NASA Logo

Cosmic History

essay on universe in english

The Universe’s History

The origin, evolution, and nature of the universe have fascinated and confounded humankind for centuries. New ideas and major discoveries made during the 20th century transformed cosmology – the term for the way we conceptualize and study the universe – although much remains unknown. Here is the history of the universe according to cosmologists’ current theories.

Cosmic Inflation

Around 13.8 billion years ago, the universe expanded faster than the speed of light for a fraction of a second, a period called cosmic inflation. Scientists aren’t sure what came before inflation or what powered it. It’s possible that energy during this period was just part of the fabric of space-time. Cosmologists think inflation explains many aspects of the universe we observe today, like its flatness, or lack of curvature, on the largest scales. Inflation may have also magnified density differences that naturally occur on space’s smallest, quantum-level scales, which eventually helped form the universe’s large-scale structures.

Big Bang Infographic showing the timeline of the history of the big bang and the formation of the building blocks of the universe

Big Bang and Nucleosynthesis

When cosmic inflation stopped, the energy driving it transferred to matter and light – the big bang. One second after the big bang, the universe consisted of an extremely hot (18 billion degrees Fahrenheit or 10 billion degrees Celsius) primordial soup of light and particles. In the following minutes, an era called nucleosynthesis, protons and neutrons collided and produced the earliest elements – hydrogen, helium, and traces of lithium and beryllium. After five minutes, most of today’s helium had formed, and the universe had expanded and cooled enough that further element formation stopped. At this point, though, the universe was still too hot for the atomic nuclei of these elements to catch electrons and form complete atoms. The cosmos was opaque because a vast number of electrons created a sort of fog that scattered light.

Big Bang News

What is Dark Energy? Inside our accelerating, expanding Universe

Big Bang Infographic showing the timeline of the history of the big bang and the formation of the building blocks of the universe. he history of the universe is outlined in this infographic. It starts with Inflation, then the first particles in 1 microsecond, followed by first nuclei (10 seconds); first light (300,000 years); first stars (200 million years); galaxies and dark matter (400 million years); dark energy (10 billion years); present (13.8 billion years). NASA

NASA’s Webb Identifies the Earliest Strands of the Cosmic Web

essay on universe in english

Lunar Crater Radio Telescope: Illuminating the Cosmic Dark Ages

essay on universe in english

Roman Space Telescope Could Image 100 Hubble Ultra Deep Fields at Once

NASA’s Roman Space Telescope to Uncover Echoes of the Universe’s Creation

Recombination

Around 380,000 years after the big bang, the universe had cooled enough that atomic nuclei could capture electrons, a period astronomers call the epoch of recombination. This had two major effects on the cosmos. First, with most electrons now bound into atoms, there were no longer enough free ones to completely scatter light, and the cosmic fog cleared. The universe became transparent, and for the first time, light could freely travel over great distances. Second, the formation of these first atoms produced its own light. This glow, still detectable today, is called the cosmic microwave background. It is the oldest light we can observe in the universe.

Heat map of the infant universe

After the cosmic microwave background, the universe again became opaque at shorter wavelengths due to the absorbing effects of all those hydrogen atoms. For the next 200 million years the universe remained dark. There were no stars to shine. The cosmos at this point consisted of a sea of hydrogen atoms, helium, and trace amounts of heavier elements.

First Stars

Gas was not uniformly distributed throughout the universe. Cooler areas of space were lumpier, with denser clouds of gas. As these clumps grew more massive, their gravity attracted additional matter. As they became denser, and more compact, the centers of these clumps became hotter – hot enough eventually that nuclear fusion occurred in their centers. These were the first stars. They were 30 to 300 times more massive than our Sun and millions of times brighter. Over several hundred million years, the first stars collected into the first galaxies.

Reionization

At first, starlight couldn’t travel far because it was scattered by the relatively dense gas surrounding the first stars. Gradually, the ultraviolet light emitted by these stars broke down, or ionized, hydrogen atoms in the gas into their constituent electrons and protons. As this reionization progressed, starlight traveled farther, breaking up more and more hydrogen atoms. By the time the universe was 1 billion years old, stars and galaxies had transformed nearly all this gas, making the universe transparent to light as we see it today.

For many years, scientists thought the universe’s current expansion was slowing down. But in fact, cosmic expansion is speeding up. In 1998, astronomers found that certain supernovae, bright stellar explosions, were fainter than expected. They concluded this could only happen if the supernovae had moved farther away, at a faster rate than predicted.

Scientists suspect a mysterious substance they call dark energy is accelerating expansion. Future research may yield new surprises, but cosmologists suggest it’s likely the universe will continue to expand forever.

Discover More Topics From NASA

Looking like a pinwheel, this face-on spiral galaxy holds a bright-white core at image center. Arms curve outward from the core. They hold dark dust lanes and bright star-forming regions. All on a black background dotted with stars.

Black Holes

essay on universe in english

  • The Universe

essay on universe in english

The Universe is everything we can touch, feel, sense, measure or detect. It includes living things, planets, stars, galaxies, dust clouds, light, and even time. Before the birth of the Universe, time, space and matter did not exist.

The Universe contains billions of galaxies, each containing millions or billions of stars. The space between the stars and galaxies is largely empty. However, even places far from stars and planets contain scattered particles of dust or a few hydrogen atoms per cubic centimeter. Space is also filled with radiation (e.g. light and heat), magnetic fields and high energy particles (e.g. cosmic rays).

The Universe is incredibly huge. It would take a modern jet fighter more than a million years to reach the nearest star to the Sun. Travelling at the speed of light (300,000 km per second), it would take 100,000 years to cross our Milky Way galaxy alone.

No one knows the exact size of the Universe, because we cannot see the edge – if there is one. All we do know is that the visible Universe is at least 93 billion light years across. (A light year is the distance light travels in one year – about 9 trillion km.)

The Universe has not always been the same size. Scientists believe it began in a Big Bang, which took place nearly 14 billion years ago. Since then, the Universe has been expanding outward at very high speed. So the area of space we now see is billions of times bigger than it was when the Universe was very young. The galaxies are also moving further apart as the space between them expands.

Story of the Universe

  • Extreme life
  • In the beginning
  • The Big Bang
  • The birth of galaxies
  • What is space?
  • Black Holes
  • The mystery of the dark Universe
  • Cosmic distances

Your Article Library

Essay on our universe: definition, stars and solar system.

essay on universe in english

ADVERTISEMENTS:

Essay  on Our Universe: Definition, Stars and Solar System!

When we look at the sky, we see different kinds of natural bodies like the sun, the stars, the moon, and so on. The natural bodies in the sky are called celestial bodies or heavenly bodies. They are part of our universe. The universe is a huge space which contains everything that exists. The celestial bodies that we see are just a small fraction of the bodies that exist in the universe. One of the reasons why we do not see more of them is that they are very, very far away.

To measure the large distances in the universe, scientists use a unit of length called the light year. A light year is the distance travelled by light in one year. Light travels 9.46 trillion km in a year (one trillion is 1 followed by 12 zeroes).

One light year represents this huge distance. Proxima Centauri, the star closest to our solar system, is 4.2 light years from us. This means that light from this star takes 4.2 years to reach us. In this article, we shall learn a bit about stars and our solar system. But before that, let us see how the universe was formed.

Scientists believe that the universe was born after a massive explosion called the ‘big bang’. A long time after the big bang, stars like our sun were formed. At that time, clouds of hot gases and particles revolved around the sun. Over time, many particles got stuck together to form large bodies. These bodies pulled in smaller objects near them by gravitational force. This made them larger still. These bodies finally became the planets.

Away from the lights of the city, you can see thousands of stars in the night sky. You can also see some planets and their moons, either with the naked eye or with the help of a telescope. These celestial bodies are different from the stars in one important way. Stars are celestial bodies that produce their own heat and light. Planets and their moons shine by reflecting the light of a star such as our sun.

All stars are huge balls of hydrogen and helium gases. In a star, hydrogen gets converted into helium. In this reaction, a large amount of energy is liberated. This is the source of the heat and light of a star. Stars vary in brightness and size. Some are medium-sized, like our sun. Some are so huge that if they were to be placed in our sun’s position, they would fill the entire solar system!

A star is born in a cloud of gases called a nebula

There are trillions of stars in the universe. They occur in groups called galaxies. The gravitational force between stars keeps the stars of a galaxy together. Apart from stars, a galaxy may have other celestial bodies like planets and moons. So you can say that a galaxy is a group of stars and other celestial bodies bound together by gravitational force.

The distribution of the stars in a galaxy can give it a shape such as spiral, ring or elliptical. Our sun is a part of a spiral galaxy called the Milky Way Galaxy. This galaxy is named after the Milky Way. The Milky Way is a band of stars that we can see on a clear night. These stars are a part of our galaxy. The ancient Romans called this band of stars Via Galactica, or ‘road of milk’. That is how our galaxy got its name.

(a) A ring galaxy and (b) a spiral galaxy

Constellations :

As the earth moves round the sun, we see different stars at different times of the year. In the past, people found many uses for this. For example, they would get ready for sowing when particular stars appeared in the sky. Obviously, it was not possible for them to identify each and every star. So, they looked for groups of stars which seem to form patterns in the sky. A group of stars which seem to form a pattern is called a constellation.

Ancient stargazers made stories about the constellations and named them after the animals, heroes, etc., from these stories. So constellations got names like Cygnus (swan), Leo (lion), Taurus (bull), Cancer (crab), Perseus (a hero) and Libra (scale). You can see many of these constellations on a clear night.

The Great Bear (Ursa Major) is one of the easiest constellations to spot. You can see it between February and May. Its seven brightest stars form the shape of a dipper (a long-handled spoon used for drawing out water). Together, these stars are called the Big Dipper or Saptarshi. These and the other stars of the constellation roughly form the shape of a bear.

The two brightest stars of the Big Dipper are called ‘pointers’ because they point towards the pole star. The pole star lies at the tail of the bear of a smaller constellation called the Little Bear (Ursa Minor).

To find the north direction, ancient travellers would look for the Big Dipper and from there, locate the pole star. While all stars seem to move from the east to the west (as the earth rotates in the opposite direction), the pole star seems fixed. This is because it lies almost directly above the earth’s North Pole [Figure 13.3 (c)].

(a) The Great Bear and the Little Bear (b) The two brightest star of the Great Bear point towards the pole star. (c) The Pole star seems fixed above the north pole of the earth, while the other stars appears to move opposite to the direction of the rotation of the earth

Orion (the Hunter) and Scorpius are two other prominent constellations. There are different stories linking them. According to one, the mighty hunter Orion vowed to kill all the animals of the world. Alarmed at this, the Earth Goddess sent a scorpion to kill Orion. He ran away, and continues to do so even now. This story takes into account the fact that Orion goes below the horizon when Scorpius rises. Orion rises again only when Scorpius sets.

(a) Orion (b) Scorpius

Remember that constellations are imaginary. For our convenience we have picked a few stars that resemble a pattern and called them a constellation. On the other hand, galaxies are real things in which stars and other celestial bodies are held together by gravitational force.

The Solar System :

The sun is the brightest object in the sky. It is huge. It is about 333,000 times heavier than the earth, and you could fit more than a million earths inside it! Its great mass causes a large gravitational force. This keeps the sun, the planets, their moons and some other smaller bodies together as the sun’s family. The sun and all the bodies moving around it are together called the solar system. All the members of the solar system revolve around the sun in almost circular paths, or orbits.

The solar system

After the sun, the planets are the largest bodies in our solar system. Scientists define a planet as a round body that orbits the sun and which has pulled in all objects near its orbit. Remember that planets were formed when large bodies in space pulled in smaller bodies near it. This cleared the space around a planet’s orbit.

There are eight planets in our solar system. In order of distance from the sun they are Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus and Neptune. You can remember this order as My Very Efficient Maid Just Served Us Noodles.

Apart from revolving around the sun, each planet rotates, or spins, about its axis. The time taken to complete a revolution around the sun is the length of a planet’s year. And the time taken to complete one rotation is the planet’s day.

The four planets closest to the sun—Mercury, Venus, Earth and Mars—are small, rocky planets. They are called terrestrial (earthlike) planets. The other four planets—Jupiter, Saturn, Uranus and Neptune—are giants in comparison.

They are made up mainly of gases. They are called gas giants or Jovian (Jupiter like) planets. All the gas giants have rings around them. Since they are very far from the sun, the gas giants are much colder than the terrestrial planets.

While stars twinkle, planets shine with a steady light. You can see some of the planets with the naked eyes or with the help of a good pair of binoculars. Just remember that as the planets move around the sun, they appear at different positions in the sky at different times of the year. And for the period they are behind the sun, they are not visible.

Mercury, the smallest planet of our solar system, revolves around the sun the fastest. But it rotates on its axis at a much slower speed than the earth. So, a day on Mercury is about 58 times longer than a day on earth.

