnya. Problem solving memang salah satu skill terbaik yang bisa dimiliki seseorang. Berita baiknya, skill tersebut bisa dipelajari dan ada banyak sumber yang bisa anda eksplorasi untuk meningkatkan kemampuan memecahkan masalah.

theinvisiblementor.com

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Post Comment

This site uses Akismet to reduce spam. Learn how your comment data is processed .

News & Article

  • Memahami Perbedaan Job Description dan Job Specification: Membangun Kejelasan Peran dan Tanggung Jawab
  • Kolaborasi dalam Dunia Kerja: Pengertian, Manfaat, dan Contoh Penerapannya
  • Mengenal 3V Komunikasi dan Memahami Tahap Proses Komunikasi
  • 6 Langkah Jitu Menerapkan Budaya Sharing Knowledge yang Mengubah Perusahaan Anda
  • 5 Manfaat Rutin Melakukan Briefing Meningkatkan Produktivitas dan Efisiensi

Latest Events

Badan Pusat Statistik - Emerging Leader Development Program

Recent Posts

Permata kuningan Building 17Th Floor, Suite 1701 Jl. Kuningan Mulia kav 9 Kawasan bisnis epicentrum Jakarta – 12980

Phone: 08111.798.348 | 0815.1321.8518 Fax: 021-8370.8679 | 021-8370.8680

8 Langkah Problem Solving (1)

8 Langkah Problem Solving (1)

Berikut adalah 8 Langkah Problem Solving menurut Newman dalam bukunya Problem Solving for Result .

Langkah Problem Solving 1: Identify the problem Tahap ini adalah tahap yang paling penting dalam Langkah problem solving karena hasil akhir dari proses ditentukan pada tahap ini. tahap inilah yang menentukan apakah penyelesaian masalah akan di bawa ke utara atau ke selatan. Akan dibuat rumit atau sederhana. Dalam tahap mengidentifikasi masalah ini Newman menyampaikan bahwa penting untuk membuat rumusan masalah yang sederhana – Simple Problem Statements. Karena begitu masalah sudah dirumuskan, maka diperlukan keseriusan dan komitmen seluruh anggota tim untuk melaksanakannya sampai akhir proses.

Langkah Problem Solving 2: Gather data Langkah problem solving berikutnya adalah mengumpulkan data. Newman memberikan beberapa alternatif metode dalam pengumpulan data yaitu:

2.1. Problem-Mapping (PM) PM adalah metode pengumpulan data dengan cara membuat model dari permasalahan yang ada. Model yang dibuat sama dengan kalau kita membuat Mind Mapping. Topik utamanya digambar di tengah. Bedanya adalah cabang-cabang yang keluar dari cabang utama adalah trigger / pemicu / penyebabnya. Trigger ini bisa dipecah-pecah ke dalam branches yang lebih kecil dan sederhana.

2.2. Tally Sheets / tick-sheet Ini adalah metode sederhana yang sudah sering kita gunakan dalam penghitungan suara. Bentuknya berupa matriks dengan kolom paling kiri berisi kejadian yang diamati sedangkan baris paling atas berisi kapan kejadiannya. Kesalahan dalam pengisiannya aan menyebabkan semua kesimpulan yang ditarik akan salah.

2.3. Modelling Modelling adalah metode pengumpulan data dengan cara memodel kejadian atau mereka-ulang kejadian yang ingin diamati. Kalau Anda sering melihat siaran mengenai bagaimana cara polisi mengumpulkan / menguatkan bukti dengan cara mendatangkan saksi ke tempat kejadian (TKP),.. itulah contoh sederhana modelling.

2.4. Active Database Technique Adalah mengumpulkan real data secara aktif sepanjang waktu yang diperlukan. Data ini sebaiknya mudah di akses dan kapan pun kita membutuhkan informasi yang lebih dalam kita dapat melakukan braistorming. Untuk data-data yang bukan merupakan data utama, kita dapat meneruskannya ke bagian yang lebih kompeten.

2.5. Competitive Benchmarking Metode ini memanfaatkan orang / pihak lain yang telah / pernah menyelesaikan masalah yang sama sebelumnya. Yang diamati adalah teknik yang digunakan untuk kemudian disesuaikan dengan kebutuhan kita.

2.6. Pilot Pilot adalah menjalankan project dalam skala kecil untuk mengumpulkan data yang tidak didapat dari metode pengumpulan data yang sudah ada. Kunci kesuksesan metode ini adalah dengan mengumlkan data hasil pilot sebanyak mungkin dengan waktu, dana dan usaha yang seefisien mungkin.

