What a Waste: An Updated Look into the Future of Solid Waste Management

image

The Kiteezi landfill near Kampala was expanded as part of the Kampala Institutional Infrastructure Development Project, allowing for the storage and treatment of waste collected in the city. © Sarah Farhat/World Bank

“Waste not, want not.” This old saying rings so true today, as global leaders and local communities alike increasingly call for a fix for the so-called “throwaway culture.” But beyond individuals and households, waste also represents a broader challenge that affects human health and livelihoods, the environment, and prosperity.

And with over 90% of waste openly dumped or burned in low-income countries, it is the poor and most vulnerable who are disproportionately affected.

In recent years, landslides of waste dumps have buried homes and people under piles of waste. And it is the poorest who often live near waste dumps and power their city’s recycling system through waste picking, leaving them susceptible to serious health repercussions.

“Poorly managed waste is contaminating the world’s oceans, clogging drains and causing flooding, transmitting diseases, increasing respiratory problems from burning, harming animals that consume waste unknowingly, and affecting economic development, such as through tourism,” said Sameh Wahba, World Bank Director for Urban and Territorial Development, Disaster Risk Management and Resilience.

Greenhouse gasses from waste are also a key contributor to climate change.

“Solid waste management is everyone’s business. Ensuring effective and proper solid waste management is critical to the achievement of the Sustainable Development Goals,” said Ede Ijjasz-Vasquez, Senior Director of the World Bank’s Social, Urban, Rural and Resilience Global Practice.

What a Waste 2.0

While this is a topic that people are aware of, waste generation is increasing at an alarming rate. Countries are rapidly developing without adequate systems in place to manage the changing waste composition of citizens.

According to the World Bank’s What a Waste 2.0 report,

An update to a previous edition, the 2018 report projects that

Image

How much trash is that?

Take plastic waste, which is choking our oceans and making up 90% of marine debris. The water volume of these bottles could fill up 2,400 Olympic stadiums, 4.8 million Olympic-size swimming pools, or 40 billion bathtubs. This is also the weight of 3.4 million adult blue whales or 1,376 Empire State Buildings combined.

And that’s just 12% of the total waste generated each year.

In addition to global trends, What a Waste 2.0 maps out the state of solid waste management in each region. For example, the  And although they only account for 16% of the world’s population,

Because waste generation is expected to rise with economic development and population growth, lower middle-income countries are likely to experience the greatest growth in waste production. The fastest growing regions are Sub-Saharan Africa and South Asia, where total waste generation is expected to triple than double by 2050, respectively, making up 35% of the world’s waste. The Middle East and North Africa region is also expected to double waste generation by 2050.

Upper-middle and high-income countries provide nearly universal waste collection, and more than one-third of waste in high-income countries is recovered through recycling and composting. Low-income countries collect about 48% of waste in cities, but only 26% in rural areas, and only 4% is recycled. Overall, 13.5% of global waste is recycled and 5.5% is composted.

Image

To view the full infographic, click  here . 

Toward sustainable solid waste management

“Environmentally sound waste management touches so many critical aspects of development,” said Silpa Kaza, World Bank Urban Development Specialist and lead author of the What a Waste 2.0 report. “Yet, solid waste management is often an overlooked issue when it comes to planning sustainable, healthy, and inclusive cities and communities. Governments must take urgent action to address waste management for their people and the planet.”

Moving toward sustainable waste management requires lasting efforts and a significant cost.

Is it worth the cost?

Yes. Research suggests that it does make economic sense to invest in sustainable waste management. Uncollected waste and poorly disposed waste have significant health and environmental impacts. The cost of addressing these impacts is many times higher than the cost of developing and operating simple, adequate waste management systems.

To help meet the demand for financing, the World Bank is working with countries, cities, and partners worldwide to create and finance effective solutions that can lead to gains in environmental, social, and human capital.

, such as the following initiatives and areas of engagement.

Image

Scavengers burning trash at the Tondo Garbage Dump in Manila, Philippines. © Adam Cohn/Flickr Creative Commons

In   Pakistan , a $5.5 million dollar project supported a composting facility in Lahore in market development and the sale of emission reduction credits under the Kyoto Protocol of the United Nations Framework Convention on Climate Change (UNFCCC). Activities resulted in reductions of 150,000 tonnes of CO 2 -equivalent and expansion of daily compost production volume from 300 to 1,000 tonnes per day.

In Vietnam , investments in solid waste management are helping the city of Can Tho prevent clogging of drains, which could result in flooding. Similarly, in the Philippines , investments are helping Metro Manila reduce flood risk by minimizing solid waste ending up in waterways. By focusing on improved collection systems, community-based approaches, and providing incentives, the waste management investments are contributing to reducing marine litter, particularly in Manila Bay.

Leaving no one behind

But the reality for more than 15 million informal waste pickers in the world – typically women, children, the elderly, the unemployed, or migrants – remains one with unhealthy conditions, a lack of social security or health insurance, and persisting social stigma.

In the  West Bank , for example, World Bank loans have supported the construction of three landfill sites that serve over two million residents, enabled dump closure, developed sustainable livelihood programs for waste pickers, and linked payments to better service delivery through results-based financing.

A focus on data, planning, and integrated waste management

Understanding how much and where waste is generated – as well as the types of waste being generated – allows local governments to realistically allocate budget and land, assess relevant technologies, and consider strategic partners for service provision, such as the private sector or non-governmental organizations.

Solutions include:

  • Providing financing to countries most in need, especially the fastest growing countries, to develop state-of-the-art waste management systems. 
  • Supporting major waste producing countries to reduce consumption of plastics and marine litter through comprehensive waste reduction and recycling programs. 
  • Reducing food waste through consumer education, organics management, and coordinated food waste management programs.

No time to waste

If no action is taken, the world will be on a dangerous path to more waste and overwhelming pollution. Lives, livelihoods, and the environment would pay an even higher price than they are today.

Many solutions already exist to reverse that trend. What is needed is urgent action at all levels of society.

The time for action is now.

Click here to access the full dataset and download the report What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050 .

What a Waste 2.0 was funded by the government of Japan through the World Bank’s Tokyo Development Learning Center (TDLC).

  • The Bigger Picture: In-depth stories on ending poverty
  • Press release: Global Waste to Grow by 70 Percent by 2050 Unless Urgent Action is Taken: World Bank Report
  • Infographic: What a Waste 2.0
  • Video blog: Here’s what everyone should know about waste
  • Brief: Solid Waste Management
  • Slideshow: Five ways cities can curb plastic waste

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals
  • My Account Login
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • Open access
  • Published: 14 May 2024

Characteristics and management of municipal solid waste in Uyo, Akwa Ibom state, Nigeria

  • Uduak Bassey 1 , 2 ,
  • Abasi-ofon Tom 4 ,
  • Udemeobong Okono 3 ,
  • Mbetobong John 3 ,
  • Maja Sinn 5 ,
  • Ayoge Bassey 6 ,
  • Uduak Luke 3 &
  • Satyanarayana Narra 1  

Scientific Reports volume  14 , Article number:  10971 ( 2024 ) Cite this article

194 Accesses

Metrics details

  • Environmental impact
  • Environmental sciences
  • Sustainability

Increased urbanization and population lead to increased consumption of manufactured goods. This ultimately results in increased production of waste. Identifying its composition is crucial for planning an effective solid waste management strategy. This study assesses the characteristics and composition of the waste generated within the Uyo Capital City Development Area of Akwa Ibom State, Nigeria. This is to aid in developing a scientifically supported waste management pilot system for the state. Direct waste sorting and characterization were conducted on the municipal solid waste arriving at the landfill during the study period. Over 50% of the generated wastes are recyclables and composed of plastics, metals, and paper, while the fraction of organic waste is over 30%. Similarly, the waste generation per capita is 1.34 kg/person/day, while the generation forecast over the next ten years is estimated to increase by approximately 40%. Furthermore, over 9,000 surveys were completed by residents to establish a problem statement about the existing waste collection and disposal system, and possible solutions. Importantly, a majority of survey respondents were willing to source-separate their wastes and supported paying a fee for adequate waste collection. This strongly indicates that an integrated waste management system could be established to generate value from the collected waste. Supplementary revenue can be generated through composting, recycling, and land reclamation.

Similar content being viewed by others

research article on waste management

Bioplastics for a circular economy

research article on waste management

Removal of heavy metal ions from wastewater: a comprehensive and critical review

research article on waste management

Environmental impact of direct lithium extraction from brines

Introduction.

Increasing population and rural-to-urban migration in developing countries is bound to result in increased municipal solid waste (MSW) generation, an effect already established in Nigeria. The annual worldwide MSW generation is projected to increase steadily from about 2.0 billion metric tons in 2016 to 3.4 billion metric tons in 2050 as shown in Fig.  1 . Similarly, Nigeria generates about 25 million tons of municipal solid waste annually, and this number is expected to double by 2040 1 . Several waste management methods are practiced around the world today. Waste, by definition unwanted or unusable materials, can range from solids to liquids and gases. Municipal solid waste consists of unwanted solid remains retrieved from household & office residents, and retail and commercial business establishments in a municipality. MSW poses a great challenge with regards to its management and has been identified as one of the major challenges to reaching sustainability targets 3 . Several classes of municipal solid wastes, based on the sources of the waste generation, have been presented in literature 4 , 5 , 6 , 7 , 8 . Across regions and municipalities, there is great variation of MSW in composition and it can be generally divided into biodegradable and non-biodegradable components. Nevertheless, typical MSW streams consist of metals, rubbers and plastics, kitchen waste, glass waste, yard waste, electronic waste, paper, cardboard, and others 2 . In Nigeria, very limited literature on the characteristics of MSW exists, as any existing effort is hampered by the difficulty in management of waste. These sources have been attributed to improper waste disposal, inefficient method of waste collection and insufficient coverage of waste existing collection systems 9 . Furthermore, the rate of waste generation in Nigeria has been relatively unknown as a result of limited studies; however, a decade and a half ago, it was reported that the rate of waste generation is Nigeria was in the range between 0.44 and 0.66 kg/capita/day with the waste density ranging between 200 and 400 kg/m 3 , 9 , 10 . Ever since, there has been some reluctance in characterizing the wastes generated in Nigeria. However, with the population of Nigeria increasing at an incline, coupled with increased industrialization and commercialization of Nigeria’s economy, it has been noted that more waste is also being generated 11 , 12 . Consequently, this study seeks to address the waste management situation in Nigeria by analyzing characteristics and composition of the waste generated in the city of Uyo in Akwa Ibom state. The specific waste management methods are reviewed in the next section, and the MSW of the study area is characterized following the methodology described below. Furthermore, suggestions on ways of improving waste management in Uyo are presented.

figure 1

Projected generation of municipal solid waste worldwide from 2016 to 2050 (in billion metric tons) (source: Statista 2023).

Municipal solid waste management strategies

MSW management approaches in different regions and countries are connected to the Gross Domestic Product (GDP), income and population of the assessed country. It describes the process of waste management from generation to disposal. Hence, there is significant variation in MSW management between developed and developing countries. Nanda & Berutti 2 summarizes the MSW management stages as:

Waste generation;

Waste retrieval (collection) and handling; and

Waste disposal, including waste treatment and processing.

Furthermore, MSW management methods are summarized as:

Mechanical recycling or diversion;

Waste-to-energy (WTE) conversion;

Landfilling;

Incineration; and

The following section summarizes the principles of the methods highlighted above.

Mechanical recycling

Mechanical recycling involves the conversion of solid waste into a purified or different form without necessarily altering the chemical composition of the parent material 13 . A typical instance could be the integration of ground water sachets (made from low-density polyethylene materials) into molded bricks to improve brick strength and toughness. These granules from the water packaging material represent a form of recycled material devoid of alteration in chemical composition. The application of similar sorts of recycling methods is limited, hence, this method of MSW measurement is uncommon and not suitable to make use of a significant amount of the MSW bulk.

Waste-to-energy conversion

This is the transformation of waste to useful energy such as electrical, biological, chemical and others. There exist various methods of converting waste to energy such as organic or food waste using biogas, plastics and other combustibles using thermochemical methods and to solid residual fuels (SRFs). Popular thermochemical conversion methods include pyrolysis and gasification. Pyrolysis involves thermal degradation of materials at high temperatures in the absence of oxygen. Typical pyrolysis products depend on the feed stream composition and usually include pyrolysis oil, char, tar, and gases 6 . Detailed descriptions of pyrolysis of MSW are presented in literature 14 , 15 , 16 , 17 , 18 , 19 , 20 . On the other hand, gasification is a process whereby a carbon-containing material (CCM) is converted into syngas under limited oxygen conditions and at high temperatures. Like pyrolysis, product composition depends on the composition of the feed stream 6 . Detailed description of thermochemical treatment is presented in literature 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 . Various variations in the thermochemical processes mentioned exist, and a detailed description of these variations are presented in literature 6 . It is worthy to note that these technologies are common in developed economies and are gradually being introduced in developing ones.