Although Mercury is the closest to the sun, it is not the hottest planet. Its thin atmosphere cannot trap heat. So, at night, when there is no sun, the temperature can fall to as low as -180°C. You can see Mercury near the eastern horizon before sunrise at certain times of the year. And at certain other times, you can see it near the western horizon after sunset.

The thick atmosphere of Venus makes it the brightest and the hottest planet of the solar system. Its atmosphere has mainly carbon dioxide gas, which reflects a lot of sunlight. But it also traps so much heat that the average temperature on Venus is about 450°C.

Venus takes 243 days to complete one rotation, making its day the longest in the solar system. As a matter of fact, a day on Venus is longer than its year! It is easy to spot Venus because it is so bright. When it is visible in the east before sunrise, it is called a morning star. And when it is visible in the west in the evening, it is called an evening star.

The earth is not the fastest, slowest, hottest, coldest, largest or smallest planet. But it is the only planet on which life is known to exist. The planet’s distance from the sun, the composition of its atmosphere and the fact that liquid water is found on it make life possible on it.

Were it nearer the sun, the water on it would have evaporated. Were it farther away, all our oceans, rivers and lakes would have frozen. The carbon dioxide in the earth’s atmosphere plays two important roles. Plants use it to make food—which feeds, directly or indirectly, all animals. It also traps just enough heat to ensure that the nights on earth do not become freezing cold.

No other planet evokes so much interest as Mars does. This is because scientists have found evidence that liquid water once flowed through the channels visible on its surface. So it is possible that some form of life once existed on this planet. The rust-coloured soil of Mars gives it a red colour. So, it is also called the Red Planet.

Mars - the red planet

When visible, Mars looks like a red sphere. During its two-year orbit, it looks the brightest when the earth is between the sun and Mars. During this time, you can see it rise in the east as the sun sets in the west.

Jupiter is the largest and the heaviest planet of our solar system. It also has the largest number of moons. The strong winds blowing on it, and on the other gas giants, create light and dark areas, giving them a striped look.

If you look through a powerful telescope, you will see a big spot on Jupiter’s surface. This spot is actually a huge storm, which has been raging on Jupiter for more than 300 years. In 1979, the Voyager 1 spacecraft discovered faint rings around Jupiter. These rings are not visible even through the most powerful earth-based telescopes. Jupiter is also visible to the naked eye. It looks like a bright spot in the sky.

You can easily recognise a picture of Saturn because of the planet’s prominent rings. These rings are actually particles of dust and ice revolving around Saturn. Apart from these particles, a large number of moons orbit this planet.

(a) Winds in Jupiter's atmosheres give it a striped look. The Spot its surface is an ancent storm (b) Saturn and its rings

Uranus and Neptune:

Uranus and Neptune are the third and the fourth largest planets respectively. Yet, they were the last two planets to be discovered. That is because they are so far away from us. Even today, we know very little about them.

Planet facts

The moons of planets :

An object revolving around a celestial body is known as a satellite. All planets except Mercury and Venus have natural satellites, or moons, revolving around them. So far, we know of more than 150 planetary moons. Some of them are so small that they were discovered only when spacecraft flew past them. A few of the moons are almost as large as planets. One of Jupiter’s moons, Ganymede, is the largest of them all. It is even larger than Mercury. Of all the moons, we know the most about the earth’s moon.

The earth’s moon:

The earth’s moon is the brightest object in the night sky. It shines by reflecting sunlight. If you look at the moon through a telescope or a good pair of binoculars, you will see a number of craters on its surface. These are large depressions created when huge rocks from space hit the moon. The moon does not have water or an atmosphere. It also does not have life on it.

The moon takes 27 days and 8 hours to complete one revolution around the earth. In this time it also completes one rotation around its axis. We see different shapes of the moon as it travels around the earth.

Stand in front of a lamp in a darkened room. Hold a ball in your outstretched arm and move it around you, just as the moon moves around the earth. A friend standing some distance away from you will always see half of the ball (moon) lit by the lamp (sun). But to you (earth) the shape of the lit portion will keep on changing, like the changing shapes of the moon.

The moons of planets

Sunlight lights up half of the moon. As the moon revolves around the earth, we see different parts of the sunlit half. The shapes of these parts are called the phases of the moon. When the entire side facing the earth is sunlit, the moon appears as a full disc. We call this the full moon or purnima. And when the side of the moon facing us gets no sunlight, we do not see the moon.

This is called the new moon or amavasya. After the new moon, the moon appears as a thin crescent. As days pass, we see larger portions of the moon till the full moon appears. After this, the size of the moon visible to us gradually decreases till we once again have the new moon. The whole cycle of one new moon to the next takes 29.5 days. So the new moon and the full moon appear about fifteen days from each other.

The shape of the sunlit half of the moon visible to us changes

Dwarf planets :

A dwarf planet is a small, round body that orbits the sun. At the time of its formation, a dwarf planet could not pull in all other objects near its orbit. So it is not considered a planet. Pluto, which was previously considered a planet, is now considered a dwarf planet. Ceres and Eris are two other dwarf planets.

Asteroids :

In a belt between the orbits of Mars and Jupiter, millions of small, irregular, rocky bodies revolve around the sun. These are asteroids, and the belt is known as the asteroid belt. Asteroids are also called minor planets.

Scientists think that asteroids are pieces of material that failed to come together to form a planet when the solar system was being formed. Asteroids can measure a few metres to hundreds of kilometres in width. Some asteroids even have moons.

Asteroids can have moons too

Meteoroids :

Asteroids were not the only pieces of rock left over from the formation of the solar system. Some others, called meteoroids, still orbit the sun. When they come very close to a planet such as the earth, gravitation pulls them in.

As they enter the earth’s atmosphere, they heat up because of friction with the air, and start burning. As these burning meteoroids fall towards the ground, we see them as streaks of light. The streak of light caused by a burning meteoroid is called a meteor or a shooting star.

Fortunately, the material of most meteoroids burns up completely before it can reach the surface of the earth. However, some large ones fail to burn up completely and strike the earth’s surface. Meteoroids that fall on a planet or a moon are called meteorites. A large meteorite can create a large crater and cause a lot of damage.

Scientists think that dinosaurs were wiped off the earth following a meteorite hit. Meteorite hits are more common on those planets and moons which have little or no atmosphere to burn off the falling rock. The craters on our moon have resulted from meteorite hits.

A comet is a small body of ice and dust that moves around the sun in an elongated orbit. As a comet approaches the sun, it heats up and leaves behind a stream of hot, glowing gases and dust particles. We see this as the ‘tail’ of the comet.

A comet

Related Articles:

  • Solar System: Keynotes on our Solar System
  • 8 Important Facts Regarding the Evolution of Universe | Universe

No comments yet.

Leave a reply click here to cancel reply..

You must be logged in to post a comment.

web statistics

Logo

Essay on Our Universe

Students are often asked to write an essay on Our Universe in their schools and colleges. And if you’re also looking for the same, we have created 100-word, 250-word, and 500-word essays on the topic.

Let’s take a look…

100 Words Essay on Our Universe

What is the universe.

The universe is a vast space that holds everything we know – from tiny atoms to giant galaxies. It includes all of space, time, energy, and matter. Imagine it as a huge home where all the stars, planets, and moons live. It’s so big that we can’t see the end of it, and it’s always expanding.

Stars and Galaxies

Stars are like giant balls of gas that give off light and heat. They group together to form galaxies. Our sun is a star, and it’s part of a galaxy we call the Milky Way. There are billions of galaxies each with its own stars.

Planets and Moons

Planets are big objects that orbit, or go around, a star. Earth is a planet that goes around our sun. Some planets have moons, which are smaller objects that orbit planets. Just like Earth has one moon, other planets can have many.

The Mystery of Space

Space is full of mysteries. Scientists use telescopes to study far-away stars and planets. They’re trying to learn more about black holes, which are places in space where gravity is very strong, and about the possibility of life beyond Earth.

250 Words Essay on Our Universe

The universe is everything we can touch, feel, sense, measure, or detect. It includes living things, planets, stars, galaxies, dust clouds, light, and even time. Before the birth of the Universe, time, space, and matter did not exist.

The Big Bang

The universe began with a huge explosion called the Big Bang about 13.8 billion years ago. This explosion made all the space, time, matter, and energy in the universe. It started very small and hot, then cooled and stretched to become as big as it is now, and it’s still expanding.

Stars are huge balls of hot gas that give off light and heat. Our sun is a star. There are billions of stars in the universe. Stars group together to form galaxies. Our galaxy is called the Milky Way, and it has billions of stars too. There are so many galaxies we can’t count them all.

Planets are big objects that orbit, or go around, stars. Our Earth is a planet. Some planets have moons that orbit them. Moons are smaller than planets and there are hundreds of moons in our universe.

Exploring the Universe

Scientists use telescopes to look at stars, planets, and galaxies. They use space probes to explore things too far to see with telescopes. By studying the universe, we learn more about where we come from and our place in the cosmos.

500 Words Essay on Our Universe

Introduction to the universe.

The universe is like a huge home with many rooms, each filled with stars, planets, and all sorts of interesting things. Imagine looking up at the night sky. Every star you see is part of our universe. It is everything that exists, from the smallest ant to the biggest galaxy.

What’s in the Universe?

Our universe has lots of galaxies, and our home galaxy is called the Milky Way. Inside it, there’s our solar system, where Earth is just one of eight planets. Besides planets, there are moons, comets, asteroids, and stars. Stars are like giant balls of gas that are so hot they glow and give off light.

The Size of Our Universe

Think of the biggest thing you’ve ever seen. Now imagine something a million times bigger. Our universe is even larger than that! It’s so big that we measure how far things are in it with a special word: “light-year.” A light-year is the distance light travels in one year, and light is super fast!

The Beginning of Everything

A long time ago, scientists believe the universe started with a big bang. It wasn’t an explosion, but more like everything, all the space, time, and stuff that would become galaxies, started expanding from a tiny point. Since then, the universe has been getting bigger and bigger.

The Life of Stars

Stars are born, live, and then die, just like living things on Earth, but their life lasts millions or even billions of years. They start in places called “nebulae,” which are clouds of gas and dust. When they die, they can explode in a huge burst called a supernova, or they can shrink and become really dense, like a “black hole.”

Humans have always been curious about the stars. We’ve used telescopes to look far away, and we’ve sent spacecraft to explore planets and moons. Some spacecraft, like the Voyager probes, have even left our solar system and are sending back information from beyond.

The Mystery of Dark Matter and Dark Energy

There are things in the universe we can’t see called dark matter and dark energy. We know they’re there because they affect how galaxies move and how the universe is growing. But what they are exactly is still a big question.

Our Place in the Universe

Even though the universe is so vast, our Earth is just a tiny part of it. But it’s a special part because it’s where we live, and so far, it’s the only place we know that has life. We are still learning so much about the universe and our place in it.

Our universe is a fascinating and mysterious place. It’s full of wonders that we are just beginning to understand. As we continue to look up at the stars and learn more, we realize how amazing it is that we are a part of something so vast and incredible. The universe is the biggest adventure waiting for us to explore.

That’s it! I hope the essay helped you.

If you’re looking for more, here are essays on other interesting topics:

  • Essay on Our Planet Our Health
  • Essay on Our Nation
  • Essay on Origin Of Life

Apart from these, you can look at all the essays by clicking here .

Happy studying!

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

essay on universe in english

Origins of the universe, explained

The most popular theory of our universe's origin centers on a cosmic cataclysm unmatched in all of history—the big bang.

The best-supported theory of our universe's origin centers on an event known as the big bang. This theory was born of the observation that other galaxies are moving away from our own at great speed in all directions, as if they had all been propelled by an ancient explosive force.

A Belgian priest named Georges Lemaître first suggested the big bang theory in the 1920s, when he theorized that the universe began from a single primordial atom. The idea received major boosts from Edwin Hubble's observations that galaxies are speeding away from us in all directions, as well as from the 1960s discovery of cosmic microwave radiation—interpreted as echoes of the big bang—by Arno Penzias and Robert Wilson.

Further work has helped clarify the big bang's tempo. Here’s the theory: In the first 10^-43 seconds of its existence, the universe was very compact, less than a million billion billionth the size of a single atom. It's thought that at such an incomprehensibly dense, energetic state, the four fundamental forces—gravity, electromagnetism, and the strong and weak nuclear forces—were forged into a single force, but our current theories haven't yet figured out how a single, unified force would work. To pull this off, we'd need to know how gravity works on the subatomic scale, but we currently don't.

It's also thought that the extremely close quarters allowed the universe's very first particles to mix, mingle, and settle into roughly the same temperature. Then, in an unimaginably small fraction of a second, all that matter and energy expanded outward more or less evenly, with tiny variations provided by fluctuations on the quantum scale. That model of breakneck expansion, called inflation, may explain why the universe has such an even temperature and distribution of matter.

After inflation, the universe continued to expand but at a much slower rate. It's still unclear what exactly powered inflation.