2.7. Interviewing Metode ini efektif bila kita benar benar tahu apa yang kita ingin dapatkan dari jawaban para responden dan bukan merupakan jawaban yang bisa dijawab dengan “Ya” atau “Tidak”. Interview dapat dilakukan oleh dua orang interviewer yang mempunyai skill yang sama sehingga bisa saling melengkapi pertanyaan. Dapat pula satu orang bertanya sedangkan satu orang yang lain mengamati tanpa sepengetahuan responden.

2.8. Subject PM Metode ini lebih kompleks dari 2.1. Untuk menjalankannya minimal diperlukan 3 team A, B dan C. Setelah PM di gambar oleh tim A, maka tim B dan C mengajukan pertanyaan. Kemudian A melengkapi PM yang dibuat berdasarkan masukan dari B dan C. demikian sampai ditemukan PM yang mewakili semua tim.

Langkah Problem Solving 3: Analyze data Data yang ada kemudian di pilah-pilah sesuai dengan kebutuhan dan kecocokan. Pada tahap ini janganlah buru buru untuk membuat dugaan mengenai jawaban dari permasalahan yang ada. Tahan dahulu. Karena apa yang kita lihat itu adalah cermin dari apa yang ingin kita lihat. Ada beberapa metode yang ditawarkan untuk menganalisis data oleh Newman, yaitu:

3.1. Force Field Analysis (FFA) Force Field Analysis adalah metoda yang sangat ampuh untuk memperoleh gambaran lengkap yang menyeluruh berbagai kekuatan yang ada dalam isu utama suatu kebijakan juga untuk memperkirakan sumber dan tingkat kekuatan kekuatan tersebut. Detail FFA bisa dilihat disini

3.2. Fishbone Diagram Fishbone diagram atau Ishikawa diagram adalah diagram untuk menemukan penyebab dari kondisi yang terjadi. Bentuknya seperti tulang ikan.

3.3. Why/Why Diagram Prinsipnya lebih kurang sama dengan Ishikawa Diagram. Di bagian kepala ikan (pada Ishikawa Diagram) kita ganti dengan Problem Symptom yang ingin kita pecahkan. Kemudian kita mengajukan pertanyaan Why?. dari jawaban tadi akan muncul beberapa jawaban dan kita bertanya lagi Why kepada masing-masing. Hingga akhirnya akan ditemukan akan permasalahannya.

3.4. Influence diagram Sesuai dengan namanya, Influence Diagram mencoba melihat permasalahan dengan melihat flow proccess nya. Dengan mengtahui flow proccess tersebut akan didapat tahapan mana yang mempengaruhi masalah yang ada secara signifikan.

Langkah Problem Solving 4: Generate solutions 4.1 Traditional Brainstorming Saat ini, inilah langkah problem solving yang paling banyak digunakan karena kemudahan dan keefektifannya. Biasanya dilakukan dengan maksimal peserta 12 orang. Kemudian sebelum sesi dibuka dilakukan penyamaan persepsi mengenai permasalahan yang di hadapi. Hasil, ide, masukan, pendapat, ditulis di flipchart yang bisa dilihat semua orang. Metode ini cocok untuk open problem yang bisa memberikan jawaban lebih dari satu. Kekurangan: Ada kecenderungan Groupthink

4.2 Creative Silence Metode ini disebut juga Brainstorming II. Bedanya dengan metode brainstorming biasa adalah ada waktu creative silence (+/-2 menit) untuk menuliskan ide kepada semua peserta. Warna kertas dan bolpen disamakan demi kesetaraan derajat pendapat yang disampaikan. Kemudian dicari kombinasi dan improvement untuk ide yang dihasilkan. Bisa jadi ada tahap 2, 3 creative silence dst untuk menemukan jawaban yang sesuai.

4.3. 6 Thinking Hat Langkah problem solving ini diperkenalkan oleh De Bono dimana masing-masing orang berperan sesuai dengan ‘warna topi’ yang dikenakan. Putih: berbicara mengenai fakta dan data saja. Merah: berbicara mengenai perasaan yang dirasakan Hitam: berbicara mengenai kegagalan yang akan terjadi dengan apa pun metode yang diambil Kuning: berbicara mengenai sisi positif ide yang dihasilkan Hijau: berbicara mengenai think out the box Biru: berbicara mengenai pandangan dari helicopter view.

4.4. Nominal Group Technique (NGT) Metode ini mirip dengan Creative Silence, tetapi setelah masing masing melakukan presentasi tidak dilakukan diskusi kelompok. Kemudian, tiap orang -secara individu- melakukan pemeringkatan dari ide-ide yang ada. Ide dengan peringkat yang paling tinggi yang akan digunakan.

