Statology

Statistics Made Easy

How to Perform Hypothesis Testing in Python (With Examples)

A hypothesis test is a formal statistical test we use to reject or fail to reject some statistical hypothesis.

This tutorial explains how to perform the following hypothesis tests in Python:

  • One sample t-test
  • Two sample t-test
  • Paired samples t-test

Let’s jump in!

Example 1: One Sample t-test in Python

A one sample t-test is used to test whether or not the mean of a population is equal to some value.

For example, suppose we want to know whether or not the mean weight of a certain species of some turtle is equal to 310 pounds.

To test this, we go out and collect a simple random sample of turtles with the following weights:

Weights : 300, 315, 320, 311, 314, 309, 300, 308, 305, 303, 305, 301, 303

The following code shows how to use the ttest_1samp() function from the scipy.stats library to perform a one sample t-test:

The t test statistic is  -1.5848 and the corresponding two-sided p-value is  0.1389 .

The two hypotheses for this particular one sample t-test are as follows:

  • H 0 :  µ = 310 (the mean weight for this species of turtle is 310 pounds)
  • H A :  µ ≠310 (the mean weight is not  310 pounds)

Because the p-value of our test (0.1389) is greater than alpha = 0.05, we fail to reject the null hypothesis of the test.

We do not have sufficient evidence to say that the mean weight for this particular species of turtle is different from 310 pounds.

Example 2: Two Sample t-test in Python

A two sample t-test is used to test whether or not the means of two populations are equal.

For example, suppose we want to know whether or not the mean weight between two different species of turtles is equal.

To test this, we collect a simple random sample of turtles from each species with the following weights:

Sample 1 : 300, 315, 320, 311, 314, 309, 300, 308, 305, 303, 305, 301, 303

Sample 2 : 335, 329, 322, 321, 324, 319, 304, 308, 305, 311, 307, 300, 305

The following code shows how to use the ttest_ind() function from the scipy.stats library to perform this two sample t-test:

The t test statistic is – 2.1009 and the corresponding two-sided p-value is 0.0463 .

The two hypotheses for this particular two sample t-test are as follows:

  • H 0 :  µ 1 = µ 2 (the mean weight between the two species is equal)
  • H A :  µ 1 ≠ µ 2 (the mean weight between the two species is not equal)

Since the p-value of the test (0.0463) is less than .05, we reject the null hypothesis.

This means we have sufficient evidence to say that the mean weight between the two species is not equal.

Example 3: Paired Samples t-test in Python

A paired samples t-test is used to compare the means of two samples when each observation in one sample can be paired with an observation in the other sample.

For example, suppose we want to know whether or not a certain training program is able to increase the max vertical jump (in inches) of basketball players.

To test this, we may recruit a simple random sample of 12 college basketball players and measure each of their max vertical jumps. Then, we may have each player use the training program for one month and then measure their max vertical jump again at the end of the month.

The following data shows the max jump height (in inches) before and after using the training program for each player:

Before : 22, 24, 20, 19, 19, 20, 22, 25, 24, 23, 22, 21

After : 23, 25, 20, 24, 18, 22, 23, 28, 24, 25, 24, 20

The following code shows how to use the ttest_rel() function from the scipy.stats library to perform this paired samples t-test:

The t test statistic is – 2.5289  and the corresponding two-sided p-value is 0.0280 .

The two hypotheses for this particular paired samples t-test are as follows:

  • H 0 :  µ 1 = µ 2 (the mean jump height before and after using the program is equal)
  • H A :  µ 1 ≠ µ 2 (the mean jump height before and after using the program is not equal)

Since the p-value of the test (0.0280) is less than .05, we reject the null hypothesis.

This means we have sufficient evidence to say that the mean jump height before and after using the training program is not equal.

Additional Resources

You can use the following online calculators to automatically perform various t-tests:

One Sample t-test Calculator Two Sample t-test Calculator Paired Samples t-test Calculator

Featured Posts

5 Tips for Interpreting P-Values Correctly in Hypothesis Testing

Hey there. My name is Zach Bobbitt. I have a Masters of Science degree in Applied Statistics and I’ve worked on machine learning algorithms for professional businesses in both healthcare and retail. I’m passionate about statistics, machine learning, and data visualization and I created Statology to be a resource for both students and teachers alike.  My goal with this site is to help you learn statistics through using simple terms, plenty of real-world examples, and helpful illustrations.

One Reply to “How to Perform Hypothesis Testing in Python (With Examples)”

Nice post. Could you please clear my one doubt regarding alpha value . i can see in your example, it is a two tail test. As i understand in that case our alpha value should be alpha/2 i.e 0.025 . Here you are taking it as 0.05. ?

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Join the Statology Community

Sign up to receive Statology's exclusive study resource: 100 practice problems with step-by-step solutions. Plus, get our latest insights, tutorials, and data analysis tips straight to your inbox!

By subscribing you accept Statology's Privacy Policy.

What Is Hypothesis Testing? Types and Python Code Example

MENE-EJEGI OGBEMI

Curiosity has always been a part of human nature. Since the beginning of time, this has been one of the most important tools for birthing civilizations. Still, our curiosity grows — it tests and expands our limits. Humanity has explored the plains of land, water, and air. We've built underwater habitats where we could live for weeks. Our civilization has explored various planets. We've explored land to an unlimited degree.

These things were possible because humans asked questions and searched until they found answers. However, for us to get these answers, a proven method must be used and followed through to validate our results. Historically, philosophers assumed the earth was flat and you would fall off when you reached the edge. While philosophers like Aristotle argued that the earth was spherical based on the formation of the stars, they could not prove it at the time.

This is because they didn't have adequate resources to explore space or mathematically prove Earth's shape. It was a Greek mathematician named Eratosthenes who calculated the earth's circumference with incredible precision. He used scientific methods to show that the Earth was not flat. Since then, other methods have been used to prove the Earth's spherical shape.

When there are questions or statements that are yet to be tested and confirmed based on some scientific method, they are called hypotheses. Basically, we have two types of hypotheses: null and alternate.

A null hypothesis is one's default belief or argument about a subject matter. In the case of the earth's shape, the null hypothesis was that the earth was flat.

An alternate hypothesis is a belief or argument a person might try to establish. Aristotle and Eratosthenes argued that the earth was spherical.

Other examples of a random alternate hypothesis include:

  • The weather may have an impact on a person's mood.
  • More people wear suits on Mondays compared to other days of the week.
  • Children are more likely to be brilliant if both parents are in academia, and so on.

What is Hypothesis Testing?

Hypothesis testing is the act of testing whether a hypothesis or inference is true. When an alternate hypothesis is introduced, we test it against the null hypothesis to know which is correct. Let's use a plant experiment by a 12-year-old student to see how this works.

The hypothesis is that a plant will grow taller when given a certain type of fertilizer. The student takes two samples of the same plant, fertilizes one, and leaves the other unfertilized. He measures the plants' height every few days and records the results in a table.

After a week or two, he compares the final height of both plants to see which grew taller. If the plant given fertilizer grew taller, the hypothesis is established as fact. If not, the hypothesis is not supported. This simple experiment shows how to form a hypothesis, test it experimentally, and analyze the results.

In hypothesis testing, there are two types of error: Type I and Type II.

When we reject the null hypothesis in a case where it is correct, we've committed a Type I error. Type II errors occur when we fail to reject the null hypothesis when it is incorrect.

In our plant experiment above, if the student finds out that both plants' heights are the same at the end of the test period yet opines that fertilizer helps with plant growth, he has committed a Type I error.

However, if the fertilized plant comes out taller and the student records that both plants are the same or that the one without fertilizer grew taller, he has committed a Type II error because he has failed to reject the null hypothesis.

What are the Steps in Hypothesis Testing?

The following steps explain how we can test a hypothesis:

Step #1 - Define the Null and Alternative Hypotheses

Before making any test, we must first define what we are testing and what the default assumption is about the subject. In this article, we'll be testing if the average weight of 10-year-old children is more than 32kg.

Our null hypothesis is that 10 year old children weigh 32 kg on average. Our alternate hypothesis is that the average weight is more than 32kg. Ho denotes a null hypothesis, while H1 denotes an alternate hypothesis.

Step #2 - Choose a Significance Level

The significance level is a threshold for determining if the test is valid. It gives credibility to our hypothesis test to ensure we are not just luck-dependent but have enough evidence to support our claims. We usually set our significance level before conducting our tests. The criterion for determining our significance value is known as p-value.

A lower p-value means that there is stronger evidence against the null hypothesis, and therefore, a greater degree of significance. A p-value of 0.05 is widely accepted to be significant in most fields of science. P-values do not denote the probability of the outcome of the result, they just serve as a benchmark for determining whether our test result is due to chance. For our test, our p-value will be 0.05.

Step #3 - Collect Data and Calculate a Test Statistic

You can obtain your data from online data stores or conduct your research directly. Data can be scraped or researched online. The methodology might depend on the research you are trying to conduct.

We can calculate our test using any of the appropriate hypothesis tests. This can be a T-test, Z-test, Chi-squared, and so on. There are several hypothesis tests, each suiting different purposes and research questions. In this article, we'll use the T-test to run our hypothesis, but I'll explain the Z-test, and chi-squared too.

T-test is used for comparison of two sets of data when we don't know the population standard deviation. It's a parametric test, meaning it makes assumptions about the distribution of the data. These assumptions include that the data is normally distributed and that the variances of the two groups are equal. In a more simple and practical sense, imagine that we have test scores in a class for males and females, but we don't know how different or similar these scores are. We can use a t-test to see if there's a real difference.

The Z-test is used for comparison between two sets of data when the population standard deviation is known. It is also a parametric test, but it makes fewer assumptions about the distribution of data. The z-test assumes that the data is normally distributed, but it does not assume that the variances of the two groups are equal. In our class test example, with the t-test, we can say that if we already know how spread out the scores are in both groups, we can now use the z-test to see if there's a difference in the average scores.

The Chi-squared test is used to compare two or more categorical variables. The chi-squared test is a non-parametric test, meaning it does not make any assumptions about the distribution of data. It can be used to test a variety of hypotheses, including whether two or more groups have equal proportions.

Step #4 - Decide on the Null Hypothesis Based on the Test Statistic and Significance Level

After conducting our test and calculating the test statistic, we can compare its value to the predetermined significance level. If the test statistic falls beyond the significance level, we can decide to reject the null hypothesis, indicating that there is sufficient evidence to support our alternative hypothesis.

On the other contrary, if the test statistic does not exceed the significance level, we fail to reject the null hypothesis, signifying that we do not have enough statistical evidence to conclude in favor of the alternative hypothesis.

Step #5 - Interpret the Results

Depending on the decision made in the previous step, we can interpret the result in the context of our study and the practical implications. For our case study, we can interpret whether we have significant evidence to support our claim that the average weight of 10 year old children is more than 32kg or not.

For our test, we are generating random dummy data for the weight of the children. We'll use a t-test to evaluate whether our hypothesis is correct or not.

For a better understanding, let's look at what each block of code does.

The first block is the import statement, where we import numpy and scipy.stats . Numpy is a Python library used for scientific computing. It has a large library of functions for working with arrays. Scipy is a library for mathematical functions. It has a stat module for performing statistical functions, and that's what we'll be using for our t-test.

The weights of the children were generated at random since we aren't working with an actual dataset. The random module within the Numpy library provides a function for generating random numbers, which is randint .

The randint function takes three arguments. The first (20) is the lower bound of the random numbers to be generated. The second (40) is the upper bound, and the third (100) specifies the number of random integers to generate. That is, we are generating random weight values for 100 children. In real circumstances, these weight samples would have been obtained by taking the weight of the required number of children needed for the test.

Using the code above, we declared our null and alternate hypotheses stating the average weight of a 10-year-old in both cases.

t_stat and p_value are the variables in which we'll store the results of our functions. stats.ttest_1samp is the function that calculates our test. It takes in two variables, the first is the data variable that stores the array of weights for children, and the second (32) is the value against which we'll test the mean of our array of weights or dataset in cases where we are using a real-world dataset.

The code above prints both values for t_stats and p_value .

Lastly, we evaluated our p_value against our significance value, which is 0.05. If our p_value is less than 0.05, we reject the null hypothesis. Otherwise, we fail to reject the null hypothesis. Below is the output of this program. Our null hypothesis was rejected.

In this article, we discussed the importance of hypothesis testing. We highlighted how science has advanced human knowledge and civilization through formulating and testing hypotheses.

We discussed Type I and Type II errors in hypothesis testing and how they underscore the importance of careful consideration and analysis in scientific inquiry. It reinforces the idea that conclusions should be drawn based on thorough statistical analysis rather than assumptions or biases.

We also generated a sample dataset using the relevant Python libraries and used the needed functions to calculate and test our alternate hypothesis.

Thank you for reading! Please follow me on LinkedIn where I also post more data related content.

Technical support engineer with 4 years of experience & 6 months in data analytics. Passionate about data science, programming, & statistics.

If you read this far, thank the author to show them you care. Say Thanks

Learn to code for free. freeCodeCamp's open source curriculum has helped more than 40,000 people get jobs as developers. Get started

Adventures in Machine Learning

Mastering hypothesis testing in python: a step-by-step guide.

Hypothesis Testing in Python: AnHypothesis testing is a statistical technique that allows us to draw conclusions about a population based on a sample of data. It is often used in fields like medicine, psychology, and economics to test the effectiveness of new treatments, analyze consumer behavior, or estimate the impact of policy changes.

In Python, hypothesis testing is facilitated by modules such as scipy.stats and statsmodels.stats. In this article, we’ll explore three examples of hypothesis testing in Python: the one sample t-test, the two sample t-test, and the paired samples t-test.

For each test, we’ll provide a brief explanation of the underlying concepts, an example of a research question that can be answered using the test, and a step-by-step guide to performing the test in Python. Let’s get started!

One Sample t-test

The one sample t-test is used to compare a sample mean to a known or hypothesized population mean. This allows us to determine whether the sample mean is significantly different from the population mean.

The test assumes that the data are normally distributed and that the sample is randomly drawn from the population. Example research question: Is the mean weight of a species of turtle significantly different from a known or hypothesized value?

Step-by-step guide:

1. Define the null hypothesis (H0) and alternative hypothesis (Ha).

The null hypothesis is typically that the sample mean is equal to the population mean. The alternative hypothesis is that they are not equal.

For example:

H0: The mean weight of a species of turtle is 100 grams. Ha: The mean weight of a species of turtle is not 100 grams.

2. Collect a random sample of data.

This can be done using Python’s random module or by importing data from a file. For example:

weight_sample = [95, 105, 110, 98, 102, 116, 101, 99, 104, 108]

Calculate the sample mean (x), sample standard deviation (s), and standard error (SE). For example:

x = sum(weight_sample)/len(weight_sample)

s = np.std(weight_sample)

SE = s / (len(weight_sample)**0.5)

Calculate the t-value using the formula: t = (x – ) / (SE), where is the hypothesized population mean. For example:

t = (x – 100) / SE

Calculate the p-value using a t-distribution table or a Python function like scipy.stats.ttest_1samp(). For example:

p_value = scipy.stats.ttest_1samp(weight_sample, 100).pvalue

Compare the p-value to the level of significance (), typically set to 0.05. If the p-value is less than , reject the null hypothesis and conclude that there is sufficient evidence to support the alternative hypothesis.

If the p-value is greater than , fail to reject the null hypothesis and conclude that there is insufficient evidence to support the alternative hypothesis. For example:

if p_value < 0.05:

print(“Reject the null hypothesis.”)

print(“Fail to reject the null hypothesis.”)

Two Sample t-test

The two sample t-test is used to compare the means of two independent samples. This allows us to determine whether the means are significantly different from each other.

The test assumes that the data are normally distributed and that the samples are randomly drawn from their respective populations. Example research question: Is the mean weight of two different species of turtles significantly different from each other?

The null hypothesis is typically that the sample means are equal. The alternative hypothesis is that they are not equal.

H0: The mean weight of species A is equal to the mean weight of species B. Ha: The mean weight of species A is not equal to the mean weight of species B.

2. Collect two random samples of data.

species_a = [95, 105, 110, 98, 102]

species_b = [116, 101, 99, 104, 108]

Calculate the sample means (x1, x2), sample standard deviations (s1, s2), and pooled standard error (SE). For example:

x1 = sum(species_a)/len(species_a)

x2 = sum(species_b)/len(species_b)

s1 = np.std(species_a)

s2 = np.std(species_b)

n1 = len(species_a)

n2 = len(species_b)

SE = (((n1-1)*s1**2 + (n2-1)*s2**2)/(n1+n2-2))**0.5 * (1/n1 + 1/n2)**0.5

Calculate the t-value using the formula: t = (x1 – x2) / (SE), where x1 and x2 are the sample means. For example:

t = (x1 – x2) / SE

Calculate the p-value using a t-distribution table or a Python function like scipy.stats.ttest_ind(). For example:

p_value = scipy.stats.ttest_ind(species_a, species_b).pvalue

Paired Samples t-test

The paired samples t-test is used to compare the means of two related samples. This allows us to determine whether the means are significantly different from each other, while accounting for individual differences between the samples.

The test assumes that the differences between paired observations are normally distributed. Example research question: Is there a significant difference in the max vertical jump of basketball players before and after a training program?

The null hypothesis is typically that the mean difference is equal to zero. The alternative hypothesis is that it is not equal to zero.

H0: The mean difference in max vertical jump before and after training is zero. Ha: The mean difference in max vertical jump before and after training is not zero.

2. Collect two related samples of data.

This can be done by measuring the same variable in the same subjects before and after a treatment or intervention. For example:

before = [72, 69, 77, 71, 76]

after = [80, 70, 75, 74, 78]

Calculate the differences between the paired observations and the sample mean difference (d), sample standard deviation (s), and standard error (SE). For example:

differences = [after[i]-before[i] for i in range(len(before))]

d = sum(differences)/len(differences)

s = np.std(differences)

SE = s / (len(differences)**0.5)

Calculate the t-value using the formula: t = (d – ) / (SE), where is the hypothesized population mean difference (usually zero). For example:

t = (d – 0) / SE

Calculate the p-value using a t-distribution table or a Python function like scipy.stats.ttest_rel(). For example:

p_value = scipy.stats.ttest_rel(after, before).pvalue

In this article, we’ve explored three examples of hypothesis testing in Python: the one sample t-test, the two sample t-test, and the paired samples t-test. Hypothesis testing is a powerful tool for making inferences about populations based on samples of data.

By following the steps outlined in each example, you can conduct your own hypothesis tests in Python and draw meaningful conclusions from your data.

Two Sample t-test in Python

The two sample t-test is used to compare two independent samples and determine if there is a significant difference between the means of the two populations. In this test, the null hypothesis is that the means of the two samples are equal, while the alternative hypothesis is that they are not equal.

Example research question: Is the mean weight of two different species of turtles significantly different from each other? Step-by-step guide:

Define the null hypothesis (H0) and alternative hypothesis (Ha). The null hypothesis is that the mean weight of the two turtle species is the same.

The alternative hypothesis is that they are not equal. For example:

H0: The mean weight of species A is equal to the mean weight of species B.

Ha: The mean weight of species A is not equal to the mean weight of species B. 2.

Collect a random sample of data for each species. For example:

species_a = [4.3, 3.9, 5.1, 4.6, 4.2, 4.8]

species_b = [4.9, 5.2, 5.5, 5.3, 5.0, 4.7]

Calculate the sample mean (x1, x2), sample standard deviation (s1, s2), and pooled standard error (SE). For example:

import numpy as np

from scipy.stats import ttest_ind

x1 = np.mean(species_a)

x2 = np.mean(species_b)

SE = np.sqrt(s1**2/n1 + s2**2/n2)

4. Calculate the t-value using the formula: t = (x1 – x2) / (SE), where x1 and x2 are the sample means.

5. Calculate the p-value using a t-distribution table or a Python function like ttest_ind().

p_value = ttest_ind(species_a, species_b).pvalue

6. Compare the p-value to the level of significance (), typically set to 0.05.

If the p-value is less than , reject the null hypothesis and conclude that there is sufficient evidence to support the alternative hypothesis. If the p-value is greater than , fail to reject the null hypothesis and conclude that there is insufficient evidence to support the alternative hypothesis.

alpha = 0.05

if p_value < alpha:

In this example, if the p-value is less than 0.05, we would reject the null hypothesis and conclude that there is a significant difference between the mean weight of the two turtle species.

Paired Samples t-test in Python

The paired samples t-test is used to compare the means of two related samples. In this test, the null hypothesis is that the difference between the two means is equal to zero, while the alternative hypothesis is that they are not equal.

Example research question: Is there a significant difference in the max vertical jump of basketball players before and after a training program? Step-by-step guide:

Define the null hypothesis (H0) and alternative hypothesis (Ha). The null hypothesis is that the mean difference in max vertical jump before and after the training program is zero.

The alternative hypothesis is that it is not zero. For example:

H0: The mean difference in max vertical jump before and after the training program is zero.

Ha: The mean difference in max vertical jump before and after the training program is not zero. 2.

Collect two related samples of data, such as the max vertical jump of basketball players before and after a training program. For example:

before_training = [58, 64, 62, 70, 68]

after_training = [62, 66, 64, 74, 70]

differences = [after_training[i]-before_training[i] for i in range(len(before_training))]

d = np.mean(differences)

n = len(differences)

SE = s / np.sqrt(n)

Calculate the p-value using a t-distribution table or a Python function like ttest_rel(). For example:

p_value = ttest_rel(after_training, before_training).pvalue

In this example, if the p-value is less than 0.05, we would reject the null hypothesis and conclude that there is a significant difference in the max vertical jump of basketball players before and after the training program.

Hypothesis testing is an essential tool in statistical analysis, which gives us insights into populations based on limited data. The two sample t-test and paired samples t-test are two popular statistical methods that enable researchers to compare means of samples and determine whether they are significantly different.

With the help of Python, hypothesis testing in practice is made more accessible and convenient than ever before. In this article, we have provided a step-by-step guide to performing these tests in Python, enabling researchers to perform rigorous analyses that generate meaningful and accurate results.

