case study data

The Ultimate Guide to Qualitative Research - Part 1: The Basics

case study data

  • Introduction and overview
  • What is qualitative research?
  • What is qualitative data?
  • Examples of qualitative data
  • Qualitative vs. quantitative research
  • Mixed methods
  • Qualitative research preparation
  • Theoretical perspective
  • Theoretical framework
  • Literature reviews

Research question

  • Conceptual framework
  • Conceptual vs. theoretical framework

Data collection

  • Qualitative research methods
  • Focus groups
  • Observational research

What is a case study?

Applications for case study research, what is a good case study, process of case study design, benefits and limitations of case studies.

  • Ethnographical research
  • Ethical considerations
  • Confidentiality and privacy
  • Power dynamics
  • Reflexivity

Case studies

Case studies are essential to qualitative research , offering a lens through which researchers can investigate complex phenomena within their real-life contexts. This chapter explores the concept, purpose, applications, examples, and types of case studies and provides guidance on how to conduct case study research effectively.

case study data

Whereas quantitative methods look at phenomena at scale, case study research looks at a concept or phenomenon in considerable detail. While analyzing a single case can help understand one perspective regarding the object of research inquiry, analyzing multiple cases can help obtain a more holistic sense of the topic or issue. Let's provide a basic definition of a case study, then explore its characteristics and role in the qualitative research process.

Definition of a case study

A case study in qualitative research is a strategy of inquiry that involves an in-depth investigation of a phenomenon within its real-world context. It provides researchers with the opportunity to acquire an in-depth understanding of intricate details that might not be as apparent or accessible through other methods of research. The specific case or cases being studied can be a single person, group, or organization – demarcating what constitutes a relevant case worth studying depends on the researcher and their research question .

Among qualitative research methods , a case study relies on multiple sources of evidence, such as documents, artifacts, interviews , or observations , to present a complete and nuanced understanding of the phenomenon under investigation. The objective is to illuminate the readers' understanding of the phenomenon beyond its abstract statistical or theoretical explanations.

Characteristics of case studies

Case studies typically possess a number of distinct characteristics that set them apart from other research methods. These characteristics include a focus on holistic description and explanation, flexibility in the design and data collection methods, reliance on multiple sources of evidence, and emphasis on the context in which the phenomenon occurs.

Furthermore, case studies can often involve a longitudinal examination of the case, meaning they study the case over a period of time. These characteristics allow case studies to yield comprehensive, in-depth, and richly contextualized insights about the phenomenon of interest.

The role of case studies in research

Case studies hold a unique position in the broader landscape of research methods aimed at theory development. They are instrumental when the primary research interest is to gain an intensive, detailed understanding of a phenomenon in its real-life context.

In addition, case studies can serve different purposes within research - they can be used for exploratory, descriptive, or explanatory purposes, depending on the research question and objectives. This flexibility and depth make case studies a valuable tool in the toolkit of qualitative researchers.

Remember, a well-conducted case study can offer a rich, insightful contribution to both academic and practical knowledge through theory development or theory verification, thus enhancing our understanding of complex phenomena in their real-world contexts.

What is the purpose of a case study?

Case study research aims for a more comprehensive understanding of phenomena, requiring various research methods to gather information for qualitative analysis . Ultimately, a case study can allow the researcher to gain insight into a particular object of inquiry and develop a theoretical framework relevant to the research inquiry.

Why use case studies in qualitative research?

Using case studies as a research strategy depends mainly on the nature of the research question and the researcher's access to the data.

Conducting case study research provides a level of detail and contextual richness that other research methods might not offer. They are beneficial when there's a need to understand complex social phenomena within their natural contexts.

The explanatory, exploratory, and descriptive roles of case studies

Case studies can take on various roles depending on the research objectives. They can be exploratory when the research aims to discover new phenomena or define new research questions; they are descriptive when the objective is to depict a phenomenon within its context in a detailed manner; and they can be explanatory if the goal is to understand specific relationships within the studied context. Thus, the versatility of case studies allows researchers to approach their topic from different angles, offering multiple ways to uncover and interpret the data .

The impact of case studies on knowledge development

Case studies play a significant role in knowledge development across various disciplines. Analysis of cases provides an avenue for researchers to explore phenomena within their context based on the collected data.

case study data

This can result in the production of rich, practical insights that can be instrumental in both theory-building and practice. Case studies allow researchers to delve into the intricacies and complexities of real-life situations, uncovering insights that might otherwise remain hidden.

Types of case studies

In qualitative research , a case study is not a one-size-fits-all approach. Depending on the nature of the research question and the specific objectives of the study, researchers might choose to use different types of case studies. These types differ in their focus, methodology, and the level of detail they provide about the phenomenon under investigation.

Understanding these types is crucial for selecting the most appropriate approach for your research project and effectively achieving your research goals. Let's briefly look at the main types of case studies.

Exploratory case studies

Exploratory case studies are typically conducted to develop a theory or framework around an understudied phenomenon. They can also serve as a precursor to a larger-scale research project. Exploratory case studies are useful when a researcher wants to identify the key issues or questions which can spur more extensive study or be used to develop propositions for further research. These case studies are characterized by flexibility, allowing researchers to explore various aspects of a phenomenon as they emerge, which can also form the foundation for subsequent studies.

Descriptive case studies

Descriptive case studies aim to provide a complete and accurate representation of a phenomenon or event within its context. These case studies are often based on an established theoretical framework, which guides how data is collected and analyzed. The researcher is concerned with describing the phenomenon in detail, as it occurs naturally, without trying to influence or manipulate it.

Explanatory case studies

Explanatory case studies are focused on explanation - they seek to clarify how or why certain phenomena occur. Often used in complex, real-life situations, they can be particularly valuable in clarifying causal relationships among concepts and understanding the interplay between different factors within a specific context.

case study data

Intrinsic, instrumental, and collective case studies

These three categories of case studies focus on the nature and purpose of the study. An intrinsic case study is conducted when a researcher has an inherent interest in the case itself. Instrumental case studies are employed when the case is used to provide insight into a particular issue or phenomenon. A collective case study, on the other hand, involves studying multiple cases simultaneously to investigate some general phenomena.

Each type of case study serves a different purpose and has its own strengths and challenges. The selection of the type should be guided by the research question and objectives, as well as the context and constraints of the research.

The flexibility, depth, and contextual richness offered by case studies make this approach an excellent research method for various fields of study. They enable researchers to investigate real-world phenomena within their specific contexts, capturing nuances that other research methods might miss. Across numerous fields, case studies provide valuable insights into complex issues.

Critical information systems research

Case studies provide a detailed understanding of the role and impact of information systems in different contexts. They offer a platform to explore how information systems are designed, implemented, and used and how they interact with various social, economic, and political factors. Case studies in this field often focus on examining the intricate relationship between technology, organizational processes, and user behavior, helping to uncover insights that can inform better system design and implementation.

Health research

Health research is another field where case studies are highly valuable. They offer a way to explore patient experiences, healthcare delivery processes, and the impact of various interventions in a real-world context.

case study data

Case studies can provide a deep understanding of a patient's journey, giving insights into the intricacies of disease progression, treatment effects, and the psychosocial aspects of health and illness.

Asthma research studies

Specifically within medical research, studies on asthma often employ case studies to explore the individual and environmental factors that influence asthma development, management, and outcomes. A case study can provide rich, detailed data about individual patients' experiences, from the triggers and symptoms they experience to the effectiveness of various management strategies. This can be crucial for developing patient-centered asthma care approaches.

Other fields

Apart from the fields mentioned, case studies are also extensively used in business and management research, education research, and political sciences, among many others. They provide an opportunity to delve into the intricacies of real-world situations, allowing for a comprehensive understanding of various phenomena.

Case studies, with their depth and contextual focus, offer unique insights across these varied fields. They allow researchers to illuminate the complexities of real-life situations, contributing to both theory and practice.

case study data

Whatever field you're in, ATLAS.ti puts your data to work for you

Download a free trial of ATLAS.ti to turn your data into insights.

Understanding the key elements of case study design is crucial for conducting rigorous and impactful case study research. A well-structured design guides the researcher through the process, ensuring that the study is methodologically sound and its findings are reliable and valid. The main elements of case study design include the research question , propositions, units of analysis, and the logic linking the data to the propositions.

The research question is the foundation of any research study. A good research question guides the direction of the study and informs the selection of the case, the methods of collecting data, and the analysis techniques. A well-formulated research question in case study research is typically clear, focused, and complex enough to merit further detailed examination of the relevant case(s).

Propositions

Propositions, though not necessary in every case study, provide a direction by stating what we might expect to find in the data collected. They guide how data is collected and analyzed by helping researchers focus on specific aspects of the case. They are particularly important in explanatory case studies, which seek to understand the relationships among concepts within the studied phenomenon.

Units of analysis

The unit of analysis refers to the case, or the main entity or entities that are being analyzed in the study. In case study research, the unit of analysis can be an individual, a group, an organization, a decision, an event, or even a time period. It's crucial to clearly define the unit of analysis, as it shapes the qualitative data analysis process by allowing the researcher to analyze a particular case and synthesize analysis across multiple case studies to draw conclusions.

Argumentation

This refers to the inferential model that allows researchers to draw conclusions from the data. The researcher needs to ensure that there is a clear link between the data, the propositions (if any), and the conclusions drawn. This argumentation is what enables the researcher to make valid and credible inferences about the phenomenon under study.

Understanding and carefully considering these elements in the design phase of a case study can significantly enhance the quality of the research. It can help ensure that the study is methodologically sound and its findings contribute meaningful insights about the case.

Ready to jumpstart your research with ATLAS.ti?

Conceptualize your research project with our intuitive data analysis interface. Download a free trial today.

Conducting a case study involves several steps, from defining the research question and selecting the case to collecting and analyzing data . This section outlines these key stages, providing a practical guide on how to conduct case study research.

Defining the research question

The first step in case study research is defining a clear, focused research question. This question should guide the entire research process, from case selection to analysis. It's crucial to ensure that the research question is suitable for a case study approach. Typically, such questions are exploratory or descriptive in nature and focus on understanding a phenomenon within its real-life context.

Selecting and defining the case

The selection of the case should be based on the research question and the objectives of the study. It involves choosing a unique example or a set of examples that provide rich, in-depth data about the phenomenon under investigation. After selecting the case, it's crucial to define it clearly, setting the boundaries of the case, including the time period and the specific context.

Previous research can help guide the case study design. When considering a case study, an example of a case could be taken from previous case study research and used to define cases in a new research inquiry. Considering recently published examples can help understand how to select and define cases effectively.

Developing a detailed case study protocol

A case study protocol outlines the procedures and general rules to be followed during the case study. This includes the data collection methods to be used, the sources of data, and the procedures for analysis. Having a detailed case study protocol ensures consistency and reliability in the study.

The protocol should also consider how to work with the people involved in the research context to grant the research team access to collecting data. As mentioned in previous sections of this guide, establishing rapport is an essential component of qualitative research as it shapes the overall potential for collecting and analyzing data.

Collecting data

Gathering data in case study research often involves multiple sources of evidence, including documents, archival records, interviews, observations, and physical artifacts. This allows for a comprehensive understanding of the case. The process for gathering data should be systematic and carefully documented to ensure the reliability and validity of the study.

Analyzing and interpreting data

The next step is analyzing the data. This involves organizing the data , categorizing it into themes or patterns , and interpreting these patterns to answer the research question. The analysis might also involve comparing the findings with prior research or theoretical propositions.

Writing the case study report

The final step is writing the case study report . This should provide a detailed description of the case, the data, the analysis process, and the findings. The report should be clear, organized, and carefully written to ensure that the reader can understand the case and the conclusions drawn from it.

Each of these steps is crucial in ensuring that the case study research is rigorous, reliable, and provides valuable insights about the case.

The type, depth, and quality of data in your study can significantly influence the validity and utility of the study. In case study research, data is usually collected from multiple sources to provide a comprehensive and nuanced understanding of the case. This section will outline the various methods of collecting data used in case study research and discuss considerations for ensuring the quality of the data.

Interviews are a common method of gathering data in case study research. They can provide rich, in-depth data about the perspectives, experiences, and interpretations of the individuals involved in the case. Interviews can be structured , semi-structured , or unstructured , depending on the research question and the degree of flexibility needed.

Observations

Observations involve the researcher observing the case in its natural setting, providing first-hand information about the case and its context. Observations can provide data that might not be revealed in interviews or documents, such as non-verbal cues or contextual information.

Documents and artifacts

Documents and archival records provide a valuable source of data in case study research. They can include reports, letters, memos, meeting minutes, email correspondence, and various public and private documents related to the case.

case study data

These records can provide historical context, corroborate evidence from other sources, and offer insights into the case that might not be apparent from interviews or observations.

Physical artifacts refer to any physical evidence related to the case, such as tools, products, or physical environments. These artifacts can provide tangible insights into the case, complementing the data gathered from other sources.

Ensuring the quality of data collection

Determining the quality of data in case study research requires careful planning and execution. It's crucial to ensure that the data is reliable, accurate, and relevant to the research question. This involves selecting appropriate methods of collecting data, properly training interviewers or observers, and systematically recording and storing the data. It also includes considering ethical issues related to collecting and handling data, such as obtaining informed consent and ensuring the privacy and confidentiality of the participants.

Data analysis

Analyzing case study research involves making sense of the rich, detailed data to answer the research question. This process can be challenging due to the volume and complexity of case study data. However, a systematic and rigorous approach to analysis can ensure that the findings are credible and meaningful. This section outlines the main steps and considerations in analyzing data in case study research.

Organizing the data

The first step in the analysis is organizing the data. This involves sorting the data into manageable sections, often according to the data source or the theme. This step can also involve transcribing interviews, digitizing physical artifacts, or organizing observational data.

Categorizing and coding the data

Once the data is organized, the next step is to categorize or code the data. This involves identifying common themes, patterns, or concepts in the data and assigning codes to relevant data segments. Coding can be done manually or with the help of software tools, and in either case, qualitative analysis software can greatly facilitate the entire coding process. Coding helps to reduce the data to a set of themes or categories that can be more easily analyzed.

Identifying patterns and themes

After coding the data, the researcher looks for patterns or themes in the coded data. This involves comparing and contrasting the codes and looking for relationships or patterns among them. The identified patterns and themes should help answer the research question.

Interpreting the data

Once patterns and themes have been identified, the next step is to interpret these findings. This involves explaining what the patterns or themes mean in the context of the research question and the case. This interpretation should be grounded in the data, but it can also involve drawing on theoretical concepts or prior research.

Verification of the data

The last step in the analysis is verification. This involves checking the accuracy and consistency of the analysis process and confirming that the findings are supported by the data. This can involve re-checking the original data, checking the consistency of codes, or seeking feedback from research participants or peers.

Like any research method , case study research has its strengths and limitations. Researchers must be aware of these, as they can influence the design, conduct, and interpretation of the study.

Understanding the strengths and limitations of case study research can also guide researchers in deciding whether this approach is suitable for their research question . This section outlines some of the key strengths and limitations of case study research.

Benefits include the following:

  • Rich, detailed data: One of the main strengths of case study research is that it can generate rich, detailed data about the case. This can provide a deep understanding of the case and its context, which can be valuable in exploring complex phenomena.
  • Flexibility: Case study research is flexible in terms of design , data collection , and analysis . A sufficient degree of flexibility allows the researcher to adapt the study according to the case and the emerging findings.
  • Real-world context: Case study research involves studying the case in its real-world context, which can provide valuable insights into the interplay between the case and its context.
  • Multiple sources of evidence: Case study research often involves collecting data from multiple sources , which can enhance the robustness and validity of the findings.

On the other hand, researchers should consider the following limitations:

  • Generalizability: A common criticism of case study research is that its findings might not be generalizable to other cases due to the specificity and uniqueness of each case.
  • Time and resource intensive: Case study research can be time and resource intensive due to the depth of the investigation and the amount of collected data.
  • Complexity of analysis: The rich, detailed data generated in case study research can make analyzing the data challenging.
  • Subjectivity: Given the nature of case study research, there may be a higher degree of subjectivity in interpreting the data , so researchers need to reflect on this and transparently convey to audiences how the research was conducted.

Being aware of these strengths and limitations can help researchers design and conduct case study research effectively and interpret and report the findings appropriately.

case study data

Ready to analyze your data with ATLAS.ti?

See how our intuitive software can draw key insights from your data with a free trial today.

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, automatically generate references for free.

  • Knowledge Base
  • Methodology
  • Case Study | Definition, Examples & Methods

Case Study | Definition, Examples & Methods

Published on 5 May 2022 by Shona McCombes . Revised on 30 January 2023.

A case study is a detailed study of a specific subject, such as a person, group, place, event, organisation, or phenomenon. Case studies are commonly used in social, educational, clinical, and business research.

A case study research design usually involves qualitative methods , but quantitative methods are sometimes also used. Case studies are good for describing , comparing, evaluating, and understanding different aspects of a research problem .

Table of contents

When to do a case study, step 1: select a case, step 2: build a theoretical framework, step 3: collect your data, step 4: describe and analyse the case.

A case study is an appropriate research design when you want to gain concrete, contextual, in-depth knowledge about a specific real-world subject. It allows you to explore the key characteristics, meanings, and implications of the case.

Case studies are often a good choice in a thesis or dissertation . They keep your project focused and manageable when you don’t have the time or resources to do large-scale research.

You might use just one complex case study where you explore a single subject in depth, or conduct multiple case studies to compare and illuminate different aspects of your research problem.

Prevent plagiarism, run a free check.

Once you have developed your problem statement and research questions , you should be ready to choose the specific case that you want to focus on. A good case study should have the potential to:

  • Provide new or unexpected insights into the subject
  • Challenge or complicate existing assumptions and theories
  • Propose practical courses of action to resolve a problem
  • Open up new directions for future research

Unlike quantitative or experimental research, a strong case study does not require a random or representative sample. In fact, case studies often deliberately focus on unusual, neglected, or outlying cases which may shed new light on the research problem.

If you find yourself aiming to simultaneously investigate and solve an issue, consider conducting action research . As its name suggests, action research conducts research and takes action at the same time, and is highly iterative and flexible. 

However, you can also choose a more common or representative case to exemplify a particular category, experience, or phenomenon.

While case studies focus more on concrete details than general theories, they should usually have some connection with theory in the field. This way the case study is not just an isolated description, but is integrated into existing knowledge about the topic. It might aim to:

  • Exemplify a theory by showing how it explains the case under investigation
  • Expand on a theory by uncovering new concepts and ideas that need to be incorporated
  • Challenge a theory by exploring an outlier case that doesn’t fit with established assumptions

To ensure that your analysis of the case has a solid academic grounding, you should conduct a literature review of sources related to the topic and develop a theoretical framework . This means identifying key concepts and theories to guide your analysis and interpretation.

There are many different research methods you can use to collect data on your subject. Case studies tend to focus on qualitative data using methods such as interviews, observations, and analysis of primary and secondary sources (e.g., newspaper articles, photographs, official records). Sometimes a case study will also collect quantitative data .

The aim is to gain as thorough an understanding as possible of the case and its context.

In writing up the case study, you need to bring together all the relevant aspects to give as complete a picture as possible of the subject.

How you report your findings depends on the type of research you are doing. Some case studies are structured like a standard scientific paper or thesis, with separate sections or chapters for the methods , results , and discussion .

Others are written in a more narrative style, aiming to explore the case from various angles and analyse its meanings and implications (for example, by using textual analysis or discourse analysis ).

In all cases, though, make sure to give contextual details about the case, connect it back to the literature and theory, and discuss how it fits into wider patterns or debates.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the ‘Cite this Scribbr article’ button to automatically add the citation to our free Reference Generator.

McCombes, S. (2023, January 30). Case Study | Definition, Examples & Methods. Scribbr. Retrieved 6 May 2024, from https://www.scribbr.co.uk/research-methods/case-studies/

Is this article helpful?

Shona McCombes

Shona McCombes

Other students also liked, correlational research | guide, design & examples, a quick guide to experimental design | 5 steps & examples, descriptive research design | definition, methods & examples.