4.5. Delphi Metode ini dikembangkan oleh Rand Corporation dimana masing-masing individu yang terpisah – yang belum pernah bertemu dalam 1 meja diskusi – memberikan masukannya masing-masing. Hasilnya, secara terpusat dirangkum dan kemudian di broadcast kembali kepada masing-masing individu untuk diminta pendapatnya. Hasilnya kemudian di pool kembali hingga ditemukan jawaban yang memuaskan. Metode ini cocok untuk mereka yang terpisah jauh secara geografis.

4.6. Yes And.. Metode Yes And adalah salah satu metode yang baik untuk tidak memupuskan semangat / pendapat yang sebelumnya disampaikan. Ketika terjadi perbedaan pendapat biasanya orang cenderung untuk berkata “Yes, but..” sehingga kesannya pendapat yang di kemukakannya akan lebih baik dibanding yang pertama. Dengan Yes And, maka kesan yang ditangkap adalah kedua pendapat tersebut saling melengkapi.

4.7. Strange / Familiar: Methaphor & Analogy Langkah problem solving dengan metode ini merupakan metode berfikir kreatif dengan pendekatan yang unik. Jika suatu masalah terdengar aneh (strange) maka dibuat analogy atau metafora sehingga menjadi sesuatu yang mudah. Tetapi jika itu adalah masalah yang mudah (familiar) maka dilakukan analogy / metaphor yang aneh / sulit (strange)

4.8 How To Ini adalah cara lain untuk mengemukakan masalah dengan cara seperti kita bercerita kepada anak-anak. Biasanya dimulai dengan kalimat “I want to..” kemudian dimetaforakan kepada anak -anak dengan kalimat “It’s like trying to…” Jawaban yang di hasilkan dari pertanyaan tadi kemudian di kembalikan ke kasus awal. Contoh: Saya ingin mencari HP saya yang hilang di pasar ( I want to..) Itu sama saja dengan mencari sebuah jarum dalam tumpukan jerami (It’s like trying to..) Cara mencari jarum di tumpukan jerami: 1. di pilah-pilah menjadi tumpukan-tumpukan kecil 2. di ayak 3. di beri magnet, dll Ketiga cara ini kemudian di “kembalikan” lagi ke kondisi semula: HP hilang di pasar. Disinilah serunya, karena akan banyak ide kreatif yang timbul.

4.9 Visualization Visualisasi kini banyak digunakan tidak hanya sebagai langkah problem solving tetapi juga untuk mempelajari keahlian baru. Memberikan arah serta antisipasi permasalahan yang timbul. Langkah problem solving ini kini banyak digunakan pula dalam bidang personal development, leadership, ekonomi, dll.

Bersambung ke 8 Langkah Problem Solving (2)

sumber: Problem Solving for Result, Victor Newman, Gower Publishing, 1985. gambar: sixthriver.com

author-avatar

Posted by admin

  • 8 langkah problem solving
  • problem solving part 1
  • tahapan problem solving
  • Victor Newman Problem Solving

Like to share?

Leave a reply cancel reply.

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

IMAGES

  1. Problem solving infographic 10 steps concept Vector Image

    complex problem solving adalah

  2. Complex Problem Solving

    complex problem solving adalah

  3. 8 Tips for Solving Complex Problems

    complex problem solving adalah

  4. An Introduction to Complex Problem Solving

    complex problem solving adalah

  5. Problem-Solving Process in 6 Steps

    complex problem solving adalah

  6. 8 Steps For Effective Problem Solving

    complex problem solving adalah

VIDEO

  1. Complex Problem Solving

  2. "Thinking Ahead: Strategic Approaches to Complex Problem-Solving"

  3. Webinar Complex Problem Solving

  4. Problem Solving : Langkah Cepat atasi Semua Kesulitan apapun

  5. Easy solution of complex problem. How to solve the problem? simple trick if you know the technic

  6. STUDY SKILL : PROBLEM SOLVING

COMMENTS

  1. Mengenal Complex Problem Solving, Kompetensi yang Paling ...

    Complex Problem Solving (CPS) adalah paradigma baru dalam menyelesaikan masalah atau permasalahan. Dalam hal ini masalah dimaksudkan sebagai problem, sedangkan permasalahan adalah problematics. Masalah biasanya dapat didefinisikan dengan jelas dan terukur, sedangkan permasalahan bersifat susah didefinisikan dan diukur. Jadi, kadang kita sering ...