In conclusion, hypothesis testing in Python is a crucial step in making conclusions about populations based on data samples. The three common hypothesis tests in Python; one-sample t-test, two-sample t-test, and paired samples t-test can be effectively applied to explore various research questions.

By setting null and alternative hypotheses, collecting data, calculating mean and standard deviation values, computing t-value, and comparing it with the set significance level of , we can determine if there’s enough evidence to reject the null hypothesis. With the use of such powerful methods, scientists can give more accurate and informed conclusions to real-world problems and take critical decisions when needed.

Continual learning and expertise with hypothesis testing in Python tools can enable researchers to leverage this powerful statistical tool for better outcomes.

Popular Posts

Mastering python timedelta object: a comprehensive guide, sql learning made fun and accessible with interactive courses, avoiding nonetype errors in python string concatenation.

  • Terms & Conditions
  • Privacy Policy

Pytest With Eric

How to Use Hypothesis and Pytest for Robust Property-Based Testing in Python

There will always be cases you didn’t consider, making this an ongoing maintenance job. Unit testing solves only some of these issues.

Example-Based Testing vs Property-Based Testing

Project set up, getting started, prerequisites, simple example, source code, simple example — unit tests, example-based testing, running the unit test, property-based testing, complex example, source code, complex example — unit tests, discover bugs with hypothesis, define your own hypothesis strategies, model-based testing in hypothesis, additional reading.

Table of Contents

Testing your python code with hypothesis, installing & using hypothesis, a quick example, understanding hypothesis, using hypothesis strategies, filtering and mapping strategies, composing strategies, constraints & satisfiability, writing reusable strategies with functions.

  • @composite: Declarative Strategies
  • @example: Explicitly Testing Certain Values

Hypothesis Example: Roman Numeral Converter

I can think of a several Python packages that greatly improved the quality of the software I write. Two of them are pytest and hypothesis . The former adds an ergonomic framework for writing tests and fixtures and a feature-rich test runner. The latter adds property-based testing that can ferret out all but the most stubborn bugs using clever algorithms, and that’s the package we’ll explore in this course.

In an ordinary test you interface with the code you want to test by generating one or more inputs to test against, and then you validate that it returns the right answer. But that, then, raises a tantalizing question: what about all the inputs you didn’t test? Your code coverage tool may well report 100% test coverage, but that does not, ipso facto , mean the code is bug-free.

One of the defining features of Hypothesis is its ability to generate test cases automatically in a manner that is:

Repeated invocations of your tests result in reproducible outcomes, even though Hypothesis does use randomness to generate the data.

You are given a detailed answer that explains how your test failed and why it failed. Hypothesis makes it clear how you, the human, can reproduce the invariant that caused your test to fail.

You can refine its strategies and tell it where or what it should or should not search for. At no point are you compelled to modify your code to suit the whims of Hypothesis if it generates nonsensical data.

So let’s look at how Hypothesis can help you discover errors in your code.

You can install hypothesis by typing pip install hypothesis . It has few dependencies of its own, and should install and run everywhere.

Hypothesis plugs into pytest and unittest by default, so you don’t have to do anything to make it work with it. In addition, Hypothesis comes with a CLI tool you can invoke with hypothesis . But more on that in a bit.

I will use pytest throughout to demonstrate Hypothesis, but it works equally well with the builtin unittest module.

Before I delve into the details of Hypothesis, let’s start with a simple example: a naive CSV writer and reader. A topic that seems simple enough: how hard is it to separate fields of data with a comma and then read it back in later?

But of course CSV is frighteningly hard to get right. The US and UK use '.' as a decimal separator, but in large parts of the world they use ',' which of course results in immediate failure. So then you start quoting things, and now you need a state machine that can distinguish quoted from unquoted; and what about nested quotes, etc.

The naive CSV reader and writer is an excellent stand-in for any number of complex projects where the requirements outwardly seem simple but there lurks a large number of edge cases that you must take into account.

Here the writer simply string quotes each field before joining them together with ',' . The reader does the opposite: it assumes each field is quoted after it is split by the comma.

A naive roundtrip pytest proves the code “works”:

And evidently so:

And for a lot of code that’s where the testing would begin and end. A couple of lines of code to test a couple of functions that outwardly behave in a manner that anybody can read and understand. Now let’s look at what a Hypothesis test would look like, and what happens when we run it:

At first blush there’s nothing here that you couldn’t divine the intent of, even if you don’t know Hypothesis. I’m asking for the argument fields to have a list ranging from one element of generated text up to ten. Aside from that, the test operates in exactly the same manner as before.

Now watch what happens when I run the test:

Hypothesis quickly found an example that broke our code. As it turns out, a list of [','] breaks our code. We get two fields back after round-tripping the code through our CSV writer and reader — uncovering our first bug.

In a nutshell, this is what Hypothesis does. But let’s look at it in detail.

Simply put, Hypothesis generates data using a number of configurable strategies . Strategies range from simple to complex. A simple strategy may generate bools; another integers. You can combine strategies to make larger ones, such as lists or dicts that match certain patterns or structures you want to test. You can clamp their outputs based on certain constraints, like only positive integers or strings of a certain length. You can also write your own strategies if you have particularly complex requirements.

Strategies are the gateway to property-based testing and are a fundamental part of how Hypothesis works. You can find a detailed list of all the strategies in the Strategies reference of their documentation or in the hypothesis.strategies module.

The best way to get a feel for what each strategy does in practice is to import them from the hypothesis.strategies module and call the example() method on an instance:

You may have noticed that the floats example included inf in the list. By default, all strategies will – where feasible – attempt to test all legal (but possibly obscure) forms of values you can generate of that type. That is particularly important as corner cases like inf or NaN are legal floating-point values but, I imagine, not something you’d ordinarily test against yourself.

And that’s one pillar of how Hypothesis tries to find bugs in your code: by testing edge cases that you would likely miss yourself. If you ask it for a text() strategy you’re as likely to be given Western characters as you are a mishmash of unicode and escape-encoded garbage. Understanding why Hypothesis generates the examples it does is a useful way to think about how your code may interact data it has no control over.

Now if it were simply generating text or numbers from an inexhaustible source of numbers or strings, it wouldn’t catch as many errors as it actually does . The reason for that is that each test you write is subjected to a battery of examples drawn from the strategies you’ve designed. If a test case fails, it’s put aside and tested again but with a reduced subset of inputs, if possible. In Hypothesis it’s known as shrinking the search space to try and find the smallest possible result that will cause your code to fail. So instead of a 10,000-length string, if it can find one that’s only 3 or 4, it will try to show that to you instead.

You can tell Hypothesis to filter or map the examples it draws to further reduce them if the strategy does not meet your requirements:

Here I ask for integers where the number is greater than 0 and is evenly divisible by 8. Hypothesis will then attempt to generate examples that meets the constraints you have imposed on it.

You can also map , which works in much the same way as filter. Here I’m asking for lowercase ASCII and then uppercasing them:

Having said that, using either when you don’t have to (I could have asked for uppercase ASCII characters to begin with) is likely to result in slower strategies.

A third option, flatmap , lets you build strategies from strategies; but that deserves closer scrutiny, so I’ll talk about it later.

You can tell Hypothesis to pick one of a number of strategies by composing strategies with | or st.one_of() :

An essential feature when you have to draw from multiple sources of examples for a single data point.

When you ask Hypothesis to draw an example it takes into account the constraints you may have imposed on it: only positive integers; only lists of numbers that add up to exactly 100; any filter() calls you may have applied; and so on. Those are constraints. You’re taking something that was once unbounded (with respect to the strategy you’re drawing an example from, that is) and introducing additional limitations that constrain the possible range of values it can give you.

But consider what happens if I pass filters that will yield nothing at all:

At some point Hypothesis will give up and declare it cannot find anything that satisfies that strategy and its constraints.

Hypothesis gives up after a while if it’s not able to draw an example. Usually that indicates an invariant in the constraints you’ve placed that makes it hard or impossible to draw examples from. In the example above, I asked for numbers that are simultaneously below zero and greater than zero, which is an impossible request.

As you can see, the strategies are simple functions, and they behave as such. You can therefore refactor each strategy into reusable patterns:

The benefit of this approach is that if you discover edge cases that Hypothesis does not account for, you can update the pattern in one place and observe its effects on your code. It’s functional and composable.

One caveat of this approach is that you cannot draw examples and expect Hypothesis to behave correctly. So I don’t recommend you call example() on a strategy only to pass it into another strategy.

For that, you want the @composite decorator.

@composite : Declarative Strategies

If the previous approach is unabashedly functional in nature, this approach is imperative.

The @composite decorator lets you write imperative Python code instead. If you cannot easily structure your strategy with the built-in ones, or if you require more granular control over the values it emits, you should consider the @composite strategy.

Instead of returning a compound strategy object like you would above, you instead draw examples using a special function you’re given access to in the decorated function.

This example draws two randomized names and returns them as a tuple:

Note that the @composite decorator passes in a special draw callable that you must use to draw samples from. You cannot – well, you can , but you shouldn’t – use the example() method on the strategy object you get back. Doing so will break Hypothesis’s ability to synthesize test cases properly.

Because the code is imperative you’re free to modify the drawn examples to your liking. But what if you’re given an example you don’t like or one that breaks a known invariant you don’t wish to test for? For that you can use the assume() function to state the assumptions that Hypothesis must meet if you try to draw an example from generate_full_name .

Let’s say that first_name and last_name must not be equal:

Like the assert statement in Python, the assume() function teaches Hypothesis what is, and is not, a valid example. You use this to great effect to generate complex compound strategies.

I recommend you observe the following rules of thumb if you write imperative strategies with @composite :

If you want to draw a succession of examples to initialize, say, a list or a custom object with values that meet certain criteria you should use filter , where possible, and assume to teach Hypothesis why the value(s) you drew and subsequently discarded weren’t any good.

The example above uses assume() to teach Hypothesis that first_name and last_name must not be equal.

If you can put your functional strategies in separate functions, you should. It encourages code re-use and if your strategies are failing (or not generating the sort of examples you’d expect) you can inspect each strategy in turn. Large nested strategies are harder to untangle and harder still to reason about.

If you can express your requirements with filter and map or the builtin constraints (like min_size or max_size ), you should. Imperative strategies that use assume may take more time to converge on a valid example.

@example : Explicitly Testing Certain Values

Occasionally you’ll come across a handful of cases that either fails or used to fail, and you want to ensure that Hypothesis does not forget to test them, or to indicate to yourself or your fellow developers that certain values are known to cause issues and should be tested explicitly.

The @example decorator does just that:

You can add as many as you like.

Let’s say I wanted to write a simple converter to and from Roman numerals.

Here I’m collecting Roman numerals into numerals , one at a time, by looping over SYMBOLS of valid numerals, subtracting the value of the symbol from number , until the while loop’s condition ( number >= 1 ) is False .

The test is also simple and serves as a smoke test. I generate a random integer and convert it to Roman numerals with to_roman . When it’s all said and done I turn the string of numerals into a set and check that all members of the set are legal Roman numerals.

Now if I run pytest on it seems to hang . But thanks to Hypothesis’s debug mode I can inspect why:

Ah. Instead of testing with tiny numbers like a human would ordinarily do, it used a fantastically large one… which is altogether slow.

OK, so there’s at least one gotcha; it’s not really a bug , but it’s something to think about: limiting the maximum value. I’m only going to limit the test, but it would be reasonable to limit it in the code also.

Changing the max_value to something sensible, like st.integers(max_value=5000) and the test now fails with another error:

It seems our code’s not able to handle the number 0! Which… is correct. The Romans didn’t really use the number zero as we would today; that invention came later, so they had a bunch of workarounds to deal with the absence of something. But that’s neither here nor there in our example. Let’s instead set min_value=1 also, as there is no support for negative numbers either:

OK… not bad. We’ve proven that given a random assortment of numbers between our defined range of values that, indeed, we get something resembling Roman numerals.

One of the hardest things about Hypothesis is framing questions to your testable code in a way that tests its properties but without you, the developer, knowing the answer (necessarily) beforehand. So one simple way to test that there’s at least something semi-coherent coming out of our to_roman function is to check that it can generate the very numerals we defined in SYMBOLS from before:

Here I’m sampling from a tuple of the SYMBOLS from earlier. The sampling algorithm’ll decide what values it wants to give us, all we care about is that we are given examples like ("I", 1) or ("V", 5) to compare against.

So let’s run pytest again:

Oops. The Roman numeral V is equal to 5 and yet we get five IIIII ? A closer examination reveals that, indeed, the code only yields sequences of I equal to the number we pass it. There’s a logic error in our code.

In the example above I loop over the elements in the SYMBOLS dictionary but as it’s ordered the first element is always I . And as the smallest representable value is 1, we end up with just that answer. It’s technically correct as you can count with just I but it’s not very useful.

Fixing it is easy though:

Rerunning the test yields a pass. Now we know that, at the very least, our to_roman function is capable of mapping numbers that are equal to any symbol in SYMBOLS .

Now the litmus test is taking the numeral we’re given and making sense of it. So let’s write a function that converts a Roman numeral back into decimal:

Like to_roman we walk through each character, get the numeral’s numeric value, and add it to the running total. The test is a simple roundtrip test as to_roman has an inverse function from_roman (and vice versa) such that :

Invertible functions are easier to test because you can compare the output of one against the input of another and check if it yields the original value. But not every function has an inverse, though.

Running the test yields a pass:

So now we’re in a pretty good place. But there’s a slight oversight in our Roman numeral converters, though: they don’t respect the subtraction rule for some of the numerals. For instance VI is 6; but IV is 4. The value XI is 11; and IX is 9. Only some (sigh) numerals exhibit this property.

So let’s write another test. This time it’ll fail as we’ve yet to write the modified code. Luckily we know the subtractive numerals we must accommodate:

Pretty simple test. Check that certain numerals yield the value, and that the values yield the right numeral.

With an extensive test suite we should feel fairly confident making changes to the code. If we break something, one of our preexisting tests will fail.

The rules around which numerals are subtractive is rather subjective. The SUBTRACTIVE_SYMBOLS dictionary holds the most common ones. So all we need to do is read ahead of the numerals list to see if there exists a two-digit numeral that has a prescribed value and then we use that instead of the usual value.

The to_roman change is simple. A union of the two numeral symbol dictionaries is all it takes . The code already understands how to turn numbers into numerals — we just added a few more.

This method requires Python 3.9 or later. Read how to merge dictionaries

If done right, running the tests should yield a pass:

And that’s it. We now have useful tests and a functional Roman numeral converter that converts to and from with ease. But one thing we didn’t do is create a strategy that generates Roman numerals using st.text() . A custom composite strategy to generate both valid and invalid Roman numerals to test the ruggedness of our converter is left as an exercise to you.

In the next part of this course we’ll look at more advanced testing strategies.

Unlike a tool like faker that generates realistic-looking test data for fixtures or demos, Hypothesis is a property-based tester . It uses heuristics and clever algorithms to find inputs that break your code.

Testing a function that does not have an inverse to compare the result against – like our Roman numeral converter that works both ways – you often have to approach your code as though it were a black box where you relinquish control of the inputs and outputs. That is harder, but makes for less brittle code.

It’s perfectly fine to mix and match tests. Hypothesis is useful for flushing out invariants you would never think of. Combine it with known inputs and outputs to jump start your testing for the first 80%, and augment it with Hypothesis to catch the remaining 20%.

Be Inspired Sign up and we’ll tell you about new articles and courses

Absolutely no spam. We promise!

Liked the Article?

Why not follow us …, be inspired get python tips sent to your inbox.

We'll tell you about the latest courses and articles.

No More Seat Costs: Semaphore Plans Just Got Better!

  • Talk to a developer
  • Start building for free
  • System Status
  • Semaphore Cloud
  • Semaphore On-Premise
  • Semaphore Hybrid
  • Premium support
  • Docker & Kubernetes
  • vs GitHub Actions
  • vs Travis CI
  • vs Bitbucket
  • CI/CD Learning Tool
  • Write with us
  • Get started

Getting Started With Property-Based Testing in Python With Hypothesis and Pytest

Avatar

This tutorial will be your gentle guide to property-based testing. Property-based testing is a testing philosophy; a way of approaching testing, much like unit testing is a testing philosophy in which we write tests that verify individual components of your code.

By going through this tutorial, you will:

  • learn what property-based testing is;
  • understand the key benefits of using property-based testing;
  • see how to create property-based tests with Hypothesis;
  • attempt a small challenge to understand how to write good property-based tests; and
  • Explore several situations in which you can use property-based testing with zero overhead.

What is Property-Based Testing?

In the most common types of testing, you write a test by running your code and then checking if the result you got matches the reference result you expected. This is in contrast with property-based testing , where you write tests that check that the results satisfy certain properties . This shift in perspective makes property-based testing (with Hypothesis) a great tool for a variety of scenarios, like fuzzing or testing roundtripping.

In this tutorial, we will be learning about the concepts behind property-based testing, and then we will put those concepts to practice. In order to do that, we will use three tools: Python, pytest, and Hypothesis.

  • Python will be the programming language in which we will write both our functions that need testing and our tests.
  • pytest will be the testing framework.
  • Hypothesis will be the framework that will enable property-based testing.

Both Python and pytest are simple enough that, even if you are not a Python programmer or a pytest user, you should be able to follow along and get benefits from learning about property-based testing.

Setting up your environment to follow along

If you want to follow along with this tutorial and run the snippets of code and the tests yourself – which is highly recommendable – here is how you set up your environment.

Installing Python and pip

Start by making sure you have a recent version of Python installed. Head to the Python downloads page and grab the most recent version for yourself. Then, make sure your Python installation also has pip installed. [ pip ] is the package installer for Python and you can check if you have it on your machine by running the following command:

(This assumes python is the command to run Python on your machine.) If pip is not installed, follow their installation instructions .

Installing pytest and Hypothesis

pytest, the Python testing framework, and Hypothesis, the property-based testing framework, are easy to install after you have pip. All you have to do is run this command:

This tells pip to install pytest and Hypothesis and additionally it tells pip to update to newer versions if any of the packages are already installed.

To make sure pytest has been properly installed, you can run the following command:

The output on your machine may show a different version, depending on the exact version of pytest you have installed.

To ensure Hypothesis has been installed correctly, you have to open your Python REPL by running the following:

and then, within the REPL, type import hypothesis . If Hypothesis was properly installed, it should look like nothing happened. Immediately after, you can check for the version you have installed with hypothesis.__version__ . Thus, your REPL session would look something like this:

Your first property-based test

In this section, we will write our very first property-based test for a small function. This will show how to write basic tests with Hypothesis.

The function to test

Suppose we implemented a function gcd(n, m) that computes the greatest common divisor of two integers. (The greatest common divisor of n and m is the largest integer d that divides evenly into n and m .) What’s more, suppose that our implementation handles positive and negative integers. Here is what this implementation could look like:

If you save that into a file, say gcd.py , and then run it with:

you will enter an interactive REPL with your function already defined. This allows you to play with it a bit:

Now that the function is running and looks about right, we will test it with Hypothesis.

The property test

A property-based test isn’t wildly different from a standard (pytest) test, but there are some key differences. For example, instead of writing inputs to the function gcd , we let Hypothesis generate arbitrary inputs. Then, instead of hardcoding the expected outputs, we write assertions that ensure that the solution satisfies the properties that it should satisfy.

Thus, to write a property-based test, you need to determine the properties that your answer should satisfy.

Thankfully for us, we already know the properties that the result of gcd must satisfy:

“[…] the greatest common divisor (GCD) of two or more integers […] is the largest positive integer that divides each of the integers.”

So, from that Wikipedia quote, we know that if d is the result of gcd(n, m) , then:

  • d is positive;
  • d divides n ;
  • d divides m ; and
  • no other number larger than d divides both n and m .

To turn these properties into a test, we start by writing the signature of a test_ function that accepts the same inputs as the function gcd :

(The prefix test_ is not significant for Hypothesis. We are using Hypothesis with pytest and pytest looks for functions that start with test_ , so that is why our function is called test_gcd .)

The arguments n and m , which are also the arguments of gcd , will be filled in by Hypothesis. For now, we will just assume that they are available.

If n and m are arguments that are available and for which we want to test the function gcd , we have to start by calling gcd with n and m and then saving the result. It is after calling gcd with the supplied arguments and getting the answer that we get to test the answer against the four properties listed above.

Taking the four properties into account, our test function could look like this:

Go ahead and put this test function next to the function gcd in the file gcd.py . Typically, tests live in a different file from the code being tested but this is such a small example that we can have everything in the same file.

Plugging in Hypothesis

We have written the test function but we still haven’t used Hypothesis to power the test. Let’s go ahead and use Hypothesis’ magic to generate a bunch of arguments n and m for our function gcd. In order to do that, we need to figure out what are all the legal inputs that our function gcd should handle.

For our function gcd , the valid inputs are all integers, so we need to tell Hypothesis to generate integers and feed them into test_gcd . To do that, we need to import a couple of things:

given is what we will use to tell Hypothesis that a test function needs to be given data. The submodule strategies is the module that contains lots of tools that know how to generate data.

With these two imports, we can annotate our test:

You can read the decorator @given(st.integers(), st.integers()) as “the test function needs to be given one integer, and then another integer”. To run the test, you can just use pytest :

(Note: depending on your operating system and the way you have things configured, pytest may not end up in your path, and the command pytest gcd.py may not work. If that is the case for you, you can use the command python -m pytest gcd.py instead.)

As soon as you do so, Hypothesis will scream an error message at you, saying that you got a ZeroDivisionError . Let us try to understand what Hypothesis is telling us by looking at the bottom of the output of running the tests:

This shows that the tests failed with a ZeroDivisionError , and the line that reads “Falsifying example: …” contains information about the test case that blew our test up. In our case, this was n = 0 and m = 0 . So, Hypothesis is telling us that when the arguments are both zero, our function fails because it raises a ZeroDivisionError .