Aftermath of cosmic inflation

As time passed and matter cooled, more diverse kinds of particles began to form, and they eventually condensed into the stars and galaxies of our present universe.

For Hungry Minds

By the time the universe was a billionth of a second old, the universe had cooled down enough for the four fundamental forces to separate from one another. The universe's fundamental particles also formed. It was still so hot, though, that these particles hadn't yet assembled into many of the subatomic particles we have today, such as the proton. As the universe kept expanding, this piping-hot primordial soup—called the quark-gluon plasma—continued to cool. Some particle colliders, such as CERN's Large Hadron Collider , are powerful enough to re-create the quark-gluon plasma.

Radiation in the early universe was so intense that colliding photons could form pairs of particles made of matter and antimatter, which is like regular matter in every way except with the opposite electrical charge. It's thought that the early universe contained equal amounts of matter and antimatter. But as the universe cooled, photons no longer packed enough punch to make matter-antimatter pairs. So like an extreme game of musical chairs, many particles of matter and antimatter paired off and annihilated one another.

You May Also Like

essay on universe in english

The world’s most powerful telescope is rewriting the story of space and time

essay on universe in english

How fast is the universe really expanding? The mystery deepens.

essay on universe in english

This supermassive black hole was formed when the universe was a toddler

Somehow, some excess matter survived—and it's now the stuff that people, planets, and galaxies are made of. Our existence is a clear sign that the laws of nature treat matter and antimatter slightly differently. Researchers have experimentally observed this rule imbalance, called CP violation , in action. Physicists are still trying to figure out exactly how matter won out in the early universe.

the spiral arms in the galaxy Messier 63.

Building atoms

Within the universe's first second, it was cool enough for the remaining matter to coalesce into protons and neutrons, the familiar particles that make up atoms' nuclei. And after the first three minutes, the protons and neutrons had assembled into hydrogen and helium nuclei. By mass, hydrogen was 75 percent of the early universe's matter, and helium was 25 percent. The abundance of helium is a key prediction of big bang theory, and it's been confirmed by scientific observations.

Despite having atomic nuclei, the young universe was still too hot for electrons to settle in around them to form stable atoms. The universe's matter remained an electrically charged fog that was so dense, light had a hard time bouncing its way through. It would take another 380,000 years or so for the universe to cool down enough for neutral atoms to form—a pivotal moment called recombination. The cooler universe made it transparent for the first time, which let the photons rattling around within it finally zip through unimpeded.

We still see this primordial afterglow today as cosmic microwave background radiation , which is found throughout the universe. The radiation is similar to that used to transmit TV signals via antennae. But it is the oldest radiation known and may hold many secrets about the universe's earliest moments.

From the first stars to today

There wasn't a single star in the universe until about 180 million years after the big bang. It took that long for gravity to gather clouds of hydrogen and forge them into stars. Many physicists think that vast clouds of dark matter , a still-unknown material that outweighs visible matter by more than five to one, provided a gravitational scaffold for the first galaxies and stars.

Once the universe's first stars ignited , the light they unleashed packed enough punch to once again strip electrons from neutral atoms, a key chapter of the universe called reionization. In February 2018, an Australian team announced that they may have detected signs of this “cosmic dawn.” By 400 million years after the big bang , the first galaxies were born. In the billions of years since, stars, galaxies, and clusters of galaxies have formed and re-formed—eventually yielding our home galaxy, the Milky Way, and our cosmic home, the solar system.

Even now the universe is expanding , and to astronomers' surprise, the pace of expansion is accelerating. It's thought that this acceleration is driven by a force that repels gravity called dark energy . We still don't know what dark energy is, but it’s thought that it makes up 68 percent of the universe's total matter and energy. Dark matter makes up another 27 percent. In essence, all the matter you've ever seen—from your first love to the stars overhead—makes up less than five percent of the universe.

Related Topics

  • BIG BANG THEORY
  • SCIENCE AND TECHNOLOGY

essay on universe in english

The 11 most astonishing scientific discoveries of 2023

essay on universe in english

The universe is expanding faster than it should be

essay on universe in english

The world's most powerful space telescope has launched at last

essay on universe in english

A First Glimpse of the Hidden Cosmos

essay on universe in english

After 30 years, Hubble is still revealing new mysteries of the universe

  • Environment
  • Perpetual Planet

History & Culture

  • History & Culture
  • History Magazine
  • Gory Details
  • Mind, Body, Wonder
  • Paid Content
  • Terms of Use
  • Privacy Policy
  • Your US State Privacy Rights
  • Children's Online Privacy Policy
  • Interest-Based Ads
  • About Nielsen Measurement
  • Do Not Sell or Share My Personal Information
  • Nat Geo Home
  • Attend a Live Event
  • Book a Trip
  • Inspire Your Kids
  • Shop Nat Geo
  • Visit the D.C. Museum
  • Learn About Our Impact
  • Support Our Mission
  • Advertise With Us
  • Customer Service
  • Renew Subscription
  • Manage Your Subscription
  • Work at Nat Geo
  • Sign Up for Our Newsletters
  • Contribute to Protect the Planet

Copyright © 1996-2015 National Geographic Society Copyright © 2015-2024 National Geographic Partners, LLC. All rights reserved

May 21, 2013

12 min read

Origin of the Universe

Cosmologists are closing in on the ultimate processes that created and shaped the universe

By Michael S. Turner

The universe is big in both space and time and, for much of humankind's history, was beyond the reach of our instruments and our minds. That changed dramatically in the 20th century. The advances were driven equally by powerful ideas—from Einstein's general relativity to modern theories of the elementary particles—and powerful instruments—from the 100- and 200-inch reflectors that George Ellery Hale built, which took us beyond our Milky Way galaxy, to the Hubble Space Telescope, which has taken us back to the birth of galaxies. Over the past 30 years the pace of progress has accelerated with the realization that dark matter is not made of ordinary atoms, the discovery of dark energy, and the dawning of bold ideas such as cosmic inflation and the multiverse.

The universe of 100 years ago was simple: eternal, unchanging, consisting of a single galaxy, containing a few million visible stars. The picture today is more complete and much richer. The cosmos began 13.7 billion years ago with the big bang. A fraction of a second after the beginning, the universe was a hot, formless soup of the most elementary particles, quarks and leptons. As it expanded and cooled, layer on layer of structure developed: neutrons and protons, atomic nuclei, atoms, stars, galaxies, clusters of galaxies, and finally superclusters. The observable part of the universe is now inhabited by 100 billion galaxies, each containing 100 billion stars and probably a similar number of planets. Galaxies themselves are held together by the gravity of the mysterious dark matter. The universe continues to expand and indeed does so at an accelerating pace, driven by dark energy, an even more mysterious form of energy whose gravitational force repels rather than attracts.

The overarching theme in our universe's story is the evolution from the simplicity of the quark soup to the complexity we see today in galaxies, stars, planets and life. These features emerged one by one over billions of years, guided by the basic laws of physics. In our journey back to the beginning of creation, cosmologists first travel through the well-established history of the universe back to the first microsecond; then to within 10

On supporting science journalism

If you're enjoying this article, consider supporting our award-winning journalism by subscribing . By purchasing a subscription you are helping to ensure the future of impactful stories about the discoveries and ideas shaping our world today.

−34 second of the beginning, for which ideas are well formed but the evidence is not yet firm; and finally to the earliest moments of creation, for which our ideas are still just speculation. Although the ultimate origin of the universe still lies beyond our grasp, we have tantalizing conjectures, including the notion of the multiverse, whereby the universe comprises an infinite number of disconnected subuniverses.

Expanding Universe

Using the 100-inch Hooker telescope on Mount Wilson in 1924, Edwin Hubble showed that fuzzy nebulae, studied and speculated about for several hundred years, were galaxies just like our own—thereby enlarging the known universe by 100 billion. A few years later he showed that galaxies are moving apart from one another in a regular pattern described by a mathematical relation now known as Hubble's law, according to which galaxies that are farther away are moving faster. It is Hubble's law, played back in time, that points to a big bang 13.7 billion years ago.

Hubble's law found ready interpretation within general relativity: space itself is expanding, and galaxies are being carried along for the ride [ see box on opposite page ]. Light, too, is being stretched, or redshifted—a process that saps its energy, so that the universe cools as it expands. Cosmic expansion provides the narrative for understanding how today's universe came to be. As cosmologists imagine rewinding the clock, the universe becomes denser, hotter, more extreme and simpler. In exploring the beginning, we also probe the inner workings of nature by taking advantage of an accelerator more powerful than any built on Earth—the big bang itself.

By looking out into space with telescopes, astronomers peer back in time—and the larger the telescope, the farther back they peer. The light from distant galaxies reveals an earlier epoch, and the amount this light has redshifted indicates how much the universe has grown in the intervening years. The current record holder has a redshift of more than 10, representing a time when the universe was less than one-eleventh its present size and only a few hundred million years old. Telescopes such as the Hubble Space Telescope and the 10-meter Keck telescopes on Mauna Kea routinely take us back to the epoch when galaxies like ours were forming, a few billion years after the big bang. Light from even earlier times is so strongly redshifted that astronomers must look for it in the infrared and radio bands. Telescopes such as the planned James Webb Space Telescope, a 6.5-meter infrared telescope, and the Atacama Large Millimeter Array (ALMA), a network of 66 radio dishes already operating in northern Chile, can take us back to the birth of the very first stars and galaxies.

Computer simulations say that those stars and galaxies emerged when the universe was about 100 million years old. Before then, the universe went through a time called the “dark ages,” when it was almost pitch-black. Space was filled with a featureless gruel, five parts dark matter and one part hydrogen and helium, that thinned out as the universe expanded. Matter was slightly uneven in density, and gravity acted to amplify these density variations: denser regions expanded more slowly than less dense ones did. By 100 million years the densest regions did not merely expand more slowly but actually started to collapse. Such regions contained about one million solar masses of material each. They were the first gravitationally bound objects in the cosmos.

Dark matter accounted for the bulk of their mass but was, as its name suggests, unable to emit or absorb light. So it remained in an extended cloud. Hydrogen and helium gas, on the other hand, emitted light, lost energy and became concentrated in the center of the cloud. Eventually it collapsed all the way down to stars. These first stars were much more massive than today's—hundreds of solar masses. They lived very short lives before exploding and leaving behind the first heavy elements. Over the next billion years or so the force of gravity assembled these million-solar-mass clouds into the first galaxies.

Radiation emitted from primordial hydrogen clouds, which were greatly redshifted by the expansion, should be detectable by giant arrays of radio antennas with a total collecting area of up to one square kilometer. When built, these arrays will watch as the first generation of stars and galaxies ionize the hydrogen and bring the dark ages to an end.

Faint Glow of a Hot Beginning

Beyond the dark ages is the glow of the hot big bang at a redshift of 1,100. This radiation has been redshifted from visible light (a red-orange glow) beyond even the infrared to microwaves. What we see from that time is a wall of microwave radiation filling the sky—the cosmic microwave background radiation (CMB), discovered in 1964 by Arno Penzias and Robert Wilson. It provides a glimpse of the universe at the tender age of 380,000 years, the period when atoms formed. Before then, the universe was a nearly uniform soup of atomic nuclei, electrons and photons. As it cooled to a temperature of about 3,000 kelvins, the nuclei and electrons came together to form atoms. Photons ceased to scatter off electrons and streamed across space unhindered, revealing the universe at a simpler time before the existence of stars and galaxies.

In 1992 NASA's Cosmic Background Explorer satellite discovered that the intensity of the CMB has slight variations—about 0.001 percent—reflecting a slight lumpiness in the distribution of matter. The degree of primordial lumpiness was enough to act as seeds for the galaxies and larger structures that would later emerge from the action of gravity. The pattern of these variations in the CMB across the sky also encodes basic properties of the universe, such as its overall density and composition, as well as hints about its earliest moments; the careful study of these variations has revealed much about the universe [ see illustration on page 41 ].

As we roll a movie of the universe's evolution back from that point, we see the primordial plasma becoming ever hotter and denser. Prior to about 100,000 years, the energy density of radiation exceeded that of matter, which kept matter from clumping. Therefore, this time marks the beginning of gravitational assembly of all the structure seen in the universe today. Still further back, when the universe was less than a second old, atomic nuclei had yet to form; only their constituent particles—namely, protons and neutrons—existed. Nuclei emerged when the universe was seconds old and the temperatures and densities were just right for nuclear reactions. This process of big bang nucleosynthesis produced only the lightest elements in the periodic table: a lot of helium (about 25 percent of the atoms in the universe by mass) and smaller amounts of lithium and the isotopes deuterium and helium 3. The rest of the plasma (about 75 percent) stayed in the form of protons that would eventually become hydrogen atoms. All the rest of the elements in the periodic table formed billions of years later in stars and stellar explosions.

