U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Int J Environ Res Public Health

Logo of ijerph

Drinking Water Quality and Human Health: An Editorial

Patrick levallois.

1 Direction de la santé environnementale et de la toxicologie, Institut national de la santé publique du Québec, QC G1V 5B3, Canada

2 Département de médecine sociale et préventive, Faculté de médecine, Université Laval, Québec, QC G1V 0A6, Canada

Cristina M. Villanueva

3 ISGlobal, 08003 Barcelona, Spain; [email protected]

4 Universitat Pompeu Fabra (UPF), 08002 Barcelona, Spain

5 Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Carlos III Institute of Health, 28029 Madrid, Spain

6 IMIM (Hospital del Mar Medical Research Institute), 08003 Barcelona, Spain

Drinking water quality is paramount for public health. Despite improvements in recent decades, access to good quality drinking water remains a critical issue. The World Health Organization estimates that almost 10% of the population in the world do not have access to improved drinking water sources [ 1 ], and one of the United Nations Sustainable Development Goals is to ensure universal access to water and sanitation by 2030 [ 2 ]. Among other diseases, waterborne infections cause diarrhea, which kills nearly one million people every year. Most are children under the age of five [ 1 ]. At the same time, chemical pollution is an ongoing concern, particularly in industrialized countries and increasingly in low and medium income countries (LMICs). Exposure to chemicals in drinking water may lead to a range of chronic diseases (e.g., cancer and cardiovascular disease), adverse reproductive outcomes and effects on children’s health (e.g., neurodevelopment), among other health effects [ 3 ].

Although drinking water quality is regulated and monitored in many countries, increasing knowledge leads to the need for reviewing standards and guidelines on a nearly permanent basis, both for regulated and newly identified contaminants. Drinking water standards are mostly based on animal toxicity data, and more robust epidemiologic studies with an accurate exposure assessment are rare. The current risk assessment paradigm dealing mostly with one-by-one chemicals dismisses potential synergisms or interactions from exposures to mixtures of contaminants, particularly at the low-exposure range. Thus, evidence is needed on exposure and health effects of mixtures of contaminants in drinking water [ 4 ].

In a special issue on “Drinking Water Quality and Human Health” IJERPH [ 5 ], 20 papers were recently published on different topics related to drinking water. Eight papers were on microbiological contamination, 11 papers on chemical contamination, and one on radioactivity. Five of the eight papers were on microbiology and the one on radioactivity concerned developing countries, but none on chemical quality. In fact, all the papers on chemical contamination were from industrialized countries, illustrating that microbial quality is still the priority in LMICs. However, chemical pollution from a diversity of sources may also affect these settings and research will be necessary in the future.

Concerning microbiological contamination, one paper deals with the quality of well water in Maryland, USA [ 6 ], and it confirms the frequent contamination by fecal indicators and recommends continuous monitoring of such unregulated water. Another paper did a review of Vibrio pathogens, which are an ongoing concern in rural sub-Saharan Africa [ 7 ]. Two papers focus on the importance of global primary prevention. One investigated the effectiveness of Water Safety Plans (WSP) implemented in 12 countries of the Asia-Pacific region [ 8 ]. The other evaluated the lack of intervention to improve Water, Sanitation and Hygiene (WASH) in Nigerian communities and its effect on the frequency of common childhood diseases (mainly diarrhea) in children [ 9 ]. The efficacies of two types of intervention were also presented. One was a cost-effective household treatment in a village in South Africa [ 10 ], the other a community intervention in mid-western Nepal [ 11 ]. Finally, two epidemiological studies were conducted in industrialized countries. A time-series study evaluated the association between general indicators of drinking water quality (mainly turbidity) and the occurrence of gastroenteritis in 17 urban sites in the USA and Europe. [ 12 ] The other evaluated the performance of an algorithm to predict the occurrence of waterborne disease outbreaks in France [ 13 ].

On the eleven papers on chemical contamination, three focused on the descriptive characteristics of the contamination: one on nitrite seasonality in Finland [ 14 ], the second on geogenic cation (Na, K, Mg, and Ca) stability in Denmark [ 15 ] and the third on historical variation of THM concentrations in french water networks [ 16 ]. Another paper focused on fluoride exposure assessments using biomonitoring data in the Canadian population [ 17 ]. The other papers targeted the health effects associated with drinking water contamination. An extensive up-to-date review was provided regarding the health effects of nitrate [ 18 ]. A more limited review was on heterogeneity in studies on cancer and disinfection by-products [ 19 ]. A thorough epidemiological study on adverse birth outcomes and atrazine exposure in Ohio found a small link with lower birth weight [ 20 ]. Another more geographical study, found a link between some characteristics of drinking water in Taiwan and chronic kidney diseases [ 21 ]. Finally, the other papers discuss the methods of deriving drinking water standards. One focuses on manganese in Quebec, Canada [ 22 ], another on the screening values for pharmaceuticals in drinking water, in Minnesota, USA [ 23 ]. The latter developed the methodology used in Minnesota to derive guidelines—taking the enhanced exposure of young babies to water chemicals into particular consideration [ 24 ]. Finally, the paper on radioactivity presented a description of Polonium 210 water contamination in Malaysia [ 25 ].

In conclusion, despite several constraints (e.g., time schedule, fees, etc.), co-editors were satisfied to gather 20 papers by worldwide teams on such important topics. Our small experience demonstrates the variety and importance of microbiological and chemical contamination of drinking water and their possible health effects.

Acknowledgments

Authors want to acknowledge the important work of the IJERPH staff and of numbers of anonymous reviewers.

Author Contributions

P.L. wrote a first draft of the editorial and approved the final version. C.M.V. did a critical review and added important complementary information to finalize this editorial.

This editorial work received no special funding.

Conflicts of Interest

The authors declare no conflict of interest.

research papers on drinking water quality

Environmental Science: Water Research & Technology

Water quality in drinking water distribution systems: research trends through the 21st century.

ORCID logo

* Corresponding authors

a ÉSAD, Université Laval, Quebec City, Canada E-mail: [email protected]

b WaterShed Monitoring, Quebec City, Canada

This paper provides new insight into the global landscape of water quality research in drinking water distribution systems and how it has evolved over the first twenty years of the 21st century. An up-to-date bibliometric analysis of relevant literature published between 2000 and 2020 revealed how the research landscape has expanded in terms of number of publications made, variety of topics, and geographic diversity that offers an increasingly inclusive global conversation. Results showed technological, microbial and chemical needs are currently the major research streams that are concentrated on popular topics of simulations, chlorine, biofilms, intrusion and monitoring. However, there is a vast diversity of sub-disciplines related to maintaining water quality, which are highly interconnected. These changing priorities and perspectives offer opportunities for sharing of best practice, identification of research gaps, and interdisciplinary thinking as we all strive to provide consumers with high quality drinking water now and into the future.

Graphical abstract: Water quality in drinking water distribution systems: research trends through the 21st century

Article information

Download citation, permissions.

research papers on drinking water quality

S. L. Weston, A. Scheili, S. Behmel and M. J. Rodriguez, Environ. Sci.: Water Res. Technol. , 2022,  8 , 3054 DOI: 10.1039/D2EW00491G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page .

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page .

Read more about how to correctly acknowledge RSC content .

Social activity

Search articles by author, advertisements.

  • Research article
  • Open access
  • Published: 17 July 2020

The quality of drinking and domestic water from the surface water sources (lakes, rivers, irrigation canals and ponds) and springs in cholera prone communities of Uganda: an analysis of vital physicochemical parameters

  • Godfrey Bwire   ORCID: orcid.org/0000-0002-8376-2857 1 ,
  • David A. Sack 2 ,
  • Atek Kagirita 3 ,
  • Tonny Obala 4 ,
  • Amanda K. Debes 2 ,
  • Malathi Ram 2 ,
  • Henry Komakech 1 ,
  • Christine Marie George 2 &
  • Christopher Garimoi Orach 1  

BMC Public Health volume  20 , Article number:  1128 ( 2020 ) Cite this article

15k Accesses

30 Citations

Metrics details

Water is the most abundant resource on earth, however water scarcity affects more than 40% of people worldwide. Access to safe drinking water is a basic human right and is a United Nations Sustainable Development Goal (SDG) 6. Globally, waterborne diseases such as cholera are responsible for over two million deaths annually. Cholera is a major cause of ill-health in Africa and Uganda. This study aimed to determine the physicochemical characteristics of the surface and spring water in cholera endemic communities of Uganda in order to promote access to safe drinking water.

A longitudinal study was carried out between February 2015 and January 2016 in cholera prone communities of Uganda. Surface and spring water used for domestic purposes including drinking from 27 sites (lakes, rivers, irrigation canal, springs and ponds) were tested monthly to determine the vital physicochemical parameters, namely pH, temperature, dissolved oxygen, conductivity and turbidity.

Overall, 318 water samples were tested. Twenty-six percent (36/135) of the tested samples had mean test results that were outside the World Health Organization (WHO) recommended drinking water range. All sites (100%, 27/27) had mean water turbidity values greater than the WHO drinking water recommended standards and the temperature of above 17 °C. In addition, 27% (3/11) of the lake sites and 2/5 of the ponds had pH and dissolved oxygen respectively outside the WHO recommended range of 6.5–8.5 for pH and less than 5 mg/L for dissolved oxygen. These physicochemical conditions were ideal for survival of Vibrio. cholerae .

Conclusions

This study showed that surface water and springs in the study area were unsafe for drinking and had favourable physicochemical parameters for propagation of waterborne diseases including cholera. Therefore, for Uganda to attain the SDG 6 targets and to eliminate cholera by 2030, more efforts are needed to promote access to safe drinking water. Also, since this study only established the vital water physicochemical parameters, further studies are recommended to determine the other water physicochemical parameters such as the nitrates and copper. Studies are also needed to establish the causal-effect relationship between V. cholerae and the physicochemical parameters.

Peer Review reports

Water is the most abundant resource on the planet earth [ 1 ], however its scarcity affects more than 40% of the people around the world [ 2 ]. Natural water is an important material for the life of both animals and plants on the earth [ 3 ]. Consequently, access to safe drinking water is essential for health and a basic human right that is integral to the United Nations Resolution 64/292 of 2010 [ 4 ]. The United Nations set 2030 as the timeline for all countries and people to have universal access to safe drinking water; this is a Sustainable Development Goal (SDG) 6 of the 17 SDGs [ 5 ]. The availability of and access to safe water is more important to existence in Africa than it is elsewhere in the world [ 6 ]. Least Developed Countries (LDCs) especially in sub-Saharan Africa have the lowest access to safe drinking water [ 7 ]. In Africa, rural residents have far less access to safe drinking water and sanitation than their urban counterparts [ 8 ].

Natural water exists in three forms namely; ground water, rain water and surface water. Of the three forms, surface water is the most accessible. Worldwide, 144 million people depend on surface water for their survival [ 9 ]. In Uganda, 7% of the population depends on surface water (lakes, rivers, irrigation canal, ponds) for drinking water [ 10 ]. The same surface water is a natural habitat for many living organisms [ 11 ] some of which are responsible for transmission of infectious diseases such as cholera, typhoid, dysentery, guinea worm among others [ 12 ]. Surface water sources include lakes, rivers, streams, canals, and ponds. These surface water sources are often vulnerable to contamination by human, animal activities and weather (storms or heavy rain) [ 13 , 14 ]. Globally, waterborne diseases such as diarrheal are responsible for more than two million deaths annually. The majority of these deaths occur among children under-5 years of age [ 15 ].

Cholera, a waterborne disease causes many deaths each year in Africa, Asia and Latin America [ 16 ]. In 2018 alone, a total of 120,652 cholera cases and 2436 deaths were reported from 17 African countries to World Health Organization [ 17 ]. Cholera is a major cause of morbidity and mortality in Uganda [ 18 ]. The fishing communities located along the major lakes and the rivers in the African Great Lakes basin of Uganda constitutes 5% of the Uganda’s population, however these communities were responsible for the majority (58%) of the reported cholera cases during the period 2011–2015 [ 19 ]. Cholera outbreaks affect predominantly communities using the surface water and the springs. There is also high risk of waterborne disease outbreaks in the communities using these types of water [ 20 , 21 ]. Studies of the surface water from water sources located in the lake basins of the five African Great Lakes in Uganda identified Vibrio. cholerae [ 22 , 23 ] though no study isolated the toxigenic V. cholerae O1 or O139 that cause epidemic cholera. Cholera outbreaks in the African Great Lakes basins in Uganda have been shown to be propagated through water contaminated with sewage [ 20 , 24 ]. Cholera is one of the diseases targeted for elimination globally by the WHO by 2030 [ 25 ]. Hence, to prevent and control cholera outbreaks in these communities, promotion of use of safe water (both quantity and quality), improved sanitation and hygiene are the interventions prioritized by the Uganda Ministry of Health [ 26 ]. Most importantly, provision of adequate safe water is a major pillar of an effective cholera prevention program given that water is the main mode of V. cholerae transmission [ 27 , 28 ].

Availability of adequate safe water is essential for prevention of enteric diseases including cholera [ 29 ]. Therefore, access to safe drinking and domestic water in terms of quantity and quality is key to cholera prevention. Water quality is defined in terms of three key quality parameters namely, physical, chemical and microbiological characteristics [ 30 ]. A less common but important parameter is the radiological characteristics [ 31 ]. In regards to the physicochemical parameters, there are five parameters that are essential and impacts life (both flora and or fauna) within the aquatic systems [ 32 ]. These vital physicochemical parameters include pH, temperature, dissolved oxygen, conductivity and turbidity [ 32 ].

pH is a value that is based on logarithm scale of 0–14 [ 33 ]. Aquatic organisms prefer pH range of 6.5–8.5 [ 34 , 35 , 36 ]. Low pH can cause the release of toxic elements or compounds into the water [ 37 ]. The optimal pH for V. cholerae survival is in basic range (above 7). Vibrio cholerae may not survive for long in acidic pH [ 38 ]. A solution of pH below 4.5 will kill V.cholerae bacteria [ 39 ].

Most aquatic organisms are adapted to live in a narrow temperature range and they die when the temperature is too low or too high [ 34 ]. Vibrio cholerae , bacteria proliferate during algae bloom resulting in cholera outbreaks [ 40 , 41 ]. This proliferation could be due favourable warm temperature [ 42 ]. Relatedly, V. cholerae isolation from natural water in endemic settings is strongly correlated with water temperature above 17 °C [ 43 ].

Dissolved oxygen is the oxygen present in water that is available to aquatic organisms [ 34 ]. Dissolved oxygen is measured in parts per million (ppm) or milligrams per litre (mg/L) [ 35 ]. Organisms in water need oxygen in order to survive [ 44 ]. Decomposition of organic materials and sewage are major causes of low dissolved oxygen in water [ 12 ].

Water conductivity is the ability of water to pass an electrical current and is expressed as millisiemens per metre (1 mS m- 1  = 10 μS cm − 1 ) [ 29 ]. Most aquatic organisms can only tolerate a specific conductivity range [ 45 ]. Water conductivity increases with raising temperature [ 46 ]. There is no set standard for water conductivity [ 45 ]. Freshwater sources have conductivity of 100 – 2000μS cm − 1 . High water conductivity may be due to inorganic dissolved solids [ 46 ].

Turbidity is an optical determination of water clarity [ 47 ]. Turbidity can come from suspended sediment such as silt or clay [ 48 ]. High levels of total suspended solids will increase water temperatures and decrease dissolved oxygen (DO) levels [ 12 ]. In addition, some pathogens like V. cholerae, Giardia lambdia and Cryptosporidia exploit the high water turbidity to hide from the effect of water treatment agents and cause waterborne diseases [ 49 ]. Consequently, high water turbidity can promotes the development of harmful algal blooms [ 41 , 50 ].

Given the importance of the water physicochemical parameters, in order to ensure that they are within the acceptable limits, the WHO recommends that they are monitored regularly [ 51 ]. The recommended physicochemical parameters range for raw water are for pH of 6.5–8.5, turbidity of less than 5Nephlometric Units (NTU) and dissolved oxygen of not less than 5 mg/L [ 51 ]. Surface and spring water with turbidity that exceeds 5NTU should be treated to remove suspended matter before disinfection by either sedimentation (coagulation and flocculation) and or filtration [ 52 ].

Water chlorination using chlorine tablets or other chlorine releasing reagent is one of the most common methods employed to disinfect drinking water [ 53 , 54 ]. Chlorination is an important component of cholera prevention and control program [ 55 ]. In addition to disinfection to kill the pathogens, drinking water should also be safe in terms of physicochemical parameters as recommended by WHO [ 51 ]. However, to effectively make the water safe using chlorine tablets and other reagents, knowledge of the physicochemical properties of the surface and spring water being disinfected is important as several of the parameters affect the active component in the chlorine tablets [ 56 ]. For example, chlorine is not effective for water with pH above 8.5 or turbidity of above 5NTU [ 53 ].

Generally, there is scarcity of information about the quality and safety of drinking water in Africa [ 57 ]. Similarly, few studies exist on the physicochemical characteristics of the drinking water and water in general in Uganda. Furthermore, information from such studies is inadequate for use to increase safe water in cholera prone districts of Uganda where the need is greatest. The cholera endemic communities of Uganda [ 19 , 21 , 24 ] have adequate quantities of water that is often collected from the Great lakes, rivers and other surface water sources located within the lake basins. However, the water is of poor quality in terms of physicochemical and microbiological characteristics. Several studies conducted in Uganda have documented microbiological contamination of drinking water [ 20 , 24 , 58 , 59 ]. However, few studies exist on the physicochemical characteristics of these water. Furthermore, these studies focused on few water sources, for example testing the lakes and omitted the rivers, springs and ponds or testing the rivers and omitted the other water types. One such study was carried out on the water from the three lakes in western Rift valley and Lake Victoria in Uganda [ 23 ], This study did not assess the other common water sources such as the rivers, ponds and springs that were used by the communities for drinking and other household purposes. Other studies on water physicochemical characteristics assessed heavy metal water pollution of River Rwizi (Mbarara district, Western Uganda) [ 60 ] and of the drinking water (bottled, ground and tap water) in Kampala City (Central Uganda) [ 61 ] and Bushenyi district (Western Uganda) [ 62 ]. These studies found high heavy metal water pollution in the drinking water tested. The information gathered from such studies is useful in specific study area and is inadequate to address the lack of safe water in the cholera endemic districts of Uganda where the need for safe drinking water is greatest. Several epidemiological studies in Uganda have attributed cholera outbreaks to use of contaminated surface water [ 20 , 21 , 24 , 63 ]. Furthermore, studies conducted on the surface water focus on pathogen identification [ 63 , 64 ] leaving out the water physicochemical parameters which are equally important in the provision of safe drinking water [ 53 ] and are necessary for survival of all living organisms (both animals and plants) [ 44 ].

Therefore, the aim of this study was to determine the physicochemical characteristics of the surface water sources and springs located in African Great Lakes basins in Uganda so as to guide the interventions for provision of safe water to cholera prone populations [ 19 , 20 , 21 , 24 , 58 ] of Uganda. This study in addition has the potential to guide Uganda to attain the United Nations SDG 6 target of universal access to safe drinking water [ 2 ] and the WHO cholera elimination Roadmap [ 25 ] by 2030. Furthermore, these findings may guide future studies including those on causal-effect relationship between physicochemical parameters and infectious agents (pathogens).

This was a longitudinal study that was conducted between February 2015 and January 2016 in six districts of Uganda that are located in the African Great Lakes basins of the five lakes (Victoria, Albert, Kyoga, Edward and George). These districts had ongoing cholera outbreaks or history of cholera outbreaks in the previous five to 10 years (2005–2015). In addition, the selected study districts had border access to the following major water bodies (lakes: Victoria, Albert, Edward, George and Kyoga). The study area was purposively selected because the communities residing along these major lakes contributed most (58%) of the reported cholera cases and deaths in Uganda [ 19 , 65 ] and in the sub-Saharan Africa region [ 66 ] in the past 10 years. Water samples were collected monthly from 27 sites used by the communities for household purposes that included drinking. Water samples were then tested to determine the vital physicochemical parameters. The water samples were collected from lakes, rivers, springs, ponds and an irrigation canal that were located in the lake basins of the five African Great Lakes in Uganda. In one site, water was also collected from a nearby drainage channel and tested for V. cholerae [ 22 ] and physicochemical parameters. However, because the channel was not used for drinking the results were omitted in this article. Water samples were analysed to determine the pH, temperature, dissolve oxygen, conductivity and turbidity. The study sites were located in the districts of Kampala and Kayunga in central region of Uganda; Kasese and Buliisa districts in western Uganda; Nebbi and Busia districts in northern and eastern Uganda respectively. The study sites were the same as for the simultaneous bacteriological V. cholerae detection study [ 22 ] and are shown in Fig.  1 .

figure 1

Map showing the location of Uganda, the study districts, major surface water sources and the study sites, February 2015 – January 2016. The blue shades are the African Great Lakes and their basins. (Map generated by ArcGIS version 10.2 [licenced] and assembled using Microsoft Office PowerPoint, Version 2016 [licenced] by the authors)

Rural-urban categorization of the study sites

The study sites were categorized as urban if they were found in Kampala district (the Capital City of Uganda) or rural if they were in the other five remote study districts (Kasese, Kayunga, Busia, Nebbi and Buliisa).

Identification of the study sites and water testing procedures

The sites for water testing were identified with the guidance of the local communities and after direct observation by the study team. Geo-coordinates of the sites were taken at the beginning of the study to ensure that subsequent water collection and measurements were done on water from specific points. Two water collection sites were selected on each of the African Great Lakes in Uganda. The selected sites were in different locations but within the communities with a history of cholera outbreaks in the previous 10 years prior to the study period. For each selected lake point, a site was also selected on a river, a spring and a pond located within the area and being used by the communities for domestic purposes that included drinking and preparation of food. A total of 27 sites, two of which were from each of the five lakes were selected and the water tested. The number of sites on each lake and their locations are shown in Additional file  1 .

Water samples were collected and tested monthly for 12 months by the research assistants who were health workers with background training in microbiology or environmental health. The research assistants received training on water collection and testing from a water engineer. The physicochemical parameters were measured by use of the digital meters namely the Hach meter HQ40d and digital turbidity meter.

Water samples were collected in five-litre containers, three litres were processed for V. cholerae detection by Polymerase Chain Reaction (PCR) test as previously described [ 67 ]. Vibrio cholerae Non O1/Non O139 pathogens were frequently detected in the water samples during the study period [ 22 ]. While the three litres of water were being processed for V. cholerae detection [ 22 ], the rest of the water (2 l), were simultaneously used for the onsite measurement of temperature, pH, conductivity and dissolved oxygen. The Hach meters , HQ40d used in the study, had three electrodes that were calibrated before each monthly testing according to the manufacturers’ manual [ 68 ]. The Hach meter calibrations were done using three specific standard buffer solutions that were for pH, dissolved oxygen and conductivity respectively. Turbidity (total suspended solids or water clarity) was measured using a turbidity meter according to previously published methods [ 49 ]. In addition, the research assistants were provided with Standard Operating Procedures (SOPs) and supervised monthly by the investigators before and during each scheduled monthly measurements.

Data management, analysis and statistical tests

Data were collected, entered, cleaned and stored in the spreadsheet. Errors in the recorded readings were removed using the correct records retrieved from the Hach meters’ HQ40d internal memory. Stata statistical package version 13 was used to analyse the data. Data were analysed to generate means and standard error of the mean for pH, temperature, dissolved oxygen (DO), conductivity (CD) and turbidity. Data were presented in the form of tables and graphs. Comparison for variations between the water samples were carried out using One-Way Analysis of Variance (ANOVA) test. Samples with significant One-Way ANOVA test were subjected to Turkey’s Post Hoc test to establish which of the variables were statistically significant.

The map was created using ArcGIS software, Version 10.2, licenced (ESRI, Redlands, California, USA). The graphs and figures were produced using Microsoft Excel and PowerPoints, Version 2016 (Microsoft, Redmond, Washington, USA). The administrative shapefiles used to create the map were obtained from open access domain, the Humanitarian Data Exchange: https://data.humdata.org/ . In order to generate the study locations on the map, Global Positioning System (GPS) coordinates for the study sites were converted to shapefiles that were combined with the administrative shapefiles corresponding to the locations.

A total of 318 water samples were tested from 27 sites as follows; lake water 40.9%, (130/318), rivers water 26.4% (84/318), ponds water 17.9% (57/318), spring water 11.0% (35/318) and canal water 3.8% (12/318).

Test results for the lake water collected at the fish landing sites (FLS)

The mean physicochemical test results for pH, temperature, dissolved oxygen, conductivity and turbidity are shown in Table  1 .

The mean physicochemical water characteristics of most of the sites were within the WHO recommended water safety range except for turbidity. Few sites had pH and dissolved oxygen outside the WHO recommended safety range.

Monthly variations of the lake water physicochemical characteristics

There were monthly variations in the physicochemical parameters between the water from the lake sites overtime. Most of the sites had steady pH overtime for the first half of the study period (February – August 2015). Thereafter, the pH reduced slightly during the second half (September, 2015 – January, 2016) of the study period. The highest pH fluctuations were in the months of October – December, 2015. The widest change in pH within the same site was observed at Gaaba Fish landing site, Lake Victoria basin, Kampala district.

There were differences in water temperature on the same lake but at different test sites. These differences were detectable mostly in the months of April, 2015. The lowest and highest water temperatures were both recorded on Lake Edward (Kasese district) at Kayanzi fish landing site of 18.9 °C and at Katwe FLS of 34  ° C in the period between April – August, 2015. Fluctuations in the dissolved oxygen were detectable throughout the study period. Kalolo Fish landing site on Lake Albert, Buliisa district showed the widest fluctuations in dissolved oxygen with the highest value of 10.73 mg/L and the lowest of 2.5 mg/L.