The problem lies in the usage of the modulo operator % , which does not accept a right argument of zero. The right argument of % is zero if n is zero, in which case the result should be m . Adding an if statement is a possible fix for this:

However, Hypothesis still won’t be happy. If you run your test again, with pytest gcd.py , you get this output:

This time, the issue is with the very first property that should be satisfied. We can know this because Hypothesis tells us which assertion failed while also telling us which arguments led to that failure. In fact, if we look further up the output, this is what we see:

This time, the issue isn’t really our fault. The greatest common divisor is not defined when both arguments are zero, so it is ok for our function to not know how to handle this case. Thankfully, Hypothesis lets us customise the strategies used to generate arguments. In particular, we can say that we only want to generate integers between a minimum and a maximum value.

The code below changes the test so that it only runs with integers between 1 and 100 for the first argument ( n ) and between -500 and 500 for the second argument ( m ):

That is it! This was your very first property-based test.

Why bother with Property-Based Testing?

To write good property-based tests you need to analyse your problem carefully to be able to write down all the properties that are relevant. This may look quite cumbersome. However, using a tool like Hypothesis has very practical benefits:

  • Hypothesis can generate dozens or hundreds of tests for you, while you would typically only write a couple of them;
  • tests you write by hand will typically only cover the edge cases you have already thought of, whereas Hypothesis will not have that bias; and
  • thinking about your solution to figure out its properties can give you deeper insights into the problem, leading to even better solutions.

These are just some of the advantages of using property-based testing.

Using Hypothesis for free

There are some scenarios in which you can use property-based testing essentially for free (that is, without needing to spend your precious brain power), because you don’t even need to think about properties. Let’s look at two such scenarios.

Testing Roundtripping

Hypothesis is a great tool to test roundtripping. For example, the built-in functions int and str in Python should roundtrip. That is, if x is an integer, then int(str(x)) should still be x . In other words, converting x to a string and then to an integer again should not change its value.

We can write a simple property-based test for this, leveraging the fact that Hypothesis generates dozens of tests for us. Save this in a Python file:

Now, run this file with pytest. Your test should pass!

Did you notice that, in our gcd example above, the very first time we ran Hypothesis we got a ZeroDivisionError ? The test failed, not because of an assert, but simply because our function crashed.

Hypothesis can be used for tests like this. You do not need to write a single property because you are just using Hypothesis to see if your function can deal with different inputs. Of course, even a buggy function can pass a fuzzing test like this, but this helps catch some types of bugs in your code.

Comparing against a gold standard

Sometimes, you want to test a function f that computes something that could be computed by some other function f_alternative . You know this other function is correct (that is why you call it a “gold standard”), but you cannot use it in production because it is very slow, or it consumes a lot of resources, or for some other combination of reasons.

Provided it is ok to use the function f_alternative in a testing environment, a suitable test would be something like the following:

When possible, this type of test is very powerful because it directly tests if your solution is correct for a series of different arguments.

For example, if you refactored an old piece of code, perhaps to simplify its logic or to make it more performant, Hypothesis will give you confidence that your new function will work as it should.

The importance of property completeness

In this section you will learn about the importance of being thorough when listing the properties that are relevant. To illustrate the point, we will reason about property-based tests for a function called my_sort , which is your implementation of a sorting function that accepts lists of integers.

The results are sorted

When thinking about the properties that the result of my_sort satisfies, you come up with the obvious thing: the result of my_sort must be sorted.

So, you set out to assert this property is satisfied:

Now, the only thing missing is the appropriate strategy to generate lists of integers. Thankfully, Hypothesis knows a strategy to generate lists, which is called lists . All you need to do is give it a strategy that generates the elements of the list.

Now that the test has been written, here is a challenge. Copy this code into a file called my_sort.py . Between the import and the test, define a function my_sort that is wrong (that is, write a function that does not sort lists of integers) and yet passes the test if you run it with pytest my_sort.py . (Keep reading when you are ready for spoilers.)

Notice that the only property that we are testing is “all elements of the result are sorted”, so we can return whatever result we want , as long as it is sorted. Here is my fake implementation of my_sort :

This passes our property test and yet is clearly wrong because we always return an empty list. So, are we missing a property? Perhaps.

The lengths are the same

We can try to add another obvious property, which is that the input and the output should have the same length, obviously. This means that our test becomes:

Now that the test has been improved, here is a challenge. Write a new version of my_sort that passes this test and is still wrong. (Keep reading when you are ready for spoilers.)

Notice that we are only testing for the length of the result and whether or not its elements are sorted, but we don’t test which elements are contained in the result. Thus, this fake implementation of my_sort would work:

Use the right numbers

To fix this, we can add the obvious property that the result should only contain numbers from the original list. With sets, this is easy to test:

Now that our test has been improved, I have yet another challenge. Can you write a fake version of my_sort that passes this test? (Keep reading when you are ready for spoilers).

Here is a fake version of my_sort that passes the test above:

The issue here is that we were not precise enough with our new property. In fact, set(result) <= set(int_list) ensures that we only use numbers that were available in the original list, but it doesn’t ensure that we use all of them. What is more, we can’t fix it by simply replacing the <= with == . Can you see why?I will give you a hint. If you just replace the <= with a == , so that the test becomes:

then you can write this passing version of my_sort that is still wrong:

This version is wrong because it reuses the largest element of the original list without respecting the number of times each integer should be used. For example, for the input list [1, 1, 2, 2, 3, 3] the result should be unchanged, whereas this version of my_sort returns [1, 2, 3, 3, 3, 3] .

The final test

A test that is correct and complete would have to take into account how many times each number appears in the original list, which is something the built-in set is not prepared to do. Instead, one could use the collections.Counter from the standard library:

So, at this point, your test function test_my_sort is complete. At this point, it is no longer possible to fool the test! That is, the only way the test will pass is if my_sort is a real sorting function.

Use properties and specific examples

This section showed that the properties that you test should be well thought-through and you should strive to come up with a set of properties that are as specific as possible. When in doubt, it is better to have properties that may look redundant over having too few.

Another strategy that you can follow to help mitigate the danger of having come up with an insufficient set of properties is to mix property-based testing with other forms of testing, which is perfectly reasonable.

For example, on top of having the property-based test test_my_sort , you could add the following test:

This article covered two examples of functions to which we added property-based tests. We only covered the basics of using Hypothesis to run property-based tests but, more importantly, we covered the fundamental concepts that enable a developer to reason about and write complete property-based tests.

Property-based testing isn’t a one-size-fits-all solution that means you will never have to write any other type of test, but it does have characteristics that you should take advantage of whenever possible. In particular, we saw that property-based testing with Hypothesis was beneficial in that:

This article also went over a couple of common gotchas when writing property-based tests and listed scenarios in which property-based testing can be used with no overhead.

If you are interested in learning more about Hypothesis and property-based testing, we recommend you take a look at the Hypothesis docs and, in particular, to the page “What you can generate and how” .

CI/CD Weekly Newsletter 🔔

Semaphore uncut podcast 🎙️.

hypothesis example python

Learn CI/CD

Level up your developer skills to use CI/CD at its max.

5 thoughts on “ Getting Started With Property-Based Testing in Python With Hypothesis and Pytest ”

Awesome intro to property based testing for Python. Thank you, Dan and Rodrigo!

Greeting! Unfortunately, I don’t understand due to translation difficulties. PyCharm writes error messages and does not run the codes. The installation was done fine, check ok. I created a virtual environment. I would like a single good, usable, complete code, an example of what to write in gcd.py and what in test_gcd.py, which the development environment runs without errors. Thanks!

Thanks for article!

“it is better to have properties that may look redundant over having too few” Isn’t it the case with: assert len(result) == len(int_list) and: assert Counter(result) == Counter(int_list) ? I mean: is it possible to satisfy the second condition without satisfying the first ?

Yes. One case could be if result = [0,1], int_list = [0,1,1], and the implementation of Counter returns unique count.

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Avatar

CI/CD Weekly Newsletter

🔔 Get notified when the new articles and interviews are out.

hypothesis 6.102.6

pip install hypothesis Copy PIP instructions

Released: May 23, 2024

A library for property-based testing

Verified details

Maintainers.

Avatar for DRMacIver from gravatar.com

Unverified details

Project links.

  • Documentation

GitHub Statistics

  • Open issues:

View statistics for this project via Libraries.io , or by using our public dataset on Google BigQuery

License: Mozilla Public License 2.0 (MPL 2.0) (MPL-2.0)

Author: David R. MacIver and Zac Hatfield-Dodds

Tags python, testing, fuzzing, property-based-testing

Requires: Python >=3.8

Provides-Extra: all , cli , codemods , crosshair , dateutil , django , dpcontracts , ghostwriter , lark , numpy , pandas , pytest , pytz , redis , zoneinfo

Classifiers

  • 5 - Production/Stable
  • OSI Approved :: Mozilla Public License 2.0 (MPL 2.0)
  • Microsoft :: Windows
  • Python :: 3
  • Python :: 3 :: Only
  • Python :: 3.8
  • Python :: 3.9
  • Python :: 3.10
  • Python :: 3.11
  • Python :: 3.12
  • Python :: Implementation :: CPython
  • Python :: Implementation :: PyPy
  • Education :: Testing
  • Software Development :: Testing

Project description

Hypothesis is an advanced testing library for Python. It lets you write tests which are parametrized by a source of examples, and then generates simple and comprehensible examples that make your tests fail. This lets you find more bugs in your code with less work.

Hypothesis is extremely practical and advances the state of the art of unit testing by some way. It’s easy to use, stable, and powerful. If you’re not using Hypothesis to test your project then you’re missing out.

Quick Start/Installation

If you just want to get started:

Links of interest

The main Hypothesis site is at hypothesis.works , and contains a lot of good introductory and explanatory material.

Extensive documentation and examples of usage are available at readthedocs .

If you want to talk to people about using Hypothesis, we have both an IRC channel and a mailing list .

If you want to receive occasional updates about Hypothesis, including useful tips and tricks, there’s a TinyLetter mailing list to sign up for them .

If you want to contribute to Hypothesis, instructions are here .

If you want to hear from people who are already using Hypothesis, some of them have written about it .

If you want to create a downstream package of Hypothesis, please read these guidelines for packagers .

Project details

Release history release notifications | rss feed.