Nucleosynthesis theory accurately predicts the abundances of elements and isotopes measured in the most primeval samples of the universe—namely, the oldest stars and high-redshift gas clouds. The abundance of deuterium, which is very sensitive to the density of atoms in the universe, plays a special role: its measured value implies that ordinary matter amounts to 4.5 ± 0.1 percent of the total energy density. (The remainder is dark matter and dark energy.) This estimate agrees precisely with the composition that has been gleaned from the analysis of the CMB. This correspondence is a great triumph. That these two very different measures, one based on nuclear physics when the universe was a second old and the other based on atomic physics when the universe was 380,000 years old, agree is a strong check not just on our model of how the cosmos evolved but on all of modern physics.

Answers in the Quark Soup

Earlier than a microsecond, even protons and neutrons could not exist and the universe was a soup of nature's basic building blocks: quarks, leptons, and the force carriers (photons, the W and Z bosons, and gluons). We can be confident that the quark soup existed because experiments at particle accelerators have re-created similar conditions here on Earth today.

To explore this epoch, cosmologists rely not on bigger and better telescopes but also on powerful ideas from particle physics. The development of the Standard Model of particle physics 30 years ago has led to bold speculations, including string theory, about how the seemingly disparate fundamental particles and forces are unified. As it turns out, these new ideas have implications for cosmology that are as important as the original idea of the hot big bang. They hint at deep and unexpected connections between the world of the very big and of the very small. Answers to three key questions—the nature of dark matter, the asymmetry between matter and antimatter, and the origin of the lumpy quark soup itself—have been starting to emerge.

It now appears that the early quark soup phase was the birthplace of dark matter. The identity of dark matter remains unclear, but its existence is very well established. Our galaxy and every other galaxy, as well as clusters of galaxies, are held together by the gravity of unseen dark matter. Whatever the dark matter is, it must interact weakly with ordinary matter; otherwise it would have shown itself in other ways. Attempts to find a unifying framework for the forces and particles of nature have led to the prediction of stable or long-lived particles that might constitute dark matter. Some of these hypothetical particles would be present today as remnants of the quark soup phase in the correct numbers to be the dark matter and could even be detected.

One candidate is the called the neutralino, the lightest of a putative new class of particles that are heavier counterparts of the known particles. The neutralino is thought to have a mass between 100 and 1,000 times that of the proton, just within the reach of experiments now under way at the Large Hadron Collider at CERN near Geneva. Physicists have also built ultrasensitive underground detectors, as well as satellite and balloon-borne varieties, to look for this particle or the by-products of its interactions.

A second candidate is the axion, a superlightweight particle about one-trillionth the mass of the electron. Its existence is hinted at by subtleties that the Standard Model predicts in the behavior of quarks. Efforts to detect it exploit the fact that in a very strong magnetic field, an axion can transform into a photon. Both neutralinos and axions have the important property that they are, in a specific technical sense, “cold.” Although they formed under broiling hot conditions, they were slow-moving and thus easily clumped into galaxies.

The early quark soup phase probably also holds the secret to why the universe today contains mostly matter rather than both matter and antimatter. Physicists think the universe originally had equal amounts of each, but at some point it developed a slight excess of matter—about one extra quark for every billion antiquarks. This imbalance ensured that enough quarks would survive annihilation with antiquarks as the universe expanded and cooled. More than 40 years ago accelerator experiments revealed that the laws of physics are ever so slightly biased in favor of matter, and in a still to be understood series of particle interactions very early on, this slight bias led to the creation of the quark excess.

The quark soup itself is thought to have arisen at an extremely early time—perhaps 10

−34 second after the big bang in a burst of cosmic expansion known as inflation. This burst, driven by the energy of a new field (thought to be distantly related to the recently discovered Higgs field) called the inflaton, would explain such basic properties of the cosmos as its general uniformity and the lumpiness that seeded galaxies and other structures in the universe. As the inflaton field decayed away, it released its remaining energy into quarks and other particles, thereby creating the heat of the big bang and the quark soup itself.

Inflation leads to a profound connection between the quarks and the cosmos: quantum fluctuations in the inflaton field on the subatomic scale get blown up to astrophysical size by the rapid expansion and become the seeds for all the structure we see today. In other words, the pattern seen on the CMB sky is a giant image of the subatomic world. Observations of the CMB agree with this prediction, providing the strongest evidence that inflation or something like it occurred very early in the history of the universe.

Birth of the Universe

As cosmologists try to go even further to understand the beginning of the universe itself, our ideas become less firm. Einstein's general theory of relativity has provided the theoretical foundation for a century of progress in our understanding of the evolution of the universe. Because the general theory of relativity does not incorporate quantum theory, the other pillar of contemporary physics, it cannot be relied upon to address the very earliest moments of creation when quantum gravity effects should have been important. The discipline's greatest challenge is to develop a quantum theory of gravity, with which we will be able to address the so-called Planck era prior to about 10

−43 second, when spacetime itself was taking shape.

Tentative attempts at a unified theory have led to some remarkable speculations about our very beginnings. String theory, for example, predicts the existence of additional dimensions of space and possibly other universes floating in that larger space. What we call the big bang may have been the collision of our universe with another. The marriage of string theory with the concept of inflation has led to perhaps the boldest idea yet, that of a multiverse—namely, that the universe comprises an infinite number of disconnected pieces, each with its own local laws of physics.

The multiverse concept, which is still in its infancy, turns on two key theoretical findings. First, the equations describing inflation strongly suggest that if inflation happened once, it should happen again and again, with an infinite number of inflationary regions created over time. Nothing can travel between these regions, so they have no effect on one another. Second, string theory suggests that these regions have different physical parameters, such as the number of spatial dimensions and the kinds of stable particles.

The idea of the multiverse provides novel answers to two of the biggest questions in all of science: what happened before the big bang and why the laws of physics are as they are (Albert Einstein's famous musing about “whether God had any choice” about the laws). The multiverse makes moot the question of what happened before the big bang because there were an infinite number of big bang beginnings, each triggered by its own burst of inflation. Likewise, Einstein's question is pushed aside: within the infinity of universes, all possibilities for the laws of physics have been tried, so there is no particular reason for the laws that govern our universe.

Cosmologists have mixed feelings about the multiverse. If the disconnected subuniverses are truly incommunicado, we cannot hope to test their existence; they seem to lie beyond the realm of science. Part of me wants to scream, One universe at a time, please! On the other hand, the multiverse solves various conceptual problems. If correct, it will make Hubble's enlargement of the universe by a mere factor of 100 billion and Copernicus's banishment of Earth from the center of the universe in the 16th century seem like small advances in the understanding of our place in the cosmos.

Modern cosmology has humbled us. We are made of protons, neutrons and electrons, which together account for only 4.5 percent of the universe, and we exist only because of subtle connections between the very small and the very large. Events guided by the microscopic laws of physics allowed matter to dominate over antimatter, generated the lumpiness that seeded galaxies, filled space with dark matter particles that provide the gravitational infrastructure, and ensured that dark matter could build galaxies before dark energy became significant and the expansion began to accelerate [ see box above ]. At the same time, cosmology by its very nature is arrogant. The idea that we can understand something as vast in both space and time as our universe is, on the face of it, preposterous. This strange mix of humility and arrogance has gotten us pretty far in the past century in advancing our understanding of the present universe and its origin. I am bullish on further progress in the coming years, and I firmly believe we are living in a golden age of cosmology.

The Cosmic Perspective

By Neil deGrasse Tyson

Natural History Magazine

The 100 th essay in the “Universe” series.

Embracing cosmic realities can give us a more enlightened view of human life.

Of all the sciences cultivated by mankind, Astronomy is acknowledged to be, and undoubtedly is, the most sublime, the most interesting, and the most useful. For, by knowledge derived from this science, not only the bulk of the Earth is discovered… but our very faculties are enlarged with the grandeur of the ideas it conveys, our minds exalted above [their] low contracted prejudices. James Ferguson, Astronomy Explained Upon Sir Isaac Newton’s Principles, And Made Easy To Those Who Have Not Studied Mathematics (1757)

Long before anyone knew that the universe had a beginning, before we knew that the nearest large galaxy lies two and a half million light years from Earth, before we knew how stars work or whether atoms exist, James Ferguson’s enthusiastic introduction to his favorite science rang true. Yet his words, apart from their eighteenth-century flourish, could have been written yesterday.

But who gets to think that way? Who gets to celebrate this cosmic view of life? Not the migrant farmworker. Not the sweatshop worker. Certainly not the homeless person rummaging through the trash for food. You need the luxury of time not spent on mere survival. You need to live in a nation whose government values the search to understand humanity’s place in the universe. You need a society in which intellectual pursuit can take you to the frontiers of discovery, and in which news of your discoveries can be routinely disseminated. By those measures, most citizens of industrialized nations do quite well.

Yet the cosmic view comes with a hidden cost. When I travel thousands of miles to spend a few moments in the fast-moving shadow of the Moon during a total solar eclipse, sometimes I lose sight of Earth.

When I pause and reflect on our expanding universe, with its galaxies hurtling away from one another, embedded within the ever-stretching, four-dimensional fabric of space and time, sometimes I forget that uncounted people walk this Earth without food or shelter, and that children are disproportionately represented among them.

When I pore over the data that establish the mysterious presence of dark matter and dark energy throughout the universe, sometimes I forget that every day—every twenty-four-hour rotation of Earth—people kill and get killed in the name of someone else’s conception of God, and that some people who do not kill in the name of God kill in the name of their nation’s needs or wants.

When I track the orbits of asteroids, comets, and planets, each one a pirouetting dancer in a cosmic ballet choreographed by the forces of gravity, sometimes I forget that too many people act in wanton disregard for the delicate interplay of Earth’s atmosphere, oceans, and land, with consequences that our children and our children’s children will witness and pay for with their health and well-being.

And sometimes I forget that powerful people rarely do all they can to help those who cannot help themselves.

I occasionally forget those things because, however big the world is—in our hearts, our minds, and our outsize atlases—the universe is even bigger. A depressing thought to some, but a liberating thought to me.

Consider an adult who tends to the traumas of a child: a broken toy, a scraped knee, a schoolyard bully. Adults know that kids have no clue what constitutes a genuine problem, because inexperience greatly limits their childhood perspective.

As grown-ups, dare we admit to ourselves that we, too, have a collective immaturity of view? Dare we admit that our thoughts and behaviors spring from a belief that the world revolves around us? Apparently not. And the evidence abounds. Part the curtains of society’s racial, ethnic, religious, national, and cultural conflicts, and you find the human ego turning the knobs and pulling the levers.

Now imagine a world in which everyone, but especially people with power and influence, holds an expanded view of our place in the cosmos. With that perspective, our problems would shrink—or never arise at all—and we could celebrate our earthly differences while shunning the behavior of our predecessors who slaughtered each other because of them.

Back in February 2000, the newly rebuilt Hayden Planetarium featured a space show called Passport to the Universe , which took visitors on a virtual zoom from New York City to the edge of the cosmos. En route the audience saw Earth, then the solar system, then the 100 billion stars of the Milky Way galaxy shrink to barely visible dots on the planetarium dome.

Within a month of opening day, I received a letter from an Ivy League professor of psychology whose expertise was things that make people feel insignificant. I never knew one could specialize in such a field. The guy wanted to administer a before-and-after questionnaire to visitors, assessing the depth of their depression after viewing the show. Passport to the Universe, he wrote, elicited the most dramatic feelings of smallness he had ever experienced.

How could that be? Every time I see the space show (and others we’ve produced), I feel alive and spirited and connected. I also feel large, knowing that the goings-on within the three-pound human brain are what enabled us to figure out our place in the universe.

Allow me to suggest that it’s the professor, not I, who has misread nature. His ego was too big to begin with, inflated by delusions of significance and fed by cultural assumptions that human beings are more important than everything else in the universe.

In all fairness to the fellow, powerful forces in society leave most of us susceptible. As was I … until the day I learned in biology class that more bacteria live and work in one centimeter of my colon than the number of people who have ever existed in the world. That kind of information makes you think twice about who—or what—is actually in charge.

From that day on, I began to think of people not as the masters of space and time but as participants in a great cosmic chain of being, with a direct genetic link across species both living and extinct, extending back nearly 4 billion years to the earliest single-celled organisms on Earth.

know what you’re thinking: we’re smarter than bacteria.

No doubt about it, we’re smarter than every other living creature that ever walked, crawled, or slithered on Earth. But how smart is that? We cook our food. We compose poetry and music. We do art and science. We’re good at math. Even if you’re bad at math, you’re probably much better at it than the smartest chimpanzee, whose genetic identity varies in only trifling ways from ours. Try as they might, primatologists will never get a chimpanzee to learn the multiplication table or do long division.

If small genetic differences between us and our fellow apes account for our vast difference in intelligence, maybe that difference in intelligence is not so vast after all.