Incineration

Incineration is a widely used method to treat waste due to its potential of reducing waste by over 90% volume 6 . It is the combustion of waste materials in the presence of oxygen and is usually performed in specially designed incineration plants in developed countries. In underdeveloped countries, this can be performed in open dumps. While it usually presents a cheaper mode of waste destruction, it is strongly plagued by environmental pollution, i.e., the release of harmful substances and toxins, and is hence not an advisable method except when sufficient pollution abatement procedures are put in place 34 , 35 . MSW incineration has been reported as an energy recovery method, although this is no longer commonly practiced. However, sufficient literature on MSW incineration exists 36 , 37 , 38 .

Landfilling

Landfilling has been a dominant MSW disposal method, which stems from the comparatively high cost of alternative treatment or disposal alternatives. Similarly, this has been the dominant waste disposal method in developing countries 39 . It refers to the process of dumping solid waste on a site reserved for such purposes. There exist various classifications of landfills depending on the source of waste, e.g. a MSW landfill. Some additional features that may be integrated into the management process include equipment, staff, high-level control engineering, pollution abatement controls, leachate containment capabilities, etc. Various classifications exist, and these are based on conventions defined using characteristics of the landfill. The prominent classifications are those set out by the Malaysian Ministry of Housing and Local Government and the United Nations. More details for this convention can be obtained from literature 40 , 41 , 42 . A summary of the modified application of the classification system adapted from Idowu et al., 2019 is presented in Table 1 below. While landfills have existed from early ages, the concept has been modernized in well-managed and engineered facilities for solid waste disposal 43 . Another aspect of modern landfills is monitoring and management of landfills after closure with particular focus on aftercare strategies. A full description of this can be seen in literature 44 . A summary of the management procedures over the lifetime of a landfill is illustrated in Fig.  2 .

figure 2

Various management phases over MSW landfill life cycle. Adapted from Laner et al. 44 .

Current state of waste management in Uyo, Akwa Ibom State

The Environmental Protection and Management Agency of the state of Akwa Ibom (AKSEPWMA) uses landfills as its main waste management method, with minimal resource recovery effort. There is no recorded home-waste collection system in place in most neighbourhoods; rather, general disposal bins are provided in central locations spread out within the capital city of Uyo. The waste containers are subsequently emptied into the landfill facility. Based on the various landfill classification types presented in Table 1 , the classification of the landfill under study is Low class—Semi controlled—facility evidenced by presence of staff onsite, but absence of proper high-level control systems and devices. This section highlights the procedure for this waste management method.

Factors affecting waste generation

Waste generation is affected by several factors. Afroz et al., in their work noted the following (with the first two as most important), using Dhaka city, Bangladesh as case study 45 :

Income: Here, a positive relationship was observed, and it was argued that from reason, increased income will result in greater demand for goods and services for convenience purposes.

Household size: Here, a positive relationship was observed with reasonable implication that a direct proportionality exists between household size and waste generation.

Willingness to separate the waste: Here, the contribution of this factor was significant and Afroz et el., presented that this could be explained by the fact that households willing to separate wastes (for reuse) at home will ultimately generate less waste.

Environmental concern: Here, this factor was observed to be significant and supported the hypothesis by Afroz et al., that the respondents who cared about environmental sustainability will generate less waste and ultimately improve the waste management program.

Additionally personal attitudes and other factors like education, average living cost, cultural patterns, age structure of households, and population have also been observed in literature to affect waste generation 46 , 47 , 48 , 49 , 50 , 51 .

Methodology

Uyo is the capital of Akwa Ibom state in the Niger Delta region of Nigeria. It lies approximately on latitudes 4°58'N and 5°04'N and longitudes 7°51'E and 8°01'E. The capital city shares a boundary to the north with Ikono, Itu and Ibiono Ibom Local Government Areas (LGA). To the east and west, it shares boundaries with Uruan and Abak LGA respectively. In the south, it is bounded by Ibesikpo-Asutan, Etinan and Nsit-Ibom LGAs (see Fig.  3 b). Uyo Capital City Development Area (UCCDA) (see Fig.  3 a) is made up of Uyo and parts of eight other LGAs 52 . For a detailed overview of the LGAs included in the definition of UCCDA for the purposes of this study, in which these parts of other LGAs contribute to the waste at the landfill in question, see Supplementary Table 1 . The last population census in Nigeria took place in 2006. The current projected population of UCCDA is estimated to be about 1,412,000, with an average annual growth rate of 3.4% 52 , 53 . Uyo has a tropical humid climate with annual rainfall estimated to be 1000 mm. Additionally, there is little variation in season and temperature 53 .

figure 3

( a ) Area within the enclosed circle indicates the mapped area of UCCDA including the contribution of the surrounding LGAs; ( b ) Map highlighting Uyo local government area 52 .

Waste characterization study design

Sampling design.

The study was carried out at the central landfill situated along the Uyo Village Road in Uyo, Akwa Ibom State, Nigeria. This landfill, which is operated by the AKSEPWMA, serves as the destination for the disposal of all the waste generated within the Uyo metropolitan area. Therefore, it is a suitable and representative location for assessing the characteristics and management of municipal solid waste in the area.

The AKSEPWMA is the regulatory body responsible for the management of waste collection, transportation, and disposal in the city. The landfill receives waste from a variety of sources, including residential, commercial, and industrial sources. Waste is typically transported to the landfill via open trucks and compactors and is subsequently dumped in designated areas. Given its critical role in the waste management system of Uyo, the Uyo Village Road landfill was deemed appropriate for conducting this study. The selection of this landfill as the study site was based on its operational characteristics, which are representative of other landfills in Nigeria. By selecting this location, the authors were able to obtain a representative sample of municipal solid waste that accurately reflects the overall composition of waste generated in the area and is essential for developing effective waste management strategies.

Waste characterization

Waste in this study was sampled using the quartering technique. This is a sampling method often used to sample heterogeneous materials such as municipal solid waste, often used when the sample is too large to be analyzed in its entirety. The entire sample is divided into four equal parts, and two opposing quarters are discarded while the remaining two quarters are combined and mixed. This process is then repeated until the desired sample size is achieved, which is usually a smaller, more manageable portion.

In this study, the waste samples were collected from “undisturbed waste,” immediately after it was unloaded at the landfill, this was carried out using a payloader. The sample size was critical in ensuring the accuracy and reliability of research findings. To obtain this, the sampling formula for continuous variable measurements (Eq.  1 ) was utilized 64 , which was applied by Gomez et al. 65 and Miezah et al. 66 .

where n  = the sample size, Z  = value for a selected alpha level of each tail = 1.96; P  = estimated population standard deviation based on a pre-study, and D  = acceptable margin of error (0.05). From the calculation, the total waste analyzed was 9308.7 kg. The waste sample was manually divided by utilizing the coning and quartering method 67 , 68 , 69 . Here, the entire sample was mixed using a payloader and spread into a cone. The cone was then divided into four parts using a metal square pipe and spade. Two quarters, diagonally placed, were extracted and the remaining two quarters were mixed and quartered again. This procedure was repeated six times until the desired and manageable sample size of 120–150 kg was acquired. The characterization effort for this study was repeated over a period of seven days consecutively. As the desired sample size was obtained, the waste was moved from the main landfill to a nearby location for sorting and characterization.

Waste classification

For ease of recognition, the wastes in the landfill were classified by grouping similar wastes into the following groups:

Ferrous and non-ferrous metals

Population determination and forecasting

Data published by the Nigerian National Bureau of Statistics 53 on Nigeria’s population by region with forecast values up to 2033 was utilized in this study. These values served as basis for further prediction, and they are close to the values presented by PopulationStat 54 .

Determination of overall waste collection

Data on the average types and numbers of trucks that deliver waste to the site together with the average number of trips for each truck daily were recorded. To determine the total waste collected at the site, the weighbridge method was employed following global standards found in literature 55 , 56 , 57 . However, in absence of a weighbridge, the following equation ( Eq.  2 ) was employed to determine the overall quantity of waste collected.

Furthermore, the amount of waste generated per day was calculated based on a rule of thumb 58 , where approximately 74% of waste generated in developing countries is efficiently collected for disposal. Hence, a modification to Eq.  2 as presented by Ibikunle 59 resulted in Eq.  3 .

MSW generation rate was estimated using Eq.  4 as presented by Atta et al. 60

Survey data collection

Google Forms was used to create online questionnaires that were accessible via a unique URL. Survey workers used either their mobile phones displaying the Google form, or paper survey forms with identical questions, to obtain survey responses from four different groups of Uyo residents: (a) people living in residential households more than a kilometer from the landfill, (b) residential households located within one kilometer of the municipal landfill, (c) market sellers at several markets with temporary stalls, and (d) employees at permanent businesses in buildings around town. There was a specific survey for each group, with some questions being identical. Grouping was done to assess whether different profiles of waste generation, and specific better options for waste management, exist in the context of this location. Data entered digitally by the surveyors into Google Forms was automatically recorded. Data recorded on the paper forms was entered manually into Google Forms according to each survey group, and automatically added to the other data from each respective group. As each questionnaire (digital or paper) was filled out face-to-face with the surveyor, there were no unanswered surveys. The time frame for each group was roughly one week in February 2023.

Results and discussions

Landfill operation and quantification of waste.

The landfill is in operation from 6 AM to 6 PM daily. On a typical business day, the disposal facility closes to waste delivery trucks at 5 PM and the next hour is used for site-tidying activities. Typically, waste collection in the city begins early in the morning, typically at 7 AM. These generated wastes are dumped in publicly provided receptacles as presented in Figs.  4 A–C. For collection, various types of vehicles such as compactors, tipper trucks, and utility vehicles are used (see Fig.  4 D), which represent the origin of the waste. Specifically, compactors collect waste from the roadside, which is mainly around residential areas, whereas tipper trucks collect waste from the market area, while utility vehicles, also referred to as “house-to-house” collect waste from individual homes. The latter takes place only in high-income residential areas within Uyo, where residents are subscribed to a waste collection service either at a bi-weekly or monthly rate. At about 8:30–9:00 AM, the trucks start arriving at the landfill. Through interaction with the workers in the landfill, an estimated average of 30–50 trucks are emptied at the landfill daily. Similarly, each truck is expected to make an average of 3–5 trips daily, and this results from the high amount of daily waste generated in the city. At regular intervals within the day, already deposited solid waste is compacted using a bulldozer and a compactor. As is a common phenomenon in many developing countries, informal waste picking is carried out by people who scavenge through the waste stream in search of potentially valuable recyclable materials, such as scrap metal and plastic bottles, for the purposes of subsequent resale. The activities of these informal waste pickers have been critical in powering the recycling industry. At the landfill in Uyo Village Road, about 40 informal waste pickers rely on the collection and recovery of recyclable waste materials to support their livelihoods.

figure 4

( A – D ) Waste collection at various collection sites in Uyo.

The total MSW collected and generated were calculated using Eqs. ( 2 ) and ( 3 ). Similarly, it was observed that each truck delivery is usually almost filled, but only to the brim of the lower end of the truck, and with uncompacted waste. Hence, it was assumed that trucks normally operate at 50% theoretical loading capacity. The result is presented in Table 2 below. The annual quantity of MSW generated in UCCDA, obtained by dividing by 0.74 based on the hypothesis that only 74% of waste is actually collected, was determined to be 690,541 tons. This figure represents approximately half of the MSW generated from more populous (approximately double) Nigerian states like Lagos and Kano considering dry seasons only. Hence, this presents an validation, and confirmation, of the effect of population on the quantity of MSW generated in a metropolis. Furthermore, the average MSW generation rate per capita was computed using Eq.  3 ; the value obtained was approximately 1.34 kg/person/day, which is in contrast to an approximate value of 0.66 kg/capita/day for comparable cities presented in literature a decade and a half ago. A reasonable explanation for this could be, among other factors, the increasing population size or the fact that residents of urban areas, as opposed to rural areas, tend to generate more recyclable waste that would end up in a landfill, rather than biodegradable waste that can be disposed of in nature 9 , 11 , 61 .

The MSW composition result of the landfill site obtained via the quaternary method described in the methodology is summarized in Fig.  5 .

figure 5

Waste composition in Uyo landfill serving UCCDA.

It is shown that the largest waste component of the landfill was mixed organic waste. This can partly be attributed to the agricultural and cultural pattern of the region, where agriculture is the dominant activity even among working-class households. On the other hand, the combined plastics and paper fractions made up approximately 38%. Partly, this can be attributed to the following: (1) increased packaging material consumption significantly influenced by increasing sales and trading activity dominant in the region, and (2) increasing population controlled by significant rural-to-urban migration rates experienced in recent times. Furthermore, from Fig.  5 , the total recyclable solid wastes (plastics + metal + paper wastes) fraction exceeds 45% of the total waste. This presents an opportunity for integrating thermochemical waste conversion methods. Existing established methods provide an avenue to increasing the energy generation capacity of the region, noting that there is still insufficient consistent power supply for the entire region.

Estimated waste generation forecast

By considering the waste generation rate for 2023, Fig.  6 presents the waste generation trend over the next ten years. The calculated yearly amount of waste generated in all of UCCDA was extrapolated based on the assumption of an annual population growth rate of 3.4%.

figure 6

Yearly waste Generation Forecast in Uyo Capital City Development Area.