May 23, 2024

May 22, 2024

May 15, 2024

May 13, 2024

May 12, 2024

May 10, 2024

May 6, 2024

May 5, 2024

May 4, 2024

Apr 28, 2024

Apr 8, 2024

Mar 31, 2024

Mar 24, 2024

Mar 23, 2024

Mar 20, 2024

Mar 19, 2024

Mar 18, 2024

Mar 14, 2024

Mar 12, 2024

Mar 11, 2024

Mar 10, 2024

Mar 9, 2024

Mar 4, 2024

Feb 29, 2024

Feb 27, 2024

Feb 25, 2024

Feb 24, 2024

Feb 22, 2024

Feb 20, 2024

Feb 18, 2024

Feb 15, 2024

Feb 14, 2024

Feb 12, 2024

Feb 8, 2024

Feb 5, 2024

Feb 4, 2024

Feb 3, 2024

Jan 31, 2024

Jan 30, 2024

Jan 27, 2024

Jan 25, 2024

Jan 23, 2024

Jan 22, 2024

Jan 21, 2024

Jan 18, 2024

Jan 17, 2024

Jan 16, 2024

Jan 15, 2024

Jan 13, 2024

Jan 12, 2024

Jan 11, 2024

Jan 10, 2024

Jan 8, 2024

Dec 27, 2023

Dec 16, 2023

Dec 10, 2023

Dec 8, 2023

Nov 27, 2023

Nov 20, 2023

Nov 19, 2023

Nov 16, 2023

Nov 13, 2023

Nov 5, 2023

Oct 16, 2023

Oct 15, 2023

Oct 12, 2023

Oct 6, 2023

Oct 1, 2023

Sep 25, 2023

Sep 18, 2023

Sep 17, 2023

Sep 16, 2023

Sep 10, 2023

Sep 6, 2023

Sep 5, 2023

Sep 4, 2023

Sep 3, 2023

Sep 1, 2023

Aug 28, 2023

Aug 20, 2023

Aug 18, 2023

Aug 12, 2023

Aug 8, 2023

Aug 6, 2023

Aug 5, 2023

Jul 20, 2023

Jul 15, 2023

Jul 11, 2023

Jul 10, 2023

Jul 6, 2023

Jun 27, 2023

Jun 26, 2023

Jun 22, 2023

Jun 19, 2023

Jun 17, 2023

Jun 15, 2023

Jun 13, 2023

Jun 12, 2023

Jun 11, 2023

Jun 9, 2023

Jun 4, 2023

May 31, 2023

May 30, 2023

May 27, 2023

May 26, 2023

May 14, 2023

May 4, 2023

Apr 30, 2023

Apr 28, 2023

Apr 26, 2023

Apr 27, 2023

Apr 25, 2023

Apr 24, 2023

Apr 19, 2023

Apr 16, 2023

Apr 7, 2023

Apr 3, 2023

Mar 27, 2023

Mar 16, 2023

Mar 15, 2023

Feb 17, 2023

Feb 12, 2023

Feb 9, 2023

Feb 5, 2023

Feb 4, 2023

Feb 3, 2023

Feb 2, 2023

Jan 27, 2023

Jan 26, 2023

Jan 24, 2023

Jan 23, 2023

Jan 20, 2023

Jan 14, 2023

Jan 8, 2023

Jan 7, 2023

Jan 6, 2023

Dec 11, 2022

Dec 4, 2022

Dec 2, 2022

Nov 30, 2022

Nov 26, 2022

Nov 19, 2022

Nov 14, 2022

Oct 28, 2022

Oct 17, 2022

Oct 10, 2022

Oct 5, 2022

Oct 2, 2022

Sep 29, 2022

Sep 18, 2022

Sep 5, 2022

Aug 20, 2022

Aug 12, 2022

Aug 10, 2022

Aug 2, 2022

Jul 25, 2022

Jul 22, 2022

Jul 19, 2022

Jul 18, 2022

Jul 17, 2022

Jul 9, 2022

Jul 5, 2022

Jul 4, 2022

Jul 3, 2022

Jun 29, 2022

Jun 27, 2022

Jun 25, 2022

Jun 23, 2022

Jun 15, 2022

Jun 12, 2022

Jun 10, 2022

Jun 7, 2022

Jun 2, 2022

Jun 1, 2022

May 25, 2022

May 19, 2022

May 18, 2022

May 15, 2022

May 11, 2022

May 3, 2022

May 1, 2022

Apr 30, 2022

Apr 29, 2022

Apr 27, 2022

Apr 22, 2022

Apr 21, 2022

Apr 18, 2022

Apr 16, 2022

Apr 13, 2022

Apr 12, 2022

Apr 10, 2022

Apr 9, 2022

Apr 1, 2022

Mar 29, 2022

Mar 27, 2022

Mar 26, 2022

Mar 17, 2022

Mar 7, 2022

Mar 3, 2022

Mar 1, 2022

Feb 26, 2022

Feb 21, 2022

Feb 18, 2022

Feb 13, 2022

Jan 31, 2022

Jan 19, 2022

Jan 17, 2022

Jan 8, 2022

Jan 5, 2022

Dec 31, 2021

Dec 30, 2021

Dec 23, 2021

Dec 15, 2021

Dec 14, 2021

Dec 11, 2021

Dec 10, 2021

Dec 9, 2021

Dec 5, 2021

Dec 3, 2021

Dec 2, 2021

Nov 29, 2021

Nov 28, 2021

Nov 26, 2021

Nov 22, 2021

Nov 21, 2021

Nov 19, 2021

Nov 18, 2021

Nov 16, 2021

Nov 15, 2021

Nov 13, 2021

Nov 5, 2021

Nov 1, 2021

Oct 23, 2021

Oct 20, 2021

Oct 18, 2021

Oct 8, 2021

Sep 29, 2021

Sep 26, 2021

Sep 24, 2021

Sep 19, 2021

Sep 16, 2021

Sep 15, 2021

Sep 13, 2021

Sep 11, 2021

Sep 10, 2021

Sep 9, 2021

Sep 8, 2021

Sep 6, 2021

Aug 31, 2021

Aug 30, 2021

Aug 29, 2021

Aug 27, 2021

Aug 22, 2021

Aug 20, 2021

Aug 16, 2021

Aug 14, 2021

Aug 7, 2021

Jul 27, 2021

Jul 26, 2021

Jul 18, 2021

Jul 12, 2021

Jul 2, 2021

Jun 9, 2021

Jun 4, 2021

Jun 3, 2021

Jun 2, 2021

May 30, 2021

May 28, 2021

May 27, 2021

May 26, 2021

May 24, 2021

May 23, 2021

May 20, 2021

May 18, 2021

May 17, 2021

May 6, 2021

Apr 26, 2021

Apr 17, 2021

Apr 15, 2021

Apr 12, 2021

Apr 11, 2021

Apr 7, 2021

Apr 6, 2021

Apr 5, 2021

Apr 1, 2021

Mar 28, 2021

Mar 27, 2021

Mar 14, 2021

Mar 11, 2021

Mar 10, 2021

Mar 9, 2021

Mar 7, 2021

Mar 4, 2021

Mar 2, 2021

Feb 28, 2021

Feb 26, 2021

Feb 25, 2021

Feb 24, 2021

Feb 20, 2021

Feb 12, 2021

Jan 31, 2021

Jan 29, 2021

Jan 27, 2021

Jan 23, 2021

Jan 14, 2021

Jan 13, 2021

Jan 8, 2021

Jan 7, 2021

Jan 6, 2021

Jan 5, 2021

Jan 4, 2021

Jan 3, 2021

Jan 2, 2021

Jan 1, 2021

Dec 24, 2020

Dec 11, 2020

Dec 10, 2020

Dec 9, 2020

Dec 5, 2020

Nov 28, 2020

Nov 18, 2020

Nov 8, 2020

Nov 3, 2020

Oct 30, 2020

Oct 26, 2020

Oct 24, 2020

Oct 20, 2020

Oct 15, 2020

Oct 14, 2020

Oct 7, 2020

Oct 3, 2020

Oct 2, 2020

Sep 25, 2020

Sep 24, 2020

Sep 21, 2020

Sep 15, 2020

Sep 14, 2020

Sep 11, 2020

Sep 9, 2020

Sep 7, 2020

Sep 6, 2020

Sep 4, 2020

Aug 30, 2020

Aug 28, 2020

Aug 27, 2020

Aug 24, 2020

Aug 20, 2020

Aug 19, 2020

Aug 17, 2020

Aug 16, 2020

Aug 14, 2020

Aug 13, 2020

Aug 12, 2020

Aug 10, 2020

Aug 4, 2020

Aug 3, 2020

Jul 31, 2020

Jul 29, 2020

Jul 27, 2020

Jul 26, 2020

Jul 25, 2020

Jul 23, 2020

Jul 21, 2020

Jul 18, 2020

Jul 17, 2020

Jul 15, 2020

Jul 13, 2020

Jul 12, 2020

Jun 30, 2020

Jun 27, 2020

Jun 26, 2020

Jun 25, 2020

Jun 22, 2020

Jun 21, 2020

Jun 19, 2020

Jun 10, 2020

May 27, 2020

May 21, 2020

May 19, 2020

May 13, 2020

May 12, 2020

May 10, 2020

May 7, 2020

May 4, 2020

Apr 24, 2020

Apr 22, 2020

Apr 19, 2020

Apr 18, 2020

Apr 16, 2020

Apr 15, 2020

Apr 14, 2020

Apr 12, 2020

Mar 24, 2020

Mar 23, 2020

Mar 19, 2020

Mar 18, 2020

Feb 29, 2020

Feb 16, 2020

Feb 14, 2020

Feb 13, 2020

Feb 7, 2020

Feb 6, 2020

Feb 1, 2020

Jan 30, 2020

Jan 26, 2020

Jan 21, 2020

Jan 19, 2020

Jan 12, 2020

Jan 11, 2020

Jan 9, 2020

Jan 6, 2020

Jan 3, 2020

Jan 1, 2020

Dec 29, 2019

Dec 28, 2019

Dec 22, 2019

Dec 21, 2019

Dec 19, 2019

Dec 18, 2019

Dec 17, 2019

Dec 16, 2019

Dec 15, 2019

Dec 11, 2019

Dec 9, 2019

Dec 7, 2019

Dec 5, 2019

Dec 2, 2019

Dec 1, 2019

Nov 29, 2019

Nov 28, 2019

Nov 27, 2019

Nov 26, 2019

Nov 25, 2019

Nov 24, 2019

Nov 23, 2019

Nov 22, 2019

Nov 20, 2019

Nov 12, 2019

Nov 11, 2019

Nov 8, 2019

Nov 7, 2019

Nov 6, 2019

Nov 5, 2019

Nov 4, 2019

Nov 3, 2019

Nov 2, 2019

Nov 1, 2019

Oct 30, 2019

Oct 27, 2019

Oct 21, 2019

Oct 17, 2019

Oct 16, 2019

Oct 14, 2019

Oct 9, 2019

Oct 7, 2019

Oct 4, 2019

Oct 2, 2019

Oct 1, 2019

Sep 28, 2019

Sep 20, 2019

Sep 17, 2019

Sep 9, 2019

Sep 4, 2019

Aug 23, 2019

Aug 21, 2019

Aug 20, 2019

Aug 5, 2019

Jul 30, 2019

Jul 29, 2019

Jul 28, 2019

Jul 24, 2019

Jul 14, 2019

Jul 12, 2019

Jul 11, 2019

Jul 8, 2019

Jul 7, 2019

Jul 5, 2019

Jul 4, 2019

Jul 3, 2019

Jun 26, 2019

Jun 23, 2019

Jun 21, 2019

Jun 7, 2019

Jun 6, 2019

Jun 4, 2019

May 29, 2019

May 28, 2019

May 26, 2019

May 19, 2019

May 16, 2019

May 9, 2019

May 8, 2019

May 7, 2019

May 6, 2019

May 5, 2019

Apr 30, 2019

Apr 29, 2019

Apr 24, 2019

Apr 19, 2019

Apr 16, 2019

Apr 12, 2019

Apr 9, 2019

Apr 7, 2019

Apr 5, 2019

Apr 3, 2019

Mar 31, 2019

Mar 30, 2019

Mar 19, 2019

Mar 18, 2019

Mar 15, 2019

Mar 13, 2019

Mar 12, 2019

Mar 11, 2019

Mar 9, 2019

Mar 6, 2019

Mar 4, 2019

Mar 3, 2019

Mar 1, 2019

Feb 28, 2019

Feb 27, 2019

Feb 25, 2019

Feb 24, 2019

Feb 23, 2019

Feb 22, 2019

Feb 21, 2019

Feb 19, 2019

Feb 18, 2019

Feb 15, 2019

Feb 14, 2019

Feb 12, 2019

Feb 11, 2019

Feb 10, 2019

Feb 8, 2019

Feb 6, 2019

Feb 5, 2019

Feb 3, 2019

Feb 2, 2019

Jan 25, 2019

Jan 24, 2019

Jan 23, 2019

Jan 22, 2019

Jan 16, 2019

Jan 14, 2019

Jan 11, 2019

Jan 10, 2019

Jan 9, 2019

Jan 8, 2019

Jan 7, 2019

Jan 6, 2019

Jan 4, 2019

Jan 3, 2019

Jan 2, 2019

Dec 31, 2018

Dec 30, 2018

Dec 29, 2018

Dec 28, 2018

Dec 21, 2018

Dec 20, 2018

Dec 19, 2018

Dec 18, 2018

Dec 17, 2018

Dec 13, 2018

Dec 12, 2018

Dec 11, 2018

Dec 8, 2018

Oct 29, 2018

Oct 27, 2018

Oct 25, 2018

Oct 23, 2018

Oct 22, 2018

Oct 18, 2018

Oct 16, 2018

Oct 11, 2018

Oct 10, 2018

Oct 9, 2018

Oct 8, 2018

Oct 3, 2018

Oct 1, 2018

Sep 30, 2018

Sep 27, 2018

Sep 26, 2018

Sep 25, 2018

Sep 24, 2018

Sep 18, 2018

Sep 17, 2018

Sep 16, 2018

Sep 15, 2018

Sep 14, 2018

Sep 9, 2018

Sep 8, 2018

Sep 3, 2018

Sep 1, 2018

Aug 30, 2018

Aug 29, 2018

Aug 28, 2018

Aug 27, 2018

Aug 23, 2018

Aug 21, 2018

Aug 20, 2018

Aug 19, 2018

Aug 18, 2018

Aug 15, 2018

Aug 14, 2018

Aug 10, 2018

Aug 9, 2018

Aug 8, 2018

Aug 6, 2018

Aug 5, 2018

Aug 3, 2018

Aug 2, 2018

Aug 1, 2018

Jul 31, 2018

Jul 30, 2018

Jul 28, 2018

Jul 26, 2018

Jul 24, 2018

Jul 23, 2018

Jul 22, 2018

Jul 20, 2018

Jul 19, 2018

Jul 8, 2018

Jul 5, 2018

Jul 4, 2018

Jul 3, 2018

Jun 30, 2018

Jun 27, 2018

Jun 26, 2018

Jun 24, 2018

Jun 20, 2018

Jun 19, 2018

Jun 18, 2018

Jun 16, 2018

Jun 14, 2018

Jun 13, 2018

May 20, 2018

May 16, 2018

May 11, 2018

May 10, 2018

May 9, 2018

Apr 22, 2018

Apr 21, 2018

Apr 20, 2018

Apr 17, 2018

Apr 14, 2018

Apr 13, 2018

Apr 12, 2018

Apr 11, 2018

Apr 6, 2018

Apr 5, 2018

Apr 4, 2018

Apr 1, 2018

Mar 30, 2018

Mar 29, 2018

Mar 24, 2018

Mar 20, 2018

Mar 19, 2018

Mar 15, 2018

Mar 12, 2018

Mar 5, 2018

Mar 2, 2018

Mar 1, 2018

Feb 26, 2018

Feb 25, 2018

Feb 23, 2018

Feb 18, 2018

Feb 17, 2018

Feb 13, 2018

Feb 5, 2018

Jan 27, 2018

Jan 24, 2018

Jan 23, 2018

Jan 22, 2018

Jan 21, 2018

Jan 20, 2018

Jan 13, 2018

Jan 8, 2018

Jan 7, 2018

Jan 6, 2018

Jan 4, 2018

Jan 2, 2018

Dec 23, 2017

Dec 21, 2017

Dec 20, 2017

Dec 17, 2017

Dec 12, 2017

Dec 10, 2017

Dec 9, 2017

Dec 6, 2017

Dec 4, 2017

Dec 2, 2017

Dec 1, 2017

Nov 29, 2017

Nov 28, 2017

Nov 23, 2017

Nov 22, 2017

Nov 21, 2017

Nov 18, 2017

Nov 12, 2017

Nov 10, 2017

Nov 6, 2017

Nov 2, 2017

Nov 1, 2017

Oct 16, 2017

Oct 15, 2017

Oct 13, 2017

Oct 9, 2017

Oct 8, 2017

Oct 6, 2017

Sep 30, 2017

Sep 29, 2017

Sep 27, 2017

Sep 25, 2017

Sep 24, 2017

Sep 22, 2017

Sep 19, 2017

Sep 18, 2017

Sep 16, 2017

Sep 15, 2017

Sep 14, 2017

Sep 13, 2017

Sep 12, 2017

Sep 11, 2017

Sep 6, 2017

Sep 5, 2017

Sep 1, 2017

Aug 31, 2017

Aug 29, 2017

Aug 28, 2017

Aug 26, 2017

Aug 25, 2017

Aug 24, 2017

Aug 23, 2017

Aug 22, 2017

Aug 21, 2017

Aug 20, 2017

Aug 18, 2017

Aug 17, 2017

Aug 16, 2017

Aug 15, 2017

Aug 13, 2017

Aug 7, 2017

Aug 4, 2017

Aug 3, 2017

Aug 2, 2017

Jul 23, 2017

Jul 20, 2017

Jul 16, 2017

Jul 7, 2017

Jun 19, 2017

Jun 17, 2017

Jun 11, 2017

Jun 10, 2017

May 28, 2017

May 23, 2017

May 22, 2017

May 19, 2017

May 17, 2017

May 9, 2017

Apr 26, 2017

Apr 23, 2017

Apr 22, 2017

Apr 21, 2017

Mar 20, 2017

Dec 20, 2016

Oct 31, 2016

Oct 5, 2016

Sep 26, 2016

Sep 23, 2016

Sep 22, 2016

Jul 13, 2016

Jul 7, 2016

May 27, 2016

May 24, 2016

May 1, 2016

Apr 30, 2016

Apr 29, 2016

Mar 6, 2016

Feb 25, 2016

Feb 24, 2016

Feb 23, 2016

Feb 18, 2016

Feb 17, 2016

Jan 10, 2016

Jan 9, 2016

Dec 22, 2015

Dec 21, 2015

Dec 16, 2015

Dec 15, 2015

Dec 8, 2015

Nov 24, 2015

Nov 1, 2015

Oct 29, 2015

Oct 18, 2015

Sep 27, 2015

Sep 23, 2015

Sep 16, 2015

Aug 31, 2015

Aug 26, 2015

Aug 22, 2015

Aug 19, 2015

Aug 4, 2015

Aug 3, 2015

Jul 27, 2015

Jul 24, 2015

Jul 21, 2015

Jul 20, 2015

Jul 18, 2015

Jul 17, 2015

Jul 16, 2015

Jul 10, 2015

Jun 29, 2015

Jun 8, 2015

May 21, 2015

May 14, 2015

May 5, 2015

May 4, 2015

Apr 22, 2015

Apr 15, 2015

Apr 14, 2015

Apr 7, 2015

Apr 6, 2015

Mar 27, 2015

Mar 26, 2015

Mar 25, 2015

Mar 23, 2015

Mar 22, 2015

Mar 21, 2015

Mar 20, 2015

Mar 14, 2015

Feb 10, 2015

Feb 5, 2015

Feb 4, 2015

Feb 3, 2015

Jan 21, 2015

Jan 16, 2015

Jan 13, 2015

Jan 12, 2015

Jan 8, 2015

Jan 7, 2015

Dec 14, 2013

May 3, 2013

Mar 26, 2013

Mar 24, 2013

Mar 23, 2013

Mar 13, 2013

Mar 12, 2013

Mar 10, 2013

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages .

Source Distribution

Uploaded May 23, 2024 Source

Built Distribution

Uploaded May 23, 2024 Python 3

Hashes for hypothesis-6.102.6.tar.gz

Hashes for hypothesis-6.102.6-py3-none-any.whl.

  • português (Brasil)

Supported by

hypothesis example python

hypothesis example python

Visual Design.

Upgrade to get unlimited access ($10 one off payment).

7 Tips for Beginner to Future-Proof your Machine Learning Project

7 Tips for Beginner to Future-Proof your Machine Learning Project

LLM Prompt Engineering Techniques for Knowledge Graph Integration

LLM Prompt Engineering Techniques for Knowledge Graph Integration

Develop a Data Analytics Web App in 3 Steps

Develop a Data Analytics Web App in 3 Steps

What Does ChatGPT Say About Machine Learning Trend and How Can We Prepare For It?

What Does ChatGPT Say About Machine Learning Trend and How Can We Prepare For It?

  • Apr 14, 2022

An Interactive Guide to Hypothesis Testing in Python

Updated: Jun 12, 2022

Statistical Test in Python Cheatsheet

upgrade and grab the cheatsheet from our infographics gallery

What is hypothesis testing.

Hypothesis testing is an essential part in inferential statistics where we use observed data in a sample to draw conclusions about unobserved data - often the population.

Implication of hypothesis testing:

clinical research: widely used in psychology, biology and healthcare research to examine the effectiveness of clinical trials

A/B testing: can be applied in business context to improve conversions through testing different versions of campaign incentives, website designs ...

feature selection in machine learning: filter-based feature selection methods use different statistical tests to determine the feature importance

college or university: well, if you major in statistics or data science, it is likely to appear in your exams

For a brief video walkthrough along with the blog, check out my YouTube channel.

4 Steps in Hypothesis testing

Step 1. define null and alternative hypothesis.

Null hypothesis (H0) can be stated differently depends on the statistical tests, but generalize to the claim that no difference, no relationship or no dependency exists between two or more variables.

Alternative hypothesis (H1) is contradictory to the null hypothesis and it claims that relationships exist. It is the hypothesis that we would like to prove right. However, a more conservational approach is favored in statistics where we always assume null hypothesis is true and try to find evidence to reject the null hypothesis.

Step 2. Choose the appropriate test

Common Types of Statistical Testing including t-tests, z-tests, anova test and chi-square test

how to choose the statistical test

T-test: compare two groups/categories of numeric variables with small sample size

Z-test: compare two groups/categories of numeric variables with large sample size

ANOVA test: compare the difference between two or more groups/categories of numeric variables

Chi-Squared test: examine the relationship between two categorical variables

Correlation test: examine the relationship between two numeric variables

Step 3. Calculate the p-value

How p value is calculated primarily depends on the statistical testing selected. Firstly, based on the mean and standard deviation of the observed sample data, we are able to derive the test statistics value (e.g. t-statistics, f-statistics). Then calculate the probability of getting this test statistics given the distribution of the null hypothesis, we will find out the p-value. We will use some examples to demonstrate this in more detail.

Step 4. Determine the statistical significance

p value is then compared against the significance level (also noted as alpha value) to determine whether there is sufficient evidence to reject the null hypothesis. The significance level is a predetermined probability threshold - commonly 0.05. If p value is larger than the threshold, it means that the value is likely to occur in the distribution when the null hypothesis is true. On the other hand, if lower than significance level, it means it is very unlikely to occur in the null hypothesis distribution - hence reject the null hypothesis.

Hypothesis Testing with Examples

Kaggle dataset “ Customer Personality Analysis” is used in this case study to demonstrate different types of statistical test. T-test, ANOVA and Chi-Square test are sensitive to large sample size, and almost certainly will generate very small p-value when sample size is large . Therefore, I took a random sample (size of 100) from the original data:

T-test is used when we want to test the relationship between a numeric variable and a categorical variable.There are three main types of t-test.

one sample t-test: test the mean of one group against a constant value

two sample t-test: test the difference of means between two groups

paired sample t-test: test the difference of means between two measurements of the same subject

For example, if I would like to test whether “Recency” (the number of days since customer’s last purchase - numeric value) contributes to the prediction of “Response” (whether the customer accepted the offer in the last campaign - categorical value), I can use a two sample t-test.

The first sample would be the “Recency” of customers who accepted the offer:

The second sample would be the “Recency” of customers who rejected the offer:

To compare the “Recency” of these two groups intuitively, we can use histogram (or distplot) to show the distributions.

hypothesis example python

It appears that positive response have lower Recency compared to negative response. To quantify the difference and make it more scientific, let’s follow the steps in hypothesis testing and carry out a t-test.

Step1. define null and alternative hypothesis

null: there is no difference in Recency between the customers who accepted the offer in the last campaign and who did not accept the offer

alternative: customers who accepted the offer has lower Recency compared to customers who did not accept the offer

Step 2. choose the appropriate test

To test the difference between two independent samples, two-sample t-test is the most appropriate statistical test which follows student t-distribution. The shape of student-t distribution is determined by the degree of freedom, calculated as the sum of two sample size minus 2.

In python, simply import the library scipy.stats and create the t-distribution as below.

Step 3. calculate the p-value

There are some handy functions in Python calculate the probability in a distribution. For any x covered in the range of the distribution, pdf(x) is the probability density function of x — which can be represented as the orange line below, and cdf(x) is the cumulative density function of x — which can be seen as the cumulative area. In this example, we are testing the alternative hypothesis that — Recency of positive response minus the Recency of negative response is less than 0. Therefore we should use a one-tail test and compare the t-statistics we get against the lowest value in this distribution — therefore p-value can be calculated as cdf(t_statistics) in this case.

hypothesis example python

ttest_ind() is a handy function for independent t-test in python that has done all of these for us automatically. Pass two samples rececency_P and recency_N as the parameters, and we get the t-statistics and p-value.

t-test in python

Here I use plotly to visualize the p-value in t-distribution. Hover over the line and see how point probability and p-value changes as the x shifts. The area with filled color highlights the p-value we get for this specific test.

Check out the code in our Code Snippet section, if you want to build this yourself.

An interactive visualization of t-distribution with t-statistics vs. significance level.

Step 4. determine the statistical significance

The commonly used significance level threshold is 0.05. Since p-value here (0.024) is smaller than 0.05, we can say that it is statistically significant based on the collected sample. A lower Recency of customer who accepted the offer is likely not occur by chance. This indicates the feature “Response” may be a strong predictor of the target variable “Recency”. And if we would perform feature selection for a model predicting the "Recency" value, "Response" is likely to have high importance.

Now that we know t-test is used to compare the mean of one or two sample groups. What if we want to test more than two samples? Use ANOVA test.

ANOVA examines the difference among groups by calculating the ratio of variance across different groups vs variance within a group . Larger ratio indicates that the difference across groups is a result of the group difference rather than just random chance.

As an example, I use the feature “Kidhome” for the prediction of “NumWebPurchases”. There are three values of “Kidhome” - 0, 1, 2 which naturally forms three groups.

Firstly, visualize the data. I found box plot to be the most aligned visual representation of ANOVA test.

box plot for ANOVA test

It appears there are distinct differences among three groups. So let’s carry out ANOVA test to prove if that’s the case.

1. define hypothesis:

null hypothesis: there is no difference among three groups

alternative hypothesis: there is difference between at least two groups

2. choose the appropriate test: ANOVA test for examining the relationships of numeric values against a categorical value with more than two groups. Similar to t-test, the null hypothesis of ANOVA test also follows a distribution defined by degrees of freedom. The degrees of freedom in ANOVA is determined by number of total samples (n) and the number of groups (k).

dfn = n - 1

dfd = n - k

3. calculate the p-value: To calculate the p-value of the f-statistics, we use the right tail cumulative area of the f-distribution, which is 1 - rv.cdf(x).

hypothesis example python

To easily get the f-statistics and p-value using Python, we can use the function stats.f_oneway() which returns p-value: 0.00040.

An interactive visualization of f-distribution with f-statistics vs. significance level. (Check out the code in our Code Snippet section, if you want to build this yourself. )

4. determine the statistical significance : Compare the p-value against the significance level 0.05, we can infer that there is strong evidence against the null hypothesis and very likely that there is difference in “NumWebPurchases” between at least two groups.

Chi-Squared Test

Chi-Squared test is for testing the relationship between two categorical variables. The underlying principle is that if two categorical variables are independent, then one categorical variable should have similar composition when the other categorical variable change. Let’s look at the example of whether “Education” and “Response” are independent.

First, use stacked bar chart and contingency table to summary the count of each category.

hypothesis example python

If these two variables are completely independent to each other (null hypothesis is true), then the proportion of positive Response and negative Response should be the same across all Education groups. It seems like composition are slightly different, but is it significant enough to say there is dependency - let’s run a Chi-Squared test.

null hypothesis: “Education” and “Response” are independent to each other.

alternative hypothesis: “Education” and “Response” are dependent to each other.

2. choose the appropriate test: Chi-Squared test is chosen and you probably found a pattern here, that Chi-distribution is also determined by the degree of freedom which is (row - 1) x (column - 1).

3. calculate the p-value: p value is calculated as the right tail cumulative area: 1 - rv.cdf(x).

hypothesis example python

Python also provides a useful function to get the chi statistics and p-value given the contingency table.

An interactive visualization of chi-distribution with chi-statistics vs. significance level. (Check out the code in our Code Snippet section, if you want to build this yourself. )

4. determine the statistical significanc e: the p-value here is 0.41, suggesting that it is not statistical significant. Therefore, we cannot reject the null hypothesis that these two categorical variables are independent. This further indicates that “Education” may not be a strong predictor of “Response”.

Thanks for reaching so far, we have covered a lot of contents in this article but still have two important hypothesis tests that are worth discussing separately in upcoming posts.

z-test: test the difference between two categories of numeric variables - when sample size is LARGE

correlation: test the relationship between two numeric variables

Hope you found this article helpful. If you’d like to support my work and see more articles like this, treat me a coffee ☕️ by signing up Premium Membership with $10 one-off purchase.

Take home message.

In this article, we interactively explore and visualize the difference between three common statistical tests: t-test, ANOVA test and Chi-Squared test. We also use examples to walk through essential steps in hypothesis testing:

1. define the null and alternative hypothesis

2. choose the appropriate test

3. calculate the p-value

4. determine the statistical significance

  • Data Science

Recent Posts

How to Self Learn Data Science in 2022

hypothesis example python

Your Data Guide

hypothesis example python

How to Perform Hypothesis Testing Using Python

hypothesis example python

Step into the intriguing world of hypothesis testing, where your natural curiosity meets the power of data to reveal truths!

This article is your key to unlocking how those everyday hunches—like guessing a group’s average income or figuring out who owns their home—can be thoroughly checked and proven with data.

Thanks for reading Your Data Guide! Subscribe for free to receive new posts and support my work.

I am going to take you by the hand and show you, in simple steps, how to use Python to explore a hypothesis about the average yearly income.

By the time we’re done, you’ll not only get the hang of creating and testing hypotheses but also how to use statistical tests on actual data.

Perfect for up-and-coming data scientists, anyone with a knack for analysis, or just if you’re keen on data, get ready to gain the skills to make informed decisions and turn insights into real-world actions.

Join me as we dive deep into the data, one hypothesis at a time!

Before we get started, elevate your data skills with my expert eBooks—the culmination of my experiences and insights.

Support my work and enhance your journey. Check them out:

hypothesis example python

eBook 1: Personal INTERVIEW Ready “SQL” CheatSheet

eBook 2: Personal INTERVIEW Ready “Statistics” Cornell Notes

Best Selling eBook: Top 50+ ChatGPT Personas for Custom Instructions

Data Science Bundle ( Cheapest ): The Ultimate Data Science Bundle: Complete

ChatGPT Bundle ( Cheapest ): The Ultimate ChatGPT Bundle: Complete

💡 Checkout for more such resources: https://codewarepam.gumroad.com/

What is a hypothesis, and how do you test it?

A hypothesis is like a guess or prediction about something specific, such as the average income or the percentage of homeowners in a group of people.

It’s based on theories, past observations, or questions that spark our curiosity.

For instance, you might predict that the average yearly income of potential customers is over $50,000 or that 60% of them own their homes.

To see if your guess is right, you gather data from a smaller group within the larger population and check if the numbers ( like the average income, percentage of homeowners, etc. ) from this smaller group match your initial prediction.

You also set a rule for how sure you need to be to trust your findings, often using a 5% chance of error as a standard measure . This means you’re 95% confident in your results. — Level of Significance (0.05)

There are two main types of hypotheses : the null hypothesi s, which is your baseline saying there’s no change or difference, and the alternative hypothesis , which suggests there is a change or difference.

For example,

If you start with the idea that the average yearly income of potential customers is $50,000,

The alternative could be that it’s not $50,000—it could be less or more, depending on what you’re trying to find out.

To test your hypothesis, you calculate a test statistic —a number that shows how much your sample data deviates from what you predicted.

How you calculate this depends on what you’re studying and the kind of data you have. For example, to check an average, you might use a formula that considers your sample’s average, the predicted average, the variation in your sample data, and how big your sample is.

This test statistic follows a known distribution ( like the t-distribution or z-distribution ), which helps you figure out the p-value.

The p-value tells you the odds of seeing a test statistic as extreme as yours if your initial guess was correct.

A small p-value means your data strongly disagrees with your initial guess.

Finally, you decide on your hypothesis by comparing the p-value to your error threshold.

If the p-value is smaller or equal, you reject the null hypothesis, meaning your data shows a significant difference that’s unlikely due to chance.

If the p-value is larger, you stick with the null hypothesis , suggesting your data doesn’t show a meaningful difference and any change might just be by chance.

We’ll go through an example that tests if the average annual income of prospective customers exceeds $50,000.

This process involves stating hypotheses , specifying a significance level , collecting and analyzing data , and drawing conclusions based on statistical tests.

Example: Testing a Hypothesis About Average Annual Income

Step 1: state the hypotheses.

Null Hypothesis (H0): The average annual income of prospective customers is $50,000.

Alternative Hypothesis (H1): The average annual income of prospective customers is more than $50,000.