Most test sites had small conductivity fluctuations except for Panyimur and Kalolo both of which were located on Lake Albert in Nebbi and Buliisa districts These districts had high water conductivity fluctuations with arrange of 267.1 μS/cm – 2640 μS/cm at Kalolo (Buliisa district) FLS and 296 μS/cm – 2061 μS/cm at Panyimur (Nebbi district). Water turbidity for the majority of the sites changed overtime. Kahendero fish landing site (Lake George, Kasese district) had the highest turbidity which was most noticeable in the months of October 2015 to January 2016. Majanji fish landing site (Lake Victoria, Busia district) had the lowest and most stable water turbidity. Monthly variations of the lake water physicochemical parameters are shown in Fig.  2 .

figure 2

Monthly variations of lake water physicochemical characteristics (pH, temperature, dissolved oxygen, conductivity and turbidity), February 2015 – January 2016: Part a ) water pH variations; Part b ) water temperature variations; Part c ) water dissolved oxygen; Part d ) water conductivity variations; Part e ) water turbidity variations

River water physicochemical parameter test results

The mean physicochemical characteristics of water from the seven rivers studied are shown in Table  2 .

There were variations in the mean pH, temperature, dissolved oxygen and conductivity between study sites on the rivers. However, these mean parameter variations were in WHO acceptable drinking water safety limit except for River Lubigi, Kampala district which had mean dissolved oxygen below the recommended WHO range. At one time (February, 2015) River Lubigi had dissolved oxygen of 0.45 mg/L. The river water turbidity for all the test sites were above that recommended by WHO of less than 5NTU.

Monthly variations of the river water physicochemical characteristics

Monthly variations in the water physicochemical characteristics of the seven river test sites are shown in Fig.  3 .

figure 3

Monthly variations of the physicochemical characteristics of river water, February 2015 – January 2016: Part a ) water pH variations; Part b ) water temperature variations; Part c ) water dissolved oxygen variations; Part d ) water conductivity variations; Part e ) water turbidity variations

There were variations in the water physicochemical parameters between rivers and within the same river overtime. Most rivers showed fluctuations of water pH and temperature. Some rivers such as R. Nyamugasani and R. Lhubiriha both in Kasese district had wide temperature fluctuations. River Mobuku (Kasese district) had the lowest water temperature recorded over the study period. Fluctuations in dissolved oxygen were highest in R. Lubigi (Kampala district), Lake Victoria basin. Dissolved oxygen for R. Lubigi was below the recommended level of more than 5 mg/L for most of the study period. Seasonal variations of water dissolved oxygen were also more noticeable in R. Lubigi than the rest of the river sites. Relatively more dissolved oxygen was found during the rainy seasons (March – July, 2015, first rainy season and September – December, 2015, second rainy season) than in dry season.

There were small variations in the water conductivity in the majority of the rivers. Wide fluctuations in conductivity were observed for water samples of R, Lubigi (Kampala district). River Nyamugasani (Kasese district, Lake Edward basin) had steady but higher conductivity than all the other rivers. There were variations in turbidity within the same river overtime and between the different rivers. River Sio (Busia district) had the highest and the widest turbidity variations during the study period.

Water test results for the springs and ponds

The mean physicochemical characteristics of spring and pond water are shown in Table  3 .

The mean physicochemical characteristics of water from the springs and ponds showed variations between the sites. The majority of site means values were within the WHO accepted pH range. Two sites, Wanseko pond (Buliisa, district, Lake Albert basin) and Katanga spring (Kampala district, Lake Victoria basin) had mean water pH below the recommended WHO drinking water acceptable range at the acidic level of 5.73 and 6.19 respectively. Forty percent (40%, 2/5) of the ponds and 33% (1/3) of the springs had mean dissolved oxygen below the recommended WHO level. The ponds with the low dissolved oxygen were found within Lake Albert basin. Among the springs, Katanga spring (Kampala district, L. victoria basin) had mean dissolved oxygen that was below the WHO recommended level of 5 mg/L. Conductivities of the spring water were 89.81–3276.36 μS/cm and for ponds 55.99–3280.83 μS/cm. For both the springs and the ponds the differences between the lowest and the highest conductivities were wide.

Monthly variations of the springs and ponds water physicochemical characteristics

The monthly variations of spring and pond water physicochemical characteristics are shown in Fig.  4 .

figure 4

Monthly variations of the physicochemical characteristics of the spring and pond water, February 2015 – January 2016: Part a ) water pH variations; Part b ) water temperature variations; Part c ) dissolved oxygen variations; Part d ) conductivity variations and Part e ) water turbidity variations

There were variations in the water physicochemical characteristics of the spring and the pond water overtime. The variations in water (springs and ponds) were also present between the different sites. The springs had small monthly variations of the water physicochemical parameters while the ponds had wide variations. Mughende pond (Kasese district) had the highest pH for most of the study period. Katanga spring (Kampala district) had the lowest pH compared to other springs during the study period. Kibenge spring (Kasese district) had higher temperature than the rest of the two springs (Katanga spring, Kampala district and Nyakirango spring, Kasese district). Most springs and ponds had slight fluctuations in dissolved oxygen except for Mughende pond (Kasese district). Most springs and ponds except for Panyimur pond (Nebbi district) had small monthly fluctuations in water conductivity. Kibenge spring and pond (both located in Kasese district) had higher conductivity compared to the rest of the springs or ponds. Mughende spring and pond were outliers with higher conductivity than the rest of the water sites. There were variations in water turbidity with months for both the springs and the ponds. Apart from Mughende pond (Kasese district), the rest of the springs and ponds showed variations that had two peaks, the first peak (May – August, 2015) and the second peak (November – January, 2016).

Test results of the other surface water sources: Mobuku irrigation canal water

Mobuku irrigation canal water, water diverted from Mobuku River for irrigation purposes by the Mobuku irrigation scheme was tested because the local communities were using this water for domestic purposes including drinking. Apart from water turbidity which was above the WHO recommended standard of 5NTU, the rest of the water physicochemical parameters (pH, temperature, dissolved oxygen and conductivity) were in the WHO acceptable range as follow: pH of 7.93 ± Standard Error (SE) of 0.23, temperature of 26.57 °C ± SE of 1.25 °C, dissolved oxygen of 6.38 mg/L ± SE of 0.18 mg/L, conductivity of 69.06 ± SE of 2.57) and turbidity of 28.68 ± SE of 9.06NTU.

Monthly variations of physicochemical characteristics of Mobuku irrigation canal water

There were monthly variations in water physicochemical characteristics of Mobuku irrigation canal. The water pH and dissolved oxygen showed two peaks each. The first peak was in March – May, 2015 and the second peak, August – November, 2015. The variations of the Mobuku irrigation canal monthly water physicochemical parameters over the study period is shown in Fig.  5 .

figure 5

Monthly variations of the physicochemical characteristics of Mobuku irrigation canal water, February 2015 – January 2016: Part a ) water pH variations; Part b ) water temperature variations; Part c ) dissolved oxygen variations; Part d ) conductivity variations and Part e ) water turbidity variations

Results of statistical tests for the differences within sites overtime and between sites

One-Way ANOVA test.

There were no statistically significant differences within most of the study sites except for sites on the lakes and the rivers where the pH and temperature differences were statistically significantly within sites overtime. Statistically significant differences in the water physicochemical characteristics were observed between sites (all p -value < 0.05) as indicated in the additional file  2 .

Turkey’s post hoc test

There were statistically significant differences for all water physicochemical parameters for both the lake and river sites. For instance, Lake Edward had both the highest temperature (34 °C, May, 2015) which was registered at Katwe FLS (Kasese district) and the lowest temperature (18.9 °C, April, 2015) which was recorded at Kayanzi FLS (Kasese district). The results of the comparison of the physicochemical parameters of the various lake and river sites are shown in Table  4 .

Similarly, comparison of the springs or pond water showed statistically significant differences for most (80% of the total comparison) of the water parameters (pH, temperature, dissolved oxygen and conductivity) apart from the water turbidity. Turkey’s post Hoc test results for the comparison of springs and pond water physicochemical parameters are shown in Table  5 .

This study showed that water for drinking and domestic purposes from the surface water sources and springs in cholera affected communities/districts of Uganda were not safe for human use in natural form. The water samples from the water sources in the study area did not meet the WHO drinking water quality standards in terms of the important physicochemical parameters. In addition, all the surface water sources and the springs tested had turbidity above the WHO recommended level of 5NTU yet the same water were used for domestic purposes including drinking in the natural form by the households. The study also found variations in the other physicochemical parameters (pH, temperature, dissolved oxygen and conductivity) between study sites on the same lake and between the different water sources.

While the majority of the water sources had mean water physicochemical characteristics (excluding turbidity) in acceptable range, few water sources, mainly the sites on Lake George, including the springs and ponds had pH and dissolved oxygen outside the recommended WHO ranges. These water sources that did not meet the WHO drinking water standards could expose the users to harmful effects of unsafe drinking water including waterborne diseases such as cholera. The present study findings of high water turbidity if due to algae bloom could encourage pathogen persistence and infection spread, including V. cholerae bacteria [ 40 , 41 ] resulting in ill-health and cholera epidemics. In addition, the high water turbidity complicates water disinfection as it gives rise to significant chlorine demand [ 53 ]. The increased chlorine demand can be costly and difficult to ensure constant availability for disinfection of water since Uganda and several other developing countries need and receive supplementary donor support [ 69 ].

In regard to temperature, dissolved oxygen and conductivity, the majority of the surface water sources and springs tested met the recommended WHO drinking water standards. However, a few water sources such as River Lubigi in Kampala district had mean dissolved oxygen below the recommended WHO drinking water standards. Therefore, in order to ensure universal access to safe drinking water, the water sources that had vital physicochemical parameters outside the WHO drinking water range could be targeted for further studies.

There were statistically significant differences in the water physicochemical characteristics between the different sites and sources (lakes, rivers, springs and ponds). Despite these differences, the required approaches to ensure safe water access to the communities may not differ across sites. First and foremost, all sites and water types will need measures that reduce the high water turbidity to WHO acceptable levels. Secondly, in few instances, such as the water sources with pH in acidic range (Katanga spring in Kampala district, Lake Victoria Basin and Wanseko pond in Buliisa district, lake Albert basin) in addition to requiring further studies to identify the causes of the low pH (acidity), such water sources may also require the use of water treatment methods that neutralize the excess acidity [ 54 ]. Furthermore, since acidity is usually associated with increased solubility of toxic heavy metals (lead, arsenic and others) [ 34 ], testing such water for metallic contamination may be required. Heavy metal contamination of water causes ill-health due to chronic exposure which is cumulative and manifest late for correction to be done [ 70 ].

The findings of this study also highlight the differences in water quality between the urban surface water sources and springs (Kampala district) and the rural surface sources and springs (other study districts – Kasese, Kayunga, Busia, Nebbi and Buliisa) The water sources that met the WHO recommended drinking water quality standards [ 53 ] were mostly the rural springs and the rivers. However, these differences between the rural and the urban water sources do not alter the required approaches to ensure access to safe water which is by promoting measures that reduce the high water turbidity in combination with water disinfection to remove the pathogens. The relatively good quality of rural water sources compared to the urban ones could have been due to availability of plenty of vegetation in rural setting that filtered the water along the way downstream and possibly low level of pollution from industrial inputs in rural areas than in urban areas [ 71 , 72 ].

In relation to cholera outbreaks in the study communities, naturally, the physicochemical conditions for survival of V. cholerae O1 occur in an estuarine environment and other brackish waters [ 73 , 74 ]. In such circumstances, the favourable physicochemical conditions for V. cholerae isolation are the high water turbidity [ 49 ] and temperature of above 17 °C [ 43 ]. Interestingly, all the surface water sources and the springs tested had favourable physicochemical characteristics for the survival of V. cholerae in terms of these two parameters (high water turbidity and temperature of above 17 °C). Furthermore, two lakes sites (Kahendero FLS and Hamukungu FLS, Lake George, Kasese district) had also favourable mean pH for the survival of V. cholerae of 9.03 ± 0.17 and 9.13 ± 0.23 respectively. Favourable pH for V. cholerae survival in waters of Lake George was previously documented in the same area [ 23 ]. Hence, the frequent cholera outbreaks [ 19 , 20 , 21 , 24 ] in the study area could be attributed to both the favourable physicochemical water characteristics and use of unsafe water.

There were wide variations in conductivity between water sources and within the same source overtime. High water conductivities were recorded in the months of January to March 2015 (dry season), possibly due to high evaporation which increased the concentration of electrolytes present in water. Likewise, two rivers namely. River Lubigi (Kampala district) and Nyamugasani (Kasese district) had higher mean conductivities of 460.51 ± 57.83 μS/cm and 946.08 ± 3.63 μS/cm respectively than for typically unpolluted river of 350 μS/cm [ 75 ]. Consequently, given that the two rivers flow through areas of heavy metal mining (copper and cobalt mines in Kasese district by Kilembe Mines Limited and Kasese Cobalt Company Limited) and industrial activities (Kampala City), it is possible for the high water conductivity to be due to the heavy metal contamination as previously documented in drinking water in South-western Uganda [ 62 ] and Kampala City [ 61 ]. Thus, specific studies are required on water from the two rivers to determine the true cause of the high conductivity and to guide mitigation measures.

Hence, more efforts are required to promote safe water access in Uganda to attain the WHO cholera elimination target [ 25 ] and SDG 6 by 2030 since 26% (36/135) of mean physicochemical water tests did not meet WHO drinking water quality standards [ 53 ]. These findings together with those of the previous studies which demonstrated the presence of pathogenic V. cholerae in the same water sources [ 22 , 23 , 76 ] should guide stakeholders to improve access to safe water in the Great Lakes basins of Uganda holistically. Thus, measures such as promotion of use of safe water (using water disinfection), health education, sanitation improvement and hygiene promotion that address both the water bacteriological contents and physicochemical parameters should be considered in both the short and medium terms. However, long term plan to increase access to safe water by construction of permanent safe water treatment plants and distribution systems (pipes) should remain a top priority.

In the short and intermediate period, focusing on the measures that reduce water turbidity and disinfection of water (to kill microorganisms) should be prioritized so as to facilitate progress towards attainment of SDGs and cholera elimination in the study area. The basis for such prioritization lies in the fact that high water turbidity raises water temperature and prevents the disinfection effects of chlorine on water. These in return promote survival of the microorganisms and consequently cholera and other waterborne disease outbreaks. Furthermore, though boiling of water is feasible and recommended through technical guidelines [ 26 ] since it addresses both turbidity and kills the micro-organisms, it has issues of poor compliance due to lack of firewood which is the main cooking energy source in these communities [ 70 ]. Therefore, alternative safe water provision targeting reduction of high water turbidity and removal of microorganism by special filters such as decanting and sand filters and flocculation agents which do not need heat energy should be promoted [ 77 , 78 ]. Also, there is a need to explore the use of solar energy (solar water purifiers) [ 79 ] in these communities given their location in the tropics where sunshine is plenty. In the minority of situations, in addition to use of above methods to make water safe, there may be a need to employ different approaches of water purification depending on the water source. For example the water sources with lower or higher than recommended pH [ 53 ] (Wanseko pond, Hamukungu and Kahendero FLS on L. George), use of water treatment reagents that are affected by pH such as chlorine tablets should be reevaluated.

In additional to disinfection and turbidity corrective measures for all the water that were studied, each of the springs in the study area (Katanga in Kampala district and Nyakirango and Kibenge springs in Kasese district) will also need a sanitary survey (a comprehensive inspection of the entire water delivery system from the source to the mouth so as to identify potential problems and changes in the quality of drinking water) [ 80 ]. The findings of the sanitary survey should then guide the medium and long term interventions for water quality improvement in areas served by targeted springs. The following are some of the interventions that could be carried out after a sanitary survey: provision of a screen to prevent the entrance of animals, erecting a warning signs, digging of a diversion ditch located at the uphill end to keep rainwater from flowing over the spring area, establishment of an impervious barrier (a clay or a plastic liner) to prevent potential contaminants from entering into the water or and others measures described in the handbook for spring protection [ 81 ].

Furthermore, as a stopgap measure while access to safe water is scaled up, the communities in the study area should be protected from cholera using Oral Cholera Vaccines [ 82 ]. Protection of these communities is necessary since this study shows that favorable conditions for cholera propagation/transmission are present in the water in the study area. The favorable conditions that were documented in this study included the high water turbidity which makes it difficult to disinfect water [ 53 ] and the water temperature of above 17 °C which speeds up the multiplication of pathogens [ 43 ].

In addition, there were some other important study findings that were not fully understood. For example, some water sources (Kibenge spring and pond (located in Kasese district, western Uganda) had extreme vital physicochemical values for both conductivity and water temperature relative to the rest of above 40 °C and 3000 μS/cm respectively. It is possible that the extreme values were due to geochemical effects documented in water sources around Mount Rwenzori [ 83 ]. However, since there was copper and cobalt mining in Kasese district, high water conductivity could have been due to chemical contamination. Similarly, River Lubigi, Kampala district (central Uganda) had very low dissolved oxygen of less than 1 mg/L during some months (for example in January 2015, dissolved oxygen of 0.45 mg/L) which could have been due to organic pollutants from the communities in Kampala City [ 84 ] that used up the oxygen in the water. Also, Wanseko pond (Lake Albert basin, Buliisa district) had low pH of 4.84 in February 2015. Such water with low pH have the potential to increase the solubility of heavy metals some of which make water harmful when consumed [ 85 ]. Therefore, further studies will be required to better understand such extreme values.

Strength and limitations of this study

This study had several strengths. First, the longitudinal study design that employed repeated measurements of water physicochemical characteristics from the same site and source. This design reduced the likelihood of errors that could arise from one-off measurements seen in cross-sectional study designs resulting in increased validity of the study findings. Second, the inclusion of a variety of the water sources from which drinking and domestic water were collected namely, lakes, rivers, ponds, springs and a canal from different regions of Uganda made the findings representative of the water sources in study districts. Third, use of robust equipment, Hach meters, HQ40d [ 68 ] which automatically compensated for the weather changes (corrected for possible confounders and biases) for the parameters that had effect on each other such as raising water temperature impacting on the water conductivity and dissolved oxygen. Forth, purposive selection of the districts with frequent cholera outbreaks, an important waterborne disease that is targeted for elimination locally within Uganda and globally by WHO [ 25 ]. This meant that the findings had higher potential for used by stakeholders targeting to improve access to safe water and those for cholera prevention.

There were also some study limitations. First, though the study identified the favourable conditions (higher than recommended mean water turbidity and temperature of above 17 °C) for cholera in the study area, we could not report on causal-effect relationship between V. cholerae and the parameters studied. Vibrio cholera e pathogens were detected by use of multiplex Polymerase Chain Reaction (PCR). The results for PCR test were interpreted as positive or negative for V. cholerae O1, O139, non O1, and non O139 [ 22 ]. These data were not appropriate for establishment of causal-effect relationship Therefore, further studies using appropriate methods are recommended to establish such relationships.

Second, during some months of the study, water samples could not be obtained from some sources especially the ponds that had dried up during the dry season. The drying up reduced the number of samples collected from these points. However, since the months without water were few compared to the entire study period, the impact of the missing data could have been minimal.

Third, water samples were only tested for the five key physicochemical water characteristics, Vital Signs [ 32 ] however, there are many other parameters that effect survival and health of living things namely, nitrates, copper, lead, fluoride, phosphates, arsenic and others. Studies are therefore required to provide more information on these other parameters not addressed by the current study.

The study showed that surface and spring water for drinking and other domestic purposes in cholera prone communities in Great Lakes basins of Uganda were unsafe in terms of vital physicochemical water characteristics. These water sources had favourable physicochemical characteristics for transmission/propagation of waterborne diseases, including cholera. All test sites (100%, 27/27) had temperature above 17 °C that is suitable for V. cholerae survival and transmission and higher than the WHO recommended mean water turbidity of 5NTU. In addition, more than a quarter (27%) of lake sites and 40% of the ponds had pH and dissolved oxygen outside the WHO recommended range of 6.5–8.5 and less than 5 mg/L respectively. These findings complement bacteriological findings that were previously reported in the study area which found that use of this water increased their vulnerability to cholera outbreaks [ 22 ]. Therefore, in order for Uganda to attain the WHO cholera elimination and the United Nations SDG 6 target by 2030, stakeholders (the Ministry of Water and Environment, the local governments, Ministry of Health development partners and others) should embrace interventions that holistically improve water quality through addressing both physicochemical and biological characteristics. Furthermore, studies should be conducted to generate more information on the other physicochemical parameters not included in this study such as detection of the heavy metal contamination.

Availability of data and materials

The datasets generated and/or analysed during the current study are available in the Mendeley Data repository, https://doi.org/10.17632/57sw2w23tw.1 . The cholera incidence data used to identify the study area were from Uganda Ministry of Health and the district (Kasese, Busia, Nebbi, Buliisa and Kayunga) weekly epidemiological reports.

Abbreviations

Analysis of Variance

Conductivity

Central Public Health Laboratories

Dissolved Oxygen

Delivery of Oral Vaccines Effectively

Fish landing site

Institutional Review Board

Ministry of Health

Nephrometric units

Polymerase Chain Reaction

Sustainable Development Goal

Standard Operating Procedures

United States of America

World Health Organization

Walther J. Earth’s natural resources. Jones & Bartlett Learning; 2014. https://www.researchgate.net/publication/267327567_EARTH’S_NATURAL_RESOURCES/link/544e7df80cf2bca5ce90b65b/download .

UNDP. Sustainable Development GOALS 2030. 2015.

Nikanorov AM, Brazhnikova LV. Water chemical composition of Rivers, lakes and wetlands. Encycl Life Support Syst. 2009;2:42–80 https://www.eolss.net/Sample-Chapters/C07/E2-03-04-02.pdf .

Google Scholar  

United Nations. International Decade for Action “Water for Life” 2005–2015. Focus Areas: The human right to water and sanitation1. UN. International Decade for Action “Water for Life” 2005–2015. Focus Areas: The human right to water and sanitation [Internet]. United Nati. United Nations. 2014. http://www.un.org/waterforlifedecade/human_right_to_water.shtml . Accessed 2 Dec 2019.

UNDP. Goal 6: Clean water and sanitation | UNDP. UNDP. 2015. https://www.undp.org/content/undp/en/home/sustainable-development-goals/goal-6-clean-water-and-sanitation.html . Accessed 29 Nov 2019.

Programme UNE. Africa water atlas. Nairobi, Kenya: United Nations Environment Programme; 2010. https://www.zaragoza.es/contenidos/medioambiente/onu/340-eng.pdf .

Dos Santos S, Adams EA, Neville G, Wada Y, de Sherbinin A, Mullin Bernhardt E, et al. Urban growth and water access in sub-Saharan Africa: progress, challenges, and emerging research directions. Sci Total Environ. 2017;607–8:497–508. https://doi.org/10.1016/j.scitotenv.2017.06.157 .

Walker C. Lack of safe water, sanitation spurs growing dissatisfaction with government performance. 2016. http://afrobarometer.org/countries/results-round . Accessed 9 July 2020.

WHO/UNICEF JMP. Progress on household drinking water , sanitation and hygiene I 2000-2017. Special Focus on Inequalities 2017. https://washdata.org . Accessed 3 Dec 2019.

Uganda Bureu of Statistics. Uganda Bureau of Statistics Education Sector Gender Statistics Profile November 2012. 2012; November:1–43.

University of Califonia Museum of Paleontology (UCMP). The Aquatic Biome. 2014;:1–4. http://www.ucmp.berkeley.edu/glossary/gloss5/biome/aquatic.html . Accessed 3 Aug 2017.

World Health Organization. Protecting Surface Water for Health. 2016. http://apps.who.int/iris/bitstream/10665/246196/1/9789241510554-eng.pdf?ua=1 . Accessed 3 Aug 2017.

Hunter PR. Climate change and waterborne and vector-borne disease. J Appl Microbiol Symp Suppl. 2003;94. https://doi.org/10.1046/j.1365-2672.94.s1.5.x .

Vitousek PM, Mooney HA, Lubchenco J, Melillo JM. Human domination of Earth’s ecosystems. In: Urban Ecology: An International Perspective on the Interaction Between Humans and Nature 2008.

World Health Organization. WHO | Water-related Diseases. https://www.who.int/water_sanitation_health/diseases-risks/diseases/diarrhoea/en/ . Accessed 9 July 2020.

World Health Organization. Weekly epidemiological record Relevé épidémiologique hebdomadaire. 2013;:321–36.

World Health Organization. Weekly epidemiological record Relevé épidémiologique hebdomadaire. 2019;94:561–80. https://extranet.who.int/iris/restricted/bitstream/handle/10665/330003/WER9448-eng-fre.pdf?ua=1 .

Bwire G, Malimbo M, Maskery B, Kim YE, Mogasale V, Levin A. The burden of cholera in Uganda. PLoS Negl Trop Dis. 2013;7:e2545. https://doi.org/10.1371/journal.pntd.0002545 .

Article   PubMed   PubMed Central   Google Scholar  

Bwire G, Munier A, Ouedraogo I, Heyerdahl L, Komakech H, Kagirita A, et al. Epidemiology of cholera outbreaks and socio-economic characteristics of the communities in the fishing villages of Uganda: 2011-2015. PLoS Negl Trop Dis. 2017;11.

Kwesiga B, Pande G, Ario AR, Tumwesigye NM, Matovu JKB, Zhu BP. A prolonged, community-wide cholera outbreak associated with drinking water contaminated by sewage in Kasese District, western Uganda. BMC Public Health. 2017;18. https://doi.org/10.1186/s12889-017-4589-9 .

Pande G, Kwesiga B, Bwire G, Kalyebi P, Riolexus AA, Matovu JKB, et al. Cholera outbreak caused by drinking contaminated water from a lakeshore water-collection site, Kasese District, South-Western Uganda, June-July 2015. PLoS One. 2018;13:e0198431. https://doi.org/10.1371/journal.pone.0198431 .