Imagine a life-form whose brainpower is to ours as ours is to a chimpanzee’s. To such a species our highest mental achievements would be trivial. Their toddlers, instead of learning their ABCs on Sesame Street, would learn multivariable calculus on Boolean Boulevard. Our most complex theorems, our deepest philosophies, the cherished works of our most creative artists, would be projects their schoolkids bring home for Mom and Dad to display on the refrigerator door. These creatures would study Stephen Hawking (who occupies the same endowed professorship once held by Newton at the University of Cambridge) because he’s slightly more clever than other humans, owing to his ability to do theoretical astrophysics and other rudimentary calculations in his head.

If a huge genetic gap separated us from our closest relative in the animal kingdom, we could justifiably celebrate our brilliance. We might be entitled to walk around thinking we’re distant and distinct from our fellow creatures. But no such gap exists. Instead, we are one with the rest of nature, fitting neither above nor below, but within.

Need more ego softeners? Simple comparisons of quantity, size, and scale do the job well.

Take water. It’s simple, common, and vital. There are more molecules of water in an eight-ounce cup of the stuff than there are cups of water in all the world’s oceans. Every cup that passes through a single person and eventually rejoins the world’s water supply holds enough molecules to mix 1,500 of them into every other cup of water in the world. No way around it: some of the water you just drank passed through the kidneys of Socrates, Genghis Khan, and Joan of Arc.

How about air? Also vital. A single breathful draws in more air molecules than there are breathfuls of air in Earth’s entire atmosphere. That means some of the air you just breathed passed through the lungs of Napoleon, Beethoven, Lincoln, and Billy the Kid.

Time to get cosmic. There are more stars in the universe than grains of sand on any beach, more stars than seconds have passed since Earth formed, more stars than words and sounds ever uttered by all the humans who ever lived.

Want a sweeping view of the past? Our unfolding cosmic perspective takes you there. Light takes time to reach Earth’s observatories from the depths of space, and so you see objects and phenomena not as they are but as they once were. That means the universe acts like a giant time machine: the farther away you look, the further back in time you see—back almost to the beginning of time itself. Within that horizon of reckoning, cosmic evolution unfolds continuously, in full view.

Want to know what we’re made of? Again, the cosmic perspective offers a bigger answer than you might expect. The chemical elements of the universe are forged in the fires of high-mass stars that end their lives in stupendous explosions, enriching their host galaxies with the chemical arsenal of life as we know it. The result? The four most common chemically active elements in the universe—hydrogen, oxygen, carbon, and nitrogen—are the four most common elements of life on Earth. We are not simply in the universe. The universe is in us.

Yes, we are stardust. But we may not be of this Earth. Several separate lines of research, when considered together, have forced investigators to reassess who we think we are and where we think we came from.

First, computer simulations show that when a large asteroid strikes a planet, the surrounding areas can recoil from the impact energy, catapulting rocks into space. From there, they can travel to—and land on—other planetary surfaces. Second, microorganisms can be hardy. Some survive the extremes of temperature, pressure, and radiation inherent in space travel. If the rocky flotsam from an impact hails from a planet with life, microscopic fauna could have stowed away in the rocks’ nooks and crannies. Third, recent evidence suggests that shortly after the formation of our solar system, Mars was wet, and perhaps fertile, even before Earth was.

Those findings mean it’s conceivable that life began on Mars and later seeded life on Earth, a process known as panspermia. So all earthlings might—just might—be descendants of Martians.

Again and again across the centuries, cosmic discoveries have demoted our self-image. Earth was once assumed to be astronomically unique, until astronomers learned that Earth is just another planet orbiting the Sun. Then we presumed the Sun was unique, until we learned that the countless stars of the night sky are suns themselves. Then we presumed our galaxy, the Milky Way, was the entire known universe, until we established that the countless fuzzy things in the sky are other galaxies, dotting the landscape of our known universe.

Today, how easy it is to presume that one universe is all there is. Yet emerging theories of modern cosmology, as well as the continually reaffirmed improbability that anything is unique, require that we remain open to the latest assault on our plea for distinctiveness: multiple universes, otherwise known as the  multiverse , in which ours is just one of countless bubbles bursting forth from the fabric of the cosmos.

The cosmic perspective flows from fundamental knowledge. But it’s more than just what you know. It’s also about having the wisdom and insight to apply that knowledge to assessing our place in the universe. And its attributes are clear:

  • The cosmic perspective comes from the frontiers of science, yet it’s not solely the province of the scientist. The cosmic perspective belongs to everyone.
  • The cosmic perspective is humble.
  • The cosmic perspective is spiritual—even redemptive—but not religious.
  • The cosmic perspective enables us to grasp, in the same thought, the large and the small.
  • The cosmic perspective opens our minds to extraordinary ideas but does not leave them so open that our brains spill out, making us susceptible to believing anything we’re told.
  • The cosmic perspective opens our eyes to the universe, not as a benevolent cradle designed to nurture life but as a cold, lonely, hazardous place.
  • The cosmic perspective shows Earth to be a mote, but a precious mote and, for the moment, the only home we have.
  • The cosmic perspective finds beauty in the images of planets, moons, stars, and nebulae but also celebrates the laws of physics that shape them.
  • The cosmic perspective enables us to see beyond our circumstances, allowing us to transcend the primal search for food, shelter, and sex.
  • The cosmic perspective reminds us that in space, where there is no air, a flag will not wave—an indication that perhaps flag waving and space exploration do not mix.
  • The cosmic perspective not only embraces our genetic kinship with all life on Earth but also values our chemical kinship with any yet-to-be discovered life in the universe, as well as our atomic kinship with the universe itself.

At least once a week, if not once a day, we might each ponder what cosmic truths lie undiscovered before us, perhaps awaiting the arrival of a clever thinker, an ingenious experiment, or an innovative space mission to reveal them. We might further ponder how those discoveries may one day transform life on Earth.

Absent such curiosity, we are no different from the provincial farmer who expresses no need to venture beyond the county line, because his forty acres meet all his needs. Yet if all our predecessors had felt that way, the farmer would instead be a cave dweller, chasing down his dinner with a stick and a rock.

During our brief stay on planet Earth, we owe ourselves and our descendants the opportunity to explore—in part because it’s fun to do. But there’s a far nobler reason. The day our knowledge of the cosmos ceases to expand, we risk regressing to the childish view that the universe figuratively and literally revolves around us. In that bleak world, arms-bearing, resource-hungry people and nations would be prone to act on their “low contracted prejudices.” And that would be the last gasp of human enlightenment—until the rise of a visionary new culture that could once again embrace the cosmic perspective.

How the Universe Works Essay

For us, the Universe we live in is absolute and unlimited. We think it existed, exists and will always exist, although something inside us has never ceased to claim that everything has a beginning. There are a lot of the Universe origin theories, and the most famous one is probably the Big Bang Theory, according to which there was a great explosion of dense matter and energy 13 billion years ago, which resulted in what we nowadays call the Universe. Many scientists also believe that the Big Bang was just a cycle in an endless series of matter explosions, which has neither a beginning nor an end. Points of view differ, and the dispute lasts for centuries because of the attempts to understand and organize the stardate back to ancient times.

Over time the Universe was divided into galaxies, which nowadays are numbered in millions. More and more of them are being opened, so even the scientists cannot tell the exact number of the existing ones, although they managed to classify them into three main types: Spiral, Elliptical and Irregular. But whatever the type of Galaxy is, each one is composed of numerous stars, planets, asteroids, meteoroids intergalactic gas and black matter.

The Galaxy we have the pleasure to live in is called The Milky Way and refers to a type of spiral galaxy. It has a form of a flat disc with a large bulge in the middle. The Earth used to be considered the centre of our Galaxy for a very long time. After this the scientists made a mistaken assumption, stating that the centre of the Milky Way Galaxy was the Sun. In fact, the “heart” of the Galaxy located in its middle is a supermassive black hole, which is overwhelming in its size being three million times larger than the Sun.

These data have recently been obtained as a result of a constant 15-year long space study by scientists of the Galactic Centre and its ESO telescopes at the La Silla Paranal Observatory. The black hole situated in The Milky way does not come close to other cosmic bodies and has unique abilities to convert matter into energy and extrude material at a speed close to the speed of light. By far there have not been detected any objects in the entire universe with such incredible properties.

The place occupied by our Sun among the stars in the Galaxy is fairly modest: it is an average one among billions of ordinary stars and it is twice farther from the centre of the Galaxy than from its edge. However, for us, the Sun will always remain the most beautiful and important star, the only one in its system, which served as a name for the whole system. The Solar System consists of eight planets, each located on its own distances, and the farther the planet from the Sun is, the longer its orbit is. Each planet has its own natural satellites, and there may be either one of them, as in the Earth’s case, for example, or ten and more, as some giant planets have. There are two exceptions to this system though – Mercury and Venus have no moons.

Our Sun is very bright and glittering, and its surface recalls a boiling gas mixture with a temperature of about 9941 °F. It consists of 74% of hydrogen, 24% of helium and the remaining 2% include a small amount of iron and nickel. In other words, the entire Solar System is composed mostly of hydrogen. Its structure, of course, includes other substances, but their percentage is only 0.1%. The Sun is heavier than all the planets, so it has a huge gravitational force that keeps the planets in their orbits.

The Earth is the third planet in The Solar System and is about 150 million miles away, while the light emitted by the Sun is still able to cover this distance in just eight minutes. The Sun mass is bigger than the Earth’s approximately 330 thousand times and larger in 109 times.

Although these numbers may seem huge to us, there exist much bigger stars than the Sun, such as Sirius, Betelgeuse and Antares, though they are incredibly far away. But their size and brightness give us a chance to distinguish them in the night sky, among other 6000 stars visible to the naked man’s eye on a clear night sky.

Size is not the only difference stars have in common. Colour is another category that varies depending on the temperature and can fluctuate from red to white or blue. The coolest stars are represented by the red colour, while the blue one is an indication of the hottest stars, which surface temperatures can rise above 12000° F.

There are also many similarities between the stars. They are all born from a cloud of cold molecular hydrogen, which is gravitationally compressed at its first stage. When the cloud is fragmented, many of its parts are generated in separate stars. Material is shaped in the form close to a ball and constantly undergoes the influence of its own gravity. Meanwhile, the temperature in its centre goes higher and higher until it runs up to the level necessary to ignite nuclear fusion.

If one bothered to collect all stars together and compare their size and structure in order to find out which ones are the most popular, the biggest group would definitely consist of red dwarfs. They have less than 50% of the mass of the Sun and can weigh even 7.5 per cent less.

Death is another common event in stars’ lives. They pass away gradually (billions of years) because of the failure of nuclear fuel. Hydrogen is converted to helium, which is concentrated in the nucleus, and helium reactions occur only on the surface of the star. The core of the star begins to cool and the stars collapse inside. Unfortunately, according to scientists, our Sun will also burn out completely in 6 billion years.

All these facts and other data about the stars and space are available to us mostly thanks to telescopes. Today, there are seven complexes that have telescopes with a mirror diameter of more than eight meters. The largest of them is located in the Atacama Large Millimeter Research Center Array in Chile. The biggest telescope in the world is made up of 66 radio telescopes with diameters from seven to twelve meters. They are all combined into a single device that has an incredible resolution and can capture objects in the depths of the early Universe, where the galaxies were formed billions of years ago.

In the nearest future, we expect to see the construction and introduction of telescope tools with a primary mirror diameter of 30 and 39 meters. So, the biggest star records are still to be set. Who knows what other secrets our Universe will tell us and whether all her secrets can be revealed at all. On the other hand, the most important thing is what we want to know and what we actually need: to disclose all mysteries, classify all-stars, systems and galaxies and mark the accurate space borders or fascinate the very process of finding out new information about how our Universe works.

  • Chicago (A-D)
  • Chicago (N-B)

IvyPanda. (2022, January 29). How the Universe Works. https://ivypanda.com/essays/how-the-universe-works/

"How the Universe Works." IvyPanda , 29 Jan. 2022, ivypanda.com/essays/how-the-universe-works/.

IvyPanda . (2022) 'How the Universe Works'. 29 January.

IvyPanda . 2022. "How the Universe Works." January 29, 2022. https://ivypanda.com/essays/how-the-universe-works/.

1. IvyPanda . "How the Universe Works." January 29, 2022. https://ivypanda.com/essays/how-the-universe-works/.

Bibliography

IvyPanda . "How the Universe Works." January 29, 2022. https://ivypanda.com/essays/how-the-universe-works/.

  • The Origin of Galaxies: Theories Explaining
  • The Milky Way and the Expanding Universe
  • Telescope's Part in Astronomy
  • Liquid Lake on Mars
  • The Gregorian Calendar and the Egyptian Calendar
  • Humanities: Galileo and Four Moons of Jupiter
  • Solar Calendar and Its Different Types
  • How Close Is the Success of Suborbital Commercial Space Shuttles?

ESSAY SAUCE

ESSAY SAUCE

FOR STUDENTS : ALL THE INGREDIENTS OF A GOOD ESSAY

Essay: The Universe

Essay details and download:.