Step 2: Specify the Significance Level

Significance Level: 0.05, meaning we’re 95% confident in our findings and allow a 5% chance of error.

Step 3: Collect Sample Data

We’ll use the ProspectiveBuyer table, assuming it's a random sample from the population.

This table has 2,059 entries, representing prospective customers' annual incomes.

Step 4: Calculate the Sample Statistic

In Python, we can use libraries like Pandas and Numpy to calculate the sample mean and standard deviation.

SampleMean: 56,992.43

SampleSD: 32,079.16

SampleSize: 2,059

Step 5: Calculate the Test Statistic

We use the t-test formula to calculate how significantly our sample mean deviates from the hypothesized mean.

Python’s Scipy library can handle this calculation:

T-Statistic: 4.62

Step 6: Calculate the P-Value

The p-value is already calculated in the previous step using Scipy's ttest_1samp function, which returns both the test statistic and the p-value.

P-Value = 0.0000021

Step 7: State the Statistical Conclusion

We compare the p-value with our significance level to decide on our hypothesis:

Since the p-value is less than 0.05, we reject the null hypothesis in favor of the alternative.

Conclusion:

There’s strong evidence to suggest that the average annual income of prospective customers is indeed more than $50,000.

This example illustrates how Python can be a powerful tool for hypothesis testing, enabling us to derive insights from data through statistical analysis.

How to Choose the Right Test Statistics

Choosing the right test statistic is crucial and depends on what you’re trying to find out, the kind of data you have, and how that data is spread out.

Here are some common types of test statistics and when to use them:

T-test statistic:

This one’s great for checking out the average of a group when your data follows a normal distribution or when you’re comparing the averages of two such groups.

The t-test follows a special curve called the t-distribution . This curve looks a lot like the normal bell curve but with thicker ends, which means more chances for extreme values.

The t-distribution’s shape changes based on something called degrees of freedom , which is a fancy way of talking about your sample size and how many groups you’re comparing.

Z-test statistic:

Use this when you’re looking at the average of a normally distributed group or the difference between two group averages, and you already know the standard deviation for all in the population.

The z-test follows the standard normal distribution , which is your classic bell curve centered at zero and spreading out evenly on both sides.

Chi-square test statistic:

This is your go-to for checking if there’s a difference in variability within a normally distributed group or if two categories are related.

The chi-square statistic follows its own distribution, which leans to the right and gets its shape from the degrees of freedom —basically, how many categories or groups you’re comparing.

F-test statistic:

This one helps you compare the variability between two groups or see if the averages of more than two groups are all the same, assuming all groups are normally distributed.

The F-test follows the F-distribution , which is also right-skewed and has two types of degrees of freedom that depend on how many groups you have and the size of each group.

In simple terms, the test you pick hinges on what you’re curious about, whether your data fits the normal curve, and if you know certain specifics, like the population’s standard deviation.

Each test has its own special curve and rules based on your sample’s details and what you’re comparing.

Join my community of learners! Subscribe to my newsletter for more tips, tricks, and exclusive content on mastering Data Science & AI. — Your Data Guide Join my community of learners! Subscribe to my newsletter for more tips, tricks, and exclusive content on mastering data science and AI. By Richard Warepam ⭐️ Visit My Gumroad Shop: https://codewarepam.gumroad.com/

hypothesis example python

Ready for more?

Loading metrics

Open Access

Peer-reviewed

Meta-Research Article

Meta-Research Articles feature data-driven examinations of the methods, reporting, verification, and evaluation of scientific research.

See Journal Information »

Assessing the evolution of research topics in a biological field using plant science as an example

Roles Conceptualization, Data curation, Formal analysis, Funding acquisition, Investigation, Methodology, Project administration, Resources, Software, Supervision, Validation, Visualization, Writing – original draft, Writing – review & editing

* E-mail: [email protected]

Affiliations Department of Plant Biology, Michigan State University, East Lansing, Michigan, United States of America, Department of Computational Mathematics, Science, and Engineering, Michigan State University, East Lansing, Michigan, United States of America, DOE-Great Lake Bioenergy Research Center, Michigan State University, East Lansing, Michigan, United States of America

ORCID logo

Roles Conceptualization, Investigation, Project administration, Supervision, Writing – review & editing

Affiliation Department of Plant Biology, Michigan State University, East Lansing, Michigan, United States of America

  • Shin-Han Shiu, 
  • Melissa D. Lehti-Shiu

PLOS

  • Published: May 23, 2024
  • https://doi.org/10.1371/journal.pbio.3002612
  • Peer Review
  • Reader Comments

Fig 1

Scientific advances due to conceptual or technological innovations can be revealed by examining how research topics have evolved. But such topical evolution is difficult to uncover and quantify because of the large body of literature and the need for expert knowledge in a wide range of areas in a field. Using plant biology as an example, we used machine learning and language models to classify plant science citations into topics representing interconnected, evolving subfields. The changes in prevalence of topical records over the last 50 years reflect shifts in major research trends and recent radiation of new topics, as well as turnover of model species and vastly different plant science research trajectories among countries. Our approaches readily summarize the topical diversity and evolution of a scientific field with hundreds of thousands of relevant papers, and they can be applied broadly to other fields.

Citation: Shiu S-H, Lehti-Shiu MD (2024) Assessing the evolution of research topics in a biological field using plant science as an example. PLoS Biol 22(5): e3002612. https://doi.org/10.1371/journal.pbio.3002612

Academic Editor: Ulrich Dirnagl, Charite Universitatsmedizin Berlin, GERMANY

Received: October 16, 2023; Accepted: April 4, 2024; Published: May 23, 2024

Copyright: © 2024 Shiu, Lehti-Shiu. This is an open access article distributed under the terms of the Creative Commons Attribution License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability: The plant science corpus data are available through Zenodo ( https://zenodo.org/records/10022686 ). The codes for the entire project are available through GitHub ( https://github.com/ShiuLab/plant_sci_hist ) and Zenodo ( https://doi.org/10.5281/zenodo.10894387 ).

Funding: This work was supported by the National Science Foundation (IOS-2107215 and MCB-2210431 to MDL and SHS; DGE-1828149 and IOS-2218206 to SHS), Department of Energy grant Great Lakes Bioenergy Research Center (DE-SC0018409 to SHS). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing interests: The authors have declared that no competing interests exist.

Abbreviations: BERT, Bidirectional Encoder Representations from Transformers; br, brassinosteroid; ccTLD, country code Top Level Domain; c-Tf-Idf, class-based Tf-Idf; ChatGPT, Chat Generative Pretrained Transformer; ga, gibberellic acid; LOWESS, locally weighted scatterplot smoothing; MeSH, Medical Subject Heading; SHAP, SHapley Additive exPlanations; SJR, SCImago Journal Rank; Tf-Idf, Term frequency-Inverse document frequency; UMAP, Uniform Manifold Approximation and Projection

Introduction

The explosive growth of scientific data in recent years has been accompanied by a rapidly increasing volume of literature. These records represent a major component of our scientific knowledge and embody the history of conceptual and technological advances in various fields over time. Our ability to wade through these records is important for identifying relevant literature for specific topics, a crucial practice of any scientific pursuit [ 1 ]. Classifying the large body of literature into topics can provide a useful means to identify relevant literature. In addition, these topics offer an opportunity to assess how scientific fields have evolved and when major shifts in took place. However, such classification is challenging because the relevant articles in any topic or domain can number in the tens or hundreds of thousands, and the literature is in the form of natural language, which takes substantial effort and expertise to process [ 2 , 3 ]. In addition, even if one could digest all literature in a field, it would still be difficult to quantify such knowledge.

In the last several years, there has been a quantum leap in natural language processing approaches due to the feasibility of building complex deep learning models with highly flexible architectures [ 4 , 5 ]. The development of large language models such as Bidirectional Encoder Representations from Transformers (BERT; [ 6 ]) and Chat Generative Pretrained Transformer (ChatGPT; [ 7 ]) has enabled the analysis, generation, and modeling of natural language texts in a wide range of applications. The success of these applications is, in large part, due to the feasibility of considering how the same words are used in different contexts when modeling natural language [ 6 ]. One such application is topic modeling, the practice of establishing statistical models of semantic structures underlying a document collection. Topic modeling has been proposed for identifying scientific hot topics over time [ 1 ], for example, in synthetic biology [ 8 ], and it has also been applied to, for example, automatically identify topical scenes in images [ 9 ] and social network topics [ 10 ], discover gene programs highly correlated with cancer prognosis [ 11 ], capture “chromatin topics” that define cell-type differences [ 12 ], and investigate relationships between genetic variants and disease risk [ 13 ]. Here, we use topic modeling to ask how research topics in a scientific field have evolved and what major changes in the research trends have taken place, using plant science as an example.

Plant science corpora allow classification of major research topics

Plant science, broadly defined, is the study of photosynthetic species, their interactions with biotic/abiotic environments, and their applications. For modeling plant science topical evolution, we first identified a collection of plant science documents (i.e., corpus) using a text classification approach. To this end, we first collected over 30 million PubMed records and narrowed down candidate plant science records by searching for those with plant-related terms and taxon names (see Materials and methods ). Because there remained a substantial number of false positives (i.e., biomedical records mentioning plants in passing), a set of positive plant science examples from the 17 plant science journals with the highest numbers of plant science publications covering a wide range of subfields and a set of negative examples from journals with few candidate plant science records were used to train 4 types of text classification models (see Materials and methods ). The best text classification model performed well (F1 = 0.96, F1 of a naïve model = 0.5, perfect model = 1) where the positive and negative examples were clearly separated from each other based on prediction probability of the hold-out testing dataset (false negative rate = 2.6%, false positive rate = 5.2%, S1A and S1B Fig ). The false prediction rate for documents from the 17 plant science journals annotated with the Medical Subject Heading (MeSH) term “Plants” in NCBI was 11.7% (see Materials and methods ). The prediction probability distribution of positive instances with the MeSH term has an expected left-skew to lower values ( S1C Fig ) compared with the distributions of all positive instances ( S1A Fig ). Thus, this subset with the MeSH term is a skewed representation of articles from these 17 major plant science journals. To further benchmark the validity of the plant science records, we also conducted manual annotation of 100 records where the false positive and false negative rates were 14.6% and 10.6%, respectively (see Materials and methods ). Using 12 other plant science journals not included as positive examples as benchmarks, the false negative rate was 9.9% (see Materials and methods ). Considering the range of false prediction rate estimates with different benchmarks, we should emphasize that the model built with the top 17 plant science journals represents a substantial fraction of plant science publications but with biases. Applying the model to the candidate plant science record led to 421,658 positive predictions, hereafter referred to as “plant science records” ( S1D Fig and S1 Data ).

To better understand how the models classified plant science articles, we identified important terms from a more easily interpretable model (Term frequency-Inverse document frequency (Tf-Idf) model; F1 = 0.934) using Shapley Additive Explanations [ 14 ]; 136 terms contributed to predicting plant science records (e.g., Arabidopsis, xylem, seedling) and 138 terms contributed to non-plant science record predictions (e.g., patients, clinical, mice; Tf-Idf feature sheet, S1 Data ). Plant science records as well as PubMed articles grew exponentially from 1950 to 2020 ( Fig 1A ), highlighting the challenges of digesting the rapidly expanding literature. We used the plant science records to perform topic modeling, which consisted of 4 steps: representing each record as a BERT embedding, reducing dimensionality, clustering, and identifying the top terms by calculating class (i.e., topic)-based Tf-Idf (c-Tf-Idf; [ 15 ]). The c-Tf-Idf represents the frequency of a term in the context of how rare the term is to reduce the influence of common words. SciBERT [ 16 ] was the best model among those tested ( S2 Data ) and was used for building the final topic model, which classified 372,430 (88.3%) records into 90 topics defined by distinct combinations of terms ( S3 Data ). The topics contained 620 to 16,183 records and were named after the top 4 to 5 terms defining the topical areas ( Fig 1B and S3 Data ). For example, the top 5 terms representing the largest topic, topic 61 (16,183 records), are “qtl,” “resistance,” “wheat,” “markers,” and “traits,” which represent crop improvement studies using quantitative genetics.

thumbnail

  • PPT PowerPoint slide
  • PNG larger image
  • TIFF original image

(A) Numbers of PubMed (magenta) and plant science (green) records between 1950 and 2020. (a, b, c) Coefficients of the exponential function, y = ae b . Data for the plot are in S1 Data . (B) Numbers of documents for the top 30 plant science topics. Each topic is designated by an index number (left) and the top 4–6 terms with the highest cTf-Idf values (right). Data for the plot are in S3 Data . (C) Two-dimensional representation of the relationships between plant science records generated by Uniform Manifold Approximation and Projection (UMAP, [ 17 ]) using SciBERT embeddings of plant science records. All topics panel: Different topics are assigned different colors. Outlier panel: UMAP representation of all records (gray) with outlier records in red. Blue dotted circles: areas with relatively high densities indicating topics that are below the threshold for inclusion in a topic. In the 8 UMAP representations on the right, records for example topics are in red and the remaining records in gray. Blue dotted circles indicate the relative position of topic 48.

https://doi.org/10.1371/journal.pbio.3002612.g001

Records with assigned topics clustered into distinct areas in a two-dimensional (2D) space ( Fig 1C , for all topics, see S4 Data ). The remaining 49,228 outlier records not assigned to any topic (11.7%, middle panel, Fig 1C ) have 3 potential sources. First, some outliers likely belong to unique topics but have fewer records than the threshold (>500, blue dotted circles, Fig 1C ). Second, some of the many outliers dispersed within the 2D space ( Fig 1C ) were not assigned to any single topic because they had relatively high prediction scores for multiple topics ( S2 Fig ). These likely represent studies across subdisciplines in plant science. Third, some outliers are likely interdisciplinary studies between plant science and other domains, such as chemistry, mathematics, and physics. Such connections can only be revealed if records from other domains are included in the analyses.

Topical clusters reveal closely related topics but with distinct key term usage

Related topics tend to be located close together in the 2D representation (e.g., topics 48 and 49, Fig 1C ). We further assessed intertopical relationships by determining the cosine similarities between topics using cTf-Idfs ( Figs 2A and S3 ). In this topic network, some topics are closely related and form topic clusters. For example, topics 25, 26, and 27 collectively represent a more general topic related to the field of plant development (cluster a , lower left in Fig 2A ). Other topic clusters represent studies of stress, ion transport, and heavy metals ( b ); photosynthesis, water, and UV-B ( c ); population and community biology (d); genomics, genetic mapping, and phylogenetics ( e , upper right); and enzyme biochemistry ( f , upper left in Fig 2A ).

thumbnail

(A) Graph depicting the degrees of similarity (edges) between topics (nodes). Between each topic pair, a cosine similarity value was calculated using the cTf-Idf values of all terms. A threshold similarity of 0.6 was applied to illustrate the most related topics. For the full matrix presented as a heatmap, see S4 Fig . The nodes are labeled with topic index numbers and the top 4–6 terms. The colors and width of the edges are defined based on cosine similarity. Example topic clusters are highlighted in yellow and labeled a through f (blue boxes). (B, C) Relationships between the cTf-Idf values (see S3 Data ) of the top terms for topics 26 and 27 (B) and for topics 25 and 27 (C) . Only terms with cTf-Idf ≥ 0.6 are labeled. Terms with cTf-Idf values beyond the x and y axis limit are indicated by pink arrows and cTf-Idf values. (D) The 2D representation in Fig 1C is partitioned into graphs for different years, and example plots for every 5-year period since 1975 are shown. Example topics discussed in the text are indicated. Blue arrows connect the areas occupied by records of example topics across time periods to indicate changes in document frequencies.

https://doi.org/10.1371/journal.pbio.3002612.g002

Topics differed in how well they were connected to each other, reflecting how general the research interests or needs are (see Materials and methods ). For example, topic 24 (stress mechanisms) is the most well connected with median cosine similarity = 0.36, potentially because researchers in many subfields consider aspects of plant stress even though it is not the focus. The least connected topics include topic 21 (clock biology, 0.12), which is surprising because of the importance of clocks in essentially all aspects of plant biology [ 18 ]. This may be attributed, in part, to the relatively recent attention in this area.

Examining topical relationships and the cTf-Idf values of terms also revealed how related topics differ. For example, topic 26 is closely related to topics 27 and 25 (cluster a on the lower left of Fig 2A ). Topics 26 and 27 both contain records of developmental process studies mainly in Arabidopsis ( Fig 2B ); however, topic 26 is focused on the impact of light, photoreceptors, and hormones such as gibberellic acids (ga) and brassinosteroids (br), whereas topic 27 is focused on flowering and floral development. Topic 25 is also focused on plant development but differs from topic 27 because it contains records of studies mainly focusing on signaling and auxin with less emphasis on Arabidopsis ( Fig 2C ). These examples also highlight the importance of using multiple top terms to represent the topics. The similarities in cTf-Idfs between topics were also useful for measuring the editorial scope (i.e., diverse, or narrow) of journals publishing plant science papers using a relative topic diversity measure (see Materials and methods ). For example, Proceedings of the National Academy of Sciences , USA has the highest diversity, while Theoretical and Applied Genetics has the lowest ( S4 Fig ). One surprise is the relatively low diversity of American Journal of Botany , which focuses on plant ecology, systematics, development, and genetics. The low diversity is likely due to the relatively larger number of cellular and molecular science records in PubMed, consistent with the identification of relatively few topical areas relevant to studies at the organismal, population, community, and ecosystem levels.

Investigation of the relative prevalence of topics over time reveals topical succession

We next asked whether relationships between topics reflect chronological progression of certain subfields. To address this, we assessed how prevalent topics were over time using dynamic topic modeling [ 19 ]. As shown in Fig 2D , there is substantial fluctuation in where the records are in the 2D space over time. For example, topic 44 (light, leaves, co, synthesis, photosynthesis) is among the topics that existed in 1975 but has diminished gradually since. In 1985, topic 39 (Agrobacterium-based transformation) became dense enough to be visualized. Additional examples include topics 79 (soil heavy metals), 42 (differential expression), and 82 (bacterial community metagenomics), which became prominent in approximately 2005, 2010, and 2020, respectively ( Fig 2D ). In addition, animating the document occupancy in the 2D space over time revealed a broad change in patterns over time: Some initially dense areas became sparse over time and a large number of topics in areas previously only loosely occupied at the turn of the century increased over time ( S5 Data ).

While the 2D representations reveal substantial details on the evolution of topics, comparison over time is challenging because the number of plant science records has grown exponentially ( Fig 1A ). To address this, the records were divided into 50 chronological bins each with approximately 8,400 records to make cross-bin comparisons feasible ( S6 Data ). We should emphasize that, because of the way the chronological bins were split, the number of records for each topic in each bin should be treated as a normalized value relative to all other topics during the same period. Examining this relative prevalence of topics across bins revealed a clear pattern of topic succession over time (one topic evolved into another) and the presence of 5 topical categories ( Fig 3 ). The topics were categorized based on their locally weighted scatterplot smoothing (LOWESS) fits and ordered according to timing of peak frequency ( S7 and S8 Data , see Materials and methods ). In Fig 3 , the relative decrease in document frequency does not mean that research output in a topic is dwindling. Because each row in the heatmap is normalized based on the minimum and maximum values within each topic, there still can be substantial research output in terms of numbers of publications even when the relative frequency is near zero. Thus, a reduced relative frequency of a topic reflects only a below-average growth rate compared with other topical areas.

thumbnail

(A-E) A heat map of relative topic frequency over time reveals 5 topical categories: (A) stable, (B) early, (C) transitional, (D) sigmoidal, and (E) rising. The x axis denotes different time bins with each bin containing a similar number of documents to account for the exponential growth of plant science records over time. The sizes of all bins except the first are drawn to scale based on the beginning and end dates. The y axis lists different topics denoted by the label and top 4 to 5 terms. In each cell, the prevalence of a topic in a time bin is colored according to the min-max normalized cTf-Idf values for that topic. Light blue dotted lines delineate different decades. The arrows left of a subset of topic labels indicate example relationships between topics in topic clusters. Blue boxes with labels a–f indicate topic clusters, which are the same as those in Fig 2 . Connecting lines indicate successional trends. Yellow circles/lines 1 – 3: 3 major transition patterns. The original data are in S5 Data .

https://doi.org/10.1371/journal.pbio.3002612.g003

The first topical category is a stable category with 7 topics mostly established before the 1980s that have since remained stable in terms of prevalence in the plant science records (top of Fig 3A ). These topics represent long-standing plant science research foci, including studies of plant physiology (topics 4, 58, and 81), genetics (topic 61), and medicinal plants (topic 53). The second category contains 8 topics established before the 1980s that have mostly decreased in prevalence since (the early category, Fig 3B ). Two examples are physiological and morphological studies of hormone action (topic 45, the second in the early category) and the characterization of protein, DNA, and RNA (topic 18, the second to last). Unlike other early topics, topic 78 (paleobotany and plant evolution studies, the last topic in Fig 3B ) experienced a resurgence in the early 2000s due to the development of new approaches and databases and changes in research foci [ 20 ].

The 33 topics in the third, transitional category became prominent in the 1980s, 1990s, or even 2000s but have clearly decreased in prevalence ( Fig 3C ). In some cases, the early and the transitional topics became less prevalent because of topical succession—refocusing of earlier topics led to newer ones that either show no clear sign of decrease (the sigmoidal category, Fig 3D ) or continue to increase in prevalence (the rising category, Fig 3E ). Consistent with the notion of topical succession, topics within each topic cluster ( Fig 2 ) were found across topic categories and/or were prominent at different time periods (indicated by colored lines linking topics, Fig 3 ). One example is topics in topic cluster b (connected with light green lines and arrows, compare Figs 2 and 3 ); the study of cation transport (topic 47, the third in the transitional category), prominent in the 1980s and early 1990s, is connected to 5 other topics, namely, another transitional topic 29 (cation channels and their expression) peaking in the 2000s and early 2010s, sigmoidal topics 24 and 28 (stress response, tolerance mechanisms) and 30 (heavy metal transport), which rose to prominence in mid-2000s, and the rising topic 42 (stress transcriptomic studies), which increased in prevalence in the mid-2010s.