  2. Complex Problem Solving 101

    Complex problem solving memang terdiri dari pengumpulan, pengolahan, dan analisis informasi. Tetapi, kita yang melakukannya juga dituntut untuk memiliki kemampuan regulasi diri, kreativitas, pikiran yang terbuka, dan bekerja sama dengan orang lain. Maka, sebaiknya kita melatih diri agar mampu menghadapi masalah-masalah yang unik, dalam konteks ...

  3. Complex Problem-Solving: Definition and Steps

    Complex problem solving is a series of observations and informed decisions used to find and implement a solution to a problem. Beyond finding and implementing a solution, complex problem solving also involves considering future changes to circumstance, resources and capabilities that may affect the trajectory of the process and success of the ...

  4. Problem Solving: Arti, Metode, Contoh, Proses & Tips Pentingnya

    Metode ini pun memastikan bahwa proses penyelesaian masalah dilakukan secara terfokus dan teratur. 5. Failure mode and effect analysis. Metode problem solving lain yang bisa kamu gunakan adalah failure mode and effect analysis. Dalam metode ini, kamu dan tim mencoba menganalisis setiap elemen dari strategi bisnis dan memikirkan hal-hal terburuk ...

  5. Melatih Kemampuan Complex Problem Solving

    Beri Komentar. 3. Problem solving adalah salah satu soft skill penting yang dibutuhkan karyawan, terutama pemimpin dan manajer hampir di setiap bidang profesi. Alasannya sederhana, kemampuan ini akan sangat berguna ketika kamu harus mengambil keputusan saat dihadapkan pada berbagai situasi dan masalah yang sulit dan.

  6. Problem Solving: Arti, Proses, Contoh, Manfaat, dan Tips Tingkatkannya

    Apa Itu Skill Problem Solving? Skill problem solving adalah kemampuan untuk mengidentifikasi, menganalisis, dan menyelesaikan masalah secara efektif dan efisien. ... Skill problem solving sangat penting dalam berbagai aspek kehidupan, termasuk dalam karier dan kehidupan sehari-hari. Dengan memiliki kemampuan ini, kita dapat:

  7. Asesmen Complex Problem Solving: Apa dan Bagaimana?

    Posisi Complex Problem Solving (CPS) dalam top 10 skill Kompetensi pertama yang paling dibutuhkan di tahun 2020 adalah complex problem solving dan menyusul 9 kompetensi lainnya, seperti dalam ...

  8. Complex Problem Solving: What It Is and What It Is Not

    Succeeding in the 21st century requires many competencies, including creativity, life-long learning, and collaboration skills (e.g., National Research Council, 2011; Griffin and Care, 2015), to name only a few.One competence that seems to be of central importance is the ability to solve complex problems (Mainzer, 2009).Mainzer quotes the Nobel prize winner Simon (1957) who wrote as early as 1957:

  9. Complex Problem Solving

    Definition. Complex problem solving takes place for reducing the barrier between a given start state and an intended goal state with the help of cognitive activities and behavior. Start state, intended goal state, and barriers prove complexity, change dynamically over time, and can be partially intransparent.

  10. Kenali Tantangan Complex Problem Solving!

    Dalam complex problem solving, solusi yang digunakan bagi suatu masalah tidak dapat digeneralisasi pada masalah lain. Masing-masing masalah kompleks harus dipecahkan menggunakan pendekatan yang disesuaikan secara spesifik pada masalah tersebut. ... Kekeliruan lain adalah adanya asumsi yang tidak disadari dimiliki individu (Ramnarayan et al ...

  11. (PDF) Complex Problem Solving

    Menurut World Economic Forum, Complex Problem Solving (CPS) adalah salah satu dari 10 (sepuluh) skill utama yang dibutuhkan seorang profesional. Melalui World Economic Forum, diperoleh gambaran 10 (sepuluh) keterampilan yang paling dibutuhkan pada 2015 lalu, serta prediksi pada 2020. Hal ini berlaku juga untuk Indonesia.

  12. How to master the seven-step problem-solving process

    To discuss the art of problem solving, I sat down in California with McKinsey senior partner Hugo Sarrazin and also with Charles Conn. Charles is a former McKinsey partner, entrepreneur, executive, and coauthor of the book Bulletproof Problem Solving: The One Skill That Changes Everything [John Wiley & Sons, 2018].

  13. Problem Solving (Pemecahan Masalah)

    Menurut Uno (2014, hlm. 134) problem solving adalah kemampuan untuk menggunakan proses berpikir dalam memecahkan masalah dengan mengumpulkan fakta, menganalisis informasi, penyusunan alternatif solusi, serta memilih solusi masalah yang lebih efektif. Artinya problem solving merupakan pencarian solusi melalui proses berpikir yang sistematis.