  • Privacy Policy

Research Method

Home » Case Study – Methods, Examples and Guide

Case Study – Methods, Examples and Guide

Table of Contents

Case Study Research

A case study is a research method that involves an in-depth examination and analysis of a particular phenomenon or case, such as an individual, organization, community, event, or situation.

It is a qualitative research approach that aims to provide a detailed and comprehensive understanding of the case being studied. Case studies typically involve multiple sources of data, including interviews, observations, documents, and artifacts, which are analyzed using various techniques, such as content analysis, thematic analysis, and grounded theory. The findings of a case study are often used to develop theories, inform policy or practice, or generate new research questions.

Types of Case Study

Types and Methods of Case Study are as follows:

Single-Case Study

A single-case study is an in-depth analysis of a single case. This type of case study is useful when the researcher wants to understand a specific phenomenon in detail.

For Example , A researcher might conduct a single-case study on a particular individual to understand their experiences with a particular health condition or a specific organization to explore their management practices. The researcher collects data from multiple sources, such as interviews, observations, and documents, and uses various techniques to analyze the data, such as content analysis or thematic analysis. The findings of a single-case study are often used to generate new research questions, develop theories, or inform policy or practice.

Multiple-Case Study

A multiple-case study involves the analysis of several cases that are similar in nature. This type of case study is useful when the researcher wants to identify similarities and differences between the cases.

For Example, a researcher might conduct a multiple-case study on several companies to explore the factors that contribute to their success or failure. The researcher collects data from each case, compares and contrasts the findings, and uses various techniques to analyze the data, such as comparative analysis or pattern-matching. The findings of a multiple-case study can be used to develop theories, inform policy or practice, or generate new research questions.

Exploratory Case Study

An exploratory case study is used to explore a new or understudied phenomenon. This type of case study is useful when the researcher wants to generate hypotheses or theories about the phenomenon.

For Example, a researcher might conduct an exploratory case study on a new technology to understand its potential impact on society. The researcher collects data from multiple sources, such as interviews, observations, and documents, and uses various techniques to analyze the data, such as grounded theory or content analysis. The findings of an exploratory case study can be used to generate new research questions, develop theories, or inform policy or practice.

Descriptive Case Study

A descriptive case study is used to describe a particular phenomenon in detail. This type of case study is useful when the researcher wants to provide a comprehensive account of the phenomenon.

For Example, a researcher might conduct a descriptive case study on a particular community to understand its social and economic characteristics. The researcher collects data from multiple sources, such as interviews, observations, and documents, and uses various techniques to analyze the data, such as content analysis or thematic analysis. The findings of a descriptive case study can be used to inform policy or practice or generate new research questions.

Instrumental Case Study

An instrumental case study is used to understand a particular phenomenon that is instrumental in achieving a particular goal. This type of case study is useful when the researcher wants to understand the role of the phenomenon in achieving the goal.

For Example, a researcher might conduct an instrumental case study on a particular policy to understand its impact on achieving a particular goal, such as reducing poverty. The researcher collects data from multiple sources, such as interviews, observations, and documents, and uses various techniques to analyze the data, such as content analysis or thematic analysis. The findings of an instrumental case study can be used to inform policy or practice or generate new research questions.

Case Study Data Collection Methods

Here are some common data collection methods for case studies:

Interviews involve asking questions to individuals who have knowledge or experience relevant to the case study. Interviews can be structured (where the same questions are asked to all participants) or unstructured (where the interviewer follows up on the responses with further questions). Interviews can be conducted in person, over the phone, or through video conferencing.

Observations

Observations involve watching and recording the behavior and activities of individuals or groups relevant to the case study. Observations can be participant (where the researcher actively participates in the activities) or non-participant (where the researcher observes from a distance). Observations can be recorded using notes, audio or video recordings, or photographs.

Documents can be used as a source of information for case studies. Documents can include reports, memos, emails, letters, and other written materials related to the case study. Documents can be collected from the case study participants or from public sources.

Surveys involve asking a set of questions to a sample of individuals relevant to the case study. Surveys can be administered in person, over the phone, through mail or email, or online. Surveys can be used to gather information on attitudes, opinions, or behaviors related to the case study.

Artifacts are physical objects relevant to the case study. Artifacts can include tools, equipment, products, or other objects that provide insights into the case study phenomenon.

How to conduct Case Study Research

Conducting a case study research involves several steps that need to be followed to ensure the quality and rigor of the study. Here are the steps to conduct case study research:

  • Define the research questions: The first step in conducting a case study research is to define the research questions. The research questions should be specific, measurable, and relevant to the case study phenomenon under investigation.
  • Select the case: The next step is to select the case or cases to be studied. The case should be relevant to the research questions and should provide rich and diverse data that can be used to answer the research questions.
  • Collect data: Data can be collected using various methods, such as interviews, observations, documents, surveys, and artifacts. The data collection method should be selected based on the research questions and the nature of the case study phenomenon.
  • Analyze the data: The data collected from the case study should be analyzed using various techniques, such as content analysis, thematic analysis, or grounded theory. The analysis should be guided by the research questions and should aim to provide insights and conclusions relevant to the research questions.
  • Draw conclusions: The conclusions drawn from the case study should be based on the data analysis and should be relevant to the research questions. The conclusions should be supported by evidence and should be clearly stated.
  • Validate the findings: The findings of the case study should be validated by reviewing the data and the analysis with participants or other experts in the field. This helps to ensure the validity and reliability of the findings.
  • Write the report: The final step is to write the report of the case study research. The report should provide a clear description of the case study phenomenon, the research questions, the data collection methods, the data analysis, the findings, and the conclusions. The report should be written in a clear and concise manner and should follow the guidelines for academic writing.

Examples of Case Study

Here are some examples of case study research:

  • The Hawthorne Studies : Conducted between 1924 and 1932, the Hawthorne Studies were a series of case studies conducted by Elton Mayo and his colleagues to examine the impact of work environment on employee productivity. The studies were conducted at the Hawthorne Works plant of the Western Electric Company in Chicago and included interviews, observations, and experiments.
  • The Stanford Prison Experiment: Conducted in 1971, the Stanford Prison Experiment was a case study conducted by Philip Zimbardo to examine the psychological effects of power and authority. The study involved simulating a prison environment and assigning participants to the role of guards or prisoners. The study was controversial due to the ethical issues it raised.
  • The Challenger Disaster: The Challenger Disaster was a case study conducted to examine the causes of the Space Shuttle Challenger explosion in 1986. The study included interviews, observations, and analysis of data to identify the technical, organizational, and cultural factors that contributed to the disaster.
  • The Enron Scandal: The Enron Scandal was a case study conducted to examine the causes of the Enron Corporation’s bankruptcy in 2001. The study included interviews, analysis of financial data, and review of documents to identify the accounting practices, corporate culture, and ethical issues that led to the company’s downfall.
  • The Fukushima Nuclear Disaster : The Fukushima Nuclear Disaster was a case study conducted to examine the causes of the nuclear accident that occurred at the Fukushima Daiichi Nuclear Power Plant in Japan in 2011. The study included interviews, analysis of data, and review of documents to identify the technical, organizational, and cultural factors that contributed to the disaster.

Application of Case Study

Case studies have a wide range of applications across various fields and industries. Here are some examples:

Business and Management

Case studies are widely used in business and management to examine real-life situations and develop problem-solving skills. Case studies can help students and professionals to develop a deep understanding of business concepts, theories, and best practices.

Case studies are used in healthcare to examine patient care, treatment options, and outcomes. Case studies can help healthcare professionals to develop critical thinking skills, diagnose complex medical conditions, and develop effective treatment plans.

Case studies are used in education to examine teaching and learning practices. Case studies can help educators to develop effective teaching strategies, evaluate student progress, and identify areas for improvement.

Social Sciences

Case studies are widely used in social sciences to examine human behavior, social phenomena, and cultural practices. Case studies can help researchers to develop theories, test hypotheses, and gain insights into complex social issues.

Law and Ethics

Case studies are used in law and ethics to examine legal and ethical dilemmas. Case studies can help lawyers, policymakers, and ethical professionals to develop critical thinking skills, analyze complex cases, and make informed decisions.

Purpose of Case Study

The purpose of a case study is to provide a detailed analysis of a specific phenomenon, issue, or problem in its real-life context. A case study is a qualitative research method that involves the in-depth exploration and analysis of a particular case, which can be an individual, group, organization, event, or community.

The primary purpose of a case study is to generate a comprehensive and nuanced understanding of the case, including its history, context, and dynamics. Case studies can help researchers to identify and examine the underlying factors, processes, and mechanisms that contribute to the case and its outcomes. This can help to develop a more accurate and detailed understanding of the case, which can inform future research, practice, or policy.

Case studies can also serve other purposes, including:

  • Illustrating a theory or concept: Case studies can be used to illustrate and explain theoretical concepts and frameworks, providing concrete examples of how they can be applied in real-life situations.
  • Developing hypotheses: Case studies can help to generate hypotheses about the causal relationships between different factors and outcomes, which can be tested through further research.
  • Providing insight into complex issues: Case studies can provide insights into complex and multifaceted issues, which may be difficult to understand through other research methods.
  • Informing practice or policy: Case studies can be used to inform practice or policy by identifying best practices, lessons learned, or areas for improvement.

Advantages of Case Study Research

There are several advantages of case study research, including:

  • In-depth exploration: Case study research allows for a detailed exploration and analysis of a specific phenomenon, issue, or problem in its real-life context. This can provide a comprehensive understanding of the case and its dynamics, which may not be possible through other research methods.
  • Rich data: Case study research can generate rich and detailed data, including qualitative data such as interviews, observations, and documents. This can provide a nuanced understanding of the case and its complexity.
  • Holistic perspective: Case study research allows for a holistic perspective of the case, taking into account the various factors, processes, and mechanisms that contribute to the case and its outcomes. This can help to develop a more accurate and comprehensive understanding of the case.
  • Theory development: Case study research can help to develop and refine theories and concepts by providing empirical evidence and concrete examples of how they can be applied in real-life situations.
  • Practical application: Case study research can inform practice or policy by identifying best practices, lessons learned, or areas for improvement.
  • Contextualization: Case study research takes into account the specific context in which the case is situated, which can help to understand how the case is influenced by the social, cultural, and historical factors of its environment.

Limitations of Case Study Research

There are several limitations of case study research, including:

  • Limited generalizability : Case studies are typically focused on a single case or a small number of cases, which limits the generalizability of the findings. The unique characteristics of the case may not be applicable to other contexts or populations, which may limit the external validity of the research.
  • Biased sampling: Case studies may rely on purposive or convenience sampling, which can introduce bias into the sample selection process. This may limit the representativeness of the sample and the generalizability of the findings.
  • Subjectivity: Case studies rely on the interpretation of the researcher, which can introduce subjectivity into the analysis. The researcher’s own biases, assumptions, and perspectives may influence the findings, which may limit the objectivity of the research.
  • Limited control: Case studies are typically conducted in naturalistic settings, which limits the control that the researcher has over the environment and the variables being studied. This may limit the ability to establish causal relationships between variables.
  • Time-consuming: Case studies can be time-consuming to conduct, as they typically involve a detailed exploration and analysis of a specific case. This may limit the feasibility of conducting multiple case studies or conducting case studies in a timely manner.
  • Resource-intensive: Case studies may require significant resources, including time, funding, and expertise. This may limit the ability of researchers to conduct case studies in resource-constrained settings.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Questionnaire

Questionnaire – Definition, Types, and Examples

Observational Research

Observational Research – Methods and Guide

Quantitative Research

Quantitative Research – Methods, Types and...

Qualitative Research Methods

Qualitative Research Methods

Explanatory Research

Explanatory Research – Types, Methods, Guide

Survey Research

Survey Research – Types, Methods, Examples

Organizing Your Social Sciences Research Assignments

  • Annotated Bibliography
  • Analyzing a Scholarly Journal Article
  • Group Presentations
  • Dealing with Nervousness
  • Using Visual Aids
  • Grading Someone Else's Paper
  • Types of Structured Group Activities
  • Group Project Survival Skills
  • Leading a Class Discussion
  • Multiple Book Review Essay
  • Reviewing Collected Works
  • Writing a Case Analysis Paper
  • Writing a Case Study
  • About Informed Consent
  • Writing Field Notes
  • Writing a Policy Memo
  • Writing a Reflective Paper
  • Writing a Research Proposal
  • Generative AI and Writing
  • Acknowledgments

A case study research paper examines a person, place, event, condition, phenomenon, or other type of subject of analysis in order to extrapolate  key themes and results that help predict future trends, illuminate previously hidden issues that can be applied to practice, and/or provide a means for understanding an important research problem with greater clarity. A case study research paper usually examines a single subject of analysis, but case study papers can also be designed as a comparative investigation that shows relationships between two or more subjects. The methods used to study a case can rest within a quantitative, qualitative, or mixed-method investigative paradigm.

Case Studies. Writing@CSU. Colorado State University; Mills, Albert J. , Gabrielle Durepos, and Eiden Wiebe, editors. Encyclopedia of Case Study Research . Thousand Oaks, CA: SAGE Publications, 2010 ; “What is a Case Study?” In Swanborn, Peter G. Case Study Research: What, Why and How? London: SAGE, 2010.

How to Approach Writing a Case Study Research Paper

General information about how to choose a topic to investigate can be found under the " Choosing a Research Problem " tab in the Organizing Your Social Sciences Research Paper writing guide. Review this page because it may help you identify a subject of analysis that can be investigated using a case study design.

However, identifying a case to investigate involves more than choosing the research problem . A case study encompasses a problem contextualized around the application of in-depth analysis, interpretation, and discussion, often resulting in specific recommendations for action or for improving existing conditions. As Seawright and Gerring note, practical considerations such as time and access to information can influence case selection, but these issues should not be the sole factors used in describing the methodological justification for identifying a particular case to study. Given this, selecting a case includes considering the following:

  • The case represents an unusual or atypical example of a research problem that requires more in-depth analysis? Cases often represent a topic that rests on the fringes of prior investigations because the case may provide new ways of understanding the research problem. For example, if the research problem is to identify strategies to improve policies that support girl's access to secondary education in predominantly Muslim nations, you could consider using Azerbaijan as a case study rather than selecting a more obvious nation in the Middle East. Doing so may reveal important new insights into recommending how governments in other predominantly Muslim nations can formulate policies that support improved access to education for girls.
  • The case provides important insight or illuminate a previously hidden problem? In-depth analysis of a case can be based on the hypothesis that the case study will reveal trends or issues that have not been exposed in prior research or will reveal new and important implications for practice. For example, anecdotal evidence may suggest drug use among homeless veterans is related to their patterns of travel throughout the day. Assuming prior studies have not looked at individual travel choices as a way to study access to illicit drug use, a case study that observes a homeless veteran could reveal how issues of personal mobility choices facilitate regular access to illicit drugs. Note that it is important to conduct a thorough literature review to ensure that your assumption about the need to reveal new insights or previously hidden problems is valid and evidence-based.
  • The case challenges and offers a counter-point to prevailing assumptions? Over time, research on any given topic can fall into a trap of developing assumptions based on outdated studies that are still applied to new or changing conditions or the idea that something should simply be accepted as "common sense," even though the issue has not been thoroughly tested in current practice. A case study analysis may offer an opportunity to gather evidence that challenges prevailing assumptions about a research problem and provide a new set of recommendations applied to practice that have not been tested previously. For example, perhaps there has been a long practice among scholars to apply a particular theory in explaining the relationship between two subjects of analysis. Your case could challenge this assumption by applying an innovative theoretical framework [perhaps borrowed from another discipline] to explore whether this approach offers new ways of understanding the research problem. Taking a contrarian stance is one of the most important ways that new knowledge and understanding develops from existing literature.
  • The case provides an opportunity to pursue action leading to the resolution of a problem? Another way to think about choosing a case to study is to consider how the results from investigating a particular case may result in findings that reveal ways in which to resolve an existing or emerging problem. For example, studying the case of an unforeseen incident, such as a fatal accident at a railroad crossing, can reveal hidden issues that could be applied to preventative measures that contribute to reducing the chance of accidents in the future. In this example, a case study investigating the accident could lead to a better understanding of where to strategically locate additional signals at other railroad crossings so as to better warn drivers of an approaching train, particularly when visibility is hindered by heavy rain, fog, or at night.
  • The case offers a new direction in future research? A case study can be used as a tool for an exploratory investigation that highlights the need for further research about the problem. A case can be used when there are few studies that help predict an outcome or that establish a clear understanding about how best to proceed in addressing a problem. For example, after conducting a thorough literature review [very important!], you discover that little research exists showing the ways in which women contribute to promoting water conservation in rural communities of east central Africa. A case study of how women contribute to saving water in a rural village of Uganda can lay the foundation for understanding the need for more thorough research that documents how women in their roles as cooks and family caregivers think about water as a valuable resource within their community. This example of a case study could also point to the need for scholars to build new theoretical frameworks around the topic [e.g., applying feminist theories of work and family to the issue of water conservation].

Eisenhardt, Kathleen M. “Building Theories from Case Study Research.” Academy of Management Review 14 (October 1989): 532-550; Emmel, Nick. Sampling and Choosing Cases in Qualitative Research: A Realist Approach . Thousand Oaks, CA: SAGE Publications, 2013; Gerring, John. “What Is a Case Study and What Is It Good for?” American Political Science Review 98 (May 2004): 341-354; Mills, Albert J. , Gabrielle Durepos, and Eiden Wiebe, editors. Encyclopedia of Case Study Research . Thousand Oaks, CA: SAGE Publications, 2010; Seawright, Jason and John Gerring. "Case Selection Techniques in Case Study Research." Political Research Quarterly 61 (June 2008): 294-308.

Structure and Writing Style

The purpose of a paper in the social sciences designed around a case study is to thoroughly investigate a subject of analysis in order to reveal a new understanding about the research problem and, in so doing, contributing new knowledge to what is already known from previous studies. In applied social sciences disciplines [e.g., education, social work, public administration, etc.], case studies may also be used to reveal best practices, highlight key programs, or investigate interesting aspects of professional work.

In general, the structure of a case study research paper is not all that different from a standard college-level research paper. However, there are subtle differences you should be aware of. Here are the key elements to organizing and writing a case study research paper.

I.  Introduction

As with any research paper, your introduction should serve as a roadmap for your readers to ascertain the scope and purpose of your study . The introduction to a case study research paper, however, should not only describe the research problem and its significance, but you should also succinctly describe why the case is being used and how it relates to addressing the problem. The two elements should be linked. With this in mind, a good introduction answers these four questions:

  • What is being studied? Describe the research problem and describe the subject of analysis [the case] you have chosen to address the problem. Explain how they are linked and what elements of the case will help to expand knowledge and understanding about the problem.
  • Why is this topic important to investigate? Describe the significance of the research problem and state why a case study design and the subject of analysis that the paper is designed around is appropriate in addressing the problem.
  • What did we know about this topic before I did this study? Provide background that helps lead the reader into the more in-depth literature review to follow. If applicable, summarize prior case study research applied to the research problem and why it fails to adequately address the problem. Describe why your case will be useful. If no prior case studies have been used to address the research problem, explain why you have selected this subject of analysis.
  • How will this study advance new knowledge or new ways of understanding? Explain why your case study will be suitable in helping to expand knowledge and understanding about the research problem.

Each of these questions should be addressed in no more than a few paragraphs. Exceptions to this can be when you are addressing a complex research problem or subject of analysis that requires more in-depth background information.