The rise and fall of topics can be due to a combination of technological or conceptual breakthroughs, maturity of the field, funding constraints, or publicity. The study of transposable elements (topic 62) illustrates the effect of publicity; the rise in this field coincided with Barbara McClintock’s 1983 Nobel Prize but not with the publication of her studies in the 1950s [ 21 ]. The reduced prevalence in early 2000 likely occurred in part because analysis of transposons became a central component of genome sequencing and annotation studies, rather than dedicated studies. In addition, this example indicates that our approaches, while capable of capturing topical trends, cannot be used to directly infer major papers leading to the growth of a topic.

Three major topical transition patterns signify shifts in research trends

Beyond the succession of specific topics, 3 major transitions in the dynamic topic graph should be emphasized: (1) the relative decreasing trend of early topics in the late 1970s and early 1980s; (2) the rise of transitional topics in late 1980s; and (3) the relative decreasing trend of transitional topics in the late 1990s and early 2000s, which coincided with a radiation of sigmoidal and rising topics (yellow circles, Fig 3 ). The large numbers of topics involved in these transitions suggest major shifts in plant science research. In transition 1, early topics decreased in relative prevalence in the late 1970s to early 1980s, which coincided with the rise of transitional topics over the following decades (circle 1, Fig 3 ). For example, there was a shift from the study of purified proteins such as enzymes (early topic 48, S5A Fig ) to molecular genetic dissection of genes, proteins, and RNA (transitional topic 35, S5B Fig ) enabled by the wider adoption of recombinant DNA and molecular cloning technologies in late 1970s [ 22 ]. Transition 2 (circle 2, Fig 3 ) can be explained by the following breakthroughs in the late 1980s: better approaches to create transgenic plants and insertional mutants [ 23 ], more efficient creation of mutant plant libraries through chemical mutagenesis (e.g., [ 24 ]), and availability of gene reporter systems such as β-glucuronidase [ 25 ]. Because of these breakthroughs, molecular genetics studies shifted away from understanding the basic machinery to understanding the molecular underpinnings of specific processes, such as molecular mechanisms of flower and meristem development and the action of hormones such as auxin (topic 27, S5C Fig ); this type of research was discussed as a future trend in 1988 [ 26 ] and remains prevalent to this date. Another example is gene silencing (topic 12), which became a focal area of study along with the widespread use of transgenic plants [ 27 ].

Transition 3 is the most drastic: A large number of transitional, sigmoidal, and rising topics became prevalent nearly simultaneously at the turn of the century (circle 3, Fig 3 ). This period also coincides with a rapid increase in plant science citations ( Fig 1A ). The most notable breakthroughs included the availability of the first plant genome in 2000 [ 28 ], increasing ease and reduced cost of high-throughput sequencing [ 29 ], development of new mass spectrometry–based platforms for analyzing proteins [ 30 ], and advancements in microscopic and optical imaging approaches [ 31 ]. Advances in genomics and omics technology also led to an increase in stress transcriptomics studies (42, S5D Fig ) as well as studies in many other topics such as epigenetics (topic 11), noncoding RNA analysis (13), genomics and phylogenetics (80), breeding (41), genome sequencing and assembly (60), gene family analysis (23), and metagenomics (82 and 55).

In addition to the 3 major transitions across all topics, there were also transitions within topics revealed by examining the top terms for different time bins (heatmaps, S5 Fig ). Taken together, these observations demonstrate that knowledge about topical evolution can be readily revealed through topic modeling. Such knowledge is typically only available to experts in specific areas and is difficult to summarize manually, as no researcher has a command of the entire plant science literature.

Analysis of taxa studied reveals changes in research trends

Changes in research trends can also be illustrated by examining changes in the taxa being studied over time ( S9 Data ). There is a strong bias in the taxa studied, with the record dominated by research models and economically important taxa ( S6 Fig ). Flowering plants (Magnoliopsida) are found in 93% of records ( S6A Fig ), and the mustard family Brassicaceae dominates at the family level ( S6B Fig ) because the genus Arabidopsis contributes to 13% of plant science records ( Fig 4A ). When examining the prevalence of taxa being studied over time, clear patterns of turnover emerged similar to topical succession ( Figs 4B , S6C, and S6D ; Materials and methods ). Given that Arabidopsis is mentioned in more publications than other species we analyzed, we further examined the trends for Arabidopsis publications. The increase in the normalized number (i.e., relative to the entire plant science corpus) of Arabidopsis records coincided with advocacy of its use as a model system in the late 1980s [ 32 ]. While it remains a major plant model, there has been a decrease in overall Arabidopsis publications relative to all other plant science publications since 2011 (blue line, normalized total, Fig 4C ). Because the same chronological bins, each with same numbers of records, from the topic-over-time analysis ( Fig 3 ) were used, the decrease here does not mean that there were fewer Arabidopsis publications—in fact, the number of Arabidopsis papers has remained steady since 2011. This decrease means that Arabidopsis-related publications represent a relatively smaller proportion of plant science records. Interestingly, this decrease took place much earlier (approximately 2005) and was steeper in the United States (red line, Fig 4C ) than in all countries combined (blue line, Fig 4C ).

thumbnail

(A) Percentage of records mentioning specific genera. (B) Change in the prevalence of genera in plant science records over time. (C) Changes in the normalized numbers of all records (blue) and records from the US (red) mentioning Arabidopsis over time. The lines are LOWESS fits with fraction parameter = 0.2. (D) Topical over (red) and under (blue) representation among 5 genera with the most plant science records. LLR: log 2 likelihood ratios of each topic in each genus. Gray: topic-species combination not significantly enriched at the 5% level based on enrichment p -values adjusted for multiple testing with the Benjamini–Hochberg method [ 33 ]. The data used for plotting are in S9 Data . The statistics for all topics are in S10 Data .

https://doi.org/10.1371/journal.pbio.3002612.g004

Assuming that the normalized number of publications reflects the relative intensity of research activities, one hypothesis for the relative decrease in focus on Arabidopsis is that advances in, for example, plant transformation, genetic manipulation, and genome research have allowed the adoption of more previously nonmodel taxa. Consistent with this, there was a precipitous increase in the number of genera being published in the mid-90s to early 2000s during which approaches for plant transgenics became established [ 34 ], but the number has remained steady since then ( S7A Fig ). The decrease in the proportion of Arabidopsis papers is also negatively correlated with the timing of an increase in the number of draft genomes ( S7B Fig and S9 Data ). It is plausible that genome availability for other species may have contributed to a shift away from Arabidopsis. Strikingly, when we analyzed US National Science Foundation records, we found that the numbers of funded grants mentioning Arabidopsis ( S7C Fig ) have risen and fallen in near perfect synchrony with the normalized number of Arabidopsis publication records (red line, Fig 4C ). This finding likely illustrates the impact of funding on Arabidopsis research.

By considering both taxa information and research topics, we can identify clear differences in the topical areas preferred by researchers using different plant taxa ( Fig 4D and S10 Data ). For example, studies of auxin/light signaling, the circadian clock, and flowering tend to be carried out in Arabidopsis, while quantitative genetic studies of disease resistance tend to be done in wheat and rice, glyphosate research in soybean, and RNA virus research in tobacco. Taken together, joint analyses of topics and species revealed additional details about changes in preferred models over time, and the preferred topical areas for different taxa.

Countries differ in their contributions to plant science and topical preference

We next investigated whether there were geographical differences in topical preference among countries by inferring country information from 330,187 records (see Materials and methods ). The 10 countries with the most records account for 73% of the total, with China and the US contributing to approximately 18% each ( Fig 5A ). The exponential growth in plant science records (green line, Fig 1A ) was in large part due to the rapid rise in annual record numbers in China and India ( Fig 5B ). When we examined the publication growth rates using the top 17 plant science journals, the general patterns remained the same ( S7D Fig ). On the other hand, the US, Japan, Germany, France, and Great Britain had slower rates of growth compared with all non-top 10 countries. The rapid increase in records from China and India was accompanied by a rapid increase in metrics measuring journal impact ( Figs 5C and S8 and S9 Data ). For example, using citation score ( Fig 5C , see Materials and methods ), we found that during a 22-year period China (dark green) and India (light green) rapidly approached the global average (y = 0, yellow), whereas some of the other top 10 countries, particularly the US (red) and Japan (yellow green), showed signs of decrease ( Fig 5C ). It remains to be determined whether these geographical trends reflect changes in priority, investment, and/or interest in plant science research.

thumbnail

(A) Numbers of plant science records for countries with the 10 highest numbers. (B) Percentage of all records from each of the top 10 countries from 1980 to 2020. (C) Difference in citation scores from 1999 to 2020 for the top 10 countries. (D) Shown for each country is the relationship between the citation scores averaged from 1999 to 2020 and the slope of linear fit with year as the predictive variable and citation score as the response variable. The countries with >400 records and with <10% missing impact values are included. Data used for plots (A–D) are in S11 Data . (E) Correlation in topic enrichment scores between the top 10 countries. PCC, Pearson’s correlation coefficient, positive in red, negative in blue. Yellow rectangle: countries with more similar topical preferences. (F) Enrichment scores (LLR, log likelihood ratio) of selected topics among the top 10 countries. Red: overrepresentation, blue: underrepresentation. Gray: topic-country combination that is not significantly enriched at the 5% level based on enrichment p -values adjusted for multiple testing with the Benjamini–Hochberg method (for all topics and plotting data, see S12 Data ).

https://doi.org/10.1371/journal.pbio.3002612.g005

Interestingly, the relative growth/decline in citation scores over time (measured as the slope of linear fit of year versus citation score) was significantly and negatively correlated with average citation score ( Fig 5D ); i.e., countries with lower overall metrics tended to experience the strongest increase in citation scores over time. Thus, countries that did not originally have a strong influence on plant sciences now have increased impact. These patterns were also observed when using H-index or journal rank as metrics ( S8 Fig and S11 Data ) and were not due to increased publication volume, as the metrics were normalized against numbers of records from each country (see Materials and methods ). In addition, the fact that different metrics with different caveats and assumptions yielded consistent conclusions indicates the robustness of our observations. We hypothesize that this may be a consequence of the ease in scientific communication among geographically isolated research groups. It could also be because of the prevalence of online journals that are open access, which makes scientific information more readily accessible. Or it can be due to the increasing international collaboration. In any case, the causes for such regression toward the mean are not immediately clear and should be addressed in future studies.

We also assessed how the plant research foci of countries differ by comparing topical preference (i.e., the degree of enrichment of plant science records in different topics) between countries. For example, Italy and Spain cluster together (yellow rectangle, Fig 5E ) partly because of similar research focusing on allergens (topic 0) and mycotoxins (topic 54) and less emphasis on gene family (topic 23) and stress tolerance (topic 28) studies ( Fig 5F , for the fold enrichment and corrected p -values of all topics, see S12 Data ). There are substantial differences in topical focus between countries ( S9 Fig ). For example, research on new plant compounds associated with herbal medicine (topic 69) is a focus in China but not in the US, but the opposite is true for population genetics and evolution (topic 86) ( Fig 5F ). In addition to revealing how plant science research has evolved over time, topic modeling provides additional insights into differences in research foci among different countries, which are informative for science policy considerations.

In this study, topic modeling revealed clear transitions among research topics, which represent shifts in research trends in plant sciences. One limitation of our study is the bias in the PubMed-based corpus. The cellular, molecular, and physiological aspects of plant sciences are well represented, but there are many fewer records related to evolution, ecology, and systematics. Our use of titles/abstracts from the top 17 plant science journals as positive examples allowed us to identify papers we typically see in these journals, but this may have led to us missing “outlier” articles, which may be the most exciting. Another limitation is the need to assign only one topic to a record when a study is interdisciplinary and straddles multiple topics. Furthermore, a limited number of large, inherently heterogeneous topics were summarized to provide a more concise interpretation, which undoubtedly underrepresents the diversity of plant science research. Despite these limitations, dynamic topic modeling revealed changes in plant science research trends that coincide with major shifts in biological science. While we were interested in identifying conceptual advances, our approach can identify the trend but the underlying causes for such trends, particularly key records leading to the growth in certain topics, still need to be identified. It also remains to be determined which changes in research trends lead to paradigm shifts as defined by Kuhn [ 35 ].

The key terms defining the topics frequently describe various technologies (e.g., topic 38/39: transformation, 40: genome editing, 59: genetic markers, 65: mass spectrometry, 69: nuclear magnetic resonance) or are indicative of studies enabled through molecular genetics and omics technologies (e.g., topic 8/60: genome, 11: epigenetic modifications, 18: molecular biological studies of macromolecules, 13: small RNAs, 61: quantitative genetics, 82/84: metagenomics). Thus, this analysis highlights how technological innovation, particularly in the realm of omics, has contributed to a substantial number of research topics in the plant sciences, a finding that likely holds for other scientific disciplines. We also found that the pattern of topic evolution is similar to that of succession, where older topics have mostly decreased in relative prevalence but appear to have been superseded by newer ones. One example is the rise of transcriptome-related topics and the correlated, reduced focus on regulation at levels other than transcription. This raises the question of whether research driven by technology negatively impacts other areas of research where high-throughput studies remain challenging.

One observation on the overall trends in plant science research is the approximately 10-year cycle in major shifts. One hypothesis is related to not only scientific advances but also to the fashion-driven aspect of science. Nonetheless, given that there were only 3 major shifts and the sample size is small, it is difficult to speculate as to why they happened. By analyzing the country of origin, we found that China and India have been the 2 major contributors to the growth in the plant science records in the last 20 years. Our findings also show an equalizing trend in global plant science where countries without a strong plant science publication presence have had an increased impact over the last 20 years. In addition, we identified significant differences in research topics between countries reflecting potential differences in investment and priorities. Such information is important for discerning differences in research trends across countries and can be considered when making policy decisions about research directions.

Materials and methods

Collection and preprocessing of a candidate plant science corpus.

For reproducibility purposes, a random state value of 20220609 was used throughout the study. The PubMed baseline files containing citation information ( ftp://ftp.ncbi.nlm.nih.gov/pubmed/baseline/ ) were downloaded on November 11, 2021. To narrow down the records to plant science-related citations, a candidate citation was identified as having, within the titles and/or abstracts, at least one of the following words: “plant,” “plants,” “botany,” “botanical,” “planta,” and “plantarum” (and their corresponding upper case and plural forms), or plant taxon identifiers from NCBI Taxonomy ( https://www.ncbi.nlm.nih.gov/taxonomy ) or USDA PLANTS Database ( https://plants.sc.egov.usda.gov/home ). Note the search terms used here have nothing to do with the values of the keyword field in PubMed records. The taxon identifiers include all taxon names including and at taxonomic levels below “Viridiplantae” till the genus level (species names not used). This led to 51,395 search terms. After looking for the search terms, qualified entries were removed if they were duplicated, lacked titles and/or abstracts, or were corrections, errata, or withdrawn articles. This left 1,385,417 citations, which were considered the candidate plant science corpus (i.e., a collection of texts). For further analysis, the title and abstract for each citation were combined into a single entry. Text was preprocessed by lowercasing, removing stop-words (i.e., common words), removing non-alphanumeric and non-white space characters (except Greek letters, dashes, and commas), and applying lemmatization (i.e., grouping inflected forms of a word as a single word) for comparison. Because lemmatization led to truncated scientific terms, it was not included in the final preprocessing pipeline.

Definition of positive/negative examples

Upon closer examination, a large number of false positives were identified in the candidate plant science records. To further narrow down citations with a plant science focus, text classification was used to distinguish plant science and non-plant science articles (see next section). For the classification task, a negative set (i.e., non-plant science citations) was defined as entries from 7,360 journals that appeared <20 times in the filtered data (total = 43,329, journal candidate count, S1 Data ). For the positive examples (i.e., true plant science citations), 43,329 plant science citations (positive examples) were sampled from 17 established plant science journals each with >2,000 entries in the filtered dataset: “Plant physiology,” “Frontiers in plant science,” “Planta,” “The Plant journal: for cell and molecular biology,” “Journal of experimental botany,” “Plant molecular biology,” “The New phytologist,” “The Plant cell,” “Phytochemistry,” “Plant & cell physiology,” “American journal of botany,” “Annals of botany,” “BMC plant biology,” “Tree physiology,” “Molecular plant-microbe interactions: MPMI,” “Plant biology,” and “Plant biotechnology journal” (journal candidate count, S1 Data ). Plant biotechnology journal was included, but only 1,894 records remained after removal of duplicates, articles with missing info, and/or withdrawn articles. The positive and negative sets were randomly split into training and testing subsets (4:1) while maintaining a 1:1 positive-to-negative ratio.

Text classification based on Tf and Tf-Idf

Instead of using the preprocessed text as features for building classification models directly, text embeddings (i.e., representations of texts in vectors) were used as features. These embeddings were generated using 4 approaches (model summary, S1 Data ): Term-frequency (Tf), Tf-Idf [ 36 ], Word2Vec [ 37 ], and BERT [ 6 ]. The Tf- and Tf-Idf-based features were generated with CountVectorizer and TfidfVectorizer, respectively, from Scikit-Learn [ 38 ]. Different maximum features (1e4 to 1e5) and n-gram ranges (uni-, bi-, and tri-grams) were tested. The features were selected based on the p- value of chi-squared tests testing whether a feature had a higher-than-expected value among the positive or negative classes. Four different p- value thresholds were tested for feature selection. The selected features were then used to retrain vectorizers with the preprocessed training texts to generate feature values for classification. The classification model used was XGBoost [ 39 ] with 5 combinations of the following hyperparameters tested during 5-fold stratified cross-validation: min_child_weight = (1, 5, 10), gamma = (0.5, 1, 1.5, 2.5), subsample = (0.6, 0.8, 1.0), colsample_bytree = (0.6, 0.8, 1.0), and max_depth = (3, 4, 5). The rest of the hyperparameters were held constant: learning_rate = 0.2, n_estimators = 600, objective = binary:logistic. RandomizedSearchCV from Scikit-Learn was used for hyperparameter tuning and cross-validation with scoring = F1-score.

Because the Tf-Idf model had a relatively high model performance and was relatively easy to interpret (terms are frequency-based, instead of embedding-based like those generated by Word2Vec and BERT), the Tf-Idf model was selected as input to SHapley Additive exPlanations (SHAP; [ 14 ]) to assess the importance of terms. Because the Tf-Idf model was based on XGBoost, a tree-based algorithm, the TreeExplainer module in SHAP was used to determine a SHAP value for each entry in the training dataset for each Tf-Idf feature. The SHAP value indicates the degree to which a feature positively or negatively affects the underlying prediction. The importance of a Tf-Idf feature was calculated as the average SHAP value of that feature among all instances. Because a Tf-Idf feature is generated based on a specific term, the importance of the Tf-Idf feature indicates the importance of the associated term.

Text classification based on Word2Vec

The preprocessed texts were first split into train, validation, and test subsets (8:1:1). The texts in each subset were converted to 3 n-gram lists: a unigram list obtained by splitting tokens based on the space character, or bi- and tri-gram lists built with Gensim [ 40 ]. Each n-gram list of the training subset was next used to fit a Skip-gram Word2Vec model with vector_size = 300, window = 8, min_count = (5, 10, or 20), sg = 1, and epochs = 30. The Word2Vec model was used to generate word embeddings for train, validate, and test subsets. In the meantime, a tokenizer was trained with train subset unigrams using Tensorflow [ 41 ] and used to tokenize texts in each subset and turn each token into indices to use as features for training text classification models. To ensure all citations had the same number of features (500), longer texts were truncated, and shorter ones were zero-padded. A deep learning model was used to train a text classifier with an input layer the same size as the feature number, an attention layer incorporating embedding information for each feature, 2 bidirectional Long-Short-Term-Memory layers (15 units each), a dense layer (64 units), and a final, output layer with 2 units. During training, adam, accuracy, and sparse_categorical_crossentropy were used as the optimizer, evaluation metric, and loss function, respectively. The training process lasted 30 epochs with early stopping if validation loss did not improve in 5 epochs. An F1 score was calculated for each n-gram list and min_count parameter combination to select the best model (model summary, S1 Data ).

Text classification based on BERT models

Two pretrained models were used for BERT-based classification: DistilBERT (Hugging face repository [ 42 ] model name and version: distilbert-base-uncased [ 43 ]) and SciBERT (allenai/scibert-scivocab-uncased [ 16 ]). In both cases, tokenizers were retrained with the training data. BERT-based models had the following architecture: the token indices (512 values for each token) and associated masked values as input layers, pretrained BERT layer (512 × 768) excluding outputs, a 1D pooling layer (768 units), a dense layer (64 units), and an output layer (2 units). The rest of the training parameters were the same as those for Word2Vec-based models, except training lasted for 20 epochs. Cross-validation F1-scores for all models were compared and used to select the best model for each feature extraction method, hyperparameter combination, and modeling algorithm or architecture (model summary, S1 Data ). The best model was the Word2Vec-based model (min_count = 20, window = 8, ngram = 3), which was applied to the candidate plant science corpus to identify a set of plant science citations for further analysis. The candidate plant science records predicted as being in the positive class (421,658) by the model were collectively referred to as the “plant science corpus.”

Plant science record classification

In PubMed, 1,384,718 citations containing “plant” or any plant taxon names (from the phylum to genus level) were considered candidate plant science citations. To further distinguish plant science citations from those in other fields, text classification models were trained using titles and abstracts of positive examples consisting of citations from 17 plant science journals, each with >2,000 entries in PubMed, and negative examples consisting of records from journals with fewer than 20 entries in the candidate set. Among 4 models tested the best model (built with Word2Vec embeddings) had a cross validation F1 of 0.964 (random guess F1 = 0.5, perfect model F1 = 1, S1 Data ). When testing the model using 17,330 testing set citations independent from the training set, the F1 remained high at 0.961.

