Browse Course Material

Course info, instructors.

  • Prof. Erik Demaine
  • Prof. Srini Devadas
  • Prof. Nancy Lynch

Departments

  • Electrical Engineering and Computer Science
  • Mathematics

As Taught In

  • Algorithms and Data Structures
  • Computer Networks
  • Cryptography
  • Applied Mathematics

Learning Resource Types

Design and analysis of algorithms, assignments, problem sets.

Ten problem sets will be assigned during the semester.

Problem sets should be submitted in PDF format. Formatting your problem set in LaTeX will make it easier for us to read; however, any method of generating the PDF is acceptable (including scanning handwritten documents), as long as it is clearly legible.

The problem sets include exercises that should be solved but not handed in. These questions are intended to help you master the course material and will be useful in solving the assigned problems. Material covered in exercises will be tested on exams.

Guide to Writing Up Homework

You should be as clear and precise as possible in your write-up of solutions. Understandability of your answer is as desirable as correctness, because communication of technical material is an important skill.

A simple, direct analysis is worth more points than a convoluted one, both because it is simpler and less prone to error and because it is easier to read and understand. Sloppy answers will receive fewer points, even if they are correct, so make sure that your handwriting and your thoughts are legible. If writing your problem set by hand, it is a good idea to copy over your solutions to hand in, which will make your work neater and give you a chance to do sanity checks and correct bugs. If typesetting, reviewing the problem set while typing it in often has this effect. In either case, going over your solution at least once before submitting it is strongly recommended.

You will often be called upon to “give an algorithm” to solve a certain problem. Your write-up should take the form of a short essay. A topic paragraph should summarize the problem you are solving and what your results are. The body of your essay should provide the following:

  • A description of the algorithm in English and, if helpful, pseudocode.
  • At least one worked example or diagram to show more precisely how your algorithm works.
  • A proof (or indication) of the correctness of the algorithm.
  • An analysis of the running time of the algorithm.

Remember, your goal is to communicate. Graders will be instructed to take off points for convoluted and obtuse descriptions.

LaTeX Template for Problem Sets (ZIP) (This file contains: 1 .cls file, 2 .sty files, 1 .pdf file and 1 .tex file.)

facebook

You are leaving MIT OpenCourseWare

The assignment problem revisited

  • Original Paper
  • Published: 16 August 2021
  • Volume 16 , pages 1531–1548, ( 2022 )

Cite this article

algorithmic problem solving assignment

  • Carlos A. Alfaro   ORCID: orcid.org/0000-0001-9783-8587 1 ,
  • Sergio L. Perez 2 ,
  • Carlos E. Valencia 3 &
  • Marcos C. Vargas 1  

971 Accesses

4 Citations

4 Altmetric

Explore all metrics

First, we give a detailed review of two algorithms that solve the minimization case of the assignment problem, the Bertsekas auction algorithm and the Goldberg & Kennedy algorithm. It was previously alluded that both algorithms are equivalent. We give a detailed proof that these algorithms are equivalent. Also, we perform experimental results comparing the performance of three algorithms for the assignment problem: the \(\epsilon \) - scaling auction algorithm , the Hungarian algorithm and the FlowAssign algorithm . The experiment shows that the auction algorithm still performs and scales better in practice than the other algorithms which are harder to implement and have better theoretical time complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Russian Federation)

Instant access to the full article PDF.

Rent this article via DeepDyve

Institutional subscriptions

algorithmic problem solving assignment

Similar content being viewed by others

algorithmic problem solving assignment

Some results on an assignment problem variant

algorithmic problem solving assignment

Integer Programming

algorithmic problem solving assignment

A Full Description of Polytopes Related to the Index of the Lowest Nonzero Row of an Assignment Matrix

Bertsekas, D.P.: The auction algorithm: a distributed relaxation method for the assignment problem. Annal Op. Res. 14 , 105–123 (1988)

Article   MathSciNet   Google Scholar  

Bertsekas, D.P., Castañon, D.A.: Parallel synchronous and asynchronous implementations of the auction algorithm. Parallel Comput. 17 , 707–732 (1991)

Article   Google Scholar  

Bertsekas, D.P.: Linear network optimization: algorithms and codes. MIT Press, Cambridge, MA (1991)

MATH   Google Scholar  

Bertsekas, D.P.: The auction algorithm for shortest paths. SIAM J. Optim. 1 , 425–477 (1991)

Bertsekas, D.P.: Auction algorithms for network flow problems: a tutorial introduction. Comput. Optim. Appl. 1 , 7–66 (1992)

Bertsekas, D.P., Castañon, D.A., Tsaknakis, H.: Reverse auction and the solution of inequality constrained assignment problems. SIAM J. Optim. 3 , 268–299 (1993)

Bertsekas, D.P., Eckstein, J.: Dual coordinate step methods for linear network flow problems. Math. Progr., Ser. B 42 , 203–243 (1988)

Bertsimas, D., Tsitsiklis, J.N.: Introduction to linear optimization. Athena Scientific, Belmont, MA (1997)

Google Scholar  

Burkard, R., Dell’Amico, M., Martello, S.: Assignment Problems. Revised reprint. SIAM, Philadelphia, PA (2011)