The forecast indicates that the amount of generated waste in ten years is bound to increase by approximately 40%, from 690,541 to 964,705 tons per year. Hence, adequate measures need to be put in place to ensure that these wastes are efficiently handled.

Waste disposal survey

Four groups of people in the city of Uyo were questioned about their waste-disposing habits, composition of their waste, and the issues they are encountering among other things. The respondents were from residential households in average residential areas, residential households next to the landfill, market sellers at several markets with temporary stalls, and lastly employees at permanent businesses in buildings around town. The number of respondents in each group were 3632, 1407, 2019 and 2261, respectively, resulting in over 9000 completed surveys.

Grouping the people polled allows for a more nuanced assessment of current issues and potential measures of addressing them. It was found that issues were shared between groups, but at different levels. Figure  7 shows selected results of this survey; firstly, from a multiple-choice question (“ What is the main problem you have disposing of your waste? ”), which posits that the main issues that respondents have with waste disposal in their respective situations (Fig.  7 A) are presented. More than two thirds of respondents (68.8%) currently have one or more significant issues with waste disposal which are grouped as attitudinal (or willingness); namely, their waste collection point is too far away (‘distance’), they have too much waste to completely dispose of in an orderly fashion (‘waste amount’), they do not know where the closest collection site is located (‘no collection site’), or the site is always too full (‘full receptacles’). The foregoing agrees with a similar observation by Afroz et al 45 where willingness to separate waste was traced to similar factors to those observed with our respondents. The distance from the disposal point is the biggest issue for average residents and businesses, with 37.0% and 29.3% citing this as their main issue; these same groups are most affected by the fact that there is too much waste for them to handle (23.2% and 22.8%, respectively). Roughly one fifth of all respondents encounter the problem of overflowing waste collection sites. The problem that seems to be the least prevalent is not knowing appropriate collection points to dispose of waste or the absence of a collection site, as less than 15% of respondents in each group named this factor. Still, this is a relevant factor that needs to be addressed. Market sellers reportedly had the least issues (41% responded not to have any problem), which ties in well with the fact that they dispose of their waste at the end of each day, and the collection site is always at the same market, if not very close to their stall. Residents at the landfill scored the second highest for this question, since they live very close to the waste disposal site.

figure 7

Survey responses from four different waste-producing groups in the city of Uyo; ( A ) main issues with waste disposal for the four different groups, in which more than one response was possible; ( B ) willingness of respondents to separate their waste at their homes or business sites, and to pay a fee for a government waste collection service.

Obtaining answers from discrete groups has the potential to provide better insights into how well certain waste management strategies will work to address the issues presented. It was found, however, that large parts of all groups were ready to cooperate with such measures. Two subsequent questions in the survey ( “If the government gave you two different bins (one for food waste, and one for everything else), to sort your waste into, would you sort it?” and “Would you pay a small fee if someone came to your house to collect your waste?” ) assessed the willingness of respondents from all groups to separate their waste at the source, and the willingness to pay a small fee for a waste collection service (Fig.  7 B). The majority in each scenario were willing to cooperate (83.2% and 62.5%, respectively). This was in agreement with the result of a similar question posed by Patrick et al. 62 using the same study area. However, there is the caveat that the cost of collection may not be affordable at present, and in the future, due to the rising cost of living (which is a factor affecting waste generation) as observed in literature 46 , 47 , 48 , 49 , 50 , 51 .

The issues the respondents have with waste disposal, and their readiness to support potential future efforts to curb these issues, suggest that better waste management practices through collecting waste closer to its source, then sorting and valorizing it, would be successful, and present a meaningful improvement in the livelihood of the people.

Statistical significance and analysis of survey responses

To observe if there were variations in challenges faced by respondents on existing waste management, an ANOVA test was utilized. Here, we determined if there were variations between responses obtained from the various survey groups (residential, landfill, market-sellers, businesses). Table 3 summarizes the percentage of responses obtained for each underlying issue.

The analysis was premised on the following:

Both variables (dependent and independent) were independent of one another, hence, not skewed.

There is homogeneous variation of the means for each set of data for all groups.

The data were made up of independent observations.

The Null hypothesis (H OS ) formed is:

H OS : There is no variation among the respondent groups with respect to the waste management issues.

The alternative hypothesis (H OT ) is thus:

H OT : There is a variation among the respondent groups with respect to the waste management issues.

Additionally, the analyses were performed with the significance value, α, set at 5% (0.05), which signifies that the permissible upper limit of the risk associated with rejecting a true null hypothesis. The ANOVA revealed that there was no statistically significant difference in the responses. This is indicated by the small F-value and high P -value > 0.05) in Table 4 , which summarizes the ANOVA statistical values. Hence, we will fail to reject the Null hypothesis, proving that there was no statistical significance variation. This means that all the survey groups faced similar challenges with the existing waste management.

Proposed waste management options

As the current waste management system practiced in the region involves manual handling, inefficient collection and sorting, limited recycling, and landfilling as final disposal method, present-day developments in waste management strategies hold better opportunities for valorization of the waste generated in the region. With the forecast waste quantities projected to increase by approximately 40% (see Fig.  6 ), there is a need to propose a more efficient and proper management strategy. Figure  8 summarizes a more valuable technique with potential opportunities for revenue generation.

figure 8

Schematic of the proposed improved waste management in Uyo.

Waste collection and sorting

One of the challenges typically faced by waste handling facilities is the problem of mixed or combined waste fractions. This becomes increasingly challenging when dealing with waste in bulk quantities such as in large landfills like the one operated by the region in view. Scaling down waste sorting and relegating the sorting process to the source is one way to ease the process. Hence, a subscription-based model should be adopted which strictly requires that households in the region sort their wastes into different collection bins. The sorted fractions can be according to their recyclability, that is, food waste, recyclable, non-recyclable and hard paper/carton. Such a model will be convenient and offer several advantages over the current general city-wide waste collection. Additionally, monetary fines by the collection service can be implemented to ensure compliance, which is an incentive for proper waste sorting.

Valorization

Waste valorization has become integral, with a focus on attaining global sustainability in 2030. For the region in view, the valorization methods employed are reusing and partly downcycling. Here, homes practice the reuse of glass or tin packages to store food or other items, especially in the rural areas. Also, local waste pickers scavenge through the waste stream at the landfills, in search of potentially valuable recyclable materials, such as scrap metal and plastic bottles, for the purposes of subsequent resale to mechanical recyclers. The downstream use of these resold materials usually involves reuse for the same purpose or downcycling for lower grade materials. This mostly involves non-transformation of the chemical state of the materials. However, these efforts by waste pickers are insufficient to effectively reduce the quantity of available waste in the landfills. Hence, other valorization methods are desirable, which are summarized in Fig.  9 .

figure 9

Simplified summary of the waste valorization methods.

Waste-to-energy recovery

This involves thermochemical conversion of the waste materials into other chemical products. It can be employed to generate more valuable products, especially those with high energy content which could help to address the power shortage experienced in the region. As reviewed earlier, thermochemical valorization processes include pyrolysis, gasification, and others. The significant amount of plastics fraction in the waste characterization results ( see Fig.  5 ) presents enormous potential for setting up medium-scale thermochemical conversion plants. This could be based on the aforementioned processes, where the rejected fractions are utilized as feedstock to produce high-energy products like bio-oils, biofuels, syngas, and pyrolytic oil, thereby supplementing energy for the region. These technologies have been extensively reviewed in literature, and there exist several process technology licensors and plants in operation 13 , 63 .

Waste-agriculture integration

The organic waste fraction in the landfill is composed mainly of food wastes from the restaurants, markets and homes. These organic wastes undergo continuous decomposition, though at a slow rate, but the compost is not utilized in any form. Hence, one proposal would be to collaborate with the agricultural sector to develop proper composting dumps integrated with large scale commercial farming in the region. These commercial farms could generate income from sales or generate feedstock for small and medium enterprise-based manufacturing facilities.

Conclusion and recommendations

This article was focused on characteristics and management of municipal solid waste in Uyo, Akwa Ibom state, Nigeria. The current waste management system in Uyo was assessed, a sampling design performed, an estimated waste generation forecast was calculated, and improved waste management options were identified based on the waste characterization and results from surveys. Hence, the following conclusions were drawn:

Plastic, paper, glass and metal wastes made up over half (> 51%) of the waste collected in Uyo municipality, meaning there is a large potential of valorizing the recyclable fraction of the waste.

The current waste management approach is inefficient in handling the quantity of waste generated in the municipality, most of which is disposed of in the landfill. This will be exacerbated in ten years, at which point potential waste generation is estimated to increase by 40%.

Currently, most of the potential of the waste is lost in the landfill. However, an enormous energy and revenue generation potential exists if the strategies outlined in the previous section are properly harnessed.

It is imperative to gradually reduce and eliminate the landfilling system. This can be achieved through synergy between private actors and the municipality. In addition, incentivization strategies need to be developed to encourage the citizens to participate in an integrated waste management scheme.

Ethical approval

Ethical approval was not required for this study.

Consent to participate

Survey participants were informed on the purpose of the survey as follows, ‘This is an anonymous survey to help inform our state government on the needs of the citizens of Uyo with regards to their waste. The survey is being conducted privately. It contains less than ten questions about your experience managing your waste and you are free to participate as you choose.’ Verbal consent was then given by survey participants.

Data availability

The original data used in this work is available upon request. This can be requested from: Corresponding author: Uduak Bassey. Email: [email protected].

Ezeudu, O. B., Agunwamba, J. C., Ugochukwu, U. C. & Ezeudu, T. S. Temporal assessment of municipal solid waste management in Nigeria: Prospects for circular economy adoption. Rev. Environ. Health 36 , 327–344. https://doi.org/10.1515/reveh-2020-0084 (2021).

Article   PubMed   Google Scholar  

Nanda, S. & Berruti, F. Municipal solid waste management and landfilling technologies: A review. Environ. Chem. Lett. 19 , 1433–1456. https://doi.org/10.1007/s10311-020-01100-y (2021).

Article   CAS   Google Scholar  

Cucchiella, F., D’Adamo, I. & Gastaldi, M. Sustainable waste management: Waste to energy plant as an alternative to landfill. Energy Convers. Manage. 131 , 18–31. https://doi.org/10.1016/j.enconman.2016.11.012 (2017).

Adedibu, A. A. A comparative analysis of solid waste composition and generation in two cities of a developing nation. Environmentalist 5 , 123–127 (1985).

Article   Google Scholar  

Heinen, J. T. A review of, and research suggestions for, solid-waste management issues: The predicted role of incentives in promoting conservation behaviour. Environ. Conserv. 22 , 157–166 (1995).

Hockett, D., Lober, D. J. & Pilgrim, K. Determinants of per capita municipal solid waste generation in the Southeastern United States. J. Environ. Manag. 45 , 205–218 (1995).

Dallas, M. D. et al. An indicator of solid waste generation potential for Illinois using principal components analysis and geographic information systems. J. Air Waste Manag. Assoc. 46 , 414–421 (1996).

Article   CAS   PubMed   Google Scholar  

Brunner, P. & Ernst, W. Alternative methods for the analysis of municipal solid waste. Waste Manag. Res. Waste Manage. Res. 4 , 147–160. https://doi.org/10.1177/0734242X8600400116 (1986).

Ogwueleka, T. Municipal solid waste characteristics and management in Nigeria. J. Environ. Health Sci. Eng. 6 , 173–180 (2009).

Google Scholar  

Amber, I., Kulla, D. M. & Gukop, N. Generation, characteristics and energy potential of solid municipal waste in Nigeria. J. Energy Southern Africa 23 , 47–51 (2012).

Babayemi, J. & Dauda, K. Evaluation of solid waste generation, categories and disposal options in developing countries: A case study of Nigeria. J. Appl. Sci. Environ. Manag. https://doi.org/10.4314/jasem.v13i3.55370 (2010).

Nabegu, A. B. An analysis of municipal solid waste in Kano metropolis, Nigeria. J. Human Ecol. 31 , 111–119 (2010).

Solis, M. & Silveira, S. Technologies for chemical recycling of household plastics–A technical review and TRL assessment. Waste Manag. 105 , 128–138 (2020).

Garcia-Nunez, J. A. et al. Historical developments of pyrolysis reactors: A review. Energy & fuels 31 , 5751–5775 (2017).

Gollakota, A. R. K., Reddy, M., Subramanyam, M. D. & Kishore, N. A review on the upgradation techniques of pyrolysis oil. Renew. Sustain. Energy Rev. 58 , 1543–1568 (2016).

Wang, G. et al. A review of recent advances in biomass pyrolysis. Energy Fuels 34 , 15557–15578 (2020).

Peng, Y. et al. A review on catalytic pyrolysis of plastic wastes to high-value products. Energy Convers. Manag. 254 , 115243 (2022).

Sharuddin, S. D. A., Abnisa, F., Daud, W. M. A. W. & Aroua, M. K. A review on pyrolysis of plastic wastes. Energy Convers. Manag. 115 , 308–326 (2016).