II.  Literature Review

The literature review for a case study research paper is generally structured the same as it is for any college-level research paper. The difference, however, is that the literature review is focused on providing background information and  enabling historical interpretation of the subject of analysis in relation to the research problem the case is intended to address . This includes synthesizing studies that help to:

  • Place relevant works in the context of their contribution to understanding the case study being investigated . This would involve summarizing studies that have used a similar subject of analysis to investigate the research problem. If there is literature using the same or a very similar case to study, you need to explain why duplicating past research is important [e.g., conditions have changed; prior studies were conducted long ago, etc.].
  • Describe the relationship each work has to the others under consideration that informs the reader why this case is applicable . Your literature review should include a description of any works that support using the case to investigate the research problem and the underlying research questions.
  • Identify new ways to interpret prior research using the case study . If applicable, review any research that has examined the research problem using a different research design. Explain how your use of a case study design may reveal new knowledge or a new perspective or that can redirect research in an important new direction.
  • Resolve conflicts amongst seemingly contradictory previous studies . This refers to synthesizing any literature that points to unresolved issues of concern about the research problem and describing how the subject of analysis that forms the case study can help resolve these existing contradictions.
  • Point the way in fulfilling a need for additional research . Your review should examine any literature that lays a foundation for understanding why your case study design and the subject of analysis around which you have designed your study may reveal a new way of approaching the research problem or offer a perspective that points to the need for additional research.
  • Expose any gaps that exist in the literature that the case study could help to fill . Summarize any literature that not only shows how your subject of analysis contributes to understanding the research problem, but how your case contributes to a new way of understanding the problem that prior research has failed to do.
  • Locate your own research within the context of existing literature [very important!] . Collectively, your literature review should always place your case study within the larger domain of prior research about the problem. The overarching purpose of reviewing pertinent literature in a case study paper is to demonstrate that you have thoroughly identified and synthesized prior studies in relation to explaining the relevance of the case in addressing the research problem.

III.  Method

In this section, you explain why you selected a particular case [i.e., subject of analysis] and the strategy you used to identify and ultimately decide that your case was appropriate in addressing the research problem. The way you describe the methods used varies depending on the type of subject of analysis that constitutes your case study.

If your subject of analysis is an incident or event . In the social and behavioral sciences, the event or incident that represents the case to be studied is usually bounded by time and place, with a clear beginning and end and with an identifiable location or position relative to its surroundings. The subject of analysis can be a rare or critical event or it can focus on a typical or regular event. The purpose of studying a rare event is to illuminate new ways of thinking about the broader research problem or to test a hypothesis. Critical incident case studies must describe the method by which you identified the event and explain the process by which you determined the validity of this case to inform broader perspectives about the research problem or to reveal new findings. However, the event does not have to be a rare or uniquely significant to support new thinking about the research problem or to challenge an existing hypothesis. For example, Walo, Bull, and Breen conducted a case study to identify and evaluate the direct and indirect economic benefits and costs of a local sports event in the City of Lismore, New South Wales, Australia. The purpose of their study was to provide new insights from measuring the impact of a typical local sports event that prior studies could not measure well because they focused on large "mega-events." Whether the event is rare or not, the methods section should include an explanation of the following characteristics of the event: a) when did it take place; b) what were the underlying circumstances leading to the event; and, c) what were the consequences of the event in relation to the research problem.

If your subject of analysis is a person. Explain why you selected this particular individual to be studied and describe what experiences they have had that provide an opportunity to advance new understandings about the research problem. Mention any background about this person which might help the reader understand the significance of their experiences that make them worthy of study. This includes describing the relationships this person has had with other people, institutions, and/or events that support using them as the subject for a case study research paper. It is particularly important to differentiate the person as the subject of analysis from others and to succinctly explain how the person relates to examining the research problem [e.g., why is one politician in a particular local election used to show an increase in voter turnout from any other candidate running in the election]. Note that these issues apply to a specific group of people used as a case study unit of analysis [e.g., a classroom of students].

If your subject of analysis is a place. In general, a case study that investigates a place suggests a subject of analysis that is unique or special in some way and that this uniqueness can be used to build new understanding or knowledge about the research problem. A case study of a place must not only describe its various attributes relevant to the research problem [e.g., physical, social, historical, cultural, economic, political], but you must state the method by which you determined that this place will illuminate new understandings about the research problem. It is also important to articulate why a particular place as the case for study is being used if similar places also exist [i.e., if you are studying patterns of homeless encampments of veterans in open spaces, explain why you are studying Echo Park in Los Angeles rather than Griffith Park?]. If applicable, describe what type of human activity involving this place makes it a good choice to study [e.g., prior research suggests Echo Park has more homeless veterans].

If your subject of analysis is a phenomenon. A phenomenon refers to a fact, occurrence, or circumstance that can be studied or observed but with the cause or explanation to be in question. In this sense, a phenomenon that forms your subject of analysis can encompass anything that can be observed or presumed to exist but is not fully understood. In the social and behavioral sciences, the case usually focuses on human interaction within a complex physical, social, economic, cultural, or political system. For example, the phenomenon could be the observation that many vehicles used by ISIS fighters are small trucks with English language advertisements on them. The research problem could be that ISIS fighters are difficult to combat because they are highly mobile. The research questions could be how and by what means are these vehicles used by ISIS being supplied to the militants and how might supply lines to these vehicles be cut off? How might knowing the suppliers of these trucks reveal larger networks of collaborators and financial support? A case study of a phenomenon most often encompasses an in-depth analysis of a cause and effect that is grounded in an interactive relationship between people and their environment in some way.

NOTE:   The choice of the case or set of cases to study cannot appear random. Evidence that supports the method by which you identified and chose your subject of analysis should clearly support investigation of the research problem and linked to key findings from your literature review. Be sure to cite any studies that helped you determine that the case you chose was appropriate for examining the problem.

IV.  Discussion

The main elements of your discussion section are generally the same as any research paper, but centered around interpreting and drawing conclusions about the key findings from your analysis of the case study. Note that a general social sciences research paper may contain a separate section to report findings. However, in a paper designed around a case study, it is common to combine a description of the results with the discussion about their implications. The objectives of your discussion section should include the following:

Reiterate the Research Problem/State the Major Findings Briefly reiterate the research problem you are investigating and explain why the subject of analysis around which you designed the case study were used. You should then describe the findings revealed from your study of the case using direct, declarative, and succinct proclamation of the study results. Highlight any findings that were unexpected or especially profound.

Explain the Meaning of the Findings and Why They are Important Systematically explain the meaning of your case study findings and why you believe they are important. Begin this part of the section by repeating what you consider to be your most important or surprising finding first, then systematically review each finding. Be sure to thoroughly extrapolate what your analysis of the case can tell the reader about situations or conditions beyond the actual case that was studied while, at the same time, being careful not to misconstrue or conflate a finding that undermines the external validity of your conclusions.

Relate the Findings to Similar Studies No study in the social sciences is so novel or possesses such a restricted focus that it has absolutely no relation to previously published research. The discussion section should relate your case study results to those found in other studies, particularly if questions raised from prior studies served as the motivation for choosing your subject of analysis. This is important because comparing and contrasting the findings of other studies helps support the overall importance of your results and it highlights how and in what ways your case study design and the subject of analysis differs from prior research about the topic.

Consider Alternative Explanations of the Findings Remember that the purpose of social science research is to discover and not to prove. When writing the discussion section, you should carefully consider all possible explanations revealed by the case study results, rather than just those that fit your hypothesis or prior assumptions and biases. Be alert to what the in-depth analysis of the case may reveal about the research problem, including offering a contrarian perspective to what scholars have stated in prior research if that is how the findings can be interpreted from your case.

Acknowledge the Study's Limitations You can state the study's limitations in the conclusion section of your paper but describing the limitations of your subject of analysis in the discussion section provides an opportunity to identify the limitations and explain why they are not significant. This part of the discussion section should also note any unanswered questions or issues your case study could not address. More detailed information about how to document any limitations to your research can be found here .

Suggest Areas for Further Research Although your case study may offer important insights about the research problem, there are likely additional questions related to the problem that remain unanswered or findings that unexpectedly revealed themselves as a result of your in-depth analysis of the case. Be sure that the recommendations for further research are linked to the research problem and that you explain why your recommendations are valid in other contexts and based on the original assumptions of your study.

V.  Conclusion

As with any research paper, you should summarize your conclusion in clear, simple language; emphasize how the findings from your case study differs from or supports prior research and why. Do not simply reiterate the discussion section. Provide a synthesis of key findings presented in the paper to show how these converge to address the research problem. If you haven't already done so in the discussion section, be sure to document the limitations of your case study and any need for further research.

The function of your paper's conclusion is to: 1) reiterate the main argument supported by the findings from your case study; 2) state clearly the context, background, and necessity of pursuing the research problem using a case study design in relation to an issue, controversy, or a gap found from reviewing the literature; and, 3) provide a place to persuasively and succinctly restate the significance of your research problem, given that the reader has now been presented with in-depth information about the topic.

Consider the following points to help ensure your conclusion is appropriate:

  • If the argument or purpose of your paper is complex, you may need to summarize these points for your reader.
  • If prior to your conclusion, you have not yet explained the significance of your findings or if you are proceeding inductively, use the conclusion of your paper to describe your main points and explain their significance.
  • Move from a detailed to a general level of consideration of the case study's findings that returns the topic to the context provided by the introduction or within a new context that emerges from your case study findings.

Note that, depending on the discipline you are writing in or the preferences of your professor, the concluding paragraph may contain your final reflections on the evidence presented as it applies to practice or on the essay's central research problem. However, the nature of being introspective about the subject of analysis you have investigated will depend on whether you are explicitly asked to express your observations in this way.

Problems to Avoid

Overgeneralization One of the goals of a case study is to lay a foundation for understanding broader trends and issues applied to similar circumstances. However, be careful when drawing conclusions from your case study. They must be evidence-based and grounded in the results of the study; otherwise, it is merely speculation. Looking at a prior example, it would be incorrect to state that a factor in improving girls access to education in Azerbaijan and the policy implications this may have for improving access in other Muslim nations is due to girls access to social media if there is no documentary evidence from your case study to indicate this. There may be anecdotal evidence that retention rates were better for girls who were engaged with social media, but this observation would only point to the need for further research and would not be a definitive finding if this was not a part of your original research agenda.

Failure to Document Limitations No case is going to reveal all that needs to be understood about a research problem. Therefore, just as you have to clearly state the limitations of a general research study , you must describe the specific limitations inherent in the subject of analysis. For example, the case of studying how women conceptualize the need for water conservation in a village in Uganda could have limited application in other cultural contexts or in areas where fresh water from rivers or lakes is plentiful and, therefore, conservation is understood more in terms of managing access rather than preserving access to a scarce resource.

Failure to Extrapolate All Possible Implications Just as you don't want to over-generalize from your case study findings, you also have to be thorough in the consideration of all possible outcomes or recommendations derived from your findings. If you do not, your reader may question the validity of your analysis, particularly if you failed to document an obvious outcome from your case study research. For example, in the case of studying the accident at the railroad crossing to evaluate where and what types of warning signals should be located, you failed to take into consideration speed limit signage as well as warning signals. When designing your case study, be sure you have thoroughly addressed all aspects of the problem and do not leave gaps in your analysis that leave the reader questioning the results.

Case Studies. Writing@CSU. Colorado State University; Gerring, John. Case Study Research: Principles and Practices . New York: Cambridge University Press, 2007; Merriam, Sharan B. Qualitative Research and Case Study Applications in Education . Rev. ed. San Francisco, CA: Jossey-Bass, 1998; Miller, Lisa L. “The Use of Case Studies in Law and Social Science Research.” Annual Review of Law and Social Science 14 (2018): TBD; Mills, Albert J., Gabrielle Durepos, and Eiden Wiebe, editors. Encyclopedia of Case Study Research . Thousand Oaks, CA: SAGE Publications, 2010; Putney, LeAnn Grogan. "Case Study." In Encyclopedia of Research Design , Neil J. Salkind, editor. (Thousand Oaks, CA: SAGE Publications, 2010), pp. 116-120; Simons, Helen. Case Study Research in Practice . London: SAGE Publications, 2009;  Kratochwill,  Thomas R. and Joel R. Levin, editors. Single-Case Research Design and Analysis: New Development for Psychology and Education .  Hilldsale, NJ: Lawrence Erlbaum Associates, 1992; Swanborn, Peter G. Case Study Research: What, Why and How? London : SAGE, 2010; Yin, Robert K. Case Study Research: Design and Methods . 6th edition. Los Angeles, CA, SAGE Publications, 2014; Walo, Maree, Adrian Bull, and Helen Breen. “Achieving Economic Benefits at Local Events: A Case Study of a Local Sports Event.” Festival Management and Event Tourism 4 (1996): 95-106.

Writing Tip

At Least Five Misconceptions about Case Study Research

Social science case studies are often perceived as limited in their ability to create new knowledge because they are not randomly selected and findings cannot be generalized to larger populations. Flyvbjerg examines five misunderstandings about case study research and systematically "corrects" each one. To quote, these are:

Misunderstanding 1 :  General, theoretical [context-independent] knowledge is more valuable than concrete, practical [context-dependent] knowledge. Misunderstanding 2 :  One cannot generalize on the basis of an individual case; therefore, the case study cannot contribute to scientific development. Misunderstanding 3 :  The case study is most useful for generating hypotheses; that is, in the first stage of a total research process, whereas other methods are more suitable for hypotheses testing and theory building. Misunderstanding 4 :  The case study contains a bias toward verification, that is, a tendency to confirm the researcher’s preconceived notions. Misunderstanding 5 :  It is often difficult to summarize and develop general propositions and theories on the basis of specific case studies [p. 221].

While writing your paper, think introspectively about how you addressed these misconceptions because to do so can help you strengthen the validity and reliability of your research by clarifying issues of case selection, the testing and challenging of existing assumptions, the interpretation of key findings, and the summation of case outcomes. Think of a case study research paper as a complete, in-depth narrative about the specific properties and key characteristics of your subject of analysis applied to the research problem.

Flyvbjerg, Bent. “Five Misunderstandings About Case-Study Research.” Qualitative Inquiry 12 (April 2006): 219-245.

  • << Previous: Writing a Case Analysis Paper
  • Next: Writing a Field Report >>
  • Last Updated: May 7, 2024 9:45 AM
  • URL: https://libguides.usc.edu/writingguide/assignments

Academic Success Center

Research Writing and Analysis

  • NVivo Group and Study Sessions
  • SPSS This link opens in a new window
  • Statistical Analysis Group sessions
  • Using Qualtrics
  • Dissertation and Data Analysis Group Sessions
  • Defense Schedule - Commons Calendar This link opens in a new window
  • Research Process Flow Chart
  • Research Alignment Chapter 1 This link opens in a new window
  • Step 1: Seek Out Evidence
  • Step 2: Explain
  • Step 3: The Big Picture
  • Step 4: Own It
  • Step 5: Illustrate
  • Annotated Bibliography
  • Literature Review This link opens in a new window
  • Systematic Reviews & Meta-Analyses
  • How to Synthesize and Analyze
  • Synthesis and Analysis Practice
  • Synthesis and Analysis Group Sessions
  • Problem Statement
  • Purpose Statement
  • Conceptual Framework
  • Theoretical Framework
  • Quantitative Research Questions
  • Qualitative Research Questions
  • Trustworthiness of Qualitative Data
  • Analysis and Coding Example- Qualitative Data
  • Thematic Data Analysis in Qualitative Design
  • Dissertation to Journal Article This link opens in a new window
  • International Journal of Online Graduate Education (IJOGE) This link opens in a new window
  • Journal of Research in Innovative Teaching & Learning (JRIT&L) This link opens in a new window

Writing a Case Study

Hands holding a world globe

What is a case study?

A Map of the world with hands holding a pen.

A Case study is: 

  • An in-depth research design that primarily uses a qualitative methodology but sometimes​​ includes quantitative methodology.
  • Used to examine an identifiable problem confirmed through research.
  • Used to investigate an individual, group of people, organization, or event.
  • Used to mostly answer "how" and "why" questions.

What are the different types of case studies?

Man and woman looking at a laptop

Note: These are the primary case studies. As you continue to research and learn

about case studies you will begin to find a robust list of different types. 

Who are your case study participants?

Boys looking through a camera

What is triangulation ? 

Validity and credibility are an essential part of the case study. Therefore, the researcher should include triangulation to ensure trustworthiness while accurately reflecting what the researcher seeks to investigate.

Triangulation image with examples

How to write a Case Study?

When developing a case study, there are different ways you could present the information, but remember to include the five parts for your case study.

Man holding his hand out to show five fingers.

Was this resource helpful?

  • << Previous: Thematic Data Analysis in Qualitative Design
  • Next: Journal Article Reporting Standards (JARS) >>
  • Last Updated: May 3, 2024 8:12 AM
  • URL: https://resources.nu.edu/researchtools

NCU Library Home

U.S. flag

An official website of the United States government

Here’s how you know

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Case studies & examples

Articles, use cases, and proof points describing projects undertaken by data managers and data practitioners across the federal government

Agencies Mobilize to Improve Emergency Response in Puerto Rico through Better Data

Federal agencies' response efforts to Hurricanes Irma and Maria in Puerto Rico was hampered by imperfect address data for the island. In the aftermath, emergency responders gathered together to enhance the utility of Puerto Rico address data and share best practices for using what information is currently available.

Federal Data Strategy

BUILDER: A Science-Based Approach to Infrastructure Management

The Department of Energy’s National Nuclear Security Administration (NNSA) adopted a data-driven, risk-informed strategy to better assess risks, prioritize investments, and cost effectively modernize its aging nuclear infrastructure. NNSA’s new strategy, and lessons learned during its implementation, will help inform other federal data practitioners’ efforts to maintain facility-level information while enabling accurate and timely enterprise-wide infrastructure analysis.

Department of Energy

data management , data analysis , process redesign , Federal Data Strategy

Business case for open data

Six reasons why making your agency's data open and accessible is a good business decision.

CDO Council Federal HR Dashboarding Report - 2021

The CDO Council worked with the US Department of Agriculture, the Department of the Treasury, the United States Agency for International Development, and the Department of Transportation to develop a Diversity Profile Dashboard and to explore the value of shared HR decision support across agencies. The pilot was a success, and identified potential impact of a standardized suite of HR dashboards, in addition to demonstrating the value of collaborative analytics between agencies.

Federal Chief Data Officer's Council

data practices , data sharing , data access

CDOC Data Inventory Report

The Chief Data Officers Council Data Inventory Working Group developed this paper to highlight the value proposition for data inventories and describe challenges agencies may face when implementing and managing comprehensive data inventories. It identifies opportunities agencies can take to overcome some of these challenges and includes a set of recommendations directed at Agencies, OMB, and the CDO Council (CDOC).

data practices , metadata , data inventory

DSWG Recommendations and Findings

The Chief Data Officer Council (CDOC) established a Data Sharing Working Group (DSWG) to help the council understand the varied data-sharing needs and challenges of all agencies across the Federal Government. The DSWG reviewed data-sharing across federal agencies and developed a set of recommendations for improving the methods to access and share data within and between agencies. This report presents the findings of the DSWG’s review and provides recommendations to the CDOC Executive Committee.

data practices , data agreements , data sharing , data access

Data Skills Training Program Implementation Toolkit

The Data Skills Training Program Implementation Toolkit is designed to provide both small and large agencies with information to develop their own data skills training programs. The information provided will serve as a roadmap to the design, implementation, and administration of federal data skills training programs as agencies address their Federal Data Strategy’s Agency Action 4 gap-closing strategy training component.

data sharing , Federal Data Strategy

Data Standdown: Interrupting process to fix information

Although not a true pause in operations, ONR’s data standdown made data quality and data consolidation the top priority for the entire organization. It aimed to establish an automated and repeatable solution to enable a more holistic view of ONR investments and activities, and to increase transparency and effectiveness throughout its mission support functions. In addition, it demonstrated that getting top-level buy-in from management to prioritize data can truly advance a more data-driven culture.

Office of Naval Research

data governance , data cleaning , process redesign , Federal Data Strategy

Data.gov Metadata Management Services Product-Preliminary Plan

Status summary and preliminary business plan for a potential metadata management product under development by the Data.gov Program Management Office

data management , Federal Data Strategy , metadata , open data

PDF (7 pages)

Department of Transportation Case Study: Enterprise Data Inventory

In response to the Open Government Directive, DOT developed a strategic action plan to inventory and release high-value information through the Data.gov portal. The Department sustained efforts in building its data inventory, responding to the President’s memorandum on regulatory compliance with a comprehensive plan that was recognized as a model for other agencies to follow.

