• Privacy Policy

Buy Me a Coffee

Research Method

Home » Case Study – Methods, Examples and Guide

Case Study – Methods, Examples and Guide

Table of Contents

Case Study Research

A case study is a research method that involves an in-depth examination and analysis of a particular phenomenon or case, such as an individual, organization, community, event, or situation.

It is a qualitative research approach that aims to provide a detailed and comprehensive understanding of the case being studied. Case studies typically involve multiple sources of data, including interviews, observations, documents, and artifacts, which are analyzed using various techniques, such as content analysis, thematic analysis, and grounded theory. The findings of a case study are often used to develop theories, inform policy or practice, or generate new research questions.

Types of Case Study

Types and Methods of Case Study are as follows:

Single-Case Study

A single-case study is an in-depth analysis of a single case. This type of case study is useful when the researcher wants to understand a specific phenomenon in detail.

For Example , A researcher might conduct a single-case study on a particular individual to understand their experiences with a particular health condition or a specific organization to explore their management practices. The researcher collects data from multiple sources, such as interviews, observations, and documents, and uses various techniques to analyze the data, such as content analysis or thematic analysis. The findings of a single-case study are often used to generate new research questions, develop theories, or inform policy or practice.

Multiple-Case Study

A multiple-case study involves the analysis of several cases that are similar in nature. This type of case study is useful when the researcher wants to identify similarities and differences between the cases.

For Example, a researcher might conduct a multiple-case study on several companies to explore the factors that contribute to their success or failure. The researcher collects data from each case, compares and contrasts the findings, and uses various techniques to analyze the data, such as comparative analysis or pattern-matching. The findings of a multiple-case study can be used to develop theories, inform policy or practice, or generate new research questions.

Exploratory Case Study

An exploratory case study is used to explore a new or understudied phenomenon. This type of case study is useful when the researcher wants to generate hypotheses or theories about the phenomenon.

For Example, a researcher might conduct an exploratory case study on a new technology to understand its potential impact on society. The researcher collects data from multiple sources, such as interviews, observations, and documents, and uses various techniques to analyze the data, such as grounded theory or content analysis. The findings of an exploratory case study can be used to generate new research questions, develop theories, or inform policy or practice.

Descriptive Case Study

A descriptive case study is used to describe a particular phenomenon in detail. This type of case study is useful when the researcher wants to provide a comprehensive account of the phenomenon.

For Example, a researcher might conduct a descriptive case study on a particular community to understand its social and economic characteristics. The researcher collects data from multiple sources, such as interviews, observations, and documents, and uses various techniques to analyze the data, such as content analysis or thematic analysis. The findings of a descriptive case study can be used to inform policy or practice or generate new research questions.

Instrumental Case Study

An instrumental case study is used to understand a particular phenomenon that is instrumental in achieving a particular goal. This type of case study is useful when the researcher wants to understand the role of the phenomenon in achieving the goal.

For Example, a researcher might conduct an instrumental case study on a particular policy to understand its impact on achieving a particular goal, such as reducing poverty. The researcher collects data from multiple sources, such as interviews, observations, and documents, and uses various techniques to analyze the data, such as content analysis or thematic analysis. The findings of an instrumental case study can be used to inform policy or practice or generate new research questions.

Case Study Data Collection Methods

Here are some common data collection methods for case studies:

Interviews involve asking questions to individuals who have knowledge or experience relevant to the case study. Interviews can be structured (where the same questions are asked to all participants) or unstructured (where the interviewer follows up on the responses with further questions). Interviews can be conducted in person, over the phone, or through video conferencing.

Observations

Observations involve watching and recording the behavior and activities of individuals or groups relevant to the case study. Observations can be participant (where the researcher actively participates in the activities) or non-participant (where the researcher observes from a distance). Observations can be recorded using notes, audio or video recordings, or photographs.

Documents can be used as a source of information for case studies. Documents can include reports, memos, emails, letters, and other written materials related to the case study. Documents can be collected from the case study participants or from public sources.

Surveys involve asking a set of questions to a sample of individuals relevant to the case study. Surveys can be administered in person, over the phone, through mail or email, or online. Surveys can be used to gather information on attitudes, opinions, or behaviors related to the case study.

Artifacts are physical objects relevant to the case study. Artifacts can include tools, equipment, products, or other objects that provide insights into the case study phenomenon.

How to conduct Case Study Research

Conducting a case study research involves several steps that need to be followed to ensure the quality and rigor of the study. Here are the steps to conduct case study research:

  • Define the research questions: The first step in conducting a case study research is to define the research questions. The research questions should be specific, measurable, and relevant to the case study phenomenon under investigation.
  • Select the case: The next step is to select the case or cases to be studied. The case should be relevant to the research questions and should provide rich and diverse data that can be used to answer the research questions.
  • Collect data: Data can be collected using various methods, such as interviews, observations, documents, surveys, and artifacts. The data collection method should be selected based on the research questions and the nature of the case study phenomenon.
  • Analyze the data: The data collected from the case study should be analyzed using various techniques, such as content analysis, thematic analysis, or grounded theory. The analysis should be guided by the research questions and should aim to provide insights and conclusions relevant to the research questions.
  • Draw conclusions: The conclusions drawn from the case study should be based on the data analysis and should be relevant to the research questions. The conclusions should be supported by evidence and should be clearly stated.
  • Validate the findings: The findings of the case study should be validated by reviewing the data and the analysis with participants or other experts in the field. This helps to ensure the validity and reliability of the findings.
  • Write the report: The final step is to write the report of the case study research. The report should provide a clear description of the case study phenomenon, the research questions, the data collection methods, the data analysis, the findings, and the conclusions. The report should be written in a clear and concise manner and should follow the guidelines for academic writing.

Examples of Case Study

Here are some examples of case study research:

  • The Hawthorne Studies : Conducted between 1924 and 1932, the Hawthorne Studies were a series of case studies conducted by Elton Mayo and his colleagues to examine the impact of work environment on employee productivity. The studies were conducted at the Hawthorne Works plant of the Western Electric Company in Chicago and included interviews, observations, and experiments.
  • The Stanford Prison Experiment: Conducted in 1971, the Stanford Prison Experiment was a case study conducted by Philip Zimbardo to examine the psychological effects of power and authority. The study involved simulating a prison environment and assigning participants to the role of guards or prisoners. The study was controversial due to the ethical issues it raised.
  • The Challenger Disaster: The Challenger Disaster was a case study conducted to examine the causes of the Space Shuttle Challenger explosion in 1986. The study included interviews, observations, and analysis of data to identify the technical, organizational, and cultural factors that contributed to the disaster.
  • The Enron Scandal: The Enron Scandal was a case study conducted to examine the causes of the Enron Corporation’s bankruptcy in 2001. The study included interviews, analysis of financial data, and review of documents to identify the accounting practices, corporate culture, and ethical issues that led to the company’s downfall.
  • The Fukushima Nuclear Disaster : The Fukushima Nuclear Disaster was a case study conducted to examine the causes of the nuclear accident that occurred at the Fukushima Daiichi Nuclear Power Plant in Japan in 2011. The study included interviews, analysis of data, and review of documents to identify the technical, organizational, and cultural factors that contributed to the disaster.

Application of Case Study

Case studies have a wide range of applications across various fields and industries. Here are some examples:

Business and Management

Case studies are widely used in business and management to examine real-life situations and develop problem-solving skills. Case studies can help students and professionals to develop a deep understanding of business concepts, theories, and best practices.

Case studies are used in healthcare to examine patient care, treatment options, and outcomes. Case studies can help healthcare professionals to develop critical thinking skills, diagnose complex medical conditions, and develop effective treatment plans.

Case studies are used in education to examine teaching and learning practices. Case studies can help educators to develop effective teaching strategies, evaluate student progress, and identify areas for improvement.

Social Sciences

Case studies are widely used in social sciences to examine human behavior, social phenomena, and cultural practices. Case studies can help researchers to develop theories, test hypotheses, and gain insights into complex social issues.

Law and Ethics

Case studies are used in law and ethics to examine legal and ethical dilemmas. Case studies can help lawyers, policymakers, and ethical professionals to develop critical thinking skills, analyze complex cases, and make informed decisions.

Purpose of Case Study

The purpose of a case study is to provide a detailed analysis of a specific phenomenon, issue, or problem in its real-life context. A case study is a qualitative research method that involves the in-depth exploration and analysis of a particular case, which can be an individual, group, organization, event, or community.

The primary purpose of a case study is to generate a comprehensive and nuanced understanding of the case, including its history, context, and dynamics. Case studies can help researchers to identify and examine the underlying factors, processes, and mechanisms that contribute to the case and its outcomes. This can help to develop a more accurate and detailed understanding of the case, which can inform future research, practice, or policy.

Case studies can also serve other purposes, including:

  • Illustrating a theory or concept: Case studies can be used to illustrate and explain theoretical concepts and frameworks, providing concrete examples of how they can be applied in real-life situations.
  • Developing hypotheses: Case studies can help to generate hypotheses about the causal relationships between different factors and outcomes, which can be tested through further research.
  • Providing insight into complex issues: Case studies can provide insights into complex and multifaceted issues, which may be difficult to understand through other research methods.
  • Informing practice or policy: Case studies can be used to inform practice or policy by identifying best practices, lessons learned, or areas for improvement.

Advantages of Case Study Research

There are several advantages of case study research, including:

  • In-depth exploration: Case study research allows for a detailed exploration and analysis of a specific phenomenon, issue, or problem in its real-life context. This can provide a comprehensive understanding of the case and its dynamics, which may not be possible through other research methods.
  • Rich data: Case study research can generate rich and detailed data, including qualitative data such as interviews, observations, and documents. This can provide a nuanced understanding of the case and its complexity.
  • Holistic perspective: Case study research allows for a holistic perspective of the case, taking into account the various factors, processes, and mechanisms that contribute to the case and its outcomes. This can help to develop a more accurate and comprehensive understanding of the case.
  • Theory development: Case study research can help to develop and refine theories and concepts by providing empirical evidence and concrete examples of how they can be applied in real-life situations.
  • Practical application: Case study research can inform practice or policy by identifying best practices, lessons learned, or areas for improvement.
  • Contextualization: Case study research takes into account the specific context in which the case is situated, which can help to understand how the case is influenced by the social, cultural, and historical factors of its environment.

Limitations of Case Study Research

There are several limitations of case study research, including:

  • Limited generalizability : Case studies are typically focused on a single case or a small number of cases, which limits the generalizability of the findings. The unique characteristics of the case may not be applicable to other contexts or populations, which may limit the external validity of the research.
  • Biased sampling: Case studies may rely on purposive or convenience sampling, which can introduce bias into the sample selection process. This may limit the representativeness of the sample and the generalizability of the findings.
  • Subjectivity: Case studies rely on the interpretation of the researcher, which can introduce subjectivity into the analysis. The researcher’s own biases, assumptions, and perspectives may influence the findings, which may limit the objectivity of the research.
  • Limited control: Case studies are typically conducted in naturalistic settings, which limits the control that the researcher has over the environment and the variables being studied. This may limit the ability to establish causal relationships between variables.
  • Time-consuming: Case studies can be time-consuming to conduct, as they typically involve a detailed exploration and analysis of a specific case. This may limit the feasibility of conducting multiple case studies or conducting case studies in a timely manner.
  • Resource-intensive: Case studies may require significant resources, including time, funding, and expertise. This may limit the ability of researchers to conduct case studies in resource-constrained settings.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Questionnaire

Questionnaire – Definition, Types, and Examples

Observational Research

Observational Research – Methods and Guide

Quantitative Research

Quantitative Research – Methods, Types and...

Qualitative Research Methods

Qualitative Research Methods

Explanatory Research

Explanatory Research – Types, Methods, Guide

Survey Research

Survey Research – Types, Methods, Examples

Qualitative case study data analysis: an example from practice

Affiliation.

  • 1 School of Nursing and Midwifery, National University of Ireland, Galway, Republic of Ireland.
  • PMID: 25976531
  • DOI: 10.7748/nr.22.5.8.e1307

Aim: To illustrate an approach to data analysis in qualitative case study methodology.

Background: There is often little detail in case study research about how data were analysed. However, it is important that comprehensive analysis procedures are used because there are often large sets of data from multiple sources of evidence. Furthermore, the ability to describe in detail how the analysis was conducted ensures rigour in reporting qualitative research.

Data sources: The research example used is a multiple case study that explored the role of the clinical skills laboratory in preparing students for the real world of practice. Data analysis was conducted using a framework guided by the four stages of analysis outlined by Morse ( 1994 ): comprehending, synthesising, theorising and recontextualising. The specific strategies for analysis in these stages centred on the work of Miles and Huberman ( 1994 ), which has been successfully used in case study research. The data were managed using NVivo software.

Review methods: Literature examining qualitative data analysis was reviewed and strategies illustrated by the case study example provided. Discussion Each stage of the analysis framework is described with illustration from the research example for the purpose of highlighting the benefits of a systematic approach to handling large data sets from multiple sources.

Conclusion: By providing an example of how each stage of the analysis was conducted, it is hoped that researchers will be able to consider the benefits of such an approach to their own case study analysis.

Implications for research/practice: This paper illustrates specific strategies that can be employed when conducting data analysis in case study research and other qualitative research designs.

Keywords: Case study data analysis; case study research methodology; clinical skills research; qualitative case study methodology; qualitative data analysis; qualitative research.

  • Case-Control Studies*
  • Data Interpretation, Statistical*
  • Nursing Research / methods*
  • Qualitative Research*
  • Research Design

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base

Methodology

  • What Is a Case Study? | Definition, Examples & Methods

What Is a Case Study? | Definition, Examples & Methods

Published on May 8, 2019 by Shona McCombes . Revised on November 20, 2023.

A case study is a detailed study of a specific subject, such as a person, group, place, event, organization, or phenomenon. Case studies are commonly used in social, educational, clinical, and business research.

A case study research design usually involves qualitative methods , but quantitative methods are sometimes also used. Case studies are good for describing , comparing, evaluating and understanding different aspects of a research problem .

Table of contents

When to do a case study, step 1: select a case, step 2: build a theoretical framework, step 3: collect your data, step 4: describe and analyze the case, other interesting articles.

A case study is an appropriate research design when you want to gain concrete, contextual, in-depth knowledge about a specific real-world subject. It allows you to explore the key characteristics, meanings, and implications of the case.

Case studies are often a good choice in a thesis or dissertation . They keep your project focused and manageable when you don’t have the time or resources to do large-scale research.

You might use just one complex case study where you explore a single subject in depth, or conduct multiple case studies to compare and illuminate different aspects of your research problem.

Receive feedback on language, structure, and formatting

Professional editors proofread and edit your paper by focusing on:

  • Academic style
  • Vague sentences
  • Style consistency

See an example

case study research use data for analysis

Once you have developed your problem statement and research questions , you should be ready to choose the specific case that you want to focus on. A good case study should have the potential to:

  • Provide new or unexpected insights into the subject
  • Challenge or complicate existing assumptions and theories
  • Propose practical courses of action to resolve a problem
  • Open up new directions for future research

TipIf your research is more practical in nature and aims to simultaneously investigate an issue as you solve it, consider conducting action research instead.

Unlike quantitative or experimental research , a strong case study does not require a random or representative sample. In fact, case studies often deliberately focus on unusual, neglected, or outlying cases which may shed new light on the research problem.

Example of an outlying case studyIn the 1960s the town of Roseto, Pennsylvania was discovered to have extremely low rates of heart disease compared to the US average. It became an important case study for understanding previously neglected causes of heart disease.

However, you can also choose a more common or representative case to exemplify a particular category, experience or phenomenon.

Example of a representative case studyIn the 1920s, two sociologists used Muncie, Indiana as a case study of a typical American city that supposedly exemplified the changing culture of the US at the time.

While case studies focus more on concrete details than general theories, they should usually have some connection with theory in the field. This way the case study is not just an isolated description, but is integrated into existing knowledge about the topic. It might aim to:

  • Exemplify a theory by showing how it explains the case under investigation
  • Expand on a theory by uncovering new concepts and ideas that need to be incorporated
  • Challenge a theory by exploring an outlier case that doesn’t fit with established assumptions

To ensure that your analysis of the case has a solid academic grounding, you should conduct a literature review of sources related to the topic and develop a theoretical framework . This means identifying key concepts and theories to guide your analysis and interpretation.

There are many different research methods you can use to collect data on your subject. Case studies tend to focus on qualitative data using methods such as interviews , observations , and analysis of primary and secondary sources (e.g., newspaper articles, photographs, official records). Sometimes a case study will also collect quantitative data.

Example of a mixed methods case studyFor a case study of a wind farm development in a rural area, you could collect quantitative data on employment rates and business revenue, collect qualitative data on local people’s perceptions and experiences, and analyze local and national media coverage of the development.

The aim is to gain as thorough an understanding as possible of the case and its context.

In writing up the case study, you need to bring together all the relevant aspects to give as complete a picture as possible of the subject.

How you report your findings depends on the type of research you are doing. Some case studies are structured like a standard scientific paper or thesis , with separate sections or chapters for the methods , results and discussion .

Others are written in a more narrative style, aiming to explore the case from various angles and analyze its meanings and implications (for example, by using textual analysis or discourse analysis ).

In all cases, though, make sure to give contextual details about the case, connect it back to the literature and theory, and discuss how it fits into wider patterns or debates.

If you want to know more about statistics , methodology , or research bias , make sure to check out some of our other articles with explanations and examples.

  • Normal distribution
  • Degrees of freedom
  • Null hypothesis
  • Discourse analysis
  • Control groups
  • Mixed methods research
  • Non-probability sampling
  • Quantitative research
  • Ecological validity

Research bias

  • Rosenthal effect
  • Implicit bias
  • Cognitive bias
  • Selection bias
  • Negativity bias
  • Status quo bias

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

McCombes, S. (2023, November 20). What Is a Case Study? | Definition, Examples & Methods. Scribbr. Retrieved April 2, 2024, from https://www.scribbr.com/methodology/case-study/

Is this article helpful?

Shona McCombes

Shona McCombes

Other students also liked, primary vs. secondary sources | difference & examples, what is a theoretical framework | guide to organizing, what is action research | definition & examples, unlimited academic ai-proofreading.

✔ Document error-free in 5minutes ✔ Unlimited document corrections ✔ Specialized in correcting academic texts

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, automatically generate references for free.

  • Knowledge Base
  • Methodology
  • Case Study | Definition, Examples & Methods

Case Study | Definition, Examples & Methods

Published on 5 May 2022 by Shona McCombes . Revised on 30 January 2023.

A case study is a detailed study of a specific subject, such as a person, group, place, event, organisation, or phenomenon. Case studies are commonly used in social, educational, clinical, and business research.

A case study research design usually involves qualitative methods , but quantitative methods are sometimes also used. Case studies are good for describing , comparing, evaluating, and understanding different aspects of a research problem .

Table of contents

When to do a case study, step 1: select a case, step 2: build a theoretical framework, step 3: collect your data, step 4: describe and analyse the case.

A case study is an appropriate research design when you want to gain concrete, contextual, in-depth knowledge about a specific real-world subject. It allows you to explore the key characteristics, meanings, and implications of the case.

Case studies are often a good choice in a thesis or dissertation . They keep your project focused and manageable when you don’t have the time or resources to do large-scale research.

You might use just one complex case study where you explore a single subject in depth, or conduct multiple case studies to compare and illuminate different aspects of your research problem.

Prevent plagiarism, run a free check.

Once you have developed your problem statement and research questions , you should be ready to choose the specific case that you want to focus on. A good case study should have the potential to:

  • Provide new or unexpected insights into the subject
  • Challenge or complicate existing assumptions and theories
  • Propose practical courses of action to resolve a problem
  • Open up new directions for future research

Unlike quantitative or experimental research, a strong case study does not require a random or representative sample. In fact, case studies often deliberately focus on unusual, neglected, or outlying cases which may shed new light on the research problem.

If you find yourself aiming to simultaneously investigate and solve an issue, consider conducting action research . As its name suggests, action research conducts research and takes action at the same time, and is highly iterative and flexible. 

However, you can also choose a more common or representative case to exemplify a particular category, experience, or phenomenon.

While case studies focus more on concrete details than general theories, they should usually have some connection with theory in the field. This way the case study is not just an isolated description, but is integrated into existing knowledge about the topic. It might aim to:

  • Exemplify a theory by showing how it explains the case under investigation
  • Expand on a theory by uncovering new concepts and ideas that need to be incorporated
  • Challenge a theory by exploring an outlier case that doesn’t fit with established assumptions

To ensure that your analysis of the case has a solid academic grounding, you should conduct a literature review of sources related to the topic and develop a theoretical framework . This means identifying key concepts and theories to guide your analysis and interpretation.

There are many different research methods you can use to collect data on your subject. Case studies tend to focus on qualitative data using methods such as interviews, observations, and analysis of primary and secondary sources (e.g., newspaper articles, photographs, official records). Sometimes a case study will also collect quantitative data .

The aim is to gain as thorough an understanding as possible of the case and its context.

In writing up the case study, you need to bring together all the relevant aspects to give as complete a picture as possible of the subject.

How you report your findings depends on the type of research you are doing. Some case studies are structured like a standard scientific paper or thesis, with separate sections or chapters for the methods , results , and discussion .

Others are written in a more narrative style, aiming to explore the case from various angles and analyse its meanings and implications (for example, by using textual analysis or discourse analysis ).

In all cases, though, make sure to give contextual details about the case, connect it back to the literature and theory, and discuss how it fits into wider patterns or debates.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the ‘Cite this Scribbr article’ button to automatically add the citation to our free Reference Generator.

McCombes, S. (2023, January 30). Case Study | Definition, Examples & Methods. Scribbr. Retrieved 2 April 2024, from https://www.scribbr.co.uk/research-methods/case-studies/

Is this article helpful?

Shona McCombes

Shona McCombes

Other students also liked, correlational research | guide, design & examples, a quick guide to experimental design | 5 steps & examples, descriptive research design | definition, methods & examples.

Organizing Your Social Sciences Research Assignments

  • Annotated Bibliography
  • Analyzing a Scholarly Journal Article
  • Group Presentations
  • Dealing with Nervousness
  • Using Visual Aids
  • Grading Someone Else's Paper
  • Types of Structured Group Activities
  • Group Project Survival Skills
  • Leading a Class Discussion
  • Multiple Book Review Essay
  • Reviewing Collected Works
  • Writing a Case Analysis Paper
  • Writing a Case Study
  • About Informed Consent
  • Writing Field Notes
  • Writing a Policy Memo
  • Writing a Reflective Paper
  • Writing a Research Proposal
  • Generative AI and Writing
  • Acknowledgments

Definition and Introduction

Case analysis is a problem-based teaching and learning method that involves critically analyzing complex scenarios within an organizational setting for the purpose of placing the student in a “real world” situation and applying reflection and critical thinking skills to contemplate appropriate solutions, decisions, or recommended courses of action. It is considered a more effective teaching technique than in-class role playing or simulation activities. The analytical process is often guided by questions provided by the instructor that ask students to contemplate relationships between the facts and critical incidents described in the case.

Cases generally include both descriptive and statistical elements and rely on students applying abductive reasoning to develop and argue for preferred or best outcomes [i.e., case scenarios rarely have a single correct or perfect answer based on the evidence provided]. Rather than emphasizing theories or concepts, case analysis assignments emphasize building a bridge of relevancy between abstract thinking and practical application and, by so doing, teaches the value of both within a specific area of professional practice.

Given this, the purpose of a case analysis paper is to present a structured and logically organized format for analyzing the case situation. It can be assigned to students individually or as a small group assignment and it may include an in-class presentation component. Case analysis is predominately taught in economics and business-related courses, but it is also a method of teaching and learning found in other applied social sciences disciplines, such as, social work, public relations, education, journalism, and public administration.

Ellet, William. The Case Study Handbook: A Student's Guide . Revised Edition. Boston, MA: Harvard Business School Publishing, 2018; Christoph Rasche and Achim Seisreiner. Guidelines for Business Case Analysis . University of Potsdam; Writing a Case Analysis . Writing Center, Baruch College; Volpe, Guglielmo. "Case Teaching in Economics: History, Practice and Evidence." Cogent Economics and Finance 3 (December 2015). doi:https://doi.org/10.1080/23322039.2015.1120977.

How to Approach Writing a Case Analysis Paper

The organization and structure of a case analysis paper can vary depending on the organizational setting, the situation, and how your professor wants you to approach the assignment. Nevertheless, preparing to write a case analysis paper involves several important steps. As Hawes notes, a case analysis assignment “...is useful in developing the ability to get to the heart of a problem, analyze it thoroughly, and to indicate the appropriate solution as well as how it should be implemented” [p.48]. This statement encapsulates how you should approach preparing to write a case analysis paper.

Before you begin to write your paper, consider the following analytical procedures:

  • Review the case to get an overview of the situation . A case can be only a few pages in length, however, it is most often very lengthy and contains a significant amount of detailed background information and statistics, with multilayered descriptions of the scenario, the roles and behaviors of various stakeholder groups, and situational events. Therefore, a quick reading of the case will help you gain an overall sense of the situation and illuminate the types of issues and problems that you will need to address in your paper. If your professor has provided questions intended to help frame your analysis, use them to guide your initial reading of the case.
  • Read the case thoroughly . After gaining a general overview of the case, carefully read the content again with the purpose of understanding key circumstances, events, and behaviors among stakeholder groups. Look for information or data that appears contradictory, extraneous, or misleading. At this point, you should be taking notes as you read because this will help you develop a general outline of your paper. The aim is to obtain a complete understanding of the situation so that you can begin contemplating tentative answers to any questions your professor has provided or, if they have not provided, developing answers to your own questions about the case scenario and its connection to the course readings,lectures, and class discussions.
  • Determine key stakeholder groups, issues, and events and the relationships they all have to each other . As you analyze the content, pay particular attention to identifying individuals, groups, or organizations described in the case and identify evidence of any problems or issues of concern that impact the situation in a negative way. Other things to look for include identifying any assumptions being made by or about each stakeholder, potential biased explanations or actions, explicit demands or ultimatums , and the underlying concerns that motivate these behaviors among stakeholders. The goal at this stage is to develop a comprehensive understanding of the situational and behavioral dynamics of the case and the explicit and implicit consequences of each of these actions.
  • Identify the core problems . The next step in most case analysis assignments is to discern what the core [i.e., most damaging, detrimental, injurious] problems are within the organizational setting and to determine their implications. The purpose at this stage of preparing to write your analysis paper is to distinguish between the symptoms of core problems and the core problems themselves and to decide which of these must be addressed immediately and which problems do not appear critical but may escalate over time. Identify evidence from the case to support your decisions by determining what information or data is essential to addressing the core problems and what information is not relevant or is misleading.
  • Explore alternative solutions . As noted, case analysis scenarios rarely have only one correct answer. Therefore, it is important to keep in mind that the process of analyzing the case and diagnosing core problems, while based on evidence, is a subjective process open to various avenues of interpretation. This means that you must consider alternative solutions or courses of action by critically examining strengths and weaknesses, risk factors, and the differences between short and long-term solutions. For each possible solution or course of action, consider the consequences they may have related to their implementation and how these recommendations might lead to new problems. Also, consider thinking about your recommended solutions or courses of action in relation to issues of fairness, equity, and inclusion.
  • Decide on a final set of recommendations . The last stage in preparing to write a case analysis paper is to assert an opinion or viewpoint about the recommendations needed to help resolve the core problems as you see them and to make a persuasive argument for supporting this point of view. Prepare a clear rationale for your recommendations based on examining each element of your analysis. Anticipate possible obstacles that could derail their implementation. Consider any counter-arguments that could be made concerning the validity of your recommended actions. Finally, describe a set of criteria and measurable indicators that could be applied to evaluating the effectiveness of your implementation plan.

Use these steps as the framework for writing your paper. Remember that the more detailed you are in taking notes as you critically examine each element of the case, the more information you will have to draw from when you begin to write. This will save you time.

NOTE : If the process of preparing to write a case analysis paper is assigned as a student group project, consider having each member of the group analyze a specific element of the case, including drafting answers to the corresponding questions used by your professor to frame the analysis. This will help make the analytical process more efficient and ensure that the distribution of work is equitable. This can also facilitate who is responsible for drafting each part of the final case analysis paper and, if applicable, the in-class presentation.

Framework for Case Analysis . College of Management. University of Massachusetts; Hawes, Jon M. "Teaching is Not Telling: The Case Method as a Form of Interactive Learning." Journal for Advancement of Marketing Education 5 (Winter 2004): 47-54; Rasche, Christoph and Achim Seisreiner. Guidelines for Business Case Analysis . University of Potsdam; Writing a Case Study Analysis . University of Arizona Global Campus Writing Center; Van Ness, Raymond K. A Guide to Case Analysis . School of Business. State University of New York, Albany; Writing a Case Analysis . Business School, University of New South Wales.

Structure and Writing Style

A case analysis paper should be detailed, concise, persuasive, clearly written, and professional in tone and in the use of language . As with other forms of college-level academic writing, declarative statements that convey information, provide a fact, or offer an explanation or any recommended courses of action should be based on evidence. If allowed by your professor, any external sources used to support your analysis, such as course readings, should be properly cited under a list of references. The organization and structure of case analysis papers can vary depending on your professor’s preferred format, but its structure generally follows the steps used for analyzing the case.

Introduction

The introduction should provide a succinct but thorough descriptive overview of the main facts, issues, and core problems of the case . The introduction should also include a brief summary of the most relevant details about the situation and organizational setting. This includes defining the theoretical framework or conceptual model on which any questions were used to frame your analysis.

Following the rules of most college-level research papers, the introduction should then inform the reader how the paper will be organized. This includes describing the major sections of the paper and the order in which they will be presented. Unless you are told to do so by your professor, you do not need to preview your final recommendations in the introduction. U nlike most college-level research papers , the introduction does not include a statement about the significance of your findings because a case analysis assignment does not involve contributing new knowledge about a research problem.

Background Analysis

Background analysis can vary depending on any guiding questions provided by your professor and the underlying concept or theory that the case is based upon. In general, however, this section of your paper should focus on:

  • Providing an overarching analysis of problems identified from the case scenario, including identifying events that stakeholders find challenging or troublesome,
  • Identifying assumptions made by each stakeholder and any apparent biases they may exhibit,
  • Describing any demands or claims made by or forced upon key stakeholders, and
  • Highlighting any issues of concern or complaints expressed by stakeholders in response to those demands or claims.

These aspects of the case are often in the form of behavioral responses expressed by individuals or groups within the organizational setting. However, note that problems in a case situation can also be reflected in data [or the lack thereof] and in the decision-making, operational, cultural, or institutional structure of the organization. Additionally, demands or claims can be either internal and external to the organization [e.g., a case analysis involving a president considering arms sales to Saudi Arabia could include managing internal demands from White House advisors as well as demands from members of Congress].

Throughout this section, present all relevant evidence from the case that supports your analysis. Do not simply claim there is a problem, an assumption, a demand, or a concern; tell the reader what part of the case informed how you identified these background elements.

Identification of Problems

In most case analysis assignments, there are problems, and then there are problems . Each problem can reflect a multitude of underlying symptoms that are detrimental to the interests of the organization. The purpose of identifying problems is to teach students how to differentiate between problems that vary in severity, impact, and relative importance. Given this, problems can be described in three general forms: those that must be addressed immediately, those that should be addressed but the impact is not severe, and those that do not require immediate attention and can be set aside for the time being.

All of the problems you identify from the case should be identified in this section of your paper, with a description based on evidence explaining the problem variances. If the assignment asks you to conduct research to further support your assessment of the problems, include this in your explanation. Remember to cite those sources in a list of references. Use specific evidence from the case and apply appropriate concepts, theories, and models discussed in class or in relevant course readings to highlight and explain the key problems [or problem] that you believe must be solved immediately and describe the underlying symptoms and why they are so critical.

Alternative Solutions

This section is where you provide specific, realistic, and evidence-based solutions to the problems you have identified and make recommendations about how to alleviate the underlying symptomatic conditions impacting the organizational setting. For each solution, you must explain why it was chosen and provide clear evidence to support your reasoning. This can include, for example, course readings and class discussions as well as research resources, such as, books, journal articles, research reports, or government documents. In some cases, your professor may encourage you to include personal, anecdotal experiences as evidence to support why you chose a particular solution or set of solutions. Using anecdotal evidence helps promote reflective thinking about the process of determining what qualifies as a core problem and relevant solution .

Throughout this part of the paper, keep in mind the entire array of problems that must be addressed and describe in detail the solutions that might be implemented to resolve these problems.

Recommended Courses of Action

In some case analysis assignments, your professor may ask you to combine the alternative solutions section with your recommended courses of action. However, it is important to know the difference between the two. A solution refers to the answer to a problem. A course of action refers to a procedure or deliberate sequence of activities adopted to proactively confront a situation, often in the context of accomplishing a goal. In this context, proposed courses of action are based on your analysis of alternative solutions. Your description and justification for pursuing each course of action should represent the overall plan for implementing your recommendations.