Article   CAS   PubMed   PubMed Central   Google Scholar  

Bwire G, Debes AK, Orach CG, Kagirita A, Ram M, Komakech H, et al. Environmental surveillance of Vibrio cholerae O1/O139 in the five African Great Lakes and other major surface water sources in Uganda. Front Microbiol. 2018;9:1560. https://doi.org/10.3389/FMICB.2018.01560 .

Kaddumukasa M, Nsubuga D, Muyodi FJ. Occurence of Culturable Vibrio cholerae from Lake Victoria, and Rift Valley lakes Albert and George, Uganda. Lakes Reserv Res Manag. 2012;17:291–9.

Article   CAS   Google Scholar  

Oguttu DW, Okullo A, Bwire G, Nsubuga P, Ario AR. Cholera outbreak caused by drinking lake water contaminated with human faeces in Kaiso Village, Hoima District, Western Uganda, October 2015. Infect Dis Poverty. 2017;66:146. https://doi.org/10.1186/s40249-017-0359-2 .

World Health Organization. Ending cholera: A global roadmap to 2030. 2017. http://www.who.int/cholera/publications/global-roadmap.pdf?ua=1 . Accessed 9 July 2020.

Ministry of Health Uganda. Prevention and Control of Cholera Operational Guidelines for the National and District Health Workers and Planners. 2017. http://www.health.go.ug/sites/default/files/Final CHOLERA GUIDELINES 2017_0.pdf. Accessed 13 Feb 2019.

Snow J. Mode of Communication of Cholera (John Snow, 1855). 1855;:1–38. http://www.ph.ucla.edu/epi/snow/snowbook.html .

Bingham P, Verlander NQ, Cheal MJ. John snow, William Farr and the 1849 outbreak of cholera that affected London: a reworking of the data highlights the importance of the water supply. Public Health. 2004;118:387–94.

United Nations Environment Programme and the World Health Organization. United Nations Environment Programme and the World Health Organization. 1996.

Daud MK, Nafees M, Ali S, Rizwan M, Bajwa RA, Shakoor MB, et al. Drinking Water Quality Status and Contamination in Pakistan 2017;2017.

Ford L, Bharadwaj L, Mcleod L, Waldner C. Human health risk assessment applied to rural populations dependent on unregulated drinking water sources : a scoping review. 2017.

Team CW. Vital Signs : The Five Basic Water Quality Parameters. 2010;:3–4.

Fondriest Environmental, Inc. “pH of Water” Fundamentals of Environmental Measurements. 2013. Web. https://www.fondriest.com/environmentalmeasurements/parameters/water-quality/ph/ . Accessed 7 July 2020.

Vancouver Water Resources Education Center. Water Quality: Temperature, pH and Dissolved Oxygen. 2019. www.middleschoolchemistry.com/lessonplans/ . Accessed 5 Dec 2019.

Fondriest Environmental, Inc. “Water Quality” Fundamentals of Environmental Measurements. 2013. Web. https://www.fondriest.com/environmentalmeasurements/parameters/water-quality/ . Accessed 7 July 2020.

Spellman FR. The Drinking Water Handbook 2017. doi: https://doi.org/10.1201/9781315159126 .

World Health Organization. Protecting Surface Water for health: Identifying, assessing and managing drinking-water quality risks in surface-water catchments. 2016. http://www.who.int . Accessed 4 July 2019.

Bliem R, Reischer G, Linke R, Farnleitner A, Kirschner A. Spatiotemporal dynamics of Vibrio cholerae in turbid alkaline lakes as determined by quantitative PCR. Appl Environ Microbiol. 2018;84:317–35. https://doi.org/10.1128/AEM.00317-18 .

U.S. Environmental Protection Agency. Drinking Water Treatability Database: Vinclozolin. 2009. https://iaspub.epa.gov/tdb/pages/contaminant/contaminantOverview.do%3FcontaminantId%3D10540 . Accessed 5 Dec 2019.

Sagir Ahmed M, Raknuzzaman M, Akther H, Ahmed S. The role of cyanobacteria blooms in cholera epidemic in Bangladesh. J Appl Sci. 2007;7:1785–9.

Article   Google Scholar  

Epstein PR. Algal blooms in the spread and persistence of cholera. BioSystems. 1993;31:209–21. https://doi.org/10.1016/0303-2647(93)90050-M .

Article   CAS   PubMed   Google Scholar  

Gil AI, Louis VR, Rivera ING, Lipp E, Huq A, Lanata CF, et al. Occurrence and distribution of Vibrio cholerae in the coastal environment of Peru. Environ Microbiol. 2004;6:699–706.

Nair G. B, Havelaar A. H, Bartram J, Jacob J, Hueb J et al. Vibrio cholerae 1. 1997;:119–42. http://www.who.int/water_sanitation_health/dwq/admicrob6.pdf .

Roberts MB V. Biology: a functional approach. 1986. https://books.google.co.ug/books?id=ASADBUVAiDUC&pg=PA232&lpg=PA232&dq=body+temperatures+of+microorganisms+the+same+as+surroundings+poikilothermic&source=bl&ots=hGQDzoXNw2&sig=ACfU3U3H3-n-YybOibjEg_Q_dOmSdu1L5Q&hl=en&sa=X&ved=2ahUKEwjAy5zerJ_mAhUICsAKHU5b . Accessed 5 Dec 2019.

Fondriest Environmental I. Conductivity, Salinity & Total Dissolved Solids - Environmental Measurement Systems. Fundamentals of Environmental Measurements, Fondriest Environmental, Inc. 2014;:Web. https://www.fondriest.com/environmental-measurements/parameters/water-quality/conductivity-salinity-tds/ . Accessed 19 Dec 2019.

Queensland G. Environmental protection (water) policy 2009 - monitoring and sampling manual physical and chemical assessment. 2018. https://environment.des.qld.gov.au/water/monitoring/sampling-manual/pdf/physical-and-chemical-assesssment-swab-sampling.pdf . Accessed 29 Nov 2019.

Fondriest Environmental, Inc. “Turbidity-total-suspended-solids-water-clarity” Fundamentals of Environmental Measurements. 2013. Web. https://www.fondriest.com/environmental-measurements/parameters/water-quality/turbiditytotal-suspended-solids-water-clarity/ . Accessed 7 July 2020.

Otieno OS. Physico-chemical and bacteriological quality of water from five rural catchment areas of Lake Victoria basin in Kenya 2015. doi: https://doi.org/10.1017/CBO9781107415324.004 .

Kelley CD, Krolick A, Brunner L, Burklund A, Kahn D, Ball WP, et al. An affordable open-source turbidimeter. Sensors (Switzerland). 2014;14:7142–55. https://doi.org/10.3390/s140407142 .

Sagir Ahmed M, Raknuzzaman M, Akther H, Ahmed S. The role of cyanobacteria blooms in cholera epidemic in Bangladesh. J Appl Sci. 2007;7:1785–9. https://doi.org/10.3923/jas.2007.1785.1789 .

Gorchev HG, Ozolins G. WHO guidelines for drinking-water quality 2011. doi: https://doi.org/10.1016/S1462-0758(00)00006-6 .

World Health Organization. Essential environmental health standards in health care. Non serial. Geneva: World Health Organization Press; 2008. https://books.google.co.ug/books?hl=en&lr=&id=QwVj87Mmz4sC&oi=fnd&pg=PA3&dq=Essential+environmental+health+standards+in+health+care.+World+Health++Organization&ots=qBUjaQCxQV&sig=CyG-4NLSRKIEZG-L0vDxuK5Ga-o&redir_esc=y#v=onepage&q=Essential%20environmental . Accessed 6 July 2020.

World Health Organization. Guidelines for Drinking Water Quality. Fourth Edi. 2017. https://apps.who.int/iris/bitstream/handle/10665/254636/9789241550017-eng.pdf;jsessionid=B0351A975B001E76D924D2B1183DE673?sequence=1 .

Sharma S, Bhattacharya A. Drinking water contamination and treatment techniques. Appl Water Sci. 2017;7:1043–67. https://doi.org/10.1007/s13201-016-0455-7 .

Centers for Disease Control and Prevention (CDC); Cholera prevention and control. Atlanta, USA. https://www.cdc.gov/cholera/pdf/five-basic-cholera-prevention-messages.pdf . Accessed 10 July 2020.

Luff R. Oxfam guidelines for water treatment in emergencies. 2001. http://ec.europa.eu/echo/files/evaluation/watsan2005/annex_files/OXFAM/OXF5 - Oxfam guidelines for water treatment in emergencies. PDF.

Iceland Kasozi K, Namubiru S, Kamugisha R, Daniel Eze E, Stuart Tayebwa D, Ssempijja F, et al. Safety of Drinking Water from Primary Water Sources and Implications for the General Public in Uganda 2019. doi: https://doi.org/10.1155/2019/7813962 .

Alajo S. Comparison of two communities affected by cholera in Kasese district in Uganda. Am J Trop Med Hyg. 2013;89:205 http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L71312507%5Cnhttp://www.ajtmh.org/content/89/5_Suppl_1/153.full.pdf+html%5Cnhttp://vb3lk7eb4t.search.serialssolutions.com?sid=EMBASE&issn=00029637&id=doi:&atitle=Comparison+of+two+co.

Jutla A, Whitcombe E, Hasan N, Haley B, Akanda A, Huq A, et al. Environmental factors influencing epidemic cholera. Am J Trop Med Hyg. 2013;89:597–607. https://doi.org/10.4269/ajtmh.12-0721 .

Ojok W, Wasswa J, Ntambi E. Assessment of seasonal variation in water quality in river Rwizi using multivariate statistical techniques, Mbarara municipality, Uganda. J Water Resour Prot. 2017;09:83–97.

Semuyaba AS, Segawa I, Wamala A. Potential risk of Lead toxicity from bottled water in Uganda. MPJ. 2014;12:e13–20 https://chs.mak.ac.ug/content/potential-risk-lead-toxicity-bottled-water-uganda . Accessed 18 Dec 2019.

Kasozi KI, Namubiru S, Kamugisha R, Eze ED, Tayebwa DS, Ssempijja F, et al. Safety of drinking water from primary water sources and implications for the general public in Uganda. J Environ Public Health. 2019;2019. https://doi.org/10.1155/2019/7813962 .

Okello PE, Bulage L, Riolexus AA, Kadobera D, Kwesiga B, Kajumbula H, et al. A cholera outbreak caused by drinking contaminated river water, Bulambuli District, eastern Uganda, march 2016. BMC Infect Dis. 2019;19. https://doi.org/10.1186/s12879-019-4036-x .

Agensi A, Tibyangye J, Tamale A, Agwu E, Amongi C. Contamination potentials of household water handling and storage practices in Kirundo subcounty, Kisoro District, Uganda. J Environ Public Health. 2019;2019. https://doi.org/10.1155/2019/7932193 .

Bwire G, Ali M, Sack DA, Nakinsige A, Naigaga M, Debes AK, et al. Identifying cholera “hotspots” in Uganda: an analysis of cholera surveillance data from 2011 to 2016. PLoS Negl Trop Dis. 2017;11:e0006118. https://doi.org/10.1371/journal.pntd.0006118 .

Bompangue Nkoko D, Giraudoux P, Plisnier P-D, Tinda AM, Piarroux M, Sudre B, et al. Dynamics of cholera outbreaks in Great Lakes region of Africa, 1978-2008. Emerg Infect Dis. 2011;17:2026–34.

PubMed   Google Scholar  

Debes AK, Ateudjieu J, Guenou E, Lopez AL, Bugayong MP, Retiban PJ, et al. Evaluation in Cameroon of a novel, simplified methodology to assist molecular microbiological analysis of v. cholerae in resource-limited settings. PLoS Negl Trop Dis. 2016;10:4307. https://doi.org/10.1371/journal.pntd.0004307 .

Hach campany. HQ Series Portable Meters. 2006. www.hach.com . Accessed 4 Jan 2019.

Langan M. Budget support and Africa–European Union relations: free market reform and neo-colonialism? Eur J Int relations. 2015.

UNICEF. UNICEF Handbook On Water Quality. 2008. http://www.unicef.org/wes . Accessed 14 Dec 2019.

Ouma S, Ngeranwa JN, Juma KK, Mburu DN. Journal of environmental analytical seasonal variation of the physicochemical and bacteriological quality of water from five rural catchment areas of Lake Victoria Basin in Kenya. J Environ Anal Chem. 2016;3:1–7. https://doi.org/10.4172/2380-2391.1000170 .

Mapira J. River pollution in the City of Mutare (Zimbabwe) and its implications for sustainable development. J Sustain Dev Africa. 2011;13:181–94. https://pdfs.semanticscholar.org/a581/6beb20e79ea0590a7717de4a095c02dc14a5.pdf . Accessed 4 July 2019.

Colwell RR, Huq A. Chapter 9: Vibrios in the environment: viable but nonculturable Vibrio cholerae. In: Wachsmuth, Kaye I, Blake P, Olsvik Ø, editors. Vibrio cholerae and Cholera. Washington, DC: American Society of Microbiology; 1994. p. 117–33. https://www.asmscience.org/content/book/10.1128/9781555818364.chap9 . Accessed 9 July 2020.

Colwell RR, Spira WM. The ecology of Vibrio cholerae. In: Cholera. Boston, MA: Springer US; 1992. p. 107–27. https://doi.org/10.1007/978-1-4757-9688-9_6 .

Chapter   Google Scholar  

Koning N, Roos JC. The continued influence of organic pollution on the water quality of the turbid Modder River. Water SA. 1999;25:285–92.

CAS   Google Scholar  

Bagalwa M, Yalire M, Balole E, Karume K. A preliminary assessment of Physico-chemical and bacteriological characteristics of Lake Eduard and Majors tributaries Rivers, Democratic Republic of Congo. Sch Acad J Biosci. 2014;2:236–45 www.saspublisher.com . Accessed 29 July 2017.

Collin C. Biosand filtration of high turbidity water: modified filter design and safe filtrate storage. Massachusetts Institute of Technology; 2009. http://web.mit.edu/watsan/Docs/Student%20Theses/Ghana/2009/Thesis%20-%20Final,%20Clair%20Collin,%205-15-09.pdf . Accessed 9 July 2020.

Collin C. Biosand filtration of high turbidity water: modified filter design and safe filtrate storage. Massachusetts Institute of Technology; 2009. https://dspace.mit.edu/handle/1721.1/50623 . Accessed 7 July 2020.

Graf J, Togouet SZ, Kemka N, Niyitegeka D, Meierhofer R, Pieboji JG. Health gains from solar water disinfection (SODIS): Evaluation of a water quality intervention in Yaoundé, Cameroon. J Water Health. 2010;8:779–96. https://doi.org/10.2166/wh.2010.003 .

Open University. Hygiene and environmental health module: 16. Sanitary Survey of Drinking Water 2019. https://www.open.edu/openlearncreate/mod/oucontent/view.php?id=203&printable=1 . Accessed 6 Jun 2020.

Herrmann H, Bucksch H. spring protection. In: Dictionary Geotechnical Engineering/Wörterbuch GeoTechnik. 2014. p. 1290–1290.

World Health Organization. Oral Cholera Vaccine stockpile for cholera emergency response. 2013. http://www.who.int/cholera/vaccines/Briefing_OCV_stockpile.pdf .

Kato V, Kraml M. Geochemistry of Rwenzori hot spring waters. 2010; November:22–5. https://www.geothermal-energy.org/pdf/IGAstandard/ARGeo/2008/V.Kato_Rwenzori.pdf . Accessed 4 Jan 2019.

Kayima JK, Mayo AW, Nobert J. Ecological Characteristics and Morphological Features of the Lubigi Wetland in Uganda. Environ Ecol Res. 2018;6:218–28. https://doi.org/10.13189/eer.2018.060402 ..

Ozoko DC. Heavy metal geochemistry of acid mine drainage in Onyeama coal mine, Enugu, Southeastern Nigeria. J Environ Earth Sci. 2015.

Download references

Acknowledgements

The authors are grateful to the following: the district teams and the communities in Kasese, Kampala, Nebbi, Buliisa, Kayunga and Busia districts for the cooperation and support; the Ministry of Health, Makerere University School of Public Health, Dr. Asuman Lukwago, Dr. Jane Ruth Aceng and Prof. AK. Mbonye for technical guidance. The authors are grateful to Dunkin Nate from John Hopkins University for training of the field teams on water sampling and testing. The authors also thank Ambrose Buyinza Wabwire and to Damari Atusasiire for the support in creating the map and statistical guidance respectively. Special thanks to the laboratory teams in the district hospitals; CPHL (Kampala) and John Hopkins University (Maryland, USA) for carrying out the water tests.

This study was funded by the Bill and Melinda Gates Foundation, USA, through John Hopkins University under the Delivering Oral Vaccine Effectively (DOVE) project. (OPP1053556). The funders had no role in the implementation of the study and in the decision to publish the study findings.

Author information

Authors and affiliations.

Department of Community and Behavioral Sciences, Makerere University College of Health Sciences, School of Public Health, Kampala, Uganda

Godfrey Bwire, Henry Komakech & Christopher Garimoi Orach

Department of International Health, Johns Hopkins Bloomberg School of Public Health, Dove Project, Baltimore, MD, USA

David A. Sack, Amanda K. Debes, Malathi Ram & Christine Marie George

Uganda National Health Laboratory Services (UNHS/CPHL), Ministry of Health, Kampala, Uganda

Atek Kagirita

Department of Quality Control, Uganda National Drug Authority, Kampala, Uganda

Tonny Obala

You can also search for this author in PubMed   Google Scholar

Contributions

GB, DAS, AKD and CGO conceived the idea. GB, CGO, AKD, MR, HK, AK, TO and CMG conducted the investigation. MR, HK and TO carried out data curation. MR, HK, GB, DAS, CMG, AKD and AK analysed data. GB, DAK, AKD, CGO, MR, AK, TO and CMG wrote the first draft. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Godfrey Bwire .

Ethics declarations

Ethics approval and consent to participate.

This study was approved by the Makerere University School of Public Health Institution Review Board (IRB 00011353) and the Uganda National Council of Science and Technology. Cholera data used in selection of the water bodies and study communities were aggregated disease surveillance data from the Ministry of Health with no personal identifiers. The laboratory reports on the water sources found contaminated during the study period were shared immediately with the district team to ensure that preventive measures were instituted to protect the communities. In addition, the communities served by such water sources were educated on water treatment/purification (filtration, boiling, chlorination, use of Waterguard ).

Consent for publication

Not applicable.

Competing interests

The authors report no competing interests.

Additional information

Publisher’s note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Additional file 1..

The number and the type of water sources in each of the lake basins in cholera prone communities of Uganda that were enrolled in the study, February 2015 – January 2016.

Additional file 2.

One Way ANOVA test results for the differences within the study sites overtime (February 2015 – January 2016) and between sites.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ . The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/ ) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Reprints and permissions

About this article

Cite this article.

Bwire, G., Sack, D.A., Kagirita, A. et al. The quality of drinking and domestic water from the surface water sources (lakes, rivers, irrigation canals and ponds) and springs in cholera prone communities of Uganda: an analysis of vital physicochemical parameters. BMC Public Health 20 , 1128 (2020). https://doi.org/10.1186/s12889-020-09186-3

Download citation

Received : 02 April 2019

Accepted : 01 July 2020

Published : 17 July 2020

DOI : https://doi.org/10.1186/s12889-020-09186-3

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Drinking water
  • Water quality
  • Physicochemical parameter
  • Water source
  • Surface water

BMC Public Health

ISSN: 1471-2458

research papers on drinking water quality

Advertisement

Advertisement

Drinking Water Quality and Public Health

  • S.I.: Drinking Water Quality and Public Health
  • Published: 04 February 2019
  • Volume 11 , pages 73–79, ( 2019 )

Cite this article

  • Peiyue Li   ORCID: orcid.org/0000-0001-8771-3369 1 , 2 &
  • Jianhua Wu 1 , 2  

11k Accesses

222 Citations

Explore all metrics

Drinking water quality is one of the greatest factors affecting human health. However, drinking water quality in many countries, especially in developing countries is not desirable and poor drinking water quality has induced many waterborne diseases. This special issue of Exposure and Health was edited to gain a better understanding of the impacts of drinking water quality on public health so that proper actions can be taken to improve the drinking water quality conditions in many countries. This editorial introduction reviewed some latest research on drinking water quality and public health, summarized briefly the main points of each contribution in this issue, and then some research fields/directions were proposed to boost further scientific research in drinking water quality and public health. The papers in this issue are interesting and cover many aspects of this research topic, and will be meaningful for the sustainable drinking water quality protection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Russian Federation)

Instant access to the full article PDF.

Rent this article via DeepDyve

Institutional subscriptions

research papers on drinking water quality

Similar content being viewed by others

Drinking water contamination and treatment techniques.

S. Sharma & A. Bhattacharya

research papers on drinking water quality

Water quality assessment of lake water: a review

Rachna Bhateria & Disha Jain

research papers on drinking water quality

Advantages and disadvantages of techniques used for wastewater treatment

Grégorio Crini & Eric Lichtfouse

Abbasi T, Abbasi SA (2012) Water quality indices. Elsevier, Amsterdam

Google Scholar  

Abtahi M, Golchinpour N, Yaghmaeian K, Rafiee M, Jahangiri-rad M, Keyani A, Saeedi R (2015) A modified drinking water quality index (DWQI) for assessing drinking source water quality in rural communities of Khuzestan Province, Iran. Ecol Indic 53:283–291. https://doi.org/10.1016/j.ecolind.2015.02.009

Article   CAS   Google Scholar  

Abtahi M, Yaghmaeian K, Mohebbi MR, Koulivand A, Rafiee M, Jahangiri-rad M, Jorfi S, Saeedi R, Oktaie S (2016) An innovative drinking water nutritional quality index (DWNQI) for assessing drinking water contribution to intakes of dietary elements: a national and sub-national study in Iran. Ecol Indic 60:367–376. https://doi.org/10.1016/j.ecolind.2015.07.004

Adimalla N (2018) Groundwater quality for drinking and irrigation purposes and potential health risks assessment: a case study from semi-Arid region of south India. Expo Health. https://doi.org/10.1007/s12403-018-0288-8

Article   Google Scholar  

Adimalla N, Li P (2018) Occurrence, health risks and geochemical mechanisms of fluoride and nitrate in groundwater of the rock-dominant semi-arid region, Telangana State, India. Hum Ecol Risk Assess. https://doi.org/10.1080/10807039.2018.1480353

Adimalla N, Wu J (2019) Groundwater quality and associated health risks in a semi-arid region of south India: Implication to sustainable groundwater management. Hum Ecol Risk Assess. https://doi.org/10.1080/10807039.2018.1546550

Ahmed MF, Mokhtar MB, Alam L, Mohamed CAR, Ta GC (2019) Non-carcinogenic health risk assessment of aluminium ingestion via drinking water in Malaysia. Expo Health. https://doi.org/10.1007/s12403-019-00297-w

Akter T, Jhohura FT, Akter F, Chowdhury TR, Mistry SK, Dey D, Barua MK, Islam MA, Rahman M (2016) Water Quality Index for measuring drinking water quality in rural Bangladesh: a cross-sectional study. J Health Popul Nutr 35:4. https://doi.org/10.1186/s41043-016-0041-5

Ali N, Kalsoom Khan S, Ihsanullah Rahman IU, Muhammad S (2018) Human health risk assessment through consumption of organophosphate pesticide-contaminated water of peshawar basin, Pakistan. Expo Health 10:259–272. https://doi.org/10.1007/s12403-017-0259-5

Buytaert W, Dewulf A, Bièvre BD, Clark J, Hannah DM (2016) Citizen Science for Water Resources Management: Toward Polycentric Monitoring and Governance? J Water Resour Plann Manag 142(4):01816002. https://doi.org/10.1061/(ASCE)WR.1943-5452.0000641

Chen J, Qian H, Gao Y, Li X (2018) Human Health Risk Assessment of Contaminants in Drinking Water Based on Triangular Fuzzy Numbers Approach in Yinchuan City, Northwest China. Expo Health 10:155–166. https://doi.org/10.1007/s12403-017-0252-z

Deng Q, Chen L, Wei Y, Li Y, Han X, Liang W, Zhao Y, Wang X, Yin J (2018) Understanding the association between environmental factors and longevity in Hechi, China: a drinkingwater and soil quality perspective. Int J Environ Res Public Health 15(10):2272. https://doi.org/10.3390/ijerph15102272

Dey NC, Parvez M, Saha R, Islam MR, Akter T, Rahman M, Barua M, Islam A (2018) Water quality and willingness to pay for safe drinking water in Tala Upazila in a coastal district of bangladesh. Expo Health. https://doi.org/10.1007/s12403-018-0272-3

Farnham DJ, Gibson RA, Hsueh DY, McGillis WR, Culligan PJ, Zain N, Buchanan R (2017) Citizen science-based water quality monitoring: constructing a large database to characterize the impacts of combined sewer overflow in New York City. Sci Total Environ 580:168–177. https://doi.org/10.1016/j.scitotenv.2016.11.116

Gara T, Li F, Nhapi I, Makate C, Gumindoga W (2018) Health safety of drinking water supplied in africa: a closer look using applicable water-quality standards as a measure. Expo Health 10:117–128. https://doi.org/10.1007/s12403-017-0249-7

Gavrilescu M, DemnerováK Aamand J, Agathos S, Fava F (2015) Emerging pollutants in the environment: present and future challenges in biomonitoring, ecological risks and bioremediation. New Biotechnol 32(1):147–156. https://doi.org/10.1016/j.nbt.2014.01.001

Hartmann J, Van der Aa M, Wuijts S, De Roda Husman AM, Van der Hoek JP (2018) Risk governance of potential emerging risks to drinking water quality: analysing current practices. Environ Sci Policy 84:97–104. https://doi.org/10.1016/j.envsci.2018.02.015