Department of Transportation

data inventory , open data

Department of Transportation Model Data Inventory Approach

This document from the Department of Transportation provides a model plan for conducting data inventory efforts required under OMB Memorandum M-13-13.

data inventory

PDF (5 pages)

FEMA Case Study: Disaster Assistance Program Coordination

In 2008, the Disaster Assistance Improvement Program (DAIP), an E-Government initiative led by FEMA with support from 16 U.S. Government partners, launched DisasterAssistance.gov to simplify the process for disaster survivors to identify and apply for disaster assistance. DAIP utilized existing partner technologies and implemented a services oriented architecture (SOA) that integrated the content management system and rules engine supporting Department of Labor’s Benefits.gov applications with FEMA’s Individual Assistance Center application. The FEMA SOA serves as the backbone for data sharing interfaces with three of DAIP’s federal partners and transfers application data to reduce duplicate data entry by disaster survivors.

Federal Emergency Management Agency

data sharing

Federal CDO Data Skills Training Program Case Studies

This series was developed by the Chief Data Officer Council’s Data Skills & Workforce Development Working Group to provide support to agencies in implementing the Federal Data Strategy’s Agency Action 4 gap-closing strategy training component in FY21.

FederalRegister.gov API Case Study

This case study describes the tenets behind an API that provides access to all data found on FederalRegister.gov, including all Federal Register documents from 1994 to the present.

National Archives and Records Administration

PDF (3 pages)

Fuels Knowledge Graph Project

The Fuels Knowledge Graph Project (FKGP), funded through the Federal Chief Data Officers (CDO) Council, explored the use of knowledge graphs to achieve more consistent and reliable fuel management performance measures. The team hypothesized that better performance measures and an interoperable semantic framework could enhance the ability to understand wildfires and, ultimately, improve outcomes. To develop a more systematic and robust characterization of program outcomes, the FKGP team compiled, reviewed, and analyzed multiple agency glossaries and data sources. The team examined the relationships between them, while documenting the data management necessary for a successful fuels management program.

metadata , data sharing , data access

Government Data Hubs

A list of Federal agency open data hubs, including USDA, HHS, NASA, and many others.

Helping Baltimore Volunteers Find Where to Help

Bloomberg Government analysts put together a prototype through the Census Bureau’s Opportunity Project to better assess where volunteers should direct litter-clearing efforts. Using Census Bureau and Forest Service information, the team brought a data-driven approach to their work. Their experience reveals how individuals with data expertise can identify a real-world problem that data can help solve, navigate across agencies to find and obtain the most useful data, and work within resource constraints to provide a tool to help address the problem.

Census Bureau

geospatial , data sharing , Federal Data Strategy

How USDA Linked Federal and Commercial Data to Shed Light on the Nutritional Value of Retail Food Sales

Purchase-to-Plate Crosswalk (PPC) links the more than 359,000 food products in a comercial company database to several thousand foods in a series of USDA nutrition databases. By linking existing data resources, USDA was able to enrich and expand the analysis capabilities of both datasets. Since there were no common identifiers between the two data structures, the team used probabilistic and semantic methods to reduce the manual effort required to link the data.

Department of Agriculture

data sharing , process redesign , Federal Data Strategy

How to Blend Your Data: BEA and BLS Harness Big Data to Gain New Insights about Foreign Direct Investment in the U.S.

A recent collaboration between the Bureau of Economic Analysis (BEA) and the Bureau of Labor Statistics (BLS) helps shed light on the segment of the American workforce employed by foreign multinational companies. This case study shows the opportunities of cross-agency data collaboration, as well as some of the challenges of using big data and administrative data in the federal government.

Bureau of Economic Analysis / Bureau of Labor Statistics

data sharing , workforce development , process redesign , Federal Data Strategy

Implementing Federal-Wide Comment Analysis Tools

The CDO Council Comment Analysis pilot has shown that recent advances in Natural Language Processing (NLP) can effectively aid the regulatory comment analysis process. The proof-ofconcept is a standardized toolset intended to support agencies and staff in reviewing and responding to the millions of public comments received each year across government.

Improving Data Access and Data Management: Artificial Intelligence-Generated Metadata Tags at NASA

NASA’s data scientists and research content managers recently built an automated tagging system using machine learning and natural language processing. This system serves as an example of how other agencies can use their own unstructured data to improve information accessibility and promote data reuse.

National Aeronautics and Space Administration

metadata , data management , data sharing , process redesign , Federal Data Strategy

Investing in Learning with the Data Stewardship Tactical Working Group at DHS

The Department of Homeland Security (DHS) experience forming the Data Stewardship Tactical Working Group (DSTWG) provides meaningful insights for those who want to address data-related challenges collaboratively and successfully in their own agencies.

Department of Homeland Security

data governance , data management , Federal Data Strategy

Leveraging AI for Business Process Automation at NIH

The National Institute of General Medical Sciences (NIGMS), one of the twenty-seven institutes and centers at the NIH, recently deployed Natural Language Processing (NLP) and Machine Learning (ML) to automate the process by which it receives and internally refers grant applications. This new approach ensures efficient and consistent grant application referral, and liberates Program Managers from the labor-intensive and monotonous referral process.

National Institutes of Health

standards , data cleaning , process redesign , AI

FDS Proof Point

National Broadband Map: A Case Study on Open Innovation for National Policy

The National Broadband Map is a tool that provide consumers nationwide reliable information on broadband internet connections. This case study describes how crowd-sourcing, open source software, and public engagement informs the development of a tool that promotes government transparency.

Federal Communications Commission

National Renewable Energy Laboratory API Case Study

This case study describes the launch of the National Renewable Energy Laboratory (NREL) Developer Network in October 2011. The main goal was to build an overarching platform to make it easier for the public to use NREL APIs and for NREL to produce APIs.

National Renewable Energy Laboratory

Open Energy Data at DOE

This case study details the development of the renewable energy applications built on the Open Energy Information (OpenEI) platform, sponsored by the Department of Energy (DOE) and implemented by the National Renewable Energy Laboratory (NREL).

open data , data sharing , Federal Data Strategy

Pairing Government Data with Private-Sector Ingenuity to Take on Unwanted Calls

The Federal Trade Commission (FTC) releases data from millions of consumer complaints about unwanted calls to help fuel a myriad of private-sector solutions to tackle the problem. The FTC’s work serves as an example of how agencies can work with the private sector to encourage the innovative use of government data toward solutions that benefit the public.

Federal Trade Commission

data cleaning , Federal Data Strategy , open data , data sharing

Profile in Data Sharing - National Electronic Interstate Compact Enterprise

The Federal CDO Council’s Data Sharing Working Group highlights successful data sharing activities to recognize mature data sharing practices as well as to incentivize and inspire others to take part in similar collaborations. This Profile in Data Sharing focuses on how the federal government and states support children who are being placed for adoption or foster care across state lines. It greatly reduces the work and time required for states to exchange paperwork and information needed to process the placements. Additionally, NEICE allows child welfare workers to communicate and provide timely updates to courts, relevant private service providers, and families.

Profile in Data Sharing - National Health Service Corps Loan Repayment Programs

The Federal CDO Council’s Data Sharing Working Group highlights successful data sharing activities to recognize mature data sharing practices as well as to incentivize and inspire others to take part in similar collaborations. This Profile in Data Sharing focuses on how the Health Resources and Services Administration collaborates with the Department of Education to make it easier to apply to serve medically underserved communities - reducing applicant burden and improving processing efficiency.

Profile in Data Sharing - Roadside Inspection Data

The Federal CDO Council’s Data Sharing Working Group highlights successful data sharing activities to recognize mature data sharing practices as well as to incentivize and inspire others to take part in similar collaborations. This Profile in Data Sharing focuses on how the Department of Transportation collaborates with the Customs and Border Patrol and state partners to prescreen commercial motor vehicles entering the US and to focus inspections on unsafe carriers and drivers.

Profiles in Data Sharing - U.S. Citizenship and Immigration Service

The Federal CDO Council’s Data Sharing Working Group highlights successful data sharing activities to recognize mature data sharing practices as well as to incentivize and inspire others to take part in similar collaborations. This Profile in Data Sharing focuses on how the U.S. Citizenship and Immigration Service (USCIS) collaborated with the Centers for Disease Control to notify state, local, tribal, and territorial public health authorities so they can connect with individuals in their communities about their potential exposure.

SBA’s Approach to Identifying Data, Using a Learning Agenda, and Leveraging Partnerships to Build its Evidence Base

Through its Enterprise Learning Agenda, Small Business Administration’s (SBA) staff identify essential research questions, a plan to answer them, and how data held outside the agency can help provide further insights. Other agencies can learn from the innovative ways SBA identifies data to answer agency strategic questions and adopt those aspects that work for their own needs.

Small Business Administration

process redesign , Federal Data Strategy

Supercharging Data through Validation as a Service

USDA's Food and Nutrition Service restructured its approach to data validation at the state level using an open-source, API-based validation service managed at the federal level.

data cleaning , data validation , API , data sharing , process redesign , Federal Data Strategy

The Census Bureau Uses Its Own Data to Increase Response Rates, Helps Communities and Other Stakeholders Do the Same

The Census Bureau team produced a new interactive mapping tool in early 2018 called the Response Outreach Area Mapper (ROAM), an application that resulted in wider use of authoritative Census Bureau data, not only to improve the Census Bureau’s own operational efficiency, but also for use by tribal, state, and local governments, national and local partners, and other community groups. Other agency data practitioners can learn from the Census Bureau team’s experience communicating technical needs to non-technical executives, building analysis tools with widely-used software, and integrating efforts with stakeholders and users.

open data , data sharing , data management , data analysis , Federal Data Strategy

The Mapping Medicare Disparities Tool

The Centers for Medicare & Medicaid Services’ Office of Minority Health (CMS OMH) Mapping Medicare Disparities Tool harnessed the power of millions of data records while protecting the privacy of individuals, creating an easy-to-use tool to better understand health disparities.

Centers for Medicare & Medicaid Services

geospatial , Federal Data Strategy , open data

The Veterans Legacy Memorial

The Veterans Legacy Memorial (VLM) is a digital platform to help families, survivors, and fellow veterans to take a leading role in honoring their beloved veteran. Built on millions of existing National Cemetery Administration (NCA) records in a 25-year-old database, VLM is a powerful example of an agency harnessing the potential of a legacy system to provide a modernized service that better serves the public.

Veterans Administration

data sharing , data visualization , Federal Data Strategy

Transitioning to a Data Driven Culture at CMS

This case study describes how CMS announced the creation of the Office of Information Products and Data Analytics (OIPDA) to take the lead in making data use and dissemination a core function of the agency.

data management , data sharing , data analysis , data analytics

PDF (10 pages)

U.S. Department of Labor Case Study: Software Development Kits

The U.S. Department of Labor sought to go beyond merely making data available to developers and take ease of use of the data to the next level by giving developers tools that would make using DOL’s data easier. DOL created software development kits (SDKs), which are downloadable code packages that developers can drop into their apps, making access to DOL’s data easy for even the most novice developer. These SDKs have even been published as open source projects with the aim of speeding up their conversion to SDKs that will eventually support all federal APIs.

Department of Labor

open data , API

U.S. Geological Survey and U.S. Census Bureau collaborate on national roads and boundaries data

It is a well-kept secret that the U.S. Geological Survey and the U.S. Census Bureau were the original two federal agencies to build the first national digital database of roads and boundaries in the United States. The agencies joined forces to develop homegrown computer software and state of the art technologies to convert existing USGS topographic maps of the nation to the points, lines, and polygons that fueled early GIS. Today, the USGS and Census Bureau have a longstanding goal to leverage and use roads and authoritative boundary datasets.

U.S. Geological Survey and U.S. Census Bureau

data management , data sharing , data standards , data validation , data visualization , Federal Data Strategy , geospatial , open data , quality

USA.gov Uses Human-Centered Design to Roll Out AI Chatbot

To improve customer service and give better answers to users of the USA.gov website, the Technology Transformation and Services team at General Services Administration (GSA) created a chatbot using artificial intelligence (AI) and automation.

General Services Administration

AI , Federal Data Strategy

resources.data.gov

An official website of the Office of Management and Budget, the General Services Administration, and the Office of Government Information Services.

This section contains explanations of common terms referenced on resources.data.gov.

FOR EMPLOYERS

Top 10 real-world data science case studies.

Data Science Case Studies

Aditya Sharma

Aditya is a content writer with 5+ years of experience writing for various industries including Marketing, SaaS, B2B, IT, and Edtech among others. You can find him watching anime or playing games when he’s not writing.

Frequently Asked Questions

Real-world data science case studies differ significantly from academic examples. While academic exercises often feature clean, well-structured data and simplified scenarios, real-world projects tackle messy, diverse data sources with practical constraints and genuine business objectives. These case studies reflect the complexities data scientists face when translating data into actionable insights in the corporate world.

Real-world data science projects come with common challenges. Data quality issues, including missing or inaccurate data, can hinder analysis. Domain expertise gaps may result in misinterpretation of results. Resource constraints might limit project scope or access to necessary tools and talent. Ethical considerations, like privacy and bias, demand careful handling.

Lastly, as data and business needs evolve, data science projects must adapt and stay relevant, posing an ongoing challenge.

Real-world data science case studies play a crucial role in helping companies make informed decisions. By analyzing their own data, businesses gain valuable insights into customer behavior, market trends, and operational efficiencies.

These insights empower data-driven strategies, aiding in more effective resource allocation, product development, and marketing efforts. Ultimately, case studies bridge the gap between data science and business decision-making, enhancing a company's ability to thrive in a competitive landscape.

Key takeaways from these case studies for organizations include the importance of cultivating a data-driven culture that values evidence-based decision-making. Investing in robust data infrastructure is essential to support data initiatives. Collaborating closely between data scientists and domain experts ensures that insights align with business goals.

Finally, continuous monitoring and refinement of data solutions are critical for maintaining relevance and effectiveness in a dynamic business environment. Embracing these principles can lead to tangible benefits and sustainable success in real-world data science endeavors.

Data science is a powerful driver of innovation and problem-solving across diverse industries. By harnessing data, organizations can uncover hidden patterns, automate repetitive tasks, optimize operations, and make informed decisions.

In healthcare, for example, data-driven diagnostics and treatment plans improve patient outcomes. In finance, predictive analytics enhances risk management. In transportation, route optimization reduces costs and emissions. Data science empowers industries to innovate and solve complex challenges in ways that were previously unimaginable.

Hire remote developers

Tell us the skills you need and we'll find the best developer for you in days, not weeks.

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals
  • My Account Login
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • Perspective
  • Open access
  • Published: 10 May 2024

Bridging the gap: leveraging data science to equip domain experts with the tools to address challenges in maternal, newborn, and child health

  • Girmaw Abebe Tadesse 1 ,
  • William Ogallo 2 ,
  • Celia Cintas 3 ,
  • Skyler Speakman 3 ,
  • Aisha Walcott-Bryant 2 &
  • Charity Wayua 3  

npj Women's Health volume  2 , Article number:  13 ( 2024 ) Cite this article

Metrics details

  • Health care
  • Health services

The United Nations Sustainable Development Goals (SDGs) advocate for reducing preventable Maternal, Newborn, and Child Health (MNCH) deaths and complications. However, many low- and middle-income countries remain disproportionately affected by high rates of poor MNCH outcomes. Progress towards the 2030 sustainable development targets for MNCH remains stagnated and uneven within and across countries, particularly in sub-Saharan Africa. The current scenario is exacerbated by a multitude of factors, including the COVID-19 pandemic’s impact on essential services and food access, as well as conflict, economic shocks, and climate change.

Traditional approaches to improve MNCH outcomes have been bifurcated. On one side, domain experts lean heavily on expert-driven analyses, often bypassing the advantages of data-driven methodologies such as machine learning. Conversely, computing researchers often employ complex models without integrating essential domain knowledge, leading to solutions that might not be pragmatically applicable or insightful to the community. In addition, low- and middle-income countries are often either data-scarce or with data that is not readily structured, curated, or digitized in an easily consumable way for data visualization and analytics, necessitating non-traditional approaches, data-driven analyses, and insight generation. In this perspective, we provide a framework and examples that bridge the divide by detailing our collaborative efforts between domain experts and machine learning researchers. This synergy aims to extract actionable insights, leveraging the strengths of both spheres. Our data-driven techniques are showcased through the following five applications: (1) Understanding the limitation of MNCH data via automated quality assessment; (2) Leveraging data sources that are available in silos for more informed insight extraction and decision-making; (3) Identifying heterogeneous effects of MNCH interventions for broader understanding of the impact of interventions; (4) Tracking temporal data distribution changes in MNCH trends; and (5) Improving the interpretability of “black box” machine learning models for MNCH domain experts. Our case studies emphasize the impactful outcomes possible through interdisciplinary collaboration. We advocate for this joint collaborative research approach, believing it can accelerate the extraction of actionable insights at scale. Ultimately, this will catalyse data-driven interventions and contribute towards achieving SDG targets related to MNCH.

Introduction

The third agenda of the United Nation’s (UN’s) Sustainable Development Goals (SDGs) stresses the need to ensure healthy lives and well-being at all ages. Maternal, Newborn, and Child Health (MNCH) is a critical component of this agenda, particularly in low-and middle-income settings, where there is a significant gap in access and quality of health services 1 . In 2019, it was reported that about five million deaths of under-five children and 112 million maternal complications and deaths occurred globally 2 . Unfortunately, the situation was further exacerbated by the COVID-19 pandemic’s impact on essential services and food access in addition to other challenges such as climate change, disasters, and wars, which make it challenging to achieve the apriori set SDG targets 3 , 4 .

Existing approaches to address MNCH issues have been bifurcated. On one side, domain experts lean heavily on expert-driven analyses, such as determinants for child mortality 5 , 6 , 7 , 8 . However, these approaches often bypass the advantages of advanced data-driven methodologies such as machine learning (ML), which can augment the capabilities of domain experts or scale the analysis to large spatial and temporal dimensions. Moreover, such automated techniques can be used to extract actionable insights efficiently and contrast results across a large collection of health surveys from different geographical locations. Conversely, computing researchers often employ complex models without integrating essential domain knowledge, leading to solutions that might not be pragmatically applicable 9 . This is partially a result of concealed insights within health surveys, such as systematic deviations, which necessitate domain-expert knowledge to enhance the design of ML models 10 . Additionally, the synergistic collaboration between these two divergent approaches augments their respective capabilities, providing domain experts and/or policymakers with timely information. Such collaborations culminate in the creation of a streamlined, scalable, and efficient data analysis pipeline that (a) accommodates the ever-expanding volume of health data, (b) synergizes exploratory (often ML-driven) and confirmatory (often human-driven) methodologies, (c) uncovers concealed patterns supported by the most substantial evidence, and (d) safeguards against erroneous discoveries resulting from human bias or spurious outcomes sometimes produced by ML models.

In this perspective, we provide a framework and exemplar case studies that bridge the divide between MNCH domain experts and machine learning researchers by detailing our collaborative efforts and experiences. This synergy aims to extract actionable insights, leveraging the strengths of both spheres using the following five distinct use-cases:

Understanding the limitation of MNCH data via data-driven and automated quality assessment

Leveraging data sources that are available in silos for more informed insight extraction and decision making.

Identifying heterogeneous effects of MNCH interventions for wider impact understanding

Tracking temporal data distribution changes in MNCH trends

Improving the interpretability of “black box” machine learning models for mnch domain experts.

Our case studies emphasize the potent outcomes possible through interdisciplinary collaboration. We advocate for this joint approach, believing it can accelerate the extraction of insights on a grand scale. Ultimately, this will catalyse data-driven interventions and increase the probability of achieving SDG targets related to MNCH.