For each course of action, you need to explain the rationale for your recommendation in a way that confronts challenges, explains risks, and anticipates any counter-arguments from stakeholders. Do this by considering the strengths and weaknesses of each course of action framed in relation to how the action is expected to resolve the core problems presented, the possible ways the action may affect remaining problems, and how the recommended action will be perceived by each stakeholder.

In addition, you should describe the criteria needed to measure how well the implementation of these actions is working and explain which individuals or groups are responsible for ensuring your recommendations are successful. In addition, always consider the law of unintended consequences. Outline difficulties that may arise in implementing each course of action and describe how implementing the proposed courses of action [either individually or collectively] may lead to new problems [both large and small].

Throughout this section, you must consider the costs and benefits of recommending your courses of action in relation to uncertainties or missing information and the negative consequences of success.

The conclusion should be brief and introspective. Unlike a research paper, the conclusion in a case analysis paper does not include a summary of key findings and their significance, a statement about how the study contributed to existing knowledge, or indicate opportunities for future research.

Begin by synthesizing the core problems presented in the case and the relevance of your recommended solutions. This can include an explanation of what you have learned about the case in the context of your answers to the questions provided by your professor. The conclusion is also where you link what you learned from analyzing the case with the course readings or class discussions. This can further demonstrate your understanding of the relationships between the practical case situation and the theoretical and abstract content of assigned readings and other course content.

Problems to Avoid

The literature on case analysis assignments often includes examples of difficulties students have with applying methods of critical analysis and effectively reporting the results of their assessment of the situation. A common reason cited by scholars is that the application of this type of teaching and learning method is limited to applied fields of social and behavioral sciences and, as a result, writing a case analysis paper can be unfamiliar to most students entering college.

After you have drafted your paper, proofread the narrative flow and revise any of these common errors:

  • Unnecessary detail in the background section . The background section should highlight the essential elements of the case based on your analysis. Focus on summarizing the facts and highlighting the key factors that become relevant in the other sections of the paper by eliminating any unnecessary information.
  • Analysis relies too much on opinion . Your analysis is interpretive, but the narrative must be connected clearly to evidence from the case and any models and theories discussed in class or in course readings. Any positions or arguments you make should be supported by evidence.
  • Analysis does not focus on the most important elements of the case . Your paper should provide a thorough overview of the case. However, the analysis should focus on providing evidence about what you identify are the key events, stakeholders, issues, and problems. Emphasize what you identify as the most critical aspects of the case to be developed throughout your analysis. Be thorough but succinct.
  • Writing is too descriptive . A paper with too much descriptive information detracts from your analysis of the complexities of the case situation. Questions about what happened, where, when, and by whom should only be included as essential information leading to your examination of questions related to why, how, and for what purpose.
  • Inadequate definition of a core problem and associated symptoms . A common error found in case analysis papers is recommending a solution or course of action without adequately defining or demonstrating that you understand the problem. Make sure you have clearly described the problem and its impact and scope within the organizational setting. Ensure that you have adequately described the root causes w hen describing the symptoms of the problem.
  • Recommendations lack specificity . Identify any use of vague statements and indeterminate terminology, such as, “A particular experience” or “a large increase to the budget.” These statements cannot be measured and, as a result, there is no way to evaluate their successful implementation. Provide specific data and use direct language in describing recommended actions.
  • Unrealistic, exaggerated, or unattainable recommendations . Review your recommendations to ensure that they are based on the situational facts of the case. Your recommended solutions and courses of action must be based on realistic assumptions and fit within the constraints of the situation. Also note that the case scenario has already happened, therefore, any speculation or arguments about what could have occurred if the circumstances were different should be revised or eliminated.

Bee, Lian Song et al. "Business Students' Perspectives on Case Method Coaching for Problem-Based Learning: Impacts on Student Engagement and Learning Performance in Higher Education." Education & Training 64 (2022): 416-432; The Case Analysis . Fred Meijer Center for Writing and Michigan Authors. Grand Valley State University; Georgallis, Panikos and Kayleigh Bruijn. "Sustainability Teaching using Case-Based Debates." Journal of International Education in Business 15 (2022): 147-163; Hawes, Jon M. "Teaching is Not Telling: The Case Method as a Form of Interactive Learning." Journal for Advancement of Marketing Education 5 (Winter 2004): 47-54; Georgallis, Panikos, and Kayleigh Bruijn. "Sustainability Teaching Using Case-based Debates." Journal of International Education in Business 15 (2022): 147-163; .Dean,  Kathy Lund and Charles J. Fornaciari. "How to Create and Use Experiential Case-Based Exercises in a Management Classroom." Journal of Management Education 26 (October 2002): 586-603; Klebba, Joanne M. and Janet G. Hamilton. "Structured Case Analysis: Developing Critical Thinking Skills in a Marketing Case Course." Journal of Marketing Education 29 (August 2007): 132-137, 139; Klein, Norman. "The Case Discussion Method Revisited: Some Questions about Student Skills." Exchange: The Organizational Behavior Teaching Journal 6 (November 1981): 30-32; Mukherjee, Arup. "Effective Use of In-Class Mini Case Analysis for Discovery Learning in an Undergraduate MIS Course." The Journal of Computer Information Systems 40 (Spring 2000): 15-23; Pessoa, Silviaet al. "Scaffolding the Case Analysis in an Organizational Behavior Course: Making Analytical Language Explicit." Journal of Management Education 46 (2022): 226-251: Ramsey, V. J. and L. D. Dodge. "Case Analysis: A Structured Approach." Exchange: The Organizational Behavior Teaching Journal 6 (November 1981): 27-29; Schweitzer, Karen. "How to Write and Format a Business Case Study." ThoughtCo. https://www.thoughtco.com/how-to-write-and-format-a-business-case-study-466324 (accessed December 5, 2022); Reddy, C. D. "Teaching Research Methodology: Everything's a Case." Electronic Journal of Business Research Methods 18 (December 2020): 178-188; Volpe, Guglielmo. "Case Teaching in Economics: History, Practice and Evidence." Cogent Economics and Finance 3 (December 2015). doi:https://doi.org/10.1080/23322039.2015.1120977.

Writing Tip

Ca se Study and Case Analysis Are Not the Same!

Confusion often exists between what it means to write a paper that uses a case study research design and writing a paper that analyzes a case; they are two different types of approaches to learning in the social and behavioral sciences. Professors as well as educational researchers contribute to this confusion because they often use the term "case study" when describing the subject of analysis for a case analysis paper. But you are not studying a case for the purpose of generating a comprehensive, multi-faceted understanding of a research problem. R ather, you are critically analyzing a specific scenario to argue logically for recommended solutions and courses of action that lead to optimal outcomes applicable to professional practice.

To avoid any confusion, here are twelve characteristics that delineate the differences between writing a paper using the case study research method and writing a case analysis paper:

  • Case study is a method of in-depth research and rigorous inquiry ; case analysis is a reliable method of teaching and learning . A case study is a modality of research that investigates a phenomenon for the purpose of creating new knowledge, solving a problem, or testing a hypothesis using empirical evidence derived from the case being studied. Often, the results are used to generalize about a larger population or within a wider context. The writing adheres to the traditional standards of a scholarly research study. A case analysis is a pedagogical tool used to teach students how to reflect and think critically about a practical, real-life problem in an organizational setting.
  • The researcher is responsible for identifying the case to study; a case analysis is assigned by your professor . As the researcher, you choose the case study to investigate in support of obtaining new knowledge and understanding about the research problem. The case in a case analysis assignment is almost always provided, and sometimes written, by your professor and either given to every student in class to analyze individually or to a small group of students, or students select a case to analyze from a predetermined list.
  • A case study is indeterminate and boundless; a case analysis is predetermined and confined . A case study can be almost anything [see item 9 below] as long as it relates directly to examining the research problem. This relationship is the only limit to what a researcher can choose as the subject of their case study. The content of a case analysis is determined by your professor and its parameters are well-defined and limited to elucidating insights of practical value applied to practice.
  • Case study is fact-based and describes actual events or situations; case analysis can be entirely fictional or adapted from an actual situation . The entire content of a case study must be grounded in reality to be a valid subject of investigation in an empirical research study. A case analysis only needs to set the stage for critically examining a situation in practice and, therefore, can be entirely fictional or adapted, all or in-part, from an actual situation.
  • Research using a case study method must adhere to principles of intellectual honesty and academic integrity; a case analysis scenario can include misleading or false information . A case study paper must report research objectively and factually to ensure that any findings are understood to be logically correct and trustworthy. A case analysis scenario may include misleading or false information intended to deliberately distract from the central issues of the case. The purpose is to teach students how to sort through conflicting or useless information in order to come up with the preferred solution. Any use of misleading or false information in academic research is considered unethical.
  • Case study is linked to a research problem; case analysis is linked to a practical situation or scenario . In the social sciences, the subject of an investigation is most often framed as a problem that must be researched in order to generate new knowledge leading to a solution. Case analysis narratives are grounded in real life scenarios for the purpose of examining the realities of decision-making behavior and processes within organizational settings. A case analysis assignments include a problem or set of problems to be analyzed. However, the goal is centered around the act of identifying and evaluating courses of action leading to best possible outcomes.
  • The purpose of a case study is to create new knowledge through research; the purpose of a case analysis is to teach new understanding . Case studies are a choice of methodological design intended to create new knowledge about resolving a research problem. A case analysis is a mode of teaching and learning intended to create new understanding and an awareness of uncertainty applied to practice through acts of critical thinking and reflection.
  • A case study seeks to identify the best possible solution to a research problem; case analysis can have an indeterminate set of solutions or outcomes . Your role in studying a case is to discover the most logical, evidence-based ways to address a research problem. A case analysis assignment rarely has a single correct answer because one of the goals is to force students to confront the real life dynamics of uncertainly, ambiguity, and missing or conflicting information within professional practice. Under these conditions, a perfect outcome or solution almost never exists.
  • Case study is unbounded and relies on gathering external information; case analysis is a self-contained subject of analysis . The scope of a case study chosen as a method of research is bounded. However, the researcher is free to gather whatever information and data is necessary to investigate its relevance to understanding the research problem. For a case analysis assignment, your professor will often ask you to examine solutions or recommended courses of action based solely on facts and information from the case.
  • Case study can be a person, place, object, issue, event, condition, or phenomenon; a case analysis is a carefully constructed synopsis of events, situations, and behaviors . The research problem dictates the type of case being studied and, therefore, the design can encompass almost anything tangible as long as it fulfills the objective of generating new knowledge and understanding. A case analysis is in the form of a narrative containing descriptions of facts, situations, processes, rules, and behaviors within a particular setting and under a specific set of circumstances.
  • Case study can represent an open-ended subject of inquiry; a case analysis is a narrative about something that has happened in the past . A case study is not restricted by time and can encompass an event or issue with no temporal limit or end. For example, the current war in Ukraine can be used as a case study of how medical personnel help civilians during a large military conflict, even though circumstances around this event are still evolving. A case analysis can be used to elicit critical thinking about current or future situations in practice, but the case itself is a narrative about something finite and that has taken place in the past.
  • Multiple case studies can be used in a research study; case analysis involves examining a single scenario . Case study research can use two or more cases to examine a problem, often for the purpose of conducting a comparative investigation intended to discover hidden relationships, document emerging trends, or determine variations among different examples. A case analysis assignment typically describes a stand-alone, self-contained situation and any comparisons among cases are conducted during in-class discussions and/or student presentations.

The Case Analysis . Fred Meijer Center for Writing and Michigan Authors. Grand Valley State University; Mills, Albert J. , Gabrielle Durepos, and Eiden Wiebe, editors. Encyclopedia of Case Study Research . Thousand Oaks, CA: SAGE Publications, 2010; Ramsey, V. J. and L. D. Dodge. "Case Analysis: A Structured Approach." Exchange: The Organizational Behavior Teaching Journal 6 (November 1981): 27-29; Yin, Robert K. Case Study Research and Applications: Design and Methods . 6th edition. Thousand Oaks, CA: Sage, 2017; Crowe, Sarah et al. “The Case Study Approach.” BMC Medical Research Methodology 11 (2011):  doi: 10.1186/1471-2288-11-100; Yin, Robert K. Case Study Research: Design and Methods . 4th edition. Thousand Oaks, CA: Sage Publishing; 1994.

  • << Previous: Reviewing Collected Works
  • Next: Writing a Case Study >>
  • Last Updated: Mar 6, 2024 1:00 PM
  • URL: https://libguides.usc.edu/writingguide/assignments

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Int J Qual Stud Health Well-being

Methodology or method? A critical review of qualitative case study reports

Despite on-going debate about credibility, and reported limitations in comparison to other approaches, case study is an increasingly popular approach among qualitative researchers. We critically analysed the methodological descriptions of published case studies. Three high-impact qualitative methods journals were searched to locate case studies published in the past 5 years; 34 were selected for analysis. Articles were categorized as health and health services ( n= 12), social sciences and anthropology ( n= 7), or methods ( n= 15) case studies. The articles were reviewed using an adapted version of established criteria to determine whether adequate methodological justification was present, and if study aims, methods, and reported findings were consistent with a qualitative case study approach. Findings were grouped into five themes outlining key methodological issues: case study methodology or method, case of something particular and case selection, contextually bound case study, researcher and case interactions and triangulation, and study design inconsistent with methodology reported. Improved reporting of case studies by qualitative researchers will advance the methodology for the benefit of researchers and practitioners.

Case study research is an increasingly popular approach among qualitative researchers (Thomas, 2011 ). Several prominent authors have contributed to methodological developments, which has increased the popularity of case study approaches across disciplines (Creswell, 2013b ; Denzin & Lincoln, 2011b ; Merriam, 2009 ; Ragin & Becker, 1992 ; Stake, 1995 ; Yin, 2009 ). Current qualitative case study approaches are shaped by paradigm, study design, and selection of methods, and, as a result, case studies in the published literature vary. Differences between published case studies can make it difficult for researchers to define and understand case study as a methodology.

Experienced qualitative researchers have identified case study research as a stand-alone qualitative approach (Denzin & Lincoln, 2011b ). Case study research has a level of flexibility that is not readily offered by other qualitative approaches such as grounded theory or phenomenology. Case studies are designed to suit the case and research question and published case studies demonstrate wide diversity in study design. There are two popular case study approaches in qualitative research. The first, proposed by Stake ( 1995 ) and Merriam ( 2009 ), is situated in a social constructivist paradigm, whereas the second, by Yin ( 2012 ), Flyvbjerg ( 2011 ), and Eisenhardt ( 1989 ), approaches case study from a post-positivist viewpoint. Scholarship from both schools of inquiry has contributed to the popularity of case study and development of theoretical frameworks and principles that characterize the methodology.

The diversity of case studies reported in the published literature, and on-going debates about credibility and the use of case study in qualitative research practice, suggests that differences in perspectives on case study methodology may prevent researchers from developing a mutual understanding of practice and rigour. In addition, discussion about case study limitations has led some authors to query whether case study is indeed a methodology (Luck, Jackson, & Usher, 2006 ; Meyer, 2001 ; Thomas, 2010 ; Tight, 2010 ). Methodological discussion of qualitative case study research is timely, and a review is required to analyse and understand how this methodology is applied in the qualitative research literature. The aims of this study were to review methodological descriptions of published qualitative case studies, to review how the case study methodological approach was applied, and to identify issues that need to be addressed by researchers, editors, and reviewers. An outline of the current definitions of case study and an overview of the issues proposed in the qualitative methodological literature are provided to set the scene for the review.

Definitions of qualitative case study research

Case study research is an investigation and analysis of a single or collective case, intended to capture the complexity of the object of study (Stake, 1995 ). Qualitative case study research, as described by Stake ( 1995 ), draws together “naturalistic, holistic, ethnographic, phenomenological, and biographic research methods” in a bricoleur design, or in his words, “a palette of methods” (Stake, 1995 , pp. xi–xii). Case study methodology maintains deep connections to core values and intentions and is “particularistic, descriptive and heuristic” (Merriam, 2009 , p. 46).

As a study design, case study is defined by interest in individual cases rather than the methods of inquiry used. The selection of methods is informed by researcher and case intuition and makes use of naturally occurring sources of knowledge, such as people or observations of interactions that occur in the physical space (Stake, 1998 ). Thomas ( 2011 ) suggested that “analytical eclecticism” is a defining factor (p. 512). Multiple data collection and analysis methods are adopted to further develop and understand the case, shaped by context and emergent data (Stake, 1995 ). This qualitative approach “explores a real-life, contemporary bounded system (a case ) or multiple bounded systems (cases) over time, through detailed, in-depth data collection involving multiple sources of information … and reports a case description and case themes ” (Creswell, 2013b , p. 97). Case study research has been defined by the unit of analysis, the process of study, and the outcome or end product, all essentially the case (Merriam, 2009 ).

The case is an object to be studied for an identified reason that is peculiar or particular. Classification of the case and case selection procedures informs development of the study design and clarifies the research question. Stake ( 1995 ) proposed three types of cases and study design frameworks. These include the intrinsic case, the instrumental case, and the collective instrumental case. The intrinsic case is used to understand the particulars of a single case, rather than what it represents. An instrumental case study provides insight on an issue or is used to refine theory. The case is selected to advance understanding of the object of interest. A collective refers to an instrumental case which is studied as multiple, nested cases, observed in unison, parallel, or sequential order. More than one case can be simultaneously studied; however, each case study is a concentrated, single inquiry, studied holistically in its own entirety (Stake, 1995 , 1998 ).

Researchers who use case study are urged to seek out what is common and what is particular about the case. This involves careful and in-depth consideration of the nature of the case, historical background, physical setting, and other institutional and political contextual factors (Stake, 1998 ). An interpretive or social constructivist approach to qualitative case study research supports a transactional method of inquiry, where the researcher has a personal interaction with the case. The case is developed in a relationship between the researcher and informants, and presented to engage the reader, inviting them to join in this interaction and in case discovery (Stake, 1995 ). A postpositivist approach to case study involves developing a clear case study protocol with careful consideration of validity and potential bias, which might involve an exploratory or pilot phase, and ensures that all elements of the case are measured and adequately described (Yin, 2009 , 2012 ).

Current methodological issues in qualitative case study research

The future of qualitative research will be influenced and constructed by the way research is conducted, and by what is reviewed and published in academic journals (Morse, 2011 ). If case study research is to further develop as a principal qualitative methodological approach, and make a valued contribution to the field of qualitative inquiry, issues related to methodological credibility must be considered. Researchers are required to demonstrate rigour through adequate descriptions of methodological foundations. Case studies published without sufficient detail for the reader to understand the study design, and without rationale for key methodological decisions, may lead to research being interpreted as lacking in quality or credibility (Hallberg, 2013 ; Morse, 2011 ).

There is a level of artistic license that is embraced by qualitative researchers and distinguishes practice, which nurtures creativity, innovation, and reflexivity (Denzin & Lincoln, 2011b ; Morse, 2009 ). Qualitative research is “inherently multimethod” (Denzin & Lincoln, 2011a , p. 5); however, with this creative freedom, it is important for researchers to provide adequate description for methodological justification (Meyer, 2001 ). This includes paradigm and theoretical perspectives that have influenced study design. Without adequate description, study design might not be understood by the reader, and can appear to be dishonest or inaccurate. Reviewers and readers might be confused by the inconsistent or inappropriate terms used to describe case study research approach and methods, and be distracted from important study findings (Sandelowski, 2000 ). This issue extends beyond case study research, and others have noted inconsistencies in reporting of methodology and method by qualitative researchers. Sandelowski ( 2000 , 2010 ) argued for accurate identification of qualitative description as a research approach. She recommended that the selected methodology should be harmonious with the study design, and be reflected in methods and analysis techniques. Similarly, Webb and Kevern ( 2000 ) uncovered inconsistencies in qualitative nursing research with focus group methods, recommending that methodological procedures must cite seminal authors and be applied with respect to the selected theoretical framework. Incorrect labelling using case study might stem from the flexibility in case study design and non-directional character relative to other approaches (Rosenberg & Yates, 2007 ). Methodological integrity is required in design of qualitative studies, including case study, to ensure study rigour and to enhance credibility of the field (Morse, 2011 ).

Case study has been unnecessarily devalued by comparisons with statistical methods (Eisenhardt, 1989 ; Flyvbjerg, 2006 , 2011 ; Jensen & Rodgers, 2001 ; Piekkari, Welch, & Paavilainen, 2009 ; Tight, 2010 ; Yin, 1999 ). It is reputed to be the “the weak sibling” in comparison to other, more rigorous, approaches (Yin, 2009 , p. xiii). Case study is not an inherently comparative approach to research. The objective is not statistical research, and the aim is not to produce outcomes that are generalizable to all populations (Thomas, 2011 ). Comparisons between case study and statistical research do little to advance this qualitative approach, and fail to recognize its inherent value, which can be better understood from the interpretive or social constructionist viewpoint of other authors (Merriam, 2009 ; Stake, 1995 ). Building on discussions relating to “fuzzy” (Bassey, 2001 ), or naturalistic generalizations (Stake, 1978 ), or transference of concepts and theories (Ayres, Kavanaugh, & Knafl, 2003 ; Morse et al., 2011 ) would have more relevance.

Case study research has been used as a catch-all design to justify or add weight to fundamental qualitative descriptive studies that do not fit with other traditional frameworks (Merriam, 2009 ). A case study has been a “convenient label for our research—when we ‘can't think of anything ‘better”—in an attempt to give it [qualitative methodology] some added respectability” (Tight, 2010 , p. 337). Qualitative case study research is a pliable approach (Merriam, 2009 ; Meyer, 2001 ; Stake, 1995 ), and has been likened to a “curious methodological limbo” (Gerring, 2004 , p. 341) or “paradigmatic bridge” (Luck et al., 2006 , p. 104), that is on the borderline between postpositivist and constructionist interpretations. This has resulted in inconsistency in application, which indicates that flexibility comes with limitations (Meyer, 2001 ), and the open nature of case study research might be off-putting to novice researchers (Thomas, 2011 ). The development of a well-(in)formed theoretical framework to guide a case study should improve consistency, rigour, and trust in studies published in qualitative research journals (Meyer, 2001 ).

Assessment of rigour

The purpose of this study was to analyse the methodological descriptions of case studies published in qualitative methods journals. To do this we needed to develop a suitable framework, which used existing, established criteria for appraising qualitative case study research rigour (Creswell, 2013b ; Merriam, 2009 ; Stake, 1995 ). A number of qualitative authors have developed concepts and criteria that are used to determine whether a study is rigorous (Denzin & Lincoln, 2011b ; Lincoln, 1995 ; Sandelowski & Barroso, 2002 ). The criteria proposed by Stake ( 1995 ) provide a framework for readers and reviewers to make judgements regarding case study quality, and identify key characteristics essential for good methodological rigour. Although each of the factors listed in Stake's criteria could enhance the quality of a qualitative research report, in Table I we present an adapted criteria used in this study, which integrates more recent work by Merriam ( 2009 ) and Creswell ( 2013b ). Stake's ( 1995 ) original criteria were separated into two categories. The first list of general criteria is “relevant for all qualitative research.” The second list, “high relevance to qualitative case study research,” was the criteria that we decided had higher relevance to case study research. This second list was the main criteria used to assess the methodological descriptions of the case studies reviewed. The complete table has been preserved so that the reader can determine how the original criteria were adapted.

Framework for assessing quality in qualitative case study research.

Adapted from Stake ( 1995 , p. 131).

Study design

The critical review method described by Grant and Booth ( 2009 ) was used, which is appropriate for the assessment of research quality, and is used for literature analysis to inform research and practice. This type of review goes beyond the mapping and description of scoping or rapid reviews, to include “analysis and conceptual innovation” (Grant & Booth, 2009 , p. 93). A critical review is used to develop existing, or produce new, hypotheses or models. This is different to systematic reviews that answer clinical questions. It is used to evaluate existing research and competing ideas, to provide a “launch pad” for conceptual development and “subsequent testing” (Grant & Booth, 2009 , p. 93).

Qualitative methods journals were located by a search of the 2011 ISI Journal Citation Reports in Social Science, via the database Web of Knowledge (see m.webofknowledge.com). No “qualitative research methods” category existed in the citation reports; therefore, a search of all categories was performed using the term “qualitative.” In Table II , we present the qualitative methods journals located, ranked by impact factor. The highest ranked journals were selected for searching. We acknowledge that the impact factor ranking system might not be the best measure of journal quality (Cheek, Garnham, & Quan, 2006 ); however, this was the most appropriate and accessible method available.

International Journal of Qualitative Studies on Health and Well-being.

Search strategy

In March 2013, searches of the journals, Qualitative Health Research , Qualitative Research , and Qualitative Inquiry were completed to retrieve studies with “case study” in the abstract field. The search was limited to the past 5 years (1 January 2008 to 1 March 2013). The objective was to locate published qualitative case studies suitable for assessment using the adapted criterion. Viewpoints, commentaries, and other article types were excluded from review. Title and abstracts of the 45 retrieved articles were read by the first author, who identified 34 empirical case studies for review. All authors reviewed the 34 studies to confirm selection and categorization. In Table III , we present the 34 case studies grouped by journal, and categorized by research topic, including health sciences, social sciences and anthropology, and methods research. There was a discrepancy in categorization of one article on pedagogy and a new teaching method published in Qualitative Inquiry (Jorrín-Abellán, Rubia-Avi, Anguita-Martínez, Gómez-Sánchez, & Martínez-Mones, 2008 ). Consensus was to allocate to the methods category.

Outcomes of search of qualitative methods journals.

In Table III , the number of studies located, and final numbers selected for review have been reported. Qualitative Health Research published the most empirical case studies ( n= 16). In the health category, there were 12 case studies of health conditions, health services, and health policy issues, all published in Qualitative Health Research . Seven case studies were categorized as social sciences and anthropology research, which combined case study with biography and ethnography methodologies. All three journals published case studies on methods research to illustrate a data collection or analysis technique, methodological procedure, or related issue.

The methodological descriptions of 34 case studies were critically reviewed using the adapted criteria. All articles reviewed contained a description of study methods; however, the length, amount of detail, and position of the description in the article varied. Few studies provided an accurate description and rationale for using a qualitative case study approach. In the 34 case studies reviewed, three described a theoretical framework informed by Stake ( 1995 ), two by Yin ( 2009 ), and three provided a mixed framework informed by various authors, which might have included both Yin and Stake. Few studies described their case study design, or included a rationale that explained why they excluded or added further procedures, and whether this was to enhance the study design, or to better suit the research question. In 26 of the studies no reference was provided to principal case study authors. From reviewing the description of methods, few authors provided a description or justification of case study methodology that demonstrated how their study was informed by the methodological literature that exists on this approach.

The methodological descriptions of each study were reviewed using the adapted criteria, and the following issues were identified: case study methodology or method; case of something particular and case selection; contextually bound case study; researcher and case interactions and triangulation; and, study design inconsistent with methodology. An outline of how the issues were developed from the critical review is provided, followed by a discussion of how these relate to the current methodological literature.

Case study methodology or method

A third of the case studies reviewed appeared to use a case report method, not case study methodology as described by principal authors (Creswell, 2013b ; Merriam, 2009 ; Stake, 1995 ; Yin, 2009 ). Case studies were identified as a case report because of missing methodological detail and by review of the study aims and purpose. These reports presented data for small samples of no more than three people, places or phenomenon. Four studies, or “case reports” were single cases selected retrospectively from larger studies (Bronken, Kirkevold, Martinsen, & Kvigne, 2012 ; Coltart & Henwood, 2012 ; Hooghe, Neimeyer, & Rober, 2012 ; Roscigno et al., 2012 ). Case reports were not a case of something, instead were a case demonstration or an example presented in a report. These reports presented outcomes, and reported on how the case could be generalized. Descriptions focussed on the phenomena, rather than the case itself, and did not appear to study the case in its entirety.

Case reports had minimal in-text references to case study methodology, and were informed by other qualitative traditions or secondary sources (Adamson & Holloway, 2012 ; Buzzanell & D'Enbeau, 2009 ; Nagar-Ron & Motzafi-Haller, 2011 ). This does not suggest that case study methodology cannot be multimethod, however, methodology should be consistent in design, be clearly described (Meyer, 2001 ; Stake, 1995 ), and maintain focus on the case (Creswell, 2013b ).

To demonstrate how case reports were identified, three examples are provided. The first, Yeh ( 2013 ) described their study as, “the examination of the emergence of vegetarianism in Victorian England serves as a case study to reveal the relationships between boundaries and entities” (p. 306). The findings were a historical case report, which resulted from an ethnographic study of vegetarianism. Cunsolo Willox, Harper, Edge, ‘My Word’: Storytelling and Digital Media Lab, and Rigolet Inuit Community Government (2013) used “a case study that illustrates the usage of digital storytelling within an Inuit community” (p. 130). This case study reported how digital storytelling can be used with indigenous communities as a participatory method to illuminate the benefits of this method for other studies. This “case study was conducted in the Inuit community” but did not include the Inuit community in case analysis (Cunsolo Willox et al., 2013 , p. 130). Bronken et al. ( 2012 ) provided a single case report to demonstrate issues observed in a larger clinical study of aphasia and stroke, without adequate case description or analysis.

Case study of something particular and case selection

Case selection is a precursor to case analysis, which needs to be presented as a convincing argument (Merriam, 2009 ). Descriptions of the case were often not adequate to ascertain why the case was selected, or whether it was a particular exemplar or outlier (Thomas, 2011 ). In a number of case studies in the health and social science categories, it was not explicit whether the case was of something particular, or peculiar to their discipline or field (Adamson & Holloway, 2012 ; Bronken et al., 2012 ; Colón-Emeric et al., 2010 ; Jackson, Botelho, Welch, Joseph, & Tennstedt, 2012 ; Mawn et al., 2010 ; Snyder-Young, 2011 ). There were exceptions in the methods category ( Table III ), where cases were selected by researchers to report on a new or innovative method. The cases emerged through heuristic study, and were reported to be particular, relative to the existing methods literature (Ajodhia-Andrews & Berman, 2009 ; Buckley & Waring, 2013 ; Cunsolo Willox et al., 2013 ; De Haene, Grietens, & Verschueren, 2010 ; Gratton & O'Donnell, 2011 ; Sumsion, 2013 ; Wimpenny & Savin-Baden, 2012 ).

Case selection processes were sometimes insufficient to understand why the case was selected from the global population of cases, or what study of this case would contribute to knowledge as compared with other possible cases (Adamson & Holloway, 2012 ; Bronken et al., 2012 ; Colón-Emeric et al., 2010 ; Jackson et al., 2012 ; Mawn et al., 2010 ). In two studies, local cases were selected (Barone, 2010 ; Fourie & Theron, 2012 ) because the researcher was familiar with and had access to the case. Possible limitations of a convenience sample were not acknowledged. Purposeful sampling was used to recruit participants within the case of one study, but not of the case itself (Gallagher et al., 2013 ). Random sampling was completed for case selection in two studies (Colón-Emeric et al., 2010 ; Jackson et al., 2012 ), which has limited meaning in interpretive qualitative research.

To demonstrate how researchers provided a good justification for the selection of case study approaches, four examples are provided. The first, cases of residential care homes, were selected because of reported occurrences of mistreatment, which included residents being locked in rooms at night (Rytterström, Unosson, & Arman, 2013 ). Roscigno et al. ( 2012 ) selected cases of parents who were admitted for early hospitalization in neonatal intensive care with a threatened preterm delivery before 26 weeks. Hooghe et al. ( 2012 ) used random sampling to select 20 couples that had experienced the death of a child; however, the case study was of one couple and a particular metaphor described only by them. The final example, Coltart and Henwood ( 2012 ), provided a detailed account of how they selected two cases from a sample of 46 fathers based on personal characteristics and beliefs. They described how the analysis of the two cases would contribute to their larger study on first time fathers and parenting.

Contextually bound case study

The limits or boundaries of the case are a defining factor of case study methodology (Merriam, 2009 ; Ragin & Becker, 1992 ; Stake, 1995 ; Yin, 2009 ). Adequate contextual description is required to understand the setting or context in which the case is revealed. In the health category, case studies were used to illustrate a clinical phenomenon or issue such as compliance and health behaviour (Colón-Emeric et al., 2010 ; D'Enbeau, Buzzanell, & Duckworth, 2010 ; Gallagher et al., 2013 ; Hooghe et al., 2012 ; Jackson et al., 2012 ; Roscigno et al., 2012 ). In these case studies, contextual boundaries, such as physical and institutional descriptions, were not sufficient to understand the case as a holistic system, for example, the general practitioner (GP) clinic in Gallagher et al. ( 2013 ), or the nursing home in Colón-Emeric et al. ( 2010 ). Similarly, in the social science and methods categories, attention was paid to some components of the case context, but not others, missing important information required to understand the case as a holistic system (Alexander, Moreira, & Kumar, 2012 ; Buzzanell & D'Enbeau, 2009 ; Nairn & Panelli, 2009 ; Wimpenny & Savin-Baden, 2012 ).