He S, Wu J (2018) Hydrogeochemical characteristics, groundwater quality, and health risks from hexavalent chromium and nitrate in groundwater of Huanhe formation in Wuqi County, Northwest China. Expo Health. https://doi.org/10.1007/s12403-018-0289-7

He S, Wu J (2019) Relationships of groundwater quality and associated health risks with land use/land cover patterns: a case study in a loess area, northwest China. Hum Ecol Risk Assess. https://doi.org/10.1080/10807039.2019.1570463

He X, Wu J, He S (2018) Hydrochemical characteristics and quality evaluation of groundwater in terms of health risks in Luohe aquifer in Wuqi County of the Chinese Loess Plateau, northwest China. Hum Ecol Risk Assess. https://doi.org/10.1080/10807039.2018.1531693

He X, Wu J, Guo W (2019) Karst spring protection for the sustainable and healthy living: the examples of Niangziguan spring and Shuishentang spring in Shanxi, China. Expo Health. https://doi.org/10.1007/s12403-018-00295-4

Jabed MA, Paul A, Nath TK (2018) Peoples’ perception of the water salinity impacts on human health: a case study in South-Eastern coastal region of Bangladesh. Expo Health. https://doi.org/10.1007/s12403-018-0283-0

Jessoe K (2013) Improved source, improved quality? Demand for drinking water quality in rural India. J Environ Econ Manag 66:460–475. https://doi.org/10.1016/j.jeem.2013.05.001

Jollymore A, Haines MJ, Satterfield T, Johnson MS (2017) Citizen science for water quality monitoring: Data implications of citizen perspectives. J Environ Manag 200:456–467. https://doi.org/10.1016/j.jenvman.2017.05.083

Joshi YP, Kim J-H, Kim H, Cheong H-K (2018) Impact of drinking water quality on the development of enteroviral diseases in Korea. Int J Environ Res Public Health 15(11):2551. https://doi.org/10.3390/ijerph15112551

Kumar D, Singh A, Jha RK, Sahoo SK, Jha V (2019) A variance decomposition approach for risk assessment of groundwater quality. Expo Health. https://doi.org/10.1007/s12403-018-00293-6

Li P (2016) Groundwater quality in western China: challenges and paths forward for groundwater quality research in western China. Expo Health 8(3):305–310. https://doi.org/10.1007/s12403-016-0210-1

Li P (2018) Mine water problems and solutions in China. Mine Water Environ 37(2):217–221. https://doi.org/10.1007/s10230-018-0543-z

Li P, Qian H (2018a) Water resource development and protection in loess areas of the world: a summary to the thematic issue of water in loess. Environ Earth Sci 77(24):796. https://doi.org/10.1007/s12665-018-7984-3

Li P, Qian H (2018b) Water resources research to support a sustainable China. Int J Water Res Dev 34(3):327–336. https://doi.org/10.1080/07900627.2018.1452723

Li P, Qian H, Wu J, Zhang Y, Zhang H (2013) Major ion chemistry of shallow groundwater in the Dongsheng coalfield, Ordos Basin, China. Mine Water Environ 32(3):195–206. https://doi.org/10.1007/s10230-013-0234-8

Li P, Li X, Meng X, Li M, Zhang Y (2016) Appraising groundwater quality and health risks from contamination in a semiarid region of northwest China. Expo Health 8(3):361–379. https://doi.org/10.1007/s12403-016-0205-y

Li P, Qian H, Zhou W (2017a) Finding harmony between the environment and humanity: an introduction to the thematic issue of the Silk Road. Environ Earth Sci 76(3):105. https://doi.org/10.1007/s12665-017-6428-9

Li P, Feng W, Xue C, Tian R, Wang S (2017b) Spatiotemporal variability of contaminants in lake water and their risks to human health: a case study of the Shahu Lake tourist area, northwest China. Expo Health 9(3):213–225. https://doi.org/10.1007/s12403-016-0237-3

Li P, Tian R, Xue C, Wu J (2017c) Progress, opportunities and key fields for groundwater quality research under the impacts of human activities in China with a special focus on western China. Environ Sci Pollut Res 24(15):13224–13234. https://doi.org/10.1007/s11356-017-8753-7

Li P, He S, He X, Tian R (2018a) Seasonal hydrochemical characterization and groundwater quality delineation based on matter element extension analysis in a paper wastewater irrigation area, northwest China. Expo Health 10(4):241–258. https://doi.org/10.1007/s12403-17-0258-6

Li P, He S, Yang N, Xiang G (2018b) Groundwater quality assessment for domestic and agricultural purposes in Yan’an City, northwest China: implications to sustainable groundwater quality management on the Loess Plateau. Environ Earth Sci 77(23):775. https://doi.org/10.1007/s12665-2018-7968-3

Li P, He X, Li Y, Xiang G (2018c) Occurrence and health implication of fluoride in groundwater of loess aquifer in the Chinese Loess Plateau: a case study of Tongchuan, northwest China. Expo Health. https://doi.org/10.1007/s12403-018-0278-x

Li P, Wu J, Tian R, He S, He X, Xue C, Zhang K (2018d) Geochemistry, hydraulic connectivity and quality appraisal of multilayered groundwater in the Hongdunzi coal mine, northwest China. Mine Water Environ 37(2):222–237. https://doi.org/10.1007/s10230-017-0507-8

Li P, Tian R, Liu R (2018e) Solute geochemistry and multivariate analysis of water quality in the Guohua phosphorite mine, Guizhou Province, China. Expo Health. https://doi.org/10.1007/s12403-018-0277-y

Li P, Qian H, Wu J (2018f) Conjunctive use of groundwater and surface water to reduce soil salinization in the Yinchuan Plain, north-west China. Int J Water Resour Dev 34(3):337–353. https://doi.org/10.1080/07900627.2018.1443059

Li P, He X, Guo W (2019) Spatial groundwater quality and potential health risks due to nitrate ingestion through drinking water: a case study in Yan’an City on the Loess Plateau of northwest China. Hum Ecol Risk Assess. https://doi.org/10.1080/10807039.2018.1553612

Long DT, Pearson AL, Voice TC, Polanco-Rodríguez AG, Sanchez-Rodríguez EC, Xagoraraki I, Concha-Valdez FG, Puc-Franco M, Lopez-Cetz R, Rzotkiewicz AT (2018) Influence of rainy season and land use on drinking water quality in a karst landscape, State of Yucatán, Mexico. Appl Geochem 98:265–277. https://doi.org/10.1016/j.apgeochem.2018.09.020

McKinley DC, Miller-Rushing AJ, Ballard HL, Bonney R, Brown H, Cook-Patton SC, Evans DM, French RA, Parrish JK, Phillips TB, Ryan SF, Shanley LA, Shirk JL, Stepenuck KF, Weltzin JF, Wiggins A, Boyle OD, Briggs RD, Chapin SF, Hewitt DA, Preuss PW, Soukup MA (2017) Citizen science can improve conservation science, natural resource management, and environmental protection. Biol Conserv 208:15–28. https://doi.org/10.1016/j.biocon.2016.05.015

Mitra P, Pal DK, Das M (2018) Does quality of drinking water matter in kidney stone disease: a study in West Bengal. India. Investigative and Clinical Urology 59(3):158–165. https://doi.org/10.4111/icu.2018.59.3.158

Njinga RL, Tshivhase VM (2017) Major Chemical Carcinogens in Drinking Water Sources: Health Implications Due to Illegal Gold Mining Activities in Zamfara State-Nigeria. Expo Health. https://doi.org/10.1007/s12403-017-0265-7

Prusty P, Farooq SH, Zimik HV, Barik SS (2018) Assessment of the factors controlling groundwater quality in a coastal aquifer adjacent to the Bay of Bengal. India. Environ Earth Sci 77:762. https://doi.org/10.1007/s12665-018-7943-z

Rusca M, Boakye-Ansah AS, Loftus A, Ferrero G, Van der Zaag P (2017) An interdisciplinary political ecology of drinking water quality. Exploring socio-ecological inequalities in Lilongwe’s water supply network. Geoforum 84:138–146. https://doi.org/10.1016/j.geoforum.2017.06.013

Scheili A, Rodriguez MJ, Sadiqb R (2015) Seasonal and spatial variations of source and drinking water quality in small municipal systems of two Canadian regions. Sci Total Environ 508:514–524. https://doi.org/10.1016/j.scitotenv.2014.11.069

Scheili A, Rodriguez MJ, Sadiq R (2016a) Impact of human operational factors on drinking water quality in small systems: an exploratory analysis. J Clean Prod 133:681–690. https://doi.org/10.1016/j.jclepro.2016.05.179

Scheili A, Delpla I, Sadiq R, Rodriguez MJ (2016b) Impact of raw water quality and climate factors on the variability of drinking water quality in small systems. Water Resour Manage 30:2703–2718. https://doi.org/10.1007/s11269-016-1312-z

Soldatova E, Sun Z, Maier S, Drebot V, Gao B (2018) Shallow groundwater quality and associated non-cancer health risk in agricultural areas (Poyang Lake basin, China). Environ Geochem Health 40:2223–2242. https://doi.org/10.1007/s10653-018-0094-z

Su F, Wu J, He S (2019) Set pair analysis (SPA)-Markov chain model for groundwater quality assessment and prediction: a case study of Xi’an City, China. Hum Ecol Risk Assess. https://doi.org/10.1080/10807039.2019.1568860

Tian R, Wu J (2019) Groundwater quality appraisal by improved set pair analysis with game theory weightage and health risk estimation of contaminants for Xuecha drinking water source in a loess area in Northwest China. Hum Ecol Risk Assess. https://doi.org/10.1080/10807039.2019.1573035

Vishwakarma CA, Sen R, Singh N, Singh P, Rena V, Rina K, Mukherjee S (2018) Geochemical characterization and controlling factors of chemical composition of spring water in a part of Eastern Himalaya. J Geol Soc India 92:753–763. https://doi.org/10.1007/s12594-018-1098-0

Wang W, Qiang Y, Wang Y, Sun Q, Zhang M (2016) Impacts of yuyang coal mine on groundwater quality in Hongshixia water source, Northwest China: a physicochemical and modeling research. Expo Health 8(3):431–442. https://doi.org/10.1007/s12403-016-0223-9

WHO (2018) Drinking-water. World Health Organization fact sheets, https://www.who.int/en/news-room/fact-sheets/detail/drinking-water , Accessed 27 Dec 2018

Wu J, Sun Z (2016) Evaluation of shallow groundwater contamination and associated human health risk in an alluvial plain impacted by agricultural and industrial activities, mid-west China. Expo Health 8(3):311–329. https://doi.org/10.1007/s12403-015-0170-x

Wu J, Li P, Qian H, Duan Z, Zhang X (2014) Using correlation and multivariate statistical analysis to identify hydrogeochemical processes affecting the major ion chemistry of waters: Case study in Laoheba phosphorite mine in Sichuan. China. Arab J Geosci 7(10):3973–3982. https://doi.org/10.1007/s12517-013-1057-4

Wu J, Wang L, Wang S, Tian R, Xue C, Feng W, Li Y (2017) Spatiotemporal variation of groundwater quality in an arid area experiencing long-term paper wastewater irrigation, northwest China. Environ Earth Sci 76(13):460. https://doi.org/10.1007/s12665-017-6787-2

Wuijts S, Driessen PPJ, Van Rijswick HFMW (2018) Governance conditions for improving quality drinking water resources: the need for enhancing connectivity. Water Resour Manag 32:1245–1260. https://doi.org/10.1007/s11269-017-1867-3

Zhang Y, Wu J, Xu B (2018a) Human health risk assessment of groundwater nitrogen pollution in Jinghui canal irrigation area of the loess region, northwest China. Environ Earth Sci 77(7):273. https://doi.org/10.1007/s12665-018-7456-9

Zhang H, Zhou X, Wang L, Wang W, Xu J (2018b) Concentrations and potential health risks of strontium in drinking water from Xi'an, Northwest China. Ecotoxicol Environ Saf 164:181–188. https://doi.org/10.1016/j.ecoenv.2018.08.017

Download references

Acknowledgements

Prof. Andrew Meharg, the Editor in Chief of Exposure and Health and Fritz Schmuhl, the Publishing Editor are sincerely acknowledged for their approval and support on this special issue. The publisher and the entire editorial team are strong, making the publication smooth and quick. It is one of the top editorial teams in the publishing community. We are greatly grateful to contributors whose manuscripts have been rejected and those whose manuscripts have been published in this special issue, and many reviewers are also acknowledged. Without interested authors and without voluntary reviewers, it would be impossible to publish this special issue. We are also grateful to various funding agencies and organizations who have provided financial support to our research, and they are the National Natural Science Foundation of China (41502234, 41602238, 41572236 and 41761144059), the Research Funds for Young Stars in Science and Technology of Shaanxi Province (2016KJXX-29), the Special Funds for Basic Scientific Research of Central Colleges (300102298301), the Fok Ying Tong Education Foundation (161098), the General Financial Grant from the China Postdoctoral Science Foundation (2015M580804 and 2016M590911), the Special Financial Grant from the China Postdoctoral Science Foundation (2016T090878 and 2017T100719), the Special Financial Grant from the Shaanxi Postdoctoral Science Foundation (2015BSHTDZZ09 and 2015BSHTDZZ03), and the Ten Thousand Talents Program.

Author information

Authors and affiliations.

School of Environmental Science and Engineering, Chang’an University, No. 126 Yanta Road, Xi’an, 710054, Shaanxi, China

Peiyue Li & Jianhua Wu

Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang’an University, No. 126 Yanta Road, Xi’an, 710054, Shaanxi, China

You can also search for this author in PubMed   Google Scholar

Corresponding authors

Correspondence to Peiyue Li or Jianhua Wu .

Ethics declarations

Conflict of interest.

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Li, P., Wu, J. Drinking Water Quality and Public Health. Expo Health 11 , 73–79 (2019). https://doi.org/10.1007/s12403-019-00299-8

Download citation

Received : 16 January 2019

Revised : 16 January 2019

Accepted : 21 January 2019

Published : 04 February 2019

Issue Date : 15 June 2019

DOI : https://doi.org/10.1007/s12403-019-00299-8

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Drinking water quality
  • Human health
  • Sustainable development
  • Water quality management
  • Drinking water pollution
  • Find a journal
  • Publish with us
  • Track your research
  • Open access
  • Published: 21 January 2016

Drinking water quality assessment and its effects on residents health in Wondo genet campus, Ethiopia

  • Yirdaw Meride 1 &
  • Bamlaku Ayenew 1  

Environmental Systems Research volume  5 , Article number:  1 ( 2016 ) Cite this article

111k Accesses

90 Citations

Metrics details

Water is a vital resource for human survival. Safe drinking water is a basic need for good health, and it is also a basic right of humans. The aim of this study was to analysis drinking water quality and its effect on communities residents of Wondo Genet.

The mean turbidity value obtained for Wondo Genet Campus is (0.98 NTU), and the average temperature was approximately 28.49 °C. The mean total dissolved solids concentration was found to be 118.19 mg/l, and EC value in Wondo Genet Campus was 192.14 μS/cm. The chloride mean value of this drinking water was 53.7 mg/l, and concentration of sulfate mean value was 0.33 mg/l. In the study areas magnesium ranges from 10.42–17.05 mg/l and the mean value of magnesium in water is 13.67 mg/l. The concentration of calcium ranges from 2.16–7.31 mg/l with an average value of 5.0 mg/l. In study areas, an average value of sodium was 31.23 mg/1and potassium is with an average value of 23.14 mg/1. Water samples collected from Wondo Genet Campus were analyzed for total coliform bacteria and ranged from 1 to 4/100 ml with an average value of 0.78 colony/100 ml.

On the basis of findings, it was concluded that drinking water of the study areas was that all physico–chemical parameters. All the Campus drinking water sampling sites were consistent with World Health Organization standard for drinking water (WHO).

Safe drinking water is a basic need for good health, and it is also a basic right of humans. Fresh water is already a limiting resource in many parts of the world. In the next century, it will become even more limiting due to increased population, urbanization, and climate change (Jackson et al. 2001 ).

Drinking water quality is a relative term that relates the composition of water with effects of natural processes and human activities. Deterioration of drinking water quality arises from introduction of chemical compounds into the water supply system through leaks and cross connection (Napacho and Manyele 2010 ).

Access to safe drinking water and sanitation is a global concern. However, developing countries, like Ethiopia, have suffered from a lack of access to safe drinking water from improved sources and to adequate sanitation services (WHO 2006 ). As a result, people are still dependent on unprotected water sources such as rivers, streams, springs and hand dug wells. Since these sources are open, they are highly susceptible to flood and birds, animals and human contamination (Messeret 2012 ).

The quality of water is affected by an increase in anthropogenic activities and any pollution either physical or chemical causes changes to the quality of the receiving water body (Aremu et al. 2011 ). Chemical contaminants occur in drinking water throughout the world which could possibly threaten human health. In addition, most sources are found near gullies where open field defecation is common and flood-washed wastes affect the quality of water (Messeret 2012 ).

The World Health Organization estimated that up to 80 % of all sicknesses and diseases in the world are caused by inadequate sanitation, polluted water or unavailability of water (WHO 1997 ). A review of 28 studies carried out by the World Bank gives the evidence that incidence of certain water borne, water washed, and water based and water sanitation associated diseases are related to the quality and quantity of water and sanitation available to users (Abebe 1986 ).

In Ethiopia over 60 % of the communicable diseases are due to poor environmental health conditions arising from unsafe and inadequate water supply and poor hygienic and sanitation practices (MOH 2011 ). About 80 % of the rural and 20 % of urban population have no access to safe water. Three-fourth of the health problems of children in the country are communicable diseases arising from the environment, specially water and sanitation. Forty-six percent of less than 5 years mortality is due to diarrhea in which water related diseases occupy a high proportion. The Ministry of Health, Ethiopia estimated 6000 children die each day from diarrhea and dehydration (MOH 2011 ).

There is no study that was conducted to prove the quality water in Wondo Genet Campus. Therefore, this study is conducted at Wondo Genet Campus to check drinking water quality and to suggest appropriate water treated mechanism.

Results and discussions

The turbidity of water depends on the quantity of solid matter present in the suspended state. It is a measure of light emitting properties of water and the test is used to indicate the quality of waste discharge with respect to colloidal matter. The mean turbidity value obtained for Wondo Genet Campus (0.98 NTU) is lower than the WHO recommended value of 5.00 NTU.

Temperature

The average temperature of water samples of the study area was 28.49 °C and in the range of 28–29 °C. Temperature in this study was found within permissible limit of WHO (30 °C). Ezeribe et al. ( 2012 ) reports similar result (29 °C) of well water in Nigeria.

Total dissolved solids (TDS)

Water has the ability to dissolve a wide range of inorganic and some organic minerals or salts such as potassium, calcium, sodium, bicarbonates, chlorides, magnesium, sulfates etc. These minerals produced un-wanted taste and diluted color in appearance of water. This is the important parameter for the use of water. The water with high TDS value indicates that water is highly mineralized. Desirable limit for TDS is 500 mg/l and maximum limit is 1000 mg/l which prescribed for drinking purpose. The concentration of TDS in present study was observed in the range of 114.7 and 121.2 mg/l. The mean total dissolved solids concentration in Wondo Genet campus was found to be 118.19 mg/l, and it is within the limit of WHO standards. Similar value was reported by Soylak et al. ( 2001 ), drinking water of turkey. High values of TDS in ground water are generally not harmful to human beings, but high concentration of these may affect persons who are suffering from kidney and heart diseases. Water containing high solid may cause laxative or constipation effects. According to Sasikaran et al. ( 2012 ).

Electrical conductivity (EC)

Pure water is not a good conductor of electric current rather’s a good insulator. Increase in ions concentration enhances the electrical conductivity of water. Generally, the amount of dissolved solids in water determines the electrical conductivity. Electrical conductivity (EC) actually measures the ionic process of a solution that enables it to transmit current. According to WHO standards, EC value should not exceeded 400 μS/cm. The current investigation indicated that EC value was 179.3–20 μS/cm with an average value of 192.14 μS/cm. Similar value was reported by Soylak et al. ( 2001 ) drinking water of turkey. These results clearly indicate that water in the study area was not considerably ionized and has the lower level of ionic concentration activity due to small dissolve solids (Table 1 ).

PH of water

PH is an important parameter in evaluating the acid–base balance of water. It is also the indicator of acidic or alkaline condition of water status. WHO has recommended maximum permissible limit of pH from 6.5 to 8.5. The current investigation ranges were 6.52–6.83 which are in the range of WHO standards. The overall result indicates that the Wondo Genet College water source is within the desirable and suitable range. Basically, the pH is determined by the amount of dissolved carbon dioxide (CO 2 ), which forms carbonic acid in water. Present investigation was similar with reports made by other researchers’ study (Edimeh et al. 2011 ; Aremu et al. 2011 ).

Chloride (Cl)

Chloride is mainly obtained from the dissolution of salts of hydrochloric acid as table salt (NaCl), NaCO 2 and added through industrial waste, sewage, sea water etc. Surface water bodies often have low concentration of chlorides as compare to ground water. It has key importance for metabolism activity in human body and other main physiological processes. High chloride concentration damages metallic pipes and structure, as well as harms growing plants. According to WHO standards, concentration of chloride should not exceed 250 mg/l. In the study areas, the chloride value ranges from 3–4.4 mg/l in Wondo Genet Campus, and the mean value of this drinking water was 3.7 mg/l. Similar value was reported by Soylak et al. ( 2001 ) drinking water of Turkey.

Sulfate mainly is derived from the dissolution of salts of sulfuric acid and abundantly found in almost all water bodies. High concentration of sulfate may be due to oxidation of pyrite and mine drainage etc. Sulfate concentration in natural water ranges from a few to a several 100 mg/liter, but no major negative impact of sulfate on human health is reported. The WHO has established 250 mg/l as the highest desirable limit of sulfate in drinking water. In study area, concentration of sulfate ranges from 0–3 mg/l in Wondo Genet Campus, and the mean value of SO 4 was 0.33 mg/l. The results exhibit that concentration of sulfate in Wondo Genet campus was lower than the standard limit and it may not be harmful for human health.

Magnesium (Mg)

Magnesium is the 8th most abundant element on earth crust and natural constituent of water. It is an essential for proper functioning of living organisms and found in minerals like dolomite, magnetite etc. Human body contains about 25 g of magnesium (60 % in bones and 40 % in muscles and tissues). According to WHO standards, the permissible range of magnesium in water should be 50 mg/l. In the study areas magnesium was ranges from 10.42 to 17.05 mg/l in Wondo Genet Campus and the mean value of magnesium in water is 13.67 mg/l. Similar value was reported by Soylak et al. ( 2001 ) drinking water of Turkey. The results exhibit that concentration of magnesium in Wondo Genet College was lower than the standard limit of WHO.

Calcium (Ca)

Calcium is 5th most abundant element on the earth crust and is very important for human cell physiology and bones. About 95 % of calcium in human body stored in bones and teeth. The high deficiency of calcium in humans may caused rickets, poor blood clotting, bones fracture etc. and the exceeding limit of calcium produced cardiovascular diseases. According to WHO ( 2011 ) standards, its permissible range in drinking water is 75 mg/l. In the study areas, results show that the concentration of calcium ranges from 2.16 to 7.31 mg/l in Wondo Genet campus with an average value of 5.08 mg/l.

Sodium (Na)

Sodium is a silver white metallic element and found in less quantity in water. Proper quantity of sodium in human body prevents many fatal diseases like kidney damages, hypertension, headache etc. In most of the countries, majority of water supply bears less than 20 mg/l, while in some countries the sodium quantity in water exceeded from 250 mg/l (WHO 1984 ). According to WHO standards, concentration of sodium in drinking water is 200 mg/1. In the study areas, the finding shows that sodium concentration ranges from 28.54 to 34.19 mg/1 at Wondo Genet campus with an average value of 31.23.

Potassium (k)

Potassium is silver white alkali which is highly reactive with water. Potassium is necessary for living organism functioning hence found in all human and animal tissues particularly in plants cells. The total potassium amount in human body lies between 110 and 140 g. It is vital for human body functions like heart protection, regulation of blood pressure, protein dissolution, muscle contraction, nerve stimulus etc. Potassium is deficient in rare but may led to depression, muscle weakness, heart rhythm disorder etc. According to WHO standards the permissible limit of potassium is 12 mg/1. Results show that the concentration of potassium in study areas ranges from 20.83 to 27.51 mg/1. Wondo Genet College with an average value of 23.14 mg/1. Present investigation was similar with reports made by other researchers’ study (Edimeh et al. 2011 ; Aremu et al. 2011 ). These results did not meet the WHO standards and may become diseases associated from potassium extreme surpassed.

Nitrate (NO 3 )

Nitrate one of the most important diseases causing parameters of water quality particularly blue baby syndrome in infants. The sources of nitrate are nitrogen cycle, industrial waste, nitrogenous fertilizers etc. The WHO allows maximum permissible limit of nitrate 5 mg/l in drinking water. In study areas, results more clear that the concentration of nitrate ranges from 1.42 to 4.97 mg/l in Wondo Genet campus with an average value of 2.67 mg/l. These results indicate that the quantity of nitrate in the study site is acceptable in Wondo Genet campus (Table 2 ).

Bacterial contamination

The total coliform group has been selected as the primary indicator bacteria for the presence of disease causing organisms in drinking water. It is a primary indicator of suitability of water for consumption. If large numbers of coliforms are found in water, there is a high probability that other pathogenic bacteria or organisms exist. The WHO and Ethiopian drinking water guidelines require the absence of total coliform in public drinking water supplies.