Data-driven analytical approaches are significantly dependent on the quality of the data used for analysis 11 , 12 . This is best encapsulated by the adage garbage in, garbage out , meaning that if the quality of the data used for analysis is substandard, the insights derived from the analysis are likely to be questionable 13 , 14 . The issue of data quality is particularly pertinent in the MNCH domain, where publicly accessible data is primarily collected through demographic surveys 15 . Health surveys such as the Demographic Health Survey (DHS) 16 , Knowledge Integration (KI) 17 , and Performance Monitoring for Action 2020 (PMA) 18 can be analyzed to generate novel insights about MNCH 19 . However, a common pattern across these surveys is the missingness of key variables for a significant number of records 20 . In common data analysis practices, records with missing values are often discarded or imputed using mean or median values. However, it is key to uncover if there is a systematic pattern for the missingness, e.g., individuals with limited knowledge of the question or with privacy concerns may opt-out from answering a survey question. Furthermore, machine learning models often require well-balanced data across segments of the population of interest. Practically, that is hardly true as the data collected shows a varying degree of skewness towards a certain segment, e.g., due to proximity to data collection centers, cultural barriers to participate in data collection, or divergent prevalence of the outcome across regions. Thus, it is crucial to check the quality of health survey datasets, e.g., collection irregularities or skewed representations, before the survey is fed into ML models, which is also further supported by a growing trend of data-centric approaches for impactful ML solutions 21 .

To this end, we aim to share how quality analysis is applied in evaluating health data using the BetterBirth 22 study as a use case. The BetterBirth Study was a matched-pair, cluster-randomized, controlled trial in 60 pairs of facilities across 24 districts of Uttar Pradesh, India, that studied the impact of the WHO’s Safe Childbirth Checklist on adherence to evidence-based practices by birth attendants and a composite health outcome of perinatal and maternal deaths and serious complications 22 , 23 , 24 . Before investigating heterogeneous treatment effects of the intervention in the BetterBirth study, we first wanted to identify the subset of mothers who had the highest risk of neonatal deaths, i.e., mothers who experienced the death of a new born within 28 days of delivery , in both the Control and Intervention arms (see Table 1 ). The treatment arms in the BetterBirth study consisted of approximately 75,000 participants in the Control arm and 77,000 in the Intervention arm. The average rate of neonatal death was 3.15% in the Control arm and 3.12% in the Intervention arm. Thus, the task of discovering the subset of mothers with the highest risk of neonatal deaths involved searching over the discrete/discretized covariates in the BetterBirth study to identify the single subset (stratum) that has the highest rate of neonatal death compared to the global means in both treatment arms i.e., the most anomalous subset.

We found that all mothers with no living children experienced a neonatal death at the time of the study in both treatment arms, i.e., the subset of mothers with no living children consisted of 589 participants in the control arm and 642 participants in the treatment arm, all of whom experienced a neonatal death. This finding in the data was further investigated and attributed to a data collection irregularity corresponding to the question in the survey, i.e., how many living children does the pregnant mother have? As a result, this information is discarded from our subsequent analysis. We then further analyzed the vulnerable subset of mothers with neonatal death outcomes after the variable with quality was removed. The finding shows that low birth-weight a high-risk factor, which is validated by the domain experts. These two findings demonstrate the power of complementary and collaborative work between domain experts and data scientists that led to the discovery of hidden data quality issues and the validation of domain-expert insights with data-driven results.

Health surveys, such as the DHS, KI, and PMA, are conducted for different reasons and can be used to help understand several aspects of MNCH 19 . Such a process may involve a range of research questions, such as predicting the likelihood of the outcome, detection of vulnerable groups, and identification of main determinants 5 , 6 , 7 , 8 , 25 . Though these existing surveys have been employed to derive actionable insights, e.g., for devising the new interventions or policies, more could be done to facilitate their effective utilization, especially considering the significant resources (human capital, time, money, etc.) incurred to collect, process, store, and maintain these surveys.

In practice, a critical challenge is the siloed analysis of single survey data. Often there are multiple MNCH-related surveys even in a single country. These surveys might differ in study samples, the information collected, and the time periods in which the surveys were conducted. Moreover, the variations across health surveys pose a challenge for the integrated use of the different data sources. Variations include but are not limited to specific research questions being addressed using the survey, the entities funding the research project or data collection, the proprietors of the data, and the stipulations and willingness surrounding data access. Furthermore, the extraction of estimates and insights from single surveys is often insufficient, particularly when the surveys suffer from data scarcity challenges such as small sample sizes and data imbalance (i.e., a rare occurrence of an outcome). Thus, despite huge investments and efforts to collect single independent surveys, they often do not meet the increasing information demand for policy- and decision-making. Consequently, there is an established need for combining multiple independent surveys in order to capture distinct characteristics available across these surveys and potentially result in more practical insights.

Next, we illustrate the potential benefits of harmonizing different health surveys related to child mortality. By aggregating these disparate data sets, we can create a more comprehensive and insightful repository of information that can significantly enhance our understanding and ability to improve child mortality outcomes. To this end, we demonstrated a data-driven approach to integrate DHS 16 , PMA 18 , and KI 17 survey datasets 19 . DHS contains representative data on population, health, HIV, and nutrition through more than 300 surveys in over 90 different countries. These nationally representative surveys are designed to collect data on monitoring and impact evaluation indicators important for individual countries and cross-country comparisons. PMA comprises surveys related to households, service delivery points, and GPS of the area, collected using innovative mobile technology. In addition to the household, individual-level data were collected for each eligible female-identified in the household roster. KI consists of different studies some of which are controlled trials on the child growth effect of different interventions. We particularly used the Alliance for Maternal and Newborn Health Improvement surveys, particularly (AMANHI-1) and (AMANHI-2), which focus on child mortality 19 .

Our approach to linking different surveys begins with projecting these surveys into equal-dimensional covariate representations so that samples in these surveys can be compared directly 19 . We employ different techniques to reduce the original covariate dimensions in the surveys to be combined. These techniques include using common covariates among the surveys, dimensionality reduction using principal component analysis, dimensionality reduction using denoising autoencoders, and feature importance rankings. Subsequently, the similarity of samples across disjoint surveys is computed using a distance metric, from which close neighbors are extracted. Next, unique covariates of close neighbors are aggregated and combined with the original study, thereby augmenting the covariate representation of the original survey for better predictive performance 19 . This linking approach is straight forward, and it provides data-level integration of different surveys, which can minimize resource utilization compared to extra data collection or more sophisticated post-model linkage practices.

We validated our data linkage approach by comparing it against random linkages 19 . First, we separately linked disjoint datasets obtained from DHS data from Burkina Faso, Nigeria, and Ghana. Next, we separately trained models for predicting child mortality using the linked datasets. Lastly, we assessed the performance of the trained models using area under receiver operating characteristic. We found that the models trained on the data linked by our approach significantly outperformed the models train on the siloed datasets or the randomly linked datasets 19 . Interestingly, across different dimension reduction techniques evaluated, using auto-encoders provided the largest improvement, suggesting the potential benefit of recent advances in the machine learning and deep learning domain. Generally, the proposed framework involves the utilization of multiple surveys to: (1) maximise the efficiency of a particular study by incorporating discriminative and unique covariates from another study; (2) improve prediction performance and identify distinctively useful covariates across studies; and (3) provide domain experts and policymakers with additional insights on existing studies and further recommendations for future data collection efforts.

Identifying heterogeneous effects of MNCH interventions

The MNCH domain is characterized by the application of different interventions aimed at reducing preventable maternal and newborn deaths and complications across populations composed of varying characteristics. Improving the quality of care in MNCH, therefore, requires a sound understanding of the varying (heterogeneous) treatment effects of interventions across individuals or subgroups in an MNCH population. This nuanced approach is crucial to activities such as targeted intervention planning in MNCH. Unfortunately, however, intervention impact studies in MNCH predominantly investigate the average treatment effects of interventions across studied populations 23 , 24 . Often times, this correctly leads to wide acceptance and reuse of interventions proven to be impactful but inadvertently results in the understudying of less effective interventions with limited understanding of the potential reasons related to ineffectiveness. They may also fail to evaluate how well the less-impactful intervention can be expected to work for specific individuals or subgroups of a population 24 , or why the intervention did not work for the remaining studied population 9 .

Some of the key reasons why the analysis of heterogeneous treatment effects is challenging include the lack of clarity regarding the goals of such analyses and the lack of appropriate approaches to conduct, report, interpret, and apply results from such studies 26 . For example, traditional approaches for analyzing heterogeneous treatment effects typically rely on manual stratification that is often limited to a handful of features selected a priori by domain experts. Fortunately, recent advancements in data-driven subgroup analysis methods enable scalable and unbiased heterogeneous treatment effect analysis 9 . These novel analytic approaches could overcome challenges associated with traditional methods for analyzing sub-population level effects of interventions in MNCH.

By way of example, after we evaluated the data quality in the BetterBirth study and discarded noisy variables, we proceeded further to uncover potential heterogeneous treatment effects. Recall that the BetterBirth study evaluated the impact of the WHO Safe Childbirth Checklist using a matched-pair, cluster-randomized, controlled trial in 120 government health facilities across 24 districts in Uttar Pradesh India 24 . In this study, the intervention arm population included mother-baby dyads registered for labor and delivery in 60 health facilities that implemented the BetterBirth program. The intervention was the implementation of the WHO Safe Childbirth Checklist, a quality improvement tool that promotes systematic adherence to 28 evidence-based practices associated with improved childbirth outcomes and is primarily used by birth attendants during and after the delivery and before discharge. The control arm was composed of mother-baby dyads registered for labor and delivery in the remaining 60 health facilities that applied the existing standard of care. The primary outcome of interest was a composite outcome of perinatal death, maternal death, or severe maternal complications occurring within the first 7 days after delivery. The study enrolled and determined the outcomes of over 157,000 eligible participants across the intervention and comparison groups. The study concluded that although adherence to good birth practices was higher in the intervention arm, maternal mortality, perinatal mortality, and maternal morbidity did not differ significantly between the treatment and control arms 24 .

One can pose a few critical questions based on the BetterBirth study findings:

Q 1 : though the intervention did not significantly reduce the primary outcomes in the intervention arm (compared to the control arm), was there a subset of mother-baby dyads who actually benefited from the intervention?

Q 2 : if such a subset of mother-baby dyads that benefited from the intervention exist, what are the characteristics of this subset?

We tried to answer these questions by looking for potential heterogeneous treatment effects in the BetterBirth study 9 . Procedurally, we first trained a logistic regression model on the control arm data to predict the likelihood of developing the binary primary composite outcome. Even though logistic regression was employed due to its simplicity and ease of interpretation, other classification algorithms, such as Gradient Boosting, could also be used for this task. Next, we use the trained classification model to estimate the expected outcome for each mother-baby dyads records in the intervention group. Finally, we applied subset scanning from the anomalous pattern detection literature 27 to identify the subset of mother-baby dyads in the intervention arm that had the largest deviation between the actual outcomes and expected outcomes. We found that mother-baby dyads described by normal gestational age at birth , known parity , and unknown number of abortions were found to benefit from the Checklist intervention significantly (Odds Ratio: 0.70, 95%S Confidence Interval: 0.62–0.79, with empirical p -value < 0.001). However, it is worth noting that such insights are still hypothetical and confirmatory studies e.g., through adaptive randomization 28 are critical to verify such generated hypotheses.

Maternal, newborn, and child health is influenced by the ever-changing demographics of the population due to factors such as interventions, climate change, pandemics, and civil wars 29 , 30 , 31 , 32 . Therefore, it is crucial to recognize and analyze these changes across various regions and administrative units over time, as well as the prevalence of outcome changes over time. With this in mind, our objective is to highlight the limitations of country-level aggregated or averaged reports of outcomes, such as under-5 child mortality, which may not provide a comprehensive view of the situation. For example, country-level reports do not reflect on regions or sub-populations that are still lagging behind or the regions or sub-populations that are faring better than the reported average. These aggregated reports can often obscure the realities faced by subsets of the population that fall on the extreme ends of the country-level average. By delving deeper and exploring these subsets, we can gain a clearer understanding of the true scope and impact of maternal, newborn, and child health challenges.

Our previous study demonstrated how temporal data distribution changes, such as the concept drift in the statistical properties of a child mortality across time 33 , which can also be used to investigate variability in further outcomes in MNCH. We leveraged data-driven subgroup discovery to identify the sub-populations of women that experience larger than expected changes in under-5 mortality rates between two points in time, approximately 10–15 years apart 33 . Procedurally, we begin by training and calibrating a machine learning predictive model to predict the likelihood of under-5 mortality using nationally representative DHS 16 data from an earlier time-point ( T 0 ). Second, we apply the predictive model to predict the probability of under-5 mortality at a more recent time-point ( T 1 ). Third, we compute the change in the odds of the outcome between the two time steps T 0 and T 1 . Lastly, we apply subset scanning 27 to identify the sub-populations in the T 1 data whose outcomes differ the most from their predicted probabilities based on the T 0 model.

By applying this approach, we found several potentially interesting findings. For example, this approach suggests that in Ethiopia, households composed of single mothers with 2 children reported the largest decrease in under-5 mortality, i.e., from 47% (in 2000) to less than 7.5% (in 2016). Similarly, in Nigeria, households residing in the South or South-West regions experienced the largest decrease in under-5 mortality (from 14.8% to 7.4%). Further work is still needed to study causal connections related to observed sub-population-level changes in under-5 mortality trends.

Whereas most ML models are good at prediction and classification, they are often not readily trusted and adopted by MNCH stakeholders due to their “black box” nature. For ideal use in decision-making and intervention planning, MNCH stakeholders and policymakers require models that are not only accurate but also interpretable and able to generate actionable insights. Consequently, machine learning practitioners and adopters must develop and use methods for inspecting “black box” models to generate actionable insights and improve the trustworthiness of their proposed solutions.

By way of example, we conducted a study that aimed at identifying the factors associated with neonatal mortality by analyzing the DHS 16 survey datasets from 10 Sub-Saharan countries 25 . For each survey dataset, we trained an ensemble gradient boosting classifier that was used to identify mothers who experienced a neonatal death within 5 years prior to participating in the survey. To improve explainability and identify new insights, we visualized the feature importance and partial dependence of features in the model. Herein, feature importance refers to the ranked list of the most important features contributing to the prediction in the ensemble model. Partial dependence refers to the relationship between a single feature and an outcome of interest, holding other features constant, i.e., how, on average, changing the values of a given feature while holding the values of all other features affects the risk of a given outcome.

Interestingly, through these “black box” model inspection techniques, we confirmed the positive correlation between birth spacing and risk of neonatal mortality and identified a plausible negative correlation between household size and risk of neonatal mortality 25 . We also established that mothers living in smaller households have a higher risk of neonatal mortality than mothers living in larger households.

Discussions and future directions

MNCH in low-and middle-income settings, often in the Global South, has been the primary focus of a number of United Nation’s Sustainable Development Goals (SDGs), particularly SDG-3 - Ensure healthy lives and promote well-being for all at all ages . Though encouraging improvements have been reported over recent years 4 , partly due to a number of successful interventions, many countries are still lagging behind the SDG targets pertaining to MNCH. Challenges, such as COVID-19 pandemic, climate change, natural disasters and civil wars 29 , 30 , 31 , 32 , further complicate the current MNCH situation, e.g., with adverse impacts on health facilities. Fortunately, we have witnessed an astonishing rise of data-driven capabilities, such as machine learning, over recent years that could be employed to help understand MNCH challenges from a plethora of different data sources. Domain experts, such as public health professionals, are often at the forefront of studies conducted in the MNCH domain due to their accumulated knowledge facilitated by long-term on-ground experiences. On the other hand, recent advances in data-driven approaches demonstrate capabilities for analyzing data and extracting actionable insights for domain experts in an efficient and scalable way 9 , 25 , 33 . Thus, it is critical for these two communities to collaborate and complement each other in a bid to solve the MNCH challenges and accelerate the progress toward achieving SDG targets related to MNCH. Furthermore, an intersectional approach, which brings different stakeholders and their perspectives, is key to better understanding the fundamental MNCH challenges. The intersectional approach should encompass all the steps, starting from problem formulation, data collection design, and collection to analysis of the data collected and driving actionable insights. The stakeholder group may involve community health workers, mid-level and national-level health system administrators, non-profit organizations, and policymakers. The data-driven approach has a tremendous opportunity to facilitate communications among these diverse groups by providing insights that are intrinsic and understandable to these groups.

Particularly, we foresee wider adoptions of similar data-driven technologies that aim to utilize multitude of MNCH data sources that are often collected and used in silos across different MNCH challenges. In addition to DHS 16 , KI 17 , and PMA 18 , there are other MNCH data sources that could be utilized in future data-driven solutions for MNCH. Examples include the Multiple Indicator Cluster Survey (MICS) 34 , which provide a wide range of indicators including those on the health, nutritional status, and education of children and women. Moreover, MICS surveys have been collected in subsequent rounds ( https://mics.unicef.org/ ) providing more frequently collected data in cost effective manner, which makes it suitable for longitudinal studies, e.g., tracking SDGs. District Health Information Software (DHIS2) 35 is another data source that could be considered for similar tasks, e.g., the malnutrition data being collected at the health facility level in Kenya could be utilized to further forecast acute malnutrition hot-spots in the future. In addition, complementary data sources, other than health surveys, need to be evaluated and used in data-driven approaches to further strengthening the understanding of machine learning models towards complex problems. These complimentary data sources include satellite imagery, which are often freely available from multiple providers. These remotely sensed images provide recent changes on the ground (e.g., expansion of population settlement) and to understand the impact of climate change and disasters (e.g., flood and drought) 36 , 37 .

Recently, Large Language Models (LLMs), which are specific type of models for natural language processing, are demonstrated to possess a higher degree of capability, e.g., as conversational agents 38 . Similar technologies could also be used to democratize access to technologies, e.g., by providing personalized nutrition recommendations during pregnancy 39 . However, there are potential risks that could be associated with these technologies, e.g., hallucination of nonfactual information and misinformation. Thus, we argue that such systems need to demonstrate a level of trustworthiness, e.g., fairness across various segments of the population, reliability and safety, explainability, and protection privacy 10 , 14 . Moreover, as with any technology, the regulations of such systems are critical to have a standardized adoption of these approaches across borders.

Conclusions

In this perspective, we aim to encourage collaborations among experts from different domains by sharing a diverse set of our prior works on data science and machine learning for MNCH that involved successful collaborations with MNCH experts. Specifically, we highlighted how data-driven techniques shed light on a number of MNCH challenges, such as data-quality, health surveys that are often available in silos, heterogeneous treatment effects, understanding spatio-temporal data distribution shifts, and adding up to the explainability of MNCH models via inspection of machine learning models, which are often treated as ’black box’.

Evidence-based policy-making and intervention designs can strongly benefit from similar data-driven techniques discussed in this paper. However, assessing the quality of data available is a priority before the data is used for decision-making, particularly for MNCH surveys that are prone to a number of quality issues due to the nature of the collection process and/or the number of personals involved in the process. Furthermore, MNCH domain is mostly characterized by the availability of multiple data sources, such as DHS 16 , PMA 18 , KI 17 , MICS 34 , DHIS2 35 , but in silos with no efficient utilization of their aggregated form. Thus, we demonstrated how aggregation of these data sources, by linking records, helped to improve predictive capabilities of child mortality in a number of Sub-Saharan African countries. While interventions played a significant role in reducing deaths and complications related to mothers, children, and newborns, there is a significant gap in the literature to investigate interventions that are less impactful in the average population but might have benefited a particular segment of the population.

To this end, we shared that our data-driven methods could automatically identify and characterize sub-populations that have significantly benefited from the interventions using the BetterBirth study as a use case. Similarly, the country-aggregated reports often shared to reflect the improvement of MNCH (e.g., reduction of child mortality rate in a country) are limited to show the whole picture. For example, the regions or sub-populations that lag behind the reported-average are not well studied. To this end, we highlighted how those sub-populations with worse than average child mortality rates are identified in the DHS data by detecting spatio-temporal data distribution changes. Additionally, the perception of machine learning models as ’black boxes’ is one of the reasons that restrict the wider adoption of machine learning models by the MNCH domain experts and policy makers. Thus, we have highlighted our work on adding an extra layer of explainability by investigating models designed to predict neonatal mortality. Note that similar approaches described in this perspective could be employed in other domains that are extensions to MNCH. For example, we collaborated with domain experts in family planning and contraception, to extract insights about contraceptive use from the DHS surveys, such as discriminating contraceptive use patterns under different discontinuation reasons, contraceptive uptake distributions, and transition information across contraceptive types 40 , 41 .