We also conducted another analysis attempting to use the MeSH term “Plants” as a benchmark. Records with the MeSH term “Plants” also include pharmaceutical studies of plants and plant metabolites or immunological studies of plants as allergens in journals that are not generally considered plant science journals (e.g., Acta astronautica , International journal for parasitology , Journal of chromatography ) or journals from local scientific societies (e.g., Acta pharmaceutica Hungarica , Huan jing ke xue , Izvestiia Akademii nauk . Seriia biologicheskaia ). Because we explicitly labeled papers from such journals as negative examples, we focused on 4,004 records with the “Plants” MeSH term published in the 17 plant science journals that were used as positive instances and found that 88.3% were predicted as the positive class. Thus, based on the MeSH term, there is an 11.7% false prediction rate.

We also enlisted 5 plant science colleagues (3 advanced graduate students in plant biology and genetic/genome science graduate programs, 1 postdoctoral breeder/quantitative biologist, and 1 postdoctoral biochemist/geneticist) to annotate 100 randomly selected abstracts as a reviewer suggested. Each record was annotated by 2 colleagues. Among 85 entries where the annotations are consistent between annotators, 48 were annotated as negative but with 7 predicted as positive (false positive rate = 14.6%) and 37 were annotated as positive but with 4 predicted as negative (false negative rate = 10.8%). To further benchmark the performance of the text classification model, we identified another 12 journals that focus on plant science studies to use as benchmarks: Current opinion in plant biology (number of articles: 1,806), Trends in plant science (1,723), Functional plant biology (1,717), Molecular plant pathology (1,573), Molecular plant (1,141), Journal of integrative plant biology (1,092), Journal of plant research (1,032), Physiology and molecular biology of plants (830), Nature plants (538), The plant pathology journal (443). Annual review of plant biology (417), and The plant genome (321). Among the 12,611 candidate plant science records, 11,386 were predicted as positive. Thus, there is a 9.9% false negative rate.

Global topic modeling

BERTopic [ 15 ] was used for preliminary topic modeling with n-grams = (1,2) and with an embedding initially generated by DistilBERT, SciBERT, or BioBERT (dmis-lab/biobert-base-cased-v1.2; [ 44 ]). The embedding models converted preprocessed texts to embeddings. The topics generated based on the 3 embeddings were similar ( S2 Data ). However, SciBERT-, BioBERT-, and distilBERT-based embedding models had different numbers of outlier records (268,848, 293,790, and 323,876, respectively) with topic index = −1. In addition to generating the fewest outliers, the SciBERT-based model led to the highest number of topics. Therefore, SciBERT was chosen as the embedding model for the final round of topic modeling. Modeling consisted of 3 steps. First, document embeddings were generated with SentenceTransformer [ 45 ]. Second, a clustering model to aggregate documents into clusters using hdbscan [ 46 ] was initialized with min_cluster_size = 500, metric = euclidean, cluster_selection_method = eom, min_samples = 5. Third, the embedding and the initialized hdbscan model were used in BERTopic to model topics with neighbors = 10, nr_topics = 500, ngram_range = (1,2). Using these parameters, 90 topics were identified. The initial topic assignments were conservative, and 241,567 records were considered outliers (i.e., documents not assigned to any of the 90 topics). After assessing the prediction scores of all records generated from the fitted topic models, the 95-percentile score was 0.0155. This score was used as the threshold for assigning outliers to topics: If the maximum prediction score was above the threshold and this maximum score was for topic t , then the outlier was assigned to t . After the reassignment, 49,228 records remained outliers. To assess if some of the outliers were not assigned because they could be assigned to multiple topics, the prediction scores of the records were used to put records into 100 clusters using k- means. Each cluster was then assessed to determine if the outlier records in a cluster tended to have higher prediction scores across multiple topics ( S2 Fig ).

Topics that are most and least well connected to other topics

The most well-connected topics in the network include topic 24 (stress mechanisms, median cosine similarity = 0.36), topic 42 (genes, stress, and transcriptomes, 0.34), and topic 35 (molecular genetics, 0.32, all t test p -values < 1 × 10 −22 ). The least connected topics include topic 0 (allergen research, median cosine similarity = 0.12), topic 21 (clock biology, 0.12), topic 1 (tissue culture, 0.15), and topic 69 (identification of compounds with spectroscopic methods, 0.15; all t test p- values < 1 × 10 −24 ). Topics 0, 1, and 69 are specialized topics; it is surprising that topic 21 is not as well connected as explained in the main text.

Analysis of documents based on the topic model

hypothesis example python

Topical diversity among top journals with the most plant science records

Using a relative topic diversity measure (ranging from 0 to 10), we found that there was a wide range of topical diversity among 20 journals with the largest numbers of plant science records ( S3 Fig ). The 4 journals with the highest relative topical diversities are Proceedings of the National Academy of Sciences , USA (9.6), Scientific Reports (7.1), Plant Physiology (6.7), and PLOS ONE (6.4). The high diversities are consistent with the broad, editorial scopes of these journals. The 4 journals with the lowest diversities are American Journal of Botany (1.6), Oecologia (0.7), Plant Disease (0.7), and Theoretical and Applied Genetics (0.3), which reflects their discipline-specific focus and audience of classical botanists, ecologists, plant pathologists, and specific groups of geneticists.

Dynamic topic modeling

The codes for dynamic modeling were based on _topic_over_time.py in BERTopics and modified to allow additional outputs for debugging and graphing purposes. The plant science citations were binned into 50 subsets chronologically (for timestamps of bins, see S5 Data ). Because the numbers of documents increased exponentially over time, instead of dividing them based on equal-sized time intervals, which would result in fewer records at earlier time points and introduce bias, we divided them into time bins of similar size (approximately 8,400 documents). Thus, the earlier time subsets had larger time spans compared with later time subsets. If equal-size time intervals were used, the numbers of documents between the intervals would differ greatly; the earlier time points would have many fewer records, which may introduce bias. Prior to binning the subsets, the publication dates were converted to UNIX time (timestamp) in seconds; the plant science records start in 1917-11-1 (timestamp = −1646247600.0) and end in 2021-1-1 (timestamp = 1609477201). The starting dates and corresponding timestamps for the 50 subsets including the end date are in S6 Data . The input data included the preprocessed texts, topic assignments of records from global topic modeling, and the binned timestamps of records. Three additional parameters were set for topics_over_time, namely, nr_bin = 50 (number of bins), evolution_tuning = True, and global_tuning = False. The evolution_tuning parameter specified that averaged c-Tf-Idf values for a topic be calculated in neighboring time bins to reduce fluctuation in c-Tf-Idf values. The global_tuning parameter was set to False because of the possibility that some nonexisting terms could have a high c-Tf-Idf for a time bin simply because there was a high global c-Tf-Idf value for that term.

The binning strategy based on similar document numbers per bin allowed us to increase signal particularly for publications prior to the 90s. This strategy, however, may introduce more noise for bins with smaller time durations (i.e., more recent bins) because of publication frequencies (there can be seasonal differences in the number of papers published, biased toward, e.g., the beginning of the year or the beginning of a quarter). To address this, we examined the relative frequencies of each topic over time ( S7 Data ), but we found that recent time bins had similar variances in relative frequencies as other time bins. We also moderated the impact of variation using LOWESS (10% to 30% of the data points were used for fitting the trend lines) to determine topical trends for Fig 3 . Thus, the influence of the noise introduced via our binning strategy is expected to be minimal.

Topic categories and ordering

The topics were classified into 5 categories with contrasting trends: stable, early, transitional, sigmoidal, and rising. To define which category a topic belongs to, the frequency of documents over time bins for each topic was analyzed using 3 regression methods. We first tried 2 forecasting methods: recursive autoregressor (the ForecasterAutoreg class in the skforecast package) and autoregressive integrated moving average (ARIMA implemented in the pmdarima package). In both cases, the forecasting results did not clearly follow the expected trend lines, likely due to the low numbers of data points (relative frequency values), which resulted in the need to extensively impute missing data. Thus, as a third approach, we sought to fit the trendlines with the data points using LOWESS (implemented in the statsmodels package) and applied additional criteria for assigning topics to categories. When fitting with LOWESS, 3 fraction parameters (frac, the fraction of the data used when estimating each y-value) were evaluated (0.1, 0.2, 0.3). While frac = 0.3 had the smallest errors for most topics, in situations where there were outliers, frac = 0.2 or 0.1 was chosen to minimize mean squared errors ( S7 Data ).

The topics were classified into 5 categories based on the slopes of the fitted line over time: (1) stable: topics with near 0 slopes over time; (2) early: topics with negative (<−0.5) slopes throughout (with the exception of topic 78, which declined early on but bounced back by the late 1990s); (3) transitional: early positive (>0.5) slopes followed by negative slopes at later time points; (4) sigmoidal: early positive slopes followed by zero slopes at later time points; and (5) rising: continuously positive slopes. For each topic, the LOWESS fits were also used to determine when the relative document frequency reached its peak, first reaching a threshold of 0.6 (chosen after trial and error for a range of 0.3 to 0.9), and the overall trend. The topics were then ordered based on (1) whether they belonged to the stable category or not; (2) whether the trends were decreasing, stable, or increasing; (3) the time the relative document frequency first reached 0.6; and (4) the time that the overall peak was reached ( S8 Data ).

Taxa information

To identify a taxon or taxa in all plant science records, NCBI Taxonomy taxdump datasets were downloaded from the NCBI FTP site ( https://ftp.ncbi.nlm.nih.gov/pub/taxonomy/new_taxdump/ ) on September 20, 2022. The highest-level taxon was Viridiplantae, and all its child taxa were parsed and used as queries in searches against the plant science corpus. In addition, a species-over-time analysis was conducted using the same time bins as used for dynamic topic models. The number of records in different time bins for top taxa are in the genus, family, order, and additional species level sheet in S9 Data . The degree of over-/underrepresentation of a taxon X in a research topic T was assessed using the p -value of a Fisher’s exact test for a 2 × 2 table consisting of the numbers of records in both X and T, in X but not T, in T but not X, and in neither ( S10 Data ).

For analysis of plant taxa with genome information, genome data of taxa in Viridiplantae were obtained from the NCBI Genome data-hub ( https://www.ncbi.nlm.nih.gov/data-hub/genome ) on October 28, 2022. There were 2,384 plant genome assemblies belonging to 1,231 species in 559 genera (genome assembly sheet, S9 Data ). The date of the assembly was used as a proxy for the time when a genome was sequenced. However, some species have updated assemblies and have more recent data than when the genome first became available.

Taxa being studied in the plant science records

Flowering plants (Magnoliopsida) are found in 93% of records, while most other lineages are discussed in <1% of records, with conifers and related species being exceptions (Acrogynomsopermae, 3.5%, S6A Fig ). At the family level, the mustard (Brassicaceae), grass (Poaceae), pea (Fabaceae), and nightshade (Solanaceae) families are in 51% of records ( S6B Fig ). The prominence of the mustard family in plant science research is due to the Brassica and Arabidopsis genera ( Fig 4A ). When examining the prevalence of taxa being studied over time, clear patterns of turnovers emerged ( Figs 4B , S6C, and S6D ). While the study of monocot species (Liliopsida) has remained steady, there was a significant uptick in the prevalence of eudicot (eudicotyledon) records in the late 90s ( S6C Fig ), which can be attributed to the increased number of studies in the mustard, myrtle (Myrtaceae), and mint (Lamiaceae) families among others ( S6D Fig ). At the genus level, records mentioning Gossypium (cotton), Phaseolus (bean), Hordeum (wheat), and Zea (corn), similar to the topics in the early category, were prevalent till the 1980s or 1990s but have mostly decreased in number since ( Fig 4B ). In contrast, Capsicum , Arabidopsis , Oryza , Vitus , and Solanum research has become more prevalent over the last 20 years.

Geographical information for the plant science corpus

The geographical information (country) of authors in the plant science corpus was obtained from the address (AD) fields of first authors in Medline XML records accessible through the NCBI EUtility API ( https://www.ncbi.nlm.nih.gov/books/NBK25501/ ). Because only first author affiliations are available for records published before December 2014, only the first author’s location was considered to ensure consistency between records before and after that date. Among the 421,658 records in the plant science corpus, 421,585 had Medline records and 421,276 had unique PMIDs. Among the records with unique PMIDs, 401,807 contained address fields. For each of the remaining records, the AD field content was split into tokens with a “,” delimiter, and the token likely containing geographical info (referred to as location tokens) was selected as either the last token or the second to last token if the last token contained “@” indicating the presence of an email address. Because of the inconsistency in how geographical information was described in the location tokens (e.g., country, state, city, zip code, name of institution, and different combinations of the above), the following 4 approaches were used to convert location tokens into countries.

The first approach was a brute force search where full names and alpha-3 codes of current countries (ISO 3166–1), current country subregions (ISO 3166–2), and historical country (i.e., country that no longer exists, ISO 3166–3) were used to search the address fields. To reduce false positives using alpha-3 codes, a space prior to each code was required for the match. The first approach allowed the identification of 361,242, 16,573, and 279,839 records with current country, historical country, and subregion information, respectively. The second method was the use of a heuristic based on common address field structures to identify “location strings” toward the end of address fields that likely represent countries, then the use of the Python pycountry module to confirm the presence of country information. This approach led to 329,025 records with country information. The third approach was to parse first author email addresses (90,799 records), recover top-level domain information, and use country code Top Level Domain (ccTLD) data from the ISO 3166 Wikipedia page to define countries (72,640 records). Only a subset of email addresses contains country information because some are from companies (.com), nonprofit organizations (.org), and others. Because a large number of records with address fields still did not have country information after taking the above 3 approaches, another approach was implemented to query address fields against a locally installed Nominatim server (v.4.2.3, https://github.com/mediagis/nominatim-docker ) using OpenStreetMap data from GEOFABRIK ( https://www.geofabrik.de/ ) to find locations. Initial testing indicated that the use of full address strings led to false positives, and the computing resource requirement for running the server was high. Thus, only location strings from the second approach that did not lead to country information were used as queries. Because multiple potential matches were returned for each query, the results were sorted based on their location importance values. The above steps led to an additional 72,401 records with country information.

Examining the overlap in country information between approaches revealed that brute force current country and pycountry searches were consistent 97.1% of the time. In addition, both approaches had high consistency with the email-based approach (92.4% and 93.9%). However, brute force subregion and Nominatim-based predictions had the lowest consistencies with the above 3 approaches (39.8% to 47.9%) and each other. Thus, a record’s country information was finalized if the information was consistent between any 2 approaches, except between the brute force subregion and Nominatim searches. This led to 330,328 records with country information.

Topical and country impact metrics

hypothesis example python

To determine annual country impact, impact scores were determined in the same way as that for annual topical impact, except that values for different countries were calculated instead of topics ( S8 Data ).

Topical preferences by country

To determine topical preference for a country C , a 2 × 2 table was established with the number of records in topic T from C , the number of records in T but not from C , the number of non- T records from C , and the number of non- T records not from C . A Fisher’s exact test was performed for each T and C combination, and the resulting p -values were corrected for multiple testing with the Bejamini–Hochberg method (see S12 Data ). The preference of T in C was defined as the degree of enrichment calculated as log likelihood ratio of values in the 2 × 2 table. Topic 5 was excluded because >50% of the countries did not have records for this topic.

The top 10 countries could be classified into a China–India cluster, an Italy–Spain cluster, and remaining countries (yellow rectangles, Fig 5E ). The clustering of Italy and Spain is partly due to similar research focusing on allergens (topic 0) and mycotoxins (topic 54) and less emphasis on gene family (topic 23) and stress tolerance (topic 28) studies ( Figs 5F and S9 ). There are also substantial differences in topical focus between countries. For example, plant science records from China tend to be enriched in hyperspectral imaging and modeling (topic 9), gene family studies (topic 23), stress biology (topic 28), and research on new plant compounds associated with herbal medicine (topic 69), but less emphasis on population genetics and evolution (topic 86, Fig 5F ). In the US, there is a strong focus on insect pest resistance (topic 75), climate, community, and diversity (topic 83), and population genetics and evolution but less focus on new plant compounds. In summary, in addition to revealing how plant science research has evolved over time, topic modeling provides additional insights into differences in research foci among different countries.

Supporting information

S1 fig. plant science record classification model performance..

(A–C) Distributions of prediction probabilities (y_prob) of (A) positive instances (plant science records), (B) negative instances (non-plant science records), and (C) positive instances with the Medical Subject Heading “Plants” (ID = D010944). The data are color coded in blue and orange if they are correctly and incorrectly predicted, respectively. The lower subfigures contain log10-transformed x axes for the same distributions as the top subfigure for better visualization of incorrect predictions. (D) Prediction probability distribution for candidate plant science records. Prediction probabilities plotted here are available in S13 Data .

https://doi.org/10.1371/journal.pbio.3002612.s001

S2 Fig. Relationships between outlier clusters and the 90 topics.

(A) Heatmap demonstrating that some outlier clusters tend to have high prediction scores for multiple topics. Each cell shows the average prediction score of a topic for records in an outlier cluster. (B) Size of outlier clusters.

https://doi.org/10.1371/journal.pbio.3002612.s002

S3 Fig. Cosine similarities between topics.

(A) Heatmap showing cosine similarities between topic pairs. Top-left: hierarchical clustering of the cosine similarity matrix using the Ward algorithm. The branches are colored to indicate groups of related topics. (B) Topic labels and names. The topic ordering was based on hierarchical clustering of topics. Colored rectangles: neighboring topics with >0.5 cosine similarities.

https://doi.org/10.1371/journal.pbio.3002612.s003

S4 Fig. Relative topical diversity for 20 journals.

The 20 journals with the most plant science records are shown. The journal names were taken from the journal list in PubMed ( https://www.nlm.nih.gov/bsd/serfile_addedinfo.html ).

https://doi.org/10.1371/journal.pbio.3002612.s004

S5 Fig. Topical frequency and top terms during different time periods.

(A-D) Different patterns of topical frequency distributions for example topics (A) 48, (B) 35, (C) 27, and (D) 42. For each topic, the top graph shows the frequency of topical records in each time bin, which are the same as those in Fig 3 (green line), and the end date for each bin is indicated. The heatmap below each line plot depicts whether a term is among the top terms in a time bin (yellow) or not (blue). Blue dotted lines delineate different decades (see S5 Data for the original frequencies, S6 Data for the LOWESS fitted frequencies and the top terms for different topics/time bins).

https://doi.org/10.1371/journal.pbio.3002612.s005

S6 Fig. Prevalence of records mentioning different taxonomic groups in Viridiplantae.

(A, B) Percentage of records mentioning specific taxa at the ( A) major lineage and (B) family levels. (C, D) The prevalence of taxon mentions over time at the (C) major lineage and (E) family levels. The data used for plotting are available in S9 Data .

https://doi.org/10.1371/journal.pbio.3002612.s006

S7 Fig. Changes over time.

(A) Number of genera being mentioned in plant science records during different time bins (the date indicates the end date of that bin, exclusive). (B) Numbers of genera (blue) and organisms (salmon) with draft genomes available from National Center of Biotechnology Information in different years. (C) Percentage of US National Science Foundation (NSF) grants mentioning the genus Arabidopsis over time with peak percentage and year indicated. The data for (A–C) are in S9 Data . (D) Number of plant science records in the top 17 plant science journals from the USA (red), Great Britain (GBR) (orange), India (IND) (light green), and China (CHN) (dark green) normalized against the total numbers of publications of each country over time in these 17 journals. The data used for plotting can be found in S11 Data .

https://doi.org/10.1371/journal.pbio.3002612.s007

S8 Fig. Change in country impact on plant science over time.

(A, B) Difference in 2 impact metrics from 1999 to 2020 for the 10 countries with the highest number of plant science records. (A) H-index. (B) SCImago Journal Rank (SJR). (C, D) Plots show the relationships between the impact metrics (H-index in (C) , SJR in (D) ) averaged from 1999 to 2020 and the slopes of linear fits with years as the predictive variable and impact metric as the response variable for different countries (A3 country codes shown). The countries with >400 records and with <10% missing impact values are included. The data used for plotting can be found in S11 Data .

https://doi.org/10.1371/journal.pbio.3002612.s008

S9 Fig. Country topical preference.

Enrichment scores (LLR, log likelihood ratio) of topics for each of the top 10 countries. Red: overrepresentation, blue: underrepresentation. The data for plotting can be found in S12 Data .

https://doi.org/10.1371/journal.pbio.3002612.s009

S1 Data. Summary of source journals for plant science records, prediction models, and top Tf-Idf features.

Sheet–Candidate plant sci record j counts: Number of records from each journal in the candidate plant science corpus (before classification). Sheet—Plant sci record j count: Number of records from each journal in the plant science corpus (after classification). Sheet–Model summary: Model type, text used (txt_flag), and model parameters used. Sheet—Model performance: Performance of different model and parameter combinations on the validation data set. Sheet–Tf-Idf features: The average SHAP values of Tf-Idf (Term frequency-Inverse document frequency) features associated with different terms. Sheet–PubMed number per year: The data for PubMed records in Fig 1A . Sheet–Plant sci record num per yr: The data for the plant science records in Fig 1A .

https://doi.org/10.1371/journal.pbio.3002612.s010

S2 Data. Numbers of records in topics identified from preliminary topic models.

Sheet–Topics generated with a model based on BioBERT embeddings. Sheet–Topics generated with a model based on distilBERT embeddings. Sheet–Topics generated with a model based on SciBERT embeddings.

https://doi.org/10.1371/journal.pbio.3002612.s011

S3 Data. Final topic model labels and top terms for topics.

Sheet–Topic label: The topic index and top 10 terms with the highest cTf-Idf values. Sheets– 0 to 89: The top 50 terms and their c-Tf-Idf values for topics 0 to 89.

https://doi.org/10.1371/journal.pbio.3002612.s012

S4 Data. UMAP representations of different topics.

For a topic T , records in the UMAP graph are colored red and records not in T are colored gray.

https://doi.org/10.1371/journal.pbio.3002612.s013

S5 Data. Temporal relationships between published documents projected onto 2D space.

The 2D embedding generated with UMAP was used to plot document relationships for each year. The plots from 1975 to 2020 were compiled into an animation.

https://doi.org/10.1371/journal.pbio.3002612.s014

S6 Data. Timestamps and dates for dynamic topic modeling.