In this study, all sampling sites were not detected of faecal coliform bacteria. Figure  1 shows the mean values of total coliform bacteria in drinking water collected from the study area. All drinking water samples collected from Wondo Genet Campus were analyzed for total coliform bacteria and ranged from 1 to 4/100 ml with an average value of 0.78 colony/100 ml. In Wondo Genet College, the starting point of drinking water sources (Dam1), the second (Dam2) and Dam3 samples showed the presence of total coliform bacteria (Fig.  1 ). According to WHO ( 2011 ) risk associated in Wondo Genet campus drinking water is low risk (1–10 count/100 ml).

The mean values of total coliform bacteria in drinking water

According to the study all water sampling sites in Wondo Genet campus were meet world health organization standards and Ethiopia drinking water guideline. Figure  2 indicated that mean value of the study sites were under the limit of WHO standards.

Comparison of water quality parameters of drinking water of Wondo Genet campus with WHO and Ethiopia standards

Effect of water quality for residence health’s

Diseases related to contamination of drinking-water constitute a major burden on human health. Interventions to improve the quality of drinking-water provide significant benefits to health. Water is essential to sustain life, and a satisfactory (adequate, safe and accessible) supply must be available to all (Ayenew 2004 ).

Improving access to safe drinking-water can result in tangible benefits to health. Every effort should be made to achieve a drinking-water quality as safe as practicable. The great majority of evident water-related health problems are the result of microbial (bacteriological, viral, protozoan or other biological) contamination (Ayenew 2004 ).

Excessive amount of physical, chemical and biological parameters accumulated in drinking water sources, leads to affect human health. As discussed in the result, all Wondo Genet drinking water sources are under limit of WHO and Ethiopian guideline standards. Therefore, the present study was found the drinking water safe and no residence health impacts.

On the basis of findings, it was concluded that drinking water of the study areas was that all physico–chemical parameters in all the College drinking water sampling sites, and they were consistent with World Health Organization standard for drinking water (WHO). The samples were analyzed for intended water quality parameters following internationally recognized and well established analytical techniques.

It is evident that all the values of sodium (Na), potassium (K), calcium (Ca), magnesium (Mg), chloride (Cl), SO 4 , and NO 3 fall under the permissible limit and there were no toxicity problem. Water samples showed no extreme variations in the concentrations of cations and anions. In addition, bacteriological determination of water from College drinking water sources was carried out to be sure if the water was safe for drinking and other domestic application. The study revealed that all the College water sampling sites were not contained fecal coliforms except the three water sampling sites had total coliforms.

The study was conducted in Wondo Genet College of Forestry and Natural Resources campus, which is located in north eastern direction from the town of Hawassa and about 263 km south of Addis Ababa (Fig.  3 ). It lies between 38°37′ and 38°42′ East longitude and 7°02′ and 7°07′ north latitude. Landscape of the study area varies with an altitude ranging between 1600 and 2580 meters above sea level. Landscape of the study area varies with an altitude ranging between 1600 and 2580 meters above sea level.

Map of study area

The study area is categorized under Dega (cold) agro-ecological zone at the upper part and Woina Dega (temperate) agro-ecological zone at the lower part of the area. The rainfall distribution of the study area is bi-modal, where short rain falls during spring and the major rain comes in summer and stays for the first two months of the autumn season. The annual temperature and rainfall range from 17 to 19 °C and from 700 to 1400 mm, respectively (Wondo Genet office of Agriculture 2011).

Methodology

Water samples were taken at ten locations of Wondo Genet campus drinking water sources. Three water samples were taken at each water caching locations. Ten (10) water samples were collected from different locations of the Wondo Genet campus. Sampling sites for water were selected purposely which represents the entire water bodies.

Instead of this study small dam indicates the starting point of Wondo Genet campus drinking water sources rather than large dams constructed for other purpose. Taps were operated or run for at least 5 min prior to sampling to ensure collection of a representative sample (temperature and electrical conductivity were monitored to verify this). Each sample’s physico–chemical properties of water were measured in the field using portable meters (electrical conductivity, pH and temperature) at the time of sampling. Water samples were placed in clean containers provided by the analytical laboratory (glass and acid-washed polyethylene for heavy metals) and immediately placed on ice. Nitric acid was used to preserve samples for metals analysis.

Analysis of water samples

Determination of ph.

The pH of the water samples was determined using the Hanna microprocessor pH meter. It was standardized with a buffer solution of pH range between 4 and 9.

Measurement of temperature

This was carried out at the site of sample collection using a mobile thermometer. This was done by dipping the thermometer into the sample and recording the stable reading.

Determination of conductivity

This was done using a Jenway conductivity meter. The probe was dipped into the container of the samples until a stable reading will be obtained and recorded.

Determination of total dissolved solids (TDS)

This was measured using Gravimetric Method: A portion of water was filtered out and 10 ml of the filtrate measured into a pre-weighed evaporating dish. Filtrate water samples were dried in an oven at a temperature of 103 to 105 °C for \(2\frac{1}{2}\)  h. The dish was transferred into a desiccators and allowed cool to room temperature and were weighed.

In this formula, A stands for the weight of the evaporating dish + filtrate, and B stands for the weight of the evaporating dish on its own Mahmud et al. ( 2014 ).

Chemical analysis

Chloride concentration was determined using titrimetric methods. The chloride content was determined by argentometric method. The samples were titrated with standard silver nitrate using potassium chromate indicator. Calcium ions concentrations were determined using EDTA titrimetric method. Sulphate ions concentration was determined using colorimetric method.

Microorganism analysis

In the membrane filtration method, a 100 ml water sample was vacuumed through a filter using a small hand pump. After filtration, the bacteria remain on the filter paper was placed in a Petri dish with a nutrient solution (also known as culture media, broth or agar). The Petri dishes were placed in an incubator at a specific temperature and time which can vary according the type of indicator bacteria and culture media (e.g. total coliforms were incubated at 35 °C and fecal coliforms were incubated at 44.5 °C with some types of culture media). After incubation, the bacteria colonies were seen with the naked eye or using a magnifying glass. The size and color of the colonies depends on the type of bacteria and culture media were used.

Statically analysis

All data generated was analyzed statistically by calculating the mean and compare the mean value with the acceptable standards. Data collected was statistically analyzed using Statistical Package for Social Sciences (SPSS 20).

Abbreviations

ethylene dinitrilo tetra acetic acid

Minstor of Health

nephelometric turbidity units

total dissolved solid

World Health Organization

Abebe L (1986) Hygienic water quality; its relation to health and the testing aspects in tropical conditions. Department of Civil Engineering, University of Tempere, Finland

Aremu MO et al (2011) Physicochemical characteristics of stream, well and borehole water sources in Eggon, Nasarawa State, Nigeria. J Chem Soc Nigeria 36(1):131–136

Google Scholar  

Ayenew T (2004) Environmental implications of changes in the levels of lakes in the Ethiopian Rift since 1970. Reg Environ Chang 4:192–204

Article   Google Scholar  

Edimeh et al (2011) Physico-chemical parameters and some Heavy metals content of rivers Inachalo and Niger in Idah, Kogi State. J Chem Soc Nigeria 36(1):95–101

Ezeribe AL et al (2012) Physico-chemical properties of well water samples from some villages in Nigeria with cases of stained and mottle teeth. Sci World J 7(1):1–13

Jackson et al (2001) Water in changing world, Issues in Ecology. Ecol Soc Am, Washington, pp 1–16

Mahmud et al (2014) Surface water quality of Chittagong University campus, Bangladesh. J Environ Sci 8:2319-2399

Messeret B (2012) Assessment of drinking water quality and determinants of household potable water consumption in Simada district, ethiopia

MOH (2011) Knowledge, attitude and practice of water supply, environmental sanitation and hygiene practice in selected worked as of Ethiopia

Napacho A, Manyele V (2010) Quality assessment of drinking water in Temeke district (Part II): characterization of chemical parameters. Af J Environ Sci Technol 4(11):775–789

Sasikaran S et al (2012) Physical, chemical and microbial analysis of bottled drinking water. J Ceylon Medical 57(3):111–116

Soylak et al (2002) Chemical analysis of drinking water samples from Yozgat, Turkey. Polish J Environ Stud 11(2):151–156

WHO (1984) Guideline for drinking water quality. Health Criteria Support Inf 2:63–315

World Health Organization (1997) Basic Environmental Health, Geneva

World Health Organization (2004) Guidelines for drinking-water quality. World Health Organization, Geneva

World Health Organization (2006) In water, sanitation and health world health organization

WHO (2011) Guidelines for drinking-water quality, 4th edn. Geneva, Switzerland

Download references

Authors’ contributions

YM: participated in designing the research idea, field data collection, data analysis, interpretation and report writing; BA: participated in field data collection, interpretation and report writing. Both authors read and approved the final manuscript.

Authors’ information

Yirdaw Meride: Lecturer at Hawassa University, Wondo Genet College of Forestry and Natural Resources. He teaches and undertakes research on solid waste, carbon sequestration and water quality. He has published three articles mainly in international journals. Bamlaku Ayenew: Lecturer at Hawassa University, Wondo Genet College of Forestry and Natural Resources. He teaches and undertakes research on Natural Resource Economics. He has published three article with previous author and other colleagues.

Acknowledgements

Hawassa University, Wondo Genet College of Forestry and Natural Resources provided financial support for field data collection and water laboratory analysis. The authors thank anonymous reviewers for constructive comments.

Competing interests

The authors declare that they have no competing interests.

Author information

Authors and affiliations.

School of Natural Resource and Environmental Study, Wondo Genet College of Forestry and Natural Resources, Hawassa University, P.O. Box 128, Shashemene, Ethiopia

Yirdaw Meride & Bamlaku Ayenew

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Yirdaw Meride .

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/ ), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Cite this article.

Meride, Y., Ayenew, B. Drinking water quality assessment and its effects on residents health in Wondo genet campus, Ethiopia. Environ Syst Res 5 , 1 (2016). https://doi.org/10.1186/s40068-016-0053-6

Download citation

Received : 01 September 2015

Accepted : 06 January 2016

Published : 21 January 2016

DOI : https://doi.org/10.1186/s40068-016-0053-6

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Drinking water
  • Bacteriological
  • Physico–chemical

research papers on drinking water quality

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals
  • My Account Login
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • Open access
  • Published: 19 July 2022

Measuring the gaps in drinking water quality and policy across regional and remote Australia

  • Paul R. Wyrwoll   ORCID: orcid.org/0000-0001-6455-1766 1 , 2 ,
  • Ana Manero   ORCID: orcid.org/0000-0002-3636-9534 1 ,
  • Katherine S. Taylor   ORCID: orcid.org/0000-0002-6675-3852 1 , 3 ,
  • Evie Rose 1 &
  • R. Quentin Grafton   ORCID: orcid.org/0000-0002-0048-9083 1  

npj Clean Water volume  5 , Article number:  32 ( 2022 ) Cite this article

13k Accesses

15 Citations

198 Altmetric

Metrics details

  • Social policy
  • Water resources

Drinking water quality remains a persistent challenge across regional and remote Australia. We reviewed public reporting by 177 utilities and conducted a national assessment of reported exceedances against the health-based and aesthetic guideline values of the Australian Drinking Water Guidelines (ADWG). Four definitions of a basic level of drinking water quality were tested to quantify service gaps across regional and remote areas of each subnational jurisdiction in 2018–2019. At least 25,245 people across 99 locations with populations <1000 reportedly accessed water services that did not comply with health-based guideline values. Including larger towns and water systems, the estimated service gap rises to at least 194,572 people across more than 115 locations. Considering health parameters and the ADWG definition of ‘good’ aesthetic characteristics, the reported service gap rises further to at least 627,736 people across 408 locations. Forty percent of all locations with recorded health exceedances were remote Indigenous communities. Monitoring and reporting gaps indicate that the actual incidence of non-compliance with the guideline values of the ADWG could be much higher than our estimates. Our results quantified the divergence in the assessment of water quality outcomes between Sustainable Development Goal Target 6.1 and the ADWG, demonstrated disparities between service levels in capital cities and the rest of Australia, and highlighted the need for place-based solutions. The methods and dataset provide a ‘proof-of-concept’ for an Australian national drinking water quality database to guide government investments in water services.

Similar content being viewed by others

research papers on drinking water quality

Benefits, costs and enabling conditions to achieve ‘water for all’ in rural and remote Australia

Ana Manero, Wiktor Adamowicz, … R. Quentin Grafton

research papers on drinking water quality

Safely managed drinking water services in the Democratic People’s Republic of Korea: findings from the 2017 Multiple Indicator Cluster Survey

Caetano C. Dorea, Tatjana Karaulac, … Richard Johnston

research papers on drinking water quality

Decision making for implementing non-traditional water sources: a review of challenges and potential solutions

Hunter Quon & Sunny Jiang

Introduction

The United Nations 2021 Sustainable Development Report indicates that Australia has achieved Sustainable Development Goal (SDG) Target 6.1 1 . Notwithstanding high service standards in large cities and the resolution of several recurring boil water alerts in recent years (e.g. 2 , 3 ), ‘universal and equitable access to safe and affordable drinking water for all’ does not yet exist across Australia 4 , 5 , 6 . Poor drinking water quality and access remain barriers to improved health and economic outcomes in many Australian regional and remote communities 7 , 8 , 9 .

Australia’s gaps in drinking water quality are not unique among high-income countries that are reportedly close to or already achieving SDG Target 6.1. For example, deficiencies in safe water access have resulted in the following: at least US$15 billion legislated to replace lead pipes and control water contamination in the United States 10 ; C$7.6 billion in actual and planned spending to end 162 long-term boil water advisories and improve water and wastewater systems in First Nations communities in Canada 11 ; and NZ$3.6 billion to upgrade New Zealand’s water networks and overhaul policy and regulatory frameworks 12 .

Major public investments in Australia’s drinking water infrastructure have been identified as a national policy priority 13 , 14 , 15 . In the context of that reform agenda, the Productivity Commission (PC) – the Australian federal government’s independent advisory agency on economic, social, and environmental reform – recommended that subsidies to water suppliers in high-cost locations should be designed to ensure affordable access to a ‘basic level of service’ that, at a minimum, includes safe and reliable drinking water 6 . This 2021 PC recommendation is supported by organisations representing Indigenous peoples 16 , health and community service providers 17 , 18 , water utilities 19 , and local governments 20 .

The Australian Drinking Water Guidelines (ADWG) provide the national framework for describing, managing, and monitoring drinking water quality 21 . Although they are not mandatory national standards, ADWG health-based and aesthetic guideline values for microbial, physical, and chemical characteristics provide a basis for state and territory government water quality regulations (e.g. 22 , 23 ), industry norms for external reporting (e.g. 24 ), and federal government water policy (e.g. 25 , 26 ). The ADWG specify that guideline values should inform short- and long-term monitoring of service improvements, with the key performance measure being no detection of E. coli in the distribution system. Health-based guideline values for chemical parameters are conservatively estimated and most, but not all, relate to life-time exposure. Aesthetic guideline values for physical characteristics ensure “good quality water – that is, water that is aesthetically pleasing and safe, and that can be used without detriment to fixtures and fittings” 21 . Notably, the focus of the ADWG on good aesthetic quality represents a higher standard than the guidelines of the World Health Organisation which emphasise acceptable quality 27 ; in practice, this is reflected in Australian guideline values being lower than most other countries for some key aesthetic parameters, including hardness, sodium, and total dissolved solids 28 .

Section 3.10.2 of the ADWG state that water suppliers should produce an annual public report summarising performance against numerical guideline values to support evaluation of service improvements and “ensure that drinking water quality management is open and transparent” 21 . In terms of monitoring, the ADWG highlight that “it is neither physically nor economically feasible to test for all drinking water quality parameters equally” 21 . Instead, monitoring should focus on key health-based and aesthetic characteristics, including potential contaminants identified in water system and hazard analysis. In practice, state and territory regulations or regulatory bodies specify guideline values which water suppliers must report against and any specific requirements or exemptions relevant to particular water systems (e.g. 29 ). Figure 1 summarises the role of guideline values in the ADWG and the adoption of annual reporting across jurisdictional regulatory frameworks.

figure 1

Text in italics indicates regulatory documents referencing ADWG guideline values. Whether meeting health-based guideline values is mandatory varies across jurisdictions, parameters, and by the type of water supplier. Aesthetic guideline values are typically incorporated as non-mandatory objectives and/or reporting requirements only, except for turbidity in Victoria. Minimum standards for tested parameters and sampling frequencies may be specified across all suppliers in a jurisdiction or determined through tailored monitoring plans. New South Wales is the only jurisdiction where public annual reports are not a formal requirement; for other jurisdictions, non-public annual reporting to regulators only is typically required for water carters and very small suppliers. Icons downloaded from the Noun Project ( https://thenounproject.com/ ) using a NounPro for EDU Subscription.

Despite widespread monitoring and reporting against ADWG health-based and aesthetic guideline values, data collation at the national level is incomplete. The Urban National Performance Report (NPR) 30 – the annual review used to report against SDG Target 6.1 – encompasses the 85 utilities and other suppliers of drinking water that serve more than 10,000 connections. The most recent figure from Australia’s SDG reporting – 98% of the population using ‘safely managed drinking water services’ in 2017 31 – does not cover people accessing water from smaller utilities and suppliers nor private supplies. Approximately two million people, or 8% of Australia’s population, are thereby unrepresented in national statistics for drinking water access. Five of the 166 Urban NPR indicators directly concern drinking water quality (see Table 1 for an overview and 2018–2019 values).

At the sub-national level, there is a wealth of detailed annual reporting against ADWG health-based and aesthetic guideline values in the service areas of major utilities and all capital cities except Sydney (see 32 , 33 , 34 , 35 , 36 , 37 ). Outside these areas, public reporting can be fragmented, as in the case of Australia’s most populous state (New South Wales) where regional drinking water quality data is recorded in a centralised government database that is not publicly accessible (see 38 ), utilities are not required to publish annual reports, and the most comprehensive data are summary statistics for each local water utility on health-based microbial and chemical ADWG compliance 39 . Monitoring and reporting gaps are prevalent in very remote areas across Australia. For example, a 2021 audit found that the Western Australian government agency supplying remote water services did not conduct any routine drinking water quality testing in 51 small Indigenous communities 40 .

Greater transparency and public accountability could support more effective delivery of government programs. In 2020, the Audit Office of New South Wales found that the responsible government department had not effectively supported regional town water infrastructure planning since at least 2014, lacked an evidence-based approach to investment decisions, and “lack of internal procedures, records and data mean that the department cannot demonstrate it has effectively engaged, guided or supported [local water utility planning]” 41 . Unsafe and insecure access to water services in remote Indigenous communities remain a widely recognised national policy issue (e.g. 6 , 14 , 40 ) despite government inquiries 42 , 43 , 44 , 45 , academic research 7 , 46 , 47 , 48 , 49 , 50 , 51 , and media reporting 52 , 53 , 54 , 55 , 56 , 57 across decades. Many factors can contribute to this complex policy challenge. High operating costs, harsh environmental conditions, remoteness, and barriers to collaborative management (see 49 for a review) are amplified by the historical and ongoing prevalence of Indigenous water injustice in Australian water policy 9 , 58 , 59 , 60 , 61 , 62 . In terms of guiding policy to improve water services in remote locations, the establishment of quantitative community service indicators is a significant recent reform of the national initiative to address disparities in life outcomes between Indigenous and non-Indigenous people 63 . Federal government agencies have also highlighted the need for better monitoring and reporting to guide public investments in expanding access to safe and reliable drinking water services 6 , 14 .

This paper assesses the publicly available data, highlights key data gaps, and quantifies the populations and locations where reported drinking water quality did not meet basic levels of service defined in relation to the ADWG. First, we outline four possible approaches to defining basic levels of drinking water quality in the Australia context. Second, we construct a national dataset of exceedances against ADWG health-based and aesthetic guideline values from reporting data across 177 utilities for the financial year 2018–19. Third, we match water quality, population, and location data to estimate the number of people and locations by state or territory jurisdiction where basic levels of service were not met at least once. Fourth, we examine the data to identify key health and aesthetic exceedances, contrast outcomes between capital cities and remote Indigenous communities, and highlight the data gaps. We conclude with a summary of the study’s limitations and the steps toward establishing a publicly accessible national drinking water quality database for Australia.

Definitions of a basic level of drinking water quality

We provide four alternative definitions of a basic level of drinking water quality with reference to the ADWG and SDG Target 6.1 indicators:

‘Sustainable Development Goal (SDG) 6.1’ – Water quality results do not exceed ADWG health-based guideline values and any associated state/territory annual compliance standards across all reported samples of the fecal contamination (E. coli) and 2 priority chemical (arsenic, fluoride) parameters specified by the WHO/UNICEF JMP for SDG Target 6.1 monitoring (excluding false positives);

‘ADWG Health’ - Compliance with all ADWG health-based guideline values – Water quality results do not exceed ADWG health-based guideline values and any associated state/territory compliance targets for all reported samples across the microbial contamination performance measure (E. coli), 212 chemical parameters, and radiological quality (excluding false positives);

‘ADWG Good’ - Compliance with all ADWG health-based guideline values and the ADWG aesthetic guideline values for physical characteristics beyond which the quality of the water might no longer be regarded as ‘good’ – ADWG Health definition plus the mean annual results for 6 physical characteristics (true colour, turbidity, hardness, total dissolved solids (TDS), pH, dissolved oxygen) across reported samples do not exceed aesthetic guideline values;

‘Metropolitan’ - Compliance with all ADWG health-based and aesthetic guideline values – ADWG Good definition plus the mean annual results for 25 chemical parameters (e.g. chlorine, sodium, iron, manganese, chloride) across reported samples do not exceed the higher of: (i) the corresponding ADWG aesthetic guideline value, or (ii) the highest mean value reported for the capital city of the corresponding state/territory jurisdiction.

The SDG 6.1 definition supports assessment of how Australia-wide reporting of access to ‘safely managed water services’ under the Sustainable Development Goals might change if available data from smaller water suppliers were included in national reporting. The ADWG Health definition provides insights into the number of people and locations where public investments may be required to ensure a basic level of drinking water quality focused only on health parameters. Note that the inclusion of jurisdictional compliance targets integrates existing approaches to a ‘basic level of service’ (e.g. E. coli. annual compliance of 99.8% in South Australia, 98% in Tasmania and Queensland).

The ADWG Good definition reflects the ADWG definition of ‘good’ water quality and the emphasis in the guidelines on water suppliers meeting consumer expectations. In practice, accounting for aesthetic considerations in defining basic service levels is necessary because: (i) unpalatable water affects consumer risk perceptions, potentially leading to indirect health impacts from accessing unsafe alternative sources of hydration 48 , 64 , 65 , including sugary drinks 66 , 67 ; (ii) buying bottled or trucked water due to distrust of water services 68 , 69 is a financial burden for low-income households inconsistent with affordable access; and (iii) high levels of hardness and TDS may affect water infrastructure integrity, operational costs, and safety 70 . Note that the ADWG definition of ‘good’ water also includes ‘taste and odour’ which is specified as “not offensive to most people” 21 . This characteristic does not have an assigned numerical value as non-compliance can have numerous causes, including the presence of microorganisms in raw water.

The Metropolitan definition provides a benchmark for assessing the gap in drinking water quality between regional/remote areas and capital cities – where most of Australia’s population lives and non-compliance with aesthetic guideline values rarely occurs. Given that any reported monitoring against all guideline values is incorporated into this definition, it provides an upper bound for a basic level of drinking water quality that reflects the breadth of criteria defined by the ADWG.

Service gaps by population, location, and jurisdiction

Tables 2 – 5 provide a breakdown of the exposed population and number of locations where public reporting indicates that basic levels of drinking water quality were not met at least once during the 12-month reporting period. Overall, we estimated that at least 194,572 people across regional and remote areas of Australia accessed water supply systems that did not meet the ADWG Health level of service in 2018–2019. The detailed analysis that follows does not include New South Wales due to limited data availability for that jurisdiction (see Methods section for further details).

Excluding New South Wales, we estimated that at least 174,488 people in 115 locations were exposed to non-compliance with the ADWG Health benchmark. Incorporating aesthetic parameters, these estimates increased to at least 627,736 people in 408 locations ( ADWG Good ) or at least 1.4 million people in 819 locations ( Metropolitan ). By contrast, only an estimated 41,169 people in 35 locations where data were available did not have access to water services meeting the SDG 6.1 definition. For context, these population estimates equate to at least 0.7% ( SDG 6.1 ), 3.1% ( ADWG Health ), 11.1% ( ADWG Good ), and 25.0% ( Metropolitan ) of the approximately 5.7 million people living outside capital cities in 2018–19.

We reported the number of locations alongside population estimates and partitioned the results by location size because one exceedance in larger water systems can strongly influence total population estimates. For example, exceedances for trihalomethanes and chlorine in two regional Queensland centres (populations of 52,073 and 22,206) were the primary source of the total population estimates for the ADWG Health definition. Similarly, 99.6% annual E. coli compliance across 8 towns within a regional water supply system dominated the results for the SDG 6.1 level of service in South Australia and overall. The removal of that single exceedance from the sample would reduce the Australia-wide exposed population for the SDG 6.1 definition from 41,169 to 13,324, but not the corresponding estimate for the ADWG Health benchmark because only 72.8% of samples from that system complied with the guideline value for trihalomethanes in 2018–19.

We highlight that 33 health exceedances were not included in the assessments of service level coverage where either the water supplier demonstrated that the sample was a false positive, jurisdictional compliance targets were not breached across the annual reporting period, or the cause may have been a data entry error. The very high population estimates for lack of access to the Metropolitan benchmark was because of the prevalence of chlorine samples exceeding odour thresholds. Removing that parameter from the latter definition would reduce the exposed population to 634,879 people across 422 locations.