Gabow, H.N., Tarjan, R.E.: Faster scaling algorithms for network problems. SIAM J. Comput. 18 (5), 1013–1036 (1989)

Goldberg, A.V., Tarjan, R.E.: A new approach to the maximum flow problem. J. Assoc. Comput. Mach. 35 , 921–940 (1988)

Goldberg, A.V., Tarjan, R.E.: Finding minimum-cost circulations by successive approximation. Math. Op. Res. 15 , 430–466 (1990)

Goldberg, A.V., Kennedy, R.: An efficient cost scaling algorithm for the assignment problem. Math. Programm. 71 , 153–177 (1995)

MathSciNet   MATH   Google Scholar  

Goldberg, A.V., Kennedy, R.: Global price updates help. SIAM J. Discr. Math. 10 (4), 551–572 (1997)

Kuhn, H.W.: The Hungarian method for the assignment problem. Naval Res. Logist. Quart. 2 , 83–97 (1955)

Kuhn, H.W.: Variants of the Hungarian method for the assignment problem. Naval Res. Logist. Quart. 2 , 253–258 (1956)

Lawler, E.L.: Combinatorial optimization: networks and matroids, Holt. Rinehart & Winston, New York (1976)

Orlin, J.B., Ahuja, R.K.: New scaling algorithms for the assignment ad minimum mean cycle problems. Math. Programm. 54 , 41–56 (1992)

Ramshaw, L., Tarjan, R.E., Weight-Scaling Algorithm, A., for Min-Cost Imperfect Matchings in Bipartite Graphs, : IEEE 53rd Annual Symposium on Foundations of Computer Science. New Brunswick, NJ 2012 , 581–590 (2012)

Zaki, H.: A comparison of two algorithms for the assignment problem. Comput. Optim. Appl. 4 , 23–45 (1995)

Download references

Acknowledgements

This research was partially supported by SNI and CONACyT.

Author information

Authors and affiliations.

Banco de México, Mexico City, Mexico

Carlos A. Alfaro & Marcos C. Vargas

Mountain View, CA, 94043, USA

Sergio L. Perez

Departamento de Matemáticas, CINVESTAV del IPN, Apartado postal 14-740, 07000, Mexico City, Mexico

Carlos E. Valencia

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Carlos A. Alfaro .

Ethics declarations

Conflict of interest.

There is no conflict of interest.

Additional information

Publisher's note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The authors were partially supported by SNI and CONACyT.

Rights and permissions

Reprints and permissions

About this article

Alfaro, C.A., Perez, S.L., Valencia, C.E. et al. The assignment problem revisited. Optim Lett 16 , 1531–1548 (2022). https://doi.org/10.1007/s11590-021-01791-4

Download citation

Received : 26 March 2020

Accepted : 03 August 2021

Published : 16 August 2021

Issue Date : June 2022

DOI : https://doi.org/10.1007/s11590-021-01791-4

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Assignment problem
  • Bertsekas auction algorithm
  • Combinatorial optimization and matching
  • Find a journal
  • Publish with us
  • Track your research
  • Machine Learning Decision Tree – Solved Problem (ID3 algorithm)
  • Poisson Distribution | Probability and Stochastic Process
  • Conditional Probability | Joint Probability
  • Solved assignment problems in communicaion |online Request
  • while Loop in C++

EngineersTutor

Solved assignment problems – algorithms and flowcharts.

An algorithm is defined as sequence of steps to solve a problem (task) . The steps must be finite, well defined and unambiguous. Writing algorithm requires some thinking. Algorithm can also be defined as a plan to solve a problem and represents its logic. Note that an algorithm is of no use if it does not help us arrive at the desired solution

Algorithm characteristics

  • It should have finite number of steps . No one can be expected to execute infinite number of steps.
  • The steps must be in order and simple
  • Each step should be defined clearly i.e. without un-ambiguity (without doubtfulness)
  • Must include all required information
  • Should exhibit at least one output

A flowchart is a pictorial (graphical) representation of an algorithm . A flowchart is drawn using different kinds of symbols. A symbol is used for a specific purpose. Each symbol has name.

Different algorithms have different performance characteristics to solve the same problem. some algorithms are fast. some are slow. some occupy more memory space. some occupy less memory space. some are complex and some algorithms are simple..

Logically algorithm, flowchart and program are the same.

Q1 . Create a program to compute the volume of a sphere. Use the formula: V = (4/3) *pi*r 3 where pi is equal to 3.1416 approximately. The r is the radius of sphere.  Display the result.

algorithmic problem solving assignment

Q2 . Write a program the converts the input Celsius degree into its equivalent Fahrenheit degree. Use the formula: F = (9/5) *C+32.

algorithmic problem solving assignment

Q3 . Write a program that converts the input dollar to its peso exchange rate equivalent.  Assume that the present exchange rate is 51.50 pesos against the dollar. Then display the peso equivalent exchange rate.

algorithmic problem solving assignment

Q4 . Write a program that converts an input inch(es) into its equivalent centimeters. Take note that one inch is equivalent to 2.54cms.

algorithmic problem solving assignment

Q5 . Write a program that exchanges the value of two variables: x and y.  The output must be: the value of variable y will become the value of variable x, and vice versa.