Spector, J. M. & Agrawal, P. et al. Improving quality of care for maternal and newborn health: prospective pilot study of the WHO Safe Childbirth Checklist program. PLoS ONE 7 , e35151 (2012).

Article   CAS   PubMed   PubMed Central   Google Scholar  

Health, T. L. G. Progressing the investment case in maternal and child health (2021).

Hug, L., Sharrow, D. & You, D. Levels and trends in child mortality: report 2017. Tech. Rep. The World Bank (2017).

Rahman, M. M. et al. Reproductive, maternal, newborn, and child health intervention coverage in 70 low-income and middle-income countries, 2000–30: trends, projections, and inequities. Lancet Global Health 11 , e1531–e1543 (2023).

Article   CAS   PubMed   Google Scholar  

Rutstein, S. O. Factors associated with trends in infant and child mortality in developing countries during the 1990s. Bull. World Health Organization 78 , 1256–1270 (2000).

CAS   Google Scholar  

Wang, L. Determinants of child mortality in LDCs: empirical findings from Demographic and Health Surveys. Health Policy 65 , 277–299 (2003).

Article   PubMed   Google Scholar  

Hanmer, L., Lensink, R. & White, H. Infant and child mortality in developing countries: analysing the data for robust determinants. J. Dev. Stud. 40 , 101–118 (2003).

Article   Google Scholar  

Boschi-Pinto, C., Velebit, L. & Shibuya, K. Estimating child mortality due to diarrhoea in developing countries. Bull. World Health Organization 86 , 710–717 (2008).

Tadesse, G. A. et al. Principled subpopulation analysis of the BetterBirth study and the impact of WHO’s Safe Childbirth Checklist intervention. In AMIA Annual Symposium Proceedings , vol. 2022, 1042 (2022).

Speakman, S. et al. Detecting systematic deviations in data and models. Computer 56 , 82–92 (2023).

Polyzotis, N., Zinkevich, M., Roy, S., Breck, E. & Whang, S. Data validation for machine learning. Proc. Mach. Learn. Syst. 1 , 334–347 (2019).

Google Scholar  

Budach, L. et al. The effects of data quality on machine learning performance. arXiv preprint arXiv:2207.14529 (2022).

Roberts, M. et al. Common pitfalls and recommendations for using machine learning to detect and prognosticate for COVID-19 using chest radiographs and CT scans. Nat. Mach. Intell. 3 , 199–217 (2021).

Liang, W. et al. Advances, challenges and opportunities in creating data for trustworthy AI. Nat. Mach. Intell. 4 , 669–677 (2022).

Harkare, H. V., Corsi, D. J., Kim, R., Vollmer, S. & Subramanian, S. The impact of improved data quality on the prevalence estimates of anthropometric measures using DHS datasets in India. Sci. Rep. 11 , 10671 (2021).

ICF International: Demographic and Health Surveys (DHS). (Funded by USAID. Rockville, Maryland, 2004–2017).

Data Store Explorer: Knowledge Integration (KI) - Africa. http://africa.studyexplorer.io/ . Last accessed on March 27, (2024).

Performance Monitoring and Accountability 2020 (PMA2020) Project. (Bill & Melinda Gates Institute for Population and Reproductive Health, Johns Hopkins Bloomberg School of Public Health.).

Tadesse, G. A. et al. Data-level linkage of multiple surveys for improved understanding of global health challenges. AMIA Summits on Transl. Sci. Proc. 2021 , 92 (2021).

Kitson, N. K. & Constantinou, A. C. Learning Bayesian networks from demographic and health survey data. J. Biomed. Inf. 113 , 103588 (2021).

Oala, L. et al. DMLR: Data-centric Machine Learning Research–past, present and future. arXiv preprint arXiv:2311.13028 (2023).

Spector, J. M. & Lashoher, A. et al. Designing the WHO Safe Childbirth Checklist program to improve quality of care at childbirth. Int. J. Gynecol. Obstetrics 122 , 164–168 (2013).

Delaney, M. M. & Miller, K. A. et al. Unpacking the null: a post-hoc analysis of a cluster-randomised controlled trial of the WHO Safe Childbirth Checklistin Uttar Pradesh, India (BetterBirth). The Lancet Global Health 7 , e1088–e1096 (2019).

Semrau, K. E. & Hirschhorn, L. R. et al. Outcomes of a coaching-based WHO Safe Childbirth Checklist program in India. New England J. Med. 377 , 2313–2324 (2017).

Ogallo, W. et al. Identifying factors associated with neonatal mortality in Sub-Saharan Africa using machine learning. In AMIA Annual Symposium Proceedings , vol. 2020, 963 (2020).

Varadhan, R., Segal, J. B., Boyd, C. M., Wu, A. W. & Weiss, C. O. A framework for the analysis of heterogeneity of treatment effect in patient-centered outcomes research. J. Clin. Epidemiol. 66 , 818–825 (2013).

Article   PubMed   PubMed Central   Google Scholar  

Cintas, C. et al. Pattern detection in the activation space for identifying synthesized content. Pattern Recognition Letters 153 , 207–213 (2022).

Russell, D., Hoare, Z., Whitaker, R., Whitaker, C. & Russell, I. Generalized method for adaptive randomization in clinical trials. Stat. Med. 30 , 922–934 (2011).

Luyten, A., Winkler, M. S., Ammann, P. & Dietler, D. Health impact studies of climate change adaptation and mitigation measures–a scoping review. J. Clim. Change Health 9 , 100186 (2023).

Ahmed, T. et al. The effect of COVID-19 on maternal newborn and child health (MNCH) services in Bangladesh, Nigeria and South Africa: call for a contextualised pandemic response in LMICs. Int. J. Equity Health 20 , 1–6 (2021).

Akseer, N. et al. Women, children and adolescents in conflict countries: an assessment of inequalities in intervention coverage and survival. BMJ Global Health 5 , e002214 (2020).

Jawad, M., Hone, T., Vamos, E. P., Cetorelli, V. & Millett, C. Implications of armed conflict for maternal and child health: a regression analysis of data from 181 countries for 2000–2019. PLoS Med. 18 , e1003810 (2021).

Idrees, I., Speakman, S., Ogallo, W. & Akinwande, V. Successes and misses of global health development: detecting temporal concept drift of under-5 mortality prediction models with bias scan. AMIA Summits Transl. Sci. Proc. 2021 , 286 (2021).

PubMed   PubMed Central   Google Scholar  

Khan, S. & Hancioglu, A. Multiple indicator cluster surveys: delivering robust data on children and women across the globe. Stud. Family Planning 50 , 279–286 (2019).

Dehnavieh, R. et al. The District Health Information System (DHIS2): a literature review and meta-synthesis of its strengths and operational challenges based on the experiences of 11 countries. Health Inf. Manag. J. 48 , 62–75 (2019).

Johnson, K. B., Jacob, A. & Brown, M. E. Forest cover associated with improved child health and nutrition: evidence from the Malawi Demographic and Health Survey and satellite data. Glob. Health: Sci. Pract. 1 , 237–248 (2013).

PubMed   Google Scholar  

Curto, A. et al. Associations between landscape fires and child morbidity in Southern Mozambique: a time-series study. Lancet Planetary Health 8 , e41–e50 (2024).

Biswas, S. S. Role of ChatGPT in public health. Ann. Biomed. Eng. 51 , 868–869 (2023).

Tsai, C.-H. et al. Generating personalized pregnancy nutrition recommendations with GPT-Powered AI chatbot. In Proceedings of the 20th International Conference on Information Systems for Crisis Response and Management (2023).

Cintas, C. et al. Data-driven sequential uptake pattern discovery for family planning studies. In AMIA Annual Symposium Proceedings , vol. 2021, 324 (2021).

Cintas, C. et al. Decision platform for pattern discovery and causal effect estimation in contraceptive discontinuation. In Proceedings of the Twenty-Ninth International Conference on International Joint Conferences on Artificial Intelligence , 5288–5290 (2021).

Download references

Acknowledgements

The core case studies cited in this perspective were funded by the Bill and Melinda Gates Foundation.

Author information

Authors and affiliations.

Microsoft AI for Good Research Lab, Nairobi, Kenya

Girmaw Abebe Tadesse

Google Research, Nairobi, Kenya

William Ogallo & Aisha Walcott-Bryant

IBM Research, Nairobi, Kenya

Celia Cintas, Skyler Speakman & Charity Wayua

You can also search for this author in PubMed   Google Scholar

Contributions

G.A.T., W.O., C.C., S.S., A.W.-B., and C.W. conceived the manuscript and designed the structure. G.A.T., W.O., and C.C. helped draft the manuscript. All authors helped revise the manuscript. G.A.T., W.O., and C.C. helped implement the comments raised during revisions. All authors approved the submitted and revised versions.

Corresponding author

Correspondence to Girmaw Abebe Tadesse .

Ethics declarations

Competing interests.

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ .

Reprints and permissions

About this article

Cite this article.

Tadesse, G.A., Ogallo, W., Cintas, C. et al. Bridging the gap: leveraging data science to equip domain experts with the tools to address challenges in maternal, newborn, and child health. npj Womens Health 2 , 13 (2024). https://doi.org/10.1038/s44294-024-00017-z

Download citation

Received : 04 November 2023

Accepted : 09 April 2024

Published : 10 May 2024

DOI : https://doi.org/10.1038/s44294-024-00017-z

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

case study data

Currently taking bookings for June >>

case study data

Data Analysis Case Study: Learn From Humana’s Automated Data Analysis Project

Picture of Lillian Pierson, P.E.

Lillian Pierson, P.E.

Playback speed:

Got data? Great! Looking for that perfect data analysis case study to help you get started using it? You’re in the right place.

If you’ve ever struggled to decide what to do next with your data projects, to actually find meaning in the data, or even to decide what kind of data to collect, then KEEP READING…

Deep down, you know what needs to happen. You need to initiate and execute a data strategy that really moves the needle for your organization. One that produces seriously awesome business results.

But how you’re in the right place to find out..

As a data strategist who has worked with 10 percent of Fortune 100 companies, today I’m sharing with you a case study that demonstrates just how real businesses are making real wins with data analysis. 

In the post below, we’ll look at:

  • A shining data success story;
  • What went on ‘under-the-hood’ to support that successful data project; and
  • The exact data technologies used by the vendor, to take this project from pure strategy to pure success

If you prefer to watch this information rather than read it, it’s captured in the video below:

Here’s the url too: https://youtu.be/xMwZObIqvLQ

3 Action Items You Need To Take

To actually use the data analysis case study you’re about to get – you need to take 3 main steps. Those are:

  • Reflect upon your organization as it is today (I left you some prompts below – to help you get started)
  • Review winning data case collections (starting with the one I’m sharing here) and identify 5 that seem the most promising for your organization given it’s current set-up
  • Assess your organization AND those 5 winning case collections. Based on that assessment, select the “QUICK WIN” data use case that offers your organization the most bang for it’s buck

Step 1: Reflect Upon Your Organization

Whenever you evaluate data case collections to decide if they’re a good fit for your organization, the first thing you need to do is organize your thoughts with respect to your organization as it is today.

Before moving into the data analysis case study, STOP and ANSWER THE FOLLOWING QUESTIONS – just to remind yourself:

  • What is the business vision for our organization?
  • What industries do we primarily support?
  • What data technologies do we already have up and running, that we could use to generate even more value?
  • What team members do we have to support a new data project? And what are their data skillsets like?
  • What type of data are we mostly looking to generate value from? Structured? Semi-Structured? Un-structured? Real-time data? Huge data sets? What are our data resources like?

Jot down some notes while you’re here. Then keep them in mind as you read on to find out how one company, Humana, used its data to achieve a 28 percent increase in customer satisfaction. Also include its 63 percent increase in employee engagement! (That’s such a seriously impressive outcome, right?!)

Step 2: Review Data Case Studies

Here we are, already at step 2. It’s time for you to start reviewing data analysis case studies  (starting with the one I’m sharing below). I dentify 5 that seem the most promising for your organization given its current set-up.

Humana’s Automated Data Analysis Case Study

The key thing to note here is that the approach to creating a successful data program varies from industry to industry .

Let’s start with one to demonstrate the kind of value you can glean from these kinds of success stories.

Humana has provided health insurance to Americans for over 50 years. It is a service company focused on fulfilling the needs of its customers. A great deal of Humana’s success as a company rides on customer satisfaction, and the frontline of that battle for customers’ hearts and minds is Humana’s customer service center.

Call centers are hard to get right. A lot of emotions can arise during a customer service call, especially one relating to health and health insurance. Sometimes people are frustrated. At times, they’re upset. Also, there are times the customer service representative becomes aggravated, and the overall tone and progression of the phone call goes downhill. This is of course very bad for customer satisfaction.

Humana wanted to use artificial intelligence to improve customer satisfaction (and thus, customer retention rates & profits per customer).

Humana wanted to find a way to use artificial intelligence to monitor their phone calls and help their agents do a better job connecting with their customers in order to improve customer satisfaction (and thus, customer retention rates & profits per customer ).

In light of their business need, Humana worked with a company called Cogito, which specializes in voice analytics technology.

Cogito offers a piece of AI technology called Cogito Dialogue. It’s been trained to identify certain conversational cues as a way of helping call center representatives and supervisors stay actively engaged in a call with a customer.

The AI listens to cues like the customer’s voice pitch.

If it’s rising, or if the call representative and the customer talk over each other, then the dialogue tool will send out electronic alerts to the agent during the call.

Humana fed the dialogue tool customer service data from 10,000 calls and allowed it to analyze cues such as keywords, interruptions, and pauses, and these cues were then linked with specific outcomes. For example, if the representative is receiving a particular type of cues, they are likely to get a specific customer satisfaction result.

The Outcome

Customers were happier, and customer service representatives were more engaged..

This automated solution for data analysis has now been deployed in 200 Humana call centers and the company plans to roll it out to 100 percent of its centers in the future.

The initiative was so successful, Humana has been able to focus on next steps in its data program. The company now plans to begin predicting the type of calls that are likely to go unresolved, so they can send those calls over to management before they become frustrating to the customer and customer service representative alike.

What does this mean for you and your business?

Well, if you’re looking for new ways to generate value by improving the quantity and quality of the decision support that you’re providing to your customer service personnel, then this may be a perfect example of how you can do so.

Humana’s Business Use Cases

Humana’s data analysis case study includes two key business use cases:

  • Analyzing customer sentiment; and
  • Suggesting actions to customer service representatives.

Analyzing Customer Sentiment

First things first, before you go ahead and collect data, you need to ask yourself who and what is involved in making things happen within the business.

In the case of Humana, the actors were:

  • The health insurance system itself
  • The customer, and
  • The customer service representative

As you can see in the use case diagram above, the relational aspect is pretty simple. You have a customer service representative and a customer. They are both producing audio data, and that audio data is being fed into the system.

Humana focused on collecting the key data points, shown in the image below, from their customer service operations.

By collecting data about speech style, pitch, silence, stress in customers’ voices, length of call, speed of customers’ speech, intonation, articulation, silence, and representatives’  manner of speaking, Humana was able to analyze customer sentiment and introduce techniques for improved customer satisfaction.

Having strategically defined these data points, the Cogito technology was able to generate reports about customer sentiment during the calls.

Suggesting actions to customer service representatives.

The second use case for the Humana data program follows on from the data gathered in the first case.

In Humana’s case, Cogito generated a host of call analyses and reports about key call issues.

In the second business use case, Cogito was able to suggest actions to customer service representatives, in real-time , to make use of incoming data and help improve customer satisfaction on the spot.

The technology Humana used provided suggestions via text message to the customer service representative, offering the following types of feedback:

  • The tone of voice is too tense
  • The speed of speaking is high
  • The customer representative and customer are speaking at the same time

These alerts allowed the Humana customer service representatives to alter their approach immediately , improving the quality of the interaction and, subsequently, the customer satisfaction.

The preconditions for success in this use case were:

  • The call-related data must be collected and stored
  • The AI models must be in place to generate analysis on the data points that are recorded during the calls

Evidence of success can subsequently be found in a system that offers real-time suggestions for courses of action that the customer service representative can take to improve customer satisfaction.

Thanks to this data-intensive business use case, Humana was able to increase customer satisfaction, improve customer retention rates, and drive profits per customer.

The Technology That Supports This Data Analysis Case Study

I promised to dip into the tech side of things. This is especially for those of you who are interested in the ins and outs of how projects like this one are actually rolled out.

Here’s a little rundown of the main technologies we discovered when we investigated how Cogito runs in support of its clients like Humana.

  • For cloud data management Cogito uses AWS, specifically the Athena product
  • For on-premise big data management, the company used Apache HDFS – the distributed file system for storing big data
  • They utilize MapReduce, for processing their data
  • And Cogito also has traditional systems and relational database management systems such as PostgreSQL
  • In terms of analytics and data visualization tools, Cogito makes use of Tableau
  • And for its machine learning technology, these use cases required people with knowledge in Python, R, and SQL, as well as deep learning (Cogito uses the PyTorch library and the TensorFlow library)

These data science skill sets support the effective computing, deep learning , and natural language processing applications employed by Humana for this use case.

If you’re looking to hire people to help with your own data initiative, then people with those skills listed above, and with experience in these specific technologies, would be a huge help.

Step 3: S elect The “Quick Win” Data Use Case

Still there? Great!

It’s time to close the loop.

Remember those notes you took before you reviewed the study? I want you to STOP here and assess. Does this Humana case study seem applicable and promising as a solution, given your organization’s current set-up…

YES ▶ Excellent!

Earmark it and continue exploring other winning data use cases until you’ve identified 5 that seem like great fits for your businesses needs. Evaluate those against your organization’s needs, and select the very best fit to be your “quick win” data use case. Develop your data strategy around that.

NO , Lillian – It’s not applicable. ▶  No problem.

Discard the information and continue exploring the winning data use cases we’ve categorized for you according to business function and industry. Save time by dialing down into the business function you know your business really needs help with now. Identify 5 winning data use cases that seem like great fits for your businesses needs. Evaluate those against your organization’s needs, and select the very best fit to be your “quick win” data use case. Develop your data strategy around that data use case.

More resources to get ahead...

Get income-generating ideas for data professionals, are you tired of relying on one employer for your income are you dreaming of a side hustle that won’t put you at risk of getting fired or sued well, my friend, you’re in luck..

ideas for data analyst side jobs

This 48-page listing is here to rescue you from the drudgery of corporate slavery and set you on the path to start earning more money from your existing data expertise. Spend just 1 hour with this pdf and I can guarantee you’ll be bursting at the seams with practical, proven & profitable ideas for new income-streams you can create from your existing expertise. Learn more here!

case study data

Apply To Work Together

Get featured, join the convergence newsletter.

Our newsletter is  exclusively written for operators in the data & AI industry. Hi, I'm Lillian Pierson, Data-Mania's founder. We welcome you to our little corner of the internet. Data-Mania offers fractional CMO and marketing consulting services to deep tech B2B businesses. The Convergence community is sponsored by Data-Mania, as a tribute to the data community from which we sprung. You are welcome anytime.

case study data

Get more actionable advice by joining The Convergence Newsletter for free below.

3 data analytics use cases you need to see

3 Showstopping Data Analytics Use Cases To Uplevel Your Startup Profit-Margins

Proven evergreen data migration strategy for data professionals who want to GET PROMOTED FAST

Proven Evergreen Data Migration Strategy for Data Professionals Who Want to GET PROMOTED FAST

The generative ai ethics involved in RLHF seem iffy

Ugly Generative AI Ethics Concerns: RLHF Edition

vince lee case study

AoF 68: Put your Data Strategy into Action and Get Results in 90 Days w/ Vincent Lee

data platform examples

Data Platform Examples: What are the 3 major options?

a guide to a Self-taught Data Product Manager appraoch

A Self-Taught Data Product Manager Curriculum – Best Books to Read to GET THE JOB

case study data

Fractional CMO for deep tech B2B businesses. Specializing in go-to-market strategy, SaaS product growth, and consulting revenue growth. American expat serving clients worldwide since 2012.