Notably, 99 of the 115 locations where residents accessed a water system reportedly not achieving the ADWG Health benchmark were smaller towns and settlements with less than 1,000 people (Fig. 2 ), and 62 of these are classified as ‘Remote’ or ‘Very Remote’ by the Australian Bureau of Statistics (ABS) Remoteness Area classification 71 . Across jurisdictions, the estimated populations where basic levels of drinking water quality were reportedly not achieved varied markedly according to different definitions (Fig. 3 ). Overall, the most common exceedances against health-based guideline values were for trihalomethanes, nitrate, E. coli, and fluoride (Fig. 4 ). Aside from chlorine and pH, the most common aesthetic exceedances involved hardness, sodium, and TDS; Fig. 5 shows the range in reported exceedances for those three parameters.

figure 2

New South Wales shaded due to lack of information on location, parameter, and exact values associated with reported exceedances. Locations not shown where a single exceedance was reported as a false positive or total exceedances did not lead to non-compliance with annual jurisdictional compliance targets.

figure 3

a Northern Territory. b Queensland. c South Australia. d Tasmania. e Victoria. f Western Australia. Source data are provided as a Source Data file.

figure 4

Size of coloured rectangles represents the percentage of exceedances associated with the corresponding parameter. Total of 105 exceedances included. Multiple exceedances in the same location against the same health parameter considered to be a single exceedance. Exceedances reported as false positives or not leading to non-compliance with annual jurisdictional compliance targets are not included. 99.1% compliance with Trihalomethanes target across 17 towns in SA Water Barossa system considered to be a single exceedance for this diagram. Single exceedances for Antimony, Barium, Dichloro‐acetic and Trichloro‐acetic Acid, PFHxS/PFOS not displayed. Source data are provided as a Source Data file.

figure 5

a Hardness. b Sodium. c Total dissolved solids. Note: No public data available for water systems supplied by the Tasmanian government-owned water utility and New South Wales local water utilities. Source data are provided as a Source Data file.

Geographic gaps

We identified 4 health exceedances across water systems serving approximately 10.2 million people in Australian state and territory capital cities in 2018–19 (not including Sydney). This estimate does not include 7 E. coli exceedances that did not result in non-compliance with an annual jurisdictional target. A total of 18 aesthetic exceedances were identified, including 16 for chlorine and 2 for TDS.

The high service levels observed in capital cities contrast with outcomes in those remote Indigenous communities where drinking water quality was monitored and reported. Table 6 presents a summary of reported health and aesthetic exceedances across those communities. For the ADWG Health definition, the 48 exposed communities comprised 40% of all locations across Australia where that benchmark was reportedly not achieved.

Monitoring and reporting gaps

The dataset underlying our analyses was compiled from a review of publicly available sources. Table 7 provides an overview of the substantial monitoring and/or reporting gaps identified. These gaps mean that all estimates of populations, locations, and proportions are likely to be a lower bound for each definition. A major gap in terms of population coverage is New South Wales where, unlike the rest of Australia, production of annual drinking water quality reports is not a regulatory requirement for any water suppliers. In this jurisdiction, our review found only 18 of 81 local water utilities provided sufficient data to assess compliance against health-based and aesthetic guideline values of the ADWG. Approximately 1.2 million people are served by the remaining 63 local water utilities. Across the 68 water utilities in Queensland, we identified 24 where monitoring and reporting issues, such as no testing of chemical parameters, may have contributed to the lack of reported exceedances. Our review did not identify a public data source in any jurisdiction or nationally for drinking water quality from private supplies or water carting.

Our work provides three main contributions and related implications. First, we demonstrated methods to define and apply basic levels of service for drinking water quality. In practice, our definitions provide starting points for determining which specific parameters and target values would be applied in each jurisdiction. Further, the recording of noncompliance with quantitative benchmarks to prioritise locations for subsidies could be extended to reliability, affordability, and other components of basic levels of service. Section 3.8.1 of the ADWG emphasises that customers should play a central role in determining service levels 21 . In supporting a Productivity Commission recommendation on improving monitoring and reporting in remote Indigenous communities, the Northern Land Council highlighted “the need for individual communities to be actively involved in determining their required level of service and hence requirements for water service provision” 16 . Extending this approach to basic levels of service may require governments to conduct state- and territory-wide participatory processes for customers to determine and revise benchmarks. Such processes may draw on a growing body of research and practice on the recognition, representation, and realisation of Indigenous values, knowledge, and rights in Australian water policy (e.g. 59 , 62 , 72 , 73 , 74 , 75 , 76 , 77 , 78 ). In the context of drinking water services in remote Indigenous communities, empirical research has informed strategies and actions to enable collaborative governance with external actors, including conducting local water baseline assessments, culturally-informed and long-term engagement, developing local employment opportunities, working with community champions, and delivering education and capacity-building programs in local languages 49 , 79 .

Second, our analysis provides an improved understanding of drinking water quality in regional and remote Australia compared to national reporting under the Urban NPR. We demonstrated that there are substantial differences across drinking water quality service levels. In terms of SDG Target 6.1, we showed that this definition represents a minimal approach relative to the ADWG, albeit one that has not yet been achieved. In terms of SDG reporting and the Australian Government’s next Voluntary National Review, we highlighted the existing opportunities to expand coverage beyond large water utilities and use existing public data to represent the Australia-wide drinking water quality situation more accurately. Proposed public investments to improve monitoring and reporting in remote areas would further address the inconsistency between real-world water quality outcomes and national-level statistics 14 .

Third, we showed that exceedances beyond ADWG guideline values are most prevalent in small and remote towns and settlements, and especially remote communities. Thus, policy initiatives seeking to improve drinking water services may need to carefully consider and adapt to cultural and geographic contexts 3 , and incorporate training, improvements to source water quality, and other non-capital investments 80 . In Australia, full-cost recovery from customers is the guiding principle determining the financial management of water utilities 81 . Many local water utilities that supply regional Queensland and New South Wales have small customer bases and incur high operating costs. Regional and remote locations typically exhibit higher incidence of socio-economic disadvantage. Consequently, programs to ensure basic levels of service need to account for costs, the ability to pay, and other place-specific constraints on delivering improved drinking water services. Further, some communities currently lack water service provision altogether. For communities where water quality is not monitored, water quality issues may be ‘invisible’ and these data gaps should be prioritised for resolution.

We contend that a national drinking water quality database is a pre-requisite to defining and measuring basic levels of service within each Australian state and territory jurisdiction. A multi-stakeholder co-design process would be required to establish and maintain the database, including decision-making processes and data practices consistent with Indigenous Data Sovereignty and Governance where applicable (see 82 , 83 ). A publicly accessible database could: inform participatory processes to define service levels; support the identification of priority locations for government subsidies and other investments; provide a focal point for engagement between utilities and consumers; monitor outcomes over time; enable better understanding of the determinants of service improvements; and build trust between consumers, suppliers, and policy-makers. Figure 6 highlights government agency programs and processes at federal and sub-national levels that could be informed by the database. Given the broad scope of policy applications, and the important role of accessible open data in promoting accountability of public organisations 84 , an independent statutory body at the federal level may be an appropriate data custodian.

figure 6

(E) Existing programs and processes, (P) Proposed programs and processes, (U) Under development programs and processes.

The ADWG are subject to a rolling bi-annual review and updated regularly. As new evidence is generated on the potential health risks of chemical contaminants (e.g. 85 ), and new programs developed to address specific water quality issues (e.g. 86 ), a national database would support targeted policy responses as guideline values are updated. Moreover, the collation of historical data could support epidemiological research on exposure to water contaminants and the incidence of chronic and acute health conditions.

Our compilation of ADWG exceedances is a ‘proof-of-concept’ for an Australian national drinking water quality database. A key practical requirement would be to mandate Australia-wide standardised or minimum reporting conventions within jurisdictional regulations, including summary statistics for water quality parameters (e.g. minimum, maximum, 95th percentile, and average values), number of samples collected, and number of exceedances. Subnational regulatory reforms for standardised monitoring and reporting, including compulsory public reporting for local water utilities in New South Wales, could be initiated through the proposed renewal of the Intergovernmental Agreement on a National Water Initiative 6 . The value of a national drinking water quality database would be enhanced by the inclusion of indicators for water-borne disease outbreaks; key risks associated with source water quality, such as cyanobacterial blooms and bushfires; and the other aspects of basic levels of service, such as affordability and reliability, determined by state and territory jurisdictions. Furthermore, the integration of source water quality monitoring results would improve the transparency of government agencies’ performance against the objectives of water resource management frameworks, such as the Murray-Darling Basin Plan 26 .

Insights on the design and potential uses of a national drinking water quality database for Australia could be gained from: (i) the Safe Drinking Water Information System in the United States 87 , (ii) public information on short-term and long-term drinking water advisories provided by Indigenous Services Canada 88 , 89 , and (iii) the former Drinking Water Online database of the New Zealand government 90 .

Our analysis showed that national reporting on SDG 6.1 and water utility performance in Australia obscures inequities in water access: metropolitan versus regional and remote; Indigenous versus non-Indigenous communities; monitored versus unmonitored water supplies. Official reporting of high-income countries close to or already achieving SDG Target 6.1 perpetuates a myth of universal, clean, affordable, trustworthy, and uniformly governed water access 91 . The reality in reportedly high-performing countries, including Canada 92 , 93 and the United States 94 , 95 , 96 , is that water access is uneven and many challenges remain 97 , 98 . Race, income, housing, geography, and utility size correspond to gaps in water access and drinking water quality 94 , 95 , 97 , 99 . Societal power imbalances, colonial practices of the state, and fragmented governance can (re)produce unsafe, unacceptable, and untrusted water services in Indigenous communities 93 , 100 , 101 . The geographic and monitoring/reporting gaps described in this paper reflect the structural barriers to sustainable improvements in water services 49 , 97 .

Here, we show that the inequities in high-income countries become more visible when locally-contextualised benchmarks are used (e.g. ‘ADWG Good’). Notwithstanding the benefits of the SDGs to galvanise global action, there are inherent difficulties in using standardised global indicators to measure progress toward the goal of ‘universal and equitable access to safe and affordable drinking water for all’ 102 , 103 , 104 , 105 . Supplementing country reporting against SDG 6.1 with benchmarks relevant to local policy, such as the definitions of a ‘basic level of drinking water quality’ for Australia proposed in this paper, can improve awareness of who has affordable access to good quality water, who does not, the structural factors involved, and increase accountability of governments and broader society for the gaps.

Our results are subject to multiple limitations. First, our dataset provides a snapshot of a single year and does not provide insights into service performance across time. Since 2018–19, investments have improved water quality in some locations where ADWG health exceedances occurred (e.g. 106 ), and new exceedances have emerged in others (e.g. 107 ). Second, our population estimates are less reliable for those locations where utilities do not provide data on the serviced population. Third, our analyses did not account for: contaminants subject to a jurisdictional requirement that have no ADWG health-based guideline value, such as the Naegleria fowleri amoeba in Western Australia 40 ; breaches of operational guidelines, such as free residual chlorine in the reticulation network falling below 0.2 mg/L; boil water notices or drinking water advisories (e.g. 108 ); and locations that experienced severe disruptions, taste and odour issues, or other causes of poor quality services not reflected in water quality reporting (e.g. 57 ). Fourth, our analyses did not distinguish between prolonged versus occasional non-compliance with water quality guidelines. This is due to a lack of standardised reporting conventions across jurisdictions. Fifth, the analyses did not account for variable incidence and frequency of testing parameters; the absence of monitoring or reporting for a contaminant does not mean it is not present. Sixth, many small remote Indigenous communities in Australia are not provided with water services by external suppliers and, consequently, limited or no water monitoring occurs. These communities exposed to (arguably) the highest risk of unsafe drinking water are also those least represented in water quality reporting

Finally, we focused on the outcome-based drinking water indicators provided by ADWG health-based and aesthetic guideline values. Improved water quality monitoring and reporting is necessary but not sufficient: outcome-based indicators need to be combined with structural and process indicators 104 ; data are not always used effectively 109 ; test results provide snapshots of water quality at points in time and an incomplete picture of all potential hazards 105 ; and governance challenges for remote water supply systems require a portfolio of solutions 97 .

National review of publicly available drinking water quality data

Our research focused on publicly available drinking water quality data to ensure that the methods and results are transparent, replicable and adaptable by policy-makers, and consistent with Section 3.10.2 of the ADWG and Principles 5, 9, 10 and 12 of the OECD Principles on Water Governance 110 . We identified 177 drinking water suppliers from the Urban NPR and state/territory government agency websites. This sample predominantly includes large state-owned water corporations and small local water utilities that are subject to public health regulation and, in all jurisdictions except New South Wales, annual public reporting requirements. We searched each supplier’s website to obtain annual drinking water quality reports for the financial year 2018–2019. We also searched the websites and archives of government agencies and regulators for other drinking water quality information. Where these methods did not yield results for a specific water supplier, we also used relevant search terms in the Google search engine (e.g. ‘Cloncurry drinking water management plan 2019’).

For Queensland and New South Wales, we used the Wayback Machine internet archive ( https://archive.org/web/ ) to search for 2018–19 reports that were not available on the current version of council webpages. In New South Wales, we obtained 25 local water utility reports, documents, or webpages providing water quality information. However, only 18 provided sufficient data to support our analysis. Hence, we relied on aggregated ADWG health-based compliance data for New South Wales 39 which does not provide information by town, water system, nor health parameter, and does not report against aesthetic parameters. For each of the 177 utilities across Australia, we recorded: data availability; year if not 2018–19 (see further below); classified each utility as either ‘Capital City’, ‘Regional/Remote’, or ‘Mixed’; and whether there were issues with limited sampling or reporting that could affect the analysis.

Our review yielded annual drinking water quality reports and data for regional and remote locations from (i) the annual reports of 22 state/territory government-owned water utilities; (ii) 4 local government or mining company-owned small water utilities in Western Australia; (iii) annual drinking water management plans of 65 local council-owned utilities in Queensland, (iv) a Western Australian Auditor-General audit of service provision in 143 remote Indigenous communities by the Western Australian Department of Communities, and (v) summary information on health compliance for microbial and chemical parameters for 81 New South Wales local water utilities. For each supplier, we collated drinking water quality data for the smallest geographic unit available, e.g. each water supply zone, which was then defined as a ‘location’ in the analysis. All data points relate to samples from the reticulation network. We also reviewed annual drinking water reports of 12 water utilities serving customers across 7 Australian capital cities. The Australian Capital Territory was not included in the analysis of regional and remote areas because its population is almost entirely located within the capital city of Canberra. The data on remote and regional locations excludes all locations in outer metropolitan areas classified as ‘Major Cities’ under the ABS Remoteness Area structure 71 . The ‘References’ tab in the supporting dataset 111 provides links to all data sources.

All data is for the financial year 1st July 2018 to 30th June 2019, except for 22 Queensland local utilities where we used data from 2017–2018 or the most recent year available and 40 which reports water sampling conducted across the 2019 and 2020 calendar years. The year from 2018–2019 was chosen for analysis because it was the most recent year available, except for 2019–2020 when major bushfires across Australia affected source water quality and interrupted monitoring activities in many locations. Figure 7 provides a summary of the methods. All data are provided in the supporting dataset 111 .

figure 7

Icons downloaded from the Noun Project ( https://thenounproject.com/ ) using a using a NounPro for EDU Subscription.

Recording and assessment of ADWG exceedances

We recorded average, maximum, 95th percentile values and/or number and percentage of exceedances for all locations where a drinking water quality parameter was reported to not comply with ADWG health-based and aesthetic guideline values. Note that a single exceedance triggers non-compliance with ADWG health-based guideline values and we followed ADWG rounding conventions. Non-compliance with aesthetic guideline values relates to the average annual value of testing results. Evidence and references for 33 health exceedances that were reported as false positives, may have been caused by data entry errors, or did not breach annual compliance targets are provided under ‘Health Comment’ in the jurisdictional worksheets in the supporting dataset 111 .

Matching ADWG exceedances to population and location data

We used the following hierarchy to estimate and source population data: (i) data provided by the water utility; (ii) population data from the ABS 2016 Census on the corresponding Urban Centre and Locality (UCL), State Suburb (SSC), or Indigenous Locations (ILOCs) (in that order of availability); and (iii) population data for remote communities from government organisations.

Population data values and sources for each location are provided in the supporting dataset 111 . Note that UCL statistical areas correspond to densely populated urban areas and, for smaller regional or remote settlements, only those with populations greater than 200. Consequently, UCL data may have underestimated the population in a given location exposed to exceedances because water supply systems may extend beyond the UCL boundary. Conversely, SSC and ILOC statistical areas in regional and remote locations include non-urban households that may not be connected to the water supply system. Hence, SSC and ILOC data potentially overestimated the exposed population for towns with less than 200 residents. For South Australia, Tasmania, and Queensland, drinking water quality data in some locations were reported for systems encompassing multiple towns. In these cases, it was assumed that system-wide ADWG exceedances applied to all towns within the system. We were unable to source population data for 4 locations.

We classified all regional/remote locations according to the ABS Remote Area structure. Remote Indigenous communities were identified in the dataset as those communities serviced by the Remote Areas Essential Services Program (Western Australia), Indigenous Essential Services (Northern Territory), classified as remote Aboriginal communities served by South Australia Water Corporation, or locations within Queensland Aboriginal Shire Councils or Torres Strait Island Regional Council classified as ‘Remote’ or ‘Very Remote’.

Data availability

The dataset generated and analysed in this study is available through Open Science Framework 111 . The source data for figures and tables are provided with this paper.

Sachs, J., Kroll, C., Lafortune, G., Fuller, G. & Woelm, F. Sustainable Development Report 2021 . Sustainable Development Report 2021 (Cambridge University Press, 2021).

Department of Health. Water Quality of Public Drinking Water Supply Systems in Tasmania: Annual Report 2018-19 . https://www.health.tas.gov.au/__data/assets/pdf_file/0007/421189/Annual_drinking_water_quality_report_2018-19.pdf (2019).

Hall, N. L. et al. Drinking water delivery in the outer Torres Strait Islands: A case study addressing sustainable water issues in remote Indigenous communities. Australas. J. Water Resour. 25 , 80–89 (2021).

Google Scholar  

Howey, K. & Grealy, L. Drinking water security: the neglected dimension of Australian water reform. Australas. J. Water Resour 1–10 (2021).

Infrastructure Australia. The Australian Infrastructure Audit 2019: An Assessment of Australia’s Future Infrastructure Needs . (2019).

Productivity Commission. National Water Reform 2020 . www.pc.gov.au (2021).

Hall, N. L., Creamer, S., Anders, W., Slatyer, A. & Hill, P. S. Water and health interlinkages of the sustainable development goals in remote Indigenous Australia. npj Clean Water 3 , 10 (2020).

Article   Google Scholar  

Maloney, M. et al. 2019 Citizens’ Inquiry into the Health of the Barka / Darling River and Menindee Lakes . https://tribunal.org.au/wp-content/uploads/2020/10/2019CitizensInquiry_BarkaDarlingMenindee-201017-02.pdf (2020).

Hartwig, L. D., Jackson, S., Markham, F. & Osborne, N. Water colonialism and Indigenous water justice in south-eastern Australia. International Journal of Water Resources Development https://doi.org/10.1080/07900627.2020.1868980 (2021).

The White House. The Biden-Harris Lead Pipe and Paint Action Plan. https://www.whitehouse.gov/briefing-room/statements-releases/2021/12/16/fact-sheet-the-biden-harris-lead-pipe-and-paint-action-plan/ (2021).

Office of the Parliamentary Budget Officer. Clean Water for First Nations: Is the Government Spending Enough? https://www.pbo-dpb.gc.ca/en/blog/news/RP-2122-021-M--clean-water-first-nations-is-government-spending-enough--eau-potable-premieres-nations-gouvernement-depense-t-il-assez (2021).

New Zealand Government. Government to provide support for water reforms, jobs and growth. https://www.beehive.govt.nz/release/government-provide-support-water-reforms-jobs-and-growth (2021).

Infrastructure Australia. Australian Infrastructure Audit 2019 . (2019).

Infrastructure Australia. 2021 Australian Infrastructure Plan: Reforms to meet Australia’s future infrastructure needs . (2021).

Australian Labor Party. Labor’s Plan to Future-Proof Australia’s Water Resources | Policies | Australian Labor Party. https://alp.org.au/policies/labors-plan-to-future-proof-australias-water-resources (2022).

Northern Land Council. Submission to the Productivity Commission Review of National Water Reform. (2021).

South Australian Council of Social Service. SACOSS Submission to the Productivity Commission’s National Water Reform Draft Report. (2021).

Aither/South Australian Council of Social Service. Falling through the gaps: A practical approach to improving drinking water services for regional and remote communities in South Australia . https://www.sacoss.org.au/falling-through-gaps-report , https://doi.org/10.1136/bmj.e7863 (2021).

Queensland Water Directorate. National Water Reform 2020: Productivity Commission Draft Report. (2021).

Local Government NSW. Draft LGNSW Submission on - Productivity Commission National Water Reform Draft Report . https://www.pc.gov.au/inquiries/completed/water-reform-2020/submissions (2021).

National Health and Medical Research Council (Australia). Australian Drinking Water Guidelines 6 . (2021).

Queensland Health. Public Health Regulation 2018 . (2021).

State of Victoria. Safe Drinking Water Act 2003 . (2019).

Water Corporation. Drinking Water Quality: Annual Report 2018–19 . https://doi.org/10.1016/0278-6915(93)90134-k .

Water Quality Australia. Guidelines for water quality management. https://www.waterquality.gov.au/guidelines (2021).

Australian Government. Basin Plan 2012 Compilation No. 8 . 269 (2021).

World Health Organisation. Guidelines for drinking-water quality: Fourth edition incorporating the first and second addenda . 4 (2022).

World Health Organisation. A global overview of national regulations and standards for drinking-water quality ii A global overview of national regulations and standards for drinking-water quality . https://www.who.int/publications/i/item/9789240023642 (2018).

Department of Regional Planning Manufacturing and Water. Water Quality and Reporting Guideline for a Drinking Water Service . https://www.rdmw.qld.gov.au/__data/assets/pdf_file/0008/45593/water-quality-reporting-guideline.pdf (2010).

Bureau of Meterology. National performance reports. http://www.bom.gov.au/water/npr/ (2021).

Australian Government. Reporting Platform on the Sustainable Development Goals Indicators. https://www.sdgdata.gov.au/goals/clean-water-and-sanitation/6.1.1 (2021).

Water Corporation WA. Drinking Water Quality Annual Report 2018-19 . https://www.watercorporation.com.au/-/media/WaterCorp/Documents/About-us/Our-performance/Drinking-Water-Quality/Drinking-water-quality-annual-report-2019.pdf (2019).

South Australian Water Corporation. South Australian Water Corporation Annual Report 2018-19 . https://www.sawater.com.au/__data/assets/pdf_file/0006/424662/2018-19-Annual-Report-with-financials-online-ISSN-HR.pdf (2019).

Power and Water Corporation. Drinking Water Quality Report 2019. (2019).

Urban Utilities. Drinking water quality management plan report 2018–19. (2019).

TasWater. Annual Drinking Water Quality Report 2018–19. (2019).

Icon Water. 2018-19 Drinking Water Quality Report. (2019).

NSW Health. NSW drinking water database - Water quality. https://www.health.nsw.gov.au/environment/water/Pages/drinking-water-database.aspx .

New South Wales Department of Planning Industry and Environment. LWU performance monitoring data and reports - Water in New South Wales. https://www.industry.nsw.gov.au/water/water-utilities/lwu-performance-monitoring-data (2021).

Office of the Auditor General Western Australia. Delivering Essential Services to Remote Aboriginal Communities – Follow-up . https://audit.wa.gov.au/wp-content/uploads/2021/05/Report-25_Delivering-Essential-Services-to-Remote-Aboriginal-Communities-%E2%80%93-Follow-up.pdf (2021).

Audit Office of New South Wales. Support for regional town water infrastructure: Performance audit . https://www.audit.nsw.gov.au/sites/default/files/documents/FINAL%20-%20Support%20for%20regional%20town%20water%20infrastructure.pdf (2020).

Federal Race Discrimination Commissioner. Water: A Report on the provision of water and sanitation in remote Aboriginal and Torres Strait Islander communities . (1994).

West Australian Auditor General. Delivering Essential Services to Remote Aboriginal Communities . (2015).

Green, K. D. Water 2000: a perspective on Australia’s water resources to the year 2000 . https://trove.nla.gov.au/work/18184199 (1984).

Regional Services Reform Unit. Resilient Families, Strong Communities, Key insights from consultation with remote Aboriginal communities in Western Australia . https://www.parliament.wa.gov.au/publications/tabledpapers.nsf/displaypaper/4010887a7914b1bf3330c905482581bf000764e6/$file/887.pdf (2017).

Rajapakse, J. et al. Unsafe drinking water quality in remote Western Australian Aboriginal communities. Geographical Res. 57 , 178–188 (2019).

Hall, N. L. Challenges of WASH in remote Australian Indigenous communities. J. Water, Sanitation Hyg. Dev. 9 , 429–437 (2019).

Jaravani, F. G., Massey, P. D., Judd, J., Allan, J. & Allan, N. Closing the Gap: The need to consider perceptions about drinking water in rural Aboriginal communities in NSW, Australia. Public Health Res Pract 26 , e2621616 (2016).

Jackson, M., Stewart, R. A. & Beal, C. D. Identifying and Overcoming Barriers to Collaborative Sustainable Water Governance in Remote Australian Indigenous Communities. Water 11 , 2410 (2019).

Beal, C. D., Jackson, M., Stewart, R. A., Rayment, C. & Miller, A. Identifying and understanding the drivers of high water consumption in remote Australian Aboriginal and Torres Strait Island communities. J. Clean. Prod. 172 , 2425–2434 (2018).

Horne, J. Australian water decision making: are politicians performing? Int. J. Water Resour. Dev. 36 , 462–483 (2020).

Kurmelvos, R. Company remains shtum on plans to filter Laramba’s contaminated water supply | NITV. NITV News (2021).

Kurmelovs, R. & Moore, I. ‘It makes us sick’: remote NT community wants answers about uranium in its water supply | Northern Territory | The Guardian. The Guardian (2021).