algorithmic problem solving assignment

Q6 . Design a program to find the circumference of a circle. Use the formula: C=2πr, where π is approximately equivalent 3.1416.

algorithmic problem solving assignment

Q7 . Write a program that takes as input the purchase price of an item (P), its expected number of years of service (Y) and its expected salvage value (S). Then outputs the yearly depreciation for the item (D). Use the formula: D = (P – S) Y.

algorithmic problem solving assignment

Q8 . Swapping of 2 variables without using temporary (or 3 rd variable).

algorithmic problem solving assignment

Q9 . Determine the most economical quantity to be stocked for each product that a manufacturing company has in its inventory: This quantity, called economic order quantity (EOQ) is calculated as follows: EOQ=2rs/1 where: R= total yearly production requirement S=set up cost per order I=inventory carrying cost per unit.

algorithmic problem solving assignment

Q10 . Write a program to compute the radius of a circle. Derive your formula from the given equation: A=πr², then display the output.

algorithmic problem solving assignment

  • ← Solved Assignment Problems in Java (with Algorithm and Flowchart)
  • Simple if statement in C →

Gopal Krishna

Hey Engineers, welcome to the award-winning blog,Engineers Tutor. I'm Gopal Krishna. a professional engineer & blogger from Andhra Pradesh, India. Notes and Video Materials for Engineering in Electronics, Communications and Computer Science subjects are added. "A blog to support Electronics, Electrical communication and computer students".

' src=

You May Also Like

Programming languages, binary search example step by step, flowchart and algorithm, leave a reply cancel reply.

Your email address will not be published. Required fields are marked *

Google OR-Tools

  • Google OR-Tools
  • Español – América Latina
  • Português – Brasil
  • Tiếng Việt

Solving an Assignment Problem

This section presents an example that shows how to solve an assignment problem using both the MIP solver and the CP-SAT solver.

In the example there are five workers (numbered 0-4) and four tasks (numbered 0-3). Note that there is one more worker than in the example in the Overview .

The costs of assigning workers to tasks are shown in the following table.

The problem is to assign each worker to at most one task, with no two workers performing the same task, while minimizing the total cost. Since there are more workers than tasks, one worker will not be assigned a task.

MIP solution

The following sections describe how to solve the problem using the MPSolver wrapper .

Import the libraries

The following code imports the required libraries.

Create the data

The following code creates the data for the problem.

The costs array corresponds to the table of costs for assigning workers to tasks, shown above.

Declare the MIP solver

The following code declares the MIP solver.

Create the variables

The following code creates binary integer variables for the problem.

Create the constraints

Create the objective function.

The following code creates the objective function for the problem.

The value of the objective function is the total cost over all variables that are assigned the value 1 by the solver.

Invoke the solver

The following code invokes the solver.

Print the solution

The following code prints the solution to the problem.

Here is the output of the program.

Complete programs

Here are the complete programs for the MIP solution.

CP SAT solution

The following sections describe how to solve the problem using the CP-SAT solver.

Declare the model

The following code declares the CP-SAT model.

The following code sets up the data for the problem.

The following code creates the constraints for the problem.

Here are the complete programs for the CP-SAT solution.

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License , and code samples are licensed under the Apache 2.0 License . For details, see the Google Developers Site Policies . Java is a registered trademark of Oracle and/or its affiliates.

Last updated 2023-01-02 UTC.

algorithmic problem solving assignment

HungarianAlgorithm.com

Index     Assignment problem     Hungarian algorithm     Solve online    

Solve an assignment problem online

Fill in the cost matrix of an assignment problem and click on 'Solve'. The optimal assignment will be determined and a step by step explanation of the hungarian algorithm will be given.

Fill in the cost matrix ( random cost matrix ):

Don't show the steps of the Hungarian algorithm Maximize the total cost

HungarianAlgorithm.com © 2013-2024

Smart. Open. Grounded. Inventive. Read our Ideas Made to Matter.

Which program is right for you?

MIT Sloan Campus life

Through intellectual rigor and experiential learning, this full-time, two-year MBA program develops leaders who make a difference in the world.

A rigorous, hands-on program that prepares adaptive problem solvers for premier finance careers.

A 12-month program focused on applying the tools of modern data science, optimization and machine learning to solve real-world business problems.

Earn your MBA and SM in engineering with this transformative two-year program.

Combine an international MBA with a deep dive into management science. A special opportunity for partner and affiliate schools only.

A doctoral program that produces outstanding scholars who are leading in their fields of research.

Bring a business perspective to your technical and quantitative expertise with a bachelor’s degree in management, business analytics, or finance.

A joint program for mid-career professionals that integrates engineering and systems thinking. Earn your master’s degree in engineering and management.

An interdisciplinary program that combines engineering, management, and design, leading to a master’s degree in engineering and management.

Executive Programs

A full-time MBA program for mid-career leaders eager to dedicate one year of discovery for a lifetime of impact.

This 20-month MBA program equips experienced executives to enhance their impact on their organizations and the world.

Non-degree programs for senior executives and high-potential managers.

A non-degree, customizable program for mid-career professionals.