Wampler, T. P. Applied pyrolysis handbook . (CRC press, 2006).

Soltes, E. J. & Elder, T. J. in Organic chemicals from biomass 63–99 (CRC Press, 2018).

Zhang, Y. et al. in Sustainable Resource Recovery and Zero Waste Approaches (eds Mohammad J. Taherzadeh, Kim Bolton, Jonathan Wong, & Ashok Pandey) 193–206 (Elsevier, 2019).

Cao, C. et al. Co-gasification of plastic wastes and soda lignin in supercritical water. Chem. Eng. J. 388 , 124277. https://doi.org/10.1016/j.cej.2020.124277 (2020).

ElGhamrawy, I. Co-gasification of biomass and plastic waste in a bubbling fluidized bed reactor , The University of Western Ontario (Canada), (2022).

Wilk, V. & Hofbauer, H. Co-gasification of plastics and biomass in a dual fluidized-bed steam gasifier: Possible interactions of fuels. Energy Fuels 27 , 3261–3273 (2013).

Pinto, F. et al. Co-gasification study of biomass mixed with plastic wastes. Fuel 81 , 291–297 (2002).

Shahbaz, M. et al. A critical review on the influence of process parameters in catalytic co-gasification: Current performance and challenges for a future prospectus. Renew. Sustain. Energy Rev. 134 , 110382. https://doi.org/10.1016/j.rser.2020.110382 (2020).

Hoque, M. E., Rashid, F. & Aziz, M. Gasification and power generation characteristics of rice husk, sawdust, and coconut shell using a fixed-bed downdraft gasifier. Sustainability 13 , 2027 (2021).

Saebea, D., Ruengrit, P., Arpornwichanop, A. & Patcharavorachot, Y. Gasification of plastic waste for synthesis gas production. Energy Rep. 6 , 202–207 (2020).

Alvarez, J. et al. Hydrogen production from biomass and plastic mixtures by pyrolysis-gasification. Int. J. Hydrogen Energy 39 , 10883–10891 (2014).

Frolov, S. M. Organic waste gasification: A selective review. Fuels 2 , 556–650 (2021).

Lopez, G. et al. Recent advances in the gasification of waste plastics. A critical overview. Renew. Sustain. Energy Rev. 82 , 576–596. https://doi.org/10.1016/j.rser.2017.09.032 (2018).

Shen, Y. & Yoshikawa, K. Recent progresses in catalytic tar elimination during biomass gasification or pyrolysis—A review. Renew. Sustain. Energy Rev. 21 , 371–392 (2013).

Yang, R.-X., Jan, K., Chen, C.-T., Chen, W.-T. & Wu, K. C. W. Thermochemical conversion of plastic waste into fuels, chemicals, and value-added materials: A critical review and outlooks. ChemSusChem 15 , e202200171. https://doi.org/10.1002/cssc.202200171 (2022).

Chew, K. W. et al. Abatement of hazardous materials and biomass waste via pyrolysis and co-pyrolysis for environmental sustainability and circular economy. Environ. Pollut. 278 , 116836 (2021).

Mani, M. & Nagarajan, G. Influence of injection timing on performance, emission and combustion characteristics of a DI diesel engine running on waste plastic oil. Energy 34 , 1617–1623 (2009).

Nie, Y. Development and prospects of municipal solid waste (MSW) incineration in China. Front. Environ. Sci. Eng. China 2 , 1–7 (2008).

Lu, J.-W., Zhang, S., Hai, J. & Lei, M. Status and perspectives of municipal solid waste incineration in China: A comparison with developed regions. Waste Manag. 69 , 170–186 (2017).

Quina, M. J., Bordado, J. C. & Quinta-Ferreira, R. M. Treatment and use of air pollution control residues from MSW incineration: An overview. Waste Manag. 28 , 2097–2121 (2008).

Brunner, P. H. & Fellner, J. Setting priorities for waste management strategies in developing countries. Waste Manag. Res. 25 , 234–240 (2007).

Idris, A., Inanc, B. & Hassan, M. N. Overview of waste disposal and landfills/dumps in Asian countries. J. Mater. Cycles Waste Manag. https://doi.org/10.1007/s10163-004-0117-y (2004).

MHLG. (Ministry of Housing and Local Government, Malaysia, Malaysia, 1990).

Idowu, I. A. et al. An analyses of the status of landfill classification systems in developing countries: Sub Saharan Africa landfill experiences. Waste Manag. 87 , 761–771. https://doi.org/10.1016/j.wasman.2019.03.011 (2019).

(EPA), U. E. P. A. Basic Information about Landfills. (2023). < https://www.epa.gov/landfills/basic-information-about-landfills >.

Laner, D., Crest, M., Scharff, H., Morris, J. W. F. & Barlaz, M. A. A review of approaches for the long-term management of municipal solid waste landfills. Waste Manag. 32 , 498–512. https://doi.org/10.1016/j.wasman.2011.11.010 (2012).

Afroz, R., Hanaki, K. & Tudin, R. Factors affecting waste generation: a study in a waste management program in Dhaka City. Bangladesh. Environ. Monit. Assess. 179 , 509–519. https://doi.org/10.1007/s10661-010-1753-4 (2011).

Bandara, N. J. G. J., Hettiaratchi, J. P. A., Wirasinghe, S. C. & Pilapiiya, S. Relation of waste generation and composition to socio-economic factors: a case study. Environ. Monit. Assess. 135 , 31–39 (2007).

Medina, M. The effect of income on municipal solid waste generation rates for countries of varying levels of economic development: a model. J. Solid Waste Technol. Manag. 24 (1997).

Wertz, K. L. Economic factors influencing households’ production of refuse. J. Environ. Econ. Manag. 2 , 263–272 (1976).

Richardson, R. A. & Havlicek, J. Jr. Economic analysis of the composition of household solid wastes. J. Environ. Econ. Manag. 5 , 103–111 (1978).

Grossman, D., Hudson, J. F. & Marks, D. H. Waste generation models for solid waste collection. J. Environ. Eng. Div. 100 , 1219–1230 (1974).

Al-Momani, A. H. Solid-waste management: Sampling, analysis and assessment of household waste in the city of Amman. Int. J. Environ. Health Res. 4 , 208–222 (1994).

Ministry of Economic Development Uyo, Akwa Ibom State annual report: projected population (2014).

National Bureau of Statistics: Nigerian Demographic Statistics Annual Bulletin 2013 (2014)

Population Stat, 2023. http://www.https://populationstat.com/nigeria/uyo/ (Accessed Nov. 30, 2023).

Titiladunayo, I. F., Akinnuli, B. O., Ibikunle, R. A., Agboola, O. O. & Ogunsemi, B. T. Analysis of combustible municipal solid waste fractions as fuel for energy production: Exploring its physicochemical and thermal characteristics. Int. J. Civil Eng. Technol. 9 , 1557–1575 (2018).

Ibikunle, R. A., Titiladunayo, I. F., Lukman, A. F., Dahunsi, S. O. & Akeju, E. A. Municipal solid waste sampling, quantification and seasonal characterization for power evaluation: Energy potential and statistical modelling. Fuel 277 , 118122 (2020).

Kawai, K. & Tasaki, T. Revisiting estimates of municipal solid waste generation per capita and their reliability. J. Mater. Cycles Waste Manag. 18 , 1–13 (2016).

Ogunjuyigbe, A. S. O., Ayodele, T. R. & Alao, M. A. Electricity generation from municipal solid waste in some selected cities of Nigeria: An assessment of feasibility, potential and technologies. Renew. Sustain. Energy Rev. 80 , 149–162 (2017).

Ibikunle, R. A. Exploration and prediction of wet season municipal solid waste for power generation in Ilorin metropolis, Nigeria. J. Mater. Cycles Waste Manag. 24 , 1591–1602. https://doi.org/10.1007/s10163-022-01395-9 (2022).

Article   PubMed   PubMed Central   Google Scholar  

Atta, A. Y. et al. Potentials of waste to energy in Nigeria. J. Appl. Sci. Res. 12 , 1–6 (2016).

Nkwachukwu, O. I., Chidi, N. I. & Charles, K. O. Issues of roadside disposal habit of municipal solid waste, environmental impacts and implementation of sound management practices in developing country" Nigeria". Int. J. Environ. Sci. Dev. 1 , 409–418 (2010).

Patrick, I.-M.V., Okon, U. E. & Solomon, U. U. Households’ willingness to pay for improved solid waste management in Uyo metropolis, Akwa Ibom State, Nigeria. Am. J. Environ. Protect. 5 , 68–72 (2017).

Bassey, U. et al. Experimental investigation of products from thermal treatment of real-world mixed single-use and multi-layered waste plastics. Environ. Res. https://doi.org/10.1016/j.envres.2024.118244 (2024).

Cochran W. G., Sampling Techniques Third Edition, (1977).

Gomez, G., Meneses, M., Ballinas, L. & Castells, F. Seasonal characterization of municipal solid waste (MSW) in the City of Chihuahua. Int. J. Waste Manag. 29 (9), 2018–2024 (2009).

Miezah, K., Obiri-Danso, K., Kádár, Z., Fei-Baffoe, B. & Mensah, M. Y. Municipal solid waste characterization and quantification as a measure towards effective waste management in Ghana. Waste Manag. 46 , 15–27 (2015).

Patil, C. B., Khan, A. Sustainable Solid Waste Management; Case study of Nagpur, India. Int. J. Eng. Res. Technol. 9 (2020).

Trulli, E. et al. Sustainable mechanical biological treatment of solid waste in urbanized areas with low recycling rates. Waste Manag. 71 , 556–564 (2018).

Gerlach, R.W., Dobb, D.E., Raab, G.A., & Nocerino, J.M., Gy sampling theory in environmental studies. 1. Assessing soil splitting protocols. J. Chemom. 16, (2002).

Download references

Open Access funding enabled and organized by Projekt DEAL. This research was supported and funded by the German Federal Ministry of Education and Research within the project “Waste to Energy: Hybrid Energy from Waste as a Sustainable Solution for Ghana” (03SF0591E). Additionally, the investigation received support from Orchid Springs Limited, Nigeria.

Author information

Authors and affiliations.

Department of Waste and Resource Management, Faculty of Agricultural and Environmental Sciences, University of Rostock, 18051, Rostock, Germany

Uduak Bassey & Satyanarayana Narra

Berlin School of Technology, SRH Berlin University of Applied Science, 10587, Berlin, Germany

Uduak Bassey

University of Uyo, Uyo, Akwa Ibom State, Nigeria

Udemeobong Okono, Mbetobong John & Uduak Luke

School of Chemistry, University of Glasgow, G128QQ, Scotland, United Kingdom

Abasi-ofon Tom

Max Planck Institute of Molecular Physiology, Department of Systemic Cell Biology, 44227, Dortmund, Germany

Orchid Springs Limited, Uyo, Nigeria

Ayoge Bassey

You can also search for this author in PubMed   Google Scholar

Contributions

U. B.: Conceptualization, methodology, writing—original draft. M. J. and U. O.: Investigation and data curation. M. S.: Data curation, writing—review and editing. A. B.: Writing—review and editing. A. T. and U. L.: Methodology and analysis. S. N.: Supervision and funding acquisition. All authors read and approved the final manuscript.  We, the undersigned, give our consent for the publication of this manuscript, including photographs and figures, to be published in Environmental Science and Pollution Research.

Corresponding author

Correspondence to Uduak Bassey .

Ethics declarations

Competing interests.

The authors declare no competing interests.

Additional information

Publisher's note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Supplementary information., rights and permissions.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ .

Reprints and permissions

About this article

Cite this article.

Bassey, U., Tom, Ao., Okono, U. et al. Characteristics and management of municipal solid waste in Uyo, Akwa Ibom state, Nigeria. Sci Rep 14 , 10971 (2024). https://doi.org/10.1038/s41598-024-61108-0

Download citation

Received : 30 October 2023

Accepted : 02 May 2024

Published : 14 May 2024

DOI : https://doi.org/10.1038/s41598-024-61108-0

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Waste-composition
  • Waste-management
  • Municipal-solid-waste
  • Waste-forecast
  • Waste-collection

By submitting a comment you agree to abide by our Terms and Community Guidelines . If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

research article on waste management

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • v.15(2); 2023 Feb

Logo of cureus

Biomedical Waste Management and Its Importance: A Systematic Review

Himani s bansod.