Archibald-Binge, E. Concerns over water quality in remote Queensland: “This wouldn’t be acceptable in the city” | NITV. NITV News (2018).

Richards, S. Oodnadatta residents “suffering” from poor water quality: Aboriginal Health Council. (2020).

Parke, E. WA Government urged to fix contaminated water supplies in remote Indigenous communities - ABC News. ABC News (2016).

Volkofsky, A., Pezet, L. & McConnell, S. Water donations flow as reports of bad drinking water increase in Darling River communities - ABC News. ABC News (2019).

O’Donnell, E., Jackson, S., Langton, M. & Godden, L. Racialized water governance: the ‘hydrological frontier’ in the Northern Territory, Australia. (2022) https://doi.org/10.1080/13241583.2022.2049053 .

Marshall, V. Overturning aqua nullius: Securing Aboriginal water rights | AIATSIS . (Aboriginal Studies Press, 2017).

Grealy, L. & Howey, K. Securing supply: governing drinking water in the Northern Territory. Australian Geographer 341–360 (2020) https://doi.org/10.1080/00049182.2020.1786945 .

Taylor, K. S., Moggridge, B. J. & Poelina, A. Australian Indigenous Water Policy and the impacts of the ever-changing political cycle. Aust. J. Water Resour. 20 , 132–147 (2016).

Jackson, S. Water and Indigenous rights: Mechanisms and pathways of recognition, representation, and redistribution. Wiley Interdisciplinary Reviews: Water 5 , e1314 (2018).

Coalition of Aboriginal and Torres Strait Islander Peak Organisations & Australia Governments. National Agreement on Closing the Gap . https://www.closingthegap.gov.au/sites/default/files/files/national-agreement-ctg.pdf (2020).

Jaravani, F. G. et al. Working with an aboriginal community to understand drinking water perceptions and acceptance in rural New South Wales. Int Indigenous Policy J 8 , (2017).

Beal, C. D. et al . Exploring community-based water management options for remote Australia . Final report for the Remote and Isolated Communities Essential Services Project . https://www.griffith.edu.au/__data/assets/pdf_file/0036/918918/Remote-community-water-management-Beal-et-al-2019-Final-Report-1.pdf (2019).

Bailie, R. S., Carson, B. E. & McDonald, E. L. Water supply and sanitation in remote Indigenous communities - Priorities for health development. Aust. N.Z. J. Public Health 28 , 409–414 (2004).

Thurber, K. A., Long, J., Salmon, M., Cuevas, A. G. & Lovett, R. Sugar-sweetened beverage consumption among Indigenous Australian children aged 0–3 years and association with sociodemographic, life circumstances and health factors. Public Health Nutr. 23 , 295 (2020).

Dharriwaa Elders Group & Walgett Aboriginal Medical Service. Recommendations for the Review of the National Water Initiative . https://www.sciencedirect.com/science/article/pii/S0264837719319799 (2020).

Natural Resouces Commission. Review of the Water Sharing Plan for the Barwon-Darling Unregulated and Alluvial Water Sources 2012. (2019).

Browett, H. et al. Cost Implications of Hard Water on Health Hardware in Remote Indigenous Communities in the Central Desert Region of Australia . Int. Indigenous Policy J. 3 (2012).

Australian Bureau of Statistics. 1270.0.55.005 - Australian Statistical Geography Standard (ASGS): Volume 5 - Remoteness Structure, July 2016. https://www.abs.gov.au/AUSSTATS/[email protected]/Lookup/1270.0.55.005Main+Features1July%202016?OpenDocument (2016).

RiverOfLife, M., Taylor, K. S., & Poelina, A. Living Waters, Law First: Nyikina and Mangala water governance in the Kimberley, Western Australia. Australas. J. Water Resour 25 , 40–56 (2021).

Jackson, S. & Nias, D. Watering country: Aboriginal partnerships with environmental water managers of the Murray-Darling Basin, Australia. Australas. J. Water Resour. 26 , 287–303 (2019).

Hemming, S., Rigney, D., Bignall, S., Berg, S. & Rigney, G. Indigenous nation building for environmental futures: Murrundi flows through Ngarrindjeri country. Australas. J. Water Resour. 26 , 216–235 (2019).

Moggridge, B. J. & Thompson, R. M. Cultural value of water and western water management: an Australian Indigenous perspective. Australas. J. Water Resour. 25 , 4–14 (2021).

Moggridge, B. J., Betterridge, L. & Thompson, R. M. Integrating Aboriginal cultural values into water planning: a case study from New South Wales, Australia. Australas. J. Water Resour. 26 , 273–286 (2019).

Hoverman, S. & Ayre, M. Methods and approaches to support Indigenous water planning: An example from the Tiwi Islands, Northern Territory, Australia. J. Hydrol. 474 , 47–56 (2012).

Jackson, S., Tan, P. L., Mooney, C., Hoverman, S. & White, I. Principles and guidelines for good practice in Indigenous engagement in water planning. J. Hydrol. 474 , 57–65 (2012).

Jackson, M., Stewart, R. A., Fielding, K. S., Cochrane, J. & Beal, C. D. Collaborating for Sustainable Water and Energy Management: Assessment and Categorisation of Indigenous Involvement in Remote Australian Communities. Sustainability 11 , 427 (2019). 2019, Vol. 11, Page 427 .

New South Wales Water Directorate. Submission 37 - NSW Water Directorate - National Water Reform - Public inquiry. (2021).

Natural Resource Management Ministerial Council. National Water Initiative Pricing Principles . https://www.awe.gov.au/water/policy/policy/nwi/pricing-principles (2010).

Kukutai, T. & Taylor, J. Indigenous Data Sovereignty . Indigenous Data Sovereignty (ANU Press, 2016). https://doi.org/10.22459/CAEPR38.11.2016 .

Maiam Nayri Wingara Indigenous Data Sovereignty Collective. Key Principles . https://www.maiamnayriwingara.org/key-principles (2018).

Ubaldi, B. Open Government Data: Towards Empirical Analysis of Open Government Data Initiatives . https://doi.org/10.1787/5k46bj4f03s7-en (2013).

Sherris, A. R. et al. Nitrate in Drinking Water during Pregnancy and Spontaneous Preterm Birth: A Retrospective Within-Mother Analysis in California. Environ. Health Perspect. 129 , 57001 (2021).

Article   CAS   Google Scholar  

Australian Government PFAS Taskforce. Per- and Polyfluoroalkyl Substances (PFAS): Australian information portal. https://www.pfas.gov.au/ (2021).

Environmental Protection Agency. Safe Drinking Water Information System Federal Reports Services System. https://sdwis.epa.gov/ords/sfdw_pub/f?p=108:200 (2021).

Indigenous Services Canada. Short-term drinking water advisories. https://www.sac-isc.gc.ca/eng/1562856509704/1562856530304 (2021).

Indigenous Services Canada. Ending long-term drinking water advisories. https://www.sac-isc.gc.ca/eng/1506514143353/1533317130660 (2021).

ESR Risk and Response Group. Drinking Water Online. https://www.drinkingwater.org.nz/ (2021).

Meehan, K. et al. Exposing the myths of household water insecurity in the global north: A critical review. Wiley Interdiscip. Rev.: Water 7 , e1486 (2020).

O’Gorman, M. Mental and physical health impacts of water/sanitation infrastructure in First Nations communities in Canada: An analysis of the Regional Health Survey. World Dev. 145 , 105517 (2021).

Baijius, W. & Patrick, R. J. "We Donat Drink the Water Here": The Reproduction of Undrinkable Water for First Nations in Canada. Water 11 , 1079 (2019).

Allaire, M., Wu, H. & Lall, U. National trends in drinking water quality violations. Proc Natl Acad Sci USA 115 , 2078–2083 (2018).

Meehan, K., Jurjevich, J. R., Chun, N. M. J. W. & Sherrill, J. Geographies of insecure water access and the housing–water nexus in US cities. Proc. Natl Acad. Sci. USA 117 , 28700–28707 (2020).

Wu, J., Cao, M., Tong, D., Finkelstein, Z. & Hoek, E. M. V. A critical review of point-of-use drinking water treatment in the United States. https://doi.org/10.1038/s41545-021-00128-z .

McFarlane, K. & Harris, L. M. Small systems, big challenges: Review of small drinking water system governance. Environ. Rev. 26 , 378–395 (2018).

Tortajada, C. & Biswas, A. K. Achieving universal access to clean water and sanitation in an era of water scarcity: strengthening contributions from academia. Curr. Opin. Environ. Sustainability 34 , 21–25 (2018).

Glade, S. & Ray, I. Safe drinking water for small low-income communities: the long road from violation to remediation. Environ. Res. Lett. 17 , 044008 (2022).

Daley, K., Castleden, H., Jamieson, R., Furgal, C. & Ell, L. Water systems, sanitation, and public health risks in remote communities: Inuit resident perspectives from the Canadian Arctic. Soc. Sci. Med. 135 , 124–132 (2015).

Dunn, G., Bakker, K. & Harris, L. Drinking Water Quality Guidelines across Canadian Provinces and Territories: Jurisdictional Variation in the Context of Decentralized Water Governance. Int. J. Environ. Res. Public Health 2014 11 , 4634–4651 (2014). Vol. 11, Pages 4634-4651 .

CAS   Google Scholar  

Herrera, V. Reconciling global aspirations and local realities: Challenges facing the Sustainable Development Goals for water and sanitation. World Dev. 118 , 106–117 (2019).

Mraz, A. L. et al. Why pathogens matter for meeting the united nations’ sustainable development goal 6 on safely managed water and sanitation. Water Res. 189 , 116591 (2021).

Schiff, J. Measuring the human right to water: An assessment of compliance indicators. Wiley Interdiscip. Rev.: Water 6 , e1321 (2019).

Charles, K. J., Nowicki, S. & Bartram, J. K. A framework for monitoring the safety of water services: from measurements to security. npj Clean. Water 3 , 1–6 (2020).

Boisvert, E. SA Water dealing with complaints from some Fleurieu Peninsula residents about change to tap water from Myponga Reservoir - ABC News. ABC News https://www.abc.net.au/news/2021-07-05/fleurieu-residents-complaints-about-water-change/100267414 (2021).

Uralla Shire Council. Water Quality Analysis. https://www.uralla.nsw.gov.au/Council-Services/Water-and-Sewer-Services/Water-Quality-Analysis (2021).

NSW Health. Drinking water quality and incidents - Water quality. https://www.health.nsw.gov.au/environment/water/Pages/drinking-water-quality-and-incidents.aspx (2021).

Kumpel, E. et al. From data to decisions: understanding information flows within regulatory water quality monitoring programs. npj Clean. Water 3 , 1–11 (2020).

Organisation for Economic Cooperation and Development. OECD Principles on Water Governance . https://www.oecd.org/cfe/regionaldevelopment/OECD-Principles-on-Water-Governance-en.pdf (2015).

Wyrwoll, P. R., Manero, A., Taylor, K. S., Rose, E. & Grafton, R. Q. Supporting dataset for “Measuring gaps in drinking water quality and policy in regional and remote Australia.” https://osf.io/vmxdz/?view_only=9f0608088e8143dbbbf2c350ff0e5ca1 (2022).

Download references

Acknowledgements

The authors would like to acknowledge and thank Phan Le for his research assistance, Associate Professor Aparna Lal and Associate Professor Barry Croke for comments on an earlier version of the paper, and members of the Water Justice Hub for helpful feedback and insights at a seminar at the ANU Crawford School of Public Policy in June 2021. Any errors are our own. We acknowledge the Traditional Custodians of the lands on which this research was undertaken and their ongoing care for and connections to Country. We pay our respects to the Elders past and present. This work was supported by Australian Research Council Laureate Fellowship FL190100164 and the Australian National University’s Hilda John Endowment Fund.

Author information

Authors and affiliations.

Crawford School of Public Policy, Australian National University (ANU), Canberra, Australia

Paul R. Wyrwoll, Ana Manero, Katherine S. Taylor, Evie Rose & R. Quentin Grafton

Institute for Water Futures, ANU, Canberra, Australia

  • Paul R. Wyrwoll

Nulungu Research Institute, University of Notre Dame, Broome, Australia

Katherine S. Taylor

You can also search for this author in PubMed   Google Scholar

Contributions

P.R.W. and R.Q.G. conceived and designed the work. P.R.W., A.M., K.T. and E.R. acquired, analysed and/or interpreted data. P.R.W. drafted the work, with substantial revisions by A.M., K.T., E.R., and R.Q.G.

Corresponding author

Correspondence to Paul R. Wyrwoll .

Ethics declarations

Competing interests.

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary dataset, source data file for figures and tables, rights and permissions.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ .

Reprints and permissions

About this article

Cite this article.

Wyrwoll, P.R., Manero, A., Taylor, K.S. et al. Measuring the gaps in drinking water quality and policy across regional and remote Australia. npj Clean Water 5 , 32 (2022). https://doi.org/10.1038/s41545-022-00174-1

Download citation

Received : 16 February 2022

Accepted : 22 June 2022

Published : 19 July 2022

DOI : https://doi.org/10.1038/s41545-022-00174-1

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

This article is cited by

Reused water as a source of clean water and energy.

  • Cecilia Tortajada

Nature Water (2024)

  • Wiktor Adamowicz
  • R. Quentin Grafton

Enhancing water access monitoring through mapping multi-source usage and disaggregated geographic inequalities with machine learning and surveys

  • Jan Geleijnse
  • Martine Rutten
  • Edo Abraham

Scientific Reports (2023)

Goals, progress and priorities from Mar del Plata in 1977 to New York in 2023

  • Asit K. Biswas

Nature Water (2023)

npj Clean Water (2022)

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

research papers on drinking water quality

  • Open access
  • Published: 09 September 2022

Water quality index for assessment of drinking groundwater purpose case study: area surrounding Ismailia Canal, Egypt

  • Hend Samir Atta   ORCID: orcid.org/0000-0001-5529-0664 1 ,
  • Maha Abdel-Salam Omar 1 &
  • Ahmed Mohamed Tawfik 2  

Journal of Engineering and Applied Science volume  69 , Article number:  83 ( 2022 ) Cite this article

5983 Accesses

16 Citations

Metrics details

The dramatic increase of different human activities around and along Ismailia Canal threats the groundwater system. The assessment of groundwater suitability for drinking purpose is needed for groundwater sustainability as a main second source for drinking. The Water Quality Index (WQI) is an approach to identify and assess the drinking groundwater quality suitability.

The analyses are based on Pearson correlation to build the relationship matrix between 20 variables (electrical conductivity (Ec), pH, total dissolved solids (TDS), sodium (Na), potassium (K), calcium (Ca), magnesium (Mg), chloride (Cl), carbonate (CO 3 ), sulphate (SO 4 ), bicarbonate (HCO 3 ), iron (Fe), manganese (Mn), zinc (Zn), copper (Cu), lead (Pb), cobalt (Co), chromium (Cr), cadmium (Cd), and aluminium (Al). Very strong correlation is found at [Ec with Na, SO 4 ] and [Mg with Cl]; strong correlation is found at [TDS with Na, Cl], [Na with Cl, SO 4 ], [K with SO 4 ], [Mg with SO 4 ] and [Cl with SO 4 ], [Fe with Al], [Pb with Al]. The water type is Na–Cl in the southern area due to salinity of the Miocene aquifer and Mg–HCO 3 water type in the northern area due to seepage from Ismailia Canal and excess of irrigation water.

The WQI classification for drinking water quality is assigned with excellent and good groundwater classes between km 10 to km 60, km 80 to km 95 and the adjacent areas around Ismailia Canal. While the rest of WQI classification for drinking water quality is assigned with poor, very poor, undesirable and unfit limits which are assigned between km 67 to km 73 and from km 95 to km 128 along Ismailia Canal.

Introduction

Nowadays, groundwater has become an important source of water in Egypt. Water crises and quality are serious concerns in a lot of countries, particularly in arid and semi-arid regions where water scarcity is widespread, and water quality assessment has received minimal attention [ 3 , 9 ]. So, it is important to assess the quality of water to be used, especially for drinking purposes.

Poor hydrogeological conditions have been encountered causing adverse impacts on threatening the adjacent groundwater aquifer under the Ismailia Canal. The groundwater quality degradation is due to rapid urban development, industrialization, and unwise water use of agricultural water, either groundwater or surface water.

As groundwater quality is affected by several factors, an appropriate study of groundwater aquifers characteristics is an essential step to state a supportable utilization of groundwater resources for future development and requirements [ 11 , 12 ]. It is important that hydrogeochemical information is obtained for the region to help improving the groundwater management practices (sustainability and protection from deterioration) [ 17 ].

Many researchers have paid great attention to groundwater studies. In the current study area, the hydrogeology and physio-hydrochemistry of groundwater in the current study area had been previously discussed by El Fayoumy [ 15 ] and classified the water to NaCl type; Khalil et al. [ 27 ] stated that water had high concentration of Na, Ca, Mg, and K. Geriesh et al. [ 21 ] detected and monitored a waterlogging problem at the Wadi El Tumilate basin, which increased salinity in the area. Singh [ 34 ] studied the problem of salinization on crop yield. Awad et al. [ 7 ] revealed that the groundwater salinity ranges between 303 ppm and 16,638 ppm, increasing northward in the area.

Various statistical concepts were used to understand the water quality parameters [ 24 , 28 , 35 ].

Armanuos et al. [ 4 ] studied the groundwater quality using WQI in the Western Nile Delta, Egypt. They had generated the spatial distribution map of different parameters of water quality. The results of the computed WQI showed that 45.37% and 66.66% of groundwater wells falls into good categories according to WHO and Egypt standards respectively.

Eltarabily et al. [ 19 ] investigate the hydrochemical characteristics of the groundwater at El-Khanka in the eastern Nile Delta to discuss the possibility of groundwater use for agricultural purposes. They used Pearson correlation to deduce the relationship between 13 chemical variables used in their analysis. They concluded that the groundwater is suitable for irrigation use in El-Qalubia Governorate.

The basic goal of WQI is to convert and integrate large numbers of complicated datasets of the physio-hydrochemistry elements with the hydrogeological parameters (which have sensitive effect on the groundwater system) into quantitative and qualitative water quality data, thus contributing to a better understanding and enhancing the evaluation of water quality [ 38 ]. The WQI is calculated by performing a series of computations to convert several values from physicochemical element data into a single value which reflects the water quality level's validity for drinking [ 16 ].

Based on the physicochemical properties of the groundwater, it should be appraised for various uses. One can determine whether groundwater is suitable for use or unsafe based on the maximum allowable concentration, which can be local or international. The type of the material surrounding the groundwater or dissolving from the aquifer matrix is usually reflected in the physicochemical parameters of the groundwater. These metrics are critical in determining groundwater quality and are regarded as a useful tool for determining groundwater chemistry and primary control mechanisms [ 18 ].

The objective of this research is to assess suitability of groundwater quality of the study area around Ismailia Canal for drinking purpose and generating WQI map to help decision-makers and local authorities to use the created WQI map for groundwater in order to avoid the contamination of groundwater and to facilitate in selection safely future development areas around Ismailia Canal.

Description of study area

The study area lies between latitudes 30° 00′ and 31° 00′ North and longitude 31° 00′ and 32° 30′ East. It is bounded by the Nile River in the west, in the east there is the Suez Canal, in the south, there is the Cairo-Ismailia Desert road, and in the north, there are Sharqia and Ismailia Governorates as shown in Fig. 1 . Ismailia Canal passes through the study area. It is considered as the main water resource for the whole Eastern Nile Delta and its fringes. Its intake is driven from the Nile River at Shoubra El Kheima, and its outlet at the Suez Canal. At the intake of the canal, there are large industrial areas, which include the activities of the north Cairo power plant, Amyeria drinking water plant, petroleum companies, Abu Zabaal fertilizer and chemical company, and Egyptian company of Alum. Ismailia Canal has many sources of pollution, which potentially affects and deteriorates the water quality of the canal [ 22 ].

figure 1

Map of the study area and location of groundwater wells

The topography plays an important role in the direction of groundwater. The ground level in the study area is characterized by a small slope northern Ismailia Canal. It drops gently from around 18 m in the south close to El-Qanater El-Khairia to 2 amsl northward. While southern Ismailia Canal, it is characterized by moderate to high slope. The topography rises from 10 m to more than 200 m in the south direction.

Geology and hydrogeology

The sequence of deposits rocks of wells was investigated through the study of hydrogeological cross-section A-A′ and B-B′ located in Fig. 2 a, b [ 32 ]. Section B-B′ shows that the study area represents two main aquifers that can be distinguished into the Oligocene aquifer (southern portion of the study area) and the Quaternary aquifer (northern portion of the study area). The Oligocene aquifer dominates the area of Cairo-Suez aquifer foothills. The Quaternary occupies the majority of the Eastern Nile Delta. It consists of Pleistocene sand and gravel. It is overlain by Holocene clay. The aquifer is semi-confined (old flood plain) and is phreatic at fringes areas in the southern portion of eastern Nile Delta fringes. The Quaternary aquifer thickness varies from 300 m (northern of the study area) to 0 at the boundary of the Miocene aquifer (south of the study area). The hydraulic conductivity ranges from 60 m/day to 100 m/day [ 8 ]. The transmissivity varies between 10,000 and 20,000 m 2 /day.

figure 2

a Geology map of the study area. b Hydrogeological cross-section of the aquifer system (A-A′) and geological cross-section for East of Delta (B-B′)

Groundwater recharge and discharge

The main source of recharge into the aquifer under the study area is the excess drainage surplus (0.5–1.1 mm/day) [ 29 ], in addition to the seepage from irrigation system including Damietta branch and Ismailia Canal.

Groundwater and its movements

In the current research, it was possible to attempt drawing sub-local contour maps for groundwater level with its movement as shown in Fig. 3 . Figure 3 shows the main direction of groundwater flow from south to north. The groundwater levels vary between 5 m and 13 m (above mean sea level). The sensitive areas are affected by (1) the excess drainage surplus from the surface water reclaimed areas which located at low lying areas; (2) the seepage from the Ismailia Canal bed due to the interaction between it and the adjacent groundwater system, and (3) misuse of the irrigation water of the new communities and other issues. Accordingly, a secondary movement was established in a radial direction that is encountered as a source point at the low-lying area (Mullak, Shabab, and Manaief). Groundwater movement acts as a sink at lower groundwater areas (the northern areas of Ismailia Canal located between km 80 to km 90) due to the excessive groundwater extraction. The groundwater level reaches 2 m (AMSL). The groundwater levels range between + 15 m (AMSL) (southern portion of Ismailia Canal and study area near the boundary between the quaternary and Miocene aquifers).

figure 3

Groundwater flow direction map in the study area (2019)

The assessment of groundwater suitability for drinking purposes is needed and become imperative based on (1) the integration between the effective environmental hydrogeological factors (the selected 9 trace elements Fe, Mn, Zn, Cu, Pb, Co, Cr, Cd, Al) and 11 physio-chemical parameters (major elements of the anions and cations pH, EC, TDS, Na, K, Ca, Mg, Cl, CO 3 , SO 4 , HCO 3 ); (2) evaluation of WQI for drinking water according to WHO [ 36 ] and drinking Egyptian standards limit [ 14 ]; (3) GIS is used as a very helpful tool for mapping the thematic maps to allocate the spatial distribution for some of hydrochemical parameters with reference standards.

The groundwater quality for drinking water suitability is assessed by collecting 53 water samples from an observation well network covering the area of study, as seen in Fig. 1 . The samples were collected after 10 min of pumping and stored in properly washed 2 L of polyethylene bottles in iceboxes until the analyses were finished. The samples for trace elements were acidified with nitric acid to prevent the precipitation of trace elements. They were analyzed by the standard method in the Central Lab of Quality Monitoring according to American Public Health Association [ 2 ].

The water quality index is used as it provides a single number (a grade) that expresses overall water quality at a certain location based on several water quality parameters. It is calculated from different water parameters to evaluate the water quality in the area and its potential for drinking purposes [ 13 , 25 , 31 , 33 ]. Horton [ 23 ] has first used the concept of WQI, which was further developed by many scholars.

The first step of the factor analysis is applying the correlation matrix to measure the degree of the relationship and strength between linearly chemical parameters, using “Pearson correlation matrix” through an excel sheet. The analyses are mainly based on the data from 53 wells for physio-chemical parameters for the major elements and trace elements. Accordingly, it classified the index of correlation into three classes: 95 to 99.9% (very strong correlation); 85 to 94.9% (strong correlation), 70 to 84.9% (moderately), < 70% (weak or negative).

Equation ( 1 ) [ 4 ] is used to calculate WQI for the effective 20 selected parameters of groundwater quality.

In which Q i is the ith quality rating and is given by equation ( 2 ) [ 4 ], W i is the i th relative weight of the parameter i and is given by Eq. ( 3 ) [ 4 ].

Where C i is the i th concentration of water quality parameter and S i is the i th drinking water quality standard according to the guidelines of WHO [ 36 ] and Egypt drinking water standards [ 14 ] in milligram per liter.

Where W i is the relative weight, w i is the weight of i th parameter and n is the number of chemical parameters. The weight of each parameter was assigned ( w i ) according to their relative importance relevant to the water quality as shown in Table 2 , which were figured out from the matrix correlation (Pearson correlation, Table 1 ). Accordingly, it was possible assigning the index for weight ( w i ). Max weight 5 was assigned to very strong effective parameter for EC, K, Na, Mg, and Cl; weight 4 was assigned to a strong effective parameter as TDS, SO 4 ; 3 for a moderate effective parameter as Ca; and weight 2 was assigned to a weak effective parameter like pH, HCO 3, CO 3 , Fe, Cr, Cu, Co, Cd, Pb, Zn, Mn, and Al. Equation ( 2 ) was calculated based on the concertation of the collected samples from representative 53 wells and guidelines of WHO [ 36 ] and Egypt drinking water standards [ 14 ] in milligram per liter. This led to calculation of the relative weight for the weight ( W i ) by equation ( 3 ) of the selected 20 elements (see Table 2 ). Finally, Eq. ( 1 ) is the summation of WQI both the physio-chemical and environmental parameters for each well eventually.