Sheet–bin_timestamp: Columns are: (1) order index; (2) bin_idx–relative positions of bin labels; (3) bin_timestamp–UNIX time in seconds; and (4) bin_date–month/day/year. Sheet–Topic frequency per timestamp: The number of documents in each time bin for each topic. Sheets–LOWESS fit 0.1/0.2/0.3: Topic frequency per timestamp fitted with the fraction parameter of 0.1, 0.2, or 0.3. Sheet—Topic top terms: The top 5 terms for each topic in each time bin.

https://doi.org/10.1371/journal.pbio.3002612.s015

S7 Data. Locally weighted scatterplot smoothing (LOWESS) of topical document frequencies over time.

There are 90 scatter plots, one for each topic, where the x axis is time, and the y axis is the document frequency (blue dots). The LOWESS fit is shown as orange points connected with a green line. The category a topic belongs to and its order in Fig 3 are labeled on the top left corner. The data used for plotting are in S6 Data .

https://doi.org/10.1371/journal.pbio.3002612.s016

S8 Data. The 4 criteria used for sorting topics.

Peak: the time when the LOWESS fit of the frequencies of a topic reaches maximum. 1st_reach_thr: the time when the LOWESS fit first reaches a threshold of 60% maximal frequency (peak value). Trend: upward (1), no change (0), or downward (−1). Stable: whether a topic belongs to the stable category (1) or not (0).

https://doi.org/10.1371/journal.pbio.3002612.s017

S9 Data. Change in taxon record numbers and genome assemblies available over time.

Sheet–Genus: Number of records mentioning a genus during different time periods (in Unix timestamp) for the top 100 genera. Sheet–Genus: Number of records mentioning a family during different time periods (in Unix timestamp) for the top 100 families. Sheet–Genus: Number of records mentioning an order during different time periods (in Unix timestamp) for the top 20 orders. Sheet–Species levels: Number of records mentioning 12 selected taxonomic levels higher than the order level during different time periods (in Unix timestamp). Sheet–Genome assembly: Plant genome assemblies available from NCBI as of October 28, 2022. Sheet–Arabidopsis NSF: Absolute and normalized numbers of US National Science Foundation funded proposals mentioning Arabidopsis in proposal titles and/or abstracts.

https://doi.org/10.1371/journal.pbio.3002612.s018

S10 Data. Taxon topical preference.

Sheet– 5 genera LLR: The log likelihood ratio of each topic in each of the top 5 genera with the highest numbers of plant science records. Sheets– 5 genera: For each genus, the columns are: (1) topic; (2) the Fisher’s exact test p -value (Pvalue); (3–6) numbers of records in topic T and in genus X (n_inT_inX), in T but not in X (n_inT_niX), not in T but in X (n_niT_inX), and not in T and X (n_niT_niX) that were used to construct 2 × 2 tables for the tests; and (7) the log likelihood ratio generated with the 2 × 2 tables. Sheet–corrected p -value: The 4 values for generating LLRs were used to conduct Fisher’s exact test. The p -values obtained for each country were corrected for multiple testing.

https://doi.org/10.1371/journal.pbio.3002612.s019

S11 Data. Impact metrics of countries in different years.

Sheet–country_top25_year_count: number of total publications and publications per year from the top 25 countries with the most plant science records. Sheet—country_top25_year_top17j: number of total publications and publications per year from the top 25 countries with the highest numbers of plant science records in the 17 plant science journals used as positive examples. Sheet–prank: Journal percentile rank scores for countries (3-letter country codes following https://www.iban.com/country-codes ) in different years from 1999 to 2020. Sheet–sjr: Scimago Journal rank scores. Sheet–hidx: H-Index scores. Sheet–cite: Citation scores.

https://doi.org/10.1371/journal.pbio.3002612.s020

S12 Data. Topical enrichment for the top 10 countries with the highest numbers of plant science publications.

Sheet—Log likelihood ratio: For each country C and topic T, it is defined as log((a/b)/(c/d)) where a is the number of papers from C in T, b is the number from C but not in T, c is the number not from C but in T, d is the number not from C and not in T. Sheet: corrected p -value: The 4 values, a, b, c, and d, were used to conduct Fisher’s exact test. The p -values obtained for each country were corrected for multiple testing.

https://doi.org/10.1371/journal.pbio.3002612.s021

S13 Data. Text classification prediction probabilities.

This compressed file contains the PubMed ID (PMID) and the prediction probabilities (y_pred) of testing data with both positive and negative examples (pred_prob_testing), plant science candidate records with the MeSH term “Plants” (pred_prob_candidates_with_mesh), and all plant science candidate records (pred_prob_candidates_all). The prediction probability was generated using the Word2Vec text classification models for distinguishing positive (plant science) and negative (non-plant science) records.

https://doi.org/10.1371/journal.pbio.3002612.s022

Acknowledgments

We thank Maarten Grootendorst for discussions on topic modeling. We also thank Stacey Harmer, Eva Farre, Ning Jiang, and Robert Last for discussion on their respective research fields and input on how to improve this study and Rudiger Simon for the suggestion to examine differences between countries. We also thank Mae Milton, Christina King, Edmond Anderson, Jingyao Tang, Brianna Brown, Kenia Segura Abá, Eleanor Siler, Thilanka Ranaweera, Huan Chen, Rajneesh Singhal, Paulo Izquierdo, Jyothi Kumar, Daniel Shiu, Elliott Shiu, and Wiggler Catt for their good ideas, personal and professional support, collegiality, fun at parties, as well as the trouble they have caused, which helped us improve as researchers, teachers, mentors, and parents.

  • View Article
  • PubMed/NCBI
  • Google Scholar
  • 2. Blei DM, Lafferty JD. Topic Models. In: Srivastava A, Sahami M, editors. Text Mining. Cambridge: Chapman and Hall/CRC; 2009. pp. 71–93.
  • 7. ChatGPT. [cited 2023 Aug 25]. Available from: https://chat.openai.com
  • 9. Fei-Fei L, Perona P. A Bayesian hierarchical model for learning natural scene categories. 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05); 2005. pp. 524–531 vol. 2. https://doi.org/10.1109/CVPR.2005.16
  • 19. Blei DM, Lafferty JD. Dynamic topic models. Proceedings of the 23rd International Conference on Machine learning. New York, NY, USA: Association for Computing Machinery; 2006. pp. 113–120. https://doi.org/10.1145/1143844.1143859
  • 35. Kuhn T. The Structure of Scientific Revolution. Chicago: University of Chicago Press; 1962.
  • 36. CiteSeer | Proceedings of the second international conference on Autonomous agents. [cited 2023 Aug 23]. Available from: https://dl.acm.org/doi/10.1145/280765.280786
  • 39. Chen T, Guestrin C. XGBoost: A Scalable Tree Boosting System. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, NY, USA: ACM; 2016. pp. 785–794. https://doi.org/10.1145/2939672.2939785
  • 40. Řehůřek R, Sojka P. Software Framework for Topic Modelling with Large Corpora. Proceedings of the LREC 2010 Workshop on New Challenges for NLP Frameworks. Valletta, Malta: ELRA; 2010. pp. 45–50.
  • 42. Hugging Face–The AI community building the future. 2023 Aug 19 [cited 2023 Aug 25]. Available from: https://huggingface.co/

Calculate Non Linear Relationships such as Exponential, Logarithmic, Quadratic and Cubic using Python

By: Hristo Hristov   |   Updated: 2023-05-05   |   Comments   |   Related: > Python

Considering two variables, we want to determine to what extent they are correlated. There are two types of correlation analysis depending on how the two variables relate: linear and non-linear. How do we check if two variables are non-linearly correlated? How do we measure and express their degree of correlation?

Two variables are non-linearly correlated when their dependence cannot be mapped to a linear function. In a non-linear correlation, one variable increases or decreases with a variable ratio relative to the other. This behavior contrasts with linear dependence, where the correlation between the variables maps to a linear function and is constant. Therefore, in a linear dependence, you see a straight line on the scatter plot, while with a non-linear dependence, the line is curved upwards or downwards or represents another complex shape. Examples of non-linear relationships are exponential, logarithmic, quadratic, or cubic.

Like the last experiment with the linear correlation, we will use a dataset containing machining data but focus on different variables. You can download it here . Here is a preview of the first five out of the total ten thousand rows:

data preview

One of the easiest ways to examine visually multivariate data is to generate a pair plot. This type of plot creates a scatter plot for each pair of numeric variables. This is how we can identify a pair that looks non-linearly correlated. A pair plot is easy to generate with the seaborn package. Let's select only the numerical features of interest:

pariplot generated with the seaborn package

Now let's focus on the relation between Rotational speed in revolutions per minute and torque in Newton meters. The shape of the dot cloud is not a straight line, i.e., the dependency between these two vectors is non-linear for the most part.

Non-linear Correlation

There are many types of non-linear relationships: quadratic, cubic, exponential, or logarithmic. In our example, we can say that as the rotational speed increases, the torque decreases and vice-versa. According to the scatter plot, this relationship appears to be non-linear, i.e., maps to a non-linear function. To calculate the correlation coefficient, we should experiment with methods for calculating non-linear relationships. However, note that our focus here is to express the strength of the relationship rather than to find the closest function that describes the relations. Therefore, doing a regression analysis, which tries to approximate a function close to reality, is out of the scope of this tip.

First, let's define our variables:

Next, let's examine various methods for calculating the non-linear correlation coefficient.

Distance Correlation

This metric can be applied to both linear and non-linear data. Its advantages are that it does not assume the normality of the input vectors, and the presence of outliers has a reduced influence on it. The results range from 0 to 2, where 0 means perfect correlation and 2 means perfect negative correlation.

The result is 1.85, so as expected, there is a strong reverse dependence between torque and rotational speed:

distance correlation

Mutual Information

Mutual information (MI) between two random variables is a non-negative value ranging from 0 to +∞. Results around 0 mean the variables are independent. On the other hand, the higher the value, the more interdependent the two variables are. MI is called this because it quantifies the information the two variables share. However, results can be difficult to interpret because there is no higher bound to the max MI possible. For example:

Let's break it down:

  • To calculate MI, we need the scikit learn package, so we import it on line 1.
  • On line 3, we define a function accepting two vectors and returning a list of floats, the MI coefficient for each pair (here just one pair)
  • On lines 4 and 5, we convert the pd.Series objects to numpy arrays.
  • Finally, on line 6, we calculate MI.

The result is:

Mutual information

Again, we get a strong correlation, considering the higher bound is non-existent.

Kendall's Tau

Kendall rank correlation coefficient, or Kendall's τ coefficient, is a statistic used to measure the dependence between two ordinal values. Kendall's tau is a useful measure of dependence in cases where the data is not normally distributed or where outliers may be present. While our variables are not ordinal, we can still use Kendall's coefficient like we used Spearman's to measure linear dependence. The coefficient ranges from -1 to 1.

Kendall rank correlation coefficient

The result is -0.75, meaning a strong negative correlation. The probability value ( p_value ) of 0 indicates we can reject the null hypothesis of an absence of association (where tau would be 0).

Maximal Information Coefficient

Finally, we can also calculate the maximal information coefficient (MIC). As we have shown previously, this robust correlation measure applies equally well to both linearly and non-linearly correlated data. The coefficient ranges between 0 and 1. Therefore, it is not helpful in showing the direction of the dependence.

Maximal Information Coefficient

This article examined four methods for calculating the correlation coefficient between non-linearly correlated vectors: distance correlation, mutual information, Kendall's tau, and Mutual Information Coefficient. Each has different bounds and captures the relationship between the variables differently. Therefore, using more than one to corroborate or reject a certain theory is standard practice.

  • Distance correlation
  • Mutual info regression
  • Kendall's tau
  • Calculating MIC

sql server categories

About the author

MSSQLTips author Hristo Hristov

Comments For This Article

get free sql tips

Related Content

Assessing if Dataset Values are Lognormal Distributed with Python

How to Conduct Linear Correlation Analysis with Python

How to Query SQL Data with Python pyodbc

Running a Python Application as a Windows Service

Introduction to Python including Installation, Jupyter Notebooks and Visual Studio Code

Query SQL Server with Python and Pandas

Connect to SQL Server with Python to Create Tables, Insert Data and Build Connection String

Free Learning Guides

Learn Power BI

What is SQL Server?

Donwload Links

Become a DBA

What is SSIS?

Related Categories

Development

Date Functions

System Functions

JOIN Tables

SQL Server Management Studio

Database Administration

Performance

Performance Tuning

Locking and Blocking

Data Analytics \ ETL

Microsoft Fabric

Azure Data Factory

Integration Services

Popular Articles

Date and Time Conversions Using SQL Server

Format SQL Server Dates with FORMAT Function

SQL Server CROSS APPLY and OUTER APPLY

SQL Server Cursor Example

SQL CASE Statement in Where Clause to Filter Based on a Condition or Expression

DROP TABLE IF EXISTS Examples for SQL Server

SQL Convert Date to YYYYMMDD

Rolling up multiple rows into a single row and column for SQL Server data

SQL NOT IN Operator

Resolving could not open a connection to SQL Server errors

Format numbers in SQL Server

SQL Server PIVOT and UNPIVOT Examples

Script to retrieve SQL Server database backup history and no backups

How to install SQL Server 2022 step by step

An Introduction to SQL Triggers

Using MERGE in SQL Server to insert, update and delete at the same time

How to monitor backup and restore progress in SQL Server

List SQL Server Login and User Permissions with fn_my_permissions

SQL Server Loop through Table Rows without Cursor

SQL Server Database Stuck in Restoring State

IMAGES

  1. An Interactive Guide to Hypothesis Testing in Python

    hypothesis example python

  2. Statistical Hypothesis Testing- Data Science with Python

    hypothesis example python

  3. 5-minute intro to property-based testing in Python with hypothesis

    hypothesis example python

  4. Hypothesis testing Practical Implementation|Hypothesis testing with data example in python

    hypothesis example python

  5. Hypothesis Testing with Python

    hypothesis example python

  6. Hypothesis Testing With Python

    hypothesis example python

VIDEO

  1. Two-Sample Hypothesis Testing: Dependent Sample

  2. Test of Hypothesis using Python

  3. What is Hypothesis? Example of Hypothesis [#shorts] [#statistics

  4. Hypothesis Testing Using Python : Case Study

  5. Hypothesis testing for population proportion in Python & R programming with Example

  6. 5_4_1_1_15 Two-Tailed Tests Hypothesis Testing Example

COMMENTS

  1. How to Perform Hypothesis Testing in Python (With Examples)

    Example 1: One Sample t-test in Python. A one sample t-test is used to test whether or not the mean of a population is equal to some value. For example, suppose we want to know whether or not the mean weight of a certain species of some turtle is equal to 310 pounds. To test this, we go out and collect a simple random sample of turtles with the ...

  2. Hypothesis Testing with Python: Step by step hands-on tutorial with

    Hypothesis Testing with Python: T-Test, Z-Test, and P-Values (+Code Examples) Hypothesis testing is performed to approve or disapprove a statement made about a sample drawn from a population. ... Let's go through the steps of hypothesis testing using an example scenario. Suppose we want to test whether a new drug has a significant…

  3. What you can generate and how

    For example, everything_except(int) returns a strategy that can generate anything that from_type() can ever generate, except for instances of int, and excluding instances of types added via register_type_strategy(). This is useful when writing tests which check that invalid input is rejected in a certain way. hypothesis.strategies. frozensets (elements, *, min_size = 0, max_size = None ...

  4. Welcome to Hypothesis!

    Welcome to Hypothesis!¶ Hypothesis is a Python library for creating unit tests which are simpler to write and more powerful when run, finding edge cases in your code you wouldn't have thought to look for. It is stable, powerful and easy to add to any existing test suite. It works by letting you write tests that assert that something should be true for every case, not just the ones you ...

  5. What Is Hypothesis Testing? Types and Python Code Example

    Other examples of a random alternate hypothesis include: The weather may have an impact on a person's mood. ... Numpy is a Python library used for scientific computing. It has a large library of functions for working with arrays. Scipy is a library for mathematical functions. It has a stat module for performing statistical functions, and that's ...

  6. Some more examples

    Which does indeed do the job: The majority (votes 0 and 1) prefer B to C, the majority (votes 0 and 2) prefer A to B and the majority (votes 1 and 2) prefer C to A. This is in fact basically the canonical example of the voting paradox. Fuzzing an HTTP API¶ Hypothesis's support for testing HTTP services is somewhat nascent.

  7. Mastering Hypothesis Testing in Python: A Step-by-Step Guide

    By following the steps outlined in each example, you can conduct your own hypothesis tests in Python and draw meaningful conclusions from your data. Two Sample t-test in Python The two sample t-test is used to compare two independent samples and determine if there is a significant difference between the means of the two populations.

  8. Demystifying hypothesis testing with simple Python examples

    In this article, we showed simple but intuitive real-life examples with inferential statistics research questions that can be answered using compact Python code. These examples illustrate the application of the concept of hypothesis testing, which is an extremely valuable skill to master for data scientists and analytics professionals working ...

  9. How to Use Hypothesis and Pytest for Robust Property-Based Testing in

    Understand the key differences between example-based, property-based and model-based testing. Use the Hypothesis library with Pytest to test your code and ensure coverage for a wide range of test data. Apply property-based testing to your Python apps. Build a Shopping App and test it using property-based testing.

  10. Hypothesis Testing with Python

    Hypothesis testing is used to address questions about a population based on a subset from that population. For example, A/B testing is a framework for learning about consumer behavior based on a small sample of consumers. This course assumes some preexisting knowledge of Python, including the NumPy and pandas libraries.

  11. Testing your Python Code with Hypothesis • Inspired Python

    Hypothesis is a capable test generator. Unlike a tool like faker that generates realistic-looking test data for fixtures or demos, Hypothesis is a property-based tester. It uses heuristics and clever algorithms to find inputs that break your code. Hypothesis assumes you understand the problem domain you want to model.

  12. 17 Statistical Hypothesis Tests in Python (Cheat Sheet)

    In this post, you will discover a cheat sheet for the most popular statistical hypothesis tests for a machine learning project with examples using the Python API. Each statistical test is presented in a consistent way, including: The name of the test. What the test is checking. The key assumptions of the test. How the test result is interpreted.

  13. Getting Started With Property-Based Testing in Python With Hypothesis

    We can write a simple property-based test for this, leveraging the fact that Hypothesis generates dozens of tests for us. Save this in a Python file: from hypothesis import given, strategies as st. @given(st.integers()) def test_int_str_roundtripping(x): assert x == int(str(x)) Now, run this file with pytest.

  14. hypothesis · PyPI

    Hypothesis is an advanced testing library for Python. It lets you write tests which are parametrized by a source of examples, and then generates simple and comprehensible examples that make your tests fail. This lets you find more bugs in your code with less work. e.g. xs=[1.7976321109618856e+308, 6.102390043022755e+303] Hypothesis is extremely ...

  15. Hypothesis Testing. What it is and how to do it in Python

    A hypothesis is a claim or a premise that we want to test. Hypothesis testing is a way of backing up your conclusions with data, in a more "scientific" way. It is useful not only to scientists, but actually important in so many areas, ranging from marketing to web design to pharmaceutical trials and much more.

  16. An Interactive Guide to Hypothesis Testing in Python

    There are some handy functions in Python calculate the probability in a distribution. For any x covered in the range of the distribution, pdf(x) is the probability density function of x — which can be represented as the orange line below, and cdf(x) is the cumulative density function of x — which can be seen as the cumulative area. In this example, we are testing the alternative hypothesis ...

  17. How to Perform Hypothesis Testing Using Python

    Dive into the fascinating process of hypothesis testing with Python in this comprehensive guide. Perfect for aspiring data scientists and analytical minds, learn how to validate your predictions using statistical tests and Python's robust libraries. From understanding the basics of hypothesis formulation to executing detailed statistical analysis, this article illuminates the path to data ...

  18. Quick start guide

    Note that the example provided is really quite simple. Hypothesis doesn't just find any counter-example to your tests, it knows how to simplify the examples it finds to produce small easy to understand ones. In this case, two identical values are enough to set the count to a number different from one, followed by another distinct value which should have reset the count but in this case didn't.

  19. How to Select a Hypothesis Test

    An A/B test has a specific use case, which is to determine if one version is better/different to the other. Whereas Hypothesis Testing is designed to test if there are differences in huge groups (population) using only data from small groups (sampling). A "Null Hypothesis" in A/B Testing is the same as when it's applied in Hypothesis Testing.

  20. Hypothesis Testing Explained. This article walks through an example

    Introduction. In this excellent article, the author explores the p-value in statistics and uses the example of an archery team to compare two distributions.. I found this article very insightful but I was left wanting more in that I wanted the statistics breaking down into simple steps that a non-statistician could follow and I wanted to see the full python code that explored the datasets to ...

  21. Assessing the evolution of research topics in a biological field using

    Example topic clusters are highlighted in yellow and labeled a through f (blue boxes). ... one hypothesis for the relative decrease in focus on Arabidopsis is that advances in, for example, plant transformation, genetic manipulation, and genome research have allowed the adoption of more previously nonmodel taxa. ... then the use of the Python ...

  22. Details and advanced features

    The typing module changes between different Python releases, including at minor versions. These are all supported on a best-effort basis, but you may encounter problems. ... If the test failed, i.e. raised an exception, fuzz_one_input will add the pruned buffer to the Hypothesis example database and then re-raise that exception. All you need to ...

  23. Hypothesis testing in Machine learning using Python

    Now Let's see some of widely used hypothesis testing type :-T Test ( Student T test) Z Test; ANOVA Test; Chi-Square Test; T- Test :- A t-test is a type of inferential statistic which is used to determine if there is a significant difference between the means of two groups which may be related in certain features.It is mostly used when the data sets, like the set of data recorded as outcome ...

  24. Non Linear Relationship Analysis with Python

    Two variables are non-linearly correlated when their dependence cannot be mapped to a linear function. In a non-linear correlation, one variable increases or decreases with a variable ratio relative to the other. This behavior contrasts with linear dependence, where the correlation between the variables maps to a linear function and is constant.

  25. Settings

    If True, seed Hypothesis' random number generator using a hash of the test function, so that every run will test the same set of examples until you update Hypothesis, Python, or the test function. This allows you to check for regressions and look for bugs using separate settings profiles - for example running quick deterministic tests on ...