1 Community Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND

Prasad Deshmukh

2 Head and Neck Surgery, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND

The waste generated in various hospitals and healthcare facilities, including the waste of industries, can be grouped under biomedical waste (BMW). The constituents of this type of waste are various infectious and hazardous materials. This waste is then identified, segregated, and treated scientifically. There is an inevitable need for healthcare professionals to have adequate knowledge and a proper attitude towards BMW and its management. BMW generated can either be solid or liquid waste comprising infectious or potentially infectious materials, such as medical, research, or laboratory waste. There is a high possibility that inappropriate management of BMW can cause infections to healthcare workers, the patients visiting the facilities, and the surrounding environment and community. BMW can also be classified into general, pathological, radioactive, chemical, infectious, sharps, pharmaceuticals, or pressurized wastes. India has well-established rules for the proper handling and management of BMW. Biomedical Waste Management Rules, 2016 (BMWM Rules, 2016) specify that every healthcare facility shall take all necessary steps to ensure that BMW is handled without any adverse effect on human and environmental health. This document contains six schedules, including the category of BMW, the color coding and type of containers, and labels for BMW containers or bags, which should be non-washable and visible. A label for the transportation of BMW containers, the standard for treatment and disposal, and the schedule for waste treatment facilities such as incinerators and autoclaves are included in the schedule. The new rules established in India are meant to improve the segregation, transportation, disposal methods, and treatment of BMW. This proper management is intended to decrease environmental pollution because, if not managed properly, BMW can cause air, water, and land pollution. Collective teamwork with committed government support in finance and infrastructure development is a very important requirement for the effective disposal of BMW. Devoted healthcare workers and facilities are also significant. Further, the proper and continuous monitoring of BMW is a vital necessity. Therefore, developing environmentally friendly methods and the right plan and protocols for the disposal of BMW is very important to achieve a goal of a green and clean environment. The aim of this review article is to provide systematic evidence-based information along with a comprehensive study of BMW in an organized manner.

Introduction and background

The amount of daily biomedical waste (BMW) produced in India is enormous [ 1 ]. People from all segments of society, regardless of age, sex, ethnicity, or religion, visit hospitals, which results in the production of BMW, which is becoming increasingly copious and heterogeneous [ 2 ]. BMW produced in India is about 1.5-2 kg/bed/day [ 3 ]. BMW include anatomical waste, sharps, laboratory waste, and others and, if not carefully segregated, can be fatal. Additionally, inappropriate segregation of dirty plastic, a cytotoxic and recyclable material, might harm our ecosystem [ 4 ]. Earlier, BMW was not considered a threat to humans and the environment. In the 1980s and 1990s, fears about contact with infectious microorganisms such as human immunodeficiency virus (HIV) and hepatitis B virus (HBV) prompted people to consider the potential risks of BMW [ 5 ]. BMW is hazardous in nature as it consists of potential viruses or other disease-causing microbial particles; it may be present in human samples, blood bags, needles, cotton swabs, dressing material, beddings, and others. Therefore, the mismanagement of BMW is a community health problem. The general public must also take specific actions to mitigate the rising environmental degradation brought on by negligent BMW management. On July 20, 1998, BMW (Management and Handling) Rules were framed. On March 28, 2016, under the Environment (Protection) Act, 1986, the Ministry of Environment and Forest (MoEF) implemented the new BMW Rules (2016) and replaced the earlier one (1988). BMW produced goes through a new protocol or approach that helps in its appropriate management in terms of its characterization, quantification, segregation, storage, transport, and treatment.

According to Chapter 2 of the Medical Waste Management and Processing Rules, 2016, “The BMW could not be mixed with other wastes at any stage while producing inside hospitals, while collecting from hospitals, while transporting, and should be processed separately based on classification.” The COVID-19 pandemic has now transformed healthy societies worldwide into diseased ones, resulting in a very high number of deaths. It also created one significant problem: improper handling of the medical waste produced in the testing and treatment of the disease [ 6 ]. In India, BMW generated due to COVID-19 contributed to about 126 tonnes per day out of the 710 tonnes of waste produced daily [ 7 ]. 

The basic principle of the management of BMW is Reduce, Reuse, and Recycle-the 3Rs. Out of the total amount of BMW generated, 85% is general (non-hazardous) waste, and the remaining 15% is hazardous. As BMW contains sharps and syringes, the pathogens can enter the human body through cuts, abrasions, puncture wounds, and other ways. There might also be chances of ingestion and inhalation of BMW, which can lead to infections. Some examples of infections are Salmonella, Shigella, Mycobacterium tuberculosis, Streptococcus pneumonia, acquired immunodeficiency syndrome (AIDS), hepatitis A, B, and C, and helminthic infections [ 8 ]. This systematic review is conducted to obtain essential, up-to-date information on BMW for the practical application of its management. The highlight of the management of BMW is that the “success of BMW management depends on segregation at the point of generation” [ 9 ].

The findings have been reported following the principles and criteria of the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA). The systematic review has been conducted according to these standards and principles.

Search Sources/Search Strategy

We used the MeSH strategy to obtain articles from PubMed and ResearchGate employing the following terms: (“Biomedical/waste” [Majr] OR “Biomedical Waste/source” [Majr] OR “Biomedical Waste/hazards” [Majr] OR “Biomedical Waste/segregation” [Majr] OR “Biomedical Waste/rules” [Majr] OR “Biomedical Waste/laws” [Majr] OR “Biomedical Waste/environment” [Majr]). Specifically, for management-related studies, the search terms (“Management/steps” [Majr] OR “Management/handling” [Majr] OR “Management/coding” [Majr] OR “Color coding/segregation” [Majr] OR “Treatment/method” [Majr] OR “Autoclaving/waste” [Majr] OR “Incineration/waste” [Majr]) were used. We obtained the most pertinent research papers and used them in different arrangements using the Boolean operators “AND” and “OR.”

Inclusion and exclusion criteria

We focused on papers written in the English language, published within the last decade, relevant to the central questions of this review article, and that are systematic reviews such as randomized clinical trials and observational studies. We, however, excluded papers published in languages other than English, irrelevant to the questions, and related to topics other than BMW.

Search outcomes

After the initial screening, we narrowed the search results down to 264 papers. A total of 42 duplicate papers were removed. Subsequently, publications were refined by the title/abstract, and we eliminated a few studies due to the lack of full text and/or related articles. Finally, after assessing 27 items for eligibility, we included 11 papers in our review. Figure ​ Figure1 1 is the flow chart for article selection formulated on PRISMA.

An external file that holds a picture, illustration, etc.
Object name is cureus-0015-00000034589-i01.jpg

PRISMA: Preferred Reporting Items for Systematic Review and Meta-analysis, PMC: PubMed Central

Need for BMW management in hospitals

BMW threatens the health of medical staff, hospital-visiting patients, and people in the nearby community. Improper disposal leads to severe hospital-acquired diseases along with an increased risk of air and water pollution. Due to open-space waste disposal practices, animals and scavengers might get infected, leading to the scattering of waste and the spreading of infections. In countering such activities, four major principle functions of BMW management are applicable: the placement of bins at the source of generation of BMW, segregation of BMW, removal or mutilation of the recyclable waste, and disinfection of the waste [ 10 ]. BMW management methods aim predominantly to avoid the generation of waste and, if generated, then recover as much as possible [ 11 ].

BMW management rules in India

On March 28, 2016, under the Environment (Protection) Act, 1986, the MoEF notified the new BMW Rules, 2016 and replaced the earlier Rules (1988). BMW produced goes through a new protocol or approach which helps in the appropriate management of waste, i.e., its characterization, quantification, segregation, storage, transport, and treatment, all of which aim to decrease environmental pollution [ 12 ]. Problems with the improper management of BMW also shed light on the scavengers who, for recycling, segregate the potentially hazardous BMW without using gloves or masks. Strict rules have been implemented to ensure that there is no stealing of recyclable materials or spillage by some humans or animals and that it is transported to the common BMW treatment facility [ 10 ]. The first solution to stop the spread of hazardous and toxic waste was incineration. Incineration is required in all hospitals and healthcare facilities that produce BMW. However, due to the absence of services that provide certified incinerators in a few countries, BMW has to be sent to landfills, which leads to land contamination and harms the environment [ 13 ]. Incinerators used for disposal might also lead to environmental pollution. Numerous toxins are formed during incineration, which are the products of incomplete combustion. Thus, some new standards have been issued to resolve this problem and safeguard the environment and public health [ 14 ].

Steps in the management of BMW

BMW management needs to be organized, as even a single mistake can cause harm to the people in charge. There are six steps in the management of BMW [ 15 ]: surveying the waste produced; segregating, collecting, and categorizing the waste; storing, transporting, and treating the waste. Segregation is the separation of different types of waste generated, which helps reduce the risks resulting from the improper management of BMW. When the waste is simply disposed of, there is an increased risk of the mixture of waste such as sharps with general waste. These sharps can be infectious to the handler of the waste. Further, if not segregated properly, there is a huge chance of syringes and needles disposed of in the hospitals being reused. Segregation prevents this and helps in achieving the goal of recycling the plastic and metal waste generated [ 16 ]. According to Schedule 2, waste must be segregated into containers at the source of its generation, and according to Schedule 3, the container used must be labeled. The schedules of BMW (Management and Handling) Rules, 1998, which were initially ten in number, have now been reduced to four [ 17 ]. The collection of BMW involves the use of different colors of bins for waste disposal. The color is an important indicator for the segregation and identification of different categories of waste into suitable-colored containers. They must be labeled properly based on the place they have been generated, such as hospital wards, rooms, and operation theatres. It is also very important to remember that the waste must be stored for less than 8-10 hours in hospitals with around 250 beds and 24 hours in nursing homes. The storage bag or area must be marked with a sign [ 16 ]. 

Figure ​ Figure1 1 shows the biohazard signs that symbolize the nature of waste to the general public.

An external file that holds a picture, illustration, etc.
Object name is cureus-0015-00000034589-i02.jpg

Biohazards are substances that threaten all living things on earth. The biohazard symbol presented in Figure ​ Figure1 1 was remarked as an important public sign, signaling the harms and hazards of entering the specified zone or room [ 18 ]. Along with the biohazard sign, the room door must have a label saying “AUTHORISED PERSONNEL ONLY.” The temporary storage room must always be locked and away from the general public's reach. The waste is then collected by the vehicles daily. A ramp must be present for easy transportation. The waste collected is then taken for treatment. The loading of wastes should not be done manually. It is very vital to properly close or tie the bag or the container to avoid any spillage and harm to the handlers, the public, and the environment. The transport vehicle or trolley must be properly covered, and the route used must be the one with less traffic flow [ 19 ].

BMW handling staff should be provided with personal protective equipment (PPE), gloves, masks, and boots. BMW retrievers must be provided with rubber gloves that should be bright yellow. After usage, the importance of disinfecting or washing the gloves twice should be highlighted. The staff working in or near the incinerator chamber must be provided with a non-inflammable kit. This kit consists of a gas mask that should cover the nose and mouth of the staff member. The boots should cover the leg up to the ankle to protect from splashes and must be anti-skid [ 16 ]. According to the revised BMW management rules, 2016, it is mandatory to provide proper training to healthcare facility staff members on handling BMW. The training should be mandatorily conducted annually. Along with the management step of the color coding for segregation, it is also important for the staff to be trained in record keeping. This practice of record-keeping helps track the total amount of waste generated and the problems that occurred during the management process, thus helping improve segregation, treatment, and disposal [ 20 ].

Color coding for segregation of BMW

Color coding is the first step of BMW management. Different wastes are classified into different types, and therefore, they must be handled and disposed of according to their classification. The bins used for waste disposal in all healthcare facilities worldwide are always color-coded. Based on the rule of universality, bins are assigned a specific color, according to which the waste is segregated. This step helps avoid the chaos that occurs when all types of waste are jumbled, which can lead to improper handling and disposal and further result in the contraction of several diseases [ 21 ]. The different kinds of categories of waste include sharp waste such as scalpels, blades, needles, and objects that can cause a puncture wound, anatomical waste, recyclable contaminated waste, chemicals, laboratory waste such as specimens, blood bags, vaccines, and medicines that are discarded. All the above-mentioned wastes are segregated in different colored bins and sent for treatment [ 22 ]. Yellow bins collect anatomical waste, infectious waste, chemical waste, laboratory waste, and pharmaceutical waste, covering almost all types of BMW. Different bins and various types of sterilization methods are used depending on how hazardous the waste is. The best tools for sterilization are autoclaves. Red bins collect recyclable contaminated wastes, and non-chlorinated plastic bags are used for BMW collection. Blue containers collect hospital glassware waste such as vials and ampoules. White bins are translucent where discarded and contaminated sharps are disposed of. Sharp wastes must always be disposed of in puncture-proof containers to avoid accidents leading to handlers contracting diseases [ 23 , 24 ]. 

Figure ​ Figure3 3 illustrates the different colored bins used for the segregation of BMW.

An external file that holds a picture, illustration, etc.
Object name is cureus-0015-00000034589-i03.jpg

BMW management refers to completely removing all the hazardous and infectious waste generated from hospital settings. The importance of waste treatment is to remove all the pathogenic organisms by decontaminating the waste generated. This helps in the prevention of many severe health-related issues that can be caused because of the infective waste. It is a method used to prevent all environmental hazards [ 25 ].