Get connected, © data-mania, 2012 - 2024+, all rights reserved - terms & conditions  -  privacy policy | products protected by copyscape, privacy overview.

case study data

Get The Newsletter

10 Real World Data Science Case Studies Projects with Example

Top 10 Data Science Case Studies Projects with Examples and Solutions in Python to inspire your data science learning in 2023.

10 Real World Data Science Case Studies Projects with Example

BelData science has been a trending buzzword in recent times. With wide applications in various sectors like healthcare , education, retail, transportation, media, and banking -data science applications are at the core of pretty much every industry out there. The possibilities are endless: analysis of frauds in the finance sector or the personalization of recommendations on eCommerce businesses.  We have developed ten exciting data science case studies to explain how data science is leveraged across various industries to make smarter decisions and develop innovative personalized products tailored to specific customers.

data_science_project

Walmart Sales Forecasting Data Science Project

Downloadable solution code | Explanatory videos | Tech Support

Table of Contents

Data science case studies in retail , data science case study examples in entertainment industry , data analytics case study examples in travel industry , case studies for data analytics in social media , real world data science projects in healthcare, data analytics case studies in oil and gas, what is a case study in data science, how do you prepare a data science case study, 10 most interesting data science case studies with examples.

data science case studies

So, without much ado, let's get started with data science business case studies !

With humble beginnings as a simple discount retailer, today, Walmart operates in 10,500 stores and clubs in 24 countries and eCommerce websites, employing around 2.2 million people around the globe. For the fiscal year ended January 31, 2021, Walmart's total revenue was $559 billion showing a growth of $35 billion with the expansion of the eCommerce sector. Walmart is a data-driven company that works on the principle of 'Everyday low cost' for its consumers. To achieve this goal, they heavily depend on the advances of their data science and analytics department for research and development, also known as Walmart Labs. Walmart is home to the world's largest private cloud, which can manage 2.5 petabytes of data every hour! To analyze this humongous amount of data, Walmart has created 'Data Café,' a state-of-the-art analytics hub located within its Bentonville, Arkansas headquarters. The Walmart Labs team heavily invests in building and managing technologies like cloud, data, DevOps , infrastructure, and security.

ProjectPro Free Projects on Big Data and Data Science

Walmart is experiencing massive digital growth as the world's largest retailer . Walmart has been leveraging Big data and advances in data science to build solutions to enhance, optimize and customize the shopping experience and serve their customers in a better way. At Walmart Labs, data scientists are focused on creating data-driven solutions that power the efficiency and effectiveness of complex supply chain management processes. Here are some of the applications of data science  at Walmart:

i) Personalized Customer Shopping Experience

Walmart analyses customer preferences and shopping patterns to optimize the stocking and displaying of merchandise in their stores. Analysis of Big data also helps them understand new item sales, make decisions on discontinuing products, and the performance of brands.

ii) Order Sourcing and On-Time Delivery Promise

Millions of customers view items on Walmart.com, and Walmart provides each customer a real-time estimated delivery date for the items purchased. Walmart runs a backend algorithm that estimates this based on the distance between the customer and the fulfillment center, inventory levels, and shipping methods available. The supply chain management system determines the optimum fulfillment center based on distance and inventory levels for every order. It also has to decide on the shipping method to minimize transportation costs while meeting the promised delivery date.

Here's what valued users are saying about ProjectPro

user profile

Graduate Research assistance at Stony Brook University

user profile

Anand Kumpatla

Sr Data Scientist @ Doubleslash Software Solutions Pvt Ltd

Not sure what you are looking for?

iii) Packing Optimization 

Also known as Box recommendation is a daily occurrence in the shipping of items in retail and eCommerce business. When items of an order or multiple orders for the same customer are ready for packing, Walmart has developed a recommender system that picks the best-sized box which holds all the ordered items with the least in-box space wastage within a fixed amount of time. This Bin Packing problem is a classic NP-Hard problem familiar to data scientists .

Whenever items of an order or multiple orders placed by the same customer are picked from the shelf and are ready for packing, the box recommendation system determines the best-sized box to hold all the ordered items with a minimum of in-box space wasted. This problem is known as the Bin Packing Problem, another classic NP-Hard problem familiar to data scientists.

Here is a link to a sales prediction data science case study to help you understand the applications of Data Science in the real world. Walmart Sales Forecasting Project uses historical sales data for 45 Walmart stores located in different regions. Each store contains many departments, and you must build a model to project the sales for each department in each store. This data science case study aims to create a predictive model to predict the sales of each product. You can also try your hands-on Inventory Demand Forecasting Data Science Project to develop a machine learning model to forecast inventory demand accurately based on historical sales data.

Get Closer To Your Dream of Becoming a Data Scientist with 70+ Solved End-to-End ML Projects

Amazon is an American multinational technology-based company based in Seattle, USA. It started as an online bookseller, but today it focuses on eCommerce, cloud computing , digital streaming, and artificial intelligence . It hosts an estimate of 1,000,000,000 gigabytes of data across more than 1,400,000 servers. Through its constant innovation in data science and big data Amazon is always ahead in understanding its customers. Here are a few data analytics case study examples at Amazon:

i) Recommendation Systems

Data science models help amazon understand the customers' needs and recommend them to them before the customer searches for a product; this model uses collaborative filtering. Amazon uses 152 million customer purchases data to help users to decide on products to be purchased. The company generates 35% of its annual sales using the Recommendation based systems (RBS) method.

Here is a Recommender System Project to help you build a recommendation system using collaborative filtering. 

ii) Retail Price Optimization

Amazon product prices are optimized based on a predictive model that determines the best price so that the users do not refuse to buy it based on price. The model carefully determines the optimal prices considering the customers' likelihood of purchasing the product and thinks the price will affect the customers' future buying patterns. Price for a product is determined according to your activity on the website, competitors' pricing, product availability, item preferences, order history, expected profit margin, and other factors.

Check Out this Retail Price Optimization Project to build a Dynamic Pricing Model.

iii) Fraud Detection

Being a significant eCommerce business, Amazon remains at high risk of retail fraud. As a preemptive measure, the company collects historical and real-time data for every order. It uses Machine learning algorithms to find transactions with a higher probability of being fraudulent. This proactive measure has helped the company restrict clients with an excessive number of returns of products.

You can look at this Credit Card Fraud Detection Project to implement a fraud detection model to classify fraudulent credit card transactions.

New Projects

Let us explore data analytics case study examples in the entertainment indusry.

Ace Your Next Job Interview with Mock Interviews from Experts to Improve Your Skills and Boost Confidence!

Data Science Interview Preparation

Netflix started as a DVD rental service in 1997 and then has expanded into the streaming business. Headquartered in Los Gatos, California, Netflix is the largest content streaming company in the world. Currently, Netflix has over 208 million paid subscribers worldwide, and with thousands of smart devices which are presently streaming supported, Netflix has around 3 billion hours watched every month. The secret to this massive growth and popularity of Netflix is its advanced use of data analytics and recommendation systems to provide personalized and relevant content recommendations to its users. The data is collected over 100 billion events every day. Here are a few examples of data analysis case studies applied at Netflix :

i) Personalized Recommendation System

Netflix uses over 1300 recommendation clusters based on consumer viewing preferences to provide a personalized experience. Some of the data that Netflix collects from its users include Viewing time, platform searches for keywords, Metadata related to content abandonment, such as content pause time, rewind, rewatched. Using this data, Netflix can predict what a viewer is likely to watch and give a personalized watchlist to a user. Some of the algorithms used by the Netflix recommendation system are Personalized video Ranking, Trending now ranker, and the Continue watching now ranker.

ii) Content Development using Data Analytics

Netflix uses data science to analyze the behavior and patterns of its user to recognize themes and categories that the masses prefer to watch. This data is used to produce shows like The umbrella academy, and Orange Is the New Black, and the Queen's Gambit. These shows seem like a huge risk but are significantly based on data analytics using parameters, which assured Netflix that they would succeed with its audience. Data analytics is helping Netflix come up with content that their viewers want to watch even before they know they want to watch it.

iii) Marketing Analytics for Campaigns

Netflix uses data analytics to find the right time to launch shows and ad campaigns to have maximum impact on the target audience. Marketing analytics helps come up with different trailers and thumbnails for other groups of viewers. For example, the House of Cards Season 5 trailer with a giant American flag was launched during the American presidential elections, as it would resonate well with the audience.

Here is a Customer Segmentation Project using association rule mining to understand the primary grouping of customers based on various parameters.

Get FREE Access to Machine Learning Example Codes for Data Cleaning , Data Munging, and Data Visualization

In a world where Purchasing music is a thing of the past and streaming music is a current trend, Spotify has emerged as one of the most popular streaming platforms. With 320 million monthly users, around 4 billion playlists, and approximately 2 million podcasts, Spotify leads the pack among well-known streaming platforms like Apple Music, Wynk, Songza, amazon music, etc. The success of Spotify has mainly depended on data analytics. By analyzing massive volumes of listener data, Spotify provides real-time and personalized services to its listeners. Most of Spotify's revenue comes from paid premium subscriptions. Here are some of the examples of case study on data analytics used by Spotify to provide enhanced services to its listeners:

i) Personalization of Content using Recommendation Systems

Spotify uses Bart or Bayesian Additive Regression Trees to generate music recommendations to its listeners in real-time. Bart ignores any song a user listens to for less than 30 seconds. The model is retrained every day to provide updated recommendations. A new Patent granted to Spotify for an AI application is used to identify a user's musical tastes based on audio signals, gender, age, accent to make better music recommendations.

Spotify creates daily playlists for its listeners, based on the taste profiles called 'Daily Mixes,' which have songs the user has added to their playlists or created by the artists that the user has included in their playlists. It also includes new artists and songs that the user might be unfamiliar with but might improve the playlist. Similar to it is the weekly 'Release Radar' playlists that have newly released artists' songs that the listener follows or has liked before.

ii) Targetted marketing through Customer Segmentation

With user data for enhancing personalized song recommendations, Spotify uses this massive dataset for targeted ad campaigns and personalized service recommendations for its users. Spotify uses ML models to analyze the listener's behavior and group them based on music preferences, age, gender, ethnicity, etc. These insights help them create ad campaigns for a specific target audience. One of their well-known ad campaigns was the meme-inspired ads for potential target customers, which was a huge success globally.

iii) CNN's for Classification of Songs and Audio Tracks

Spotify builds audio models to evaluate the songs and tracks, which helps develop better playlists and recommendations for its users. These allow Spotify to filter new tracks based on their lyrics and rhythms and recommend them to users like similar tracks ( collaborative filtering). Spotify also uses NLP ( Natural language processing) to scan articles and blogs to analyze the words used to describe songs and artists. These analytical insights can help group and identify similar artists and songs and leverage them to build playlists.

Here is a Music Recommender System Project for you to start learning. We have listed another music recommendations dataset for you to use for your projects: Dataset1 . You can use this dataset of Spotify metadata to classify songs based on artists, mood, liveliness. Plot histograms, heatmaps to get a better understanding of the dataset. Use classification algorithms like logistic regression, SVM, and Principal component analysis to generate valuable insights from the dataset.

Explore Categories

Below you will find case studies for data analytics in the travel and tourism industry.

Airbnb was born in 2007 in San Francisco and has since grown to 4 million Hosts and 5.6 million listings worldwide who have welcomed more than 1 billion guest arrivals in almost every country across the globe. Airbnb is active in every country on the planet except for Iran, Sudan, Syria, and North Korea. That is around 97.95% of the world. Using data as a voice of their customers, Airbnb uses the large volume of customer reviews, host inputs to understand trends across communities, rate user experiences, and uses these analytics to make informed decisions to build a better business model. The data scientists at Airbnb are developing exciting new solutions to boost the business and find the best mapping for its customers and hosts. Airbnb data servers serve approximately 10 million requests a day and process around one million search queries. Data is the voice of customers at AirBnB and offers personalized services by creating a perfect match between the guests and hosts for a supreme customer experience. 

i) Recommendation Systems and Search Ranking Algorithms

Airbnb helps people find 'local experiences' in a place with the help of search algorithms that make searches and listings precise. Airbnb uses a 'listing quality score' to find homes based on the proximity to the searched location and uses previous guest reviews. Airbnb uses deep neural networks to build models that take the guest's earlier stays into account and area information to find a perfect match. The search algorithms are optimized based on guest and host preferences, rankings, pricing, and availability to understand users’ needs and provide the best match possible.

ii) Natural Language Processing for Review Analysis

Airbnb characterizes data as the voice of its customers. The customer and host reviews give a direct insight into the experience. The star ratings alone cannot be an excellent way to understand it quantitatively. Hence Airbnb uses natural language processing to understand reviews and the sentiments behind them. The NLP models are developed using Convolutional neural networks .

Practice this Sentiment Analysis Project for analyzing product reviews to understand the basic concepts of natural language processing.

iii) Smart Pricing using Predictive Analytics

The Airbnb hosts community uses the service as a supplementary income. The vacation homes and guest houses rented to customers provide for rising local community earnings as Airbnb guests stay 2.4 times longer and spend approximately 2.3 times the money compared to a hotel guest. The profits are a significant positive impact on the local neighborhood community. Airbnb uses predictive analytics to predict the prices of the listings and help the hosts set a competitive and optimal price. The overall profitability of the Airbnb host depends on factors like the time invested by the host and responsiveness to changing demands for different seasons. The factors that impact the real-time smart pricing are the location of the listing, proximity to transport options, season, and amenities available in the neighborhood of the listing.

Here is a Price Prediction Project to help you understand the concept of predictive analysis which is widely common in case studies for data analytics. 

Uber is the biggest global taxi service provider. As of December 2018, Uber has 91 million monthly active consumers and 3.8 million drivers. Uber completes 14 million trips each day. Uber uses data analytics and big data-driven technologies to optimize their business processes and provide enhanced customer service. The Data Science team at uber has been exploring futuristic technologies to provide better service constantly. Machine learning and data analytics help Uber make data-driven decisions that enable benefits like ride-sharing, dynamic price surges, better customer support, and demand forecasting. Here are some of the real world data science projects used by uber:

i) Dynamic Pricing for Price Surges and Demand Forecasting

Uber prices change at peak hours based on demand. Uber uses surge pricing to encourage more cab drivers to sign up with the company, to meet the demand from the passengers. When the prices increase, the driver and the passenger are both informed about the surge in price. Uber uses a predictive model for price surging called the 'Geosurge' ( patented). It is based on the demand for the ride and the location.

ii) One-Click Chat

Uber has developed a Machine learning and natural language processing solution called one-click chat or OCC for coordination between drivers and users. This feature anticipates responses for commonly asked questions, making it easy for the drivers to respond to customer messages. Drivers can reply with the clock of just one button. One-Click chat is developed on Uber's machine learning platform Michelangelo to perform NLP on rider chat messages and generate appropriate responses to them.

iii) Customer Retention

Failure to meet the customer demand for cabs could lead to users opting for other services. Uber uses machine learning models to bridge this demand-supply gap. By using prediction models to predict the demand in any location, uber retains its customers. Uber also uses a tier-based reward system, which segments customers into different levels based on usage. The higher level the user achieves, the better are the perks. Uber also provides personalized destination suggestions based on the history of the user and their frequently traveled destinations.

You can take a look at this Python Chatbot Project and build a simple chatbot application to understand better the techniques used for natural language processing. You can also practice the working of a demand forecasting model with this project using time series analysis. You can look at this project which uses time series forecasting and clustering on a dataset containing geospatial data for forecasting customer demand for ola rides.

Explore More  Data Science and Machine Learning Projects for Practice. Fast-Track Your Career Transition with ProjectPro

7) LinkedIn 

LinkedIn is the largest professional social networking site with nearly 800 million members in more than 200 countries worldwide. Almost 40% of the users access LinkedIn daily, clocking around 1 billion interactions per month. The data science team at LinkedIn works with this massive pool of data to generate insights to build strategies, apply algorithms and statistical inferences to optimize engineering solutions, and help the company achieve its goals. Here are some of the real world data science projects at LinkedIn:

i) LinkedIn Recruiter Implement Search Algorithms and Recommendation Systems

LinkedIn Recruiter helps recruiters build and manage a talent pool to optimize the chances of hiring candidates successfully. This sophisticated product works on search and recommendation engines. The LinkedIn recruiter handles complex queries and filters on a constantly growing large dataset. The results delivered have to be relevant and specific. The initial search model was based on linear regression but was eventually upgraded to Gradient Boosted decision trees to include non-linear correlations in the dataset. In addition to these models, the LinkedIn recruiter also uses the Generalized Linear Mix model to improve the results of prediction problems to give personalized results.

ii) Recommendation Systems Personalized for News Feed

The LinkedIn news feed is the heart and soul of the professional community. A member's newsfeed is a place to discover conversations among connections, career news, posts, suggestions, photos, and videos. Every time a member visits LinkedIn, machine learning algorithms identify the best exchanges to be displayed on the feed by sorting through posts and ranking the most relevant results on top. The algorithms help LinkedIn understand member preferences and help provide personalized news feeds. The algorithms used include logistic regression, gradient boosted decision trees and neural networks for recommendation systems.

iii) CNN's to Detect Inappropriate Content

To provide a professional space where people can trust and express themselves professionally in a safe community has been a critical goal at LinkedIn. LinkedIn has heavily invested in building solutions to detect fake accounts and abusive behavior on their platform. Any form of spam, harassment, inappropriate content is immediately flagged and taken down. These can range from profanity to advertisements for illegal services. LinkedIn uses a Convolutional neural networks based machine learning model. This classifier trains on a training dataset containing accounts labeled as either "inappropriate" or "appropriate." The inappropriate list consists of accounts having content from "blocklisted" phrases or words and a small portion of manually reviewed accounts reported by the user community.

Here is a Text Classification Project to help you understand NLP basics for text classification. You can find a news recommendation system dataset to help you build a personalized news recommender system. You can also use this dataset to build a classifier using logistic regression, Naive Bayes, or Neural networks to classify toxic comments.

Get confident to build end-to-end projects

Access to a curated library of 250+ end-to-end industry projects with solution code, videos and tech support.

Pfizer is a multinational pharmaceutical company headquartered in New York, USA. One of the largest pharmaceutical companies globally known for developing a wide range of medicines and vaccines in disciplines like immunology, oncology, cardiology, and neurology. Pfizer became a household name in 2010 when it was the first to have a COVID-19 vaccine with FDA. In early November 2021, The CDC has approved the Pfizer vaccine for kids aged 5 to 11. Pfizer has been using machine learning and artificial intelligence to develop drugs and streamline trials, which played a massive role in developing and deploying the COVID-19 vaccine. Here are a few data analytics case studies by Pfizer :

i) Identifying Patients for Clinical Trials

Artificial intelligence and machine learning are used to streamline and optimize clinical trials to increase their efficiency. Natural language processing and exploratory data analysis of patient records can help identify suitable patients for clinical trials. These can help identify patients with distinct symptoms. These can help examine interactions of potential trial members' specific biomarkers, predict drug interactions and side effects which can help avoid complications. Pfizer's AI implementation helped rapidly identify signals within the noise of millions of data points across their 44,000-candidate COVID-19 clinical trial.

ii) Supply Chain and Manufacturing

Data science and machine learning techniques help pharmaceutical companies better forecast demand for vaccines and drugs and distribute them efficiently. Machine learning models can help identify efficient supply systems by automating and optimizing the production steps. These will help supply drugs customized to small pools of patients in specific gene pools. Pfizer uses Machine learning to predict the maintenance cost of equipment used. Predictive maintenance using AI is the next big step for Pharmaceutical companies to reduce costs.

iii) Drug Development

Computer simulations of proteins, and tests of their interactions, and yield analysis help researchers develop and test drugs more efficiently. In 2016 Watson Health and Pfizer announced a collaboration to utilize IBM Watson for Drug Discovery to help accelerate Pfizer's research in immuno-oncology, an approach to cancer treatment that uses the body's immune system to help fight cancer. Deep learning models have been used recently for bioactivity and synthesis prediction for drugs and vaccines in addition to molecular design. Deep learning has been a revolutionary technique for drug discovery as it factors everything from new applications of medications to possible toxic reactions which can save millions in drug trials.