  14. Prinsip Dasar Memecahkan Masalah (Problem Solving)

    Kasus di atas adalah sebuah kasus riil dari perlunya seseorang memiliki kemampuan complex problem solving, atau pemecahan masalah yang kompleks di tingkat negara atau kebijakan. Conn dan McLean (2018) mengungkapkan bahwa complex problem solving, critical thinking, dan creativity adalah 3 keterampilan terpenting untuk dikuasai di tahun 2020 dan ...

  15. Apa itu Problem Solving? Manfaat dan Penerapannya

    Manfaat Problem Solving. Delapan berikut adalah manfaat utama dari memiliki kemampuan menyelesaikan masalah yang perlu kamu tau: 1. Peningkatan Kemampuan Pemecahan Masalah. Manfaat utama problem solving adalah kemampuan untuk mengatasi masalah dengan lebih efektif. Seseorang yang telah memiliki kemampuan pemecahan masalah akan dapat menghadapi ...

  16. PDF Asesmen Complex Problem Solving: Apa dan Bagaimana?

    Posisi Complex Problem Solving (CPS) dalam top 10 skill Kompetensi pertama yang paling dibutuhkan di tahun 2020 adalah complex problem solving dan menyusul 9 kompetensi lainnya, seperti dalam ...

  17. Problem Solving: Pengertian, Proses, dan Metodenya

    Metode Problem Solving. 1. Brainstorming. Brainstorming merupakan metode problem solving yang paling banyak digunakan oleh orang-orang. Pasalnya, metode ini efektif untuk digunakan sebagai pemecahan masalah melalui solusi kreatif. Prosesnya adalah setiap orang harus menyampaikan ide-ide maupun pendapat yang kemudian dapat diolah menjadi satu ...

  18. Bagaimana meningkatkan kemampuan untuk menyelesaikan masalah kompleks

    Complex Problem Solving adalah kemampuan seseorang untuk mengidentifikasi masalah yang kompleks, serta mengerti dan mereview informasi yang berkaitan, agar dapat menciptakan solusi untuk masalah tersebut. Kemampuan ini sangat esensial di lingkup kerja.

  19. PDF Enhancement Complex Problem Solving Project Based Learning

    ENHANCEMENT COMPLEX PROBLEM SOLVING MELALUI PROJECT BASED LEARNING BERBASIS KEARIFAN LOKAL PERAHU TRADISIONAL PHINISI KHAS BUGIS Wiwi Damayanti ... (2020) adalah Complex Problem Solving (CPS). CPS merupakan kegiatan mengidentifikasi masalah kompleks, mengevaluasi, mereview informasi faktual dan membangun

  20. 10 Future Skills Yang Harus Dimiliki Generasi Milenial Indonesia

    Complex Problem Solving. Complex Problem Solving adalah keterampilan paling penting pertama yang harus dimiliki oleh generasi milenial di tahun 2021. Menurut laporan World Economic Forum (WEF), 36% dari semua pekerjaan di seluruh industri akan membutuhkan kemampuan ini sebagai keterampilan utamanya. Complex Problem Solving adalah keterampilan ...

  21. Pembelajaran untuk Mengembangkan Kemampuan Pemecahan Masalah ...

    1. Kata kunci yang digunakan adalah complex problem solving. 2. Membatasi pencarian pada tahun terbit 2006-sekarang. 3. Membatasi pencarian untuk jenis "research article" Strategi Pencarian 1. Memilih artikel yang mengandung kata "complex problem solving" pada judul dan/atau abstrak 2. Menentukan relevansi artikel berdasarkan abstrak

  22. 4 Tipe Problem Solving: Kunci Menghadapi Revolusi Industri 4.0

    Problem solving ability adalah kemampuan untuk mengidentifikasi masalah dan kendala, dan memberikan beberapa solusi alternative sehingga didapat keputusan terbaik, sehingga pilihan yang tersedia sebagai pemecah masalah (solusi) yang berdampak positif dalam penyelesaian tugas atau pekerjaan. Baca juga : Manfaat Pelatihan Problem Solving Decision ...

  23. 8 Langkah Problem Solving (1)

    Email Print. Berikut adalah 8 Langkah Problem Solving menurut Newman dalam bukunya Problem Solving for Result. Langkah Problem Solving 1: Identify the problem. Tahap ini adalah tahap yang paling penting dalam Langkah problem solving karena hasil akhir dari proses ditentukan pada tahap ini. tahap inilah yang menentukan apakah penyelesaian ...