In two studies, vicarious experience or vignettes (Nairn & Panelli, 2009 ) and images (Jorrín-Abellán et al., 2008 ) were effective to support description of context, and might have been a useful addition for other case studies. Missing contextual boundaries suggests that the case might not be adequately defined. Additional information, such as the physical, institutional, political, and community context, would improve understanding of the case (Stake, 1998 ). In Boxes 1 and 2 , we present brief synopses of two studies that were reviewed, which demonstrated a well bounded case. In Box 1 , Ledderer ( 2011 ) used a qualitative case study design informed by Stake's tradition. In Box 2 , Gillard, Witt, and Watts ( 2011 ) were informed by Yin's tradition. By providing a brief outline of the case studies in Boxes 1 and 2 , we demonstrate how effective case boundaries can be constructed and reported, which may be of particular interest to prospective case study researchers.

Article synopsis of case study research using Stake's tradition

Ledderer ( 2011 ) used a qualitative case study research design, informed by modern ethnography. The study is bounded to 10 general practice clinics in Denmark, who had received federal funding to implement preventative care services based on a Motivational Interviewing intervention. The researcher question focussed on “why is it so difficult to create change in medical practice?” (Ledderer, 2011 , p. 27). The study context was adequately described, providing detail on the general practitioner (GP) clinics and relevant political and economic influences. Methodological decisions are described in first person narrative, providing insight on researcher perspectives and interaction with the case. Forty-four interviews were conducted, which focussed on how GPs conducted consultations, and the form, nature and content, rather than asking their opinion or experience (Ledderer, 2011 , p. 30). The duration and intensity of researcher immersion in the case enhanced depth of description and trustworthiness of study findings. Analysis was consistent with Stake's tradition, and the researcher provided examples of inquiry techniques used to challenge assumptions about emerging themes. Several other seminal qualitative works were cited. The themes and typology constructed are rich in narrative data and storytelling by clinic staff, demonstrating individual clinic experiences as well as shared meanings and understandings about changing from a biomedical to psychological approach to preventative health intervention. Conclusions make note of social and cultural meanings and lessons learned, which might not have been uncovered using a different methodology.

Article synopsis of case study research using Yin's tradition

Gillard et al. ( 2011 ) study of camps for adolescents living with HIV/AIDs provided a good example of Yin's interpretive case study approach. The context of the case is bounded by the three summer camps of which the researchers had prior professional involvement. A case study protocol was developed that used multiple methods to gather information at three data collection points coinciding with three youth camps (Teen Forum, Discover Camp, and Camp Strong). Gillard and colleagues followed Yin's ( 2009 ) principles, using a consistent data protocol that enhanced cross-case analysis. Data described the young people, the camp physical environment, camp schedule, objectives and outcomes, and the staff of three youth camps. The findings provided a detailed description of the context, with less detail of individual participants, including insight into researcher's interpretations and methodological decisions throughout the data collection and analysis process. Findings provided the reader with a sense of “being there,” and are discovered through constant comparison of the case with the research issues; the case is the unit of analysis. There is evidence of researcher immersion in the case, and Gillard reports spending significant time in the field in a naturalistic and integrated youth mentor role.

This case study is not intended to have a significant impact on broader health policy, although does have implications for health professionals working with adolescents. Study conclusions will inform future camps for young people with chronic disease, and practitioners are able to compare similarities between this case and their own practice (for knowledge translation). No limitations of this article were reported. Limitations related to publication of this case study were that it was 20 pages long and used three tables to provide sufficient description of the camp and program components, and relationships with the research issue.

Researcher and case interactions and triangulation

Researcher and case interactions and transactions are a defining feature of case study methodology (Stake, 1995 ). Narrative stories, vignettes, and thick description are used to provoke vicarious experience and a sense of being there with the researcher in their interaction with the case. Few of the case studies reviewed provided details of the researcher's relationship with the case, researcher–case interactions, and how these influenced the development of the case study (Buzzanell & D'Enbeau, 2009 ; D'Enbeau et al., 2010 ; Gallagher et al., 2013 ; Gillard et al., 2011 ; Ledderer, 2011 ; Nagar-Ron & Motzafi-Haller, 2011 ). The role and position of the researcher needed to be self-examined and understood by readers, to understand how this influenced interactions with participants, and to determine what triangulation is needed (Merriam, 2009 ; Stake, 1995 ).

Gillard et al. ( 2011 ) provided a good example of triangulation, comparing data sources in a table (p. 1513). Triangulation of sources was used to reveal as much depth as possible in the study by Nagar-Ron and Motzafi-Haller ( 2011 ), while also enhancing confirmation validity. There were several case studies that would have benefited from improved range and use of data sources, and descriptions of researcher–case interactions (Ajodhia-Andrews & Berman, 2009 ; Bronken et al., 2012 ; Fincham, Scourfield, & Langer, 2008 ; Fourie & Theron, 2012 ; Hooghe et al., 2012 ; Snyder-Young, 2011 ; Yeh, 2013 ).

Study design inconsistent with methodology

Good, rigorous case studies require a strong methodological justification (Meyer, 2001 ) and a logical and coherent argument that defines paradigm, methodological position, and selection of study methods (Denzin & Lincoln, 2011b ). Methodological justification was insufficient in several of the studies reviewed (Barone, 2010 ; Bronken et al., 2012 ; Hooghe et al., 2012 ; Mawn et al., 2010 ; Roscigno et al., 2012 ; Yeh, 2013 ). This was judged by the absence, or inadequate or inconsistent reference to case study methodology in-text.

In six studies, the methodological justification provided did not relate to case study. There were common issues identified. Secondary sources were used as primary methodological references indicating that study design might not have been theoretically sound (Colón-Emeric et al., 2010 ; Coltart & Henwood, 2012 ; Roscigno et al., 2012 ; Snyder-Young, 2011 ). Authors and sources cited in methodological descriptions were inconsistent with the actual study design and practices used (Fourie & Theron, 2012 ; Hooghe et al., 2012 ; Jorrín-Abellán et al., 2008 ; Mawn et al., 2010 ; Rytterström et al., 2013 ; Wimpenny & Savin-Baden, 2012 ). This occurred when researchers cited Stake or Yin, or both (Mawn et al., 2010 ; Rytterström et al., 2013 ), although did not follow their paradigmatic or methodological approach. In 26 studies there were no citations for a case study methodological approach.

The findings of this study have highlighted a number of issues for researchers. A considerable number of case studies reviewed were missing key elements that define qualitative case study methodology and the tradition cited. A significant number of studies did not provide a clear methodological description or justification relevant to case study. Case studies in health and social sciences did not provide sufficient information for the reader to understand case selection, and why this case was chosen above others. The context of the cases were not described in adequate detail to understand all relevant elements of the case context, which indicated that cases may have not been contextually bounded. There were inconsistencies between reported methodology, study design, and paradigmatic approach in case studies reviewed, which made it difficult to understand the study methodology and theoretical foundations. These issues have implications for methodological integrity and honesty when reporting study design, which are values of the qualitative research tradition and are ethical requirements (Wager & Kleinert, 2010a ). Poorly described methodological descriptions may lead the reader to misinterpret or discredit study findings, which limits the impact of the study, and, as a collective, hinders advancements in the broader qualitative research field.

The issues highlighted in our review build on current debates in the case study literature, and queries about the value of this methodology. Case study research can be situated within different paradigms or designed with an array of methods. In order to maintain the creativity and flexibility that is valued in this methodology, clearer descriptions of paradigm and theoretical position and methods should be provided so that study findings are not undervalued or discredited. Case study research is an interdisciplinary practice, which means that clear methodological descriptions might be more important for this approach than other methodologies that are predominantly driven by fewer disciplines (Creswell, 2013b ).

Authors frequently omit elements of methodologies and include others to strengthen study design, and we do not propose a rigid or purist ideology in this paper. On the contrary, we encourage new ideas about using case study, together with adequate reporting, which will advance the value and practice of case study. The implications of unclear methodological descriptions in the studies reviewed were that study design appeared to be inconsistent with reported methodology, and key elements required for making judgements of rigour were missing. It was not clear whether the deviations from methodological tradition were made by researchers to strengthen the study design, or because of misinterpretations. Morse ( 2011 ) recommended that innovations and deviations from practice are best made by experienced researchers, and that a novice might be unaware of the issues involved with making these changes. To perpetuate the tradition of case study research, applications in the published literature should have consistencies with traditional methodological constructions, and deviations should be described with a rationale that is inherent in study conduct and findings. Providing methodological descriptions that demonstrate a strong theoretical foundation and coherent study design will add credibility to the study, while ensuring the intrinsic meaning of case study is maintained.

The value of this review is that it contributes to discussion of whether case study is a methodology or method. We propose possible reasons why researchers might make this misinterpretation. Researchers may interchange the terms methods and methodology, and conduct research without adequate attention to epistemology and historical tradition (Carter & Little, 2007 ; Sandelowski, 2010 ). If the rich meaning that naming a qualitative methodology brings to the study is not recognized, a case study might appear to be inconsistent with the traditional approaches described by principal authors (Creswell, 2013a ; Merriam, 2009 ; Stake, 1995 ; Yin, 2009 ). If case studies are not methodologically and theoretically situated, then they might appear to be a case report.

Case reports are promoted by university and medical journals as a method of reporting on medical or scientific cases; guidelines for case reports are publicly available on websites ( http://www.hopkinsmedicine.org/institutional_review_board/guidelines_policies/guidelines/case_report.html ). The various case report guidelines provide a general criteria for case reports, which describes that this form of report does not meet the criteria of research, is used for retrospective analysis of up to three clinical cases, and is primarily illustrative and for educational purposes. Case reports can be published in academic journals, but do not require approval from a human research ethics committee. Traditionally, case reports describe a single case, to explain how and what occurred in a selected setting, for example, to illustrate a new phenomenon that has emerged from a larger study. A case report is not necessarily particular or the study of a case in its entirety, and the larger study would usually be guided by a different research methodology.

This description of a case report is similar to what was provided in some studies reviewed. This form of report lacks methodological grounding and qualities of research rigour. The case report has publication value in demonstrating an example and for dissemination of knowledge (Flanagan, 1999 ). However, case reports have different meaning and purpose to case study, which needs to be distinguished. Findings of our review suggest that the medical understanding of a case report has been confused with qualitative case study approaches.

In this review, a number of case studies did not have methodological descriptions that included key characteristics of case study listed in the adapted criteria, and several issues have been discussed. There have been calls for improvements in publication quality of qualitative research (Morse, 2011 ), and for improvements in peer review of submitted manuscripts (Carter & Little, 2007 ; Jasper, Vaismoradi, Bondas, & Turunen, 2013 ). The challenging nature of editor and reviewers responsibilities are acknowledged in the literature (Hames, 2013 ; Wager & Kleinert, 2010b ); however, review of case study methodology should be prioritized because of disputes on methodological value.

Authors using case study approaches are recommended to describe their theoretical framework and methods clearly, and to seek and follow specialist methodological advice when needed (Wager & Kleinert, 2010a ). Adequate page space for case study description would contribute to better publications (Gillard et al., 2011 ). Capitalizing on the ability to publish complementary resources should be considered.

Limitations of the review

There is a level of subjectivity involved in this type of review and this should be considered when interpreting study findings. Qualitative methods journals were selected because the aims and scope of these journals are to publish studies that contribute to methodological discussion and development of qualitative research. Generalist health and social science journals were excluded that might have contained good quality case studies. Journals in business or education were also excluded, although a review of case studies in international business journals has been published elsewhere (Piekkari et al., 2009 ).

The criteria used to assess the quality of the case studies were a set of qualitative indicators. A numerical or ranking system might have resulted in different results. Stake's ( 1995 ) criteria have been referenced elsewhere, and was deemed the best available (Creswell, 2013b ; Crowe et al., 2011 ). Not all qualitative studies are reported in a consistent way and some authors choose to report findings in a narrative form in comparison to a typical biomedical report style (Sandelowski & Barroso, 2002 ), if misinterpretations were made this may have affected the review.

Case study research is an increasingly popular approach among qualitative researchers, which provides methodological flexibility through the incorporation of different paradigmatic positions, study designs, and methods. However, whereas flexibility can be an advantage, a myriad of different interpretations has resulted in critics questioning the use of case study as a methodology. Using an adaptation of established criteria, we aimed to identify and assess the methodological descriptions of case studies in high impact, qualitative methods journals. Few articles were identified that applied qualitative case study approaches as described by experts in case study design. There were inconsistencies in methodology and study design, which indicated that researchers were confused whether case study was a methodology or a method. Commonly, there appeared to be confusion between case studies and case reports. Without clear understanding and application of the principles and key elements of case study methodology, there is a risk that the flexibility of the approach will result in haphazard reporting, and will limit its global application as a valuable, theoretically supported methodology that can be rigorously applied across disciplines and fields.

Conflict of interest and funding

The authors have not received any funding or benefits from industry or elsewhere to conduct this study.

  • Adamson S, Holloway M. Negotiating sensitivities and grappling with intangibles: Experiences from a study of spirituality and funerals. Qualitative Research. 2012; 12 (6):735–752. doi: 10.1177/1468794112439008. [ CrossRef ] [ Google Scholar ]
  • Ajodhia-Andrews A, Berman R. Exploring school life from the lens of a child who does not use speech to communicate. Qualitative Inquiry. 2009; 15 (5):931–951. doi: 10.1177/1077800408322789. [ CrossRef ] [ Google Scholar ]
  • Alexander B. K, Moreira C, Kumar H. S. Resisting (resistance) stories: A tri-autoethnographic exploration of father narratives across shades of difference. Qualitative Inquiry. 2012; 18 (2):121–133. doi: 10.1177/1077800411429087. [ CrossRef ] [ Google Scholar ]
  • Austin W, Park C, Goble E. From interdisciplinary to transdisciplinary research: A case study. Qualitative Health Research. 2008; 18 (4):557–564. doi: 10.1177/1049732307308514. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Ayres L, Kavanaugh K, Knafl K. A. Within-case and across-case approaches to qualitative data analysis. Qualitative Health Research. 2003; 13 (6):871–883. doi: 10.1177/1049732303013006008. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Barone T. L. Culturally sensitive care 1969–2000: The Indian Chicano Health Center. Qualitative Health Research. 2010; 20 (4):453–464. doi: 10.1177/1049732310361893. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Bassey M. A solution to the problem of generalisation in educational research: Fuzzy prediction. Oxford Review of Education. 2001; 27 (1):5–22. doi: 10.1080/03054980123773. [ CrossRef ] [ Google Scholar ]
  • Bronken B. A, Kirkevold M, Martinsen R, Kvigne K. The aphasic storyteller: Coconstructing stories to promote psychosocial well-being after stroke. Qualitative Health Research. 2012; 22 (10):1303–1316. doi: 10.1177/1049732312450366. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Broyles L. M, Rodriguez K. L, Price P. A, Bayliss N. K, Sevick M. A. Overcoming barriers to the recruitment of nurses as participants in health care research. Qualitative Health Research. 2011; 21 (12):1705–1718. doi: 10.1177/1049732311417727. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Buckley C. A, Waring M. J. Using diagrams to support the research process: Examples from grounded theory. Qualitative Research. 2013; 13 (2):148–172. doi: 10.1177/1468794112472280. [ CrossRef ] [ Google Scholar ]
  • Buzzanell P. M, D'Enbeau S. Stories of caregiving: Intersections of academic research and women's everyday experiences. Qualitative Inquiry. 2009; 15 (7):1199–1224. doi: 10.1177/1077800409338025. [ CrossRef ] [ Google Scholar ]
  • Carter S. M, Little M. Justifying knowledge, justifying method, taking action: Epistemologies, methodologies, and methods in qualitative research. Qualitative Health Research. 2007; 17 (10):1316–1328. doi: 10.1177/1049732307306927. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Cheek J, Garnham B, Quan J. What's in a number? Issues in providing evidence of impact and quality of research(ers) Qualitative Health Research. 2006; 16 (3):423–435. doi: 10.1177/1049732305285701. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Colón-Emeric C. S, Plowman D, Bailey D, Corazzini K, Utley-Smith Q, Ammarell N, et al. Regulation and mindful resident care in nursing homes. Qualitative Health Research. 2010; 20 (9):1283–1294. doi: 10.1177/1049732310369337. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Coltart C, Henwood K. On paternal subjectivity: A qualitative longitudinal and psychosocial case analysis of men's classed positions and transitions to first-time fatherhood. Qualitative Research. 2012; 12 (1):35–52. doi: 10.1177/1468794111426224. [ CrossRef ] [ Google Scholar ]
  • Creswell J. W. Five qualitative approaches to inquiry. In: Creswell J. W, editor. Qualitative inquiry and research design: Choosing among five approaches. 3rd ed. Thousand Oaks, CA: Sage; 2013a. pp. 53–84. [ Google Scholar ]
  • Creswell J. W. Qualitative inquiry and research design: Choosing among five approaches. 3rd ed. Thousand Oaks, CA: Sage; 2013b. [ Google Scholar ]
  • Crowe S, Cresswell K, Robertson A, Huby G, Avery A, Sheikh A. The case study approach. BMC Medical Research Methodology. 2011; 11 (1):1–9. doi: 10.1186/1471-2288-11-100. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Cunsolo Willox A, Harper S. L, Edge V. L, ‘My Word’: Storytelling and Digital Media Lab, & Rigolet Inuit Community Government Storytelling in a digital age: Digital storytelling as an emerging narrative method for preserving and promoting indigenous oral wisdom. Qualitative Research. 2013; 13 (2):127–147. doi: 10.1177/1468794112446105. [ CrossRef ] [ Google Scholar ]
  • De Haene L, Grietens H, Verschueren K. Holding harm: Narrative methods in mental health research on refugee trauma. Qualitative Health Research. 2010; 20 (12):1664–1676. doi: 10.1177/1049732310376521. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • D'Enbeau S, Buzzanell P. M, Duckworth J. Problematizing classed identities in fatherhood: Development of integrative case studies for analysis and praxis. Qualitative Inquiry. 2010; 16 (9):709–720. doi: 10.1177/1077800410374183. [ CrossRef ] [ Google Scholar ]
  • Denzin N. K, Lincoln Y. S. Introduction: Disciplining the practice of qualitative research. In: Denzin N. K, Lincoln Y. S, editors. The SAGE handbook of qualitative research. 4th ed. Thousand Oaks, CA: Sage; 2011a. pp. 1–6. [ Google Scholar ]
  • Denzin N. K, Lincoln Y. S, editors. The SAGE handbook of qualitative research. 4th ed. Thousand Oaks, CA: Sage; 2011b. [ Google Scholar ]
  • Edwards R, Weller S. Shifting analytic ontology: Using I-poems in qualitative longitudinal research. Qualitative Research. 2012; 12 (2):202–217. doi: 10.1177/1468794111422040. [ CrossRef ] [ Google Scholar ]
  • Eisenhardt K. M. Building theories from case study research. The Academy of Management Review. 1989; 14 (4):532–550. doi: 10.2307/258557. [ CrossRef ] [ Google Scholar ]
  • Fincham B, Scourfield J, Langer S. The impact of working with disturbing secondary data: Reading suicide files in a coroner's office. Qualitative Health Research. 2008; 18 (6):853–862. doi: 10.1177/1049732307308945. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Flanagan J. Public participation in the design of educational programmes for cancer nurses: A case report. European Journal of Cancer Care. 1999; 8 (2):107–112. doi: 10.1046/j.1365-2354.1999.00141.x. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Flyvbjerg B. Five misunderstandings about case-study research. Qualitative Inquiry. 2006; 12 (2):219–245. doi: 10.1177/1077800405284.363. [ CrossRef ] [ Google Scholar ]
  • Flyvbjerg B. Case study. In: Denzin N. K, Lincoln Y. S, editors. The SAGE handbook of qualitative research. 4th ed. Thousand Oaks, CA: Sage; 2011. pp. 301–316. [ Google Scholar ]
  • Fourie C. L, Theron L. C. Resilience in the face of fragile X syndrome. Qualitative Health Research. 2012; 22 (10):1355–1368. doi: 10.1177/1049732312451871. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Gallagher N, MacFarlane A, Murphy A. W, Freeman G. K, Glynn L. G, Bradley C. P. Service users’ and caregivers’ perspectives on continuity of care in out-of-hours primary care. Qualitative Health Research. 2013; 23 (3):407–421. doi: 10.1177/1049732312470521. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Gerring J. What is a case study and what is it good for? American Political Science Review. 2004; 98 (2):341–354. doi: 10.1017/S0003055404001182. [ CrossRef ] [ Google Scholar ]
  • Gillard A, Witt P. A, Watts C. E. Outcomes and processes at a camp for youth with HIV/AIDS. Qualitative Health Research. 2011; 21 (11):1508–1526. doi: 10.1177/1049732311413907. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Grant M, Booth A. A typology of reviews: An analysis of 14 review types and associated methodologies. Health Information and Libraries Journal. 2009; 26 :91–108. doi: 10.1111/j.1471-1842.2009.00848.x. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Gratton M.-F, O'Donnell S. Communication technologies for focus groups with remote communities: A case study of research with First Nations in Canada. Qualitative Research. 2011; 11 (2):159–175. doi: 10.1177/1468794110394068. [ CrossRef ] [ Google Scholar ]
  • Hallberg L. Quality criteria and generalization of results from qualitative studies. International Journal of Qualitative Studies on Health and Wellbeing. 2013; 8 :1. doi: 10.3402/qhw.v8i0.20647. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Hames I. Committee on Publication Ethics, 1. 2013, March. COPE Ethical guidelines for peer reviewers. Retrieved April 7, 2013, from http://publicationethics.org/resources/guidelines . [ Google Scholar ]
  • Hooghe A, Neimeyer R. A, Rober P. “Cycling around an emotional core of sadness”: Emotion regulation in a couple after the loss of a child. Qualitative Health Research. 2012; 22 (9):1220–1231. doi: 10.1177/1049732312449209. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Jackson C. B, Botelho E. M, Welch L. C, Joseph J, Tennstedt S. L. Talking with others about stigmatized health conditions: Implications for managing symptoms. Qualitative Health Research. 2012; 22 (11):1468–1475. doi: 10.1177/1049732312450323. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Jasper M, Vaismoradi M, Bondas T, Turunen H. Validity and reliability of the scientific review process in nursing journals—time for a rethink? Nursing Inquiry. 2013 doi: 10.1111/nin.12030. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Jensen J. L, Rodgers R. Cumulating the intellectual gold of case study research. Public Administration Review. 2001; 61 (2):235–246. doi: 10.1111/0033-3352.00025. [ CrossRef ] [ Google Scholar ]
  • Jorrín-Abellán I. M, Rubia-Avi B, Anguita-Martínez R, Gómez-Sánchez E, Martínez-Mones A. Bouncing between the dark and bright sides: Can technology help qualitative research? Qualitative Inquiry. 2008; 14 (7):1187–1204. doi: 10.1177/1077800408318435. [ CrossRef ] [ Google Scholar ]
  • Ledderer L. Understanding change in medical practice: The role of shared meaning in preventive treatment. Qualitative Health Research. 2011; 21 (1):27–40. doi: 10.1177/1049732310377451. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Lincoln Y. S. Emerging criteria for quality in qualitative and interpretive research. Qualitative Inquiry. 1995; 1 (3):275–289. doi: 10.1177/107780049500100301. [ CrossRef ] [ Google Scholar ]
  • Luck L, Jackson D, Usher K. Case study: A bridge across the paradigms. Nursing Inquiry. 2006; 13 (2):103–109. doi: 10.1111/j.1440-1800.2006.00309.x. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Mawn B, Siqueira E, Koren A, Slatin C, Devereaux Melillo K, Pearce C, et al. Health disparities among health care workers. Qualitative Health Research. 2010; 20 (1):68–80. doi: 10.1177/1049732309355590. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Merriam S. B. Qualitative research: A guide to design and implementation. 3rd ed. San Francisco, CA: Jossey-Bass; 2009. [ Google Scholar ]
  • Meyer C. B. A case in case study methodology. Field Methods. 2001; 13 (4):329–352. doi: 10.1177/1525822x0101300402. [ CrossRef ] [ Google Scholar ]
  • Morse J. M. Mixing qualitative methods. Qualitative Health Research. 2009; 19 (11):1523–1524. doi: 10.1177/1049732309349360. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Morse J. M. Molding qualitative health research. Qualitative Health Research. 2011; 21 (8):1019–1021. doi: 10.1177/1049732311404706. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Morse J. M, Dimitroff L. J, Harper R, Koontz A, Kumra S, Matthew-Maich N, et al. Considering the qualitative–quantitative language divide. Qualitative Health Research. 2011; 21 (9):1302–1303. doi: 10.1177/1049732310392386. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Nagar-Ron S, Motzafi-Haller P. “My life? There is not much to tell”: On voice, silence and agency in interviews with first-generation Mizrahi Jewish women immigrants to Israel. Qualitative Inquiry. 2011; 17 (7):653–663. doi: 10.1177/1077800411414007. [ CrossRef ] [ Google Scholar ]
  • Nairn K, Panelli R. Using fiction to make meaning in research with young people in rural New Zealand. Qualitative Inquiry. 2009; 15 (1):96–112. doi: 10.1177/1077800408318314. [ CrossRef ] [ Google Scholar ]
  • Nespor J. The afterlife of “teachers’ beliefs”: Qualitative methodology and the textline. Qualitative Inquiry. 2012; 18 (5):449–460. doi: 10.1177/1077800412439530. [ CrossRef ] [ Google Scholar ]
  • Piekkari R, Welch C, Paavilainen E. The case study as disciplinary convention: Evidence from international business journals. Organizational Research Methods. 2009; 12 (3):567–589. doi: 10.1177/1094428108319905. [ CrossRef ] [ Google Scholar ]
  • Ragin C. C, Becker H. S. What is a case?: Exploring the foundations of social inquiry. Cambridge: Cambridge University Press; 1992. [ Google Scholar ]
  • Roscigno C. I, Savage T. A, Kavanaugh K, Moro T. T, Kilpatrick S. J, Strassner H. T, et al. Divergent views of hope influencing communications between parents and hospital providers. Qualitative Health Research. 2012; 22 (9):1232–1246. doi: 10.1177/1049732312449210. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Rosenberg J. P, Yates P. M. Schematic representation of case study research designs. Journal of Advanced Nursing. 2007; 60 (4):447–452. doi: 10.1111/j.1365-2648.2007.04385.x. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Rytterström P, Unosson M, Arman M. Care culture as a meaning- making process: A study of a mistreatment investigation. Qualitative Health Research. 2013; 23 :1179–1187. doi: 10.1177/1049732312470760. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Sandelowski M. Whatever happened to qualitative description? Research in Nursing & Health. 2000; 23 (4):334–340. doi: 10.1002/1098-240X. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Sandelowski M. What's in a name? Qualitative description revisited. Research in Nursing & Health. 2010; 33 (1):77–84. doi: 10.1002/nur.20362. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Sandelowski M, Barroso J. Reading qualitative studies. International Journal of Qualitative Methods. 2002; 1 (1):74–108. [ Google Scholar ]
  • Snyder-Young D. “Here to tell her story”: Analyzing the autoethnographic performances of others. Qualitative Inquiry. 2011; 17 (10):943–951. doi: 10.1177/1077800411425149. [ CrossRef ] [ Google Scholar ]
  • Stake R. E. The case study method in social inquiry. Educational Researcher. 1978; 7 (2):5–8. [ Google Scholar ]
  • Stake R. E. The art of case study research. Thousand Oaks, CA: Sage; 1995. [ Google Scholar ]
  • Stake R. E. Case studies. In: Denzin N. K, Lincoln Y. S, editors. Strategies of qualitative inquiry. Thousand Oaks, CA: Sage; 1998. pp. 86–109. [ Google Scholar ]
  • Sumsion J. Opening up possibilities through team research: Investigating infants’ experiences of early childhood education and care. Qualitative Research. 2013; 14 (2):149–165. doi: 10.1177/1468794112468471.. [ CrossRef ] [ Google Scholar ]
  • Thomas G. Doing case study: Abduction not induction, phronesis not theory. Qualitative Inquiry. 2010; 16 (7):575–582. doi: 10.1177/1077800410372601. [ CrossRef ] [ Google Scholar ]
  • Thomas G. A typology for the case study in social science following a review of definition, discourse, and structure. Qualitative Inquiry. 2011; 17 (6):511–521. doi: 10.1177/1077800411409884. [ CrossRef ] [ Google Scholar ]
  • Tight M. The curious case of case study: A viewpoint. International Journal of Social Research Methodology. 2010; 13 (4):329–339. doi: 10.1080/13645570903187181. [ CrossRef ] [ Google Scholar ]
  • Wager E, Kleinert S. Responsible research publication: International standards for authors. A position statement developed at the 2nd World Conference on Research Integrity, Singapore, July 22–24, 2010. In: Mayer T, Steneck N, editors. Promoting research integrity in a global environment. Singapore: Imperial College Press/World Scientific; 2010a. pp. 309–316. [ Google Scholar ]
  • Wager E, Kleinert S. Responsible research publication: International standards for editors. A position statement developed at the 2nd World Conference on Research Integrity, Singapore, July 22–24, 2010. In: Mayer T, Steneck N, editors. Promoting research integrity in a global environment. Singapore: Imperial College Press/World Scientific; 2010b. pp. 317–328. [ Google Scholar ]
  • Webb C, Kevern J. Focus groups as a research method: A critique of some aspects of their use in nursing research. Journal of Advanced Nursing. 2000; 33 (6):798–805. doi: 10.1046/j.1365-2648.2001.01720.x. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Wimpenny K, Savin-Baden M. Exploring and implementing participatory action synthesis. Qualitative Inquiry. 2012; 18 (8):689–698. doi: 10.1177/1077800412452854. [ CrossRef ] [ Google Scholar ]
  • Yeh H.-Y. Boundaries, entities, and modern vegetarianism: Examining the emergence of the first vegetarian organization. Qualitative Inquiry. 2013; 19 (4):298–309. doi: 10.1177/1077800412471516. [ CrossRef ] [ Google Scholar ]
  • Yin R. K. Enhancing the quality of case studies in health services research. Health Services Research. 1999; 34 (5 Pt 2):1209–1224. [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Yin R. K. Case study research: Design and methods. 4th ed. Thousand Oaks, CA: Sage; 2009. [ Google Scholar ]
  • Yin R. K. Applications of case study research. 3rd ed. Thousand Oaks, CA: Sage; 2012. [ Google Scholar ]

Academic Success Center

Research Writing and Analysis

  • NVivo Group and Study Sessions
  • SPSS This link opens in a new window
  • Statistical Analysis Group sessions
  • Using Qualtrics
  • Dissertation and Data Analysis Group Sessions
  • Research Process Flow Chart
  • Research Alignment This link opens in a new window
  • Step 1: Seek Out Evidence
  • Step 2: Explain
  • Step 3: The Big Picture
  • Step 4: Own It
  • Step 5: Illustrate
  • Annotated Bibliography
  • Literature Review This link opens in a new window
  • Systematic Reviews & Meta-Analyses
  • How to Synthesize and Analyze
  • Synthesis and Analysis Practice
  • Synthesis and Analysis Group Sessions
  • Problem Statement
  • Purpose Statement
  • Quantitative Research Questions
  • Qualitative Research Questions
  • Trustworthiness of Qualitative Data
  • Analysis and Coding Example- Qualitative Data
  • Thematic Data Analysis in Qualitative Design
  • Dissertation to Journal Article This link opens in a new window
  • International Journal of Online Graduate Education (IJOGE) This link opens in a new window
  • Journal of Research in Innovative Teaching & Learning (JRIT&L) This link opens in a new window

Writing a Case Study

Hands holding a world globe

What is a case study?

A Map of the world with hands holding a pen.

A Case study is: 

  • An in-depth research design that primarily uses a qualitative methodology but sometimes​​ includes quantitative methodology.
  • Used to examine an identifiable problem confirmed through research.
  • Used to investigate an individual, group of people, organization, or event.
  • Used to mostly answer "how" and "why" questions.

What are the different types of case studies?

Man and woman looking at a laptop

Note: These are the primary case studies. As you continue to research and learn

about case studies you will begin to find a robust list of different types. 

Who are your case study participants?

Boys looking through a camera

What is triangulation ? 

Validity and credibility are an essential part of the case study. Therefore, the researcher should include triangulation to ensure trustworthiness while accurately reflecting what the researcher seeks to investigate.

Triangulation image with examples

How to write a Case Study?