You can create a Machine learning model to predict molecular activity to help design medicine using this dataset . You may build a CNN or a Deep neural network for this data analyst case study project.

Access Data Science and Machine Learning Project Code Examples

9) Shell Data Analyst Case Study Project

Shell is a global group of energy and petrochemical companies with over 80,000 employees in around 70 countries. Shell uses advanced technologies and innovations to help build a sustainable energy future. Shell is going through a significant transition as the world needs more and cleaner energy solutions to be a clean energy company by 2050. It requires substantial changes in the way in which energy is used. Digital technologies, including AI and Machine Learning, play an essential role in this transformation. These include efficient exploration and energy production, more reliable manufacturing, more nimble trading, and a personalized customer experience. Using AI in various phases of the organization will help achieve this goal and stay competitive in the market. Here are a few data analytics case studies in the petrochemical industry:

i) Precision Drilling

Shell is involved in the processing mining oil and gas supply, ranging from mining hydrocarbons to refining the fuel to retailing them to customers. Recently Shell has included reinforcement learning to control the drilling equipment used in mining. Reinforcement learning works on a reward-based system based on the outcome of the AI model. The algorithm is designed to guide the drills as they move through the surface, based on the historical data from drilling records. It includes information such as the size of drill bits, temperatures, pressures, and knowledge of the seismic activity. This model helps the human operator understand the environment better, leading to better and faster results will minor damage to machinery used. 

ii) Efficient Charging Terminals

Due to climate changes, governments have encouraged people to switch to electric vehicles to reduce carbon dioxide emissions. However, the lack of public charging terminals has deterred people from switching to electric cars. Shell uses AI to monitor and predict the demand for terminals to provide efficient supply. Multiple vehicles charging from a single terminal may create a considerable grid load, and predictions on demand can help make this process more efficient.

iii) Monitoring Service and Charging Stations

Another Shell initiative trialed in Thailand and Singapore is the use of computer vision cameras, which can think and understand to watch out for potentially hazardous activities like lighting cigarettes in the vicinity of the pumps while refueling. The model is built to process the content of the captured images and label and classify it. The algorithm can then alert the staff and hence reduce the risk of fires. You can further train the model to detect rash driving or thefts in the future.

Here is a project to help you understand multiclass image classification. You can use the Hourly Energy Consumption Dataset to build an energy consumption prediction model. You can use time series with XGBoost to develop your model.

10) Zomato Case Study on Data Analytics

Zomato was founded in 2010 and is currently one of the most well-known food tech companies. Zomato offers services like restaurant discovery, home delivery, online table reservation, online payments for dining, etc. Zomato partners with restaurants to provide tools to acquire more customers while also providing delivery services and easy procurement of ingredients and kitchen supplies. Currently, Zomato has over 2 lakh restaurant partners and around 1 lakh delivery partners. Zomato has closed over ten crore delivery orders as of date. Zomato uses ML and AI to boost their business growth, with the massive amount of data collected over the years from food orders and user consumption patterns. Here are a few examples of data analyst case study project developed by the data scientists at Zomato:

i) Personalized Recommendation System for Homepage

Zomato uses data analytics to create personalized homepages for its users. Zomato uses data science to provide order personalization, like giving recommendations to the customers for specific cuisines, locations, prices, brands, etc. Restaurant recommendations are made based on a customer's past purchases, browsing history, and what other similar customers in the vicinity are ordering. This personalized recommendation system has led to a 15% improvement in order conversions and click-through rates for Zomato. 

You can use the Restaurant Recommendation Dataset to build a restaurant recommendation system to predict what restaurants customers are most likely to order from, given the customer location, restaurant information, and customer order history.

ii) Analyzing Customer Sentiment

Zomato uses Natural language processing and Machine learning to understand customer sentiments using social media posts and customer reviews. These help the company gauge the inclination of its customer base towards the brand. Deep learning models analyze the sentiments of various brand mentions on social networking sites like Twitter, Instagram, Linked In, and Facebook. These analytics give insights to the company, which helps build the brand and understand the target audience.

iii) Predicting Food Preparation Time (FPT)

Food delivery time is an essential variable in the estimated delivery time of the order placed by the customer using Zomato. The food preparation time depends on numerous factors like the number of dishes ordered, time of the day, footfall in the restaurant, day of the week, etc. Accurate prediction of the food preparation time can help make a better prediction of the Estimated delivery time, which will help delivery partners less likely to breach it. Zomato uses a Bidirectional LSTM-based deep learning model that considers all these features and provides food preparation time for each order in real-time. 

Data scientists are companies' secret weapons when analyzing customer sentiments and behavior and leveraging it to drive conversion, loyalty, and profits. These 10 data science case studies projects with examples and solutions show you how various organizations use data science technologies to succeed and be at the top of their field! To summarize, Data Science has not only accelerated the performance of companies but has also made it possible to manage & sustain their performance with ease.

FAQs on Data Analysis Case Studies

A case study in data science is an in-depth analysis of a real-world problem using data-driven approaches. It involves collecting, cleaning, and analyzing data to extract insights and solve challenges, offering practical insights into how data science techniques can address complex issues across various industries.

To create a data science case study, identify a relevant problem, define objectives, and gather suitable data. Clean and preprocess data, perform exploratory data analysis, and apply appropriate algorithms for analysis. Summarize findings, visualize results, and provide actionable recommendations, showcasing the problem-solving potential of data science techniques.

Access Solved Big Data and Data Science Projects

About the Author

author profile

ProjectPro is the only online platform designed to help professionals gain practical, hands-on experience in big data, data engineering, data science, and machine learning related technologies. Having over 270+ reusable project templates in data science and big data with step-by-step walkthroughs,

arrow link

© 2024

© 2024 Iconiq Inc.

Privacy policy

User policy

Write for ProjectPro

skip to content

Search Google Appliance

Information technology, services at a glance.

  • Instructional Technologies
  • Network Connectivity
  • Online Storage & Collaboration
  • Web Hosting
  • Classroom Technologies

Case Study: How UMass Amherst Transformed Data Culture

The University of Massachusetts Amherst possesses a wealth of data across budgets, enrollment, student retention, admissions, and more. This new case study from HeliosCampus explores how the University consolidated data through Flagship Analytics, the University's analytics platform, leading to improved decision-making, better budget use, and better communication across departments.

"Data itself can be mind-numbingly boring," says Chris Misra, Vice Chancellor for Information Technology and CIO. "But what it enables and the student outcomes that can be supported from accurately understanding it — that is interesting. There are real students positively impacted. What you don’t see is the student who was on a DFW for physics who got the help they needed…that those stories are happening is what matters to me."

Read the full case study: No Exceptions:  How UMass Amherst Transformed Their Data Culture

Printer-friendly version

Healthcare industry case study

No sector is changing or growing faster than digital healthcare. A recent digital healthcare CAGR forecast by PMI estimates 17.4% growth over the next decade. See how Iron Mountain is helping healthcare organizations meet their IT goals.

IMDC healthcare employee working on a computer

  • New distributed applications
  • Big data and high density power
  • Scalability
  • Sustainability
  • AI & Hybrid Cloud
  • Scalable power
  • Secure storage
  • Diverse connectivity ecosystems
  • Global compliance
  • Renewable power and recycling

Industry Challenges

No sector is changing or growing faster than digital healthcare. Both the challenge and the opportunities are huge for what a Deloitte Healthcare Leader has described as “predictive, preventative, personalized and participatory medicine” - all built with digital technologies. A recent digital healthcare CAGR forecast by PMI estimates 17.4% growth over the next decade, taking total market size from $283 BN in 2024 to $1406 BN in 2034.

Healthcare’s digital infrastructure has traditionally been both centralized and specialized. To enable resilience, support new dispersed networks and research and drive consumer-style multi-device health apps, providers now need an enterprise-style infrastructure. AI also has a growing role: healthcare is one of the areas in which generative AI-driven solutions are already mainstream, pushing innovation and improving patient outcomes worldwide.

Iron Mountain is proud to serve some of the world’s leading healthcare businesses. We work with more than 2,000 hospitals and 45,000 healthcare customers across our global storage and data center footprint, curating close to a billion patient records and providing the infrastructure for many of the sector’s most successful new applications.

Featured services & solutions

Data centers.

Iron Mountain is a global data center company that provides tailored, sustainable, secure, carrier and cloud-neutral colocation solutions.

Customer data center solutions

From cloud data centers to federal data centers to healthcare data centers and more, we have the data center solutions for your unique industry.

Elevate the power of your work

Get a FREE consultation today!

Get Started

Related resources

Server hall within data center

What you need to know about decommissioning data centers

Data Center server hall

Data sanitization enables more sustainable data center ITAD

Person working on a laptop with sustainable graphics overlay

A Zero Carbon Framework for the Industry

Case report: An ultrasound-based approach as an easy tool to evaluate hormone receptor-positive HER-2-negative breast cancer in advanced/metastatic settings: preliminary data of the Plus-ENDO study

Affiliations.

  • 1 Oncology Operative Unit, "Santa Maria delle Grazie" Hospital, ASL Napoli 2 NORD, Pozzuoli, Italy.
  • 2 Breast Unit, Clinica Pineta Grande, Castel Volturno, Italy.
  • 3 Oncology Operative Unit, "S.Maria della Pietà" Hospital, Casoria, Italy.
  • 4 Ospedale S.Maria della Pietà, Casoria, Italy.
  • 5 Department of Precision Medicine, "Luigi Vanvitelli" University of Campania, Napoli, Italy.
  • 6 Molecular Biology and Genetics Research Institute, Biogem, Ariano Irpino, Italy.
  • 7 Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy.
  • PMID: 38690171
  • PMCID: PMC11058846
  • DOI: 10.3389/fonc.2024.1295772

Background: Hormone receptor-positive tumors are unlikely to exhibit a complete pathological tumor response. The association of CDK 4/6 inhibitor plus hormone therapy has changed this perspective.

Case presentation: In this study, we retrospectively reviewed the charts of patients with a diagnosis of luminal A/B advanced/metastatic tumors treated with a CDK 4/6 inhibitor-based therapy. In this part of the study, we present clinical and ultrasound evaluation. Eight female patients were considered eligible for the study aims. Three complete and five partial responses were reported, including a clinical tumor response of 50% or more in five out of nine assessed lesions (55%). All patients showed a response on ultrasound. The mean lesion size measured by ultrasound was 27.1 ± 15.02 mm (range, 6-47 mm) at the baseline; 16.08 ± 14.6 mm (range, 0-40 mm) after 4 months (T1); and 11.7 ± 12.9 mm (range, 0-30 mm) at the 6 months follow-up (T2). Two patients underwent surgery. The radiological complete response found confirmation in a pathological complete response, while the partial response matched a moderate residual disease.

Conclusion: The evaluation of breast cancer by ultrasound is basically informative of response and may be an easy and practical tool to monitor advanced tumors, especially in advanced/unfit patients who are reluctant to invasive exams.

Keywords: CDK4/6 inhibitors; breast cancer; hormone-responsive; radiology; ultrasound.

Copyright © 2024 Montella, Di Marino, Marino, Riccio, Del Gaudio, Altucci, Berretta and Facchini.

Publication types

  • Case Reports

Grants and funding

COMMENTS

  1. What is a Case Study?

    A case study protocol outlines the procedures and general rules to be followed during the case study. This includes the data collection methods to be used, the sources of data, and the procedures for analysis. Having a detailed case study protocol ensures consistency and reliability in the study.

  2. What Is a Case Study?

    Revised on November 20, 2023. A case study is a detailed study of a specific subject, such as a person, group, place, event, organization, or phenomenon. Case studies are commonly used in social, educational, clinical, and business research. A case study research design usually involves qualitative methods, but quantitative methods are ...

  3. Case Study Methodology of Qualitative Research: Key Attributes and

    In a case study research, multiple methods of data collection are used, as it involves an in-depth study of a phenomenon. It must be noted, as highlighted by Yin , a case study is not a method of data collection, rather is a research strategy or design to study a social unit.

  4. Case Study

    Case studies tend to focus on qualitative data using methods such as interviews, observations, and analysis of primary and secondary sources (e.g., newspaper articles, photographs, official records). Sometimes a case study will also collect quantitative data. Example: Mixed methods case study. For a case study of a wind farm development in a ...

  5. Case Study

    The data collection method should be selected based on the research questions and the nature of the case study phenomenon. Analyze the data: The data collected from the case study should be analyzed using various techniques, such as content analysis, thematic analysis, or grounded theory. The analysis should be guided by the research questions ...

  6. Qualitative case study data analysis: an example from practice

    Data sources: The research example used is a multiple case study that explored the role of the clinical skills laboratory in preparing students for the real world of practice. Data analysis was conducted using a framework guided by the four stages of analysis outlined by Morse ( 1994 ): comprehending, synthesising, theorising and recontextualising.

  7. Case Study Method: A Step-by-Step Guide for Business Researchers

    Qualitative case study is a research methodology that helps in exploration of a phenomenon within some particular context through various data sources, and it undertakes the exploration through variety of lenses in order to reveal multiple facets of the phenomenon (Baxter & Jack, 2008).

  8. Case Study Methods and Examples

    The purpose of case study research is twofold: (1) to provide descriptive information and (2) to suggest theoretical relevance. Rich description enables an in-depth or sharpened understanding of the case. It is unique given one characteristic: case studies draw from more than one data source. Case studies are inherently multimodal or mixed ...

  9. Case Study Data

    Case study research. Peta Darke, Graeme Shanks, in Research Methods for Students, Academics and Professionals (Second Edition), 2002. Collecting case study data. The collection of case study data from case participants can be difficult and time-consuming and requires careful planning and judicious use of both the case participants' and the researchers' time.

  10. What is a Case Study? Definition & Examples

    A case study is an in-depth investigation of a single person, group, event, or community. This research method involves intensively analyzing a subject to understand its complexity and context. The richness of a case study comes from its ability to capture detailed, qualitative data that can offer insights into a process or subject matter that ...

  11. Writing a Case Study

    A case study research paper examines a person, place, event, condition, phenomenon, or other type of subject of analysis in order to extrapolate key themes and results that help predict future trends, illuminate previously hidden issues that can be applied to practice, and/or provide a means for understanding an important research problem with greater clarity.

  12. LibGuides: Research Writing and Analysis: Case Study

    A Case study is: An in-depth research design that primarily uses a qualitative methodology but sometimes includes quantitative methodology. Used to examine an identifiable problem confirmed through research. Used to investigate an individual, group of people, organization, or event. Used to mostly answer "how" and "why" questions.

  13. PDF Analyzing Case Study Evidence

    136 CASE STUDY RESEARCH data, and rival explanations. All four strategies underlie the analytic techniques to be described below. Without such strategies (or alternatives to them), case study analysis will proceed with difficulty. The remainder of this chapter covers the specific analytic techniques, to be

  14. Data in Action: 7 Data Science Case Studies Worth Reading

    7 Top Data Science Case Studies . Here are 7 top case studies that show how companies and organizations have approached common challenges with some seriously inventive data science solutions: Geosciences. Data science is a powerful tool that can help us to understand better and predict geoscience phenomena.

  15. (PDF) Collecting data through case studies

    The case study is a data collection method in which in-depth descriptive information. about specific entities, or cases, is collected, organized, interpreted, and presented in a. narrative format ...

  16. Case studies & examples

    Department of Transportation Case Study: Enterprise Data Inventory. In response to the Open Government Directive, DOT developed a strategic action plan to inventory and release high-value information through the Data.gov portal. The Department sustained efforts in building its data inventory, responding to the President's memorandum on ...

  17. 10 Real-World Data Science Case Studies Worth Reading

    These case studies reflect the complexities data scientists face when translating data into actionable insights in the corporate world. What are the most common challenges in real-world data science projects? Real-world data science projects come with common challenges. Data quality issues, including missing or inaccurate data, can hinder analysis.

  18. (PDF) Qualitative Case Study Methodology: Study Design and

    McMaster University, West Hamilton, Ontario, Canada. Qualitative case study methodology prov ides tools for researchers to study. complex phenomena within their contexts. When the approach is ...

  19. Four Steps to Analyse Data from a Case Study Method

    only way case study data can be analysed (Barry, 1998) and it is recommended that they be used in conjunction with the overall case study design frameworks proposed by Yin (1994); and Miles and Huberman (1994). Create data repository To be able to analyse the data from the case studies it has to be in a format that allows for easy manipulation.

  20. Bridging the gap: leveraging data science to equip domain ...

    Our case studies emphasize the impactful outcomes possible through interdisciplinary collaboration. ... after we evaluated the data quality in the BetterBirth study and discarded noisy variables ...

  21. Data Analysis Case Study: Learn From These Winning Data Projects

    Humana's Automated Data Analysis Case Study. The key thing to note here is that the approach to creating a successful data program varies from industry to industry. Let's start with one to demonstrate the kind of value you can glean from these kinds of success stories. Humana has provided health insurance to Americans for over 50 years.

  22. 10 Real World Data Science Case Studies Projects with Example

    Case Studies for Data Analytics in Social Media 7) LinkedIn . LinkedIn is the largest professional social networking site with nearly 800 million members in more than 200 countries worldwide. Almost 40% of the users access LinkedIn daily, clocking around 1 billion interactions per month. The data science team at LinkedIn works with this massive ...

  23. Data Science Case Studies: Solved and Explained

    1. Solving a Data Science case study means analyzing and solving a problem statement intensively. Solving case studies will help you show unique and amazing data science use cases in your ...

  24. AHRQ Seeks Examples of Impact for Development of Impact Case Studies

    Since 2004, the agency has developed more than 400 Impact Case Studies that illustrate AHRQ's contributions to healthcare improvement. Available online and searchable via an interactive map , the Impact Case Studies help to tell the story of how AHRQ-funded research findings, data and tools have made an impact on the lives of millions of ...

  25. Case Study: How UMass Amherst Transformed Data Culture

    The University of Massachusetts Amherst possesses a wealth of data across budgets, enrollment, student retention, admissions, and more. This new case study from HeliosCampus explores how the University consolidated data through Flagship Analytics, the University's analytics platform, leading to improved decision-making, better budget use, and better communication across

  26. Top 10 Big Data Case Studies that You Should Know

    Top 10 Big Data Case Studies. 1. Big data in Netflix. Netflix implements data analytics models to discover customer behavior and buying patterns. Then, using this information it recommends movies and TV shows to their customers. That is, it analyzes the customer's choice and preferences and suggests shows and movies accordingly.

  27. The Curriculum Journal

    This study explores potential barriers to curriculum accessibility for lower-secondary school students with visual impairment in Senegal. A qualitative case study approach was used with purposeful sampling to collect data at a special school for students with visual impairment, and the three junior high schools that offer placement to the students with visual impairment after primary ...

  28. Healthcare industry case study

    A recent digital healthcare CAGR forecast by PMI estimates 17.4% growth over the next decade, taking total market size from $283 BN in 2024 to $1406 BN in 2034. Healthcare's digital infrastructure has traditionally been both centralized and specialized. To enable resilience, support new dispersed networks and research and drive consumer-style ...

  29. Case report: An ultrasound-based approach as an easy tool to evaluate

    Case presentation: In this study, we retrospectively reviewed the charts of patients with a diagnosis of luminal A/B advanced/metastatic tumors treated with a CDK 4/6 inhibitor-based therapy. In this part of the study, we present clinical and ultrasound evaluation. Eight female patients were considered eligible for the study aims.

  30. Hazard Assessment of Debris Flow: A Case Study of the Huiyazi ...

    The Bailong River Basin is situated at the northeastern edge of the Qinghai-Tibet Plateau and the western transition zone of the Loess Plateau, characterized by steep terrain and heavy rainfall. This area experiences frequent occurrences of debris flows, posing serious threats to towns and construction projects. Focusing on the Huaiyazigou debris flow in the Bailong River Basin, numerical ...