Financial services’ deliberate approach to AI

MIT report details new cybersecurity risks

Sustainable policies get a boost from AI-generated visuals

Credit: Alejandro Giraldo

Ideas Made to Matter

How to use algorithms to solve everyday problems

Kara Baskin

May 8, 2017

How can I navigate the grocery store quickly? Why doesn’t anyone like my Facebook status? How can I alphabetize my bookshelves in a hurry? Apple data visualizer and MIT System Design and Management graduate Ali Almossawi solves these common dilemmas and more in his new book, “ Bad Choices: How Algorithms Can Help You Think Smarter and Live Happier ,” a quirky, illustrated guide to algorithmic thinking. 

For the uninitiated: What is an algorithm? And how can algorithms help us to think smarter?

An algorithm is a process with unambiguous steps that has a beginning and an end, and does something useful.

Algorithmic thinking is taking a step back and asking, “If it’s the case that algorithms are so useful in computing to achieve predictability, might they also be useful in everyday life, when it comes to, say, deciding between alternative ways of solving a problem or completing a task?” In all cases, we optimize for efficiency: We care about time or space.

Note the mention of “deciding between.” Computer scientists do that all the time, and I was convinced that the tools they use to evaluate competing algorithms would be of interest to a broad audience.

Why did you write this book, and who can benefit from it?

All the books I came across that tried to introduce computer science involved coding. My approach to making algorithms compelling was focusing on comparisons. I take algorithms and put them in a scene from everyday life, such as matching socks from a pile, putting books on a shelf, remembering things, driving from one point to another, or cutting an onion. These activities can be mapped to one or more fundamental algorithms, which form the basis for the field of computing and have far-reaching applications and uses.

I wrote the book with two audiences in mind. One, anyone, be it a learner or an educator, who is interested in computer science and wants an engaging and lighthearted, but not a dumbed-down, introduction to the field. Two, anyone who is already familiar with the field and wants to experience a way of explaining some of the fundamental concepts in computer science differently than how they’re taught.

I’m going to the grocery store and only have 15 minutes. What do I do?

Do you know what the grocery store looks like ahead of time? If you know what it looks like, it determines your list. How do you prioritize things on your list? Order the items in a way that allows you to avoid walking down the same aisles twice.

For me, the intriguing thing is that the grocery store is a scene from everyday life that I can use as a launch pad to talk about various related topics, like priority queues and graphs and hashing. For instance, what is the most efficient way for a machine to store a prioritized list, and what happens when the equivalent of you scratching an item from a list happens in the machine’s list? How is a store analogous to a graph (an abstraction in computer science and mathematics that defines how things are connected), and how is navigating the aisles in a store analogous to traversing a graph?

Nobody follows me on Instagram. How do I get more followers?

The concept of links and networks, which I cover in Chapter 6, is relevant here. It’s much easier to get to people whom you might be interested in and who might be interested in you if you can start within the ball of links that connects those people, rather than starting at a random spot.

You mention Instagram: There, the hashtag is one way to enter that ball of links. Tag your photos, engage with users who tag their photos with the same hashtags, and you should be on your way to stardom.

What are the secret ingredients of a successful Facebook post?

I’ve posted things on social media that have died a sad death and then posted the same thing at a later date that somehow did great. Again, if we think of it in terms that are relevant to algorithms, we’d say that the challenge with making something go viral is really getting that first spark. And to get that first spark, a person who is connected to the largest number of people who are likely to engage with that post, needs to share it.

With [my first book], “Bad Arguments,” I spent a month pouring close to $5,000 into advertising for that project with moderate results. And then one science journalist with a large audience wrote about it, and the project took off and hasn’t stopped since.

What problems do you wish you could solve via algorithm but can’t?

When we care about efficiency, thinking in terms of algorithms is useful. There are cases when that’s not the quality we want to optimize for — for instance, learning or love. I walk for several miles every day, all throughout the city, as I find it relaxing. I’ve never asked myself, “What’s the most efficient way I can traverse the streets of San Francisco?” It’s not relevant to my objective.

Algorithms are a great way of thinking about efficiency, but the question has to be, “What approach can you optimize for that objective?” That’s what worries me about self-help: Books give you a silver bullet for doing everything “right” but leave out all the nuances that make us different. What works for you might not work for me.

Which companies use algorithms well?

When you read that the overwhelming majority of the shows that users of, say, Netflix, watch are due to Netflix’s recommendation engine, you know they’re doing something right.

Related Articles

A stack of jeans with network/AI imagery overlayed on top

MBA Notes

How to Solve the Assignment Problem: A Complete Guide

Table of Contents

Assignment problem is a special type of linear programming problem that deals with assigning a number of resources to an equal number of tasks in the most efficient way. The goal is to minimize the total cost of assignments while ensuring that each task is assigned to only one resource and each resource is assigned to only one task. In this blog, we will discuss the solution of the assignment problem using the Hungarian method, which is a popular algorithm for solving the problem.

Understanding the Assignment Problem

Before we dive into the solution, it is important to understand the problem itself. In the assignment problem, we have a matrix of costs, where each row represents a resource and each column represents a task. The objective is to assign each resource to a task in such a way that the total cost of assignments is minimized. However, there are certain constraints that need to be satisfied – each resource can be assigned to only one task and each task can be assigned to only one resource.