When developing a case study, there are different ways you could present the information, but remember to include the five parts for your case study.

Man holding his hand out to show five fingers.

Was this resource helpful?

  • << Previous: Thematic Data Analysis in Qualitative Design
  • Next: Journal Article Reporting Standards (JARS) >>
  • Last Updated: Apr 1, 2024 6:03 PM
  • URL: https://resources.nu.edu/researchtools

NCU Library Home

  • Cancer Nursing Practice
  • Emergency Nurse
  • Evidence-Based Nursing
  • Learning Disability Practice
  • Mental Health Practice
  • Nurse Researcher
  • Nursing Children and Young People
  • Nursing Management
  • Nursing Older People
  • Nursing Standard
  • Primary Health Care
  • RCN Nursing Awards
  • Nursing Live
  • Nursing Careers and Job Fairs
  • CPD webinars on-demand
  • --> Advanced -->

case study research use data for analysis

  • Clinical articles
  • Expert advice
  • Career advice
  • Revalidation

Data analysis Previous     Next

Qualitative case study data analysis: an example from practice, catherine houghton lecturer, school of nursing and midwifery, national university of ireland, galway, republic of ireland, kathy murphy professor of nursing, national university of ireland, galway, ireland, david shaw lecturer, open university, milton keynes, uk, dympna casey senior lecturer, national university of ireland, galway, ireland.

Aim To illustrate an approach to data analysis in qualitative case study methodology.

Background There is often little detail in case study research about how data were analysed. However, it is important that comprehensive analysis procedures are used because there are often large sets of data from multiple sources of evidence. Furthermore, the ability to describe in detail how the analysis was conducted ensures rigour in reporting qualitative research.

Data sources The research example used is a multiple case study that explored the role of the clinical skills laboratory in preparing students for the real world of practice. Data analysis was conducted using a framework guided by the four stages of analysis outlined by Morse ( 1994 ): comprehending, synthesising, theorising and recontextualising. The specific strategies for analysis in these stages centred on the work of Miles and Huberman ( 1994 ), which has been successfully used in case study research. The data were managed using NVivo software.

Review methods Literature examining qualitative data analysis was reviewed and strategies illustrated by the case study example provided.

Discussion Each stage of the analysis framework is described with illustration from the research example for the purpose of highlighting the benefits of a systematic approach to handling large data sets from multiple sources.

Conclusion By providing an example of how each stage of the analysis was conducted, it is hoped that researchers will be able to consider the benefits of such an approach to their own case study analysis.

Implications for research/practice This paper illustrates specific strategies that can be employed when conducting data analysis in case study research and other qualitative research designs.

Nurse Researcher . 22, 5, 8-12. doi: 10.7748/nr.22.5.8.e1307

This article has been subject to double blind peer review

None declared

Received: 02 February 2014

Accepted: 16 April 2014

Case study data analysis - case study research methodology - clinical skills research - qualitative case study methodology - qualitative data analysis - qualitative research

User not found

Want to read more?

Already have access log in, 3-month trial offer for £5.25/month.

  • Unlimited access to all 10 RCNi Journals
  • RCNi Learning featuring over 175 modules to easily earn CPD time
  • NMC-compliant RCNi Revalidation Portfolio to stay on track with your progress
  • Personalised newsletters tailored to your interests
  • A customisable dashboard with over 200 topics

Alternatively, you can purchase access to this article for the next seven days. Buy now

Are you a student? Our student subscription has content especially for you. Find out more

case study research use data for analysis

15 May 2015 / Vol 22 issue 5

TABLE OF CONTENTS

DIGITAL EDITION

  • LATEST ISSUE
  • SIGN UP FOR E-ALERT
  • WRITE FOR US
  • PERMISSIONS

Share article: Qualitative case study data analysis: an example from practice

We use cookies on this site to enhance your user experience.

By clicking any link on this page you are giving your consent for us to set cookies.

10 Real World Data Science Case Studies Projects with Example

Top 10 Data Science Case Studies Projects with Examples and Solutions in Python to inspire your data science learning in 2023.

10 Real World Data Science Case Studies Projects with Example

BelData science has been a trending buzzword in recent times. With wide applications in various sectors like healthcare , education, retail, transportation, media, and banking -data science applications are at the core of pretty much every industry out there. The possibilities are endless: analysis of frauds in the finance sector or the personalization of recommendations on eCommerce businesses.  We have developed ten exciting data science case studies to explain how data science is leveraged across various industries to make smarter decisions and develop innovative personalized products tailored to specific customers.

data_science_project

Walmart Sales Forecasting Data Science Project

Downloadable solution code | Explanatory videos | Tech Support

Table of Contents

Data science case studies in retail , data science case study examples in entertainment industry , data analytics case study examples in travel industry , case studies for data analytics in social media , real world data science projects in healthcare, data analytics case studies in oil and gas, what is a case study in data science, how do you prepare a data science case study, 10 most interesting data science case studies with examples.

data science case studies

So, without much ado, let's get started with data science business case studies !

With humble beginnings as a simple discount retailer, today, Walmart operates in 10,500 stores and clubs in 24 countries and eCommerce websites, employing around 2.2 million people around the globe. For the fiscal year ended January 31, 2021, Walmart's total revenue was $559 billion showing a growth of $35 billion with the expansion of the eCommerce sector. Walmart is a data-driven company that works on the principle of 'Everyday low cost' for its consumers. To achieve this goal, they heavily depend on the advances of their data science and analytics department for research and development, also known as Walmart Labs. Walmart is home to the world's largest private cloud, which can manage 2.5 petabytes of data every hour! To analyze this humongous amount of data, Walmart has created 'Data Café,' a state-of-the-art analytics hub located within its Bentonville, Arkansas headquarters. The Walmart Labs team heavily invests in building and managing technologies like cloud, data, DevOps , infrastructure, and security.

ProjectPro Free Projects on Big Data and Data Science

Walmart is experiencing massive digital growth as the world's largest retailer . Walmart has been leveraging Big data and advances in data science to build solutions to enhance, optimize and customize the shopping experience and serve their customers in a better way. At Walmart Labs, data scientists are focused on creating data-driven solutions that power the efficiency and effectiveness of complex supply chain management processes. Here are some of the applications of data science  at Walmart:

i) Personalized Customer Shopping Experience

Walmart analyses customer preferences and shopping patterns to optimize the stocking and displaying of merchandise in their stores. Analysis of Big data also helps them understand new item sales, make decisions on discontinuing products, and the performance of brands.

ii) Order Sourcing and On-Time Delivery Promise

Millions of customers view items on Walmart.com, and Walmart provides each customer a real-time estimated delivery date for the items purchased. Walmart runs a backend algorithm that estimates this based on the distance between the customer and the fulfillment center, inventory levels, and shipping methods available. The supply chain management system determines the optimum fulfillment center based on distance and inventory levels for every order. It also has to decide on the shipping method to minimize transportation costs while meeting the promised delivery date.

Here's what valued users are saying about ProjectPro

user profile

Ameeruddin Mohammed

ETL (Abintio) developer at IBM

user profile

Abhinav Agarwal

Graduate Student at Northwestern University

Not sure what you are looking for?

iii) Packing Optimization 

Also known as Box recommendation is a daily occurrence in the shipping of items in retail and eCommerce business. When items of an order or multiple orders for the same customer are ready for packing, Walmart has developed a recommender system that picks the best-sized box which holds all the ordered items with the least in-box space wastage within a fixed amount of time. This Bin Packing problem is a classic NP-Hard problem familiar to data scientists .

Whenever items of an order or multiple orders placed by the same customer are picked from the shelf and are ready for packing, the box recommendation system determines the best-sized box to hold all the ordered items with a minimum of in-box space wasted. This problem is known as the Bin Packing Problem, another classic NP-Hard problem familiar to data scientists.

Here is a link to a sales prediction data science case study to help you understand the applications of Data Science in the real world. Walmart Sales Forecasting Project uses historical sales data for 45 Walmart stores located in different regions. Each store contains many departments, and you must build a model to project the sales for each department in each store. This data science case study aims to create a predictive model to predict the sales of each product. You can also try your hands-on Inventory Demand Forecasting Data Science Project to develop a machine learning model to forecast inventory demand accurately based on historical sales data.

Get Closer To Your Dream of Becoming a Data Scientist with 70+ Solved End-to-End ML Projects

Amazon is an American multinational technology-based company based in Seattle, USA. It started as an online bookseller, but today it focuses on eCommerce, cloud computing , digital streaming, and artificial intelligence . It hosts an estimate of 1,000,000,000 gigabytes of data across more than 1,400,000 servers. Through its constant innovation in data science and big data Amazon is always ahead in understanding its customers. Here are a few data analytics case study examples at Amazon:

i) Recommendation Systems

Data science models help amazon understand the customers' needs and recommend them to them before the customer searches for a product; this model uses collaborative filtering. Amazon uses 152 million customer purchases data to help users to decide on products to be purchased. The company generates 35% of its annual sales using the Recommendation based systems (RBS) method.

Here is a Recommender System Project to help you build a recommendation system using collaborative filtering. 

ii) Retail Price Optimization

Amazon product prices are optimized based on a predictive model that determines the best price so that the users do not refuse to buy it based on price. The model carefully determines the optimal prices considering the customers' likelihood of purchasing the product and thinks the price will affect the customers' future buying patterns. Price for a product is determined according to your activity on the website, competitors' pricing, product availability, item preferences, order history, expected profit margin, and other factors.

Check Out this Retail Price Optimization Project to build a Dynamic Pricing Model.

iii) Fraud Detection

Being a significant eCommerce business, Amazon remains at high risk of retail fraud. As a preemptive measure, the company collects historical and real-time data for every order. It uses Machine learning algorithms to find transactions with a higher probability of being fraudulent. This proactive measure has helped the company restrict clients with an excessive number of returns of products.

You can look at this Credit Card Fraud Detection Project to implement a fraud detection model to classify fraudulent credit card transactions.

New Projects

Let us explore data analytics case study examples in the entertainment indusry.

Ace Your Next Job Interview with Mock Interviews from Experts to Improve Your Skills and Boost Confidence!

Data Science Interview Preparation

Netflix started as a DVD rental service in 1997 and then has expanded into the streaming business. Headquartered in Los Gatos, California, Netflix is the largest content streaming company in the world. Currently, Netflix has over 208 million paid subscribers worldwide, and with thousands of smart devices which are presently streaming supported, Netflix has around 3 billion hours watched every month. The secret to this massive growth and popularity of Netflix is its advanced use of data analytics and recommendation systems to provide personalized and relevant content recommendations to its users. The data is collected over 100 billion events every day. Here are a few examples of data analysis case studies applied at Netflix :

i) Personalized Recommendation System

Netflix uses over 1300 recommendation clusters based on consumer viewing preferences to provide a personalized experience. Some of the data that Netflix collects from its users include Viewing time, platform searches for keywords, Metadata related to content abandonment, such as content pause time, rewind, rewatched. Using this data, Netflix can predict what a viewer is likely to watch and give a personalized watchlist to a user. Some of the algorithms used by the Netflix recommendation system are Personalized video Ranking, Trending now ranker, and the Continue watching now ranker.

ii) Content Development using Data Analytics

Netflix uses data science to analyze the behavior and patterns of its user to recognize themes and categories that the masses prefer to watch. This data is used to produce shows like The umbrella academy, and Orange Is the New Black, and the Queen's Gambit. These shows seem like a huge risk but are significantly based on data analytics using parameters, which assured Netflix that they would succeed with its audience. Data analytics is helping Netflix come up with content that their viewers want to watch even before they know they want to watch it.

iii) Marketing Analytics for Campaigns

Netflix uses data analytics to find the right time to launch shows and ad campaigns to have maximum impact on the target audience. Marketing analytics helps come up with different trailers and thumbnails for other groups of viewers. For example, the House of Cards Season 5 trailer with a giant American flag was launched during the American presidential elections, as it would resonate well with the audience.

Here is a Customer Segmentation Project using association rule mining to understand the primary grouping of customers based on various parameters.

Get FREE Access to Machine Learning Example Codes for Data Cleaning , Data Munging, and Data Visualization

In a world where Purchasing music is a thing of the past and streaming music is a current trend, Spotify has emerged as one of the most popular streaming platforms. With 320 million monthly users, around 4 billion playlists, and approximately 2 million podcasts, Spotify leads the pack among well-known streaming platforms like Apple Music, Wynk, Songza, amazon music, etc. The success of Spotify has mainly depended on data analytics. By analyzing massive volumes of listener data, Spotify provides real-time and personalized services to its listeners. Most of Spotify's revenue comes from paid premium subscriptions. Here are some of the examples of case study on data analytics used by Spotify to provide enhanced services to its listeners:

i) Personalization of Content using Recommendation Systems

Spotify uses Bart or Bayesian Additive Regression Trees to generate music recommendations to its listeners in real-time. Bart ignores any song a user listens to for less than 30 seconds. The model is retrained every day to provide updated recommendations. A new Patent granted to Spotify for an AI application is used to identify a user's musical tastes based on audio signals, gender, age, accent to make better music recommendations.

Spotify creates daily playlists for its listeners, based on the taste profiles called 'Daily Mixes,' which have songs the user has added to their playlists or created by the artists that the user has included in their playlists. It also includes new artists and songs that the user might be unfamiliar with but might improve the playlist. Similar to it is the weekly 'Release Radar' playlists that have newly released artists' songs that the listener follows or has liked before.

ii) Targetted marketing through Customer Segmentation

With user data for enhancing personalized song recommendations, Spotify uses this massive dataset for targeted ad campaigns and personalized service recommendations for its users. Spotify uses ML models to analyze the listener's behavior and group them based on music preferences, age, gender, ethnicity, etc. These insights help them create ad campaigns for a specific target audience. One of their well-known ad campaigns was the meme-inspired ads for potential target customers, which was a huge success globally.

iii) CNN's for Classification of Songs and Audio Tracks

Spotify builds audio models to evaluate the songs and tracks, which helps develop better playlists and recommendations for its users. These allow Spotify to filter new tracks based on their lyrics and rhythms and recommend them to users like similar tracks ( collaborative filtering). Spotify also uses NLP ( Natural language processing) to scan articles and blogs to analyze the words used to describe songs and artists. These analytical insights can help group and identify similar artists and songs and leverage them to build playlists.

Here is a Music Recommender System Project for you to start learning. We have listed another music recommendations dataset for you to use for your projects: Dataset1 . You can use this dataset of Spotify metadata to classify songs based on artists, mood, liveliness. Plot histograms, heatmaps to get a better understanding of the dataset. Use classification algorithms like logistic regression, SVM, and Principal component analysis to generate valuable insights from the dataset.

Explore Categories

Below you will find case studies for data analytics in the travel and tourism industry.

Airbnb was born in 2007 in San Francisco and has since grown to 4 million Hosts and 5.6 million listings worldwide who have welcomed more than 1 billion guest arrivals in almost every country across the globe. Airbnb is active in every country on the planet except for Iran, Sudan, Syria, and North Korea. That is around 97.95% of the world. Using data as a voice of their customers, Airbnb uses the large volume of customer reviews, host inputs to understand trends across communities, rate user experiences, and uses these analytics to make informed decisions to build a better business model. The data scientists at Airbnb are developing exciting new solutions to boost the business and find the best mapping for its customers and hosts. Airbnb data servers serve approximately 10 million requests a day and process around one million search queries. Data is the voice of customers at AirBnB and offers personalized services by creating a perfect match between the guests and hosts for a supreme customer experience. 

i) Recommendation Systems and Search Ranking Algorithms

Airbnb helps people find 'local experiences' in a place with the help of search algorithms that make searches and listings precise. Airbnb uses a 'listing quality score' to find homes based on the proximity to the searched location and uses previous guest reviews. Airbnb uses deep neural networks to build models that take the guest's earlier stays into account and area information to find a perfect match. The search algorithms are optimized based on guest and host preferences, rankings, pricing, and availability to understand users’ needs and provide the best match possible.

ii) Natural Language Processing for Review Analysis

Airbnb characterizes data as the voice of its customers. The customer and host reviews give a direct insight into the experience. The star ratings alone cannot be an excellent way to understand it quantitatively. Hence Airbnb uses natural language processing to understand reviews and the sentiments behind them. The NLP models are developed using Convolutional neural networks .

Practice this Sentiment Analysis Project for analyzing product reviews to understand the basic concepts of natural language processing.

iii) Smart Pricing using Predictive Analytics

The Airbnb hosts community uses the service as a supplementary income. The vacation homes and guest houses rented to customers provide for rising local community earnings as Airbnb guests stay 2.4 times longer and spend approximately 2.3 times the money compared to a hotel guest. The profits are a significant positive impact on the local neighborhood community. Airbnb uses predictive analytics to predict the prices of the listings and help the hosts set a competitive and optimal price. The overall profitability of the Airbnb host depends on factors like the time invested by the host and responsiveness to changing demands for different seasons. The factors that impact the real-time smart pricing are the location of the listing, proximity to transport options, season, and amenities available in the neighborhood of the listing.

Here is a Price Prediction Project to help you understand the concept of predictive analysis which is widely common in case studies for data analytics. 

Uber is the biggest global taxi service provider. As of December 2018, Uber has 91 million monthly active consumers and 3.8 million drivers. Uber completes 14 million trips each day. Uber uses data analytics and big data-driven technologies to optimize their business processes and provide enhanced customer service. The Data Science team at uber has been exploring futuristic technologies to provide better service constantly. Machine learning and data analytics help Uber make data-driven decisions that enable benefits like ride-sharing, dynamic price surges, better customer support, and demand forecasting. Here are some of the real world data science projects used by uber:

i) Dynamic Pricing for Price Surges and Demand Forecasting

Uber prices change at peak hours based on demand. Uber uses surge pricing to encourage more cab drivers to sign up with the company, to meet the demand from the passengers. When the prices increase, the driver and the passenger are both informed about the surge in price. Uber uses a predictive model for price surging called the 'Geosurge' ( patented). It is based on the demand for the ride and the location.

ii) One-Click Chat

Uber has developed a Machine learning and natural language processing solution called one-click chat or OCC for coordination between drivers and users. This feature anticipates responses for commonly asked questions, making it easy for the drivers to respond to customer messages. Drivers can reply with the clock of just one button. One-Click chat is developed on Uber's machine learning platform Michelangelo to perform NLP on rider chat messages and generate appropriate responses to them.

iii) Customer Retention

Failure to meet the customer demand for cabs could lead to users opting for other services. Uber uses machine learning models to bridge this demand-supply gap. By using prediction models to predict the demand in any location, uber retains its customers. Uber also uses a tier-based reward system, which segments customers into different levels based on usage. The higher level the user achieves, the better are the perks. Uber also provides personalized destination suggestions based on the history of the user and their frequently traveled destinations.

You can take a look at this Python Chatbot Project and build a simple chatbot application to understand better the techniques used for natural language processing. You can also practice the working of a demand forecasting model with this project using time series analysis. You can look at this project which uses time series forecasting and clustering on a dataset containing geospatial data for forecasting customer demand for ola rides.

Explore More  Data Science and Machine Learning Projects for Practice. Fast-Track Your Career Transition with ProjectPro

7) LinkedIn 

LinkedIn is the largest professional social networking site with nearly 800 million members in more than 200 countries worldwide. Almost 40% of the users access LinkedIn daily, clocking around 1 billion interactions per month. The data science team at LinkedIn works with this massive pool of data to generate insights to build strategies, apply algorithms and statistical inferences to optimize engineering solutions, and help the company achieve its goals. Here are some of the real world data science projects at LinkedIn:

i) LinkedIn Recruiter Implement Search Algorithms and Recommendation Systems

LinkedIn Recruiter helps recruiters build and manage a talent pool to optimize the chances of hiring candidates successfully. This sophisticated product works on search and recommendation engines. The LinkedIn recruiter handles complex queries and filters on a constantly growing large dataset. The results delivered have to be relevant and specific. The initial search model was based on linear regression but was eventually upgraded to Gradient Boosted decision trees to include non-linear correlations in the dataset. In addition to these models, the LinkedIn recruiter also uses the Generalized Linear Mix model to improve the results of prediction problems to give personalized results.

ii) Recommendation Systems Personalized for News Feed

The LinkedIn news feed is the heart and soul of the professional community. A member's newsfeed is a place to discover conversations among connections, career news, posts, suggestions, photos, and videos. Every time a member visits LinkedIn, machine learning algorithms identify the best exchanges to be displayed on the feed by sorting through posts and ranking the most relevant results on top. The algorithms help LinkedIn understand member preferences and help provide personalized news feeds. The algorithms used include logistic regression, gradient boosted decision trees and neural networks for recommendation systems.

iii) CNN's to Detect Inappropriate Content

To provide a professional space where people can trust and express themselves professionally in a safe community has been a critical goal at LinkedIn. LinkedIn has heavily invested in building solutions to detect fake accounts and abusive behavior on their platform. Any form of spam, harassment, inappropriate content is immediately flagged and taken down. These can range from profanity to advertisements for illegal services. LinkedIn uses a Convolutional neural networks based machine learning model. This classifier trains on a training dataset containing accounts labeled as either "inappropriate" or "appropriate." The inappropriate list consists of accounts having content from "blocklisted" phrases or words and a small portion of manually reviewed accounts reported by the user community.

Here is a Text Classification Project to help you understand NLP basics for text classification. You can find a news recommendation system dataset to help you build a personalized news recommender system. You can also use this dataset to build a classifier using logistic regression, Naive Bayes, or Neural networks to classify toxic comments.

Get confident to build end-to-end projects

Access to a curated library of 250+ end-to-end industry projects with solution code, videos and tech support.

Pfizer is a multinational pharmaceutical company headquartered in New York, USA. One of the largest pharmaceutical companies globally known for developing a wide range of medicines and vaccines in disciplines like immunology, oncology, cardiology, and neurology. Pfizer became a household name in 2010 when it was the first to have a COVID-19 vaccine with FDA. In early November 2021, The CDC has approved the Pfizer vaccine for kids aged 5 to 11. Pfizer has been using machine learning and artificial intelligence to develop drugs and streamline trials, which played a massive role in developing and deploying the COVID-19 vaccine. Here are a few data analytics case studies by Pfizer :

i) Identifying Patients for Clinical Trials

Artificial intelligence and machine learning are used to streamline and optimize clinical trials to increase their efficiency. Natural language processing and exploratory data analysis of patient records can help identify suitable patients for clinical trials. These can help identify patients with distinct symptoms. These can help examine interactions of potential trial members' specific biomarkers, predict drug interactions and side effects which can help avoid complications. Pfizer's AI implementation helped rapidly identify signals within the noise of millions of data points across their 44,000-candidate COVID-19 clinical trial.

ii) Supply Chain and Manufacturing

Data science and machine learning techniques help pharmaceutical companies better forecast demand for vaccines and drugs and distribute them efficiently. Machine learning models can help identify efficient supply systems by automating and optimizing the production steps. These will help supply drugs customized to small pools of patients in specific gene pools. Pfizer uses Machine learning to predict the maintenance cost of equipment used. Predictive maintenance using AI is the next big step for Pharmaceutical companies to reduce costs.

iii) Drug Development

Computer simulations of proteins, and tests of their interactions, and yield analysis help researchers develop and test drugs more efficiently. In 2016 Watson Health and Pfizer announced a collaboration to utilize IBM Watson for Drug Discovery to help accelerate Pfizer's research in immuno-oncology, an approach to cancer treatment that uses the body's immune system to help fight cancer. Deep learning models have been used recently for bioactivity and synthesis prediction for drugs and vaccines in addition to molecular design. Deep learning has been a revolutionary technique for drug discovery as it factors everything from new applications of medications to possible toxic reactions which can save millions in drug trials.

You can create a Machine learning model to predict molecular activity to help design medicine using this dataset . You may build a CNN or a Deep neural network for this data analyst case study project.

Access Data Science and Machine Learning Project Code Examples

9) Shell Data Analyst Case Study Project

Shell is a global group of energy and petrochemical companies with over 80,000 employees in around 70 countries. Shell uses advanced technologies and innovations to help build a sustainable energy future. Shell is going through a significant transition as the world needs more and cleaner energy solutions to be a clean energy company by 2050. It requires substantial changes in the way in which energy is used. Digital technologies, including AI and Machine Learning, play an essential role in this transformation. These include efficient exploration and energy production, more reliable manufacturing, more nimble trading, and a personalized customer experience. Using AI in various phases of the organization will help achieve this goal and stay competitive in the market. Here are a few data analytics case studies in the petrochemical industry:

i) Precision Drilling

Shell is involved in the processing mining oil and gas supply, ranging from mining hydrocarbons to refining the fuel to retailing them to customers. Recently Shell has included reinforcement learning to control the drilling equipment used in mining. Reinforcement learning works on a reward-based system based on the outcome of the AI model. The algorithm is designed to guide the drills as they move through the surface, based on the historical data from drilling records. It includes information such as the size of drill bits, temperatures, pressures, and knowledge of the seismic activity. This model helps the human operator understand the environment better, leading to better and faster results will minor damage to machinery used. 

ii) Efficient Charging Terminals

Due to climate changes, governments have encouraged people to switch to electric vehicles to reduce carbon dioxide emissions. However, the lack of public charging terminals has deterred people from switching to electric cars. Shell uses AI to monitor and predict the demand for terminals to provide efficient supply. Multiple vehicles charging from a single terminal may create a considerable grid load, and predictions on demand can help make this process more efficient.

iii) Monitoring Service and Charging Stations

Another Shell initiative trialed in Thailand and Singapore is the use of computer vision cameras, which can think and understand to watch out for potentially hazardous activities like lighting cigarettes in the vicinity of the pumps while refueling. The model is built to process the content of the captured images and label and classify it. The algorithm can then alert the staff and hence reduce the risk of fires. You can further train the model to detect rash driving or thefts in the future.

Here is a project to help you understand multiclass image classification. You can use the Hourly Energy Consumption Dataset to build an energy consumption prediction model. You can use time series with XGBoost to develop your model.

10) Zomato Case Study on Data Analytics

Zomato was founded in 2010 and is currently one of the most well-known food tech companies. Zomato offers services like restaurant discovery, home delivery, online table reservation, online payments for dining, etc. Zomato partners with restaurants to provide tools to acquire more customers while also providing delivery services and easy procurement of ingredients and kitchen supplies. Currently, Zomato has over 2 lakh restaurant partners and around 1 lakh delivery partners. Zomato has closed over ten crore delivery orders as of date. Zomato uses ML and AI to boost their business growth, with the massive amount of data collected over the years from food orders and user consumption patterns. Here are a few examples of data analyst case study project developed by the data scientists at Zomato:

i) Personalized Recommendation System for Homepage

Zomato uses data analytics to create personalized homepages for its users. Zomato uses data science to provide order personalization, like giving recommendations to the customers for specific cuisines, locations, prices, brands, etc. Restaurant recommendations are made based on a customer's past purchases, browsing history, and what other similar customers in the vicinity are ordering. This personalized recommendation system has led to a 15% improvement in order conversions and click-through rates for Zomato. 

You can use the Restaurant Recommendation Dataset to build a restaurant recommendation system to predict what restaurants customers are most likely to order from, given the customer location, restaurant information, and customer order history.

ii) Analyzing Customer Sentiment

Zomato uses Natural language processing and Machine learning to understand customer sentiments using social media posts and customer reviews. These help the company gauge the inclination of its customer base towards the brand. Deep learning models analyze the sentiments of various brand mentions on social networking sites like Twitter, Instagram, Linked In, and Facebook. These analytics give insights to the company, which helps build the brand and understand the target audience.

iii) Predicting Food Preparation Time (FPT)

Food delivery time is an essential variable in the estimated delivery time of the order placed by the customer using Zomato. The food preparation time depends on numerous factors like the number of dishes ordered, time of the day, footfall in the restaurant, day of the week, etc. Accurate prediction of the food preparation time can help make a better prediction of the Estimated delivery time, which will help delivery partners less likely to breach it. Zomato uses a Bidirectional LSTM-based deep learning model that considers all these features and provides food preparation time for each order in real-time. 

Data scientists are companies' secret weapons when analyzing customer sentiments and behavior and leveraging it to drive conversion, loyalty, and profits. These 10 data science case studies projects with examples and solutions show you how various organizations use data science technologies to succeed and be at the top of their field! To summarize, Data Science has not only accelerated the performance of companies but has also made it possible to manage & sustain their performance with ease.

FAQs on Data Analysis Case Studies

A case study in data science is an in-depth analysis of a real-world problem using data-driven approaches. It involves collecting, cleaning, and analyzing data to extract insights and solve challenges, offering practical insights into how data science techniques can address complex issues across various industries.

To create a data science case study, identify a relevant problem, define objectives, and gather suitable data. Clean and preprocess data, perform exploratory data analysis, and apply appropriate algorithms for analysis. Summarize findings, visualize results, and provide actionable recommendations, showcasing the problem-solving potential of data science techniques.

Access Solved Big Data and Data Science Projects

About the Author

author profile

ProjectPro is the only online platform designed to help professionals gain practical, hands-on experience in big data, data engineering, data science, and machine learning related technologies. Having over 270+ reusable project templates in data science and big data with step-by-step walkthroughs,

arrow link

© 2024

© 2024 Iconiq Inc.

Privacy policy

User policy

Write for ProjectPro

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals
  • My Account Login
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • Open access
  • Published: 01 April 2024

Adaptive neighborhood rough set model for hybrid data processing: a case study on Parkinson’s disease behavioral analysis

  • Imran Raza 1 ,
  • Muhammad Hasan Jamal 1 ,
  • Rizwan Qureshi 1 ,
  • Abdul Karim Shahid 1 ,
  • Angel Olider Rojas Vistorte 2 , 3 , 4 ,
  • Md Abdus Samad 5 &
  • Imran Ashraf 5  

Scientific Reports volume  14 , Article number:  7635 ( 2024 ) Cite this article

Metrics details

  • Computational biology and bioinformatics
  • Machine learning

Extracting knowledge from hybrid data, comprising both categorical and numerical data, poses significant challenges due to the inherent difficulty in preserving information and practical meanings during the conversion process. To address this challenge, hybrid data processing methods, combining complementary rough sets, have emerged as a promising approach for handling uncertainty. However, selecting an appropriate model and effectively utilizing it in data mining requires a thorough qualitative and quantitative comparison of existing hybrid data processing models. This research aims to contribute to the analysis of hybrid data processing models based on neighborhood rough sets by investigating the inherent relationships among these models. We propose a generic neighborhood rough set-based hybrid model specifically designed for processing hybrid data, thereby enhancing the efficacy of the data mining process without resorting to discretization and avoiding information loss or practical meaning degradation in datasets. The proposed scheme dynamically adapts the threshold value for the neighborhood approximation space according to the characteristics of the given datasets, ensuring optimal performance without sacrificing accuracy. To evaluate the effectiveness of the proposed scheme, we develop a testbed tailored for Parkinson’s patients, a domain where hybrid data processing is particularly relevant. The experimental results demonstrate that the proposed scheme consistently outperforms existing schemes in adaptively handling both numerical and categorical data, achieving an impressive accuracy of 95% on the Parkinson’s dataset. Overall, this research contributes to advancing hybrid data processing techniques by providing a robust and adaptive solution that addresses the challenges associated with handling hybrid data, particularly in the context of Parkinson’s disease analysis.

Introduction

The advancement of technology has facilitated the accumulation of vast amounts of data from various sources such as databases, web repositories, and files, necessitating robust tools for analysis and decision-making 1 , 2 . Data mining, employing techniques such as support vector machine (SVM), decision trees, neural networks, clustering, fuzzy logic, and genetic algorithms, plays a pivotal role in extracting information and uncovering hidden patterns within the data 3 , 4 . However, the complexity of the data landscape, characterized by high dimensionality, heterogeneity, and non-traditional structures, renders the data mining process inherently challenging 5 , 6 . To tackle these challenges effectively, a combination of complementary and cooperative intelligent techniques, including SVM, fuzzy logic, probabilistic reasoning, genetic algorithms, and neural networks, has been advocated 7 , 8 .

Hybrid intelligent systems, amalgamating various intelligent techniques, have emerged as a promising approach to enhance the efficacy of data mining. Adaptive neuro-fuzzy inference systems (ANFIS) have laid the groundwork for intelligent systems in data mining techniques, providing a foundation for exploring complex data relationships 7 , 8 . Moreover, the theory of rough sets has found practical application in tasks such as attribute selection, data reduction, decision rule generation, and pattern extraction, contributing to the development of intelligent systems for knowledge discovery 7 , 8 . Extracting meaningful knowledge from hybrid data, which encompasses both categorical and numerical data, presents a significant challenge. Two predominant strategies have emerged to address this challenge 9 , 10 . The first strategy involves employing numerical data processing techniques such as Principal Component Analysis (PCA) 11 , 12 , Neural Networks 13 , 14 , 15 , 16 , and SVM 17 . However, this approach necessitates converting categorical data into numerical equivalents, leading to a loss of contextual meaning 18 , 19 . The second strategy leverages rough set theory alongside methods tailored for categorical data. Nonetheless, applying rough set theory to numerical data requires a discretization process, resulting in information loss 20 , 21 . Numerous hybrid data processing methods have been proposed, combining rough sets and fuzzy sets to handle uncertainty 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 . However, selecting an appropriate rough set model for a given dataset necessitates exploring the inherent relationships among existing models, presenting a challenge for users. The selection and utilization of an appropriate model in data mining thus demand qualitative and quantitative comparisons of existing hybrid data processing models.