  • Subject area(s): Science essays
  • Reading time: 4 minutes
  • Price: Free download
  • Published: 22 September 2015*
  • File format: Text
  • Words: 1,050 (approx)
  • Number of pages: 5 (approx)

Text preview of this essay:

This page of the essay has 1,050 words. Download the full version above.

Abstract The universe is a known place to our young and sensitive eyes. Stars galaxies, planets, comets, asteroids are part of this abundant place that has an end of 13. 8 billion years to us. The age of the universe was known by studying the oldest objects within the universe, which can be studied using binary system or the HR Diagram. Knowing how fast the universe is expanding can be done by knowing how close and far are objects from us and their velocity towards or away from our galaxy. Finally we can know the observable universe by knowing how light and light speed works and travels in space. Introduction What is in the universe? Galaxies, planets, stars, comets, asteroids, and much other chemical composition ‘stuff’ are part of the universe. We are not able to see the entire universe but just the observable part of it. The observable universe is a term referring to the volume of space that we are physically able to detect, it can be defined as what we are potentially able to see, is there more? That is unknown to our eyes. The universe is 13.8 billion years old to us this is until what our eyes can see. The age of the universe was known because of these main reasons, one, by studying the oldest objects within the universe and second, by measuring how fast the universe is expanding, but the one and most important is knowing how light and light speed works and travels in space. Main body Studying the oldest objects within the universe Many countless objects are part of the universe having each a different birthday, one year, ten years and up to a billion years of age. Studying the age of the objects in the universe has some work attached to it. The life cycle of a star is based on its mass (Redd). We can know that if a star is bright it has a bigger mass causing it to have a longer life cycle. Measuring the mass of a star is easier when using a binary system. Binary system is when two (bi) start orbit around each other. By measuring the orbital speed the orbital period and the size of the orbit we can get to know the mass of both the stars. Another easy method to know the mass of the star and therefore the age of it is using the H-R diagram. Depending where the star is in the H-R diagram we can know the mass and therefore its age. Therefore an example can be, if we want to know the age of star ‘A’ and star ‘B’ we first measure the speed, the orbital period between star ‘A’ and star ‘B’, the size of the orbit and we get to know the mass both. The stellar mass is the mass that we have been using and continue to use in order to know determine the age of a star. Hertzsprung’Russell diagram One of the most useful and powerful plots in astrophysics is the Hertzsprung-Russell diagram (hereafter called the H-R diagram). It originated in 1911 when the Danish astronomer, Ejnar Hertzsprung, plotted the absolute magnitude of stars against their colour (hence effective temperature). Independently in 1913 the American astronomer Henry Norris Russell used spectral class against absolute magnitude. Their resultant plots showed that the relationship between temperature and luminosity of a star was not random but instead appeared to fall into distinct groups (Australia). This diagram has several different representation one of which is called the observational Hertzsprung- Russell diagram or color-magnitude diagram (CMD). What this diagram does is that when stars are at the same distance it compares the color, using the color index which can state which star is more luminous. Therefore once we are able to know which star is more luminous we can determine it age. How fast the universe is expanding For a fact we know that stars die but there are some stars that live longer than other and by discovering how old is one star and them discovering that another star is older we have come to know that they may not be the limit and by looking more in to it we may find older objects. The universe is expanding every day away from us and towards us. Galaxies and stars are moving and we can know if a star is close to us, away from us or if it is moving closer or farther away from us. Knowing the wavelength range by using infrared light can answer us where are the stars standing now and once we know where the stars are know we can know their color and therefore their age. Farther stars and galaxies are moving way faster from us that does closer stars and galaxies, this is due to the young age they have which allows them to move in a faster rate. Light The speed of light is what determines our possible visibility of the universe. The speed of light is defines as C= the speed of light= 300,000km/s or 3.0 * 10^8 m/s. A light year is the distance traveled in one year. If you see a star that is 40 light years away, you are seeing it as it was 40 years ago. Thus the deeper you peek into space, the farther you are seeing back in time. Any event that happened beyond a certain point in the past is unknowable to us if the signal from it hasn’t had time to reach us (Observable universe). We can see up to objects that are 13.8 billion light years away from us because 13.8 billion light years is our visible limit. For that reason the universe that old, and there may be more but it has not yet reached our eyes. Conclusion Human beings have a limit of the visibility of the universe. The universe to our yes is enormous with all different stars ‘stuff’ that are part of it. Our eyes and our telescopes can only see back to 13.8 billion years. The light has traveled to us in a speed of 13.8 billion light years, and has not yet seen more. We do not have knowledge of how old or what is beyond what we see, this will be known in several billion years more, if they are to come.

...(download the rest of the essay above)

About this essay:

If you use part of this page in your own work, you need to provide a citation, as follows:

Essay Sauce, The Universe . Available from:<https://www.essaysauce.com/science-essays/essay-the-universe/> [Accessed 09-05-24].

These Science essays have been submitted to us by students in order to help you with your studies.

* This essay may have been previously published on Essay.uk.com at an earlier date.

Essay Categories:

  • Accounting essays
  • Architecture essays
  • Business essays
  • Computer science essays
  • Criminology essays
  • Economics essays
  • Education essays
  • Engineering essays
  • English language essays
  • Environmental studies essays
  • Essay examples
  • Finance essays
  • Geography essays
  • Health essays
  • History essays
  • Hospitality and tourism essays
  • Human rights essays
  • Information technology essays
  • International relations
  • Leadership essays
  • Linguistics essays
  • Literature essays
  • Management essays
  • Marketing essays
  • Mathematics essays
  • Media essays
  • Medicine essays
  • Military essays
  • Miscellaneous essays
  • Music Essays
  • Nursing essays
  • Philosophy essays
  • Photography and arts essays
  • Politics essays
  • Project management essays
  • Psychology essays
  • Religious studies and theology essays
  • Sample essays
  • Science essays
  • Social work essays
  • Sociology essays
  • Sports essays
  • Types of essay
  • Zoology essays

Solar System Essay for Students and Children

500+ words essay on solar system.

Our solar system consists of eight planets that revolve around the Sun, which is central to our solar system . These planets have broadly been classified into two categories that are inner planets and outer planets. Mercury, Venus, Earth, and Mars are called inner planets. The inner planets are closer to the Sun and they are smaller in size as compared to the outer planets. These are also referred to as the Terrestrial planets. And the other four Jupiter, Saturn, Uranus, and Neptune are termed as the outer planets. These four are massive in size and are often referred to as Giant planets.

solar system essay

The smallest planet in our solar system is Mercury, which is also closest to the Sun. The geological features of Mercury consist of lobed ridges and impact craters. Being closest to the Sun the Mercury’s temperature sores extremely high during the day time. Mercury can go as high as 450 degree Celsius but surprisingly the nights here are freezing cold. Mercury has a diameter of 4,878 km and Mercury does not have any natural satellite like Earth.

Venus is also said to be the hottest planet of our solar system. It has a toxic atmosphere that always traps heat. Venus is also the brightest planet and it is visible to the naked eye. Venus has a thick silicate layer around an iron core which is also similar to that of Earth. Astronomers have seen traces of internal geological activity on Venus planet. Venus has a diameter of 12,104 km and it is just like Mars. Venus also does not have any natural satellite like Earth.

Earth is the largest inner planet. It is covered two-third with water. Earth is the only planet in our solar system where life is possible. Earth’s atmosphere which is rich in nitrogen and oxygen makes it fit for the survival of various species of flora and fauna. However human activities are negatively impacting its atmosphere. Earth has a diameter of 12,760 km and Earth has one natural satellite that is the moon.

Get the huge list of more than 500 Essay Topics and Ideas

Mars is the fourth planet from the Sun and it is often referred to as the Red Planet. This planet has a reddish appeal because of the iron oxide present on this planet. Mars planet is a cold planet and it has geological features similar to that of Earth. This is the only reason why it has captured the interest of astronomers like no other planet. This planet has traces of frozen ice caps and it has been found on the planet. Mars has a diameter of 6,787 km and it has two natural satellites.

It is the largest planet in our solar system. Jupiter has a strong magnetic field . Jupiter largely consists of helium and hydrogen. It has a Great Red Spot and cloud bands. The giant storm is believed to have raged here for hundreds of years. Jupiter has a diameter of 139,822 km and it has as many as 79 natural satellites which are much more than of Earth and Mars.

Saturn is the sixth planet from the Sun. It is also known for its ring system and these rings are made of tiny particles of ice and rock. Saturn’s atmosphere is quite like that of Jupiter because it is also largely composed of hydrogen and helium. Saturn has a diameter of 120,500 km and It has 62 natural satellites that are mainly composed of ice. As compare with Jupiter it has less satellite.

Uranus is the seventh planet from the Sun. It is the lightest of all the giant and outer planets. Presence of Methane in the atmosphere this Uranus planet has a blue tint. Uranus core is colder than the other giant planets and the planet orbits on its side. Uranus has a diameter of 51,120 km and it has 27 natural satellites.

Neptune is the last planet in our solar system. It is also the coldest of all the planets. Neptune is around the same size as the Uranus. And it is much more massive and dense. Neptune’s atmosphere is composed of helium, hydrogen, methane, and ammonia and it experiences extremely strong winds. It is the only planet in our solar system which is found by mathematical prediction. Neptune has a diameter of 49,530 km and it has 14 natural satellites which are more than of Earth and Mars.

Scientists and astronomers have been studying our solar system for centuries and then after they will findings are quite interesting. Various planets that form a part of our solar system have their own unique geological features and all are different from each other in several ways.

Customize your course in 30 seconds

Which class are you in.

tutor

  • Travelling Essay
  • Picnic Essay
  • Our Country Essay
  • My Parents Essay
  • Essay on Favourite Personality
  • Essay on Memorable Day of My Life
  • Essay on Knowledge is Power
  • Essay on Gurpurab
  • Essay on My Favourite Season
  • Essay on Types of Sports

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Download the App

Google Play

Home — Essay Samples — Science — Universe — The Beginning of the Universe

test_template

The Beginning of The Universe

  • Categories: Creation Myth Universe

About this sample

close

Words: 1323 |

Published: Nov 16, 2018

Words: 1323 | Pages: 3 | 7 min read

Works Cited

  • Greene, B. (2004). The Fabric of the Cosmos: Space, Time, and the Texture of Reality. Knopf.
  • Guth, A. H. (1997). The Inflationary Universe: The Quest for a New Theory of Cosmic Origins. Perseus Books.
  • Hawking, S. (1988). A Brief History of Time: From the Big Bang to Black Holes. Bantam Books.
  • Krauss, L. M. (2012). A Universe from Nothing: Why There Is Something Rather Than Nothing. Free Press.
  • Lemaître, G. (1931). The Primeval Atom Hypothesis and the Problem of Clusters of Galaxies. Monthly Notices of the Royal Astronomical Society, 91(5), 483-490.
  • Linde, A. (1990). Particle Physics and Inflationary Cosmology. Contemporary Concepts in Physics, 5, 295-339.
  • Peebles, P. J. E. (1993). Principles of Physical Cosmology. Princeton University Press.
  • Penrose, R. (2004). The Road to Reality: A Complete Guide to the Laws of the Universe. Vintage Books.
  • Rees, M. J. (2000). Just Six Numbers: The Deep Forces That Shape the Universe. Basic Books.
  • Weinberg, S. (1972). Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity. John Wiley & Sons.

Image of Alex Wood

Cite this Essay

Let us write you an essay from scratch

  • 450+ experts on 30 subjects ready to help
  • Custom essay delivered in as few as 3 hours

Get high-quality help

author

Prof Ernest (PhD)

Verified writer

  • Expert in: Religion Science

writer

+ 120 experts online

By clicking “Check Writers’ Offers”, you agree to our terms of service and privacy policy . We’ll occasionally send you promo and account related email

No need to pay just yet!

Related Essays

2 pages / 1004 words

1 pages / 572 words

2 pages / 784 words

1 pages / 406 words

Remember! This is just a sample.

You can get your custom paper by one of our expert writers.

121 writers online

The Beginning of The Universe Essay

Still can’t find what you need?

Browse our vast selection of original essay samples, each expertly formatted and styled

Related Essays on Universe

The question "Are we alone in the universe?" has captivated human imagination for centuries, igniting curiosity and fueling scientific inquiry. As we gaze upon the vast expanse of the cosmos, the possibility of extraterrestrial [...]

The exploration of space stands as one of humanity's most ambitious endeavors, sparking ongoing debates about its cost-effectiveness. This essay delves into the complexities of assessing the benefits and drawbacks of space [...]

There are four types of black holes and it all depends on their masses to differentiate between them. The first type is called a Primordial black hole. A Primordial black hole is the smallest compared to the other three types of [...]

The claim that our universe began, and did not always exist, brings enormous challenges to scientists who do not believe that the universe was created by God.Are scientists part of the Big Bang theory? Yes. In the late 1920s, [...]

We live in a determinate expanding universe which has not existed forever, and that all the matter, energy and space in the universe was once squeezed into an infinitesimally small volume, which erupted in a cataclysmic [...]