Solving the Assignment Problem

There are various methods for solving the assignment problem, including the Hungarian method, the brute force method, and the auction algorithm. Here, we will focus on the steps involved in solving the assignment problem using the Hungarian method, which is the most commonly used and efficient method.

Step 1: Set up the cost matrix

The first step in solving the assignment problem is to set up the cost matrix, which represents the cost of assigning a task to an agent. The matrix should be square and have the same number of rows and columns as the number of tasks and agents, respectively.

Step 2: Subtract the smallest element from each row and column

To simplify the calculations, we need to reduce the size of the cost matrix by subtracting the smallest element from each row and column. This step is called matrix reduction.

Step 3: Cover all zeros with the minimum number of lines

The next step is to cover all zeros in the matrix with the minimum number of horizontal and vertical lines. This step is called matrix covering.

Step 4: Test for optimality and adjust the matrix

To test for optimality, we need to calculate the minimum number of lines required to cover all zeros in the matrix. If the number of lines equals the number of rows or columns, the solution is optimal. If not, we need to adjust the matrix and repeat steps 3 and 4 until we get an optimal solution.

Step 5: Assign the tasks to the agents

The final step is to assign the tasks to the agents based on the optimal solution obtained in step 4. This will give us the most cost-effective or profit-maximizing assignment.

Solution of the Assignment Problem using the Hungarian Method

The Hungarian method is an algorithm that uses a step-by-step approach to find the optimal assignment. The algorithm consists of the following steps:

  • Subtract the smallest entry in each row from all the entries of the row.
  • Subtract the smallest entry in each column from all the entries of the column.
  • Draw the minimum number of lines to cover all zeros in the matrix. If the number of lines drawn is equal to the number of rows, we have an optimal solution. If not, go to step 4.
  • Determine the smallest entry not covered by any line. Subtract it from all uncovered entries and add it to all entries covered by two lines. Go to step 3.

The above steps are repeated until an optimal solution is obtained. The optimal solution will have all zeros covered by the minimum number of lines. The assignments can be made by selecting the rows and columns with a single zero in the final matrix.

Applications of the Assignment Problem

The assignment problem has various applications in different fields, including computer science, economics, logistics, and management. In this section, we will provide some examples of how the assignment problem is used in real-life situations.

Applications in Computer Science

The assignment problem can be used in computer science to allocate resources to different tasks, such as allocating memory to processes or assigning threads to processors.

Applications in Economics

The assignment problem can be used in economics to allocate resources to different agents, such as allocating workers to jobs or assigning projects to contractors.

Applications in Logistics

The assignment problem can be used in logistics to allocate resources to different activities, such as allocating vehicles to routes or assigning warehouses to customers.

Applications in Management

The assignment problem can be used in management to allocate resources to different projects, such as allocating employees to tasks or assigning budgets to departments.

Let’s consider the following scenario: a manager needs to assign three employees to three different tasks. Each employee has different skills, and each task requires specific skills. The manager wants to minimize the total time it takes to complete all the tasks. The skills and the time required for each task are given in the table below:

The assignment problem is to determine which employee should be assigned to which task to minimize the total time required. To solve this problem, we can use the Hungarian method, which we discussed in the previous blog.

Using the Hungarian method, we first subtract the smallest entry in each row from all the entries of the row:

Next, we subtract the smallest entry in each column from all the entries of the column:

We draw the minimum number of lines to cover all the zeros in the matrix, which in this case is three:

Since the number of lines is equal to the number of rows, we have an optimal solution. The assignments can be made by selecting the rows and columns with a single zero in the final matrix. In this case, the optimal assignments are:

  • Emp 1 to Task 3
  • Emp 2 to Task 2
  • Emp 3 to Task 1

This assignment results in a total time of 9 units.

I hope this example helps you better understand the assignment problem and how to solve it using the Hungarian method.

Solving the assignment problem may seem daunting, but with the right approach, it can be a straightforward process. By following the steps outlined in this guide, you can confidently tackle any assignment problem that comes your way.

How useful was this post?

Click on a star to rate it!

Average rating 0 / 5. Vote count: 0

No votes so far! Be the first to rate this post.

We are sorry that this post was not useful for you! 😔

Let us improve this post!

Tell us how we can improve this post?

Operations Research

1 Operations Research-An Overview

  • History of O.R.
  • Approach, Techniques and Tools
  • Phases and Processes of O.R. Study
  • Typical Applications of O.R
  • Limitations of Operations Research
  • Models in Operations Research
  • O.R. in real world

2 Linear Programming: Formulation and Graphical Method

  • General formulation of Linear Programming Problem
  • Optimisation Models
  • Basics of Graphic Method
  • Important steps to draw graph
  • Multiple, Unbounded Solution and Infeasible Problems
  • Solving Linear Programming Graphically Using Computer
  • Application of Linear Programming in Business and Industry

3 Linear Programming-Simplex Method

  • Principle of Simplex Method
  • Computational aspect of Simplex Method
  • Simplex Method with several Decision Variables
  • Two Phase and M-method
  • Multiple Solution, Unbounded Solution and Infeasible Problem
  • Sensitivity Analysis
  • Dual Linear Programming Problem