Methods for the treatment of BMW

There are many methods that are used for the treatment of BMW. One of the most economical ways of waste treatment is incineration, which is just not some simple “burning” but the burning of waste at very high temperatures ranging from 1800℉ to 2000℉ to decrease the total mass of decontaminated waste by converting it into ash and gases, which is then further disposed of in landfills [ 25 , 26 ]. Important instructions associated with the use of incinerators are as follows: chlorinated plastic bags must not be put inside the incinerators as they can produce dioxin [ 26 ]. Metals should not be destroyed in an incinerator. The metals present in BMW are made of polyvinyl chloride. When these metals are burned, they produce a huge amount of dioxin. Dioxins are very toxic chlorinated chemical compounds, as dioxins, when released into the environment, can lead to environmental pollution and a higher incidence of cancer and respiratory manifestations [ 14 ].

Autoclaving is an alternate method of incineration. The mechanism of this process involved sterilization using steam and moisture. Operating temperatures and time of autoclaving is 121℃ for 20-30 minutes. The steam destroys pathogenic agents present in the waste and also sterilizes the equipment used in the healthcare facility [ 25 ]. Autoclaving has no health impacts and is very cost-friendly. It is recommended for the treatment of disposables and sharps, but the anatomical, radioactive, and chemical wastes must not be treated in an autoclave [ 27 ]. Chemical methods are the commonest methods that include chemicals such as chlorine, hydrogen peroxide, and Fenton’s reagent. They are used to kill the microorganisms present in the waste and are mainly used for liquid waste, such as blood, urine, and stool. They can also be used to treat solid waste and disinfect the equipment used in hospital settings and surfaces such as floors and walls [ 28 ]. Thermal inactivation is a method that uses high temperatures to kill the microorganisms present in the waste and reduce the waste generated in larger volumes. The temperature differs according to the type of pathogen present in the waste. After the treatment is done, the contents are then discarded into sewers [ 29 ].

Very serious environmental and health hazards can be triggered if hospital waste is mixed with normal garbage, which can lead to poor health and incurable diseases such as AIDS [ 30 ]. The needle sticks can be highly infectious if discarded inappropriately. Injury by these contaminated needles can lead to a high risk of active infection of HBV or HIV [ 31 ]. The groups at increased risk of getting infected accidentally are the medical waste handlers and scavengers. Sharps must properly be disposed of in a translucent thin-walled white bin. If sharps are discarded in a thin plastic bag, there is a high chance that the sharps might puncture the bag and injure the waste handler [ 32 ]. It can also be the main cause of severe air, water, and land pollution. Air pollutants in BMW can remain in the air as spores. These are known as biological air pollutants. Chemical air pollutants are released because of incinerators and open burning. Another type of threat is water pollutants. BMW containing heavy metals when disposed of in water bodies results in severe water contamination. The landfills where the disposal takes place must be constructed properly, or the waste inside might contaminate the nearby water bodies, thus contaminating the drinking water. Land pollution is caused due to open dumping [ 33 ]. BMW must also be kept away from the reach of rodents such as black rats and house mice, which can spread the pathogens to the people living nearby [ 34 ].

Many promising steps were taken to minimize the volume of waste discarded from the source, its treatment, and disposal. The 3R system encourages the waste generators to reuse, reduce, and recycle. Everyone must be aware of the 3Rs because this approach can help achieve a better and cleaner environment [ 35 ]. Unfortunately, most economically developing countries cannot correctly manage BMW. Very few staff members of healthcare facilities are educated about proper waste management. The waste handlers are also poorly educated about the hazards of waste [ 36 ]. Every member helping in the waste management process must be made aware of the dangers of BMW to avoid accidents that harm the environment and living beings [ 37 ].

Conclusions

BMW is generated by healthcare facilities and can be hazardous and infectious. Improper handling can lead to health hazards. Collection, segregation, transportation, treatment, and disposal of BMW are important steps in its management. The color coding of bins, the use of technologies such as incineration and autoclaving, and attention to environmental impacts are also highly crucial. BMW management aims to reduce waste volume and ensure proper disposal. All those involved should strive to make the environment safer.

The content published in Cureus is the result of clinical experience and/or research by independent individuals or organizations. Cureus is not responsible for the scientific accuracy or reliability of data or conclusions published herein. All content published within Cureus is intended only for educational, research and reference purposes. Additionally, articles published within Cureus should not be deemed a suitable substitute for the advice of a qualified health care professional. Do not disregard or avoid professional medical advice due to content published within Cureus.

The authors have declared that no competing interests exist.

Montclair State University Logo

  • Help & FAQ

E-Waste: A Global Problem, Its Impacts, and Solutions

  • Information Management and Business Analytics

Research output : Contribution to journal › Article › peer-review

E-waste is a major global problem linked to the use, and discard of, electronic and electric devices. While the volume of these obsolete devices continues to increase and accumulate, the means and approaches currently used to reuse, dispose of, recycle, and address this continues to vary widely in terms of availability, effectiveness, and value. The issues relating to e-waste management include those emanating from managerial, environmental, labor, and health perspectives. This article aims to present an overview of the key considerations related to the e-waste dilemma, and also proposes issues, challenges, and solutions to addressing the problem. A focus on the factors and variables affecting e-waste management, together with a global framework of e-waste management methods and strategies, are then followed by recommendations and viable areas for future research.

  • cultural differences
  • electrical and electronic equipment
  • environmental impacts
  • global regulations
  • impacts of technology
  • resource recovery
  • sustainability
  • waste management

Access to Document

  • 10.4018/JGIM.337134

Other files and links

  • Link to publication in Scopus

Fingerprint

  • Electronic Waste Engineering & Materials Science 100%
  • E-Waste Business & Economics 90%
  • Waste management Engineering & Materials Science 59%
  • Waste Management Business & Economics 44%
  • Discards Business & Economics 17%
  • Recycle Business & Economics 15%
  • Reuse Business & Economics 14%
  • Management Methods Business & Economics 13%

T1 - E-Waste

T2 - A Global Problem, Its Impacts, and Solutions

AU - Hsu, Jeffrey

AU - Wang, John

AU - Stern, Mel

N1 - Publisher Copyright: © 2024 IGI Global. All rights reserved.

N2 - E-waste is a major global problem linked to the use, and discard of, electronic and electric devices. While the volume of these obsolete devices continues to increase and accumulate, the means and approaches currently used to reuse, dispose of, recycle, and address this continues to vary widely in terms of availability, effectiveness, and value. The issues relating to e-waste management include those emanating from managerial, environmental, labor, and health perspectives. This article aims to present an overview of the key considerations related to the e-waste dilemma, and also proposes issues, challenges, and solutions to addressing the problem. A focus on the factors and variables affecting e-waste management, together with a global framework of e-waste management methods and strategies, are then followed by recommendations and viable areas for future research.

AB - E-waste is a major global problem linked to the use, and discard of, electronic and electric devices. While the volume of these obsolete devices continues to increase and accumulate, the means and approaches currently used to reuse, dispose of, recycle, and address this continues to vary widely in terms of availability, effectiveness, and value. The issues relating to e-waste management include those emanating from managerial, environmental, labor, and health perspectives. This article aims to present an overview of the key considerations related to the e-waste dilemma, and also proposes issues, challenges, and solutions to addressing the problem. A focus on the factors and variables affecting e-waste management, together with a global framework of e-waste management methods and strategies, are then followed by recommendations and viable areas for future research.

KW - cultural differences

KW - e-waste

KW - electrical and electronic equipment

KW - environmental impacts

KW - global regulations

KW - impacts of technology

KW - recycling

KW - resource recovery

KW - sustainability

KW - waste management

UR - http://www.scopus.com/inward/record.url?scp=85185395555&partnerID=8YFLogxK

U2 - 10.4018/JGIM.337134

DO - 10.4018/JGIM.337134

M3 - Article

AN - SCOPUS:85185395555

SN - 1062-7375

JO - Journal of Global Information Management

JF - Journal of Global Information Management

Review of carbon sequestration by alkaline industrial wastes: potential applications in landfill biogeochemical cover systems

  • Published: 18 May 2024

Cite this article

research article on waste management

  • Gaurav Verma 1 &
  • Krishna R. Reddy   ORCID: orcid.org/0000-0002-6577-1151 1  

The surge in global industrialization has significantly increased greenhouse gas concentrations in the Earth's atmosphere, with carbon dioxide (CO 2 ) being the predominant contributor to about two-thirds of the greenhouse effect. Landfill gas (LFG), resulting from the biodegradation of municipal solid waste (MSW), mainly consists of methane (CH 4 ) and CO 2 . To counteract uncontrolled CO 2 emissions from waste decomposition, an innovative, low-cost biogeochemical cover (BGCC) system for landfills utilizing biochar-amended soil and basic oxygen furnace (BOF) slag for CO 2 carbonation has been developed. Despite the effectiveness of BOF slag in CO 2 removal, its limited availability near landfill sites presents sustainability challenges, necessitating the search for viable alternatives within the BGCC system that can achieve efficient CO 2 sequestration through direct aqueous mineral carbonation. This review explores various carbon sequestration techniques, identifying potential alkaline industrial solid wastes as substitutes for BOF slag, and evaluates these materials—namely cement kiln dust (CKD), blast furnace (BF) slag, coal fly ash (CFA), and concrete waste—for their compatibility with the BGCC system. CKD is highlighted as having the highest carbonation potential based on its capacity for direct aqueous carbonation, with a comparative analysis revealing substantial differences in the carbonation capacities of the materials. Given the fine-grained nature of the selected materials, the review also emphasizes the need to integrate them into barrier soil layers or use them as standalone layers within the BGCC. In conclusion, this review accentuates the potential of alternative materials in achieving effective CO 2 sequestration within BGCC, thereby addressing the challenges related to the availability of BOF slag and promoting sustainable landfill management practices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Russian Federation)

Instant access to the full article PDF.

Rent this article via DeepDyve

Institutional subscriptions

research article on waste management

Abbreviations

Carbon dioxide

Chlorofluorocarbons

National oceanic and atmospheric administration

Parts per million

Carbon capture and storage

Municipal solid waste

Cement kiln dust

Blast furnace slag

Basic oxygen furnace slag

Coal fly ash

Class C coal fly ash

Landfill gas

Hydrogen ion

Carbonate ion

Hydrogen sulfide

  • Biogeochemical cover

Calcium oxide

Magnesium oxide

Carbonic acid

Calcite / Calcium carbonate

Magnesite / Magnesium carbonate

Acetic acid

Sodium hydroxide

Ammonium bisulfate

Ammonium bicarbonate

Ammonium sulfate

Calcium sulfate

Magnesium sulfate

Sulfuric acid

Nitric acid

Hydrochloric acid

Parts per million by volume

Portlandite / Calcium hydroxide

Ethylenediaminetetraacetic acid

Toxicity characteristic leaching procedure

Synthetic precipitation leaching procedure

Kapila S, Oni AO, Gemechu ED, Kumar A (2019) Development of net energy ratios and life cycle greenhouse gas emissions of large-scale mechanical energy storage systems. Energy 170:592–603. https://doi.org/10.1016/j.energy.2018.12.183

Article   Google Scholar  

Nyambura MG, Mugera GW, Felicia PL, Gathura NP (2011) Carbonation of brine impacted fractionated coal fly ash: implications for CO2 sequestration. J Environ Manage 92(3):655–664. https://doi.org/10.1016/j.jenvman.2010.10.008

Lindsey R (2023) Climate change: atmospheric carbon dioxide. https://www.climate.gov/news-features/understanding-climate/ climate-change-atmospheric-carbon-dioxide. Accessed 23 October 2023

Azdarpour A, Asadullah M, Mohammadian E, Hamidi H, Junin R, Karaei MA (2015) A review on carbon dioxide mineral carbonation through pH-swing process. Chem Eng J 279:615–630. https://doi.org/10.1016/J.CEJ.2015.05.064

Rhodes CJ (2016) The 2015 Paris climate change conference: COP21. Sci Prog 99:97–104. https://doi.org/10.3184/003685016X14528569315192

Chiang PC, Pan SY (2017) Carbon dioxide mineralization and utilization (pp. 1–452). Singapore: Springer Singapore

Kramer GJ, Haigh M (2009) No quick switch to low-carbon energy. Nature 462(7273):568–569. https://doi.org/10.1038/462568a

USEPA 2023 Basic information about landfill gas. Accessed August 3, 2023. https://www.epa.gov/lmop/basic-information-about-landfill-gas

USEPA 2023 Understanding Global Warming Potentials. Accessed August 3, 2023. https://www.epa.gov/ghgemissions/understanding-global-warming-potentials

Sadasivam BY, Reddy KR (2014) Landfill methane oxidation in soil and bio-based cover systems: a review. Rev Environ Sci Bio/Technol 13:79–107. https://doi.org/10.1007/s11157-013-9325-z

Reddy KR, Yargicoglu EN, Yue D, Yaghoubi P (2014) Enhanced microbial methane oxidation in landfill cover soil amended with biochar. J Geotech Geoenviron Eng 140(9):04014047. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001148

Yargicoglu EN, Reddy KR (2017) Effects of biochar and wood pellets amendments added to landfill cover soil on microbial methane oxidation: a laboratory column study. J Environ Manage 193:19–31. https://doi.org/10.1016/j.jenvman.2017.01.068