The spatial analysis module GIS software was integrated to generate a map that includes information relating to water quality and its distribution over the study area.

Results and discussion

The basic statistics of groundwater chemistry and permissible limits WHO were presented in Table 3 . It summarized the minimum, maximum, average, med. for all selected 20 parameters and well percentage relevant to the permissible limits for each one; the pH values of groundwater samples ranged from 7.1 to 8.5 with an average value of 7.78 which indicated that the groundwater was alkaline. While TDS ranged from 263 to 5765 mg/l with an average value of 1276 mg/l. Sodium represented the dominant cation in the analyzed groundwater samples as it varied between 31 and 1242 mg/l, with an average value of 270 mg/l. Moreover, sulfate was the most dominant anion which had a broad range (between 12 and 1108 mg/l), with an average value of 184 mg/l. This high sulfate concentration was due to the seepage from excess irrigation water and the dissolution processes of sulfate minerals of soil composition which are rich in the aquifer. Magnesium ranged between 11 and 243 mg/l, with an average value of 43 mg/l. The presence of magnesium normally increased the alkalinity of the soil and groundwater [ 10 , 37 ]. Calcium ranged between 12 and 714 mg/l with a mean value of 119 mg/l. For all the collected groundwater samples, calcium concentration is higher than magnesium. This can be explained by the abundance of carbonate minerals that compose the water-bearing formations as well as ion exchange processes and the precipitation of calcite in the aquifer. Chloride content for groundwater samples varies between 18 and 2662 mg/l with an average value of 423 mg/l. Carbonate was not detected in groundwater, while bicarbonate ranged from 85 to 500 mg/l. Figures 5 , 6 , and 7 were drawn to show the extent of variation between the samples in each well.

Piper diagram [ 30 ] was used to identify the groundwater type in the study area as shown in Fig. 4 . According to the prevailing cations and anions in groundwater samples Na–Cl water type in the southern area due to salinity of the Miocene aquifer, Mg–HCO 3 water type in the northern area due to seepage from Ismailia Canal and excess of irrigation water and there is an interference zone which has a mixed water type between marine water from south and fresh water from north.

figure 4

Piper trilinear diagram for the groundwater samples

figure 5

Concentration of selected physio-chemical parameters

figure 6

Concentration of major elements

figure 7

Concentration of trace element

figure 8

Concentration for 20 elements by percentage of wells (relevant to their limits of WHO for each element)

figure 9

a , b WQI aerial distribution for drinking groundwater suitability for WHO ( a ) and Egyptian standards ( b )

Atta, et al. [ 5 ] revealed that the abundance of Fe, Mn, and Zn in the groundwater is due to geogenic aspects, not pollution sources. Khalil et al. [ 26 ] and Awad et al. [ 6 ] revealed that the source of groundwater in the area is greatly affected by freshwater seepage from canals and excess irrigation water which all agreed with the study.

Table 3 and Fig. 8 showed that 100% of wells for EC were assigned at desirable limits. 43.79% of wells for TDS were assigned at the desirable limit and 27.05% of them at the undesirable limits. While pH, 81.25% were assigned at the desirable limit. The percentage of wells for the aerial distribution of cations concentration assigned at desirable limits ranged between 64.6% for K, 85.45% for Mg, 68.73% for Na, and 70.8% for Ca. While the percentage of wells for the aerial distribution of cations concentration assigned at the undesirable limits ranged between 8.3% for Mg, 31.27% for Na, 14.6% for K, and 16.7% for Ca.

The percentage of wells for the aerial distribution of anions concentration assigned at desirable limits ranged between 72.9% for Cl, 66.7% for HCO 3 , and 79.2% for SO 4 . While the percentage of wells for the aerial distribution of anions concentration assigned at the undesirable limit ranged between 4.2% for Cl, 0% for HCO 3 , and 20.8% for SO 4 as shown in Table 3 and Fig. 8 .

Table 3 and Fig. 8 presented the aerial distribution concentration for 8 sensitive trace elements. The percentage of wells assigned at desirable limits ranged between 100% for (Zn, Cr, and Co), 86% for Fe, 27.3% for Mn, 77.4% for Cd, 27.2% for Pb, and 96% for Al, while the percentage of wells assigned at undesirable limits ranged between 0% for (Fe, Zn, Cr, and Co), 50% for Mn, 13.6% for Cd, 36.4% for Pb, and 4% for Al.

Figure 8 summarizes the results of the concentration for the selected 20 elements (11 physio-hydrochemical characteristics, and 9 sensitive environmental trace elements) by %wells relevant to the limits of WHO for each element.

The water quality index is one of the most important methods to observe groundwater pollution (Alam and Pathak, 2010) [ 1 ] which agreed with the results. It was calculated by using the compared different standard limits of drinking water quality recommended by WHO (2008) and Egyptian Standards (2007). Two values for WQI were calculated and drawn according to these two standards. It was classified into six classes relevant to the drinking groundwater quality classes: excelled water (WQI < 25 mg/l), good water (25–50 mg/l), poor water (50–75 mg/l), very poor water (75–100 mg/l), undesirable water (100–150 mg/l), and unfit water for drinking water (> 150 mg/l) as shown in Fig. 9 a, b. Figure 9 a (WHO classification) indicated that in the most parts of the study area, the good water class was dominant and reached to 35.8%, 28.8% was excellent water; 7.5% were poor water, 11.3% very poor water quality, and 13.3% were unfit water for drinking water. Similarly, for Egyptian Standard classification via WQI, the study area was divided into six classes: Fig. 9 b indicated that 35.8% of groundwater was categorized as excellent water quality, 34% as good water quality, 9.4% as poor water, 5.7% as very poor water, 1.9% as undesirable water and 13.3% as unfit water quality. This assessment was compared to Embaby et al. [ 20 ], who used WQI in the assessment of groundwater quality in El-Salhia Plain East Nile Delta. The study showed that 70% of the analyzed groundwater samples fall in the good class, and the remainder (30%), which were situated in the middle of the plain, was a poor class which mostly agreed with the study.

Conclusions and recommendation

This research studied the groundwater quality assessment for drinking using WQI and concluded that most of observation wells are located within desirable and max. allowable limits.

The groundwater in the study area is alkaline. TDS in groundwater ranged from 263 to 5765 mg/l, with a mean value of 1277 mg/l. Sodium and chloride are the main cation and anion constituents.

The water type is Na–Cl in the southern area due to salinity of the Miocene aquifer, Mg–HCO 3 water type in the northern area due to seepage from Ismailia Canal and excess of irrigation water and there is an interference zone which has a mixed water type between marine water from south and fresh water from north.

The WQI relevant to WHO limits indicated that 23% of wells were located in excellent water quality class that could be used for drinking, irrigation and industrial uses, 38% of wells were located in good water quality class that could be used for domestic, irrigation, and industrial uses, 11% of wells were located in poor water quality class that could be used for irrigation and industrial uses, 8% of wells were located in very poor water quality class that could be used for irrigation, 6% of wells were located in unsuitable water quality class which is restricted for irrigation use and 15% of wells were located in unfit water quality which will require proper treatment before use.

The WQI relevant to Egyptian standard limits indicated that 25% of wells were located in excellent water quality class that could be used for drinking, irrigation, and industrial uses, 43% of wells were located in good water quality class that could be used for domestic, irrigation, and industrial uses, 8% of wells were located in poor water quality class that could be used for irrigation and industrial uses, 6% of wells were located in very poor water quality class that could be used in irrigation, 6% of wells were located in unsuitable water quality class which is restricted for irrigation use and 13% of wells were located in unfit water quality which will require proper treatment before use.

The percentage of wells located at unfit water for drinking were assigned in the Miocene aquifer, and north of Ismailia Canal between km 67 to km 73 and from km 95 to km 128.

It is highly recommended to study the water quality of the Ismailia Canal which may affect the groundwater quality. It is recommended to study the water quality in detail between km 67 to 73 and from km 95 to km 128 as the WQI is unfit in this region and needs more investigations in this region. A full environmental impact assessment should be applied for any future development projects to maximize and sustain the groundwater as a second resource under the area of Ismailia Canal.

Availability of data and materials

The datasets generated and analyzed during the current study are not publicly available because they are part of a PhD thesis and not finished yet but are available from the corresponding author on reasonable request.

Abbreviations

World Health Organization

  • Water Quality Index

Electrical conductivity

Total dissolved solids

Bicarbonate

Alam M, Pathak JK (2010) Rapid assessment of water quality index of Ramganga River, Western Uttar Pradesh (India) Using a computer programme. Nat Sci 8(11):1–8

Google Scholar  

American Public Health Association (2015) Standard methods for the examination of water sewage and industrial wastes, 23th edn. American Public Health Association, New York

Aragaw TT, Gnanachandrasamy G (2021) Evaluation of groundwater quality for drinking and irrigation purposes using GIS-based water quality index in urban area of Abaya-Chemo sub-basin of Great Rift Valley, Ethiopia. Appl Water Sci 11:148. https://doi.org/10.1007/s13201-021-01482-6

Article   Google Scholar  

Armanuos A, Negm A, Valeriano OC (2015) Groundwater quality investigation using water quality index and ARCGIS: case study: Western Nile Delta Aquifer, Egypt. Eighteenth International Water Technology Conference, IWTC18, pp 1–10

Atta SA, Afaf AO, Zamzam AH (2003) Hydrogeology and hydrochemistry of the groundwater at Khanka region, Egypt. International Symposium on Future Food Security for Africa, pp 136–155

Awad SR, El Fakharany ZM (2020) Mitigation of waterlogging problem in El-Salhiya area, Egypt. Water Sci J 34(1):1–2. https://doi.org/10.1080/11104929.2019.1709298

Awad SR, Atta SA, El Arabi N (2008) Hydrogeology and quality of groundwater in the Eastern Nile Delta region. Maadi Cultured Association. The fifth International Conference for Water

Awad SR (1999) Environmental studies on groundwater pollution in some localities in Egypt. Ph.D. Thesis. Faculty of Science, Cairo University

Batarseh M, Imreizeeq E, Tilev S, Al Alaween M, Suleiman W, Al Remeithi AM, Al Tamimi MK, Al Alawneh M (2021) Assessment of groundwater quality for irrigation in the arid regions using irrigation water quality index (IWQI) and GIS-Zoning maps: case study from Abu Dhabi Emirate, UAE. Groundwater Sustain Dev 14:100611. https://doi.org/10.1016/j.gsd.2021.100611

Bousser MG, Amarenco P, Chamorro A et al (2011) Terutroban versus aspirin in patients with cerebral ischaemic events (PERFORM): a randomised, double-blind, parallel-group trial. Lancet (London England) 377(9782):2013–2022. https://doi.org/10.1016/S0140-6736(11)60600-4

Carrera-Hernandez JJ, Gaskin SJ (2006) The groundwater-modeling tool for GRASS (GMTG): open source groundwater flow modelling. Comput Geosci 32(3):339–351. https://doi.org/10.1016/j.cageo.2005.06.018

Chenini I, Ben MA (2010) Groundwater recharge study in arid region: an approach using GIS techniques and numerical modeling. Comput Geosci 36(6):801–817. https://doi.org/10.1016/j.cageo.2009.06.014

Chourasia LP (2018) Assessment of ground-water quality using water quality index in and around Korba City, Chhattisgarh, India. Am J Software Eng Appl 7(1):15–21. https://doi.org/10.11648/j.ajsea.20180701.12

Egyptian Higher Committee for Water (2007) Egyptian standards for drinking water and domestic uses. EHCW, Cairo

El Fayoumy IF (1987) Geology of the Quaternary Succession and its Impact on the Groundwater Reservoir in the Nile Delta Region. Submitted to the Bull, Fac. of Sc., Monoufia Univ., Egypt, Egypt

El Osta M, Masoud M, Alqarawy A, Elsayed S, Gad M (2022) Groundwater suitability for drinking and irrigation using water quality indices and multivariate modeling in Makkah Al-Mukarramah Province, Saudi Arabia. Water 14(3):483. https://doi.org/10.3390/w14030483

El Osta M, Masoud M, Ezzeldin H (2020) Assessment of the geochemical evolution of groundwater quality near the El Kharga Oasis, Egypt using NETPATH and water quality indices. Environmental Earth Sciences 81:248. https://doi.org/ https://doi.org/10.1007/s12665-019-8793-z

El Osta M, Niyazi B, Masoud M (2022) Groundwater evolution and vulnerability in semi-arid regions using modeling and GIS tools for sustainable development: case study of Wadi Fatimah, Saudi Arabia. Environ Earth Sci 81:248. https://doi.org/10.1007/s12665-022-10374-0

Eltarabily MG, Negm AM, Yoshimura C, Abdel-Fattah S, Saavedra OC (2018) Quality assessment of southeast Nile delta groundwater for irrigation. Water Resources 45(6):975–991. https://doi.org/10.1134/S0097807818060118

Embaby AA, Beheary MS, Rizk SM (2017) Groundwater quality assessment for drinking and irrigation purposes in El- Salhia Plain East Nile Delta Egypt. Int J Eng Technol Sci 12:51–73 https://www.researchgate.net/publication/330105491_Groundwater_Quality_assessment_For_Drinking_And_Irrigation_Purposes_In_El-Salhia_Plain_East_Nile_Delta_Egypt

Geriesh MH, El-Rayes AE (2001) Municipal contamination of shallow groundwater beneath south Ismailia villages. Fifth international conference on geochemistry. Alexandria University, Egypt, pp 241–253

Geriesh MH, Balke K, El-Bayes A (2008) Problems of drinking water treatment along Ismailia canal province, Egypt. J Zhejiang Univ Sci B 9(3):232–242. https://doi.org/10.1631/jzus.B0710634

Horton RK (1965) An index number system for rating water quality. J Water Pollut Control Fed 37(3):300–306

Isaaks EH, Srivastava RM (1989) An Introduction to Applied Geostatistics. Oxford University Press, New York

Kawo NS, Karuppannan S (2018) Groundwater quality assessment using water quality index and GIS technique in Modjo River Basin, central Ethiopia. J Afr Earth Sci 147:300–311. https://doi.org/10.1016/j.jafrearsci.2018.06.034

Khalil JB, Atta SA (1986) Hydrogeochemistry of groundwater in South of Ismailia canal, Egypt. Egypt J Geol 30(1-2):109–119

Khalil JB, Atta SA, Diab MS (1989) Hydrogeological Studies on the Groundwater Aquifer of the Eastern Part of the Nile Deltaic, Egypt, Water Science, 4th Issue, Egypt. Water Sci:79–90

Kumar D, Ahmed S (2003) Seasonal behaviour of spatial variability of groundwater level in a Granitic Aquifer in Monsoon Climate. Current Sci 84(2):188–196 https://www.jstor.org/stable/24108097

Morsy WS (2009) Environmental management of groundwater resources in the Nile Delta Regio, Ph.D. In: Thesis, Irrigation and Hydraulics Department, Faculty of Engineering, Cairo University, p 102

Piper AM (1944) A graphic representation in the geochemical interpretation of groundwater analyses. Transact Am Geophys Union, USA 25(6):914–928. https://doi.org/10.1029/TR025i006p00914

Rao GS, Nageswararao G (2013) Assessment of ground water quality using water quality index. Arch Environ Sci 7(1):1–5 https://aes.asia.edu.tw/Issues/AES2013/RaoGS2013.pdf

RIGW (1992) Hydrogeological Maps of Egypt, Scale 1: 100,000, Research Institute for Groundwater, National Water Research Center, Egypt.

Prerna S, Meher PK, Kumar A, Gautam P, Misha KP (2014) Changes in water quality index of Ganges river at different locations in Allahabad. Sustain Water Qual Ecol 3:67–76. https://doi.org/10.1016/j.swaqe.2014.10.002

Singh A (2015) Soil salinization and waterlogging: a threat to environment and agricultural sustainability. Ecol Indicat 57(2015):128–130. https://doi.org/10.1016/j.ecolind.2015.04.027

Suk H, Lee K (1999) Characterization of a ground water hydrochemical system through multivariate analysis: clustering into groundwater zones. Ground Water 37(3):358–366. https://doi.org/10.1111/j.1745-6584.1999.tb01112.x

World Health Organization WHO. (2008) Guidelines for drinking water quality. 1st and 2nd Addenda, Geneva, Switzerland, 1(3).

Xu P, Feng W, Qian H, Zhang Q (2019) Hydrogeochemical characterization and irrigation quality assessment of shallow groundwater in the Central-Western Guanzhong Basin, China. Int J Environ Res Public Health 16(9):1492. https://doi.org/10.3390/ijerph16091492

Yogendra K, Puttaiah ET (2008) Determination of water quality index and suitability of an urban waterbody in Shimoga Town, Karnataka. The Proceedings of Taal2007: The 12thWorld Lake Conference, Jaipur, India, pp 342–346

Download references

Acknowledgements

The researchers would like to thank Research Institute for Groundwater that provided us with the necessary data during the study.

No funding has to be declared for this work.

Author information

Authors and affiliations.

Research Institute for Groundwater, El-Kanater El-Khairia, Egypt

Hend Samir Atta & Maha Abdel-Salam Omar

Irrigation and Hydraulics Department, Faculty of Engineering, Cairo University, Cairo, Egypt

Ahmed Mohamed Tawfik

You can also search for this author in PubMed   Google Scholar

Contributions

HS: investigation, methodology, writing—original draft. MA: investigation, writing—original draft and reviewing. AM: reviewing and editing. The authors read and approved the final manuscript.

Corresponding author

Correspondence to Hend Samir Atta .

Ethics declarations

Ethics approval and consent to participate.

Not applicable.

Consent for publication

Competing interests.

The authors declare that they have no competing interests.

Additional information

Publisher’s note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ . The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/ ) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Reprints and permissions

About this article

Cite this article.

Atta, H.S., Omar, M.AS. & Tawfik, A.M. Water quality index for assessment of drinking groundwater purpose case study: area surrounding Ismailia Canal, Egypt. J. Eng. Appl. Sci. 69 , 83 (2022). https://doi.org/10.1186/s44147-022-00138-9

Download citation

Received : 19 April 2022

Accepted : 20 July 2022

Published : 09 September 2022

DOI : https://doi.org/10.1186/s44147-022-00138-9

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Groundwater
  • Ismailia Canal
  • Suitability

research papers on drinking water quality

IMAGES

  1. (PDF) Assessment of Drinking Water Quality and Hygienic Conditions of the People Living around

    research papers on drinking water quality

  2. APPENDIX B Survey Questionnaire

    research papers on drinking water quality

  3. (PDF) Drinking water quality and water risk assessment in the university of science and

    research papers on drinking water quality

  4. (PDF) Drinking Water Quality and Public Health

    research papers on drinking water quality

  5. (PDF) Drinking water quality assessment from ground water sources in Noakhali, Bangladesh

    research papers on drinking water quality

  6. Research report on Improving Drinking Water Quality in Small Private Supplies

    research papers on drinking water quality

VIDEO

  1. Yale Superfund Research Center

  2. WHO's updated Guidelines for small drinking-water supplies and associated sanitary inspection tools

COMMENTS

  1. Drinking Water Quality and Human Health: An Editorial

    Exposure to chemicals in drinking water may lead to a range of chronic diseases (e.g., cancer and cardiovascular disease), adverse reproductive outcomes and effects on children's health (e.g., neurodevelopment), among other health effects [ 3 ]. Although drinking water quality is regulated and monitored in many countries, increasing knowledge ...

  2. Evaluating Drinking Water Quality Using Water Quality Parameters and

    Water is a vital natural resource for human survival as well as an efficient tool of economic development. Drinking water quality is a global issue, with contaminated unimproved water sources and inadequate sanitation practices causing human diseases (Gorchev & Ozolins, 1984; Prüss-Ustün et al., 2019).Approximately 2 billion people consume water that has been tainted with feces ().

  3. (PDF) Drinking Water Quality and Public Health

    The papers in this issue are interesting and cover many aspects of this research topic, and will be meaningful for the sustainable drinking water quality protection.

  4. US drinking water quality: exposure risk profiles for seven ...

    Research and data on US drinking water contamination show that exposure profiles, health risks, and water quality reliability issues vary widely across populations, geographically and by contaminant.

  5. The widespread and unjust drinking water and clean water ...

    Using these two measures of poor water quality, we find 2.44% of community water systems, a total of 1165, were Safe Drinking Water Act Serious Violators and 3.37% of Clean Water Act permittees in ...

  6. A comprehensive review of water quality indices (WQIs ...

    1. Parameter selection for measurement of water quality (Shah and Joshi 2017):. The selection is carried out based on the management objectives and the environmental characteristics of the research area (Yan et al. 2015).Many variables are recommended, since they have a considerable impact on water quality and derive from 5 classes namely, oxygen level, eutrophication, health aspects, physical ...

  7. Drinking water quality and the SDGs

    The SDGs have provided the impetus for many countries to reflect on and to attempt to fill data gaps on drinking water quality. This collection of papers—a collaboration between the WHO/UNICEF ...

  8. Assessment of Drinking Water Quality Using Water Quality Index: A

    Nowadays, declining water quality is a significant concern for the world because of rapid population growth, agricultural and industrial activity enhancement, global warming, and climate change influencing hydrological cycles. Assessing water quality becomes necessary by using a suitable method to reduce the risk of geochemical contaminants. Water's physical and chemical properties are ...

  9. Impact of Climate Change on Drinking Water Safety

    Widespread, rapid, and intensifying climate change plays an important role in drinking water quality. By scientifically exploring the interrelated mechanisms between climate change and drinking water quality, professionals can better adapt and optimize the water management and thereby ensure drinking water safety. Here, a new concept regarding water quality under the conditions of climate ...

  10. Water quality in drinking water distribution systems: research trends

    This paper provides new insight into the global landscape of water quality research in drinking water distribution systems and how it has evolved over the first twenty years of the 21st century. An up-to-date bibliometric analysis of relevant literature published between 2000 and 2020 revealed how the resear

  11. The quality of drinking and domestic water from the surface water

    Background Water is the most abundant resource on earth, however water scarcity affects more than 40% of people worldwide. Access to safe drinking water is a basic human right and is a United Nations Sustainable Development Goal (SDG) 6. Globally, waterborne diseases such as cholera are responsible for over two million deaths annually. Cholera is a major cause of ill-health in Africa and ...

  12. Drinking Water Quality and Public Health

    As shown in Fig. 1, the paper topics in this special issue dealt with "water, groundwater, health, risk, quality, drinking, spring…", which indicates that groundwater is the most important part of the water for drinking purpose, and health risk is closely related to the drinking water quality that is determined by many indices such as F ...

  13. IJERPH

    Feature papers represent the most advanced research with significant potential for high impact in the field. A Feature Paper should be a substantial original Article that involves several techniques or approaches, provides an outlook for future research directions and describes possible research applications. ... Quality of drinking water is ...

  14. Water quality assessment and evaluation of human health risk of

    Water quality has been linked to health outcomes across the world. This study evaluated the physico-chemical and bacteriological quality of drinking water supplied by the municipality from source ...

  15. Drinking water quality assessment and its effects on residents health

    Water is a vital resource for human survival. Safe drinking water is a basic need for good health, and it is also a basic right of humans. The aim of this study was to analysis drinking water quality and its effect on communities residents of Wondo Genet. The mean turbidity value obtained for Wondo Genet Campus is (0.98 NTU), and the average temperature was approximately 28.49 °C.

  16. A review of water quality index models and their use for assessing

    In several studies, the water quality parameters were selected based on the application type, e.g. drinking water quality assessment or urban environmental impact (Kannelet al., 2007). The Delphi technique was used for selecting water quality parameters in a number of WQI model applications (Abbasi and Abbasi, 2012, Dunnette, 1979).

  17. (PDF) Drinking Water Quality Assessment

    192. Drinking Water Quality Assessment. Background: Drinking water quality is the great public health concern because it is a major risk factor for high. incidence of diarrheal diseases in Nepal ...

  18. Recent Advances in Monitoring and Treatment of Drinking Water Quality

    This Special Issue will publish refereed original research papers on innovative research and applications related to the monitoring of water quality at the water source, as well as advances in drinking water treatment. The major issue of drinking water availability for human consumption requires the application of water quality monitoring ...

  19. Full article: A comparative study of water quality using two quality

    1. Introduction. High-quality drinking water is becoming limited, it is necessary to evaluate it with the appropriate techniques [Citation 1, Citation 2].At the exit of the treatment plant, drinking water is of good quality; however, the quality can be deteriorated in the supply line [Citation 3, Citation 4].Therefore, it is necessary to monitor water quality, as it provides an idea of the ...

  20. Measuring the gaps in drinking water quality and policy across ...

    Drinking water quality remains a persistent challenge across regional and remote Australia. We reviewed public reporting by 177 utilities and conducted a national assessment of reported ...

  21. Water quality index for assessment of drinking ...

    Nowadays, groundwater has become an important source of water in Egypt. Water crises and quality are serious concerns in a lot of countries, particularly in arid and semi-arid regions where water scarcity is widespread, and water quality assessment has received minimal attention [3, 9].So, it is important to assess the quality of water to be used, especially for drinking purposes.

  22. (PDF) An Introduction to Water Quality Analysis

    After years of research, water quality analysis is now consists of some standard protocols. ... Drinking-Water Quality (3rd edition) ... To predict the water quality index, this review paper ...

  23. Corporate Social Responsibility (CSR) and Sustainability in Water

    Although access to clean and safe water is a fundamental human right, millions of people around the world lack this essential resource. Through their CSR initiatives, companies are promoting responsible and sustainable practices to ensure the appropriate use and management of water resources. Using a systematic review and PRISMA framework, this study examined the impact of CSR initiatives on ...