This research endeavors to present a comprehensive analysis of hybrid data processing models, with a specific focus on those rooted in neighborhood rough sets (NRS). By investigating the inherent interconnections among these models, this study aims to elucidate their complex dynamics. To address the challenges posed by hybrid data, a novel hybrid model founded on NRS is introduced. This model enhances the efficiency of the data mining process without discretization mitigating information loss and ambiguity in data interpretation. Notably, the adaptability of the proposed model, particularly in adjusting the threshold value governing the neighborhood approximation space, ensures optimal performance aligned with dataset characteristics while maintaining high accuracy. A dedicated testbed tailored for Parkinson’s patients is developed to evaluate the real-world effectiveness of the proposed approach. Furthermore, a rigorous evaluation of the proposed model is conducted, encompassing both accuracy and overall effectiveness. Encouragingly, the results demonstrate that the proposed scheme surpasses alternative approaches, adeptly managing both numerical and categorical data through an adaptive framework.

The major contributions, listed below, collectively emphasize the innovative hybrid data processing model, the adaptive nature of its thresholding mechanism, and the empirical validation using a Parkinson’s patient testbed, underscoring the relevance and significance of the study’s findings.

Novel Hybrid Data Processing Model: This research introduces a novel hybrid data processing model based on NRS, preserving the practical meaning of both numerical and categorical data types. Unlike conventional methods, it minimizes information loss while optimizing interpretability. The proposed distance function combines Euclidean and Levenshtein distances with weighted calculations and dynamic selection mechanisms to enhance accuracy and realism in neighborhood approximation spaces.

Adaptive Thresholding Mechanism: Another key contribution is the integration of an adaptive thresholding mechanism within the hybrid model. This feature dynamically adjusts the threshold value based on dataset characteristics, ensuring optimal performance and yielding more accurate and contextually relevant results.

Empirical Validation through Parkinson’s Testbed: This research provides a dedicated testbed for analyzing behavioral data from Parkinson’s patients, allowing rigorous evaluation of the proposed hybrid data processing model. Utilizing real-world datasets enhances the model’s practical applicability and advances knowledge in medical data analysis and diagnosis.

The subsequent structure of the paper unfolds as follows: section “ Related work ” delves into the related work. The proposed model is introduced in section “ Adaptive neighborhood rough set model ”, Section “ Instrumentation ” underscores the instrumentation aspect, section “ Result and discussion ” unfolds the presentation of results and ensuing discussions, while section “ Conclusion and future work ” provides the concluding remarks for the paper. A list of notations used in this study is provided in Table  1 .

Related work

Rough set-based approaches have been utilized in various applications like bankruptcy prediction 42 , attribute/feature subset selection 43 , 44 , cancer prediction 45 , 46 , etc. In addition, recently, several innovative hybrid models have emerged, blending the realms of fuzzy logic and non-randomized systems (NRSs). One such development is presented by Yin et al. 47 , who introduce a parameterized hybrid fuzzy similarity relation. They apply this relation to the task of granulating multilabel data, subsequently extending it to the domain of multilabel learning. To construct a noise-tolerant multilabel fuzzy NRS model (NT-MLFNRS), they leverage the inclusion relationship between fuzzy neighborhood granules and fuzzy decisions. Building upon NT-MLFNRS, Yin et al. also devise a noise-resistant heuristic multilabel feature selection (NRFSFN) algorithm. To further enhance the efficiency of feature selection and address the complexities associated with handling large-scale multilabel datasets, they culminate their efforts by introducing an efficient extended version of NRFSFN known as ENFSFN.

Sang et al. 48 explore incremental feature selection methodologies, introducing a novel conditional entropy metric tailored for dynamic ordered data robustness. Their approach introduces the concept of a fuzzy dominance neighborhood rough set (FDNRS) and defines a conditional entropy metric with robustness, leveraging the FDNRS model. This metric serves as an evaluation criterion for features, and it is integrated into a heuristic feature selection algorithm. The resulting incremental feature selection algorithm is built upon this innovative model

Wang et al. 19 introduced the Fuzzy Rough Iterative Computational (FRIC) model, addressing challenges in hybrid information systems (HIS). Their framework includes a specialized distance function for object sets, enhancing object differentiation precision within HIS. Utilizing this function, they establish fuzzy symmetric relations among objects to formulate fuzzy rough approximations. Additionally, they introduce evaluation functions like fuzzy positive regions, dependency functions, and attribute importance functions to assess classification capabilities of attribute sets. They developed an attribute reduction algorithm tailored for hybrid data based on FRIC principles. This work contributes significantly to HIS analysis, providing a robust framework for data classification and feature selection in complex hybrid information systems.

Xu et al. 49 introduced a novel Fitting Fuzzy Rough Set (FRS) model enriched with relative dependency complement mutual information. This model addresses challenges related to data distribution and precision enhancement of fuzzy information granules. They utilized relative distance to mitigate the influence of data distribution on fuzzy similarity relationships and introduced a fitting fuzzy neighborhood radius optimized for enhancing the precision of fuzzy information granules. Within this model, the authors conducted a comprehensive analysis of information uncertainty, introducing definitions of relative complement information entropy and formulating a multiview uncertainty measure based on relative dependency complement mutual information. This work significantly advances our understanding of managing information uncertainty within FRS models, making a valuable contribution to computational modeling and data analysis.

Jiang et al. 50 presented an innovative approach for multiattribute decision-making (MADM) rooted in PROMETHEE II methodologies. Building upon the NRS model, they introduce two additional variants of covering-based variable precision fuzzy rough sets (CVPFRSs) by applying fuzzy logical operators, specifically type-I CVPFRSs and type-II CVPFRSs. In the context of MADM, their method entails the selection of medicines using an algorithm that leverages the identified features.

Qu et al. 51 introduced the concept of Adaptive Neighborhood Rough Sets (ANRSs), aiming for effective integration of feature separation and linkage with classification. They utilize the mRMR-based Feature Selection Algorithm (FSRMI), demonstrating outstanding performance across various selected datasets. However, it’s worth noting that FSRMI may not consistently outperform other algorithms on all datasets.

Xu et al. 52 introduced the Fuzzy Neighborhood Joint Entropy Model (FNSIJE) for feature selection, leveraging fuzzy neighborhood self-information measures and joint entropy to capture combined feature information. FNSIJE comprehensively analyzes the neighborhood decision system, considering noise, uncertainty, and ambiguity. To improve classification performance, the authors devised a new forward search method. Experimental results demonstrated the effectiveness of FNSIJE-KS, efficiently selecting fewer features for both low-dimensional UCI datasets and high-dimensional gene datasets while maintaining optimal classification performance. This approach advances feature selection techniques in machine learning and data analysis.

In 53 , the authors introduced a novel multi-label feature selection method utilizing fuzzy NRS to optimize classification performance in multi-label fuzzy neighborhood decision systems. By combining the NRS and FRS models a Multi-Label Fuzzy NRS model is introduced. They devised a fuzzy neighborhood approximation accuracy metric and crafted a hybrid metric integrating fuzzy neighborhood approximate accuracy with fuzzy neighborhood conditional entropy for attribute importance evaluation. Rigorous evaluation of their methods across ten diverse multi-label datasets showcased significant progress in multi-label feature selection techniques, promising enhanced classification performance in complex multi-label scenarios.

Sanget et al. 54 introduced the Fuzzy Dominance Neighborhood Rough Set (NRS) model for Interval-Valued Ordered Decision Systems (IvODS), along with a robust conditional entropy measure to assess monotonic consistency within IvODS. They also presented two incremental feature selection algorithms. Experimental results on nine publicly available datasets showcased the robustness of their proposed metric and the effectiveness and efficiency of the incremental algorithms, particularly in dynamic IvODS updates. This research significantly advances the application of fuzzy dominance NRS models in IvODS scenarios, providing valuable insights for data analysis and decision-making processes.

Zheng et al. 55 generalized the FRSs using axiomatic and constructive approaches. A pair of dual generalized fuzzy approximation operators is defined using arbitrary fuzzy relation in the constructive approach. Different classes of FRSs are characterized using different sets of axioms. The postulates governing fuzzy approximation operators ensure the presence of specific categories of fuzzy relations yielding identical operators. Using a generalized FRS model, Hu et al. 18 introduced an efficient algorithm for hybrid attribute reduction based on fuzzy relations constructing a forward greedy algorithm for hybrid attribute reduction resulting in optimal classification performance with lesser selected features and higher accuracy. Considering the similarity between two objects, Wang et al. 36 redefine fuzzy upper and lower approximations. The existing concepts of knowledge reduction are extending fuzzy environment resulting in a heuristic algorithm to learn fuzzy rules.

Gogoi et al. 56 use rough set theory for generating decision rules from inconsistent data. The proposed scheme uses indiscernibility relation to find inconsistencies in the data generating minimized and non-redundant rules using lower and upper approximations. The proposed scheme is based on the LEM2 algorithm 57 which performs the local covering option for generating minimum and non-redundant sets of classification rules and does not consider the global covering. The scheme is evaluated on a variety of data sets from the UCI Machine Learning Repository. All these data sets are either categorical or numerical having variable feature spaces. The proposed scheme performs consistently better for categorical data sets, as it is designed to handle inconsistencies in the data having at least one inconsistency. Results show that the proposed scheme generates minimized rule without reducing the feature space unlike other schemes, which compromise the feature space.

In 58 , the authors introduced a novel NRS model to address attribute reduction in noisy systems with heterogeneous attributes. This model extends traditional NRS by incorporating tolerance neighborhood relation and probabilistic theory, resulting in more comprehensive information granules. It evaluates the significance of heterogeneous attributes by considering neighborhood dependency and aims to maximize classification consistency within selected feature spaces. The feature space reduction algorithm employs an incremental approach, adding features while preserving maximal dependency in each round and halting when a new feature no longer increases dependency. This approach selects fewer features than other methods while achieving significantly improved classification performance, demonstrating its effectiveness in attribute reduction for noisy systems.

Zhu et al. 59 propose a fault tolerance scheme combining kernel method, NRS, and statistical features to adaptively select sensitive features. They employ a Gaussian kernel function with NRS to map fault data to a high-dimensional space. Their feature selection algorithm utilizes the hyper-sphere radius in high-dimensional feature space as the neighborhood value, selecting features based on significance measure regardless of the classification algorithm. A wrapper deploys a classification algorithm to evaluate selected features, choosing a subset for optimal classification. Experimental results demonstrate precise determination of the neighborhood value by mapping data into a high-dimensional space using the kernel function and hyper-sphere radius. This methodology proficiently selects sensitive fault features, diagnoses fault types, and identifies fault degrees in rolling bearing datasets.

A neighborhood covering a rough set model for the fuzziness of decision systems is proposed that solves the problem of hybrid decision systems having both fuzzy and numerical attributes 60 . The fuzzy neighborhood relation measures the indiscernibility relation and approximates the universe space using information granules, which deal with fuzzy attributes directly. The experimental results evaluate the influence of neighborhood operator size on the accuracy and attribute reduction of fuzzy neighborhood rough sets. The attribute reduction increases with the increase in the threshold size. A feature will not distinguish any samples and cannot reduce attributes if the neighborhood operator exceeds a certain value.

Hou et al. 61 applied NRS reduction techniques to cancer molecular classification, focusing on gene expression profiles. Their method introduced a novel perspective by using gene occurrence probability in selected gene subsets to indicate tumor classification efficacy. Unlike traditional methods, it integrated both Filters and Wrappers, enhancing classification performance while being computationally efficient. Additionally, they developed an ensemble classifier to improve accuracy and stability without overfitting. Experimental results showed the method achieved high prediction accuracy, identified potential cancer biomarkers, and demonstrated stability in performance.

Table  2 gives a comparison of existing rough set-based schemes for quantitative and qualitative analysis. The comparative parameters include handling hybrid data, generalized NRS, attribute reduction, classification, and accuracy rate. Most of the existing schemes do not handle hybrid data sets without discretization resulting in information loss and a lack of practical meanings. Another parameter to evaluate the effectiveness of the existing scheme is the ability to adapt the threshold value according to the given data sets. Most of the schemes do not adapt threshold values for neighborhood approximation space resulting in variable accuracy rates for different datasets. The end-user has to adjust the value of the threshold for different datasets without understanding its impact in terms of overfitting. Selecting a large threshold value will result in more global rules resulting in poor accuracy. There needs to be a mechanism to adaptively choose the value of the threshold considering both the global and local information without compromising on the accuracy rate. The schemes are also evaluated for their ability to attribute reduction using NRS. This can greatly improve processing time and accuracy by not considering insignificant attributes. The comparative analysis shows that most of the NRS-based existing schemes perform better than many other well-known schemes in terms of accuracy. Most of these schemes have a higher accuracy rate than CART, C4.5, and k NN. This makes the NRS-based schemes a choice for attribute reduction and classification.

Adaptive neighborhood rough set model

The detailed analysis of existing techniques highlights the need for a generalized NRS-based classification technique to handle both categorical and numerical data. The proposed NRS-based techniques not only handle the hybrid information granules but also dynamically select the threshold \(\delta \) producing optimal results with a high accuracy rate. The proposed scheme considers a hybrid tuple \(HIS=\langle U_h,\ Q_h,\ V,\ f \rangle \) , where \(U_h\) is nonempty set of hybrid records \(\{x_{h1},\ x_{h2},\ x_{h3},\ \ldots ,\ x_{hn}\}\) , \(Q_h=\left\{ q_{h1},\ q_{h2},\ \ q_{h3},\ \ldots \,\ q_{hn}\right\} \) is the non-empty set of hybrid features. \( V_{q_h}\) is the domain of attribute \(q_h\) and \(V=\ \cup _{q_h\in Q_h}V_{q_h}\) , and \(f=U_h\ x\ Q_h\rightarrow V\) is a total function such \(f\left( x_h,q_h\right) \in V_{q_h}\) for each \(q_h\in Q_h, x_h\in U_h\) , called information function. \(\langle U_h,\ Q_h,\ V,\ f\rangle \) is also known as a decision table if \(Q_h=C_h\cup D\) , where \(C_h\) is the set of hybrid condition attributes and D is the decision attribute.

A neighborhood relation N is calculated using this set of hybrid samples \(U_h\) creating the neighborhood approximation space \(\langle U_h,\ N\rangle \) which contains information granules \( \left\{ \delta ({x_h}_i)\big |{x_h}_i\in U_h\right\} \) based on some distance function \(\Delta \) . For an arbitrary sample \({x_h}_i\in U_h\) and \(B \subseteq C_h\) , the neighborhood \(\delta _B({x_h}_i)\) of \({x_h}_i\) in the subspace B is defined as \(\delta _B\left( {x_h}_i\right) =\{{x_h}_j\left| {x_h}_j\right. \in U_h,\ \Delta B(x_i,x_j) \le \delta \}\) . The scheme proposes a new hybrid distance function to handle both the categorical and numerical features in an approximation space.

The proposed distance function uses Euclidean distance for numerical features and Levenshtein distance for categorical features. The distance function also takes care of the significant features calculating weighted distance for both the categorical and numerical features. The proposed algorithm dynamically selects the distance function at the run time. The use of Levenshtein distance for categorical features provides precise distance for optimal neighborhood approximation space providing better results. Existing techniques add 1 to distance if two strings do not match in calculating the distance for categorical data and add 0 otherwise. This may not result in a realistic neighborhood approximation space.

The neighborhood size depends on the threshold \(\delta \) . The neighborhood will contain more samples if \(\delta \) is greater and results in more rules not considering the local information data. The accuracy rate of the NRS greatly depends on the selection of threshold values. The proposed scheme dynamically calculates the threshold value for any given dataset considering both local and global information. The threshold calculation formula is given below where \({min}_D\) is the minimum distance between the set of training samples and the test sample containing local information and \(R_D\) is the range of distance between the set of training samples and the test sample containing the global information.

The proposed scheme then calculates the lower and upper approximations given a neighborhood space \(\langle U_h, N\rangle \) for \(X \subseteq U_h\) , the lower and upper approximations of X are defined as:

Given a hybrid neighborhood decision table \(HNDT=\langle U_h,\ C_h\cup \ D, V, f\rangle \) , \(\{ X_{h1},X_{h2},\ \ldots ,\ X_{hN} \}\) are the sample hybrid subjects with decision 1 to N , \(\delta _B\left( x_{hi}\right) \) is the information granules generated by attributes \(B \subseteq C_h\) , then the lower and upper approximation is defined as:

and the boundary region of D is defined as:

The lower and upper approximation spaces are the set of rules, which are used to classify a test sample. A test sample forms its neighborhood using a lower approximation having all the rules with a distance less than a dynamically calculated threshold value. The majority voting is used in the neighborhood of a test sample to decide the class of a test sample. K-fold cross-validation is used to measure the accuracy of the proposed scheme where the value k is 10. The algorithm 1 of the proposed scheme has a time complexity of \(O(nm^{2})\) where n is the number of clients and m is the size of the categorial data.

figure a

Instrumentation

The proposed generalized rough set model has been rigorously assessed through the development of a testbed designed for the classification of Parkinson’s patients. It has also been subjected to testing using various standard datasets sourced from the University of California at Irvine machine learning data repository 63 . This research underscores the increasing significance of biomedical engineering in healthcare, particularly in light of the growing prevalence of Parkinson’s disease, which ranks as the second most common neurodegenerative condition, impacting over 1% of the population aged 65 and above 64 . The disease manifests through distinct motor symptoms like resting tremors, bradykinesia (slowness of movement), rigidity, and poor balance, with medication-related side effects such as wearing off and dyskinesias 65 .

In this study, to address the need for a reliable quantitative method for assessing motor complications in Parkinson’s patients, the data collection process involves utilizing a home-monitoring system equipped with wireless wearable sensors. These sensors were specifically deployed to closely monitor Parkinson’s patients with severe tremors in real time. It’s important to note that all patients involved in the study were clinically diagnosed with Parkinson’s disease. Additionally, before data collection, proper consent was obtained from each participant, and the study protocol was approved by the ethical committee of our university. The data collected from these sensors is then analyzed, yielding reliable quantitative information that can significantly aid clinical decision-making within both routine patient care and clinical trials of innovative treatments.

figure 1

Testbed for Parkinson’s patients.

Figure  1 illustrates a real-time Testbed designed for monitoring Parkinson’s patients. This system utilizes a tri-axial accelerometer to capture three signals, one for each axis \((x,\ y,\ and\ z)\) , resulting in a total of 18 channels of data. The sensors employed in this setup employ ZigBee (IEEE 802.15.4 infrastructure) protocol to transmit data to a computer at a sampling rate of 62.5 Hz. To ensure synchronization of the transmitted signals, a transition protocol is applied. These data packets are received through the Serial Forwarder using the TinyOS platform ( http://www.tinyos.net ). The recorded acceleration data is represented as digital signals and can be visualized on an oscilloscope. The frequency domain data is obtained by applying the Fast Fourier Transform (FFT) to the signal, resulting in an ARFF file format that is then employed for classification purposes. The experimental flowchart is shown in Fig.  2 .

figure 2

Experimental flowchart.

The real-time testbed includes various components to capture data using the Unified Parkinson’s Disease Rating Scale (UPDRS). TelosB MTM-CM5000-MSP and MTM-CM3000-MSP sensors are used to send and receive radio signals from the sensor to the PC. These sensors are based on an open-source TelosB/Tmote Sky platform, designed and developed by the University of California, Berkeley.

TelosB sensor uses the IEEE 802.15.4 wireless structure and the embedded sensors can measure temperature, relative humidity, and light. In CM3000, the USB connector is replaced with an ERNI connector that is compatible with interface modules. Also, the Hirose 51-pin connector makes this more versatile as it can be attachable to any sensor board family, and the coverage area is increased using SMA design by a 5dBi external antenna 66 . These components can be used for a variety of applications such as low-power Wireless Sensor Networks (WSN) platforms, network monitoring, and environment monitoring systems.

MTS-EX1000 sensor board is used for the amplification of the voltage/current value from the accelerometer. The EX1000 is an attachable board that supports the CMXXXX series of wireless sensors network Motes (Hirose 51-pin connector). The basic functionality of EX1000 is to connect the external sensors with CMXX00 communication modules to enhance the mote’s I/O capability and support different kinds of sensors based on the sensor type and its output signal. ADXL-345 Tri-accelerometer sensor is used to calculate body motion along x, y, and z-axis relative to gravity. It is a small, thin, low-power, 3-axis accelerometer that calculates high resolution (13-bit) measurements at up to ±16g. Its digital output, in 16-bit twos complement format, is accessible through either an SPI (3- or 4-wire) or I2C digital interface. A customized main circuit board is used having a programmed IC, registers, and transistors. Its basic functionality is to convert the digital data, accessed through the ADXL-345 sensor, into analog form and send it to MTS1000.

Result and discussion

The proposed generalized and ANRS is evaluated against different data sets taken from the machine learning data repository, at the University of California at Irvine. In addition to these common data sets, a real-time Testbed for Parkinson’s patients is also used to evaluate the proposed scheme. The hybrid data of 500 people was collected using the Testbed for Parkinson’s patients including 10 Parkinson’s patients, 20 people have abnormal and uncontrolled hand movements, and the rest of the samples were taken approximating the hand movements of Parkinson’s patients. The objective of this evaluation is to compare the accuracy rate of the proposed scheme with CART, k NN, and SVM having both simple and complex datasets containing numerical and hybrid features respectively. The results also demonstrate the selection of radius r for dynamically calculating the threshold value.

Table  3 provides the details of the datasets used for the evaluation of the proposed scheme including the training and test ratio used for evaluation in addition to data type, total number of instances, total feature, a feature considered for evaluation, and number of classes. The hybrid datasets are also selected to evaluate to performance of the proposed scheme against the hybrid feature space without discretization preventing information loss.

The accuracy of the NRS is greatly dependent on the threshold value. Most of the existing techniques do not dynamically adapt the threshold \(\delta \) value for different hybrid datasets. This results in the variant of NRS suitable for specific datasets with different threshold values. A specific threshold value may produce better results for one dataset and poor results for others requiring a more generic threshold value catering to different datasets with optimal results. The proposed scheme introduces an adaptable threshold calculation mechanism to achieve optimal results regardless of the datasets under evaluation. The radius value plays a pivotal role in forming a neighborhood, as the threshold values consider both the local and global information of the NRS to calculate neighborhood approximation space. Table  4 shows the accuracy rate having different values of the radius of the NRS. The proposed threshold mechanism provides better results for all datasets if the value of the radius is 0.002. Results also show that assigning no weight to the radius produces poor results, as it will then only consider the local information for the approximation space. Selecting other weights for radius may produce better results for one dataset but not for all datasets.

Table  5 presents the comparative analysis of the proposed scheme with k NN, Naive Bayes, and C45. The results show that the proposed scheme performs well against other well-known techniques for both the categorical and numerical features space. Naive Bayes and C45 also result in information loss, as these techniques cannot process the hybrid data. So the proposed scheme handles the hybrid data without compromising on the information completeness producing acceptable results. K-fold cross-validation is used to measure the accuracy of the proposed scheme. Each dataset is divided into 10 subsets to use one of the K subsets as the test set and the other K-1 subsets as training sets. Then the average accuracy of all K trials is computed with the advantage of having results regardless of the dataset division.

Conclusion and future work

This work evaluates the existing NRS-based scheme for handling hybrid data sets i.e. numerical and categorical features. The comparative analysis of existing NRS-based schemes shows that there is a need for a generic NRS-based approach to adapt the threshold selection forming neighborhood approximation space. A generalized and ANRS-based scheme is proposed to handle both the categorical and numerical features avoiding information loss and lack of practical meanings. The proposed scheme uses a Euclidean and Levenshtein distance to calculate the upper and lower approximation of NRS for numerical and categorical features respectively. Euclidean and Levenshtein distances have been modified to handle the impact of outliers in calculating the approximation spaces. The proposed scheme defines an adaptive threshold mechanism for calculating neighborhood approximation space regardless of the data set under consideration. A Testbed is developed for real-time behavioral analysis of Parkinson’s patients evaluating the effectiveness of the proposed scheme. The evaluation results show that the proposed scheme provides better accuracy than k NN, C4.5, and Naive Bayes for both the categorical and numerical feature space achieving 95% accuracy on the Parkinson’s dataset. The proposed scheme will be evaluated against the hybrid data set having more than two classes in future work. Additionally, in future work, we aim to explore the following areas; (i) conduct longitudinal studies to track the progression of Parkinson’s disease over time, allowing for a deeper understanding of how behavioral patterns evolve and how interventions may impact disease trajectory, (ii) explore the integration of additional data sources, such as genetic data, imaging studies, and environmental factors, to provide a more comprehensive understanding of Parkinson’s disease etiology and progression, (iii) validate our findings in larger and more diverse patient populations and investigate the feasibility of implementing our proposed approach in clinical settings to support healthcare providers in decision-making processes, (iv) investigate novel biomarkers or physiological signals that may provide additional insights into Parkinson’s disease progression and motor complications, potentially leading to the development of new diagnostic and monitoring tools, and (v) conduct patient-centered outcomes research to better understand the impact of Parkinson’s disease on patients’ quality of life, functional abilities, and overall well-being, with a focus on developing personalized treatment approaches.

Data availability

The datasets used in this study are publicly available at the following links:

Bupa 67 : https://doi.org/10.24432/C54G67 , Sonar 68 : https://doi.org/10.24432/C5T01Q , Mammographic Mass 69 : https://doi.org/10.24432/C53K6Z , Haberman’s Survival 70 : https://doi.org/10.24432/C5XK51 , Credit-g 71 : https://doi.org/10.24432/C5NC77 , Lymmography 73 : https://doi.org/10.24432/C54598 , Splice 74 : https://doi.org/10.24432/C5M888 , Optdigits 75 : https://doi.org/10.24432/C50P49 , Pendigits 76 : https://doi.org/10.1137/1.9781611972825.9 , Pageblocks 77 : https://doi.org/10.24432/C5J590 , Statlog 78 : https://doi.org/10.24432/C55887 , Magic04 79 : https://doi.org/10.1609/aaai.v29i1.9277 .

Gaber, M. M. Scientific Data Mining and Knowledge Discovery Vol. 1 (Springer, 2009).

Google Scholar  

Hajirahimi, Z. & Khashei, M. Weighting approaches in data mining and knowledge discovery: A review. Neural Process. Lett. 55 , 10393–10438 (2023).

Article   Google Scholar  

Kantardzic, M. Data Mining: Concepts, Models, Methods, and Algorithms (Wiley, 2011).

Book   Google Scholar  

Shu, X. & Ye, Y. Knowledge discovery: Methods from data mining and machine learning. Soc. Sci. Res. 110 , 102817 (2023).

Article   PubMed   Google Scholar  

Tan, P.-N., Steinbach, M. & Kumar, V. Introduction to Data Mining (Pearson Education India, 2016).

Khan, S. & Shaheen, M. From data mining to wisdom mining. J. Inf. Sci. 49 , 952–975 (2023).

Engelbrecht, A. P. Computational Intelligence: An Introduction (Wiley, 2007).

Bhateja, V., Yang, X.-S., Lin, J.C.-W. & Das, R. Evolution in computational intelligence. In Evolution (Springer, 2023).

Wei, W., Liang, J. & Qian, Y. A comparative study of rough sets for hybrid data. Inf. Sci. 190 , 1–16 (2012).

Article   ADS   MathSciNet   Google Scholar  

Kumari, N. & Acharjya, D. Data classification using rough set and bioinspired computing in healthcare applications—An extensive review. Multimedia Tools Appl. 82 , 13479–13505 (2023).

Martinez, A. M. & Kak, A. C. PCA versus LDA. IEEE Trans. Pattern Anal. Mach. Intell. 23 , 228–233 (2001).

Brereton, R. G. Principal components analysis with several objects and variables. J. Chemom. 37 (4), e3408 (2023).

Article   CAS   Google Scholar  

De, R. K., Basak, J. & Pal, S. K. Neuro-fuzzy feature evaluation with theoretical analysis. Neural Netw. 12 , 1429–1455 (1999).

Talpur, N. et al. Deep neuro-fuzzy system application trends, challenges, and future perspectives: A systematic survey. Artif. Intell. Rev. 56 , 865–913 (2023).

Jang, J.-S.R., Sun, C.-T. & Mizutani, E. Neuro-fuzzy and soft computing—A computational approach to learning and machine intelligence [book review]. IEEE Trans. Autom. Control 42 , 1482–1484 (1997).

Ouifak, H. & Idri, A. Application of neuro-fuzzy ensembles across domains: A systematic review of the two last decades (2000–2022). Eng. Appl. Artif. Intell. 124 , 106582 (2023).

Jung, T. & Kim, J. A new support vector machine for categorical features. Expert Syst. Appl. 229 , 120449 (2023).

Hu, Q., Xie, Z. & Yu, D. Hybrid attribute reduction based on a novel fuzzy-rough model and information granulation. Pattern Recognit. 40 , 3509–3521 (2007).

Article   ADS   Google Scholar  

Wang, P., He, J. & Li, Z. Attribute reduction for hybrid data based on fuzzy rough iterative computation model. Inf. Sci. 632 , 555–575 (2023).

Yeung, D. S., Chen, D., Tsang, E. C., Lee, J. W. & Xizhao, W. On the generalization of fuzzy rough sets. IEEE Trans. Fuzzy Syst. 13 , 343–361 (2005).

Gao, L., Yao, B.-X. & Li, L.-Q. L-fuzzy generalized neighborhood system-based pessimistic l-fuzzy rough sets and its applications. Soft Comput. 27 , 7773–7788 (2023).

Bhatt, R. B. & Gopal, M. On fuzzy-rough sets approach to feature selection. Pattern Recognit. Lett. 26 , 965–975 (2005).

Dubois, D. & Prade, H. Putting fuzzy sets and rough sets together. Intell. Decis. Support 23 , 203–232 (1992).

Jensen, R. & Shen, Q. Fuzzy-rough sets for descriptive dimensionality reduction. In 2002 IEEE World Congress on Computational Intelligence. 2002 IEEE International Conference on Fuzzy Systems. FUZZ-IEEE’02. Proceedings (Cat. No. 02CH37291) , vol. 1, 29–34 (IEEE, 2002).

Pedrycz, W. & Vukovich, G. Feature analysis through information granulation and fuzzy sets. Pattern Recognit. 35 , 825–834 (2002).

Jensen, R. & Shen, Q. Fuzzy-rough sets assisted attribute selection. IEEE Trans. Fuzzy Syst. 15 , 73–89 (2007).

Shen, Q. & Jensen, R. Selecting informative features with fuzzy-rough sets and its application for complex systems monitoring. Pattern Recognit. 37 , 1351–1363 (2004).

Wang, X., Tsang, E. C., Zhao, S., Chen, D. & Yeung, D. S. Learning fuzzy rules from fuzzy samples based on rough set technique. Inf. Sci. 177 , 4493–4514 (2007).

Article   MathSciNet   Google Scholar  

Wei, W., Liang, J., Qian, Y. & Wang, F. An attribute reduction approach and its accelerated version for hybrid data. In 2009 8th IEEE International Conference on Cognitive Informatics , 167–173 (IEEE, 2009).

Yin, T., Chen, H., Li, T., Yuan, Z. & Luo, C. Robust feature selection using label enhancement and \(\beta \) -precision fuzzy rough sets for multilabel fuzzy decision system. Fuzzy Sets Syst. 461 , 108462 (2023).

Yin, T. et al. Exploiting feature multi-correlations for multilabel feature selection in robust multi-neighborhood fuzzy \(\beta \) covering space. Inf. Fusion 104 , 102150 (2024).

Yin, T. et al. A robust multilabel feature selection approach based on graph structure considering fuzzy dependency and feature interaction. IEEE Trans. Fuzzy Syst. 31 , 4516–4528. https://doi.org/10.1109/TFUZZ.2023.3287193 (2023).

Huang, W., She, Y., He, X. & Ding, W. Fuzzy rough sets-based incremental feature selection for hierarchical classification. IEEE Trans. Fuzzy Syst. https://doi.org/10.1109/TFUZZ.2023.3300913 (2023).

Dong, L., Wang, R. & Chen, D. Incremental feature selection with fuzzy rough sets for dynamic data sets. Fuzzy Sets Syst. 467 , 108503 (2023).