Yargicoglu EN, Reddy KR (2018) Biochar-amended soil cover for microbial methane oxidation: Effect of biochar amendment ratio and cover profile. J Geotech Geoenviron Eng 144(3):04017123. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001845

Chetri JK, Reddy KR, Grubb DG, Green SJ (2022) Biogeochemical versus Conventional Landfill Soil Covers: Analysis of Gas Flow Profiles, Microbial Communities, and Mineralogy. J Hazard Toxic Radioact Waste 26(3):04022022. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000708

Chetri JK, Reddy KR, Grubb DG (2022) Investigation of different biogeochemical cover configurations for mitigation of landfill gas emissions: laboratory column experiments. Acta Geotech 17(12):5481–5498. https://doi.org/10.1007/s11440-022-01509-5

Chetri JK, Reddy KR, Grubb DG (2020) Carbon-dioxide and hydrogen-sulfide removal from simulated landfill gas using steel slag. J Environ Eng 146(12):04020139. https://doi.org/10.1061/(ASCE)EE.1943-7870.0001826

Reddy KR, Kumar G, Grubb D (2018) Innovative biogeochemical soil cover to mitigate landfill gas emissions. In: Protection and restoration of the environment XIV (PREXIV), Greece, 3–6 July 2018

Reddy KR, Gopakumar A, Chetri JK, Kumar G, Grubb DG (2019) Sequestration of landfill gas emissions using basic oxygen furnace slag: Effects of moisture content and humid gas flow conditions. J Environ Eng 145(7):04019033

Reddy KR, Gopakumar A, Rai RK, Kumar G, Chetri JK, Grubb DG (2019) Effect of basic oxygen furnace slag particle size on sequestration of carbon dioxide from landfill gas. Waste Manage Res 37(5):469–477. https://doi.org/10.1177/0734242X18823948

Reddy KR, Chetri JK, Kumar G, Grubb DG (2019) Effect of basic oxygen furnace slag type on carbon dioxide sequestration from landfill gas emissions. Waste Manage 85:425–436. https://doi.org/10.1016/j.wasman.2019.01.013

Bobicki ER, Liu Q, Xu Z, Zeng H (2012) Carbon capture and storage using alkaline industrial wastes. Prog Energy Combust Sci 38(2):302–320. https://doi.org/10.1016/j.pecs.2011.11.002

Huijgen WJ, Comans RN (2005) Carbon dioxide sequestration by mineral carbonation. Literature review update 2003–2004. Netherlands

Lackner KS, Wendt CH, Butt DP, Joyce EL Jr, Sharp DH (1995) Carbon dioxide disposal in carbonate minerals. Energy 20(11):1153–1170. https://doi.org/10.1016/0360-5442(95)00071-N

Olajire AA (2013) A review of mineral carbonation technology in sequestration of CO2. J Petrol Sci Eng 109:364–392. https://doi.org/10.1016/j.petrol.2013.03.013

Seifritz W (1990) CO 2 disposal by means of silicates. Nature 345(6275):486–486. https://doi.org/10.1038/345486b0

Kelemen PB, Matter J (2008) In situ carbonation of peridotite for CO 2 storage. Nat Acad Sci USA. https://doi.org/10.1073/pnas.0805794105

Muriithi GN, Petrik LF, Fatoba O, Gitari WM, Doucet FJ, Nel J, Nyale SM, Chuks PE (2013) Comparison of CO 2 capture by ex-situ accelerated carbonation and in in-situ naturally weathered coal fly ash. J Environ Manage 127:212–220. https://doi.org/10.1016/j.jenvman.2013.05.027

Song X, Xiaoyu C, Lin Q, Yanna L (2019) A review of mineral carbonation from industrial waste. In IOP Conference Series: Earth and Environmental Science (Vol. 401, No. 1, p. 012008). IOP Publishing. https://doi.org/10.1088/1755-1315/401/1/012008

Liu W, Teng L, Rohani S, Qin Z, Zhao B, Xu CC, Ren S, Liu Q, Liang B (2021) CO 2 mineral carbonation using industrial solid wastes: A review of recent developments. Chem Eng J. https://doi.org/10.1016/j.cej.2021.129093

Pan SY, Chang EE, Chiang PC (2012) CO 2 Capture by Accelerated Carbonation of Alkaline Wastes: A Review on Its Principles and Applications. Aerosol Air Qual Res 12:770–791. https://doi.org/10.4209/aaqr.2012.06.0149

Pan SY, Chiang A, Chang EE, Lin YP, Kim H, Chiang PC (2015) An innovative approach to integrated carbon mineralization and waste utilization: A review. Aer Air Qual Res 15(3):1072–1091. https://doi.org/10.4209/aaqr.2014.10.0240

Chang EE, Pan SY, Chen YH, Tan CS, Chiang PC (2012) Accelerated Carbonation of Steelmaking Slags in a High-gravity Rotating Packed Bed. J Hazard Mater 227–228:97–106. https://doi.org/10.1016/j.jhazmat.2012.05.021

Chang EE, Chen TL, Pan SY, Chen YH, Chiang PC (2013) Kinetic Modeling on CO 2 Capture Using Basic Oxygen Furnace Slag Coupled with Cold-rolling Wastewater in a Rotating Packed Bed. J Hazard Mater 260:937–946. https://doi.org/10.1016/j.jhazmat.2013.06.052

Zhang N, Chai YE, Santos RM, Siller L (2020) Advances in process development of aqueous CO 2 mineralisation towards scalability. J Environ Chem Eng 8:104453. https://doi.org/10.1016/J.JECE.2020.104453

Mouedhen I, Kemache N, Pasquier LC, Cecchi E, Blais JF, Mercier G (2017) Effect of pCO 2 on direct flue gas mineral carbonation at pilot scale. J Environ Manage 198:1–8. https://doi.org/10.1016/J.JENVMAN.2017.04.048

Ben Ghacham A, Cecchi E, Pasquier LC, Blais JF, Mercier G (2015) CO 2 sequestration using waste concrete and anorthosite tailings by direct mineral carbonation in gas–solid–liquid and gas–solid routes. J Environ Manage 163:70–77. https://doi.org/10.1016/J.JENVMAN.2015.08.005

Pan SY, Chen YH, Fan LS, Kim H, Gao X, Ling TC, Chiang PC, Pei SL, Gu G (2020) CO 2 mineralization and utilization by alkaline solid wastes for potential carbon reduction. Nature Sustainability 3(5):399–405. https://doi.org/10.1038/s41893-020-0486-9

Corish A, Coleman T (1995) Cement kiln dust. Concrete (London) 29(5):40–42

Google Scholar  

Ahmaruzzaman M (2010) A review on the utilization of fly ash. Prog Energy Combust Sci 36(3):327–363. https://doi.org/10.1016/j.pecs.2009.11.003

Bertos MF, Simons SJR, Hills CD, Carey PJ (2004) A review of accelerated carbonation technology in the treatment of cement-based materials and sequestration of CO 2 . J Hazard Mater 112(3):193–205. https://doi.org/10.1016/j.jhazmat.2004.04.019

Choi SK, Lee S, Song YK, Moon HS (2002) Leaching characteristics of selected Korean fly ashes and its implications for the groundwater composition near the ash disposal mound. Fuel 81(8):1083–1090

Ribeiro J, Valentim B, Ward C, Flores D (2011) Comprehensive characterization of anthracite fly ash from a thermo-electric power plant and its potential environmental impact. Int J Coal Geol 86(2–3):204–212

US Geological Survey (2020) Mineral commodity summaries 2020. US Geological Survey. https://doi.org/10.3133/mcs2020

Rubio B, Izquierdo MT, Mayoral MC, Bona MT (2008) Preparation and characterization of carbon-enriched coal fly ash. J Environ Manag 88(4):1562–1570. https://doi.org/10.1016/j.jenvman.2007.07.027

Al-Bakri AY, Ahmed HM, Hefni MA (2022) Cement kiln dust (CKD): potential beneficial applications and eco-sustainable solutions. Sustainability 14(12):7022. https://doi.org/10.3390/su14127022

Kunal Siddique R, Rajor A (2012) Use of cement kiln dust in cement concrete and its leachate characteristics. Resour Conserv Recycl. https://doi.org/10.1016/j.resconrec.2012.01.006

US Geological Survey. (2023). Production volume of cement worldwide from 1995 to 2022 (in billion metric tons) [Graph]. In Statista. Accessed October 24, 2023. https://www.statista.com/statistics/1087115/global-cement-production-volume

Huntzinger DN, Gierke JS, Sutter LL, Kawatra SK, Eisele TC (2009) Mineral carbonation for carbon sequestration in cement kiln dust from waste piles. J Hazard Mater 168(1):31–37. https://doi.org/10.1016/j.jhazmat.2009.01.122

Huntzinger DN, Gierke JS, Kawatra SK, Eisele TC, Sutter LL (2009) Carbon dioxide sequestration in cement kiln dust through mineral carbonation. Environ Sci Technol 43(6):1986–1992. https://doi.org/10.1021/es802910z

Jeon J, Kim MJ (2019) CO 2 storage and CaCO 3 production using seawater and an alkali industrial by-product. Chem Eng J. https://doi.org/10.1016/j.cej.2019.122180

Kim MJ, Jung S (2020) Calcium elution from cement kiln dust using chelating agents, and CO 2 storage and CaCO 3 production through carbonation. Environ Sci Pollut Res 27:20490–20499. https://doi.org/10.1007/s11356-020-08403-1

Medas D, Cappai G, De Giudici G, Piredda M, Podda S (2017) Accelerated carbonation by cement kiln dust in aqueous slurries: chemical and mineralogical investigation. Greenhouse Gases Sci Technol 7(4):692–705. https://doi.org/10.1002/ghg.1681

Uliasz-Bocheńczyk A, Mokrzycki E (2017) CO 2 mineral sequestration with the use of ground granulated blast furnace slag. Gospodarka Surowcami Mineralnymi. https://doi.org/10.1515/gospo-2017-0008

Ren E, Tang S, Liu C, Yue H, Li C, Liang B (2020) Carbon dioxide mineralization for the disposition of blast-furnace slag: reaction intensification using NaCl solutions. Greenhouse Gases Sci Technol 10(2):436–448

Eloneva S, Teir S, Salminen J, Fogelholm CJ, Zevenhoven R (2008) Fixation of CO 2 by carbonating calcium derived from blast furnace slag. Energy 33(9):1461–1467. https://doi.org/10.1016/j.energy.2008.05.003

Mun M, Cho H (2013) Mineral carbonation for carbon sequestration with industrial waste. Energy Procedia 37:6999–7005

Bang JH, Lee SW, Jeon C, Park S, Song K, Jo WJ, Chae S (2016) Leaching of metal ions from blast furnace slag by using aqua regia for CO2 mineralization. Energies 9(12):996

Liu Q, Liu W, Hu J, Wang L, Gao J, Liang B, Li C (2018) Energy-efficient mineral carbonation of blast furnace slag with high value-added products. J Cleaner Product 197:242–252. https://doi.org/10.1016/j.jclepro.2018.06.150

Liu W, Yin S, Luo D, Zhang G, Yue H, Liang B, Li C (2019) Optimising the recovery of high-value-added ammonium alum during mineral carbonation of blast furnace slag. J Alloys Comp 774:1151–1159. https://doi.org/10.1016/j.jallcom.2018.09.392

Chu G, Li C, Liu W, Zhang G, Yue H, Liang B, Luo D (2019) Facile and cost-efficient indirect carbonation of blast furnace slag with multiple high value-added products through a completely wet process. Energy 166:1314–1322. https://doi.org/10.1016/j.energy.2018.10.128

Sim G, Hong S, Moon S, Noh S, Cho J, Triwigati PT, Park Y (2022) Simultaneous CO2 utilization and rare earth elements recovery by novel aqueous carbon mineralization of blast furnace slag. J Environ Chem Eng. https://doi.org/10.1016/j.jece.2022.107327

FHWA (Federal Highway Administration) (2016). User Guidelines for Waste and Byproduct Materials in Pavement Construction. Accessed on September 10, 2023. https://www.fhwa.dot.gov/publications/research/infrastructure/structures/97148/cfa51.cfm

Yao ZT, Ji XS, Sarker PK, Tang JH, Ge LQ, Xia MS, Xi YQ (2015) A comprehensive review on the applications of coal fly ash. Earth Sci Rev 141:105–121. https://doi.org/10.1016/j.earscirev.2014.11.016

Ćwik A, Casanova I, Rausis K, Koukouzas N, Zarębska K (2018) Carbonation of high-calcium fly ashes and its potential for carbon dioxide removal in coal fired power plants. J Clean Prod 202:1026–1034. https://doi.org/10.1016/j.jclepro.2018.08.234

Dananjayan RRT, Kandasamy P, Andimuthu R (2016) Direct mineral carbonation of coal fly ash for CO 2 sequestration. J Clean Prod 112:4173–4182. https://doi.org/10.1016/j.jclepro.2015.05.145