4 Transportation Problem

  • Basic Feasible Solution of a Transportation Problem
  • Modified Distribution Method
  • Stepping Stone Method
  • Unbalanced Transportation Problem
  • Degenerate Transportation Problem
  • Transhipment Problem
  • Maximisation in a Transportation Problem

5 Assignment Problem

  • Solution of the Assignment Problem
  • Unbalanced Assignment Problem
  • Problem with some Infeasible Assignments
  • Maximisation in an Assignment Problem
  • Crew Assignment Problem

6 Application of Excel Solver to Solve LPP

  • Building Excel model for solving LP: An Illustrative Example

7 Goal Programming

  • Concepts of goal programming
  • Goal programming model formulation
  • Graphical method of goal programming
  • The simplex method of goal programming
  • Using Excel Solver to Solve Goal Programming Models
  • Application areas of goal programming

8 Integer Programming

  • Some Integer Programming Formulation Techniques
  • Binary Representation of General Integer Variables
  • Unimodularity
  • Cutting Plane Method
  • Branch and Bound Method
  • Solver Solution

9 Dynamic Programming

  • Dynamic Programming Methodology: An Example
  • Definitions and Notations
  • Dynamic Programming Applications

10 Non-Linear Programming

  • Solution of a Non-linear Programming Problem
  • Convex and Concave Functions
  • Kuhn-Tucker Conditions for Constrained Optimisation
  • Quadratic Programming
  • Separable Programming
  • NLP Models with Solver

11 Introduction to game theory and its Applications

  • Important terms in Game Theory
  • Saddle points
  • Mixed strategies: Games without saddle points
  • 2 x n games
  • Exploiting an opponent’s mistakes

12 Monte Carlo Simulation

  • Reasons for using simulation
  • Monte Carlo simulation
  • Limitations of simulation
  • Steps in the simulation process
  • Some practical applications of simulation
  • Two typical examples of hand-computed simulation
  • Computer simulation

13 Queueing Models

  • Characteristics of a queueing model
  • Notations and Symbols
  • Statistical methods in queueing
  • The M/M/I System
  • The M/M/C System
  • The M/Ek/I System
  • Decision problems in queueing
  • Data Structures
  • Linked List
  • Binary Tree
  • Binary Search Tree
  • Segment Tree
  • Disjoint Set Union
  • Fenwick Tree
  • Red-Black Tree
  • Advanced Data Structures

Hungarian Algorithm for Assignment Problem | Set 2 (Implementation)

  • Hungarian Algorithm for Assignment Problem | Set 1 (Introduction)
  • Implementation of Exhaustive Search Algorithm for Set Packing
  • Greedy Approximate Algorithm for Set Cover Problem
  • Introduction to Exact Cover Problem and Algorithm X
  • Job Assignment Problem using Branch And Bound
  • Prim's Algorithm (Simple Implementation for Adjacency Matrix Representation)
  • Introduction to Disjoint Set (Union-Find Algorithm)
  • Channel Assignment Problem
  • Java Program for Counting sets of 1s and 0s in a binary matrix
  • Top 20 Greedy Algorithms Interview Questions
  • C++ Program for Counting sets of 1s and 0s in a binary matrix
  • C# Program for Dijkstra's shortest path algorithm | Greedy Algo-7
  • Java Program for Dijkstra's shortest path algorithm | Greedy Algo-7
  • C / C++ Program for Dijkstra's shortest path algorithm | Greedy Algo-7
  • Self assignment check in assignment operator
  • Python Program for Dijkstra's shortest path algorithm | Greedy Algo-7
  • Algorithms | Dynamic Programming | Question 7
  • Assignment Operators in C
  • Assignment Operators in Programming
  • Merge Sort - Data Structure and Algorithms Tutorials
  • Must Do Coding Questions for Companies like Amazon, Microsoft, Adobe, ...
  • QuickSort - Data Structure and Algorithm Tutorials
  • Bubble Sort - Data Structure and Algorithm Tutorials
  • Tree Traversal Techniques - Data Structure and Algorithm Tutorials
  • Binary Search - Data Structure and Algorithm Tutorials
  • Insertion Sort - Data Structure and Algorithm Tutorials
  • Selection Sort – Data Structure and Algorithm Tutorials
  • Understanding the basics of Linked List
  • Breadth First Search or BFS for a Graph

Given a 2D array , arr of size N*N where arr[i][j] denotes the cost to complete the j th job by the i th worker. Any worker can be assigned to perform any job. The task is to assign the jobs such that exactly one worker can perform exactly one job in such a way that the total cost of the assignment is minimized.

Input: arr[][] = {{3, 5}, {10, 1}} Output: 4 Explanation: The optimal assignment is to assign job 1 to the 1st worker, job 2 to the 2nd worker. Hence, the optimal cost is 3 + 1 = 4. Input: arr[][] = {{2500, 4000, 3500}, {4000, 6000, 3500}, {2000, 4000, 2500}} Output: 4 Explanation: The optimal assignment is to assign job 2 to the 1st worker, job 3 to the 2nd worker and job 1 to the 3rd worker. Hence, the optimal cost is 4000 + 3500 + 2000 = 9500.

Different approaches to solve this problem are discussed in this article .