Chakraborty, M. K. & Samanta, P. Fuzzy sets and rough sets: A mathematical narrative. In Fuzzy, Rough and Intuitionistic Fuzzy Set Approaches for Data Handling: Theory and Applications , 1–21 (Springer, 2023).

Wang, Z., Chen, H., Yuan, Z. & Li, T. Fuzzy-rough hybrid dimensionality reduction. Fuzzy Sets Syst. 459 , 95–117 (2023).

Xue, Z.-A., Jing, M.-M., Li, Y.-X. & Zheng, Y. Variable precision multi-granulation covering rough intuitionistic fuzzy sets. Granul. Comput. 8 , 577–596 (2023).

Akram, M., Nawaz, H. S. & Deveci, M. Attribute reduction and information granulation in pythagorean fuzzy formal contexts. Expert Systems Appl. 222 , 119794 (2023).

Hu, M., Guo, Y., Chen, D., Tsang, E. C. & Zhang, Q. Attribute reduction based on neighborhood constrained fuzzy rough sets. Knowl. Based Syst. 274 , 110632 (2023).

Zhang, C., Ding, J., Zhan, J., Sangaiah, A. K. & Li, D. Fuzzy intelligence learning based on bounded rationality in IOMT systems: A case study in Parkinson’s disease. IEEE Trans. Comput. Soc. Syst. 10 , 1607–1621. https://doi.org/10.1109/TCSS.2022.3221933 (2023).

Zhang, C. & Zhang, J. Three-way group decisions with incomplete spherical fuzzy information for treating Parkinson’s disease using IOMT devices. Wireless Communications and Mobile Computing , vol. 2022 (2022).

Jain, P., Tiwari, A. K. & Som, T. Improving financial bankruptcy prediction using oversampling followed by fuzzy rough feature selection via evolutionary search. In Computational Management: Applications of Computational Intelligence in Business Management , 455–471 (Springer, 2021).

Shreevastava, S., Singh, S., Tiwari, A. & Som, T. Different classes ratio and Laplace summation operator based intuitionistic fuzzy rough attribute selection. Iran. J. Fuzzy Syst. 18 , 67–82 (2021).

MathSciNet   Google Scholar  

Shreevastava, S., Tiwari, A. & Som, T. Feature subset selection of semi-supervised data: an intuitionistic fuzzy-rough set-based concept. In Proceedings of International Ethical Hacking Conference 2018: eHaCON 2018, Kolkata, India , 303–315 (Springer, 2019).

Tiwari, A. K., Nath, A., Subbiah, K. & Shukla, K. K. Enhanced prediction for observed peptide count in protein mass spectrometry data by optimally balancing the training dataset. Int. J. Pattern Recognit. Artif. Intell. 31 , 1750040 (2017).

Jain, P., Tiwari, A. K. & Som, T. An intuitionistic fuzzy bireduct model and its application to cancer treatment. Comput. Ind. Eng. 168 , 108124 (2022).

Yin, T., Chen, H., Yuan, Z., Li, T. & Liu, K. Noise-resistant multilabel fuzzy neighborhood rough sets for feature subset selection. Inf. Sci. 621 , 200–226 (2023).

Sang, B., Chen, H., Yang, L., Li, T. & Xu, W. Incremental feature selection using a conditional entropy based on fuzzy dominance neighborhood rough sets. IEEE Trans. Fuzzy Syst. 30 , 1683–1697 (2021).

Xu, J., Meng, X., Qu, K., Sun, Y. & Hou, Q. Feature selection using relative dependency complement mutual information in fitting fuzzy rough set model. Appl. Intell. 53 , 18239–18262 (2023).

Jiang, H., Zhan, J. & Chen, D. Promethee ii method based on variable precision fuzzy rough sets with fuzzy neighborhoods. Artif. Intell. Rev. 54 , 1281–1319 (2021).

Qu, K., Xu, J., Han, Z. & Xu, S. Maximum relevance minimum redundancy-based feature selection using rough mutual information in adaptive neighborhood rough sets. Appl. Intell. 53 , 17727–17746 (2023).

Xu, J., Yuan, M. & Ma, Y. Feature selection using self-information and entropy-based uncertainty measure for fuzzy neighborhood rough set. Complex Intell. Syst. 8 , 287–305 (2022).

Xu, J., Shen, K. & Sun, L. Multi-label feature selection based on fuzzy neighborhood rough sets. Complex Intell. Syst. 8 , 2105–2129 (2022).

Sang, B. et al. Feature selection for dynamic interval-valued ordered data based on fuzzy dominance neighborhood rough set. Knowl. Based Syst. 227 , 107223 (2021).

Wu, W.-Z., Mi, J.-S. & Zhang, W.-X. Generalized fuzzy rough sets. Inf. Sci. 151 , 263–282 (2003).

Gogoi, P., Bhattacharyya, D. K. & Kalita, J. K. A rough set-based effective rule generation method for classification with an application in intrusion detection. Int. J. Secur. Netw. 8 , 61–71 (2013).

Grzymala-Busse, J. W. Knowledge acquisition under uncertainty—A rough set approach. J. Intell. Robot. Syst. 1 , 3–16 (1988).

Jing, S. & She, K. Heterogeneous attribute reduction in noisy system based on a generalized neighborhood rough sets model. World Acad. Sci. Eng. Technol. 75 , 1067–1072 (2011).

Zhu, X., Zhang, Y. & Zhu, Y. Intelligent fault diagnosis of rolling bearing based on kernel neighborhood rough sets and statistical features. J. Mech. Sci. Technol. 26 , 2649–2657 (2012).

Zhao, B.-T. & Jia, X.-F. Neighborhood covering rough set model of fuzzy decision system. Int. J. Comput. Sci. Issues 10 , 51 (2013).

Hou, M.-L. et al. Neighborhood rough set reduction-based gene selection and prioritization for gene expression profile analysis and molecular cancer classification. J Biomed Biotechnol. 2010 , 726413 (2010).

Article   PubMed   PubMed Central   Google Scholar  

He, M.-X. & Qiu, D.-D. A intrusion detection method based on neighborhood rough set. TELKOMNIKA Indones. J. Electr. Eng. 11 , 3736–3741 (2013).

ADS   Google Scholar  

Newman, D. J., Hettich, S., Blake, C. L. & Merz, C. UCI repository of machine learning databases (1998).

Aarsland, D. et al. Parkinson disease-associated cognitive impairment. Nat. Rev. Dis. Primers 7 , 47 (2021).

Lang, A. E. & Lozano, A. M. Parkinson’s disease. N. Engl. J. Med. 339 , 1130–1143 (1998).

Article   CAS   PubMed   Google Scholar  

Engin, M. et al. The classification of human tremor signals using artificial neural network. Expert Syst. Appl. 33 , 754–761 (2007).

Liver Disorders. UCI Machine Learning Repository. https://doi.org/10.24432/C54G67 (1990).

Sejnowski, T. & Gorman, R. Connectionist bench (sonar, mines vs. rocks). UCI Machine Learning Repository. https://doi.org/10.24432/C5T01Q

Elter, M. Mammographic Mass. UCI Machine Learning Repository. https://doi.org/10.24432/C53K6Z (2007).

Haberman, S. Haberman’s Survival. UCI Machine Learning Repository. https://doi.org/10.24432/C5XK51 (1999).

Hofmann, H. Statlog (German Credit Data). UCI Machine Learning Repository. https://doi.org/10.24432/C5NC77 (1994).

Kubat, M., Holte, R. C. & Matwin, S. Machine learning for the detection of oil spills in satellite radar images. Mach. Learn. 30 , 195–215 (1998).

Zwitter, M. & Soklic, M. Lymphography. UCI Machine Learning Repository. https://doi.org/10.24432/C54598 (1988).

Molecular Biology (Splice-junction Gene Sequences). UCI Machine Learning Repository. https://doi.org/10.24432/C5M888 (1992).

Alpaydin, E. & Kaynak, C. Optical Recognition of Handwritten Digits. UCI Machine Learning Repository. https://doi.org/10.24432/C50P49 (1998).

Schubert, E., Wojdanowski, R., Zimek, A. & Kriegel, H.-P. On evaluation of outlier rankings and outlier scores. In Proceedings of the 2012 SIAM International Conference on Data Mining , 1047–1058 (SIAM, 2012).

Malerba, D. Page Blocks Classification. UCI Machine Learning Repository. https://doi.org/10.24432/C5J590 (1995).

Srinivasan, A. Statlog (Landsat Satellite). UCI Machine Learning Repository. https://doi.org/10.24432/C55887 (1993).

Rossi, R. A. & Ahmed, N. K. The network data repository with interactive graph analytics and visualization. In AAAI (2015).

Download references

Acknowledgements

This research was funded by the European University of Atlantic.

Author information

Authors and affiliations.

Department of Computer Science, COMSATS University Islamabad, Lahore Campus, Lahore, 54000, Pakistan

Imran Raza, Muhammad Hasan Jamal, Rizwan Qureshi & Abdul Karim Shahid

Universidad Europea del Atlántico, Isabel Torres 21, 39011, Santander, Spain

Angel Olider Rojas Vistorte

Universidad Internacional Iberoamericana Campeche, 24560, Campeche, Mexico

Universidade Internacional do Cuanza, Cuito, Bié, Angola

Department of Information and Communication Engineering, Yeungnam University, Gyeongsan-si, Gyeongsangbuk-do, 38541, South Korea

Md Abdus Samad & Imran Ashraf

You can also search for this author in PubMed   Google Scholar

Contributions

Imran Raza: Conceptualization, Formal analysis, Writing—original draft; Muhammad Hasan Jamal: Conceptualization, Data curation, Writing—original draft; Rizwan Qureshi: Data curation, Formal analysis, Methodology; Abdul Karim Shahid: Project administration, Software, Visualization; Angel Olider Rojas Vistorte: Funding acquisition, Investigation, Project administration; Md Abdus Samad: Investigation, Software, Resources; Imran Ashraf: Supervision, Validation, Writing —review and editing. All authors reviewed the manuscript and approved it.

Corresponding authors

Correspondence to Md Abdus Samad or Imran Ashraf .

Ethics declarations

Competing interests.

The authors declare no competing interests.

Additional information

Publisher's note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ .

Reprints and permissions

About this article

Cite this article.

Raza, I., Jamal, M.H., Qureshi, R. et al. Adaptive neighborhood rough set model for hybrid data processing: a case study on Parkinson’s disease behavioral analysis. Sci Rep 14 , 7635 (2024). https://doi.org/10.1038/s41598-024-57547-4

Download citation

Received : 01 October 2023

Accepted : 19 March 2024

Published : 01 April 2024

DOI : https://doi.org/10.1038/s41598-024-57547-4

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

By submitting a comment you agree to abide by our Terms and Community Guidelines . If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

case study research use data for analysis

  • Open access
  • Published: 02 April 2024

Towards universal health coverage in Vietnam: a mixed-method case study of enrolling people with tuberculosis into social health insurance

  • Rachel Forse   ORCID: orcid.org/0000-0002-0716-3342 1 , 2 ,
  • Clara Akie Yoshino 2 ,
  • Thanh Thi Nguyen 1 ,
  • Thi Hoang Yen Phan 3 ,
  • Luan N. Q. Vo 1 , 2 ,
  • Andrew J. Codlin 1 , 2 ,
  • Lan Nguyen 4 ,
  • Chi Hoang 4 ,
  • Lopa Basu 5 ,
  • Minh Pham 5 ,
  • Hoa Binh Nguyen 6 ,
  • Luong Van Dinh 6 ,
  • Maxine Caws 7 , 8 ,
  • Tom Wingfield 2 , 7 ,
  • Knut Lönnroth 2 &
  • Kristi Sidney-Annerstedt 2  

Health Research Policy and Systems volume  22 , Article number:  40 ( 2024 ) Cite this article

Metrics details

Vietnam’s primary mechanism of achieving sustainable funding for universal health coverage (UHC) and financial protection has been through its social health insurance (SHI) scheme. Steady progress towards access has been made and by 2020, over 90% of the population were enrolled in SHI. In 2022, as part of a larger transition towards the increased domestic financing of healthcare, tuberculosis (TB) services were integrated into SHI. This change required people with TB to use SHI for treatment at district-level facilities or to pay out of pocket for services. This study was conducted in preparation for this transition. It aimed to understand more about uninsured people with TB, assess the feasibility of enrolling them into SHI, and identify the barriers they faced in this process.

A mixed-method case study was conducted using a convergent parallel design between November 2018 and January 2022 in ten districts of Hanoi and Ho Chi Minh City, Vietnam. Quantitative data were collected through a pilot intervention that aimed to facilitate SHI enrollment for uninsured individuals with TB. Descriptive statistics were calculated. Qualitative interviews were conducted with 34 participants, who were purposively sampled for maximum variation. Qualitative data were analyzed through an inductive approach and themes were identified through framework analysis. Quantitative and qualitative data sources were triangulated.

We attempted to enroll 115 uninsured people with TB into SHI; 76.5% were able to enroll. On average, it took 34.5 days to obtain a SHI card and it cost USD 66 per household. The themes indicated that a lack of knowledge, high costs for annual premiums, and the household-based registration requirement were barriers to SHI enrollment. Participants indicated that alternative enrolment mechanisms and greater procedural flexibility, particularly for undocumented people, is required to achieve full population coverage with SHI in urban centers.

Conclusions

Significant addressable barriers to SHI enrolment for people affected by TB were identified. A quarter of individuals remained unable to enroll after receiving enhanced support due to lack of required documentation. The experience gained during this health financing transition is relevant for other middle-income countries as they address the provision of financial protection for the treatment of infectious diseases.

Peer Review reports

Contributing to universal health coverage (UHC) by improving access to fair and sustainable health financing, of which one mechanism is health insurance, has become a priority among low- and middle-income countries [ 1 , 2 ]. Many countries in the Asia Pacific region have made steady progress towards UHC coverage through sustained political commitments and fiscal policy aligned with their commitment [ 3 ]. By 2020, 27 countries had implemented a social health insurance (SHI) financing mechanism, which typically includes open enrollment for the full population along with partial or full subsidization of healthcare costs for vulnerable groups [ 4 ].

Vietnam’s first SHI scheme was piloted in 1989 and grew through successive pilots and expansions. In 2009 the national-level Health Insurance Law (HIL) went into effect, uniting the existing health insurance programs and schemes for the poor [ 5 ]. Amendments to the HIL effective in 2015 made SHI compulsory for all and pooled risk by re-structuring registration around the household unit [ 4 ]. A household in Vietnam is defined by inclusion in the ‘family book ’, the national system of family and address registration [ 6 ].

Access to SHI in Vietnam increased rapidly, principally through subsidization of premiums. Specific groups were enrolled automatically with full subsidy, including vulnerable populations (e.g., households classified as ‘poor’, children aged < 6, people aged > 80), pensioners and meritorious groups (e.g., veterans). Partial premium subsidization was also available for students, households classified as ‘near-poor’ and some farmers [ 7 ]. More than half of SHI members are entitled to 80% coverage with a 20% co-payment for services [ 8 ]. However, co-payments are reduced to 5% or are eliminated for subsidized groups (e.g., households classified as ‘poor’ and ‘near-poor’, children < 6) [ 4 ].

By 2020, Vietnam recorded a 91% national SHI coverage rate [ 7 ]. Those remaining uninsured mainly consisted of informally employed individuals [ 7 ]. Enrollment rates were highest among low- and high-income groups, leaving the so-called “missing middle” of uninsured [ 5 ].

Vietnam continues to transition to domestic financing of healthcare from donor financing by expanding the breadth of the national SHI. The Ministry of Health and Vietnam Social Security (VSS) have begun to close service gaps and integrate vertical health programs (e.g., those with stand-alone budget allocations and/or direct donor financing) into SHI financing [ 7 ]. The costs for antiretroviral therapy (ART) were transitioned from donor funding to SHI in 2019 [ 9 ], COVID-19 treatments were covered by SHI in 2020, and financing for tuberculosis (TB) care was fully transitioned to SHI in 2022 [ 7 ].

Until this financing transition, anti-TB medications and consultations were provided free of charge in the public sector, funded by a mixture of domestic and international funding [ 10 ]. While first-line TB medications were included in the SHI-reimbursable list of essential medicines, the government network of District TB Units (DTUs) were ineligible for registration with VSS, or reimbursement for services provided. Since July 2022, TB health facilities that met certain conditions could register with VSS and receive reimbursements for TB consultations, diagnostics and anti-TB medications [ 11 ]. The financing for drug-resistant (DR-)TB tests and medications remains largely unchanged, co-financed by the Global Fund and domestic budgets [ 12 ].

This transition of the TB financing model in Vietnam is a large undertaking as the country has the world’s 10th highest TB burden and the SHI benefits package is already considered to be generous, and the sustainability of the SHI fund is a concern [ 4 , 13 ] An estimated 169,000 individuals developed TB in 2021, and the disease killed approximately 14,200 [ 14 ]. A national costing survey of TB-affected households showed that 63% experienced catastrophic costs, spending ≥ 20% of their annual income on TB [ 10 ]. Many face food insecurity and cope with TB-related costs by taking loans, dissavings and informally borrowing money [ 10 , 15 , 16 ].

As Vietnam continues to expand SHI financing for the TB program, it is now vital for people with TB to have SHI. Those without SHI coverage will need to finance their care out of pocket (OOP) or purchase SHI and make co-payments for their care to be subsidized. For these reasons, it is important to understand why certain people with TB are uninsured, the feasibility of enrolling them in insurance when they begin treatment, and the challenges they may face with enrolling in SHI.

We conducted a convergent parallel mixed-method case study [ 17 ]. A case study was selected because it is well-suited to describe a complex issue in a real-life setting [ 18 ]. We used a naturalistic design with theoretical sampling of uninsured persons with TB using an interpretivist approach [ 19 ]. Mixed methods were selected to facilitate comparisons between quantitative and qualitative data and interpretation of the findings. An intervention, assisting TB-affected households to enroll in SHI, was conducted between November 2019 and January 2022, prior to the integration of the TB program into the SHI financing scheme. Quantitative data collection sought to answer questions regarding enrollment success rate, time to enrollment and cost of SHI enrollment for uninsured TB-affected households upon TB treatment initiation. The qualitative data explored barriers to SHI enrollment to explain and contextualize the quantitative findings. The quantitative and qualitative data were weighted equally [ 17 ].

Intervention description

A pilot intervention was conducted to facilitate SHI enrollment for people with TB in ten districts of Ha Noi and Ho Chi Minh City (HCMC). The standard process for first-time enrollment into SHI was mapped and costed from a household’s perspective (Additional file 1 ). Uninsured individuals were identified from the TB treatment register when they were enrolled in drug-susceptible (DS-)TB treatment at DTUs [ 20 ]. Study staff then attempted to facilitate enrollment of the person with TB and up to three household members into SHI.

SHI enrollment support included home visits by study staff to provide detailed information and counseling about the process of SHI enrollment, assistance with SHI application preparation including obtaining photocopies of all required documents, follow-up to obtain missing documentation within the household, accompaniment to the SHI office for application submission, and direct payment of the annual SHI premium for the household. For people who did not have the paperwork certifying temporary residence in Hanoi or Ho Chi Minh City, staff visited the local government office to obtain the information about the process for individual cases to obtain residency certificates and support participants with navigation of the bureaucracy. TB-affected people and their household members were also provided with a hotline number to call and receive support during working hours from the social workers who were employed by the study. Study staff attempted to facilitate the SHI enrollment process throughout the entire 6-month duration of DS-TB treatment. After a TB treatment outcome was recorded by the DTU, study staff stopped assisting with SHI enrollment and participants were recorded as ‘not enrolled in SHI’ in the study’s evaluation.

Quantitative methods

Case-level TB treatment notification data and SHI status were exported from VITIMES, the government-implemented electronic TB register for Vietnam, for all individuals who started TB treatment during the intervention period. The pilot intervention recruited participants from two TB treatment support projects (Project 1, n  = 59 and Project 2, n  = 56) [ 21 , 22 ] and tracked study forms housed in ONA.io. The sample size was determined by the availability of funding provided by the donor for treatment support service delivery, rather than to measure a specific end point of SHI enrollment. Descriptive statistics summarizing the enrollment cascade and turnaround time of enrollment were calculated using Stata v17 (Stata17 Corp, College Station, USA). To obtain the mean costs for household SHI enrollment, total direct costs for purchasing SHI were summed and divided by the total number of participants. Costs were captured in Vietnamese Dong (VND) and converted to United States Dollars (USD) using the exchange rate from the mid-point of the pilot intervention (1 June 2020) from OANDA.com.

Qualitative methods

Individuals were purposively sampled for maximum variation to ensure representation of all implementation areas and provide gender balance [ 23 ].The concept of information power guided the sample size [ 24 ]. Given the well-defined study aim, high quality in-depth responses from the participants and the authors’ expertise in the subject area, the sample size of 19 individual interviews and three focus group discussions was deemed appropriate. These were conducted in Ha Noi and HCMC. A total of 34 individuals participated in the interviews (Table  1 ).

They included 14 people enrolled in the pilot intervention, five community members who were non-beneficiaries of the treatment support intervention, 13 TB program staff from the national-, provincial- and district-levels and two study staff. Interviews were conducted at two time points: June 2019 and 2020. SHI enrollment barriers were collected as part of a qualitative study on the acceptability of providing cash transfers and SHI enrollment to adults with TB [ 25 ]. During the second round of interviews in 2020, study staff were included due to their in-depth knowledge of the challenges faced by TB-affected households when attempting to enroll in SHI and their ability to suggest programmatic-level solutions to these challenges. These interviews were conducted one-on-one, after the other interviews and focus groups had been conducted to reduce bias. The interviews were conducted at the National Lung Hospital, HCMC Provincial Lung Hospital, study office or DTUs. All interviews were conducted and transcribed in Vietnamese, translated into English, checked and finalized by a lead translator.

The interviews were analyzed through an inductive approach and themes were drawn through a framework analysis [ 26 ] to identify barriers to enrolling in SHI using Dedoose Version 7.0.23 (SocioCultural Research Consultants, Los Angeles, USA).

Data triangulation

Quantitative and qualitative data were collected in parallel. Triangulation of quantitative and qualitative data was conducted to synthesize findings and assess the level of agreement, convergence, and divergence from the findings generated by the different methods [ 17 ].

During the study, 5887 individuals were treated for DS-TB across the 10 intervention districts (Table  2 ). TB registers indicated that 2846 (48.3%) individuals were uninsured upon treatment initiation, or their SHI enrollment status was not recorded. Among 115 uninsured study participants, 88 (76.5%) were successfully enrolled in SHI before the end of their TB treatment. Among those, the household had an average of two members, resulting in a total of 206 individuals living in TB-affected households receiving SHI coverage through the pilot intervention.

The median time between DS-TB treatment initiation and SHI card issuance was 34.5 days (IQR 24–68): 11 days (IQR 5–23) between treatment initiation and pilot enrollment, 7 days (IQR 1–19.5) for SHI application preparation and submission, and 12 days (IQR 9–20) for application processing and SHI card provision.

The qualitative data showed that participants across all participant groups broadly understood that SHI is a system designed to prevent catastrophic OOP medical expenditure. As shown in Table  3 , National and provincial-level TB staff described SHI as a human right and spoke about achieving UHC as a nation; no other participant groups discussed SHI in this way. However, district-level doctors and intervention beneficiaries spoke in greater details about coverage and service gaps, and the practicalities of utilizing SHI. These participant groups expressed that when individuals purchase SHI only after a negative health event, such as a TB diagnosis, then the social safety net is unavailable to provide support until SHI coverage begins. Drawn from these views, the first theme indicated that the optimal time to purchase SHI is prior to a TB diagnosis.

One DTU staff member described how the standard processing time, or delays in processing SHI applications led to periods of high OOP expenditure:

“Unfortunately, claims are not immediately paid upon [SHI registration] submission. They may be handled in about 2 or 3 weeks, or even one month. That is why the insurance is not available at the time that they want to go for an examination and treat their condition using insurance.” (Female, District-level TB staff)

A complementary theme was that perceived lack of knowledge about SHI enrollment procedures prevents or delays enrollment. District-level TB doctors and program staff identified a lack of understanding and knowledge of the SHI enrollment process as a main contributor to lack of insurance or delays in obtaining coverage.

“Actually, for some people [with TB] who do not clearly understand the [enrollment] procedures… it will take a lot of time [to obtain SHI]. It also depends on the staff who handle the files at the commune; some staff are very enthusiastic and they help patients complete forms. There are cases [...] where they [people with TB] are required to fill in all information and write specific codes of each insurance card [from other family members] on a form. Meanwhile some people in their family work far from home and cannot send their insurance cards home in a timely manner.” (Female, program staff)

Participants tended to believe that individuals who lacked information about SHI made up the small minority of uninsured people in Vietnamese society. The above quote illustrated that the complicated administrative process prohibits enrollment; however, a factor potentially facilitating SHI enrollment may be the helpfulness of the person processing the SHI application.

The average cost per household to obtain SHI enrollment for one year (Table  2 ) was VND 1,503,313 (USD 65.52). (For detailed information on the costs of SHI enrollment, see Additional file 1 ). A third theme contextualized this finding and showed that SHI enrollment costs were perceived as prohibitively high for some. Cost was a greater challenge for lower income families, who did not meet the government’s criterion of households classified as ‘poor’ or ‘near-poor’, and were therefore ineligible for premium subsidies and SHI registration with lower co-payment rates. One DTU doctor reported that:

“We think that it is simple to buy health insurance cards, but that is only true for those who have sustainable income - when our income is much higher than the fee for buying health insurance. For some people, buying health insurance is a luxury.” (Male, District-level TB staff)

Twenty-seven people with TB (23.5%) were unable to obtain SHI coverage. The primary reason (70.4%) was missing documentation. In four instances (14.8%) a household member other than the person with TB refused to enroll in SHI. One individual (3.7%) died during the enrollment process. Three individuals (11.1%) did not enroll for other reasons.

SHI refusal by household members was not identified as a barrier to SHI enrollment in the qualitative data. However, a fourth theme confirmed the primary reason for non-enrollment by showing that some individuals do not possess the required documentation to obtain SHI, such as their identity card or ‘family book.’ [See Supplementary File] Even with six months of support from study staff, some TB-affected households were unable to gather the required documents for enrollment. The following quotation by an undocumented, elderly woman with TB illustrates the prolonged challenges she faced with obtaining formal employment, access to government services and SHI:

“I have had problems with my personal papers for a few decades and I cannot adjust my papers because I don’t have the money. […] I searched for my Identity Card and found out that I had lost it. Then I came back there [my hometown] to get the family book, to reissue my ID and to get my CV certified so I could join a company. I was very young at that time, just a little bit more than thirty years old, and I learned that I was cut from the family book.” (Female, pilot beneficiary)

To address challenges with documentation, one DTU officer in HCMC suggested that individuals who had never been insured required a change to the SHI registration requirements to ensure that everyone in Vietnam can access SHI:

“I think we should be flexible with these cases or we can find another way. Normally, the people who really need the support and the insurance or cash support, they are the people who have less information. […] We cannot have the same requirements for these people as for other people. Actually, for those who have [met] all conditions, they already have health insurance cards.” (Male, District-level TB staff)

Participants expressed that the uninsured had often not purchased SHI for a reason, and alternative registration procedures were needed to make SHI accessible for all. A fifth theme was identified indicating that current SHI enrollment procedures may prevent full population coverage.

Beyond the undocumented, some participants reported the enrollment mandate for the entire household (made under the Amendment to the HIL) for first-time enrollees was viewed as prohibitive of SHI coverage.

“Because in the old days, health insurance was sold individually for each person, but now it is sold to households, and many households do not have as good economic [situation]… so they can only afford to buy it for 50% or 60% of the household. Unskilled labor or low-income labor cannot afford to buy it for the whole family. That is to say, it is easier to buy it for each individual and it is difficult to buy for the whole family.” (Male, community member)

Though individual registration would make SHI more accessible to individuals with TB due to lower annual costs, household members with high vulnerability to TB would not be covered if policy promoted individual enrollment solely for TB.

This mixed-methods case study showed that by providing full subsidy and registration assistance, most uninsured people with TB could access SHI. However, the median time to insurance coverage meant that approximately 20% of a person’s DS-TB treatment duration remained uncovered by SHI despite successful enrollment. A substantial number of participants were unable to enroll in SHI and are likely to be perpetually locked out of SHI due to lack of personal documentation. Additional barriers to SHI enrollment were found to be lack of knowledge, the cost of obtaining coverage, and the household-based registration requirement.

The pilot intervention had dedicated staff who facilitated SHI application development and submission, yet it still took a median of 34.5 days for SHI coverage to take effect. In a context where this level of support is not available to all people with TB, it is likely that the turnaround time for SHI coverage is longer due to the complicated bureaucracy involved. This poses a major challenge, as TB-affected households incur the highest cost during the first two months of treatment [ 15 ]. One cost avoidance/mitigation strategy that people with a TB diagnosis may employ following the health financing transition is delaying TB treatment initiation until SHI coverage commences. This will likely lead to worse outcomes and sustained community transmission. The time between diagnosis and treatment should be rigorously monitored to ensure that this coping strategy is not employed, and alternative support should be made available to ensure that people diagnosed with TB are able to receive immediate treatment.

With the TB health financing transition, the uninsured will be asked to pay OOP for TB treatment and most insured individuals must co-pay for TB services which were previously provided free of cost. A national patient cost survey in 2018 found that 63% of TB-affected households experienced catastrophic costs under the previous health financing model [ 10 ]. There is a risk that the proportion of TB-affected households experiencing catastrophic costs could increase with the introduction of fees. This was not found to be the case for people living with HIV (PLHIV) when the costs of ART transitioned to SHI in Vietnam, but a new nationally representative TB costing survey is needed to assess this risk [ 9 ]. Several domestic solutions could ameliorate these challenges. As suggested for the Indian context, domestic revenues allocated by the Ministry of Finance to VSS could be increased to better support TB care [ 27 ]. VSS could also reclassify the category of TB disease and thus ensure that SHI paid for all diagnostics and drugs associated with TB treatment, without the need for a co-payment. A mid-term review of the Global Fund program in Vietnam has also called for a SHI package specifically designed to cover the OOP medical costs of TB care [ 28 ]. There are several potential mechanisms to prevent costs from falling on TB-affected households. A deeper investigation is needed to understand the fiscal space available within the Vietnamese government to cover such costs.

This case study showed that 23.5% of the uninsured people with TB were never able to enroll for the duration of their treatment, primarily due to lack of documentation. Specific provisions need to be made for the undocumented to receive free TB diagnosis, consultations, and medications through routine practice of the TB program. Multi- and bi-lateral funding mechanisms can also play a role in filling gaps by paying for TB tests for the uninsured, purchasing SHI for those diagnosed with TB, subsidizing or reimbursing OOP expenditure in the period before SHI coverage takes effect, and fully financing TB care for the undocumented. Furthermore, longer-term health system strengthening initiatives, such as creating a legal mechanism for the undocumented to obtain SHI, are likely needed to address the challenges faced by the 9% of the general population that remain uninsured. The ILO has called for “determining new strategies, which may include extension of state budget-funded subsidies to further support the participation of workers in the informal economy [ 7 ].” These forms of inclusive initiatives would solve the TB-specific challenges identified in this study and have a large positive impact on society.

We found that addressing the cost of SHI premiums and knowledge gaps in the enrollment procedures may improve SHI coverage. These findings mirror those following the transition of HIV financing to SHI in 2017. A study among PLHIV identified burdensome processes, lack of information about SHI registration procedures, and high SHI premium costs for a household as key barriers to SHI coverage [ 29 ]. However, a cluster randomized control trial which provided education, a 25% premium subsidy, or both to uninsured households found that these interventions had limited effects on SHI enrollment. Yet, “less healthy” individuals had higher SHI enrollment rates [ 30 ]. This suggests that people who have just received a TB diagnosis could be more receptive to interventions promoting SHI enrollment through premium subsidization and education. Vietnam’s National TB Program (NTP) has established a fund to subsidize SHI enrollment costs for TB-affected individuals. The size of the fund could be increased with additional support while access to the fund and the procedures for receiving support could be optimized [ 31 ]. Given the SHI transition, the NTP should also consider providing educational materials about the SHI enrollment process through the DTU network to uninsured persons with TB.