String theory college is an enchanting realm where the fabric of reality is woven from the tiniest threads of energy. It's a field that challenges our conventional understanding of the universe, offering a bold new [...]

Related Topics

By clicking “Send”, you agree to our Terms of service and Privacy statement . We will occasionally send you account related emails.

Where do you want us to send this sample?

By clicking “Continue”, you agree to our terms of service and privacy policy.

Be careful. This essay is not unique

This essay was donated by a student and is likely to have been used and submitted before

Download this Sample

Free samples may contain mistakes and not unique parts

Sorry, we could not paraphrase this essay. Our professional writers can rewrite it and get you a unique paper.

Please check your inbox.

We can write you a custom essay that will follow your exact instructions and meet the deadlines. Let's fix your grades together!

Get Your Personalized Essay in 3 Hours or Less!

We use cookies to personalyze your web-site experience. By continuing we’ll assume you board with our cookie policy .

  • Instructions Followed To The Letter
  • Deadlines Met At Every Stage
  • Unique And Plagiarism Free

essay on universe in english

essay on universe in english

The Universe

“We are the Cosmos made conscious and life is the means by which the Universe understands itself.” Brian Cox, British physicist
  • October 17, 2020
  • General English
  • No Comments

Home » The Universe

Latest lesson plans

International Trade

LESSON OVERVIEW

This free ESL lesson plan on the Universe has been designed for adults and young adults at an intermediate (B1/B2) to advanced (C1/C2) level and should last around 45 to 60 minutes for one student.

Have you ever looked up at the night sky and wondered where it all came from and why we are here? People throughout history have asked those same questions and their answers have allowed humanity to progress to where it is today. In this ESL lesson plan on the Universe, students will have the opportunity discuss and express their opinions on issues such as the importance of finding out about the Universe, the origins of the Universe and philosophical questions about reality.

This lesson plan could also be used with your students to debate these issues for World Space Week , which takes place in October. For more lesson plans on international days and important holidays, see the calendar of world days to plan your classes for these special occasions.

For advice on how to use this English lesson plan and other lesson plans on this site, see the guide for ESL teachers .

PRE-CLASS ACTIVITIES

Reading activity Before the English class, send the following article to the students and ask them to read it while making a list of any new vocabulary or phrases they find (explain any the students don’t understand in the class):

Lifehack | “20 Extraordinary And Inspiring Facts About The Universe”

The article lists 20 amazing facts about the Universe. At the start of the class, hold a brief discussion about what the students thought about the article. Did they know about any of these facts before reading the article? Which facts were they most fascinated by? How do they feel about being made of stardust?

Video activity To save time in class for the conversation activities, the English teacher can ask the students to watch the video below and answer the listening questions in Section 3 of the lesson plan at home. There are intermediate listening questions and advanced listening questions so teachers can decide which would be more appropriate for their students. Check the answers in the class.

The video for this class is called “Three Ways to Destroy the Universe” by Kurzgesagt – In a Nutshell which looks at three theories about how to Universe will end.

Courtesy of  kurzgesagt.org

IN-CLASS ACTIVITIES

The focus in the class is on conversation in order to help improve students’ fluency and confidence when speaking in English as well as boosting their vocabulary.

This lesson opens with a short discussion about the article the students read before the class. Next, the students can give their opinion on the quote at the beginning of the lesson plan – what they think the quote means and if they agree with it. This is followed by an initial discussion on the topic including their interest in the Universe and how space exploration has helped human progress.

After this, students will learn some vocabulary connected with the Universe such as asteroid , shooting star and black hole . This vocabulary has been chosen to boost the students’ knowledge of less common vocabulary that could be useful for preparing for English exams like IELTS or TOEFL. The vocabulary is accompanied by a cloze activity and a speaking activity to test the students’ comprehension of these words.

If the students didn’t watch the video before the class, they can watch it after the vocabulary section and answer the listening questions. Before checking the answers, ask the students to give a brief summary of the video and what they thought about the content.

Finally, there is a more in-depth conversation about the Universe. In this speaking activity, students will talk about issues such as how the Universe began, how it may end and whether there is only one universe.

After the class, students will write about their opinion of the Universe. This could be a short paragraph or a longer piece of writing depending on what level the student is at. The writing activity is designed to allow students to practise and improve their grammar with the feedback from their teacher. For students who intend to take an international English exam such as IELTS or TOEFL, there is an alternative essay question to practise their essay-writing skills.

DOWNLOAD LESSON PLANS

essay on universe in english

Did you find this lesson plan useful?

Your English Pal is a free resource to help fellow ESL teachers save time when preparing their classes. If these lesson plans have helped you, and you’d like to help keep the site free, please consider making a small contribution to help cover the site’s costs. Any help you can give is much appreciated!

Leave a Comment Cancel Reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

Copyright © 2023 Your English Pal

Privacy Overview

British Council

Can the universe be described in simple english, by roberto trotta, 12 november 2014 - 10:56.

Can the universe be described in simple English? Photo by Sweetie187 under Creative Commons licence.

Sweetie187, licensed under CC BY 2.0 and adapted from the original (link no longer available).

How can we make complex scientific ideas more accessible?  Dr Roberto Trotta  tells us about his attempt to describe the universe using the  most common 1,000 words of English  and explains why science ultimately speaks to us through the language of mathematics.

Would you try to cross the South Pole wearing only flip-flops? Or row across the Atlantic on an inflatable swimming pool? Or describe the beauty and mystery of the universe using only the most common 1,000 words in English?

Making science accessible to everybody

In my book  The Edge of the Sky — All you need to know about the All-There-Is , I try to achieve something seemingly impossible with the simplest of means: to rethink our understanding of the universe using only a handful of different words (707, to be precise). My aim was to discuss some of the biggest questions in science today, in a language that is accessible to everybody, from children to adults, from amateur astronomers to the uninitiated, from native English speakers to those who have learnt English as a second language.

The first challenge I faced was to talk about the universe without using the word 'universe', for this was not on the list of the 1,000 words. I was shocked to discover that many of the words I would have liked to use were not available to me. For example, I couldn't use 'galaxy', 'particle', 'planet', 'earth', or 'scientist'. It seemed hopeless!

But as I persevered, something unexpected happened.

Creating a childlike perspective of the cosmos

A new voice started to emerge from the format itself. So 'galaxies' became 'Star-Crowds'; 'particles smashing together' became 'drops kissing each other'; 'planets' were 'crazy-stars'; the 'Milky Way' became the 'White Road', 'scientists' became 'Student-People'. The extremely limited lexicon I was working with created a poetic straitjacket that gave me a new, childlike perspective on the cosmos.

Armed with this simple yet powerful language, I found I could tackle all the subjects I wanted, from the Big Bang to the possibility of parallel universes. For example, the expansion of the universe is explained thus:

She steps outside in the cold night, holding her cup of hot coffee with both hands.

The White Road is beautiful in the dark, clear sky, and, once again, she cannot help but be amazed by it all.

It does not matter how many times she has seen this before, or how much she knows about what is out there. The sight of the stars is enough to make her gasp.

'It all seems so still and yet it’s changing all the time,' she whispers to no one.

It is hard to believe that everything out there past the White Road and its stars is running away from us.

Yet, like Mr Hubble found long ago, the Star-Crowds are running away from each other, as the space between them gets bigger and bigger. The All-There-Is is growing with time.

(You can try out for yourself how it feels like to be writing with only the most common 1,000 words in this  specially designed comment box  on my website).

To some, reducing the vast and rich English lexicon to a mere 1,000 words is plain wrong, tantamount to a butchery of the English language. Others have seen in my experiment a radical shift in the way we communicate science: jargon-free, full of metaphors and imagery, demanding an active participation on the part of the reader's imagination. By getting rid of all but the simplest of words, the story of the universe acquires the immediacy of folk tales, or perhaps of a post-apocalyptic future when the 'proper' words for complex scientific ideas have been lost.

The universe speaks to us through the language of mathematics

This is not to say that science is simply a fictional narrative among many others. The unique power of science rests on its ability to observe, infer and quantify regularities about the world we live in, that is, the 'laws of nature'. While the international language of science today is English, we have to recall that, in some sense, this is just a translation -- fundamentally, the universe speaks to us through the language of mathematics, as Galileo is reputed to have first stated.

But translating the contents of mathematical expressions into natural language raises the question of whether any choice of words is sufficiently accurate for the purpose. Is 'electron' any better than 'Very Small Drop' to describe what a physicist understands by that term, and all the complex quantum-mechanical ideas associated with it?

The limits of English and other 'natural' languages

Despite its richness and many shades of subtlety, the English language cannot replace the full depth of understanding allowed for by mathematics -- no natural language could. The fact that English is today the internationally accepted language of science might just be a temporary, historical accident. If one day Chinese becomes the language of science, it won't change the fact that any natural language cannot be but an approximation of the true, exact and mysteriously powerful language of nature: mathematics. In the end, natural language descriptions of the fundamental nature of the universe and of its governing laws are bound to be inadequate.

My translation of complex cosmological ideas into very simple English tries to subvert the inadequacy of natural language, when compared with mathematics, by reducing it to the smallest number of atoms. Just like the periodic table of the elements can explain the entirety of the chemistry we see around us, so I imagined that the most common 1,000 words could provide the building blocks for a new description of the complexities of the universe.

Whether or not I have succeeded in my goal is a question that only my readers can answer. If my book can inspire some of them and generate a new spark of wonder for the cosmos we live in, I'll be happy.

Dr Roberto Trotta is a theoretical cosmologist at Imperial College London, where he studies dark matter, dark energy and the Big Bang, and a Science and Technology Facilities Council (STFC) Public Engagement Fellow. Roberto has won numerous awards for his research and outreach, including the 'I'm a Scientist-Get me out of here! Astronomy Zone' vote in June 2014, the Lord Kelvin Award of the British Association for the Advancement of Science and the Michelson Prize of Case Western Reserve University.

Visit Roberto Trotta's  website  or follow him on  Twitter .

Roberto will be speaking at the English Language Council Lecture on Science and the English Language, live-streamed from London on 13 November. The lecture is a forum for debate on English as the international language of science and how to make science more accessible to the public. The British Council and the English-Speaking Union host the lecture three times a year to discuss topics relevant to the global community of English language speakers. You can watch the archived event on YouTube.

You might also be interested in:

  • Nanotechnology: tiny tech, massive impact
  • Sign language explains how we communicate

View the discussion thread.

British Council Worldwide

  • Afghanistan
  • Bosnia and Herzegovina
  • Czech Republic
  • Hong Kong, SAR of China
  • Korea, Republic of
  • Myanmar (Burma)
  • Netherlands
  • New Zealand
  • North Macedonia
  • Northern Ireland
  • Occupied Palestinian Territories
  • Philippines
  • Saudi Arabia
  • Sierra Leone
  • South Africa
  • South Sudan
  • Switzerland
  • United Arab Emirates
  • United States of America
  • Essay On Solar System

Essay on Solar System

500+ words essay on solar system.

The Sun and all other planets and celestial bodies that revolve around it are together called a solar system. Our solar system consists of eight planets and an asteroid belt. These planets are termed inner and outer planets. Earth, Venus, Mercury and Mars are considered inner planets closer to the Sun and smaller, also known as terrestrial planets. The remaining four planets, Jupiter, Saturn, Uranus, and Neptune, are outer planets that are massive and termed giant planets.

This essay will discuss our solar system and give a detailed summary of the eight planets.

Planets are large celestial bodies that revolve around the Sun in fixed orbits. They don’t have their own lights and use the Sun’s light to reflect light. As stars, planets don’t twinkle because they are closer to us. The planets Mercury, Venus, Earth and Mars, remain in the inner solar system, and the outer solar system planets are Jupiter, Saturn, Uranus, and Neptune. Among all the planets, Earth is the only planet where life exists.

Satellites are objects that revolve around the Sun. Satellites can be categorised into two types – natural and man-made. For example, the Moon is a natural satellite that revolves around the Earth.

Man-made Satellite

Man-made satellites are artificial satellites sent to space to gather information about other planets. The first artificial satellite sent by India into space is Aryabhatta.

Asteroids are small, rocky objects that revolve around the Sun. Most asteroids are made of different rocks, but some have clays or metals, such as nickel and iron. Asteroids have irregular shapes and are not round-like planets.

Comets are irregularly shaped bodies composed of non-volatile grains and frozen gases. For example, Haley’s comet is a comet that occurs once every 76 years.

Dwarf planets

Dwarf planets are heavenly bodies that are too small to be considered a planet but too large to fall under smaller categories. Example: Pluto

Our Solar System

The nearest and the smallest planet in our solar system is Mercury. The planet is hidden under the Sunlight, which can only be seen before sunrise or sunset.

Venus is the closest and brightest planet in our solar system other than the Sun and the Moon. It is known as the morning and evening star because it appears in the eastern sky before Sunrise and in the western sky after sunset.