Montes-Hernandez G, Pérez-López R, Renard F, Nieto JM, Charlet L (2009) Mineral sequestration of CO 2 by aqueous carbonation of coal combustion fly-ash. J Hazard Mater 161(2–3):1347–1354. https://doi.org/10.1016/j.jhazmat.2008.04.104

Uliasz-Bocheńczyk A, Mokrzycki E, Piotrowski Z, Pomykała R (2009) Estimation of CO 2 sequestration potential via mineral carbonation in fly ash from lignite combustion in Poland. Energy Proced 1(1):4873–4879. https://doi.org/10.1016/j.egypro.2009.02.316

Ebrahimi A, Saffari M, Milani D, Montoya A, Valix M, Abbas A (2017) Sustainable transformation of fly ash industrial waste into a construction cement blend via CO 2 carbonation. J Clean Prod 156:660–669. https://doi.org/10.1016/j.jclepro.2017.04.037

Ukwattage NL, Ranjith PG, Yellishetty M, Bui HH, Xu T (2015) A laboratory-scale study of the aqueous mineral carbonation of coal fly ash for CO 2 sequestration. J Clean Prod 103:665–674. https://doi.org/10.1016/j.jclepro.2014.03.005

He L, Yu D, Lv W, Wu J, Xu M (2013) A novel method for CO 2 sequestration via indirect carbonation of coal fly ash. Ind Eng Chem Res 52(43):15138–15145. https://doi.org/10.1021/ie4023644

Sun Y, Parikh V, Zhang L (2012) Sequestration of carbon dioxide by indirect mineralization using Victorian brown coal fly ash. J Hazard Mater 209:458–466. https://doi.org/10.1021/ef5014314

Monteiro PJ, Miller SA, Horvath A (2017) Towards sustainable concrete. Nat Mater 16(7):698–699. https://doi.org/10.1038/nmat4930

Pearce F (2021) Can the World’s Most Polluting Heavy Industries Decarbonize?. Yale School of Environment. https://e360.yale.edu/features/can-the-worlds-most-polluting-heavy-industries-decarbonize

Faruqi MHZ, Siddiqui FZ (2020) A mini review of construction and demolition waste management in India. Waste Manage Res 38(7):708–716. https://doi.org/10.1177/0734242X20916828

Xuan D, Zhan B, Poon CS, Zheng W (2016) Carbon dioxide sequestration of concrete slurry waste and its valorisation in construction products. Construct Build Mater 113:664–672. https://doi.org/10.1016/j.conbuildmat.2016.03.109

Abbaspour A, Tanyu BF (2020) CO 2 sequestration by carbonation processes of rubblized concrete at standard conditions and the related mineral stability diagrams. ACS Sustain Chem Eng 8(17):6647–6656. https://doi.org/10.1021/acssuschemeng.9b07690

Ben Ghacham A, Pasquier LC, Cecchi E, Blais JF, Mercier G (2017) Valorization of waste concrete through CO2 mineral carbonation: Optimizing parameters and improving reactivity using concrete separation. J Clean Prod 166:869–878. https://doi.org/10.1016/j.jclepro.2017.08.015

Ho HJ, Iizuka A, Shibata E, Tomita H, Takano K, Endo T (2020) CO 2 utilization via direct aqueous carbonation of synthesized concrete fines under atmospheric pressure. ACS Omega 5(26):15877–15890. https://doi.org/10.1021/acsomega.0c00985

Pasquier LC, Kemache N, Mocellin J, Blais JF, Mercier G (2018) Waste concrete valorization; aggregates and mineral carbonation feedstock production. Geosciences 8(9):342. https://doi.org/10.3390/geosciences8090342

Vanderzee S, Zeman F (2018) Recovery and carbonation of 100% of calcium in waste concrete fines: Experimental results. J Clean Prod 174:718–727. https://doi.org/10.1016/j.jclepro.2017.10.257

Ho HJ, Iizuka A, Lee CH, Chen WS (2023) Mineral carbonation using alkaline waste and byproducts to reduce CO2 emissions in Taiwan. Environ Chem Lett 21(2):865–884. https://doi.org/10.1007/s10311-022-01518-6

Poon CS, Shen P, Jiang Y, Ma Z, Xuan D (2023) Total recycling of concrete waste using accelerated carbonation: A review. Cem Concr Res. https://doi.org/10.1016/j.cemconres.2023.107284

Download references

Author information

Authors and affiliations.

Department of Civil, Materials, and Environmental Engineering, University of Illinois Chicago, 842 West Taylor Street, Chicago, IL, 60607, USA

Gaurav Verma & Krishna R. Reddy

You can also search for this author in PubMed   Google Scholar

Contributions

Gaurav Verma: conceptualization, methodology, investigation, resources, writing—original draft, Krishna R. Reddy: conceptualization, methodology, investigation, resources, supervision, project administration, funding acquisition, writing—review and editing.

Corresponding author

Correspondence to Krishna R. Reddy .

Ethics declarations

Conflict of interests.

The authors state that there are no known financial conflicts or personal associations that might be perceived as having affected the research presented in this paper.

Additional information

Publisher's note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Verma, G., Reddy, K.R. Review of carbon sequestration by alkaline industrial wastes: potential applications in landfill biogeochemical cover systems. J Mater Cycles Waste Manag (2024). https://doi.org/10.1007/s10163-024-01975-x

Download citation

Received : 07 December 2023

Accepted : 07 May 2024

Published : 18 May 2024

DOI : https://doi.org/10.1007/s10163-024-01975-x

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Greenhouse gas
  • Carbon dioxide sequestration
  • Mineral carbonation
  • Find a journal
  • Publish with us
  • Track your research

IMAGES

  1. (PDF) Environmental pollution and waste management

    research article on waste management

  2. medical waste management practices case study

    research article on waste management

  3. Study on Agricultural Waste Management Information System

    research article on waste management

  4. Waste Management Article

    research article on waste management

  5. A Review paper On Study Of Solid Waste Management Through Different

    research article on waste management

  6. Waste Management Report Template

    research article on waste management

COMMENTS

  1. Waste Management & Research: Sage Journals

    Waste Management & Research: The Journal for a Sustainable Circular Economy (WM&R) publishes peer-reviewed articles relating to both the theory and practice of waste management and research. Published on behalf of the International Solid Waste Association (ISWA) topics include: wastes (focus on solids), processes and technologies, management systems and tools, and policy and regulatory ...

  2. Environmental Sustainability Impacts of Solid Waste Management

    Solid Waste Management Practices in the Global South. Global municipal solid waste (MSW) generation rose from 1.3 billion tons in 2012 to 2.1 billion tons (0.74 kg/capita/day) as of 2016, which by 2050 is expected to increase by 70% to reach a total of 3.40 billion tons or 1.42 kg/capita/day [ 19 ].

  3. Waste Management

    Waste Management Bulletin, a companion journal of Waste Management, is an international peer-reviewed and Gold Open Access journal, publishing original research on waste management and relevant fields. WMB is devoted to the presentation of data and information related to waste treatment, …. View full aims & scope.

  4. Municipal Solid Waste Management and Adverse Health Outcomes: A

    Abstract. Municipal solid waste (MSW) can pose a threat to public health if it is not safely managed. Despite prior research, uncertainties remain and refurbished evidence is needed along with new approaches. We conducted a systematic review of recently published literature to update and expand the epidemiological evidence on the association ...

  5. Recent trends in solid waste management status, challenges, and

    About 88% of waste segregated by management workers, waste categorised like horticultural, kitchen, plastic, and inert waste, in four bins with sufficient capacity is carried to the SWM Park. The land of 3.4 ha for 14 MT has been assign for the collected waste, and 1.4 MT collected inorganic recyclable waste goes to the local scrap market.

  6. (PDF) Towards sustainability in waste management: a systematic

    Abstract. Sustainable waste management is undoubtedly an important topic requiring in-depth research and consideration. Due to a growing number of publications on the subject, there is a need to ...

  7. 74271 PDFs

    Waste Management | Explore the latest full-text research PDFs, articles, conference papers, preprints and more on WASTE MANAGEMENT. Find methods information, sources, references or conduct a ...

  8. What a Waste: An Updated Look into the Future of Solid Waste Management

    And that's just 12% of the total waste generated each year. In addition to global trends, What a Waste 2.0 maps out the state of solid waste management in each region. For example, the East Asia and Pacific region is the region that currently generates most of the world's waste at 23%. And although they only account for 16% of the world's ...

  9. Waste management and green technology: future trends in circular

    The effective treatment of waste to be used as a resource in future has a major role in achieving environmental sustainability and moving towards circular economy. The current research is aimed to provide in-depth detail regarding prominent trends and research themes, evolution, future research orientation, main characteristics, and mapping of research publications on waste management ...

  10. Modern Technologies for Waste Management: A Review

    ORWARE (ORganic WAste REsearch) is a simulation model used by researchers in waste management analysis. It calculates substance flows, environmental impacts, and costs for both organic and inorganic waste fractions. The model consists of submodels that simulate different processes in waste management.

  11. Two decades of research on waste management in the circular economy

    Fig. 2 illustrates the publication trend of WM-related research in the CE from 2001 to 2020. The majority of articles (i.e., 910 out of 962) were published after 2014, accounting for over 94% of the data sample. It could be concluded that the primary research period in terms of the number of publications and academic involvement in WM towards a CE would be 2015 to 2020.

  12. A systematic and critical review of waste management in micro, small

    Waste management (WM) has received increasing attention in recent years in micro, small, and medium-sized enterprises (MSMEs). However, a comprehensive understanding of the WM research in MSMEs from different economic sectors is somehow absent in spite of its proliferation. The current review was conducted to indicate types of waste, hazards associated with waste, as well as strategies ...

  13. Artificial intelligence for waste management in smart cities: a review

    The rising amount of waste generated worldwide is inducing issues of pollution, waste management, and recycling, calling for new strategies to improve the waste ecosystem, such as the use of artificial intelligence. Here, we review the application of artificial intelligence in waste-to-energy, smart bins, waste-sorting robots, waste generation models, waste monitoring and tracking, plastic ...

  14. (PDF) Introduction to Waste Management

    Introduction to Waste Management. Waste disposal leads to direct an d in direct environmental impacts, such as land. occupation, resource depletion, a mplification of global warming due to methane ...

  15. Full article: Behavioral aspects of solid waste management: A

    Over the past three decades, research on the established linkages between solid waste management and psychological models has progressed rapidly. This informs statutory bodies that wish to design an effective solid waste management system. To further address this crucial task, this paper examined the existing literature on behavioral approaches ...

  16. Advances in the Management of Solid Waste and Wastewater Treatment

    The management of solid waste and wastewater treatment is an ever-pressing concern for countries around the world [...] Next Article in Journal. ... Feature papers represent the most advanced research with significant potential for high impact in the field. A Feature Paper should be a substantial original Article that involves several ...

  17. Circular economy strategy and waste management: a ...

    A descriptive analysis of 416 documents was performed using bibliometric techniques, in order to gather existing knowledge in circular economy focusing on waste management (2007-2020). The results of this study indicate that annual scientific production increased 94% in the last 5 years, highlighting the countries of Italy, Spain, the UK, China, Brazil, and India. Between the most cited ...

  18. The world of plastic waste: A review

    We summarized, analyzed, and synthesized existing research on particular topics such as plastic, plastic waste, environmental impacts, and waste management. This article differentiates itself from other existing works in this field (e.g., Khoaele et al., 2023, Kibria et al., 2023, Tiwari et al., 2023), along with an exploration of the efficacy ...

  19. Characteristics and management of municipal solid waste in Uyo ...

    This research was supported and funded by the German Federal Ministry of Education and Research within the project "Waste to Energy: Hybrid Energy from Waste as a Sustainable Solution for Ghana ...

  20. Biomedical Waste Management and Its Importance: A Systematic Review

    Biomedical Waste Management Rules, 2016 (BMWM Rules, 2016) specify that every healthcare facility shall take all necessary steps to ensure that BMW is handled without any adverse effect on human and environmental health. This document contains six schedules, including the category of BMW, the color coding and type of containers, and labels for ...

  21. Smart waste management: A paradigm shift enabled by artificial

    Continued research, development, and collaboration among waste management organizations, technology providers, and researchers are essential to drive further advancements in AI-driven waste monitoring and support the transition toward sustainable waste management practices (Namoun et al., 2022).

  22. E-Waste: A Global Problem, Its Impacts, and Solutions

    A focus on the factors and variables affecting e-waste management, together with a global framework of e-waste management methods and strategies, are then followed by recommendations and viable areas for future research. AB - E-waste is a major global problem linked to the use, and discard of, electronic and electric devices.

  23. Waste Management & Research

    Incinerator Emissions of Heavy Metals and Particulates Specialized Seminar. Read the latest articles of Waste Management & Research at ScienceDirect.com, Elsevier's leading platform of peer-reviewed scholarly literature.

  24. Review of carbon sequestration by alkaline industrial wastes ...

    This search yielded a total of 408 documents, including technical articles, reviews, conference papers, and book chapters. Figure 5a shows the distribution of the number of published papers over time, clearly indicating that most research on mineral carbonation of alkaline solid waste material emerged after 2010. Initially, the research ...