TB registers indicated that 52% of people starting TB treatment in the urban intervention districts had recorded SHI coverage. This rate is lower than other recent SHI coverage reports. A 2018–2022 DS-TB costing survey reported a SHI coverage of 70% [ 32 ], while in a DR-TB costing survey (2020–2022) it was 85% [ 16 ]. All available data sources indicate that SHI coverage among people with TB is lower than the general population, which is indicative of their socioeconomic vulnerability [ 33 ]. However, this large SHI coverage rate discrepancy may be explained by people with TB not revealing they had SHI coverage, or DTU staff could have also inconsistently recorded an individual’s SHI status in the paper TB registers since these data did not have much clinical relevance for TB treatment at the time. Now that DTUs receive financial reimbursements for the TB services from VSS, SHI coverage rates in treatment registers are likely to increase. Further research should be conducted to understand the national SHI coverage rate for people receiving TB treatment, along with the risk factors associated with being uninsured.

Limitations

This case study was conducted in the two largest cities of Vietnam and findings may not be representative of the entire country. Quantitative data were collected in a programmatic setting, and SHI coverage data for all individuals initiating TB treatment in the intervention areas appear to be underreported for reasons described above. Lastly, we were unable to collect SHI enrollment data from a control population, either prospectively during the pilot intervention or retrospectively during the pilot evaluation. As a result, we do not have information on the enrollment status or time to obtain SHI coverage among a population that did not receive assistance from the pilot intervention. However, given the substantial additional support provided by study staff for the enrollment process, we believe it is safe to assume that if left alone, TB-affected households would be slower in the enrollment process and likely enroll in lower rates.

Vietnam is viewed as a leader among Southeast Asian nations in its commitment and progress towards UHC. This mixed-methods case study illustrated the progress that Vietnam has made in its path to greater domestic financing of healthcare through SHI. This study is one of the first to examine the integration of TB services into SHI in Vietnam and define the challenges that people with TB face while attempting to gain access to financial protection after receiving a TB diagnosis. In order to make strides towards UHC in Vietnam and to close population coverage gaps, initiatives are required to specifically address the barriers faced by the uninsured. This study found that the majority of the uninsured were able to gain access to SHI through full subsidization of premiums, enrollment assistance and education. However, initiating TB care and SHI enrollment concomitantly left a significant portion of the 6-month TB treatment duration without financial protection. Additionally, a quarter of the uninsured with TB were unable to gain access to SHI during treatment, primarily due to a lack of documentation. There is great need for official mechanisms to be in place that enable those without sufficient state documents to access the TB program and to address the time-sensitive nature of providing effective financial protection during treatment of an infectious disease. These findings are relevant for other high TB burden, middle-income countries who are on a similar pathway for transitioning away from donor-financed TB programs to ones supported with a higher proportion of domestic resources.

Availability of data and materials

The quantitative dataset used and analyzed during the current study are available from the corresponding author on reasonable request. Seven anonymized transcripts of interviews with the people enrolled in the pilot intervention and non-beneficiaries have been uploaded to the following URL: https://doi.org/ https://doi.org/10.5281/zenodo.7736220 .

Abbreviations

Anti antiretroviral therapy

Drug resistant tuberculosis

Drug susceptible tuberculosis

District TB Unit

Ho Chi Minh City

Health Insurance Law

Human immunodeficiency virus

International Labour Organization

Interquartile range

National Tuberculosis Program

Out of pocket

People Living with HIV

Social Health Insurance

  • Tuberculosis

Universal Health Coverage

United States Dollar

Vietnamese Dong

Vietnam Social Security

World health statistics 2023: monitoring health for the SDGs, sustainable development goals. https://www.who.int/publications-detail-redirect/9789240074323 . Accessed 31 May 2023.

SDG Target 3.8 | Achieve universal health coverage, including financial risk protection, access to quality essential health-care services and access to safe, effective, quality and affordable essential medicines and vaccines for all. https://www.who.int/data/gho/data/themes/topics/indicator-groups/indicator-group-details/GHO/sdg-target-3.8-achieve-universal-health-coverage-(uhc)-including-financial-risk-protection . Accessed 29 May 2023.

Hondo D, Kim Y. Achieving universal health coverage in developing Asia and the Pacific. Asian Development Bank Institute; 2023. Report No.: 2023-15 (November). https://doi.org/10.56506/VUWA5043 . Accessed 1 Feb 2024.

Le QN, Blizzard L, Si L, Giang LT, Neil AL. The evolution of social health insurance in Vietnam and its role towards achieving universal health coverage. Health Policy OPEN. 2020;100011. http://www.sciencedirect.com/science/article/pii/S2590229620300095 . Accessed 10 Sep 2023.

Somanathan A, Tandon A, Dao HL, Hurt KL, Fuenzalida-Puelma HL. Moving toward universal coverage of social health insurance in Vietnam: assessments and options. Washington, DC: World Bank; 2014, p. 177. (Directions in Development). https://doi.org/10.1596/978-1-4648-0261-4

Hardy A. Rules and resources: negotiating the household registration system in Vietnam under reform. Sojourn J Soc Issues Southeast Asia. 2001;16(2):187–212.

Article   CAS   Google Scholar  

Bales S, Phe Goursat M, Phuong NK. Extending social health protection in Viet Nam: accelerating progress towards universal health coverage. International Labour Organization; 2021, p. 1–14. (Social Protection in action: building social protection floors for all.). https://www.social-protection.org/gimi/gess/ShowRessource.action;jsessionid=iFmxgS-hSrmJjf_1uG90JAnijskVEc8XJD9-4lubAqbFD4-JPYOm!341651707?id=57668 . Accessed 26 Aug 2022.

Bao Hiem Xa Hoi [Vietnam Social Security]. 2019. Phát triển bền vững BHYT toàn dân [Sustainable development of universal health insurance]. https://baohiemxahoi.gov.vn/congkhai/Pages/so-lieu-thong-ke-nganh.aspx?CateID=130&ItemID=12916 . Accessed 26 Aug 2022.

Vu LTH, Johns B, Bui QTT, Duong Thuy A, Nguyen Thi D, Nguyen Thi H, et al. Moving to social health insurance financing and payment for HIV/AIDS treatment in Vietnam. Health Serves Insights. 2021;14:1178632920988843. https://doi.org/10.1177/1178632920988843 .

Article   Google Scholar  

Nhung NV, Hoa NB, Anh NT, Anh LTN, Siroka A, Lonnroth K, et al. Measuring catastrophic costs due to tuberculosis in Viet Nam. Int J Tuberc Lung Dis. 2018;22(9):983–90.

Article   CAS   PubMed   Google Scholar  

Tran VT. Circular No. 36/2021/TT-BYT dated December 31, 2021 on Medical examination and treatment, and payment for medical examination and treatment costs covered by health insurance relating to tuberculosis examination and treatment. 36/2021/TT-BYT Dec 31, 2021. https://hethongphapluat.com/circular-no-36-2021-tt-byt-dated-december-31-2021-on-medical-examination-and-treatment-and-payment-for-medical-examination-and-treatment-costs-covered-by-health-insurance-relating-to-tuberculosis-examination-and-treatment.html .

The Global Fund. Country Profiles Tuberculosis- 2022- Viet Nam. The Global Fund; 2023. https://data.theglobalfund.org/location/VNM/documents . Accessed 30 May 2023.

Nguyen Thi Thu Cúc. Socialist Republic of Viet Nam: strengthening the policy and institutional framework of social health insurance. Hanoi, Vietnam: Asian Development Bank; 2021, p. 1–27. Report No.: 50139–002. https://www.adb.org/projects/documents/vie-50139-002-tacr-4 . Accessed 26 Aug 2022.

Global tuberculosis report 2022. Geneva: World Health Organization; 2022. Licence: CC BY-NC-SA 3.0 IGO. https://www.who.int/publications-detail-redirect/9789240061729 .

Vo LNQ, Forse RJ, Codlin AJ, Dang HM, Van Truong V, Nguyen LH, et al. Socio-protective effects of active case finding on catastrophic costs from tuberculosis in Ho Chi Minh City, Viet Nam: a longitudinal patient cost survey. BMC Health Serv Res. 2021;21(1):1051. https://doi.org/10.1186/s12913-021-06984-2 .

Article   PubMed   PubMed Central   Google Scholar  

Pham TAM, Forse R, Codlin AJ, Phan THY, Nguyen TT, Nguyen N, et al. Determinants of catastrophic costs among households affected by multi-drug resistant tuberculosis in Ho Chi Minh City, Viet Nam: a prospective cohort study. BMC Public Health. 2023;23(1):2372. https://doi.org/10.1186/s12889-023-17078-5 .

Creswell JW, Clark Plano VL. Designing and conducting mixed methods research. 3rd ed. Thousand Oaks, California: SAGE Publications; 2017. p. 520.

Google Scholar  

George AL, Bennett A. Case studies and theory development in the social sciences. Cambridge, MA: MIT Press; 2005.

Crowe S, Cresswell K, Robertson A, Huby G, Avery A, Sheikh A. The case study approach. BMC Med Res Methodol. 2011;11(1):100. https://doi.org/10.1186/1471-2288-11-100 .

Thai LH, Nhat LM, Shah N, Lyss S, Ackers M. Sensitivity, completeness and agreement of the tuberculosis electronic system in Ho Chi Minh City. Viet Nam Public Health Act. 2017;7(4):294–8.

IMPACT TB Overview | IMPACT TB. https://impacttbproject.org/impact-tb-overview/ . Accessed 2 Jun 2023.

Fact Sheet: USAID Erase TB Project 2020. 2020. https://www.usaid.gov/vietnam/documents/fact-sheet-erase-tb-project . Accessed 24 Sep 2024.

Palinkas LA, Horwitz SM, Green CA, Wisdom JP, Duan N, Hoagwood K. Purposeful sampling for qualitative data collection and analysis in mixed method implementation research. Adm Policy Ment Health. 2015;42(5):533–44. https://doi.org/10.1007/s10488-013-0528-y .

Malterud K, Siersma VD, Guassora AD. Sample size in qualitative interview studies: guided by information power. Qual Health Res. 2016;26(13):1753–60. https://doi.org/10.1177/1049732315617444 .

Article   PubMed   Google Scholar  

Forse R, Nguyen TT, Dam T, Vo LNQ, Codlin AJ, Caws M, et al. A qualitative assessment on the acceptability of providing cash transfers and social health insurance for tuberculosis-affected families in Ho Chi Minh City, Vietnam. PLOS Glob Public Health. 2023;3(12): e0002439.

Ritchie J, Lewis J, Nicholls CM, Ormston R. Qualitative research practice: a guide for social science students and researchers. Second edn. SAGE Publications Ltd; 2013. p. 456.

Behera DK, Dash U, Sahu SK. Exploring the possible sources of fiscal space for health in India: insights from political regimes. Health Res Policy Syst. 2022;20(1):32. https://doi.org/10.1186/s12961-022-00831-4 .

Draft Report: Key Messages from the TB National Strategic Plan Mid Term Review (MTR) for Vietnam, between 8th to 18th January 2023. Hanoi, Vietnam: Vietnam’s National TB Program; 2023 Jan p. 1.

Matsumoto S, Nguyen HDT, Nguyen DT, Van Tran G, Tanuma J, Mizushima D, et al. The patient voice: a survey of worries and anxieties during health system transition in HIV services in Vietnam. BMC Int Health Hum Rights. 2020;20:1.

Wagstaff A, Nguyen HTH, Dao H, Bales S. Encouraging health insurance for the informal sector: a cluster randomized experiment in Vietnam. Health Econ. 2016;25(6):663–74. https://doi.org/10.1002/hec.3293 .

Hoa NB, Nhung NV. National tuberculosis patients cost survey: research findings lead to change in policy and practice. Viet Nam Public Health Act. 2019;9(2):50–2.

Wiemers A, Sidney-Annerstedt K, Forse R, Phan THY, Codlin A, Vo LNQ, et al. EP-13-729 COVID-19 lockdowns resulting in household income decline for people with TB in Ho Chi Minh City: interrupted time series analysis of household income changes. In: Proceedings of the union world conference on lung health 2022. Virtual event, 8–11 November 2022: the international journal of tuberculosis and lung disease (IJTLD); 2022. p. 191.

Lönnroth K, Jaramillo E, Williams BG, Dye C, Raviglione M. Drivers of tuberculosis epidemics: the role of risk factors and social determinants. Soc Sci Med. 2009;68(12):2240–6.

Download references

Acknowledgements

The authors would like to acknowledge the contributions of Hoang Thi My Linh, Chu Thi Hoang Anh, Nguyen Khac Cuong, Nham Thi Yen Ngoc and Tran Thai Hiep for conducting qualitative interviews and assisting with SHI enrollment activities. Special thanks to Dr. Kerri Viney for providing insightful comments on an early draft of this manuscript; they greatly strengthened the final version. This work was graciously supported by the staff of Vietnam’s National TB Program, the Hanoi Lung Hospital, Pham Ngoc Thach Provincial TB Hospital and 10 District TB Units. Lastly, we would like to thank the interview participants who shared their time and insights.

Open access funding provided by Karolinska Institute. The European Commission's Horizon 2020 program supported the provision of SHI and all data collection in 2019 through the IMPACT-TB study under grant agreement number 733174. For the period of 2020–2022, support to implement the pilot and conduct the evaluation was made possible by the generous support of the American people through the USAID under award number 72044020FA00001. TW was supported by grants from: the Wellcome Trust, UK ( Seed Award, grant number 209075/Z/17/Z); the Department of Health and Social Care (DHSC), the Foreign, Commonwealth & Development Office (FCDO), the Medical Research Council (MRC) and Wellcome, UK (Joint Global Health Trials, MR/V004832/1); the Medical Research Council (Public Health Intervention Development Award “PHIND”, APP2293); and the Medical Research Foundation (Dorothy Temple Cross International Collaboration Research Grant, MRF-131–0006-RG-KHOS-C0942). KSA was supported by the ASPECT Trial funded the Swedish Research Council (2022-00727). The contents of this study are the responsibility of the listed authors, and do not necessarily reflect the views of USAID or the United States Government.

Author information

Authors and affiliations.

Friends for International TB Relief, Hanoi, Vietnam

Rachel Forse, Thanh Thi Nguyen, Luan N. Q. Vo & Andrew J. Codlin

Department of Global Public Health, WHO Collaboration Centre on Tuberculosis and Social Medicine, Karolinska Institutet, Stockholm, Sweden

Rachel Forse, Clara Akie Yoshino, Luan N. Q. Vo, Andrew J. Codlin, Tom Wingfield, Knut Lönnroth & Kristi Sidney-Annerstedt

Centre for Development of Community Health Initiatives, Hanoi, Vietnam

Thi Hoang Yen Phan

IRD VN, Ho Chi Minh City, Vietnam

Lan Nguyen & Chi Hoang

USAID Vietnam, Hanoi, Vietnam

Lopa Basu & Minh Pham

National Lung Hospital, Hanoi, Vietnam

Hoa Binh Nguyen & Luong Van Dinh

Centre for TB Research, Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK

Maxine Caws & Tom Wingfield

Birat Nepal Medical Trust, Kathmandu, Nepal

Maxine Caws

You can also search for this author in PubMed   Google Scholar

Contributions

This study was conceived of by RF, KSA, TTN, THYP, CAY, AJC, LNQV. The study was administered by RF, YP, TTN, AJC. Support from Vietnam’s National TB program was provided by HBN and LVD. The methodology was developed by RJ, CAY, KV, KL, KSA. The analysis was carried out by RF, CAY, TTN, and THYP. LNQV, AJC, TW, LN, CH, LB, MP, HBN, LVD, MC, KV, KL, and KSA supported the interpretation of findings. The first manuscript was written by RF. All co-authors reviewed and commented on the initial manuscript. The final manuscript was approved and reviewed by all authors.

Corresponding author

Correspondence to Rachel Forse .

Ethics declarations

Ethics approval and consent to participate.

All study procedures were conducted in strict adherence to the Declaration of Helsinki. Ethical approvals were granted by the National Lung Hospital Institutional Review Board (114/19/CT-HĐKH-ĐĐ), the Pham Ngoc Thach Hospital Institutional Review Board (1225/PNT-HĐĐĐ) and Ha Noi University of Public Health Institutional Review Board (300/2020/YTCC-HD3). All participants provided written informed consent and individual-level data were pseudonymized prior to analysis.

Consent for publication

Informed written consent was obtained for all individuals who the study attempted to enroll in SHI, as part of the pilot intervention. It was also obtained for all individuals who participated in the qualitative interviews.

Competing interests

Ten of the authors received salary support from one of the funding agencies to implement the pilot interventions and their evaluation. Two of the authors were employed by United States Agency for International Development (USAID), which funded one of the two pilot interventions. They played no role in the design or implementation of the pilot interventions or their evaluation, but during the development of the manuscript, they provided their insights about the context of the results and Vietnam’s health financing transition as experts in the field.

Additional information

Publisher's note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Additional file 1..

Mapping of procedures and costs for first-time enrollment into Vietnam's social health insurance scheme.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ . The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/ ) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Reprints and permissions

About this article

Cite this article.

Forse, R., Yoshino, C.A., Nguyen, T.T. et al. Towards universal health coverage in Vietnam: a mixed-method case study of enrolling people with tuberculosis into social health insurance. Health Res Policy Sys 22 , 40 (2024). https://doi.org/10.1186/s12961-024-01132-8

Download citation

Received : 11 August 2023

Accepted : 13 March 2024

Published : 02 April 2024

DOI : https://doi.org/10.1186/s12961-024-01132-8

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Social health insurance
  • Universal health coverage
  • Health financing transition
  • Financial protection

Health Research Policy and Systems

ISSN: 1478-4505

  • Submission enquiries: Access here and click Contact Us
  • General enquiries: [email protected]

case study research use data for analysis

Print Preview

U.s. department of energy - energy efficiency and renewable energy, alternative fuels data center.

  • Printable Version
  • Production & Distribution
  • Research & Development
  • Benefits & Considerations
  • Laws & Incentives

Electric Vehicle Research and Development

Photo of charging equipment plugged into an electric vehicle.

The U.S. Department of Energy (DOE) is working with its partners in the public and private sectors to research, develop, demonstrate, and deploy technologies that enhance the performance of electric-drive vehicles.

Environmental and Market Analysis

Electric vehicles (EVs) and hybrid electric vehicles (HEVs) offer reduced operating costs, fuel savings, and environmental benefits. For example, the National Renewable Energy Laboratory (NREL) and Idaho National Laboratory report, Levelized Cost of Charging Electric Vehicles in the United States , finds that driving an EV instead of a comparable conventional vehicle, can save a driver as much as $14,500 on fuel costs over 15 years. Additionally, Argonne National Laboratory’s (ANL) Autonomie model demonstrates that an all-electric vehicle is more than three times more efficient than its conventional counterpart. In Assessment of Light-Duty Plug-In Electric Vehicles in the United States, 2010-2019 , ANL estimates the electricity generation for the operation of an all-electric vehicle produces 53% less emissions than the tailpipe emissions from the operation of a gasoline vehicle.

Additionally, ANL’s An Extensive Study on Sizing, Energy Consumption, and Cost of Advanced Vehicle Technologies report demonstrates significant improvements in fuel economy over time. By 2045, HEVs could achieve a 43% to 81% improvement in fuel economy and PHEVs could achieve a 73% to 96% improvement in fuel economy. In its National Economic Value Assessment of Plug-In Electric Vehicles , NREL uses a scenario approach to estimate costs and benefits of increased EV market growth across the United States. Under various EV adoption scenarios, NREL estimates a 22% to 36% decrease in greenhouse gas emission reductions.

Further, the widespread adoption of EVs will require a robust network of charging stations, from home-based AC charging to DC powered extreme fast charging. Researchers are examining opportunities and impacts associated with a full range of charging technologies.

See the following resources for more information related to research in environmental and market analysis:

  • Electric Vehicle Grid Integration
  • Vehicle Electrification
  • Transportation Energy Data Book: Edition 40
  • National Economic Value Assessment of Plug-In Electric Vehicles
  • An Extensive Study on Sizing, Energy Consumption, and Cost of Advanced Vehicle Technologies
  • Cradle-to-Grave Lifecycle Analysis of U.S. Light-Duty Vehicle-Fuel Pathways: A Greenhouse Gas Emissions and Economic Assessment of Current (2015) and Future (2025-2030) Technologies

Maps & Data

U.S. HEV Sales by Model

More Electricity Data | All Maps & Data

Case Studies

  • Electric School Buses Clear the Air in the Mid-Atlantic
  • Seattle Rideshare Fleet Adds EVs, Enjoys Success
  • Massachusetts School Fleets Get Answers through Electric Bus Testing

More Electricity Case Studies | All Case Studies

Publications

  • Electric Vehicles (Conceptos básicos sobre los vehículos eléctricos)
  • Duluth Transit Authority Battery-Electric Bus Evaluation
  • Foothill Transit Battery Electric Bus Demonstration Results: Second Report

More Electricity Publications | All Publications

  • Laws and Incentives Search
  • Electric Vehicle Charging Station Locations

AI Index Report

The AI Index Report tracks, collates, distills, and visualizes data related to artificial intelligence. Our mission is to provide unbiased, rigorously vetted, broadly sourced data in order for policymakers, researchers, executives, journalists, and the general public to develop a more thorough and nuanced understanding of the complex field of AI. The report aims to be the world’s most credible and authoritative source for data and insights about AI.

Read the 2023 AI Index Report

AI Index coming soon

Coming Soon: 2024 AI Index Report!

The 2024 AI Index Report will be out April 15! Sign up for our mailing list to receive it in your inbox.

Steering Committee Co-Directors

Jack Clark

Ray Perrault

Steering committee members.

Erik Brynjolfsson

Erik Brynjolfsson

John Etchemendy

John Etchemendy

Katrina light

Katrina Ligett

Terah Lyons

Terah Lyons

James Manyika

James Manyika

Juan Carlos Niebles

Juan Carlos Niebles

Vanessa Parli

Vanessa Parli

Yoav Shoham

Yoav Shoham

Russell Wald

Russell Wald

Staff members.

Loredana Fattorini

Loredana Fattorini

Nestor Maslej

Nestor Maslej

Letter from the co-directors.

AI has moved into its era of deployment; throughout 2022 and the beginning of 2023, new large-scale AI models have been released every month. These models, such as ChatGPT, Stable Diffusion, Whisper, and DALL-E 2, are capable of an increasingly broad range of tasks, from text manipulation and analysis, to image generation, to unprecedentedly good speech recognition. These systems demonstrate capabilities in question answering, and the generation of text, image, and code unimagined a decade ago, and they outperform the state of the art on many benchmarks, old and new. However, they are prone to hallucination, routinely biased, and can be tricked into serving nefarious aims, highlighting the complicated ethical challenges associated with their deployment.

Although 2022 was the first year in a decade where private AI investment decreased, AI is still a topic of great interest to policymakers, industry leaders, researchers, and the public. Policymakers are talking about AI more than ever before. Industry leaders that have integrated AI into their businesses are seeing tangible cost and revenue benefits. The number of AI publications and collaborations continues to increase. And the public is forming sharper opinions about AI and which elements they like or dislike.

AI will continue to improve and, as such, become a greater part of all our lives. Given the increased presence of this technology and its potential for massive disruption, we should all begin thinking more critically about how exactly we want AI to be developed and deployed. We should also ask questions about who is deploying it—as our analysis shows, AI is increasingly defined by the actions of a small set of private sector actors, rather than a broader range of societal actors. This year’s AI Index paints a picture of where we are so far with AI, in order to highlight what might await us in the future.

- Jack Clark and Ray Perrault

Our Supporting Partners

AI Index Supporting Partners

Analytics & Research Partners

AI Index Supporting Partners

Stay up to date on the AI Index by subscribing to the  Stanford HAI newsletter.

Assessment of sediment yield and surface runoff using the SWAT hydrological model: a case study of the Khazir River basin, northern Iraq

  • Original Paper
  • Published: 31 March 2024

Cite this article

  • Asaad A. M. Al-Hussein   ORCID: orcid.org/0000-0001-7365-6391 1 , 2 ,
  • Younes Hamed 3 , 4 &
  • Salem Bouri 5 , 6  

11 Accesses

Explore all metrics

The management of surface water in basins has become of the utmost importance, especially given the expected changes in climate and land use. Therefore, the current work aimed to aid the management of the Khazir River basin by estimating sediment yield and surface runoff using the Soil and Water Assessment Tool (SWAT) at the hydrological response unit (HRU) spatial level. The SWAT model was used to simulate hydrological processes and sediment transport at different spatial and temporal scales in the basins. The study of sub-basins allowed more precise targeting of the best management practices through analysis and evaluation. The accuracy of, uncertainty in, and sensitivity of the parameters were evaluated by comparing observed and simulated daily data for average surface runoff and sediment yield. The semi-automated sequential uncertainty fitting (SUFI-2) algorithm within the SWAT CUP model was employed to calibrate the model parameters using the time series for the period 2003–2008, and its validity was verified for the period 2009–2012. The surface runoff performance was good during calibration (Nash–Sutcliffe efficiency (NSE) = 0.77) and very good during verification (NSE = 0.82), while it was good for sediment yield during the calibration and validation periods (NSE = 0.71 and NSE = 0.75, respectively). The parameters related to the characteristics of sediment yield and surface runoff showed high sensitivity during calibration and validation, as they are affected by the length and degree of slope, vegetation cover, and the resulting soil exposure to water erosion. The obtained results were compared with the results of previous scientific studies conducted for North African basins, and this comparison indicated the need for continuous study of the spatial and temporal changes in the natural characteristics of the basins. The results could help basin managers to determine baseline rates of hydrological processes in light of expected future shifts in hydrological systems as a result of climate and land-use changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Russian Federation)

Instant access to the full article PDF.

Rent this article via DeepDyve

Institutional subscriptions

case study research use data for analysis

Availability of data and material

The data mentioned in the paper that support the findings of this study are available from the corresponding author upon request.

Abbaspour KC, Vejdani M, Haghighat S, Yang J (2007a) SWAT-CUP Calibration and uncertainty programs for SWAT. In: Oxley L, Kulasiri D (eds) MODSIM 2007 International Congress on Modelling and Simulation. Modelling and Simulation Society of Australia and New Zealand, Hamilton, pp 1596–1602

Abbaspour KC, Yang J, Maximov I, Siber R, Bogner K, Mieleitner J, Zobrist J, Srinivasan R (2007b) Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT. J Hydrol 333:413–430. https://doi.org/10.1016/j.jhydrol.2006.09.014

Abbaspour KC, Rouholahnejad E, Vaghefi S, Srinivasan R, Yang H, Kløve B (2015) A continental-scale hydrology and water quality model for Europe: calibration and uncertainty of a high-resolution largescale SWAT model. J Hydrol 524:733–752. https://doi.org/10.1016/j.jhydrol.2015.03.027

Article   Google Scholar  

Akoko G, Le TH, Gomi T, Kato T (2021) A review of SWAT model application in Africa. Water J 13(1313):1–20. https://doi.org/10.3390/w13091313

Al-Hussein AAM (2022) Estimation the volume of water erosion for Jadida valley basin in Erbil, Northern Iraq. Iraqi Geol J 55(2F):99–113. https://doi.org/10.46717/igj.55.2F.6ms-2022-12-21

Al-Hussein AAM, Sulaiman MAM, Al-Taee NT (2022a) Morphometric characteristics of Al-Khoser river basin by using GIS/Mosul—Iraq. Kirkuk Univ J Sci Stud 17(3):7–16. https://doi.org/10.32894/KUJSS.2022.134877.1067

Al-Hussein AAM, Khan S, Ncibi K, Hamdi N, Hamed Y (2022b) Flood analysis using HEC-RAS and HEC-HMS: a case study of Khazir River (Middle East-Northern Iraq). Water 14(3779):1–19. https://doi.org/10.3390/w14223779

Al-Hussein AAM, Hamed Y, Bouri S, Hajji S, Aljuaid AM, Hachicha W (2023) The socio-economic effects of floods and ways to prevent them: a case study of the Khazir River Basin Northern Iraq. Water 15:4271. https://doi.org/10.3390/w15244271

Arnold JG, Srinivasan R, Muttaih RS, Williamns JR (1998) Large area hydrologic modelling assessment. Part I: Model development. J Am Water Resource Assoc 34:73–89. https://doi.org/10.1111/j.1752-1688.1998.tb05961.x

Arnold JG, Moriasi DN, Gassman PW, Abbaspour KC, White MJ, Srinivasan R, Santhi C, Harmel RD, van Griensven A, Van Liew MW, Kannan N, Jha MK (2012) SWAT: model use, calibration, and validation. Am Soc Agric Biol Eng 55:1491–1508. https://doi.org/10.13031/2013.42256

Berteni F, Dada A, Grossi G (2021) Application of the MUSLE model and potential effects of climate change in a small alpine catchment in Northern Italy. Water 13(2679):1–21. https://doi.org/10.3390/w13192679

Chiang L-C, Liao C-J, Lu C-M, Wang Y-C (2021) Applicability of modified SWAT model (SWAT‑Twn) on simulation of watershed sediment yields under different land use/cover scenarios in Taiwan. Environ Monitor Assess 193(520):1–23. https://doi.org/10.1007/s10661-021-09283-9

Erraioui L, Taia S, Taj-Eddine K, Chao J, El Mansouri B (2023) Hydrological modelling in the ouergha watershed by soil and water analysis tool. J Ecol Eng 24(4):343–356

Gassman PW, Reyes MR, Green CH, Arnold JG (2007) The soil and water assessment tool: historical development, applications, and future research directions. Am Soc Agric Biol Eng 50(4):1211–1250. https://doi.org/10.13031/2013.23637

Article   CAS   Google Scholar  

Hallouz F, Meddi M, Mahé G, Alirahmani S, Keddar A (2017) Modeling of discharge and sediment transport through the SWAT model in the basin of Harraza (Northwest of Algeria). Water Sci 64:1–10. https://doi.org/10.1016/j.wsj.2017.12.004

Kateb Z, Bouchelkia H, Benmansour A, Belarbi F (2019) Hydrological modelling using the SWAT model based on two types of data from the watershed of Beni Haroun dam, Algeria. J Water Land Dev 43(X–XII):76–89. https://doi.org/10.2478/jwld-2019-0065

Keshtegar B, Piri J, Hussan WU, Ikram K, Yaseen M, Kisi O, Adnan RM, Adnan M, Waseem M (2023) Prediction of sediment yields using a data-driven radial M5 tree model. Water 15(1437):1–28. https://doi.org/10.3390/w15071437

Khanchoula K, Amamrab A, Saaidia B (2020) Assessment of sediment yield using SWAT model: case study of Kebir watershed, northeast of Algeria. Big Data Water Resour Eng (BDWRE) 1(2):36–42. https://doi.org/10.26480/bdwre.02.2020.36.42

Krysanova V, White M (2015) Advances in water resources assessment with SWAT—an overview. Hydrol Sci J 60(50):771–783. https://doi.org/10.1080/02626667.2015.1029482

Li-Chi C, Liao Ci-Jyun Lu, Chih-Mei W-C (2021) Applicability of modified SWAT model (SWAT-Twn) on simulation of watershed sediment yields under different land use/cover scenarios in Taiwan. Environ Monit Assess 193(520):1–23. https://doi.org/10.1007/s10661-021-09283-9

Liu Y, Jiang H (2019) Sediment yield modeling using SWAT model: case of Changjiang river basin. IOP Conf Ser Earth Environ Sci 234:1–10. https://doi.org/10.1088/1755-1315/234/1/012031

Lu M, Hou Q, Qin S, Zhou L, Hua D, Wang X, Cheng L (2023) A stacking ensemble model of various machine learning models for daily runoff forecasting. Water 15(1265):1–19. https://doi.org/10.3390/w15071265

Ma L, Ascough JCII, Ahuja LR, Shafer MJ, Hanson JD, Rojas KW (2000) Root zone water quality model sensitivity analysis using Monte Carlo simulation. Trans ASAE 43(4):883–895

Mapes KL, Pricope NG (2020) Evaluating SWAT model performance for runoff, percolation, and sediment loss estimation in low-gradient watersheds of the Atlantic coastal plain. Hydrology 7(21):1–22. https://doi.org/10.3390/hydrology7020021

Marahatta S, Devkota LP, Aryal D (2021) Application of SWAT in hydrological simulation of complex mountainous river basin (Part I: model development). Water J 13(1546):1–19. https://doi.org/10.3390/w13111546

Markhi A, Laftouhi N, Grusson Y, Soulaimani A (2019) Assessment of potential soil erosion and sediment yield in the semi-arid N′fs basin (High Atlas, Morocco) using the SWAT model. Acta Geophys 67:263–272. https://doi.org/10.1007/s11600-019-00251-z

Martínez-Salvador A, Millares A, Eekhout JP, Conesa-García C (2021) Assessment of streamflow from EURO-CORDEX regional climate simulations in semi-arid catchments using the SWAT model. Sustainability 13(7120):1–23. https://doi.org/10.3390/su13137120

Moriasi DN, Arnold JG, Van Liew MW, Bingner RL, Harmel RD, Veith TL (2007) Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans ASABE 2007 50:885–900. https://doi.org/10.13031/2013.23153