Approach: The idea is to use the Hungarian Algorithm to solve this problem. The algorithm is as follows:

  • For each row of the matrix, find the smallest element and subtract it from every element in its row.
  • Repeat the step 1 for all columns.
  • Cover all zeros in the matrix using the minimum number of horizontal and vertical lines.
  • Test for Optimality : If the minimum number of covering lines is N , an optimal assignment is possible. Else if lines are lesser than N , an optimal assignment is not found and must proceed to step 5.
  • Determine the smallest entry not covered by any line. Subtract this entry from each uncovered row, and then add it to each covered column. Return to step 3.

Consider an example to understand the approach:

Let the 2D array be: 2500 4000 3500 4000 6000 3500 2000 4000 2500 Step 1: Subtract minimum of every row. 2500, 3500 and 2000 are subtracted from rows 1, 2 and 3 respectively. 0   1500  1000 500  2500   0 0   2000  500 Step 2: Subtract minimum of every column. 0, 1500 and 0 are subtracted from columns 1, 2 and 3 respectively. 0    0   1000 500  1000   0 0   500  500 Step 3: Cover all zeroes with minimum number of horizontal and vertical lines. Step 4: Since we need 3 lines to cover all zeroes, the optimal assignment is found.   2500   4000  3500  4000  6000   3500   2000  4000  2500 So the optimal cost is 4000 + 3500 + 2000 = 9500

For implementing the above algorithm, the idea is to use the max_cost_assignment() function defined in the dlib library . This function is an implementation of the Hungarian algorithm (also known as the Kuhn-Munkres algorithm) which runs in O(N 3 ) time. It solves the optimal assignment problem. 

Below is the implementation of the above approach:

Time Complexity: O(N 3 ) Auxiliary Space: O(N 2 )

Please Login to comment...

Similar reads.

  • Mathematical

advertisewithusBannerImg

Improve your Coding Skills with Practice

 alt=

What kind of Experience do you want to share?

IMAGES

  1. DAA 1 7 Fundamentals of Algorithmic problem solving

    algorithmic problem solving assignment

  2. 19MCA42-Algorithmic Problem Solving Steps

    algorithmic problem solving assignment

  3. Algorithmic Problem Solving

    algorithmic problem solving assignment

  4. Fundamentals of Algorithmic Problem Solving

    algorithmic problem solving assignment

  5. PPT

    algorithmic problem solving assignment

  6. Unit2 algorithmic problem_solving

    algorithmic problem solving assignment

VIDEO

  1. Optimization in Algorithmic Problem Solving: DP, Memoization, and Tabulation

  2. GE 3151 -PSPP- Algorithmic problem solving techniques

  3. algorithmic problem solving in real world senorices

  4. Fundamentals of Algorithmic Problem Solving Presented by "Yogapujitha.P", B.Tech

  5. Assignment Problem ( Brute force method) Design and Analysis of Algorithm

  6. 1.5 Algorithmic Problem Solving in Tamil

COMMENTS

  1. Hungarian Algorithm for Assignment Problem

    The Hungarian algorithm, aka Munkres assignment algorithm, utilizes the following theorem for polynomial runtime complexity (worst case O(n 3)) and guaranteed optimality: If a number is added to or subtracted from all of the entries of any one row or column of a cost matrix, then an optimal assignment for the resulting cost matrix is also an ...

  2. Column generation based solution for bi-objective gate assignment

    In this paper, we present a column generation-based algorithm for the bi-objective gate assignment problem (GAP) to generate gate schedules that minimize squared slack time at the gates while satisfying passenger expectations by minimizing their walking distance. While most of the literature focuses on heuristic or metaheuristic solutions for the bi-objective GAP, we propose flow-based and ...

  3. Assignment problem

    The assignment problem is a special case of the transportation problem, which is a special case of the minimum cost flow problem, which in turn is a special case of a linear program. While it is possible to solve any of these problems using the simplex algorithm , each specialization has a smaller solution space and thus more efficient ...

  4. PDF Principles of Algorithmic Problem Solving

    Algorithmic problem solving is the art of formulating efficient methods that solve problems of a mathematical nature. From the many numerical algo-rithms developed by the ancient Babylonians to the founding of graph theory by Euler, algorithmic problem solving has been a popular intellectual pursuit during the last few thousand years.

  5. Assignments

    You will often be called upon to "give an algorithm" to solve a certain problem. Your write-up should take the form of a short essay. A topic paragraph should summarize the problem you are solving and what your results are. The body of your essay should provide the following: A description of the algorithm in English and, if helpful ...

  6. The assignment problem revisited

    This has pushed the development of specialized algorithms that exploit the particular structure of the assignment problem. For instance, Kuhn proposed in the first polynomial time algorithm for solving the assignment problem. Since then, the assignment problem has been deeply studied, see for instance [1, 6, 14,15,16, 18].

  7. Solved Assignment Problems

    Program. An algorithm is defined as sequence of steps to solve a problem (task). A flowchart is pictorial (graphical) representation of an algorithm. Set of instructions. Instruction is a command to the computer to do some task. Algorithm can also be defined as a plan to solve a problem and represents its logic. A picture is worth of 1000 words.