In our solar system, the Earth is the only planet that favours life. On this planet, life is possible because of conditions like water and atmosphere and the favourable distance from the Sun. The Earth’s rotation of axis is tilted, due to which we witness seasonal changes, and the Moon is the only natural satellite of planet Earth. From outer space, the colour of the Earth appears bluish-green as light from the landmass and water bodies gets reflected.

Mars is the fourth planet from the Sun. It is often called the “Red Planet” because the reddish iron oxide prevalent on its surface gives it a reddish appearance. Mars has two natural satellites.

Jupiter is the largest planet in our solar system. So big that it can accommodate 1300 piles of Earth. However, it is only 318 times heavier than Earth. Jupiter has at least 67 Moons. Jupiter has a big red spot, a gigantic one twice as wide as the Earth, that has been swirling for many years.

Saturn is the second-largest planet in our solar system. It is unique as it has thousands of beautiful rings. Saturn has numerous Moons.

Uranus and Neptune

Uranus rotates from west to east. Its axis has a huge tilt, making it look like it’s spinning on its side. Neptune is the eighth and farthest planet in our solar system. It has powerful winds, which are more potent than any other planet in the solar system.

Scientists and astronomers have been studying our solar system for centuries, and the findings are pretty interesting. Various planets that form a part of our solar system have their unique geological features, and all are different from each other in several ways. But, unfortunately, after years of exploration, the Universe has still more mysteries that are left unknown.

From our BYJU’S website, students can also access CBSE Essays related to different topics. It will help students to get good marks in their exams.

Frequently Asked Questions on Solar system Essay

Are there any other systems present in the universe.

Research has shown that there are several other systems existing in the universe other than our Solar system.

Does the solar system only consist of planets?

No, the solar system also consists of dwarf planets, asteroids, comets, etc.

Has the Solar system fully been discovered?

Although there are several types of research going on, there are still many undiscovered and unreachable regions of the Solar system.

Leave a Comment Cancel reply

Your Mobile number and Email id will not be published. Required fields are marked *

Request OTP on Voice Call

Post My Comment

essay on universe in english

  • Share Share

Register with BYJU'S & Download Free PDFs

Register with byju's & watch live videos.

close

Counselling

English Essay on “Mystery of The Universe” English Essay-Paragraph-Speech for Class 8, 9, 10, 11 and 12 CBSE Students and competitive Examination.

Mystery of The Universe

The universe is defined as everything that physically exists: the entirety of space and time, all forms of matter, energy and momentum, and the physical laws and constants that govern them; more customarily defined as everything that exists, has existed and will exist. Although it is believed that other universes also exist, but our universe, as we know, is an amazing thing, and is everything within our connected space-time that could ever interact with us and vice-versa. The universe is often called mysterious as it is something very obscure and is beyond human knowledge to explain.

It is always a mystery about how the universe began, whether if and when it will end. Astronomers have constructed two types of models to find an answer, viz. Big Bang and Steady State. However, the big Bang theory can best explain the creation of the universe. This model postulates that about 15 to 20 billion years ago, the universe violently exploded into being, in an event called the Big Bang. Before the Big Bang, all of the matter and radiation of the present universe were packed together in the primeval fireball. The Big bang was the start of time and space. The matter and radiation of that early stage rapidly expanded and cooled. Several million years later, it condensed into galaxies. The universe has continued to expand, and the galaxies have continued moving away.

The universe is so diverse and unique, and it interests the scientists to learn about all the variance that lies beyond the man’s grasp. Within this marvel of wonders our universe holds a mystery that is very difficult to understand because of the complications that arise when trying to examine and explore the principles of space. One of the great mysteries of the universe happens to be that of ever elusive ‘black-hole’. The universe is believed to be mostly composed of dark energy and dark matter, both of which are poorly understood at present.

The universe is infinite in volume, the observable matter is spread over in space of at least 93 billion light years across; and consists, of galaxies, black holes, comets, planets, satellites that we are aware of. The observable matter of the universe is observed as ‘clumps’ i.e. to cluster; many atoms are condensed into stars, most stars into galaxies and black holes. Within our galaxy viz. the `milky-way’, there are millions upon millions of stars. Within our universe, there are millions upon millions of galaxies. Galaxies are white glowing specks in the sky; the mystery does not lie within what we can see, but what we cannot see. There are millions of stars lighting the darkness of our universe, but the question lies in what happens when one of these enormous lamps burns out. One of the most fascinating is the ‘black hole’ theory; one of the great mysteries of the universe is that of the ever clandestine, black-hole. Not any star can become a black-hole. Only a very large star has the potential to – become a black-hole. Generally, a black-hole is defined as a region where matter collapses to infinite density, and where as a result, the curvature of space-time is extreme. Moreover, the intense gravitational field of the black-hole prevents any light or other electromagnetic radiation from escaping. The name black-hole is because of the fact that not even light could escape their gravitational pull; light as a result, disappears from the visible universe; and ‘hole’ denotes the actual hole where everything is absorbed and where the centre core is found.

The universe is indeed a creation of wonder and it is unfathomable by man. Its gargantuan size makes us repeat so often the saying, “Many, 0 Lord my God, are the wonders you have done”

Related Posts

essay on universe in english

Absolute-Study

Hindi Essay, English Essay, Punjabi Essay, Biography, General Knowledge, Ielts Essay, Social Issues Essay, Letter Writing in Hindi, English and Punjabi, Moral Stories in Hindi, English and Punjabi.

One Response

' src=

Thank you so much for help. It means a lot.

Save my name, email, and website in this browser for the next time I comment.

IMAGES

  1. Write easy English essay on Universe

    essay on universe in english

  2. Our Universe Essay in English

    essay on universe in english

  3. Essay writing on Universe in english||what is the size of the universe

    essay on universe in english

  4. The Beginning of the Universe: [Essay Example], 1323 words GradesFixer

    essay on universe in english

  5. Solar System and Universe Essay

    essay on universe in english

  6. Summary of the Universe in a Nutshell Essay Example

    essay on universe in english

VIDEO

  1. The Universe Essay

  2. Laid-Back Incremental Sandbox RPG!

  3. The universe ( English Ver.2)

  4. Creating a Humor-Filled Universe

  5. SCIENCE FORM2 || CHAPTER 11 || STARS & GALAXIES IN THE UNIVERSE [GALAXIES] 1/3

  6. Lost Universe

COMMENTS

  1. Universe: Essay on Our Universe

    Essay on Our Universe. Our Universe contains 176 billion (one billion = 100 crores) constellations (group of stars) and each constellation includes hundreds of billion stars. Universe consists, constellation, in which Sun exists, is so big that from the core of constellation, light takes around 27 thousand years to reach up to sun.

  2. What is the Universe?

    The universe is everything. It includes all of space, and all the matter and energy that space contains. It even includes time itself and, of course, it includes you. Earth and the Moon are part of the universe, as are the other planets and their many dozens of moons. Along with asteroids and comets, the planets orbit the Sun.

  3. Overview

    The Universe's History The origin, evolution, and nature of the universe have fascinated and confounded humankind for centuries. New ideas and major discoveries made during the 20th century transformed cosmology - the term for the way we conceptualize and study the universe - although much remains unknown. Here is the history of the universe according […]

  4. ESA

    The Universe. The Universe is everything we can touch, feel, sense, measure or detect. It includes living things, planets, stars, galaxies, dust clouds, light, and even time. Before the birth of the Universe, time, space and matter did not exist. The Universe contains billions of galaxies, each containing millions or billions of stars.

  5. Universe

    The physical universe is defined as all of space and time (collectively referred to as spacetime) and their contents. Such contents comprise all of energy in its various forms, including electromagnetic radiation and matter, and therefore planets, moons, stars, galaxies, and the contents of intergalactic space. The universe also includes the physical laws that influence energy and matter, such ...

  6. Essay on Our Universe: Definition, Stars and Solar System

    ADVERTISEMENTS: Essay on Our Universe: Definition, Stars and Solar System! When we look at the sky, we see different kinds of natural bodies like the sun, the stars, the moon, and so on. The natural bodies in the sky are called celestial bodies or heavenly bodies. They are part of our universe. The universe is […]

  7. 100 Words Essay on Our Universe

    By studying the universe, we learn more about where we come from and our place in the cosmos. 500 Words Essay on Our Universe Introduction to the Universe. The universe is like a huge home with many rooms, each filled with stars, planets, and all sorts of interesting things. Imagine looking up at the night sky. Every star you see is part of our ...

  8. The origins of the universe facts and information

    A Belgian priest named Georges Lemaître first suggested the big bang theory in the 1920s, when he theorized that the universe began from a single primordial atom. The idea received major boosts ...

  9. Origin of the Universe

    Origin of the Universe. Cosmologists are closing in on the ultimate processes that created and shaped the universe. The universe is big in both space and time and, for much of humankind's history ...

  10. The Cosmic Perspective : Neil deGrasse Tyson

    The 100 th essay in the "Universe" series. Embracing cosmic realities can give us a more enlightened view of human life. Of all the sciences cultivated by mankind, Astronomy is acknowledged to be, and undoubtedly is, the most sublime, the most interesting, and the most useful. For, by knowledge derived from this science, not only the bulk ...

  11. How the Universe Works

    How the Universe Works Essay. For us, the Universe we live in is absolute and unlimited. We think it existed, exists and will always exist, although something inside us has never ceased to claim that everything has a beginning. There are a lot of the Universe origin theories, and the most famous one is probably the Big Bang Theory, according to ...

  12. Universe

    universe, the whole cosmic system of matter and energy of which Earth, and therefore the human race, is a part. Humanity has traveled a long road since societies imagined Earth, the Sun, and the Moon as the main objects of creation, with the rest of the universe being formed almost as an afterthought. Today it is known that Earth is only a small ball of rock in a space of unimaginable vastness ...

  13. ≡Essays on Universe. Free Examples of Research Paper Topics, Titles

    The Beginning of The Universe. 3 pages / 1323 words. Billion years ago, there was an extra-ordinary event without which nothing would exist. It was the beginning of the universe. It was the time when a large amount of energy in an infinitely small space violently expanded and led to the creation of universe and...

  14. universe summary

    Below is the article summary. For the full article, see universe . universe, Whole cosmic system of matter and energy of which Earth is a part. Its main constituents are the galaxies, within which are star s and stellar groupings and nebulae ( see nebula ). Earth's Sun is one star among the billions of stars in the Milky Way Galaxy.

  15. The Universe

    This page of the essay has 1,050 words. Download the full version above. Abstract. The universe is a known place to our young and sensitive eyes. Stars galaxies, planets, comets, asteroids are part of this abundant place that has an end of 13. 8 billion years to us. The age of the universe was known by studying the oldest objects within the ...

  16. The Origin of the Universe: [Essay Example], 445 words

    Get custom essay. According to the standard theory, our universe sprang into existence as "singularity" around 13.7 billion years ago. "Singularity"a point or region of infinite mass density at which space and time are infinitely distorted by gravitational forces and which is held to be the final state of matter falling into a black hole.

  17. universe

    The universe is everything that exists, including objects and energy, throughout time and space. Earth, the Sun, and the rest of the solar system are only a very small part of the universe. The size of the universe is difficult to imagine. It is so large that light from very distant objects in the universe must travel billions of years before ...

  18. Solar System Essay for Students and Children

    500+ Words Essay on Solar System. Our solar system consists of eight planets that revolve around the Sun, which is central to our solar system. These planets have broadly been classified into two categories that are inner planets and outer planets. Mercury, Venus, Earth, and Mars are called inner planets. The inner planets are closer to the Sun ...

  19. The Beginning of the Universe: [Essay Example], 1323 words

    Published: Nov 16, 2018. Billion years ago, there was an extra-ordinary event without which nothing would exist. It was the beginning of the universe. It was the time when a large amount of energy in an infinitely small space violently expanded and led to the creation of universe and everything else that we see around us today.

  20. Your English Pal

    This free ESL lesson plan on the Universe has been designed for adults and young adults at an intermediate (B1/B2) to advanced (C1/C2) level and should last around 45 to 60 minutes for one student. ... For advice on how to use this English lesson plan and other lesson plans on this site, ... there is an alternative essay question to practise ...

  21. Can the universe be described in simple English?

    The universe speaks to us through the language of mathematics. This is not to say that science is simply a fictional narrative among many others. The unique power of science rests on its ability to observe, infer and quantify regularities about the world we live in, that is, the 'laws of nature'. While the international language of science ...

  22. Essay on Solar System For Students In English For Students In English

    500+ Words Essay on Solar System. The Sun and all other planets and celestial bodies that revolve around it are together called a solar system. Our solar system consists of eight planets and an asteroid belt. These planets are termed inner and outer planets. Earth, Venus, Mercury and Mars are considered inner planets closer to the Sun and ...

  23. English Essay on "Mystery of The Universe" English Essay-Paragraph

    The universe is infinite in volume, the observable matter is spread over in space of at least 93 billion light years across; and consists, of galaxies, black holes, comets, planets, satellites that we are aware of.