Mullan D, Matthews T, Vandaele K, Barr ID, Swindles GT, Meneely J, Boardman J, Murphy C (2019) Climate impacts on soil erosion and muddy flooding at 1.5 versus 2°C warming. Land Degrad Dev 30(1):94–108. https://doi.org/10.1002/ldr.3214

Nearinga MA, Jettenb V, Bafautc C, Cerdand O, Couturierd A, Hernandeza M, Le Bissonnaise Y, Nicholsa MH, Nunesf JP, Renschlerg CS, Souchèreh V, van Oosti K (2005) Modeling response of soil erosion and runof to changes in precipitation and cover. CATENA 61:131–154. https://doi.org/10.1061/40792(173)482

Neitsch SL, Arnold JG, Kiniry JR, Williams JR (2011) Soil and water assessment tool theoretical documentation, version 2009. USDA Agricultural Research Service and Texas A&M Blackland Research Center, Temple, 618

Pontes LM, Batista PVG, Silva BPC, Viola MR, Rocha HR, Silva MLN (2021) Assessing sediment yield and streamflow with SWAT model in a small sub-basin of the Cantareira System. Rev Bras Cienc Solo 45:e0200140. https://doi.org/10.36783/18069657rbcs20200140

Ribeiro Filho JC, Andrade EMD, Guerreiro MS, Palácio HADQ, Brasil JB (2023) Soil-water-atmosphere effects on soil crack characteristics under field conditions in a semiarid climate. Hydrology 10(83):1–16. https://doi.org/10.3390/hydrology10040083

Roti V, Kashyap PS, Anilkumar RK, Chandra H (2018) Runoff and sediment yield estimation by SWAT model: review and outlook. Int J Curr Microbiol Appl Sci 7(10):879–886. https://doi.org/10.20546/ijcmas.2018.710.097

Saidi S, Hosni S, Mannai H, Jelassi F, Bouri S, Anselme B (2017) GIS-based multi-criteria analysis and vulnerability method for the potential groundwater recharge delineation, case study of Manouba phreatic aquifer, NE Tunisia. Environ Earth Sci 76:1–20. https://doi.org/10.1007/s12665-017-6840-1

Salah N, Abida H (2016) Runoff and sediment yield modeling using SWAT model: case of Wadi Hatab basin, central Tunisia. Arab J Geosci 9(579):1–12. https://doi.org/10.1007/s12517-016-2607-3

Schürz C, Hollosi B, Matulla C, Pressl A, Ertl T, Schulz K, Mehdi BA (2019) Comprehensive sensitivity and uncertainty analysis for discharge and nitrate-nitrogen loads involving multiple discrete model inputs under future changing conditions. Hydrol Earth Syst Sci 23(3):1211–1244. https://doi.org/10.5194/hess-23-1211-2019

Shoemaker CA, Benaman J (2003) A methodology for sensitivity analysis in complex distributed watershed models. World Water Environ Resour Congr. https://doi.org/10.1061/40685(2003)116

Sil BS, Pathan SA (2022) Development of a numerical model for sediment yield for the upper Brahmaputra River basin using optimization technique. Acta Geophys. https://doi.org/10.1007/s11600-022-01002-3

Sissakian VK (2013) Geomorphology and morphometry of the greater Zab River basin, North of Iraq. Iraqi Bull Geol Min 9(3):21–49

Google Scholar  

Soil Conservation Service (SCS) (1972) National engineering handbook section 4: hydrology. Department of Agriculture, Washington, DC, p 762

Srinivasan R, Ramanarayanan TS, Arnold JG, Bednarz ST (1998) Large area hydrologic modeling and assessment part II: model application 1. J Am Water Resour Assoc 34:91–101. https://doi.org/10.1111/j.1752-1688.1998.tb05962.x

Van Griensven A, Meixner T, Grunwald S, Bishop T, Diluzio M, Srinivasan R (2006) A global sensitivity analysis tool for the parameters of multi-variable catchment models. J Hydrol 324:10–23. https://doi.org/10.1016/j.jhydrol.2005.09.008

Van Liew MW, Arnold JG, Bosch DD (2005) Problems and potential of auto calibrating a hydrologic model. Am Soc Agric Biol Eng 48(3):1025–1040. https://doi.org/10.13031/2013.18514

Williams JR (1975) Sediment yield prediction with universal equation using runoff energy factor. In: Agricultural Research Service (ed) Present and Prospective Technology for Predicting Sediment Yield and Sources: proceedings of the Sediment Yield Workshop, USDA Sedimentation Lab, Oxford, Mississippi, November 28–30, 1972 (ARS-S-40). Agricultural Research Service, Washington, DC, pp 244–252

Yevenes MA, Mannaerts CM (2011) Seasonal and land use impacts on the nitrate budget and export of a mesoscale catchment in Southern Portugal. Agric Water Manag 102:54–65. https://doi.org/10.1016/j.agwat.2011.10.006

Zhai J, Hou P, Zhang W, Chen Y, Jin D, Gao H, Zhu H, Yang M (2023) Assessment of water conservation services based on the method of integrating hydrological observation data according to different ecosystem types and regions. Water 15(1475):1–19. https://doi.org/10.3390/w15081475

Download references

Acknowledgements

The authors would like to thank and express their sincere gratitude to the anonymous reviewers and editors for their constructive and important comments which helped to greatly improve the quality of the manuscript.

No funding was received by the authors.

Author information

Authors and affiliations.

Higher Institute of Water Sciences and Techniques of Gabes (ISSTEG), University of Gabès, 6072, Zrig, Gabès, Tunisia

Asaad A. M. Al-Hussein

Department of Sensing and Nanophotonics, Laser and Photonics Research Center, University of Al-Hamdaniya, 41006, Nineveh, Iraq

Department of Earth Sciences, Laboratory for the Application of Materials to the Environment, University of Gafsa, Water and Energy (LAM3E), 2112, Gafsa, Tunisia

Younes Hamed

Department of Earth and Atmospheric Sciences, Science and Research Building 1, University of Houston, 3507 Cullen Blvd, Room 312, Houston, TX, 77204, USA

Department of Earth Sciences, Faculty of Sciences of Sfax, University of Sfax, P.O. Box 1171, 3000, Sfax, Tunisia

Salem Bouri

Water, Energy and Environment Laboratory (LR3E), National School of the Engineers, B.P.W., 3038, Sfax, Tunisia

You can also search for this author in PubMed   Google Scholar

Contributions

AAL-H performed the field visits, analysis, and calculations and wrote the manuscript in consultation with YH. SB and YH prepared the figures and supervised the work.

Corresponding author

Correspondence to Asaad A. M. Al-Hussein .

Ethics declarations

Conflict of interest.

We declare that there is no potential conflict of interest associated with this publication and that there has been no significant financial support for this work that could have influenced its outcome.

Additional information

Communicated by Mohamed Ksibi.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Al-Hussein, A.A.M., Hamed, Y. & Bouri, S. Assessment of sediment yield and surface runoff using the SWAT hydrological model: a case study of the Khazir River basin, northern Iraq. Euro-Mediterr J Environ Integr (2024). https://doi.org/10.1007/s41207-024-00476-5

Download citation

Received : 21 July 2023

Accepted : 27 January 2024

Published : 31 March 2024

DOI : https://doi.org/10.1007/s41207-024-00476-5

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Hydrologic modeling
  • Sediment yield
  • Surface runoff
  • Khazir River
  • SWAT CUP model
  • Find a journal
  • Publish with us
  • Track your research

Read our research on: Abortion | Podcasts | Election 2024

Regions & Countries

What the data says about abortion in the u.s..

Pew Research Center has conducted many surveys about abortion over the years, providing a lens into Americans’ views on whether the procedure should be legal, among a host of other questions.

In a  Center survey  conducted nearly a year after the Supreme Court’s June 2022 decision that  ended the constitutional right to abortion , 62% of U.S. adults said the practice should be legal in all or most cases, while 36% said it should be illegal in all or most cases. Another survey conducted a few months before the decision showed that relatively few Americans take an absolutist view on the issue .

Find answers to common questions about abortion in America, based on data from the Centers for Disease Control and Prevention (CDC) and the Guttmacher Institute, which have tracked these patterns for several decades:

How many abortions are there in the U.S. each year?

How has the number of abortions in the u.s. changed over time, what is the abortion rate among women in the u.s. how has it changed over time, what are the most common types of abortion, how many abortion providers are there in the u.s., and how has that number changed, what percentage of abortions are for women who live in a different state from the abortion provider, what are the demographics of women who have had abortions, when during pregnancy do most abortions occur, how often are there medical complications from abortion.

This compilation of data on abortion in the United States draws mainly from two sources: the Centers for Disease Control and Prevention (CDC) and the Guttmacher Institute, both of which have regularly compiled national abortion data for approximately half a century, and which collect their data in different ways.

The CDC data that is highlighted in this post comes from the agency’s “abortion surveillance” reports, which have been published annually since 1974 (and which have included data from 1969). Its figures from 1973 through 1996 include data from all 50 states, the District of Columbia and New York City – 52 “reporting areas” in all. Since 1997, the CDC’s totals have lacked data from some states (most notably California) for the years that those states did not report data to the agency. The four reporting areas that did not submit data to the CDC in 2021 – California, Maryland, New Hampshire and New Jersey – accounted for approximately 25% of all legal induced abortions in the U.S. in 2020, according to Guttmacher’s data. Most states, though,  do  have data in the reports, and the figures for the vast majority of them came from each state’s central health agency, while for some states, the figures came from hospitals and other medical facilities.

Discussion of CDC abortion data involving women’s state of residence, marital status, race, ethnicity, age, abortion history and the number of previous live births excludes the low share of abortions where that information was not supplied. Read the methodology for the CDC’s latest abortion surveillance report , which includes data from 2021, for more details. Previous reports can be found at  stacks.cdc.gov  by entering “abortion surveillance” into the search box.

For the numbers of deaths caused by induced abortions in 1963 and 1965, this analysis looks at reports by the then-U.S. Department of Health, Education and Welfare, a precursor to the Department of Health and Human Services. In computing those figures, we excluded abortions listed in the report under the categories “spontaneous or unspecified” or as “other.” (“Spontaneous abortion” is another way of referring to miscarriages.)

Guttmacher data in this post comes from national surveys of abortion providers that Guttmacher has conducted 19 times since 1973. Guttmacher compiles its figures after contacting every known provider of abortions – clinics, hospitals and physicians’ offices – in the country. It uses questionnaires and health department data, and it provides estimates for abortion providers that don’t respond to its inquiries. (In 2020, the last year for which it has released data on the number of abortions in the U.S., it used estimates for 12% of abortions.) For most of the 2000s, Guttmacher has conducted these national surveys every three years, each time getting abortion data for the prior two years. For each interim year, Guttmacher has calculated estimates based on trends from its own figures and from other data.

The latest full summary of Guttmacher data came in the institute’s report titled “Abortion Incidence and Service Availability in the United States, 2020.” It includes figures for 2020 and 2019 and estimates for 2018. The report includes a methods section.

In addition, this post uses data from StatPearls, an online health care resource, on complications from abortion.

An exact answer is hard to come by. The CDC and the Guttmacher Institute have each tried to measure this for around half a century, but they use different methods and publish different figures.

The last year for which the CDC reported a yearly national total for abortions is 2021. It found there were 625,978 abortions in the District of Columbia and the 46 states with available data that year, up from 597,355 in those states and D.C. in 2020. The corresponding figure for 2019 was 607,720.

The last year for which Guttmacher reported a yearly national total was 2020. It said there were 930,160 abortions that year in all 50 states and the District of Columbia, compared with 916,460 in 2019.

  • How the CDC gets its data: It compiles figures that are voluntarily reported by states’ central health agencies, including separate figures for New York City and the District of Columbia. Its latest totals do not include figures from California, Maryland, New Hampshire or New Jersey, which did not report data to the CDC. ( Read the methodology from the latest CDC report .)
  • How Guttmacher gets its data: It compiles its figures after contacting every known abortion provider – clinics, hospitals and physicians’ offices – in the country. It uses questionnaires and health department data, then provides estimates for abortion providers that don’t respond. Guttmacher’s figures are higher than the CDC’s in part because they include data (and in some instances, estimates) from all 50 states. ( Read the institute’s latest full report and methodology .)

While the Guttmacher Institute supports abortion rights, its empirical data on abortions in the U.S. has been widely cited by  groups  and  publications  across the political spectrum, including by a  number of those  that  disagree with its positions .

These estimates from Guttmacher and the CDC are results of multiyear efforts to collect data on abortion across the U.S. Last year, Guttmacher also began publishing less precise estimates every few months , based on a much smaller sample of providers.

The figures reported by these organizations include only legal induced abortions conducted by clinics, hospitals or physicians’ offices, or those that make use of abortion pills dispensed from certified facilities such as clinics or physicians’ offices. They do not account for the use of abortion pills that were obtained  outside of clinical settings .

(Back to top)

A line chart showing the changing number of legal abortions in the U.S. since the 1970s.

The annual number of U.S. abortions rose for years after Roe v. Wade legalized the procedure in 1973, reaching its highest levels around the late 1980s and early 1990s, according to both the CDC and Guttmacher. Since then, abortions have generally decreased at what a CDC analysis called  “a slow yet steady pace.”

Guttmacher says the number of abortions occurring in the U.S. in 2020 was 40% lower than it was in 1991. According to the CDC, the number was 36% lower in 2021 than in 1991, looking just at the District of Columbia and the 46 states that reported both of those years.

(The corresponding line graph shows the long-term trend in the number of legal abortions reported by both organizations. To allow for consistent comparisons over time, the CDC figures in the chart have been adjusted to ensure that the same states are counted from one year to the next. Using that approach, the CDC figure for 2021 is 622,108 legal abortions.)

There have been occasional breaks in this long-term pattern of decline – during the middle of the first decade of the 2000s, and then again in the late 2010s. The CDC reported modest 1% and 2% increases in abortions in 2018 and 2019, and then, after a 2% decrease in 2020, a 5% increase in 2021. Guttmacher reported an 8% increase over the three-year period from 2017 to 2020.

As noted above, these figures do not include abortions that use pills obtained outside of clinical settings.

Guttmacher says that in 2020 there were 14.4 abortions in the U.S. per 1,000 women ages 15 to 44. Its data shows that the rate of abortions among women has generally been declining in the U.S. since 1981, when it reported there were 29.3 abortions per 1,000 women in that age range.

The CDC says that in 2021, there were 11.6 abortions in the U.S. per 1,000 women ages 15 to 44. (That figure excludes data from California, the District of Columbia, Maryland, New Hampshire and New Jersey.) Like Guttmacher’s data, the CDC’s figures also suggest a general decline in the abortion rate over time. In 1980, when the CDC reported on all 50 states and D.C., it said there were 25 abortions per 1,000 women ages 15 to 44.

That said, both Guttmacher and the CDC say there were slight increases in the rate of abortions during the late 2010s and early 2020s. Guttmacher says the abortion rate per 1,000 women ages 15 to 44 rose from 13.5 in 2017 to 14.4 in 2020. The CDC says it rose from 11.2 per 1,000 in 2017 to 11.4 in 2019, before falling back to 11.1 in 2020 and then rising again to 11.6 in 2021. (The CDC’s figures for those years exclude data from California, D.C., Maryland, New Hampshire and New Jersey.)

The CDC broadly divides abortions into two categories: surgical abortions and medication abortions, which involve pills. Since the Food and Drug Administration first approved abortion pills in 2000, their use has increased over time as a share of abortions nationally, according to both the CDC and Guttmacher.

The majority of abortions in the U.S. now involve pills, according to both the CDC and Guttmacher. The CDC says 56% of U.S. abortions in 2021 involved pills, up from 53% in 2020 and 44% in 2019. Its figures for 2021 include the District of Columbia and 44 states that provided this data; its figures for 2020 include D.C. and 44 states (though not all of the same states as in 2021), and its figures for 2019 include D.C. and 45 states.

Guttmacher, which measures this every three years, says 53% of U.S. abortions involved pills in 2020, up from 39% in 2017.

Two pills commonly used together for medication abortions are mifepristone, which, taken first, blocks hormones that support a pregnancy, and misoprostol, which then causes the uterus to empty. According to the FDA, medication abortions are safe  until 10 weeks into pregnancy.

Surgical abortions conducted  during the first trimester  of pregnancy typically use a suction process, while the relatively few surgical abortions that occur  during the second trimester  of a pregnancy typically use a process called dilation and evacuation, according to the UCLA School of Medicine.

In 2020, there were 1,603 facilities in the U.S. that provided abortions,  according to Guttmacher . This included 807 clinics, 530 hospitals and 266 physicians’ offices.

A horizontal stacked bar chart showing the total number of abortion providers down since 1982.

While clinics make up half of the facilities that provide abortions, they are the sites where the vast majority (96%) of abortions are administered, either through procedures or the distribution of pills, according to Guttmacher’s 2020 data. (This includes 54% of abortions that are administered at specialized abortion clinics and 43% at nonspecialized clinics.) Hospitals made up 33% of the facilities that provided abortions in 2020 but accounted for only 3% of abortions that year, while just 1% of abortions were conducted by physicians’ offices.

Looking just at clinics – that is, the total number of specialized abortion clinics and nonspecialized clinics in the U.S. – Guttmacher found the total virtually unchanged between 2017 (808 clinics) and 2020 (807 clinics). However, there were regional differences. In the Midwest, the number of clinics that provide abortions increased by 11% during those years, and in the West by 6%. The number of clinics  decreased  during those years by 9% in the Northeast and 3% in the South.

The total number of abortion providers has declined dramatically since the 1980s. In 1982, according to Guttmacher, there were 2,908 facilities providing abortions in the U.S., including 789 clinics, 1,405 hospitals and 714 physicians’ offices.

The CDC does not track the number of abortion providers.

In the District of Columbia and the 46 states that provided abortion and residency information to the CDC in 2021, 10.9% of all abortions were performed on women known to live outside the state where the abortion occurred – slightly higher than the percentage in 2020 (9.7%). That year, D.C. and 46 states (though not the same ones as in 2021) reported abortion and residency data. (The total number of abortions used in these calculations included figures for women with both known and unknown residential status.)

The share of reported abortions performed on women outside their state of residence was much higher before the 1973 Roe decision that stopped states from banning abortion. In 1972, 41% of all abortions in D.C. and the 20 states that provided this information to the CDC that year were performed on women outside their state of residence. In 1973, the corresponding figure was 21% in the District of Columbia and the 41 states that provided this information, and in 1974 it was 11% in D.C. and the 43 states that provided data.

In the District of Columbia and the 46 states that reported age data to  the CDC in 2021, the majority of women who had abortions (57%) were in their 20s, while about three-in-ten (31%) were in their 30s. Teens ages 13 to 19 accounted for 8% of those who had abortions, while women ages 40 to 44 accounted for about 4%.

The vast majority of women who had abortions in 2021 were unmarried (87%), while married women accounted for 13%, according to  the CDC , which had data on this from 37 states.

A pie chart showing that, in 2021, majority of abortions were for women who had never had one before.

In the District of Columbia, New York City (but not the rest of New York) and the 31 states that reported racial and ethnic data on abortion to  the CDC , 42% of all women who had abortions in 2021 were non-Hispanic Black, while 30% were non-Hispanic White, 22% were Hispanic and 6% were of other races.

Looking at abortion rates among those ages 15 to 44, there were 28.6 abortions per 1,000 non-Hispanic Black women in 2021; 12.3 abortions per 1,000 Hispanic women; 6.4 abortions per 1,000 non-Hispanic White women; and 9.2 abortions per 1,000 women of other races, the  CDC reported  from those same 31 states, D.C. and New York City.

For 57% of U.S. women who had induced abortions in 2021, it was the first time they had ever had one,  according to the CDC.  For nearly a quarter (24%), it was their second abortion. For 11% of women who had an abortion that year, it was their third, and for 8% it was their fourth or more. These CDC figures include data from 41 states and New York City, but not the rest of New York.

A bar chart showing that most U.S. abortions in 2021 were for women who had previously given birth.

Nearly four-in-ten women who had abortions in 2021 (39%) had no previous live births at the time they had an abortion,  according to the CDC . Almost a quarter (24%) of women who had abortions in 2021 had one previous live birth, 20% had two previous live births, 10% had three, and 7% had four or more previous live births. These CDC figures include data from 41 states and New York City, but not the rest of New York.

The vast majority of abortions occur during the first trimester of a pregnancy. In 2021, 93% of abortions occurred during the first trimester – that is, at or before 13 weeks of gestation,  according to the CDC . An additional 6% occurred between 14 and 20 weeks of pregnancy, and about 1% were performed at 21 weeks or more of gestation. These CDC figures include data from 40 states and New York City, but not the rest of New York.

About 2% of all abortions in the U.S. involve some type of complication for the woman , according to an article in StatPearls, an online health care resource. “Most complications are considered minor such as pain, bleeding, infection and post-anesthesia complications,” according to the article.

The CDC calculates  case-fatality rates for women from induced abortions – that is, how many women die from abortion-related complications, for every 100,000 legal abortions that occur in the U.S .  The rate was lowest during the most recent period examined by the agency (2013 to 2020), when there were 0.45 deaths to women per 100,000 legal induced abortions. The case-fatality rate reported by the CDC was highest during the first period examined by the agency (1973 to 1977), when it was 2.09 deaths to women per 100,000 legal induced abortions. During the five-year periods in between, the figure ranged from 0.52 (from 1993 to 1997) to 0.78 (from 1978 to 1982).

The CDC calculates death rates by five-year and seven-year periods because of year-to-year fluctuation in the numbers and due to the relatively low number of women who die from legal induced abortions.

In 2020, the last year for which the CDC has information , six women in the U.S. died due to complications from induced abortions. Four women died in this way in 2019, two in 2018, and three in 2017. (These deaths all followed legal abortions.) Since 1990, the annual number of deaths among women due to legal induced abortion has ranged from two to 12.

The annual number of reported deaths from induced abortions (legal and illegal) tended to be higher in the 1980s, when it ranged from nine to 16, and from 1972 to 1979, when it ranged from 13 to 63. One driver of the decline was the drop in deaths from illegal abortions. There were 39 deaths from illegal abortions in 1972, the last full year before Roe v. Wade. The total fell to 19 in 1973 and to single digits or zero every year after that. (The number of deaths from legal abortions has also declined since then, though with some slight variation over time.)

The number of deaths from induced abortions was considerably higher in the 1960s than afterward. For instance, there were 119 deaths from induced abortions in  1963  and 99 in  1965 , according to reports by the then-U.S. Department of Health, Education and Welfare, a precursor to the Department of Health and Human Services. The CDC is a division of Health and Human Services.

Note: This is an update of a post originally published May 27, 2022, and first updated June 24, 2022.

case study research use data for analysis

Sign up for our weekly newsletter

Fresh data delivered Saturday mornings

Key facts about the abortion debate in America

Public opinion on abortion, three-in-ten or more democrats and republicans don’t agree with their party on abortion, partisanship a bigger factor than geography in views of abortion access locally, do state laws on abortion reflect public opinion, most popular.

About Pew Research Center Pew Research Center is a nonpartisan fact tank that informs the public about the issues, attitudes and trends shaping the world. It conducts public opinion polling, demographic research, media content analysis and other empirical social science research. Pew Research Center does not take policy positions. It is a subsidiary of The Pew Charitable Trusts .

IMAGES

  1. How to Customize a Case Study Infographic With Animated Data

    case study research use data for analysis

  2. How To Do Case Study Analysis?

    case study research use data for analysis

  3. The case study data collection and analysis process (an author's view

    case study research use data for analysis

  4. 5 Steps of the Data Analysis Process

    case study research use data for analysis

  5. Quantitative Data analysis

    case study research use data for analysis

  6. Case Study Analysis Format

    case study research use data for analysis

VIDEO

  1. case study research (background info and setting the stage)

  2. Case study

  3. Data Analyst Case Study Interview

  4. what is case study research in Urdu Hindi with easy examples

  5. CASE STUDY RESEARCH DESIGN

  6. Case Study Research design and Method

COMMENTS

  1. Case Study

    A case study is a research method that involves an in-depth examination and analysis of a particular phenomenon or case, such as an individual, organization, community, event, or situation. It is a qualitative research approach that aims to provide a detailed and comprehensive understanding of the case being studied.

  2. Case Study Methodology of Qualitative Research: Key Attributes and

    A case study is one of the most commonly used methodologies of social research. This article attempts to look into the various dimensions of a case study research strategy, the different epistemological strands which determine the particular case study type and approach adopted in the field, discusses the factors which can enhance the effectiveness of a case study research, and the debate ...

  3. Qualitative case study data analysis: an example from practice

    Data sources: The research example used is a multiple case study that explored the role of the clinical skills laboratory in preparing students for the real world of practice. Data analysis was conducted using a framework guided by the four stages of analysis outlined by Morse ( 1994 ): comprehending, synthesising, theorising and recontextualising.

  4. Planning Qualitative Research: Design and Decision Making for New

    Data collected from a case study or an ethnography can undergo the same types of analyses since the data analysis requires researchers to triangulate the diversity of data. This triangulation strengthens the research findings because "various strands of data are braided together to promote a greater understanding of the case" ( Baxter ...

  5. Case Study Method: A Step-by-Step Guide for Business Researchers

    Although case studies have been discussed extensively in the literature, little has been written about the specific steps one may use to conduct case study research effectively (Gagnon, 2010; Hancock & Algozzine, 2016).Baskarada (2014) also emphasized the need to have a succinct guideline that can be practically followed as it is actually tough to execute a case study well in practice.

  6. What Is a Case Study?

    There are many different research methods you can use to collect data on your subject. Case studies tend to focus on qualitative data using methods such as interviews, observations, and analysis of primary and secondary sources (e.g., newspaper articles, photographs, official records). Sometimes a case study will also collect quantitative data.

  7. (PDF) Qualitative Case Study Methodology: Study Design and

    McMaster University, West Hamilton, Ontario, Canada. Qualitative case study methodology prov ides tools for researchers to study. complex phenomena within their contexts. When the approach is ...

  8. Case Study Methods and Examples

    The purpose of case study research is twofold: (1) to provide descriptive information and (2) to suggest theoretical relevance. Rich description enables an in-depth or sharpened understanding of the case. It is unique given one characteristic: case studies draw from more than one data source. Case studies are inherently multimodal or mixed ...

  9. Continuing to enhance the quality of case study methodology in health

    Data collection and analysis. Using multiple data collection methods is a key characteristic of all case study methodology; it enhances the credibility of the findings by allowing different facets and views of the phenomenon to be explored. 23 Common methods include interviews, focus groups, observation, and document analysis. 5,37 By seeking ...

  10. Data Analysis Techniques for Case Studies

    Qualitative analysis involves examining the non-numerical data from your case study, such as interviews, observations, documents, and images. You can use qualitative analysis to explore the ...

  11. Case Study

    Case studies tend to focus on qualitative data using methods such as interviews, observations, and analysis of primary and secondary sources (e.g., newspaper articles, photographs, official records). Sometimes a case study will also collect quantitative data. Example: Mixed methods case study. For a case study of a wind farm development in a ...

  12. PDF Kurt Schoch I

    cipline-specific applications of case study methods and describe the appropriate research questions addressed by case studies. I follow this description with methods considerations, including case study design, research questions, sample size, data collection, and data analysis. Note that there are many approaches and styles to case study research.

  13. The case study approach

    A case study is a research approach that is used to generate an in-depth, multi-faceted understanding of a complex issue in its real-life context. It is an established research design that is used extensively in a wide variety of disciplines, particularly in the social sciences. A case study can be defined in a variety of ways (Table.

  14. Writing a Case Analysis Paper

    Multiple case studies can be used in a research study; case analysis involves examining a single scenario. Case study research can use two or more cases to examine a problem, often for the purpose of conducting a comparative investigation intended to discover hidden relationships, document emerging trends, or determine variations among ...

  15. Methodology or method? A critical review of qualitative case study

    Definitions of qualitative case study research. Case study research is an investigation and analysis of a single or collective case, intended to capture the complexity of the object of study (Stake, 1995).Qualitative case study research, as described by Stake (), draws together "naturalistic, holistic, ethnographic, phenomenological, and biographic research methods" in a bricoleur design ...

  16. The Use of Qualitative Content Analysis in Case Study Research

    First, case study research as a research strategy within qualitative social research is briefly presented. Then, a basic introduction to (qualitative) content analysis as an interpretation method ...

  17. LibGuides: Research Writing and Analysis: Case Study

    A Case study is: An in-depth research design that primarily uses a qualitative methodology but sometimes includes quantitative methodology. Used to examine an identifiable problem confirmed through research. Used to investigate an individual, group of people, organization, or event. Used to mostly answer "how" and "why" questions.

  18. Qualitative case study data analysis: an example from practice

    Data sources The research example used is a multiple case study that explored the role of the clinical skills laboratory in preparing students for the real world of practice. Data analysis was conducted using a framework guided by the four stages of analysis outlined by Morse ( 1994 ): comprehending, synthesising, theorising and recontextualising.

  19. 10 Real World Data Science Case Studies Projects with Example

    A case study in data science is an in-depth analysis of a real-world problem using data-driven approaches. It involves collecting, cleaning, and analyzing data to extract insights and solve challenges, offering practical insights into how data science techniques can address complex issues across various industries.

  20. Four Steps to Analyse Data from a Case Study Method

    propose an approach to the analysis of case study data by logically linking the data to a series of propositions and then interpreting the subsequent information. Like the Yin (1994) strategy, the Miles and Huberman (1994) process of analysis of case study data, although quite detailed, may still be insufficient to guide the novice researcher.

  21. Toward Developing a Framework for Conducting Case Study Research

    Purpose of Case Study Research Reasons to Use Case Study Research Types of Case Study Research Methods of Gathering Data Data Analysis; Sustainability and scalability of university spinouts: a business model perspective (Bigdeli et al., 2015) Theory oriented: Theory extension/refinement: Comparative case study

  22. Adaptive neighborhood rough set model for hybrid data ...

    Table 2 gives a comparison of existing rough set-based schemes for quantitative and qualitative analysis. The comparative parameters include handling hybrid data, generalized NRS, attribute ...

  23. Towards universal health coverage in Vietnam: a mixed-method case study

    A mixed-method case study was conducted using a convergent parallel design between November 2018 and January 2022 in ten districts of Hanoi and Ho Chi Minh City, Vietnam. Quantitative data were collected through a pilot intervention that aimed to facilitate SHI enrollment for uninsured individuals with TB. Descriptive statistics were calculated.

  24. Enhancing metabarcoding efficiency and ecological insights ...

    Molecular techniques like metabarcoding, while promising for exploring diversity of communities, are often impeded by the lack of reference DNA sequences available for taxonomic annotation. Our study explores the benefits of combining targeted DNA barcoding and morphological taxonomy to improve metabarcoding efficiency, using beach meiofauna as a case study. Beaches are globally important ...

  25. Early detection of rare and elusive endangered species using ...

    Monitoring, management and conservation of rare and elusive species often requires early detection of individuals, especially for re-introduced and endangered taxa. Environmental DNA (eDNA) approaches can enhance the detection power of traditional biomonitoring methods for low-density, newly-established populations. In this study, we used species-specific Real Time PCR TaqMan assays to assess ...

  26. Electric Vehicle Research and Development

    An Extensive Study on Sizing, Energy Consumption, and Cost of Advanced Vehicle Technologies; Cradle-to-Grave Lifecycle Analysis of U.S. Light-Duty Vehicle-Fuel Pathways: A Greenhouse Gas Emissions and Economic Assessment of Current (2015) and Future (2025-2030) Technologies

  27. AI Index Report

    The AI Index Report tracks, collates, distills, and visualizes data related to artificial intelligence. Our mission is to provide unbiased, rigorously vetted, broadly sourced data in order for policymakers, researchers, executives, journalists, and the general public to develop a more thorough and nuanced understanding of the complex field of AI.

  28. Learning to Do Qualitative Data Analysis: A Starting Point

    For many researchers unfamiliar with qualitative research, determining how to conduct qualitative analyses is often quite challenging. Part of this challenge is due to the seemingly limitless approaches that a qualitative researcher might leverage, as well as simply learning to think like a qualitative researcher when analyzing data. From framework analysis (Ritchie & Spencer, 1994) to content ...

  29. Assessment of sediment yield and surface runoff using the ...

    Many modeling and simulation studies have reported that the low quality of temporal and spatial data represents a major challenge to obtaining accurate results, especially in studies related to land-use assessments. There is a great need to support the improvement of all data and their analysis for the sustainable development of water resource ...

  30. What the data says about abortion in the U.S.

    The CDC data that is highlighted in this post comes from the agency's "abortion surveillance" reports, which have been published annually since 1974 (and which have included data from 1969). Its figures from 1973 through 1996 include data from all 50 states, the District of Columbia and New York City - 52 "reporting areas" in all.