  8. Hungarian algorithm

    The Hungarian method is a combinatorial optimization algorithm that solves the assignment problem in polynomial time and which anticipated later primal-dual methods.It was developed and published in 1955 by Harold Kuhn, who gave it the name "Hungarian method" because the algorithm was largely based on the earlier works of two Hungarian mathematicians, Dénes Kőnig and Jenő Egerváry.

  9. PDF Lecture 8: Assignment Algorithms

    Hungarian algorithm steps for minimization problem. Step 1: For each row, subtract the minimum number in that row from all numbers in that row. Step 2: For each column, subtract the minimum number in that column from all numbers in that column. Step 3: Draw the minimum number of lines to cover all zeroes.

  10. An ADMM-based parallel algorithm for solving traffic assignment problem

    Efficiently solving the user equilibrium traffic assignment problem with elastic demand (UE-TAPED) for transportation networks is a critical problem for transportation studies. Most existing UE-TAPED algorithms are designed using a sequential computing scheme, which cannot take advantage of advanced parallel computing power.

  11. Algorithmic Problem Solving with Python

    Algorithmic Problem Solving with Python. ... 2.4 Cascaded and Simultaneous Assignment 2.5 Multi-Line Statements and Multi-Line Strings 2.6 Identifiers and Keywords 2.7 Names and Namespaces 2.8 Additional Arithmetic Operators 2.8.1 Exponentiation 2.8.2 Floor Division

  12. PDF Algorithmic Problem Solving with Python

    Algorithmic Problem Solving with Python John B. Schneider Shira Lynn Broschat Jess Dahmen February 22, 2019

  13. Solving an Assignment Problem

    Solving an Assignment Problem Stay organized with collections Save and categorize content based on your preferences. This section presents an example that shows how to solve an assignment problem using both the MIP solver and the CP-SAT solver. Example. In the example there are five workers (numbered 0-4) and four tasks (numbered 0-3). ...

  14. Sequencing, selection, and iteration

    There are three building blocks of algorithms: sequencing, selection, and iteration. Sequencing is the sequential execution of operations, selection is the decision to execute one operation versus another operation (like a fork in the road), and iteration is repeating the same operations a certain number of times or until something is true.

  15. PDF The Assignment Problem and the Hungarian Method

    Step 3. Cover all the zeros of the matrix with the minimum number of horizontal or vertical lines. Step 4. Since the minimal number of lines is 3, an optimal assignment of zeros is possible and we are finished. Since the total cost for this assignment is 0, it must be. Step 3.

  16. Hungarian method calculator

    Home > Operation Research calculators > Assignment Problem calculator (Using Hungarian method-1) Algorithm and examples. Method. Hungarian method. Type your data (either with heading or without heading), for seperator you can use space or tab. for sample click random button. OR.

  17. Job Assignment Problem using Branch And Bound

    Solution 1: Brute Force. We generate n! possible job assignments and for each such assignment, we compute its total cost and return the less expensive assignment. Since the solution is a permutation of the n jobs, its complexity is O (n!). Solution 2: Hungarian Algorithm. The optimal assignment can be found using the Hungarian algorithm.

  18. PDF The Assignment Problem and Primal-Dual Algorithms

    The Assignment Problem and Primal-Dual Algorithms 1 Assignment Problem Suppose we want to solve the following problem: We are given a set of people I, and a set of jobs J, with jIj= jJj= n a cost c ij 0 for assigning job jto person i. We would like to assign jobs to people, so that each job is assigned to one person and each person is

  19. The Assignment Problem (Using Hungarian Algorithm)

    Total Cost= 2+8+4+6=20. Approach 3: Greedy Approach In this case, the algorithm will choose the lowest cost worker to be assigned to the task as the first assignment, then choose the next lowest ...

  20. How to Use Algorithms to Solve Problems?

    An algorithm should be basic and easy to perform. Each step started with a specific indentation like, "Step-1", There must be "Start" as the first step and "End" as the last step of the algorithm. Let's take an example to make a cup of tea, Step 1: Start. Step 2: Take some water in a bowl. Step 3: Put the water on a gas burner.

  21. Solve the assignment problem online

    Solve an assignment problem online. Fill in the cost matrix of an assignment problem and click on 'Solve'. The optimal assignment will be determined and a step by step explanation of the hungarian algorithm will be given. Fill in the cost matrix (random cost matrix):

  22. How to use algorithms to solve everyday problems

    My approach to making algorithms compelling was focusing on comparisons. I take algorithms and put them in a scene from everyday life, such as matching socks from a pile, putting books on a shelf, remembering things, driving from one point to another, or cutting an onion. These activities can be mapped to one or more fundamental algorithms ...

  23. How to Solve the Assignment Problem: A Complete Guide

    Step 1: Set up the cost matrix. The first step in solving the assignment problem is to set up the cost matrix, which represents the cost of assigning a task to an agent. The matrix should be square and have the same number of rows and columns as the number of tasks and agents, respectively.

  24. Hungarian Algorithm for Assignment Problem

    Step 3: Cover all zeroes with minimum number of horizontal and vertical lines. Step 4: Since we need 3 lines to cover all zeroes, the optimal assignment is found. 2500 4000 3500 4000 6000 3500 2000 4000 2500. So the optimal cost is 4000 + 3500 + 2000 = 9500. For implementing the above algorithm, the idea is to use the max_cost_assignment() function defined in the dlib library.